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This paper builds to the introduction of a supervised quantum reservoir computing model

that, in theory, provides an exponential speed-up over its classical analog. To get there, we

survey the space of machine learning and discuss the merit of the classical reservoir computing

paradigm in comparison to SVM-type models. We then outline a real-world quantum varia-

tional classifier that utilizes a quantum enhanced feature space to separate data. Finally, we

apply aspects of classical reservoir-based algorithms towards high-dimensional quantum ma-

chine learning and propose a general purpose feed-forward quantum reservoir feature-learner

designed for a fault-tolerant quantum computer.
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1.0 Introduction

Quantum computers are devices that harness quantum mechanics to perform computa-

tions in ways that classical computers cannot. They were originally proposed as an elegant,

more accurate way to simulate the natural world. The key difference between a quantum

computer and a classical computer is the basic unit of data (i.e. information) used. In

classical computers, information is encoded in bits, where each bit can have the value 0 or 1.

Quantum computers encode information into a two-level quantum system called a quantum

bit, or qubit. Physical implementations of qubits include polarizations of a photon, two

of the (multiple) discrete energy levels of an ion, a superconducting Transmon qubit, the

nuclear spin states of an atom or the spin states of an electron. A qubit can be in state |0〉

or |1〉 or (unlike a classical computer) a linear combination (i.e. superposition) of states:

|ψ〉 = α |0〉+ β |1〉 (1)

where α and β are complex numbers. Therefore, the state of a qubit is a vector in a two-

dimensional complex vector space. The special cases of |0〉 and |1〉 form an orthonormal

basis for this vector space. Classical bits have a completely well-define state at every point

during computation. By contrast, when we measure a qubit we could get either the result

0, with probability |α|2, or the result 1, with probability |β|2. These probabilities must sum

to unity: |α|2 + |β|2 = 1. This conservation of probability allows us to write (1) as 1

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 (2)

where φ and θ are real numbers and define a point on the unit-three dimensional sphere,

often called the Bloch sphere.

1Formally, this expression contains a multiplicative factor eiθ. However this term has no observable effects,
so is ignored here for simplicity.
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Figure 1: Bloch sphere representation of qubit [29]

Many interesting problems are impossible to solve on classical computers because of the

astronomical resources required to solve realistic cases. Quantum computers allow us to

construct new algorithms that render these problems feasible. Famously, Shor’s (1994) algo-

rithm for factoring integers provides an exponential speed-up over the best known classical

algorithms, and Grover’s search algorithm (1996) provides a quadratic speed-up over the

best known classical algorithms. In this paper, we are interested in how we can use quan-

tum algorithms to solve supervised machine learning problems with similar time complexity

advantage.
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2.0 Preliminaries

2.1 Machine Learning

2.1.1 Artificial Neurons

Artificial neural networks (ANNs) are computing systems that are inspired by, but not

identical to, the biological neural networks that constitute animal (e.g. human) brains. A

biological neural circuit is a population of neurons (or nerve cells) interconnected that carry

out a specific function when activated. Neural circuits interconnect to form large-scale brain

(or biological) neural networks. ANNs use connectionism [9], a cognitive theory based on

simultaneously occurring, distributed signal activity via connections that can be represented

numerically, where learning occurs by modifying connection strengths based on experience

[33]. Connections between neurons in the brain are actually much more complex than those

of the artificial neurons used in ANNs. Still, by using the ”connectionist” model, ANNs

attempt to exploit the architecture of the human brain. The brain has many desirable char-

acteristics not present in von Neummann or modern parallel computers including massive

parallelism, distributed representation and computation, learning ability, generalization abil-

ity, adaptivity, inherent contextual information processing, fault tolerance, and low energy

consumption. By utilizing these characteristics, ANNs aim to perform tasks not well-solved

by conventional algorithms.

All ANNs contain neurons, connections, and an activation function. Neurons (i.e. nodes)

receive input, combine the input with their internal state using an activation function, and

produce output using an output function. The initial inputs are external data, such as

images. The ultimate outputs accomplish some task, such as recognizing an object in an

image. Connections map the output of one neuron to the input of another neuron. Each

connection is (typically) assigned a weight that represents its relative importance. A single

neuron can have multiple input and output connections. In this way, the neurons of an ANN

form a directed, weighted graph. The activation function defines the output of a neuron
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from a given set of inputs. The characteristic feature of the activation function is that a

small change in input produces a small change in output (i.e. it must be smooth). As a

simple example, take one of the earliest models of an artificial neuron, the binary threshold

unit, proposed by MucCulloch and Pitts in 1943 [25, 17].

This neuron computes a weighted sum of its n input signals, xi, where i = 1, 2, ..., n,

and generates an output of 1 if this sum is above a certain threshold T, or 0 otherwise.

Mathematically,

y = θ
( n∑
i=1

Wixi
)

(3)

where θ is a linear step function at threshold T, Wj is the weight value associated with the

jth input, and y is the binary output. The McCulloch-Pitts neuron has been generalized in

many ways, the most obvious being the use of activation functions other than the threshold

function (e.g. piecewise linear, sigmoid, Gaussian, etc.). A bias term can be added to the

result of any activation function.

2.1.2 Network Architectures

Neurons are often organized into multiple layers. This is characteristic of deep learning.

Typically, neurons of one layer connect only to neurons of the immediately preceding and

immediately following layers. The input (first) layer receives external data. The output

(final) layer produces the ultimate result. In between are zero or more hidden layers. Between

two layers, many neuron-connection patterns are possible. For example, in fully connected

layers every neuron in one layer connects to every neuron in the next layer. In pooling

layers, a group of neurons in one layer connects to a single neuron in the next layer, thereby

reducing the number of neurons in that layer. Based on the connection pattern (architecture),

ANNs can be grouped into two categories (Figure 2): feedforward networks, in which neuron

connections form a directed acyclic graph, and recurrent networks (i.e. feedback networks)

that contain cyclic connections between neurons in the same or previous layers.

In feedforward neural networks (FFNNs), information moves in only one direction, for-

ward, from the input nodes, through the hidden nodes (if any) and to the output nodes.

Neuron connections do not form a cycle. Generally, feedforward networks are static and
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memory-less: they produce only one set of output values for a given input (rather than a

sequence of values), and the output is independent of the previous state(s) of the network.

The simplest type of FFNNs is the single-layer perceptron (SLP), which consists of a

single layer of output nodes. In the SLP network, the inputs are fed directly to the outputs

via a series of weights. The sum of the products of the weights and the inputs is calculated in

each node (3). If the value is above some threshold, the neuron fires and takes the activated

value. Otherwise, it takes the deactivated value. SLPs may also use a continuous function

instead of a step function. Regardless, SLPs are only capable of learning linearly separable

patterns.

The most common class of FFNNs is the multilayer perceptron (MLP). The neurons of

the MLP are organized into multiple (at least 3) fully-connected layers. This means that each

neuron in one layer has directed connections to each the neurons in the next layer. With

the exception of the input neurons, each neuron in the MLP uses a nonlinear activation

function. If the MLP instead used a linear activation function, any number of layers could

be reduced to a two-layer input-output model using linear algebra. Two historically common

activation functions are the hyperbolic tangent and the logistic functions:

y(xi) = tanh(xi) (4)

y(xi) =
1

1 + e−xi
(5)

The MLP’s nonlinear activation allow it to distinguish data that is not linearly separable.

Unlike feedforward networks, recurrent neural networks (RNNs) can use their internal

state (i.e. memory) to process sequences of inputs. When a new input pattern is presented,

the neuron outputs are computed. Because of the feedback paths, the inputs to each neuron

are then modified, which leads the network to enter a new state. The connections between

the nodes of a RNN therefore form a directed graph along a temporal sequence, allowing

these networks to exhibit temporal, dynamic behavior.

It is possible to solve temporal problems using feedforward structures. Using Takens’s

delay embedding theorem [34], one can reconstruct a chaotic dynamical system from a se-

quence of observations of the state of that system. This can convert a temporal problem into
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Figure 2: ANN Architectures Map

a spacial problem. However this is not a natural way to represent time, and can be costly.

For example when a long time delay is introduced, many parameters are needed to model

this large, ”empty space.”

To solve this problem, one can add recurrent connections, transforming the system into a

(potentially) complex dynamical system. This recurrence opens the door to many temporal,

real-world applications such as prediction, identification, adaptive filtering, noise reduction,

speech recognition, and more.

2.1.3 Supervised Learning

In the context of an ANN, learning is the problem of updating the network architecture

and connection weights so that the network can more effectively perform a specific task. In

short, this is done by minimizing the network’s observed error. Performance is improved over

time by iteratively updating the weights in the network based on available training (input

data) patterns. The ANN’s ability to learn autonomously sets it apart from traditional

systems. Instead of following a set of specified rules, ANNs (attempt to) discern underlying

input-output relationships from a given collection of representative examples. Learning (i.e.

training) is complete when providing the network additional data no longer reduces the error

rate. ”Error” is calculated by defining a loss-function that is periodically evaluated during
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training. Even after training, the error rate rarely reaches zero. It is therefore up to the user

to determine what error rate is acceptable, and whether the network should be redesigned.

The information available to the network during learning is the learning paradigm. The

procedure through which learning rules are used to update the network’s weights is the

learning algorithm.

