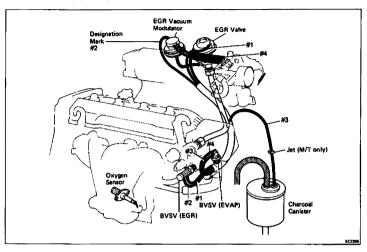
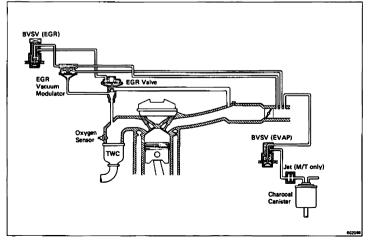
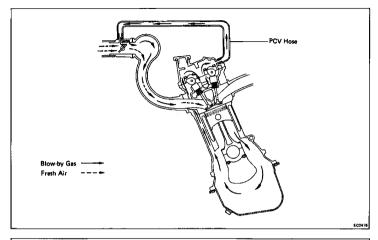
EMISSION CONTROL SYSTEMS

	Page
(3S-FE ENGINE)	
SYSTEM PURPOSE	EC-2
COMPONENT LAYOUT AND SCHEMATIC DRAWING	EC-3
POSITIVE CRANKCASE VENTILATION (PCV) SYSTEM	EC-4
FUEL EVAPORATIVE EMISSION CONTROL (EVAP) SYSTEM	EC-5
EXHAUST GAS RECIRCULATION (EGR) SYSTEM	EC-8
THREE-WAY CATALYST (TWC) SYSTEM	EC-11
(3S-GE ENGINE)	
SYSTEM PURPOSE	EC-13
COMPONENT LAYOUT AND SCHEMATIC DRAWING	EC-14
POSITIVE CRANKCASE VENTILATION (PCV) SYSTEM	EC-15
FUEL EVAPORATIVE EMISSION CONTROL (EVAP) SYSTEM	EC-16
EXHAUST GAS RECIRCULATION (EGR) SYSTEM	EC-19
THREE-WAY CATALYST (TWC) SYSTEM	EC-22

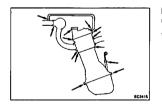

NOTE: TROUBLESHOOTING See page EM-6 EC


SYSTEM PURPOSE

System	Abbreviation	Purpose
Positive crankcase ventilation	PCV	Reduced blow-by gas (HC)
Fuel evaporative emission control	EVAP	Reduced evaporative HC
Exhaust gas recirculation	EGR	Reduces NOx
Three-way catalyst	TWC	Reduces HC, CO and NOx
Electronic fuel injection*	EFI	Regulates all engine conditions for reduction of exhaust emissions.

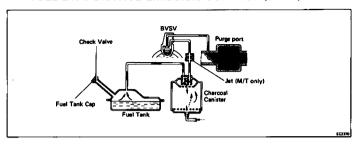

Remarks * For inspection and repair of the EFI system, refer to the EFI section of this manual.

COMPONENT LAYOUT AND SCHEMATIC DRAWING

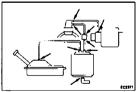


POSITIVE CRANKCASE VENTILATION (PCV) SYSTEM

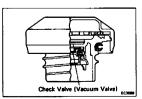
To reduce HC emission, crankcase blow-by gas (HC) is routed to the intake manifold for combustion in the cylinders.



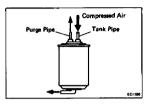
INSPECTION OF PCV HOSE AND CONNECTIONS


VISUALLY INSPECT HOSE AND CONNECTION

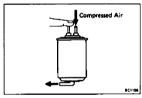
Check for cracks, leaks or damage.


