The angles in any triangle add up to 180°.

Given: A triangle with angles $\angle 1$, $\angle 2$ and $\angle 3$.

To prove: $|\angle 1| + |\angle 2| + |\angle 3| = 180^{\circ}$.

Proof:

Statement	Reason
∠4 + ∠1 + ∠5 = 180°	Straight angle
∠2 = ∠4	Alternate
∠3 = ∠5	Alternate
⇒ ∠4 + ∠1 + ∠5 = ∠2 + ∠1 + ∠3	
⇒ ∠1 + ∠2 + ∠3 = 180°	
Q.E.D.	

Each exterior angle of a triangle is equal to the sum of the interior remote angles.

Given: A triangle with interior angles $\angle 1$, $\angle 2$ and $\angle 3$, and an exterior angle $\angle 4$.

To prove: $|\angle 1| + |\angle 2| = |\angle 4|$.

Proof:

Statement	Reason
∠3 + ∠4 = 180°	Straight angle
∠1 + ∠2 + ∠3 = 180°	Angles in a triangle
⇒ ∠1 + ∠2 + ∠3 = ∠3 + ∠4	Both = 180°
⇒ ∠1 + ∠2 = ∠4	Subtracting ∠3
Q.E.D.	

In a parallelogram, opposite sides are equal and opposite angles are equal.

Given: A parallelogram ABCD.

To prove:

- (i) |AB| = |CD| and |BC| = |AD| (opposite sides are equal)
- (ii) $|\angle ABC| = |\angle ADC|$, $|\angle BAD| = |\angle BCD|$ (opposite angles are equal)

Construction: Draw the diagonal [AC]. **Proof:**

Statement	Reason
$ \angle BCA = \angle CAD $	Alternate
AC = AC	Common (shared)
$ \angle BAC = \angle ACD $	Alternate
$\Rightarrow \Delta BAC = \Delta ADC$	ASA
$\Rightarrow AB = CD \text{ and } BC = AD $	Corresponding sides
Also, $ \angle ABC = \angle ADC $	Corresponding angle
Similarly, $ \angle BAD = \angle BCD $	
Q.E.D.	

Theorem 14: Theorem of Pythagoras

In a right-angled triangle, the square of the hypotenuse is the sum of the squares of the other two sides.

Given: A right-angled triangle *ABC* with $|\angle ABC| = 90^{\circ}$.

To prove:
$$|AC|^2 = |AB|^2 + |BC|^2$$
.

Construction: Draw
$$BD \perp AC$$
.

Proof:

Step 1

Consider the triangles ABC and ADB.

$ \angle ABC = \angle ADB $	90°
$ \angle BAC = \angle BAD $	Common

Statement	Reason
ΔABC and ΔADB are similar.	Construction
$\Rightarrow \frac{ AC }{ AB } = \frac{ AB }{ AD }$	Theorem
$\Rightarrow AB . AB = AC . AD $	
$\Rightarrow AB ^2 = AC \cdot AD $	

∴ ∆ABC and ∆ADB are similar.

Step 2

Consider the triangles ABC and BDC.

∴ ∆ABC and ∆BDC are similar.

Step 3

$ AB ^2 + BC ^2 = AC . AD + $	AC . DC
= AC .(AD +	DC)
$\Rightarrow AB ^2 + BC ^2 = AC \cdot AC $	(Since $ AD + DC = AC $)
$ AB ^2 + BC ^2 = AC ^2$	
Q.E.D.	

Statement	Reason
ΔABC and ΔBDC are similar.	Construction
$\Rightarrow \frac{ AC }{ BC } = \frac{ BC }{ DC }$	Theorem
$\Rightarrow BC . BC = AC . DC $	
$\Rightarrow BC ^2 = AC . DC $	

The angle at the centre of a circle standing on a given arc is twice the angle at any point of the circle standing on the same arc.

Given: A circle with centre *O* and an arc *AC*. A point *B* on the circle.

To prove: $|\angle AOC| = 2|\angle ABC|$.

Construction: Join *B* to *O* and continue to a point *D*. Label angles 1, 2, 3, 4, 5 and 6.

$$|\angle AOC| = |\angle 5| + |\angle 6|$$
$$|\angle ABC| = |\angle 2| + |\angle 3|$$

Proof:

Statement	Reason
OA = OB	Radii
∠1 = ∠2	Isosceles triangle
∠5 = ∠1 + ∠2	Exterior angle
⇒ ∠5 = 2 ∠2	Since ∠1 = ∠2
Similarly, $ \angle 6 = 2 \angle 3 $	
∠5 + ∠6 = 2 ∠2 + 2 ∠3	
$\Rightarrow \angle 5 + \angle 6 = 2(\angle 2 + \angle 3)$	
$ \angle AOC = 2 \angle ABC $	
Q.E.D.	