There are three main learning paradigms: supervised, unsupervised, and hybrid. During

supervised learning, the network is provided with a ”correct answer” (output) for every input

pattern. The connection weights are then modified so that the network produces answers

as close as possible to the known correct answers. Unsupervised learning does not require

a correct answer associated with each input pattern in the training data set. Instead, the

network explores the underlying structure in the data, or correlations between patterns in

the data, and organizes patterns into categories from these correlations. Hybrid learning

combines supervised and unsupervised learning. Part of the weights are usually determined

through supervised learning, while the others are obtained through unsupervised learning.

Formally, the supervised learning setup is, given an input domain X 1 and an output

domain Y , and a training set D = {(x1, y1), ..., (xm, ym)} of training pairs (xm, ym) ∈ X ×Y

with m = 1, ...,M of training inputs xm and target outputs ym as well as a new unclassified

input x̃ ∈ X , predict the corresponding output ỹ ∈ Y [31].

2.1.3.1 Linear Regression

Mathematically speaking, input-output pairs are generated by an unknown function

y = f(x). Therefore, another way to think about prediction is the supervised model seeking

a function ỹ = h(x) that approximates the model function f . For this ‘deterministic model’

to work, it is assumed that similar inputs have similar outputs.

Consider classical linear regression based on a deterministic linear model function,

f(x;w) = wTx+ w0 (6)

1For our purposes X is chosen to be IRN of real N -dimensional input vectors (i.e. feature vectors), or for
binary variables, {0, 1}N of N -bit binary strings. X can also be CN for certain applications.
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where w ∈ IRN contains the trainable parameters, x ∈ IRN is the input, and w0 is an optional

bias. We want to solve for w. Define design matrix X with rows that correspond to each of

the xi’s. If X†X is of full rank, there exists closed-form solution,

w = (X†X)−1X†y = X+y (7)

where X+ is the Moore-Penrose pseudoinverse of X. However, if the data is not linearly

separable (which is likely), we need to first perform a transformation (i.e. feature map)

φ : X → F into a Hilbert space F where the data is linearly separable.

Figure 3: Data linearly non-separable in X feature mapped to a space F is now linearly

separable

After applying the feature map onto the input data {φ(xi)} we can perform linear re-

gression within the output space.

2.1.3.2 Nonlinear Regression

To choose an effective feature map we need to know something about the data before-

hand, which won’t always be the case. This motivates the use of nonlinear regression, more

descriptively named adaptive feature mapping, whereby a nonlinear function is applied to

both the inputs and parameters,

f(x;w) = ϕ(w, x) = ϕ(wTx) (8)
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Mathematically, neural networks can be viewed as a nonlinear regression model where model

function ϕ is called the activation function. In (8) ϕ is chosen such that the input to the

nonlinear functions is a linear model. In feed forward neural networks this expression is

composed many times,

f(x;W1; ...;WL) = ϕL(WL(ϕL−1...ϕ1(W1(x)))) (9)

where Wi (i = 1, 2, ..., L) are the parameters summarized as weight matrices for a network

with L hidden-layers. Neural networks learn through backpropogation, a linear optimization

algorithm that seeks to find the minimum of a loss function (e.g. a quadratic difference

between the produced outputs and target outputs of the model) using gradient descent.

Gradient descent updates the learnable parameters (weights) of the neural network at each

training iteration, which, for a large number of training parameters, can be costly. Reservoir

computing (RC) proposes a promising solution to this problem that makes it well suited for

quantum computing.

2.1.3.3 Fully Tunable Networks

Fully tunable neural networks allow for the of tuning parameters inside of the feature

map. This is most commonly done through a learning algorithm called gradient descent.

Gradient descent is a first order linear optimization algorithm that seeks to find the minimum

of a function. Using gradient descent, the learnable parameters (e.g. weights) of the neural

network are updated at each training iteration in the direction opposite to the gradient of

the loss function at the current point. The step size taken towards the local minimum at

each iteration is determined by the learning rate, α. By following the direction of the slope

”downhill” the network parameters are updated such that the error-rate is brought to a local

minimum. For a loss function (i.e. error function) E(p), parameter p is updated according

to

pn+1 = pn − α∇pE(pn) (10)

There are many gradient descent variants. (10) represents ”vanilla,” or batch gradient

descent, which calculates the gradients for the whole training data set before performing an
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update. This variant is slow and redundant. Stochastic gradient descent (SGD), in contrast,

performs an update for each training input xi and expected output yi (assuming supervised

learning):

pn+1 = pn − α∇pE(pn;xi; yi) (11)

While SGD is much faster than batch gradient descent, and eliminates redundancy,

its frequent updates with high (fixed) variance often cause it to overshoot the minimum,

sometimes never converging. Momentum is a method that helps accelerate SGD in the

appropriate direction, while also dampening its oscillations once it approaches a minimum.

It does so by retaining a fraction γ of the t− 1 (previous) update:

vt = γvt−1 − α∇pE(pn) (12a)

pn+1 = pn − vt (12b)

Momentum can be viewed physically as a ball rolling down a slope. The momentum term

increases for dimensions whose gradients point in the same directions, and reduces updates

for dimensions whose gradients change directions. As a result, there is faster convergence

and reduced oscillation.

The term backpropagation (i.e. backprop, or BP) refers only to the algorithm for com-

puting the gradient. However, it is often used loosely to refer to the entire learning algorithm,

including how the gradient is used, such as in SGD. BP is so named because to calculate the

derivative in a multi-layer network, you must use the chain rule from the last layer (directly

connected to the loss function, provides the prediction) to the first layer (takes the input

data). In other words, you are ”moving from back to front.”

2.1.4 Reservoir Computing

The dynamic memory and high adaptability of RNNs postures them as a promising

tool for many temporal, real-world applications. In addition, RNNs are the closest machine

learning model to a biological brain, so understanding under what conditions they perform

most optimally has massive implications for understanding natural, human computation
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and learning. However, their complex, recurrent structure makes them inherently difficult

to train. BP methods have been applied to RNNs [1] with varying success: Single neurons

with both recurrent and forward connections can cause non-convergence during gradient

descent. However, even with convergence, training RNNs using BP has shown to be slow

and costly because of the large number of learning parameters. Reservoir computing (RC)

is an extension of neural networks that proposes a promising solution to this problem in

which optimal performance can be achieved without training over all of the network weights.

Instead, only the final, linear readout layer is trained.

In RC, the input signal is connected to a fixed (non-trainable) and random dynamical

system (the reservoir), thus creating a higher dimension representation (embedding) through

complexity of a constant feature map. This embedding is then connected to the desired

output via trainable units. The non-recurrent equivalent of reservoir computing, used in this

paper, consists of a feed forward network in which only the readout layer is trainable.

This framework has the potential to use the computational power of naturally available

systems, setting it apart from FFNNs. Liquid-state machines (LSMs) and echo state net-

works (ESNs) are the two main types of reservoir computing (Figure 2). Section (A.4) gives

an in-depth tutorial on the implementation and application of ESNs.

2.2 Quantum Circuits

2.2.1 Quantum Fourier transform

One of the most useful ways of solving a problem in physics, mathematics, or computer

science is to transform it into some other problem for which the solution is known. One such

transformation is the discrete Fourier transform (DFT). The DFT occurs in many different

versions throughout classical computing in areas ranging from signal processing to data

compression to complexity theory. The quantum Fourier transform (QFT) is the quantum

implementation of the discrete Fourier transform over the amplitudes of a wavefunction [3].

It can be carried out by an extremely efficient quantum circuit built entirely out of one-qubit

11



and two-qubit gates.

The QFT on an orthonormal basis |0〉 , ..., |N − 1〉 is defined to be a linear operator with

the following action on the basis states:

|j〉 −→ 1√
N

N−1∑
k=0

xje
2πijk/N |k〉 . (13)

Equivalently, the action on an arbitrary state may be written

N−1∑
j=0

xj |j〉 −→
N−1∑
k=0

yk |k〉 , (14)

where the amplitudes yk are the DFT of the amplitudes xj. As shown in (13) and (14), the

QFT transforms computational basis states into equal superposition states modulated with

a phase. This is a unitary transformation, and thus can be implemented as the dynamics

for a quantum computer. In the context of qubits N = 2n, where n is some integer, and

the basis |0〉 , ..., |2n − 1〉 is the computational basis for an n qubit quantum computer. The

QFT’s circuit representation involves a combination of Hadamard and controlled rotation

gates:

Figure 4: Quantum Fourier transform circuit [3]

The QFT has many fascinating applications. Shor’s factorization algorithm uses the

QFT to estimate a period. In a similar vein, we will use the QFT for phase estimation

through eigenvalue solving.
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2.2.2 Quantum Phase Estimation

The problem of QPE is as follows. Given a unitary operator U with eigenvalues and

eigenvectors

U |u〉 = e2πiφ |u〉 , (15)

estimate the phase, φ. The QPE procedure uses two registers. The first register contains an

ancilla of t qubits. A greater t increases the accuracy of the estimate for φ, but decreases

the probability that the procedure will be successful. The second register begins in the state

|u〉, and contains as many qubits as is necessary to store |u〉.

Phase estimation can now be performed in two steps. First, we apply a Hadamard

transformation to the first register, followed by application of controlled-U operations on the

second register, with U raised to successive powers of two.