FUEL EVAPORATIVE EMISSION CONTROL (EVAP) SYSTEM

Coolant Temp. BVSV		Throttle Valve	Canister Check Valve			Check		
	Opening	(1)	(2)	(3)	Valve in Cap	Evaporated Fuel (HC)		
Below 35°C (95°F)	CLOSED	-	-	-	-	-	HC from tank is absorbed	
Above		Positioned below purge port	CLOSED	-	-	-	into the canister.	
54°C(129°F)	OPEN	Positioned above purge port	OPEN	-	-	-	HC from canister is led into air intake chamber.	
High pressure in tank	-	_	-	OPEN	CLOSED	CLOSED	HC from tank is absorbed into the canister.	
High vacuum in tank	-	-	-	CLOSED	OPEN	OPEN	Air is led into the fuel tank	


INSPECTION OF FUEL VAPOR LINES, FUEL TANK AND TANK CAP

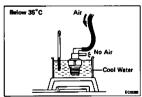
- VISUALLY INSPECT LINES AND CONNECTIONS Look for loose connections, sharp bends or damage.
- 2. VISUALLY INSPECT FUEL TANK Look for deformation, cracks or fuel leakage.
- 3. VISUALLY INSPECT FUEL TANK CAP Check if the cap and/or gasket are deformed or damaged. If necessary, repair or replace the cap.


INSPECTION OF CHARCOAL CANISTER

- 1. REMOVE CHARCOAL CANISTER
- VISUALLY INSPECT CHARCOAL CANISTER CASE Look for cracks or damage.

3. CHECK FOR CLOGGED FILTER AND STUCK CHECK VALVE

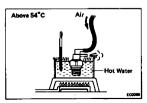
- (a) Using low pressure compressed air, blow into the tank pipe and check that the air flows without resistance from the other pipes.
- (b) Blow into the purge pipe and check that the air does not flow from the other pipes.
- If a problem is found, replace the charcoal canister.

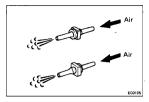

4. CLEAN FILTER IN CANISTER

Clean the filter by blowing 3kg/cm² (43 psi, 294 kPa) of compressed air into the tank pipe, while holding the other upper canister pipe closed.

NOTE:

- . Do not attempt to wash the canister.
- · No activated carbon should come out.

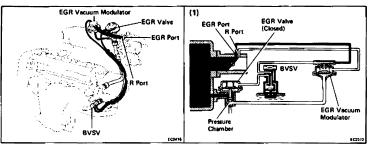


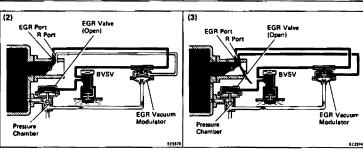

INSPECTION OF BVSV

CHECK BYSY BY BLOWING AIR INTO PIPE

- (a) Drain the coolant from the radiator into a suitable container.
- (b) Remove the BVSV.
- (c) Cool the BVSV to below 35°C (95°F) with cool water.
- (d) Blow air into a pipe and check that the BVSV is closed.

- (e) Heat the BVSV to above 54°C (129°F) with hot water.
- (f) Blow air into a pipe and check that the BVSV is open.
- If a problem is found, replace the BVSV.
- (g) Apply liquid sealer to the threads of the 8VSV and reinstall.
- (h) Fill the radiator with coolant.

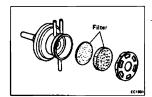



INSPECTION OF JET (M/T only)

CHECK JET BY BLOWING AIR FROM EACH SIDE

Check for stoppage.

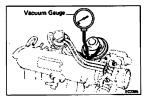
EXHAUST GAS RECIRCULATION (EGR) SYSTEM


To reduce NOx emission, part of the exhaust gases are recirculated through the EGR valve to the intake manifold to lower the maximum combustion temperature.