Figure 5: The first step of QPE [29]

The second step is to apply the inverse QFT on the first register. After these operations

are complete, we read out the state of the first register by doing a measurement in the

computational basis, thus obtaining an estimate for φ. An extended description of the QPE

algorithm can be found in Section (A.2).
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3.0 Variatonal Quantum Classifier

Variational quantum computing is a method that combines classical computing and quan-

tum computing in order to use imperfect near-term quantum computers to solve problems

”faster” than purely classical machines. Variational quantum algorithms provide a frame-

work for trying to make use of the ”along-the-way” quantum computers. For example,

Peruzzo et al. [30] combined a highly reconfigurable photonic quantum processor with a

conventional computer to create a variational eigenvalue solver with greatly reduced coher-

ence time requirements.

A variational quantum algorithm consits of the preparation of a fixed initial state (e.g.

the vacuum state), a quantum circuit U(θ) parameterized by a set of free parameters θ, and

measurement of an observable B̂ at the output. Typically, the expectation values f(θ) =

〈0|U †(θ)B̂U(θ) |0〉 defines a scalar cost for a given task. The variational circuit is trained

by a classical optimization algorithm that makes queries to the quantum device. The free

parameters θ = (θ1, θ2, ...) of the circuit are tuned iteratively to optimize the cost function.

Havĺıc̆ek et al. [14] explored two methods for applying noisy intermediate-scale quantum

(NISQ) devices to machine learning. The first method, the quantum variational classifier,

uses a variational quantum circuit to classify data. The second method, a quantum kernel

estimator, estimates the kernel function on the quantum computer and optimizes a classical

SVM. A key component in both methods is the use of the quantum state space as a feature

space.

The following sections will detail the application of variational quantum computing to

machine learning through the example of the Havĺıc̆ek et al.’s variational quantum classifier.

The proposed algorithm takes on the original supervised learning problem: we are given

data from a training set T and a test set S of a subset Ω ⊂ IRd. Both are assumed to

be labelled by a map m: T ∪ S −→ {+1,−1} unknown to the algorithm. The goal is to

approximate the map m̃ : S → {+1,−1} such that is agrees with high probability with the

true map m(s) = m̃(s) on the test data s ∈ S. A classical approach to this problem uses

support vector machines (SVMs) [35]. A quantum version of this approach has already been
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proposed by Farhi et al. [7], where an exponential improvement can be achieved if data

is provided in a coherent superposition. However, when data is provided from a classical

computer then Farhi et al.’s method does not yield such a speed-up.

3.1 Data Encoding via Feature Map

In the quantum setting, the feature map is an injective encoding of classical information

x ∈ IRd into a quantum state |Φ〉 〈Φ| on an n-qubit quantum register. There are many

possible choices of feature maps. Though, to obtain a quantum advantage we want the map

to give rise to a kernal K(x,y) = | 〈Φ(x)| |Φ(y)〉 |2 that is hard to estimate on a classical

computer. Havĺıc̆ek et al. [14] define such a unitary feature map on n−qubits, where H

denotes the conventional Hadamard gate:

|Φ(x)〉 = UΦ(x) |0〉⊗n = UΦ(x)H
⊗nUΦ(x)H

⊗n |0〉⊗n (16)

where,

UΦ(x) = exp

(
i
∑
S⊆[n]

φS(x)
∏
i∈S

Zi

)
(17)

where the 2n coefficients φ(x) ∈ IR are now non-linear functions of the input data x ∈ IRn.

Figure 6: Circuit representation of feature map [14]
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In general, maps with low degree expansions |S| ≤ d can be implemented efficiently.

Havĺıc̆ek et al. experimentally implemented their algorithm on a superconducting processor,

so chose unitaries UΦ(x) with interactions that are present in the actual connectivity graph1 of

the superconducting chip G = (E, V ). This ensured that the feature map could be generated

from a short depth2 circuit. For example, considering only Ising type interactions i.e. d = 2,

the resulting unitary can be generated from one- and two-bit gates of the form

Uφ{k}(x) = exp
(
iφ{k}(x)Zk

)
(18a)

Uφ{l,m}(x) = exp
(
iφ{k,l}(x)ZkZl

)
(18b)

which leaves |V |+ |E| real parameters to encode the data. A feature map unitary satisfying

n = d = 2 for an input x = [π/2, 3π/2] expressed in terms of its cartan decomposition (using

a minimal number of CZ gates) is shown in Figure (7),

Figure 7: Two-qubit Uφ(x) implementation example

where PhX is the phased X gate.

3.2 Short-depth Discriminator Circuit

Following the feature map, we perform the classifier step of the variational algorithm.

To define a seperating hyperplane we use a short-depth circuit comprised of single qubit and

1A graph is a pair G = (E, V ), consisting of a set of vertices V and a set of unordered pairs of vertices
E ⊆ V (2) called edges.

2Near-term quantum machines can only run short gate sequences, since without fault tolerance every gate
increases the error in the output.
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multi-qubit gates:

W (θ) = U
(l)
loc(θl)Uent...U

(2)
loc (θ2)UentU

(1)
loc (θ1) (19)

We apply a circuit of l repeated entanglers as shown in Figure 8.b and interleave them with

layers comprised of local single qubit rotations:

U
(t)
loc(θt) = ⊗nm=1U(θm,t) (20)

U(θm,t) = exp

(
i
1

2
θzm,tZm

)
exp

(
i
1

2
θym,tYm

)
(21)

parameterized by θt ∈ IR2n and θi,t ∈ IR2. For this feature map that we use entangling

unitaries comprised of products of controlled-Z phase gates CZ(i, j) between qubits i and j.

The entangling interations follow the interaction graph G = (E, V ) that we used to generate

the feature map.

Uent =
∏

(i,j)∈E

CZ(i, j) (22)

This short-depth circuit can generate any unitary if sufficiently many layers d are applied.

Figure 8: (a) Short depth variational circuit (b) Entangling gate [14]

A short-depth discriminator satisfying n = d = 2 for parameters

θ = [π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4, 2π]

is shown in Figure (8):
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Figure 9: Two-qubit W (θ) implementation example

3.3 Training and Classification

The overall goal of the quantum variational classifier is to find an optimal classifying

circuit W (θ) (19) that separates the input dataset into different labels. For the classification

phase we will exploit the large dimensional Hilbert space of the quantum processor to find

the optimal separating hyperplane (e.g. Figure 22) with a similar procedure to that used by

Support Vector Machines (SVM). Here we will limit our discussion to binary classification

tasks, although this algorithm can be extended to multi-label classification.

First, we need to define a cost function such that the optimization procedure mini-

mizes the probability of assigning the wrong label after having constructed a distrubtion

after R measurements. Thus, we define the empirical risk Remp(θ) in terms of the error

probability Pr(m̃(x 6= m(x)) of assigning the incorrect label, based on the decision rule

m̃(s) = argmaxy{p̂y(s)}, averaged over the samples in the training set T .

Remp(θ) =
1

|T |
∑
x∈T

Pr(m̃(x) 6= m(x)). (23)

The probability that the label m(x) = y is assigned incorrectly is approximated by [14]

Pr(m̃(x) 6= m(x)) ≈ sig

(√
R
(

1
2
−
(
p̂y(x) + yb

2

))√
2(1− p̂y(x))p̂y(x)

)
(24)

where sig(x) = (1 + e−x)−1 is the sigmoid function. The parameters θ can be trained

using any optimization algorithm; the authors used simultaneous perturbation stochastic

approximation (SPSA). Through the chosen optimization algorithm we iteratively update

18



the θ’s until Remp(θ) has converged, or a maximum number iterations is reached.

Once the training phase is complete we move to the classification phase, where the

optimal parameters are used to label for new input data. The same circuit (Figure 10 is

applied, but this time, the parameters are fixed. We take R measurements to create a

distribution p̂y(x), and return the label y = argmaxy{p̂y(x)}.

Figure 10: Quantum variational classification circuit [14]

We verified the effectiveness of Havĺıc̆ek et al. supervised learning model for binary

classification using a variational circuit satisfying n = 2 = d. We began with binary clas-

sification on the number-line. We chose a number α ∈ (0, 1), and created two labeled sets

a, b consisting of data points xa > α and xb < α. After training, the model was given an

unseen data point x̃ ∈ IR1 and asked to sort it into set a or b. Our trained model did

so correctly with a probability of 1. Next, we performed binary classification on the unit-

circle. An angle θ ∈ [0, 2π) was chosen, and corresponding vectors θa = cos θ · x̂ + sin θ · ŷ,

θb = cos θ · x̂− sin θ · ŷ were created, dividing the X-Y plane into two equal halves. Around

these vectors, we generated two sets of data a, b as in Figure (11). After training, the model

was given an unseen data point x̃ ∈ IR2 and asked to sort it into set a or b. Our trained

model did so correctly with a probability of 1. Lastly, we performed binary classification in

the Bloch sphere. Two random vectors θa, θb in the X-Z plane were chosen. Around these

two vectors, we randomly sampled two sets a, b of quantum data points as in Figure (12).

The binary task, analogous to the previous two tasks, was to learn to distinguish the two
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Figure 11: Quantum data represented on the unit-circle. States in category a are blue.

States in category b are red. Parameters: θ = π/2, N = 30.

sets. After training, the model was given an unseen data point x̃ ∈ IR3 and asked to sort it

Figure 12: Quantum data represented on the Bloch sphere. States in category a are blue.

States in category b are orange. The vectors are the states around which the samples were

taken. Parameters: θa = 1, θb = 4, N = 50. Image generated using [16].
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into set a or b. Our trained model did so correctly with a probability of 0.98. Havĺıc̆ek et

Figure 13: Loss function for Bloch sphere binary classification task. Metrics: N = 50,

training iterations = 30, final loss = 6e−2, test accuracy = 98%.

al. report a success rate of 100% for the equivalent task. However, they used 250 training

iterations while our model used only 30 training iterations. Figure (13) shows that for this

number of iterations our training terminated with a non-zero loss. For a larger number of

iterations, our model may have continued to converge and thus yielded a higher success rate.

Regardless, this testing verified the effectiveness of the proposed variational circuit on binary

classification for n = d = 2 and, for all intents and purposes, echoed the authors’ results.
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4.0 Quantum Reservoir Computing

Quantum machines must be error corrected. This makes a QRC model appealing be-

cause the reservoir is stochastically generated and fixed for the entire computation, thus

limiting the quantum circuit depth. By contrast, conventional neural networks train large

numbers of parameters distributed over multiple hidden layers, requiring an equally large

quantum circuit depth and therefore more error correction. QML models are differentiated

from classical models by the addition of encoding (creating a qubit representation of the

classical data and possibly applying some unitary evolution) and readout (some form of a

measurement) steps. Our discussions in this section assume that both of these steps can be

done perfectly, without error.

Figure 14: QRC using classical data requires additional (highly non-trivial) encoding and

readout steps. Diagram inspired by [31].

The QRC algorithm as a whole can be split into three main components: input and state
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preparation (i), quantum reservoir action (ii), and quantum linear regression and prediction

(iii). In the following overview we assume that we start with a n-qubit system in the ground

state |0...0〉 and that data is accessible from a classical memory. We will consider training

data sets in the same format as those outlined in Section (2.1.3): M input vectors {xi ∈ IRN}

with M corresponding labels {yi ∈ IR} as well as an unlabeled input x̃ ∈ IRN .

i ii iii

|0〉

SP

|X〉 R

LR|0〉 |x̃〉 UR // |ỹ〉

|0〉 |y〉

Figure 15: QRC schematic

4.1 State Preparation

During state preparation we encode each vector of the supervised learning model into

the amplitudes of a (normalized) quantum state,

|ψX〉 =
M∑
m=1

N∑
i=1

x
(m)
i |i〉 |m〉 (25)

|ψx̃〉 =
N∑
i=1

x̃i |i〉 (26)

|ψy〉 =
M∑
m=1

y(m) |m〉 (27)

Using this state preparation scheme (i.e. amplitude encoding) we only need n = log2(MN)

qubits to encode a training data-set of M inputs with N features each. The training outputs

are encoded in the amplitudes of a separate quantum register, as are the unlabeled inputs
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(Figure 15, i). State preparation using amplitude encoding (if done qubit-efficiently [2])

has asymptotic complexity ∝ O(MN)/O(log2(MN)). However, this does account for the

original loading of features from memory hardware, which takes time linear in NM .

The routine for arbitrary state preparation with a qRAM succeeds only with probability

pacc =
∑

i |xi|2/N depending on the state to encode [31], which means in the worst case we

would have to repeat measurement O(N = 2n) times to prepare the correct state. There are

many other ways to state prepare beyond quantum circuits, which our group may investigate

in the future. As mentioned in Sections (5.3) and (A.1), exponential speedups from qubit-

efficient state preparation is still a topic of ongoing work in the world quantum computing.

4.2 Quantum Reservoir

In the classical reservoir computing paradigm the stochastically generated reservoir im-

plements nonlinear activation. In the case of the quantum reservoir, design and function is

entirely dependent upon choice of quantum nonlinearity. For instance, nonlinearity through

classical preprocessing (Section (5.3)) would eliminate the need for explicit reservoir nonlin-

earity1. This would be convenient for simulation, as circuit-based reservoirs are naturally

linear in the amplitudes of states. In this case one could implement a block diagonal unitary

quantum reservoir, operating in constant time,

R =


UR 0

. . .

0 UR

 (28)

The reservoir acts on each of the N features of the training data individually to produce

output of dimension D. For a one-qubit Hilbert space F [23],

R : F⊗ log2(N) → F⊗ log2(D)

Each block UR acts on log2(D) qubits. Applying the reservoir to state prepared design

matrix (25),
1Here, the term ‘quantum reservoir’ would encompass ‘input + unitary reservoir’, maintaining (for clarity)

the nonlinearity and high dimensional mapping characteristic of the reservoir from the traditional RC model.
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|ψX〉 R |ψ′X〉

where

|ψ′Xi〉 = UR |xi〉 (29)

Encoded unlabeled data |x̃〉 is acted on by UR in the same way, and encoded label vector |y〉

is not acted upon inside of the reservoir (Figure 15, ii). UR should be sufficiently complicated

to preserve linear separability achieved during high dimensional nonlinear feature mapping.

The unitary reservoir is appealing for simulation, but is not the only option. Choice

of quantum nonlinearity will, in the end, dictate reservoir action. Apart from the options

outlined in Section (5) time dynamical reservoir designs (e.g. Lindblad evolution [6]) and non-

circuit based nonlinear quantum dynamics (e.g. photonic implementations) are appealing

topics of future work.

4.3 Quantum Linear Regression

Quantum representations of the training data have now gone through some quantum or

hybrid classical/quantum nonlinear transformation and can be used to set up an eigenvalue

equation, A |x〉 = |b〉. With this, we can use techniques from Harrow et al. (HHL) [13] (see

Section (A.3)) and Lloyd et al. [20] to extract and invert singular values, and execute inner

products to write a prediction.

To extract the eigenvalues λr of X†X to eigenvectors ~w (these are the weights (7)) we

invert the singular values of design matrix X, and use the HLL inversion procedure. To

access the eigenvalues we make copies of (25), ignoring the |i〉 register, to obtain mixed state

ρX†X = trm{|ψX〉 〈ψX |} (30)

ρX†X =
M∑

m,m′=1

N∑
i=1

x(i)
m x

(i)∗
m′ |m〉 〈m

′| (31)
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Next we apply ρX†X to |ψX〉 using Hamiltonian simulation2 [4], and then use quantum

phase estimation (QPE) [20] to encode the eigenvalues λr in the qubits of a new register.

The eigenvalues are inverted via controlled rotation3 [13]. Upon success we uncompute and

discard the eigenvalue register, leaving us with a quantum representation |ψw〉 of weight

vector ~w. Finally, we execute the inner product of the weight vector representation and

unlabeled data vector representation using |ψ1〉 ≡ |ψw〉 and |ψ2〉 ≡ |ψy〉 |ψx̃〉. To ensure we

end with the correct sign we prepare the state

1√
2

(|ψ1〉 |0〉+ |ψ2〉 |1〉), (32)

and trace out all of the registers except for the ancilla. The off-diagonal elements of the

ancilla’s reduced density matrix contain the desired prediction, ỹ [32].

Classical linear regression takes time ∝ O(N), while quantum linear regression via this

HHL-based algorithm performs training and prediction ∝ O(poly(logN)), thus offering an

exponential speedup. In order to prevent a readout of the entire density matrix, the final

output layer needs to be executed ‘quantumly’ instead of classically, likely through mea-

surement. Unfortunately, this HLL-based algorithm has a probability of failure i.e. a mea-

surement of |0〉. So retrieving a nonzero measurement could require many repetitions of the

entire routine, cutting into the quantum advantage.

4.3.1 Time Complexity Analysis

In quantum computing an efficient algorithm has polynomial runtime with respect to

the number of qubits. State preparation using amplitude encoding (if done qubit efficiently)

requires time ∝ O(N)/O(log(N)). A unitary reservoir operates in O(1) time. Quantum

linear regression via HHL requires time ∝ O(poly(logN)). However, loading in N features

from the memory hardware and read-out of a N -dimensional computational result both

require O(N) runtime. The read-in and read-out problems nullify any speed-up gained

through quantum computation. With these factors considered, showing that, if data is

2It is not required that X be sparse.
3This operation is not unitary, so has some probability of failing.
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loaded into the quantum computer with nonlinear features, one can execute a version of this

algorithm in O(log(N)) time, would constitute success.
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5.0 Quantum Nonlinearity

A QRC model requires nonlinear activation (8). However, quantum mechanics is a linear

theory; no matter how complicated the Hamiltonian state evolution is always first-order

linear:

i~
∂ρ

∂t
= [H, ρ] (33)

Therefore, we need to design a circuit that, given an amplitude encoded state |ψ〉, outputs

a state |ψ′〉 = |ϕ(ψ)〉 amplitudes that are some nonlinear function of the input. Formally,

for a quantum system with ensemble of pure states {pi, |ψi〉}, the density operator for the

system is defined by

ρ ≡
∑
i

pi |ψi〉 〈ψi| (34)

We want some operator A such that ρ→ A(ρ) is a nonlinear transformation [24],

A(ρ) =
∑
i

ϕ(ρj)i |ψi〉 〈ψi| (35)

where ϕ is some nonlinear function. There are many ways to perform nonlinearity in quantum

mechanics, but not all of them are practical in the context of a QRC algorithm.