Coolent Temp.	BVSV	Throttle Valve Opening Angle	Pressure in the EGR Valve Pressure Chamber		EGR Vacuum Modulator	EGR Valve	Exhaust Ger
Below 45°C (113°F) CLOSED		-	-		-	CLOSED	Not recirculated
Above 66°C (151°F) OPEN		Positioned below EGR port		_	-	CLOSED	Not recirculated
	Positioned be- tween EGR port	(1) LOW	*Pressure con- stantly after-	OPENS passage to atmosphere	CLOSED	Not recirculated	
		and R port	(2) HIGH	nating between low and high	CLOSES passage at atmosphere	OPEN	Recirculated
		Positioned above R port	(3) HIGH	••	CLOSES passage to almosphere	OPEN	Recirculated (increase)

Remarks: *Pressure increase → Modulator closes → EGR valve opens → Pressure drops

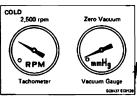
EGR valve closes ← Modulator opens


^{**}When the throttle valve is positioned above the R port, the EGR vacuum modulator will close the atmosphere passage and open the EGR valve to increase the EGR gas, even if the exhaust pressure is insufficiently tow.

INSPECTION OF EGR SYSTEM

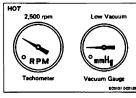
1. CHECK AND CLEAN FILTERS IN EGR VACUUM MODULATOR

- (a) Check the filters for contamination or damage.
- (b) Using compressed air, clean the filters.



2. PREPARATION

Using a 3-way connector, connect a vacuum gauge to the hose between the EGR valve and vacuum pipe.

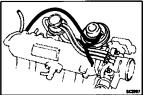

3. CHECK SEATING OF EGR VALVE

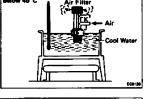
Start the engine and check that the engine starts and runs at idle.

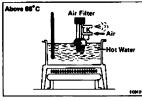
4 CHECK RVSV WITH COLD ENGINE

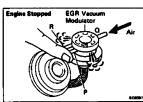
- (a) The coolant temperature should be below 45°C (113°F).
- (b) Check that the vacuum gauge indicates zero at 2,500 rpm.

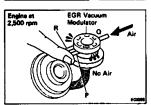
5. CHECK BYSY AND EGR VACUUM MODULATOR WITH HOT ENGINE


- (a) Warm up the engine.
- (b) Check that the vacuum gauge indicates low vacuum at 2,500 rpm.


- (c) Disconnect the vacuum hose from port R of the EGR vacuum modulator and connect port R directly to the intake manifold with another hose.
- (d) Check that the vacuum gauge indicates high vacuum at 2.500 rom.


NOTE: As a large amount of EGR gas enters, the engine will misfire slightly.


(e) Disconnect the vacuum gauge and reconnect the vacuum hoses to the proper locations.



CHECK EGR VALVE

- Apply vacuum directly to the EGR valve with the enaine idling.
- (b) Check that the engine runs rough or dies.
- (c) Reconnect the vacuum hoses to the proper location.

IF NO PROBLEM IS FOUND WITH THIS INSPECTION. THE SYSTEM IS OKAY: OTHERWISE INSPECT EACH PART

INSPECTION OF BVSV

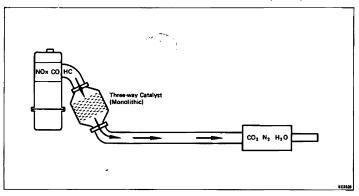
CHECK BYSY BY BLOWING AIR INTO PIPE

- (a) Drain the coolant from the radiator into a suitable container.
- (b) Remove the BVSV from the water outlet.
- (c) Cool the BVSV to below 45°C (113°F) with cool water.
- (d) Check that air flows from pipe J to the air filter.
- (e) Heat the BVSV to above 66°C (151°F) with hot water.
- Check that air flows from pipe J to pipe K.
- If a problem is found, replace the BVSV.
- (g) Apply liquid sealer to the threads of the BVSV and install.
- (h) Fill the radiator with coolant.

INSPECTION OF EGR VACUUM MODULATOR

CHECK EGR VACUUM MODULATOR OPERATION

- (a) Disconnect the vacuum hoses from ports P,Q and R of the EGR vacuum modulator.
- (b) Block ports P and R with your finger.
- (c) Blow air into port Q. Check that the air passes through to the air filter side freely.
- (d) Start the engine and maintain speed at 2,500 rpm.
- (e) Repeat the above test. Check that there is a strong resistance to air flow.
- Reconnect the vacuum hoses to the proper locations.