5.1 Measurement Induced Nonlinearity

Projective measurement is nonlinear [24]. After performing a measurement described by

measurement operators Mm the state is [29]

|ψmi 〉 =
Mm |ψi〉√

〈ψi|M †
mMm |ψi〉

(36)

We now have ensemble of states |ψmi 〉. This result is a nonlinear by |ψi〉, but is also proba-

bilistic,

p(m|i) = tr(M †
mMm |ψi〉 〈ψi|) (37)
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so the output will vary upon repeated measurements. Consider a linear, unitary gate W(θ)

(for some classical parameters θ) applied to an input state |ψ〉 and ancilla qubit |0〉. One

could use post-selection, only accepting the output state if, for instance, a |1〉 is measured,

|ψ〉
W(θ)

|ψ′〉

|0〉 |1〉

thus inducing nonlinearity on the first register [24]. The output of this circuit is,

|ψ′〉 = W(θ)(|ψ〉 ⊗ |0〉) (38)

The drawback of this method is that a large quantity of measurement gates each requiring

a specific result yields a low probability of success. The time complexity scales with the

number of measurements required to ensure success, which could be costly. If the reservoir

is somehow tailored such that the probability of a success is high, measurement induced

nonlinearity could work.

5.2 Tensor Product Nonlinearity

Stringing together the same state via a tensor product |ψ〉 → |ψ〉⊗|ψ〉 creates nonlinearity

[24]. For example, we can use the tensor product trick to produce quadratic terms with the

following circuit

|ψ〉 W (θ)

|ψ〉 •

For general d degree polynomial nonlinearity in the amplitudes of |ψ〉,

|ψ〉⊗d W (θ) |ψ′〉

where

|ψ′〉 = U(θ)
d⊗
i=1

Wi |ψ〉 (39)
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Unitary W (θ) mixes the basis vectors of the original state and U(θ) entangles the result.

However, this presents a problem when applied to our amplitude encoded input states as it

creates mixing of distinct training samples. If there exists a solution to this problem, tensor

product nonlinearity could be another option.

5.3 Classical Preprocessing + QRAM

One could perform classical nonlinearity on the input vectors and then perform quantum

encoding using qRAM [37] (Section (A.1)), essentially adding one step to the read-in process:

~x→ qRAM→ |ψ〉 becomes

~x→ ϕ(~x)→ qRAM→ |ψ′〉 (40)

for any nonlinear function ϕ. The amplitudes of |ψ′〉 are some nonlinear transform of the

amplitudes of the hypothetical state |ψ〉. This hybrid classical/quantum approach is not

ideal, as classical nonlinearity takes linear time, removing our quantum speed-up. However,

for simulation purposes this is a great option.
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6.0 Discussion and Future Work

In this paper we have introduced the reservoir computing paradigm and discussed its

merit versus SVM type models for training over large numbers of parameters. We then out-

lined a quantum variational classification model that utilizes a quantum enhanced feature

space to separate data. Finally, we combined these two ideas and presented the frame-

work for a general purpose feed-forward quantum reservoir computing model designed for a

fault-tolerant quantum computer. This quantum reservoir feature learner, in theory, could

temporally outperform its classical RC analog. However, this model is built on QFT, QPE,

and HHL, which each require fault tolerance. Therefore, like many other proposed quan-

tum algorithms, it is unfeasible for a near-term device. Low dimensional simulations are

possible and produce promising results [38]. Adaptations that take this from a purely quan-

tum model to a hybrid model could be used in the near term, but this would likely defeat

the temporal advantage over existing variational and even classical algorithms. Quantum

nonlinearity, state preparation, and readout are all topics of ongoing work in the world of

quantum computing.

There are avenues for future work in quantum reservoir computing. For example, creating

a reservoir model that exploits the quantum dynamics of naturally available systems similar

to Fujii et al. [8]. Alternatively, one could target a specific problem well suited for the

high memory capacity of a QRC, and pursue an optimization procedure or application that

works well for that task, for example, Kutvonen et al. [19] and Nakajima et al. [27]. Another

possibility, not as grandiose, is to take-on one aspect of the QRC model, for instance reservoir

nonlinearity, and attempt various isolated, small-scale implementations.
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Appendix

A.1 Quantum Random Access Memory

Classical data must be read-in before being processed on a quantum computer. While

quantum algorithms can provide dramatic speedups for processing data they rarely provide

advantages for reading data. The cost of reading-in data requires linear time at best, and

thus dominates the cost of many quantum algorithms [2, 5]. Theoretically, this can be

addressed using quantum RAM (qRAM). Quantum access to the training data allows the

machine to be trained using quadratically fewer accesses to the training data than classical

methods require. A quantum algorithm can train, for example, a deep neural network on a

large training data set while reading only a small number of training vectors [36].

Classical RAM uses n bits to randomly address N = 2n distinct memory cells. A

qRAM uses n qubits to address any quantum superposition of N memory cells [12]. qRAM

allows access to classically stored information in superposition by querying an index register.

Consider an address register a containing a superposition of addresses
∑

j ψj |j〉a. The qRAM

will return a superposition of data in a data register d,∑
j

ψj |j〉a −→
∑
j

ψj |j〉a |Dj〉d (41)

where Dj is the content of the jth memory cell. However, the qRAM’s exponential use of

resources translates into a high decoherence. For this reason, there are not yet any physical

realizations of QRAM nor clear solutions to the read-in problem. Our group is currently

investigating alternate approaches including a reservoir-qRAM (reservoir quantum coupler)

[37] which would sacrifice control over the format of the data read-in for a read-in speed-up,

which seems an acceptable tradeoff. But this is still a topic of ongoing work. For now, our

algorithm simply assumes the existence of a qRAM.
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A.2 Quantum Phase Estimation cont.

To re-iterate, the problem of QPE is as follows. Given a unitary operator U with eigen-

values and eigenvectors

U |ψ〉 = e2πiθ |ψ〉 , (42)

estimate the phase, θ. The general circuit is given in Figure (16).

Figure 16: Quantum phase estimation circuit [3]

The QPE procedure can be broken into five steps as follows below. Each step will outline

the general case and then specify a three-qubit (n = 3) implementation. In this example we

will aim to estimate the phase of the T-gate:

T =

1 0

0 e
iπ
4 ,

 (43)

which adds a phase of e
iπ
4 when applied to the state |1〉. From (42), we then have 2iπθ = iπ/4

so expect to find

θ =
1

8
(44)

as an exact result.
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A.2.1 Setup

The QPE procedure uses two registers. The first register contains n “counting” qubits.

A greater n increases the accuracy of the estimate for θ, but decreases the probability that

the procedure will be successful. The second register begins in the state |ψ〉, and contains

as many qubits as is necessary to store |ψ〉.

|ψ0〉 = |0〉⊗n |ψ〉 (45)

A.2.2 Superposition

Next we create a superposition of states by applying a Hadamard operation H⊗n on the

counting register. The one-qubit Hadamard gate is given by

H =
1√
2

1 1

1 −1

 , (46)

so the n-qubit state is now given by

|ψ1〉 =
1

2n/2
(|0〉+ |1〉)⊗n |ψ〉 (47)

For the three-qubit example we will take |ψ〉 = X |0〉 = |1〉, an |0〉’s in the counting register,

as required.
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Figure 17: Initialization and superposition. Image generated using [11]

Above, the percentage contained in each box indicates the probability of that qubit being

in the state |1〉. An “On” (“Off”) qubit is in state |1〉 (|0〉) with probability 1. As intended,

the counting qubits are in a superposition of states with equal probability of being measured

|1〉 or |0〉.

A.2.3 Controlled Unitary Operations

Consider again our unitary operator U . The controlled unitary operation CU applies U

on the target register only if its corresponding control bit is |1〉. If the control bit is |0〉, CU

acts as the identity on its target bit. Using our eigenvalue equation (42):

U2j |ψ〉 = U2j−1U |ψ〉 = U2j−1e2πiθ |ψ〉 = ... = e2πi2jθ |psi〉 (48)

We therefore need to apply n controlled operations CU2j :

|ψ2〉 =
1

2n/2
(
|0〉+ e2πiθ2n−1 |1〉

)
⊗ ...⊗

(
|0〉+ e2πiθ21 |1〉

)
⊗
(
|0〉+ e2πiθ20 |1〉

)
⊗ |ψ〉

|ψ2〉 =
1

2n/2

2n−1∑
k=0

e2πiθk |k〉 ⊗ |ψ〉 (49)

This sequence is clear when visualized. Building onto the three-qubit circuit from Figure

(17) using U = T (43):
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Figure 18: Addition of controlled T-gates. Image generated using [11]

Through these controlled operations we have used phase kick-back1 to write the phase

of U (in the Fourier basis) to the n qubits in the counting register.

A.2.4 Inverse Fourier Transform

Notice that (49) is exactly the result of applying the QFT (13) where θ = j/N → θN =

θ2n = j. Therefore, to recover the state |θ2n〉 we must apply an inverse QFT on the ancilla2

register:

|ψ3〉 =
1

2n/2

2n−1∑
k=0

e2πiθk |k〉 ⊗ |ψ〉 QFT
−1
n−−−−→ 1

2n

2n−1∑
x=0

2n−1∑
k=0

e−
2πik
2n

(x−2nθ) |x〉 ⊗ |ψ〉 (50)

The circuit that implements the QFT makes use of the one-qubit Hadamard gate (46) and

the two-qubit controlled rotation gate,

CRk =

I 0

0 Rk

 (51)

1Kickback is where the eigenvalue added by a gate to a qubit is ‘kicked back’ into a different qubit via a
controlled operation.