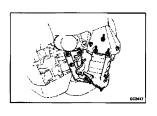

INSPECTION OF EGR VALVE

REMOVE EGR VALVE

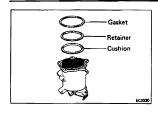
Check the valve for sticking and heavy carbon deposits. If a problem is found, replace it.

2. REINSTALL EGR VALVE WITH NEW GASKET

THREE-WAY CATALYST(TWC) SYSTEM


Exhaust Port			L	
EXHIBUST FOR	<u> </u>	TWC	↓	Exhaust Ga
IC, CO AND NOx		OXIDATION AND REDUCTION		CO₂ H₃O

INSPECTION OF EXHAUST PIPE ASSEMBLY CHECK CONNECTIONS FOR LOOSENESS OR DAMAGE


REPLACEMENT OF CATALYTIC CONVERTER

1. REMOVE CONVERTER

- (a) Jack up the vehicle.
- (b) Check that the converter is cool.
- (c) Disconnect the exhaust pipe from the converter.
 - · Loosen the bolt, and disconnect the clamp from the exhaust pipe bracket.
 - · Remove the three nuts, and disconnect the exhaust pipe. Remove the gasket.
- (d) Remove the two bolts, two nuts and converter stay.
- (e) Remove the three bolts, two nuts, gasket, retainer, cushion and converter.
- (f) Remove the eight bolts and two heat insulators from the converter.

EC-12 EMISSION CONTROL SYSTEMS (3S-FE ENGINE) - Three-way Catalyst (TWC) System

2. INSTALL CONVERTER

- (a) Install the two heat insulators to the converter with the eight bolts.
- (b) Place new cushion, retainer and gasket on the converter.
- (c) Install the converter with the three bolts and two nuts. Torque the bolts and nuts.

Torque: 300 kg-cm (21 ft-lb, 29 N·m)

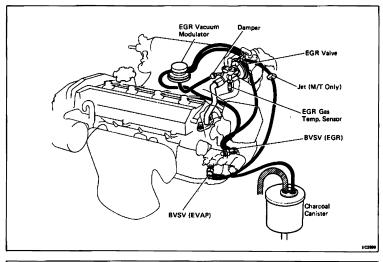
(d) Install the converter stay with the two bolts and two nuts.

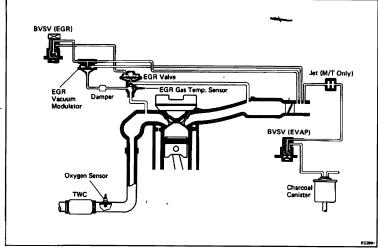
Torque: 425 kg-cm (31 ft-lb, 42 N·m)

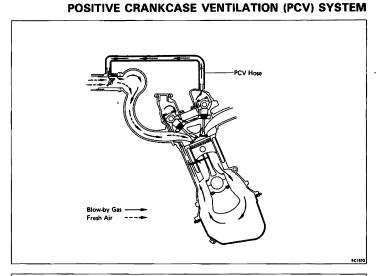
- (e) Connect the exhaust pipe to the converter.
 - · Place a new gasket on the exhaust pipe.
 - · Connect the exhaust pipe with the three nuts.

Torque: 630 kg-cm (46 ft-lb, 62 N·m)

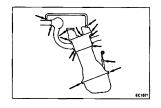
20

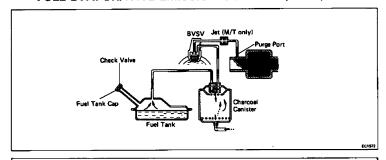

· Install the exhaust pipe clamp with the bolt.