2When translating a classical circuit into a quantum circuit, you often need to introduce extra qubits sim-
ply because quantum computers only implement reversible logic. Such extra qubits are ancilla (or ancillary
qubits). In Figure (16) the ancillary register consists of one qubit initialized in the state |ψ〉.
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where

Rk =

1 0

0 exp
(

2πi
2k

)
 (52)

Here, I is the identity matrix, and the controlled action of CR on R works in the same

way as the controlled action of CU on U from Section (A.2.3). The first half of the phase

estimation circuit essentially performs the forward QFT, and by doing so, reverses the order

of qubits. So the first action in the inverse QFT is to use the SWAP gate to return the

original qubit ordering. We then continue to follow the procedure of Figure (4) in precisely

reverse order. The addition of the inverse QFT onto the three-qubit circuit looks as follows:

Figure 19: Addition of inverse QFT. Image generated using [11]

A.2.5 Measurement

After all operations are complete, we read out the state of the ancilla register by doing

a measurement in the computational basis. 50 peaks near x = 2nθ, so for the case when 2nθ

is an integer we measure the correct phase with high probability:

|ψ4〉 = |2nθ〉 ⊗ |ψ〉 (53)

When 2nθ is not an integer an accurate measurement can still be achieve with better than

4/π2 ≈ 40% probability [29]. Applying measurement gates to the three-qubit circuit,
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Figure 20: Addition of measurement gates. Image generated using [11]

we get the binary result (001) with probability 1. Converting to decimal form, and dividing

by 2n:

θ =
1

23
=

1

8
(54)

which agrees with the theoretical prediction of (44).

A.2.6 C++ Implementation

We simulated the QPE algorithm in C++ using the Quantum++ general-purpose multi-

threaded quantum computing library [10]. The library is written in C++11 and composed

solely of header files. It’s simulation capabilities are only restricted by the amount of available

physical memory. On a typical machine Quantum++ can successfully simulate the evolution

of 25 qubits in a pure state or of 12 qubits in a mixed state reasonably fast. Estimating the

phase of the T-gate following the procedure above our program produces the following:
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Figure 21: qpe.cpp program output

The sequence of applied gates agrees with the model, as does the estimated phase to a norm

difference of 0. The source code for this example is available on the Quantum++ GitHub.

A.3 HHL Put Simply

The HHL algorithm [13], named after it creators Aram W. Harrow, Avinatan Hassidim,

and Seth Lloyd, is a quantum algorithm for solving linear systems of equations. Given the

Hermitian N × N matrix A and a unit vector ~b, HHL finds a vector ~x such that A~x = ~b.

Classical algorithms can find ~x in time ∝ O(N). The HHL quantum algorithm can find ~x

in time ∝ O(poly(logN)), thus providing an exponential speed-up. The HHL procedure is

as follows:
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First, we represent ~b as a quantum state:

|b〉 =
N∑
i=1

bi |i〉 . (55)

Next, we use techniques of Hamiltonian simulation to apply to apply eiAt to |b〉 at different

times t. Through quantum phase estimation (QPE), they then decompose |b〉 into the

eigenbasis of A and find the corresponding eigenvalues λj. At this point the system is in a

state close to
N∑
j=1

βj |uj〉 |λj〉 (56)

where uj is the eigenvector basis of A, and

|b〉 =
N∑
i=1

βj |uj〉 . (57)

They we take a linear map

|λ〉 −→ Cλ−1 |λ〉 (58)

where C is a normalizing constant. This operation is not unitary, so has some probability of

failing. After it succeeds, we uncompute the |λj〉 register and are left with a state proportional

to

|x〉 = A−1 |b〉 =
∑
j

λ−1
j βj |uj〉 〈uj| . (59)

A.4 ESN Tutorial

A.4.1 Formalism

To reiterate, the characteristic task of supervised learning (Section (2.1.3)) with RNNs,

and with all ANNs for that matter, is to learn a functional relation between a given input

u(n) ∈ IRNu and a desired output ȳ(n) ∈ IRNy , where n = 1,...,T, and T is the number of

data points in the training dataset (u(n), ȳ(n)). For a non-temporal task (i.e. data points

are independent of each other) the goal is to learn a function y(n) = y(u(n)) such that the

40



loss function E(y, ȳ) is minimized. In the context of RNNs, a common loss function is the

normalized root-mean-square error (NRMSE):

E(y, ȳ) =

√√√√ 〈
∥∥y(n)− ȳ(n)

∥∥2〉
〈
∥∥y(n)− 〈ȳ(n)〉

∥∥2〉
(60)

A temporal task is where u and ȳ are signals in a discrete time domain (n = 1,...,T), and

the goal is to learn a function y(n) = y(...,u(n − 1),u(n)) such that E(y, ȳ) is minimized.

Thus, the difference between the temporal and non-temporal task is that the function y(n)

we are trying to learn has memory in the first case and is memory-less in the second.

Many tasks cannot be accurately solved by a simple linear relation between u and ȳ.

In this case, we resort to a nonlinear model, which can be achieved by taking a nonlinear

expansion of the input u. In RC, the function of the reservoir is to act both as this nonlinear

expansion and as a memory input. To perform a nonlinear high-dimensional expansion

x(n) ∈ IRNx of the input signal u(n) ∈ IRNu , we require Nx >> Nu. Input data which is not

linearly separable in the original space IRNu often becomes separable in the expanded space

IRNx . We are therefore searching for solutions of the form

y(n) = Woutx(n) = Woutx(u(n)) (61)

where Wout ∈ IRNy×Nx are the trained output weights and y(n) is the the learned function.

Expansion x(n) is often referred to as the ”state vector” of the system at time step n. The

network is usually initialized in state

x(0) = 0 (62)

The reservoir also serves as memory, providing temporal context. This is a crucial reason for

using RNNs in the first place. In a temporal task the function to be learned depends also

on the history of the input. Thus, the expansion function has memory: x(n) = x(...,u(n−

1),u(n)). This function has an unbounded number of parameters, so we can express it

recursively:

x(n) = x(x(n− 1),u(n)) (63)
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With the recursive (temporal) definition of the state vector, the output y(n) is (typically)

still calculated in the same way as for non-temporal methods (61). For non-temporal tasks,

this recursive definition can act as a type of a spatial embedding of temporal information.

This enables learning of high-dimensional dynamical tendencies (or ”attractors” [26]) of the

system from low-dimensional observations. This is shown possible by Takens’s theorem [34],

as mentioned in Section (2.1.2).

Combining the state vector non-linear expansion and memory components leads to the

following general RNN state update equation,

x(n) = f(Winu(n) + Wx(n− 1)) (64)

where f is the neuron activation function (Section (2.1.1)), usually symmetric tanh (4),

applied element-wise, Win ∈ IRNx×Nu is the input weight matrix, and W ∈ IRNx×Nx is the

internal (hidden) weight matrix of network connections.

The ESN is a recurrent neural network with a sparsely connected hidden layer (the

reservoir), driven by a (one- or multi-dimensional) time signal, and applied to supervised

temporal ML tasks. The connectivity and weights of hidden neurons are fixed and randomly

assigned. The weights connecting the hidden neurons to the output neurons are the only

trainable parameters in the network. Although ESNs are dynamic, with non-linear behavior,

their ”single-layer training” attribute makes their loss function (E(p) in (10)) quadratic in

”parameter-space,” so it can be differentiated to a linear system. Quadratic loss functions

are desirable because they are easily manipulated (property of variances), symmetric, and

allow easy application of linear regression.

ESNs are an attractive RC implementation method because they are conceptually simple

and computationally inexpensive. However, creating an effective ESN is not, in and of itself,

straightforward. The following sections will overview ESN implementation, training, and

application. We will approach ESN implementation in the practical context of a simple

Python3 program using the PyTorch open-source ML library. To do so, we will work through

each of the ”To Dos” in example code outline class Reservoir() and class ESN(.).

In the code outlines (Figure 22, Figure 23), a question mark, ”?”, indicates a numerical

value selected by the user. ”TODO”, abbreviated TD# from here on, indicates a section of
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code yet to be implemented, where # in [1, 6] is the order of implementation followed in this

paper.

Figure 22: esn.py
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Figure 23: reservoir.py
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A.4.2 Reservoir Generation

The reservoir is defined by tuple (Win,W, α). Win and W are generated randomly

according to a number of hyperparameters (in analogy to other ANN approaches, ”hyperpa-

rameters” refer to parameters governing the distribution of connection weights, as opposed

to the connection weights themselves). α is the leaking rate, and will be defined formally

in Section (A.4). Reservoir hyperparameters must be subtly chosen, as each significantly

impacts the behavior of the network, and therefore its overall performance. Characteristic

reservoir hyperparameters include the reservoir size, sparsity, and distribution of nonzero

elements, the spectral radius of W, the scaling of Win, and, of course, the leaking rate α.

These values are initialized in the Reservoir class constructor. In this implementation, the

input size and desired reservoir size are set inside of the ESN class upon instantiation of a

Reservoir object.

gen w(.)

To begin, we wish to define a function gen w() (TD1), which generates the random, internal

weight matrix W of size Nx × Nx (64). The bigger the space of reservoir signals x(n),

the easier it is to find a linear combination of the signals to approximate ȳ(n). Therefore,

the bigger the reservoir, the better the obtainable performance. However, reservoir size is

bounded by its memory capacity (number of values it must remember from the input to

accomplish the task, lower bound) and by the over-fitting threshold (upper bound):

Ny ≤ Nx ≤ T −Nu (65)

where T is the number of training data points.