SYSTEM PURPOSE

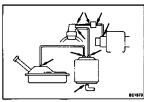

System	Abbreviation	Purpose
Positive crankcase ventilation	PCV	Reduces blow-by/gas (HC)
Fuel evaporative emission control	EVAP	Reduces evaporative HC
Exhaust gas recirculation	EGR	Reduces NOx
Three-way catalyst	TWC	Reduces HC, CO and NOx
Electronic fuel injection*	EFI	Regulates all engine conditions for reduction of exhaust emissions

Remarks *For inspection and repair of the EFI system, refer to EFI section of this manual.

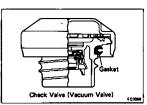

COMPONENT LAYOUT AND SCHEMATIC DRAWING


To reduce HC emission, crankcase blow-by gas (HC) is routed to the intake manifold for combustion in the cylinders.

INSPECTION OF PCV HOSE AND CONNECTIONS


VISUALLY INSPECT HOSE AND CONNECTION Check for cracks, leaks or damage.

FUEL EVAPORATIVE EMISSION CONTROL (EVAP) SYSTEM

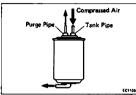

To reduce HC emission, evaporated fuel from the fuel tank is routed through the charcoal canister to the intake manifold for combustion in the cylinders. Canister Check Velve Check Coolant Throttle Valve RVSV Valve in Evaporated Fuel (HC) Temp. Opening (3) (1) (2) Cap CLOSED _ 35°C (95°F) HC from tank is absorbed into the canister. Positioned below CLOSED purge port Above OPEN 54°C(129°F) HC from canister is led into Positioned above OPEN air intake chamber. purge port HC from tank is absorbed High pressure OPEN CLOSED CLOSED into the canister. in tank

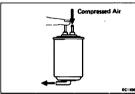
CLOSED

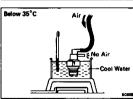
High vacuum

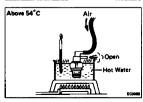
in tank


INSPECTION OF FUEL VAPOR LINES, FUEL TANK AND TANK CAP


OPEN


Air is led into the fuel tank.


OPEN


- VISUALLY INSPECT LINES AND CONNECTIONS
 Look for loose connections, sharp bends or damage.
- VISUALLY INSPECT FUEL TANK
 Look for deformation, cracks or fuel leakage.
- VISUALLY INSPECT FUEL TANK CAP
 Check if the cap and/or gasket are deformed or damaged.
 If necessary, repair or replace the cap.

INSPECTION OF CHARGOAL CANISTER

- 1. REMOVE CHARCOAL CANISTER
- 2. VISUALLY INSPECT CHARCOAL CANISTER CASE
 Look for cracks or damage.

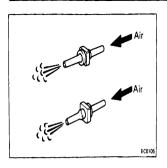
3. CHECK FOR CLOGGED FILTER AND STUCK CHECK VALVE

- (a) Using low pressure compressed air, blow into the tank pipe and check that air flows without resistance from the other pipes.
 - (b) Blow into the purge pipe and check that air does not flow from the other pipes.
 - If a problem is found, replace the charcoal canister.

4. CLEAN FILTER IN CANISTER

Clean the filter by blowing 3 kg/cm²(43 psi, 294 kPa) of compressed air into the tank pipe while holding the other canister pipe closed.

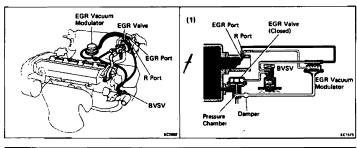
NOTE:

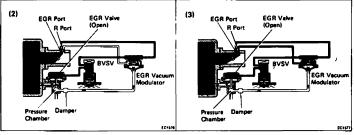

- . Do not attempt to wash the canister.
- No activated carbon should come out.
- 5. INSTALL CHARCOAL CANISTER

INSPECTION OF BVSV

CHECK BYSY BLOWING AIR INTO PIPE

- (a) Drain the coolant from the radiator into a suitable container.
- (b) Remove the BVSV
- (c) Cool the BVSV to below 35°C (95°F) with cool water.
- (d) Blow air into a pipe and check that the BVSV is closed.
- (e) Heat the BVSV to above 54°C (129°F) with hot water.
- (f) Blow air into a pipe and check that the BVSV is open.
 If a problem is found, replace the BVSV.
- (g) Apply liquid sealer to the threads of the BVSV and
- reinstall.
- (h) Fill the radiator with coolant.