Weight matrix W is typically sparse. Compared to dense representations, this enables

faster state vector updates while also giving slightly better performance [28]. Nonzero ele-

ments can take any distribution, though common choices include uniform, discrete bi-valued,

and normal [21]. There does not exist built-in Python functionality to construct, simulta-

neously, a matrix according to a given density (or sparsity) and a given nonzero element

distribution. Therefore, these tasks must be performed in sequence. For example, using
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torch.randn, we can easily generate a random matrix of size Nx with values (weights) nor-

mally distributed around zero. The initial width of the distribution does not matter, as it

is eventually reset according to the reservoir’s spectral radius. We can then iterate over this

generated matrix, drawing a random number p ∈ [0.0, 1.0) at each entry Wi,j using Numpy

library function random.random(). For desired sparsity s ∈ (0.5, 1.0), if pi,j ≤ s, we set

Wi,j = 0. Else, Wi,j is unchanged. This is merely one of many possible approaches.

Spectral radius is one of the ESN’s most central hyperparameters; it specifies the largest

absolute eigenvalue of weight matrix W. After a random sparse W (now named W0) is

generated, we can compute its spectral radius

ρ0(W0) = λmax(W0) (66)

using PyTorch’s torch.eig and torch.max, or equivalent functions. Next, we rescale W0

according to user-specified spectral radius, ρ (28):

W =
ρ

|ρ0|
W0 (67)

Finally, return the rescaled weight matrix W, now with largest absolute eigenvalue ρ, and

gen w() is complete.

For the ESN model to work, the reservoir must satisfy the echo-state property (ESP): the

effect of previous state x(n) and previous input u(n) on a future state x(n+k) should vanish

gradually as time passes (k → ∞) [22]. In other words, the reservoir must asymptotically

”wash out” any information from initial conditions. For reservoirs with tanh activation and

input u(n) = 0, the ESP is violated if W is scaled such that

ρ(W) > 1 (68)

Contrary to many simplistic descriptions, ρ < 1 does not guarantee the ESP. The ESP can

be obtained for u(n) 6= 0 even if ρ > 1, and can be violated even if ρ < 1 [22] (although the

latter is unlikely). Through a process of trial and error, ρ should be selected to maximize

performance. Generally, ρ should be close to 1 for tasks that require long term memory, and

smaller for tasks where too much memory may be harmful.
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We have now constructed internal weight matrix W according to user-specified hyper-

parameters reservoir size, sparsity, distribution of nonzero elements, and spectral radius.

gen w in(.)

Following a similar procedure, we will now define a function gen w in() (TD2), which gen-

erates the random, input weight matrix Win of size Nx ×Nu (64). Nx is the reservoir size,

and was specified while generating W. Nu is the dimensionality of the input data, so is also

predetermined. Win is usually generated according to the same distribution as W. There-

fore, a normal distribution of weights around 0 may, once again, be carried out using the

torch.randn function. This time, however, the width of the distribution does does matter:

for normal distributed input weights we can take the standard deviation as a scaling mea-

sure [21]. This scaling measure, known as the input scaling, a, is a vital ESN optimization

parameter. It dictates how ”nonlinear” reservoir responses are.

For small input scaling values, the units of Win will collapse towards 0, where their tanh

activation is essentially linear (Figure 23). So for linear tasks, a should be small. For large

input scaling values, the units of Win will quickly saturate towards 1 and −1, exhibiting

nonlinear, binary ”switching” behavior. So for nonlinear tasks, reservoir response might be

optimized for larger a. The ”amount” of nonlinearity a task requires is not always easy to

assess. This hyperparameter is another best tuned through trail and error.

Referring back to the general state update equation (64), it is clear, for sigmoid activation,

that the scaling a of Win, and the scaling ρ(W) of W, together dictate the amount of

nonlinearity and memory of previous states present in the current state representation.

To implement gen w in(), sequentially construct Win by first creating an Nx × Nu

dimensional matrix with the same element distribution as W. But this time, form the

distribution according to the input scaling, a: For uniform distributions, sample values from

the interval [−a, a]. For normal distributions, set σ = a. Then, iterate through the resulting

matrix, drawing random number p ∈ [0.0, 1.0) at each entry, and setting Wini,j = 0 where

pi,j ≤ s. Win is typically dense, so s ∈ [0.0, 0.5). return Win and gen w in() is complete.

We have now constructed input weight matrix Win according to the input data di-

mension, reservoir size, nonzero element distribution of W, and user-specified input scaling
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parameter. In the next section, we will further specify our reservoir model by revisiting

neuron activation (Section (2.1.1)), now in the context of RNNs.

A.4.3 Activation States

This section will overview the leaky integrator neuron model, and then describe the

computation and collection of reservoir activation states x(n) for a training input u(n).

forward(.) Pt. 1

In ANN training (Section (2.1.3)), the ”forward pass” refers to the computation performed

during each training iteration. In a single forward pass, the network is provided one training

data sample whose information is propagated through the hidden units of the network to

eventually produce an output y, at which point a linear readout is performed. In the first

component of the class ESN ”forward” method (TD3) we manipulate the input, u, to match

the user-specified reservoir input dimension. You can read-in data any way you like, as along

as all of the input information is inside the reservoir simultaneously. Take, for example, an

input of dimension 1×N ×N . A natural way to perform this read-in would be to generate a

reservoir W of N×N neurons, and to flatten and transpose each input into a N2×1 column

vector. This could be achieved through the torch.flatten() and torch.t() methods.

However, you may alternatively rely on the fact that the reservoir has a memory, and read-

in each single column of the input as a N × 1 vector at each time point, ultimately taking

N time points to get the entire input into the reservoir.

init state(.)

Before we can use activation to perform a state update, we need an initial state (TD4). The

reservoir state vector must be of dimension Nx× 1 (64). If we have chosen a spectral radius

such that our reservoir satisfies the ESP ((68) not true), then the final state of the network

does not depend on its initial conditions. Therefore, the initial state can be any vector of

the above dimension. A common choice is the zero vector (62), which can be created using

the torch.zeros function.
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forward(.) Pt. 2

As previously stated, standard ESNs use sigmoid neurons, i.e., reservoir states are computed

using (64), where the nonlinear function f is a sigmoid, usually the tanh function:

x(n) = tanh(Winu(n) + Wx(n− 1)) (69)

Leaky integrator neuron models represent another frequent option for ESNs. These type of

neurons perform a ”leaky” integration of their activation from previous time steps. Generally,

a leaky integrator is analogous to a first-order filter with feedback.

For arbitrary input u(n) and output y(n), a leaky integrator can be described by non-

homogeneous first-order linear ODE

ẏ(n) + αy(n) = u(n) (70)

where α is the leaking rate. Using (68), let us redefine

u(n) = tanh(Winu(n) + Wx(n− 1)) (71a)

αy(n) = x(n) (71b)

Plugging our substitutions (70) into (69) and rearranging,

ẋ(n) + x(n) = tanh(Winu(n) + Wx(n− 1)) (72)

ẋ = −x + tanh(Winu + Wx) (73)

where (72) describes the continuous time reservoir update dynamics. Performing an Euler’s

discretization in time on (72),

ẋ ≈ ∆x

∆t
=

x(n+ 1)− x(n)

∆t
(74)

For brevity, we will redefine the right hand side of (71):

x̃(n+ 1) = tanh(Winu(n) + Wx(n− 1)) (75)
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Setting (20) equal to (19), and using simple algebra:

x(n+ 1)− x(n)

∆t
= −x(n) + x̃(n+ 1) (76)

x(n+ 1)− x(n) = ∆t(−x(n) + x̃(n+ 1)) (77)

x(n+ 1) = (1−∆t)x(n) + ∆tx̃(n+ 1)) (78)

The leaking rate α ∈ (0, 1] of the reservoir nodes denotes the speed of the reservoir update

dynamics discretized in time. Therefore, we can substitute α for the sampling interval ∆t.

And finally, by performing time-translation n → n − 1, we arrive at the leaky-integrated

discrete-time continuous-value unit ESN state update equations:

x̃(n) = tanh(Winu(n) + Wx(n− 1)) (79a)

x(n) = (1− α)x(n− 1) + αx̃(n) (79b)

where x(n) is the current state vector and x̃(n) is its update, each at time step n. To apply

a bias b (as in y = mx+ b), simply use

u(n)→ [b; u(n)] (80)

where [·;·] stands for a vertical vector (or matrix) concatenation [21]. Notice, to use the

model without leaky integration, simply set α = 1 and thus x̃(n) ≡ x(n).

We are now equipped to implement the second component of the class ESN(.) ”for-

ward” method, i.e. the ”forward” method of class Reservoir(), (TD5): forward()

updates and returns the state representation x(n) for given input u(n). The single lead-

ing underscore is a convention used to indicate that this method is meant only for internal

use. Here, it also used to differentiate between forward() of class ESN(.), which is where

the readout, and remainder of the ”forward pass” will be performed (Section (A.4.4)). Ab-

stracting the code in this way, organizing methods acting in and on the reservoir into a
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separate Reservoir class, will prove exceptionally useful in debugging, parameter selection,

and extending to multi-reservoir networks (DeepESNs).

Notice the global variable state x inside of the Reservoir constructor method. This

variable stores the state update of the previous training iteration (or pass), x(n−1) so it can

be applied to perform a new update during the current pass. To implement TD5, use the

built-in torch.tanh and torch.mm (matrix multiply) methods to evaluate (79). Store the

result in a temporary variable, and evaluate (80) to produce updated x. Finally, we update

global variable state x for the next pass, and return the updated state.

We have now created methods to generate an initial state x(0) = 0, and to perform a

leaky-integrated state update for given input u(n) using our previously generated W and

Win, and globally stored x(n− 1).

A.4.4 Compute a Probability Distribution

Restating (61) for convenience, our main objective is to find an output weight matrix

Wout in IRNx such that

Woutx(n) = y(n) ≈ ȳ(n) (81)

For tasks where feedback or temporal sequential processing is important, it often helps

significantly to include the original input u(n) and a bias, b. In this case, the linear readout

becomes

Wout[b; u(n); x(n)] = y(n) (82)

where y(n) ∈ IRNy , Wout(n) ∈ IRNy×(1+Nu+Nx), and [·;·;·] again stands for a vertical vector

(or matrix) concatenation [21].

Since the readouts from an ESN are typically linear and feedforward (Section (??)) [21],

learning the output weights (82) can be viewed as solving a system of linear equations

WoutX = Ȳ (83)

where X ∈ IRN×T are all x(n) produced by presenting the reservoir with u(n), and Ȳ ∈

IRNy×T are all ȳ(n), both collected intro respective matrices over the training period n =

1, ..., T . Note: for linear readout using (82) and (83) respectively,
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X ∈ IRN×T → X ∈ IRNx×T (84a)

X ∈ IRN×T → [B; U; X] ∈ IR(1+Nu+Nx)×T (84b)

The goal is to minimize the (quadratic) error-rate E(Ȳ,WoutX) as in (60). This problem

seems familiar from our previous discussion of supervised learning (Section (??)), so let’s

first approach it as we know how, using gradient descent (GD).

forward(.) Pt. 3

The third and final component of the class ESN(.) ”forward” method (TD6) aims to use

the state update(s) (79) computed in forward(.) (TD5) to generate output predictions,

y(n). In accordance with GD, we can then compare these predictions against true values

ȳ(n) to iteratively update the weights of Wout (10) in direction opposite to the gradient

of the error function (60). Due to the auto-feedback nature of ESNs (i.e. their ”echo”

property), the reservoir state x(n) holds traces of past activations x(n−1), x(n−2), ..., etc.

3 It is therefore often sufficient to take x(n) alone as a representative encoding of the input

history, and compute y(n) according to (81). We can do so using the PyTorch nn.Linear

class, which applies a linear transformation to incoming data

y = xAᵀ + b (85)

Note: for some tasks (e.g. classification) performance is improved using time-averaged acti-

vations,
∑

x [21]. But for now, we will proceed with just x(n) for clarity. In the ESN class

definition (Figure 22) we instantiated nn.Linear such that (85) takes x ∈ IRNx → y ∈ IRNy ,

as required. Setting bias=False ensures b = 0 so that the only learnable parameters are the

weights of Wout (i.e. elements of Aᵀ). In TD6, transpose just-computed state update x(n)

as necessary and pass it through the linear layer. Finally, apply the nn.Softmax function,

3The extent of this dynamical short-term memory can be calculated explicitly, and is called the ESN’s
memory capacity, MC. It has been shown [15] that MC ≤ N for networks with linear output units and
independent and identically distributed (iid) input, where N is the reservoir size.
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normalizing the linear layer resultant vector into a probability distribution, i.e. rescaling its

elements such that they fall in the range [0, 1] and sum to 1:

Softmax(xi) =
exp(xi)∑
j exp(xj)

(86)

Many prefer Softmax over other normalization functions (e.g. argmax, standard normaliza-

tion) because it is differentiable (useful for backprop, but not applicable in our case) and

is exponential, emphasizing the extremes of the distribution. After returning the result of

Softmax normalization forward(.) is fully implemented.

Our PyTorch ESN model (Figure 23, 9) is now complete. We started by implementing

methods to generate a reservoir (Win,W, α) according to user-specified hyperparameters

reservoir size, sparsity, distribution of nonzero elements, spectral radius, input scaling, and

leaking rate. We then initialized the reservoir state vector, and finally, implemented a

complete forward pass: we specified the read-in of input data, used that data to perform

a tanh leaky-integrated state update, linearly transformed the resultant state according to

weight matrix Wout, and ultimately, produced a prediction in the form of a normalized

probability distribution.

Remember, this is only one of many possible implementations. Each component of

the network can (and should be) adapted to fit the demands of each unique learning task.

However, the class structure, method specification, and general abstraction used in this paper

should be intuitive and naturally extensible for anyone just starting out.

A.4.5 Iterative Optimization

In Section (A.4.4) we formulated a goal to solve the linear system of equations given

by (83) or, equivalently, minimize the error-rate E(Ȳ,WoutX). First, we took the gradient

descent approach. Now, for a given input u(n), our ESN generates a prediction y(n) in the

form of an Ny × T dimensional probability distribution.

Next, we need to define an error (or loss) function. Two common, predefined choices in

PyTorch are nn.MSELoss() and nn.CrossEntropyLoss(). Both loss functions have explicit

probabilistic interpretations: MSE corresponds to estimating the mean of a distribution;
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cross-entropy corresponds to minimizing the negative log likelihood of a distribution (i.e.

maximizing the log likelihood). MSE is thus better suited for regression (narrower, smoother

decision boundary where the goal is to be close), while cross-entropy is preferred for classifi-

cation (larger, more abrupt decision boundary where the penalty for being wrong increases

exponentially as you get closer to predicting the wrong output.)

For a PyTorch optimizer, a good choice is Adam (optim.Adam(.)). First published in

2014, Adam is an algorithm for first-order gradient-based optimization of stochastic objec-

tive functions (randomness present), based on adaptive estimates of lower-order moments

(measures of the ”shape” of a function) [18]. Adam can be viewed as a combination of RM-

Sprop and Stochastic Gradient Descent (SGD) with momentum (Figure ??). Like RMSprop,

it uses the squared gradients to scale the learning rate, and like SGD with momentum, it

uses the moving average of the gradient instead of gradient itself.

Before training, we can quickly verify that the network is generating the correct number

of learnable parameters. Assuming all the hyperparameters of class Reservoir() are set,

specify a hidden size R ∈ Z for class ESN(.). Now we create an instance

esn = ESN(N, M) (87)

where N, M ∈ Z are the input and output size, respectively. Finally, executing

params = list(esn.parameters())

print(len(params))

print(params[0].size())

should result in output

1

torch.Size([M, R])

As some back-of-the-envelope linear algebra, or a glance at (61) will prove, M × R is the

correct dimension for trained weight matrix Wout.

With our ESN model complete, error and optimizer functions selected and defined, and

learned parameters correctly reflecting the dimension of Wout, we are ready to perform
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gradient descent. This process is relatively straight forward and well documented on the

PyTorch website, so will be omitted for the purposes of this paper.

A.4.6 Closed-Form Solutions

Using an alternative approach, we can evaluate (83) for Wout algebraically to find an

exact, or closed-form solution. Typically T � N , so (83) presents an overdetermined system

of linear equations: 

...




x1(n)

...

xN(n)

 =



y1(n)

...

yNy(n)


(88)

To be clear, the dimensionality of this equation follows (Ny × N) · (N × T ) = (Ny × T )

where N is given by choice of linear readout using state vectors with or without vertical

concatenation of input and bias (84) (or just one or the other; not given but easily deduced).

The method for finding least square solutions of overdetermined systems of linear equations

is also known as linear regression. Solutions following this method are outside the scope of

this paper, but could be a subject of future work.

A.4.7 Application

The first application of our ESN was towards traditional MNIST classification. Each

MNIST image is delivered as a 3-dimensional tensor (2 spacial dimensions, 1 RGB dimen-

sion). By transposing each image into a 282 × 1 column vector, we could deliver all of the

information contained in an image to the reservoir at once (TD3). Figure 24 is a depiction

of the performance of our network over 15 training iterations, or epochs.
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Table 1: ESN & Training Parameters

Parameter Value

Reservoir size (Nx) 1000

Spectral radius (ρ) 0.99

Input scaling (a) 0.6

Reservoir density (dw) 0.1

Input density (dwin) 1.0

Leak rate (α) 1.0

Bias (b) 1

Training length (T ) 8000

The data shows us that for careful choice of parameters, we can apply an echo-state

system (typically suited for temporal tasks) to a classification problem with very respectable

results.

The reservoir did not respond well to leaky integration, because the MNIST images bear

no temporal connection, so we set α to 1. The most impactful parameter on performance was

the reservoir size. Over all of the training, there seemed no upper to limit to where a larger

reservoir would not improve performance, besides what the computer could computationally

handle. Though, the marginal benefit of continuing to increase reservoir size slowed to a

near plateau for sizes roughly equivalent to that of the training data set. There may have

been an over-fitting threshold (65), though the reservoir was still improving at larger sizes,

just quadratically more slowly. A complete list of ESN and training parameters used during

this readout are given in Table 1.
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Figure 24: Accuracy of ESN of dimension Nx = 1000 on MNIST
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