EMISSION CONTROL SYSTEMS (3S-GE) — (EVAP) System



INSPECTION OF JET (M/T only)

CHECK JET BY BLOWING AIR FROM EACH SIDE Check for stoppage.

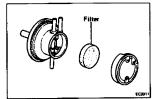
EXHAUST GAS RECIRCULATION (EGR) SYSTEM

Coolant Temp.	BVSV	Throttle Valve Opening Angle	Pressure in the EGR Valve Pressure Chember		EGR Vacuum Modulator	EGR Valve	Exhaust Gas
Below 45°C (113°F) CLOSED		-		-	-	CLOSED	Not recirculated
Above 66°C (151°F) OPEN		Positioned below EGR port	_		-	CLOSED	Not recirculated
	EL OPEN EGRIPORTIANO I	GR port and LOW stantly alter-	stantly alter-	OPENS passage to atmosphere	CLOSED	Not recirculated	
		and R port	(2) HIGH	nating between low and high	CLOSES passage to atmosphere	OPEN	Recirculated
		Positioned above	(3)	••	CLOSES passage	20511	Recirculated

*Pressure increase - Modulator closes - EGR valve opens - Pressure drops Remarks: EGR valve closes - Modulator opens -

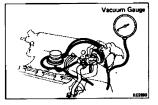
HIGH

R port


OPEN

(increase)

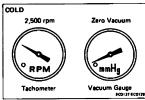
to atmosphere


^{**}When the throttle valve is positioned above the R port, the EGR vacuum modulator will close the atmosphere passage and open the EGR valve to increase the EGR gas, even if the exhaust pressure is insufficiently low.

EC-20

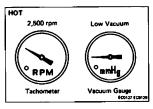
INSPECTION OF EGR SYSTEM

- CHECK AND CLEAN FILTER IN EGR VACUUM MODULATOR
 - (a) Check the filter for contamination or damage.
 - (b) Using compressed air, clean the filter.

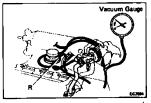


PREPARATION 2.

Using a 3-way connector, connect a vacuum gauge to the EGR valve.

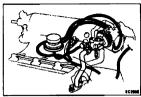

CHECK SEATING OF EGR VALVE

Start the engine and check that the engine starts and runs at idle.

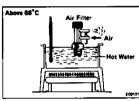


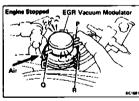
CHECK BYSY WITH COLD ENGINE

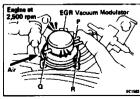
- The coolant temperature should be below 45°C (113°F).
- Check that the vacuum gauge indicates zero at 2,500 rom.


- CHECK BYSY AND EGR VACUUM MODULATOR WITH HOT ENGINE
 - (a) Warm up the engine.
 - (b) Check that the vacuum gauge indicates low vacuum at 2,500 rpm.

- (c) Disconnect the vacuum hose from port R of the EGR vacuum modulator and connect port R directly to the intake manifold with another hose.
- (d) Check that the vacuum gauge indicates high vacuum at 2,500 rpm.


NOTE: As a large amount of EGR gas enters, the engine will misfire slightly at this time.


Disconnect the vacuum gauge and reconnect the vacuum hoses to the proper locations.



Below 45°C Air Filter Cool Water

fco N

6. CHECK EGR VALVE

- (a) Apply vacuum directly to the EGR valve with the engine idling.
- (b) Check that the engine runs rough or dies.
- (c) Reconnect the vacuum hoses to the proper location.

IF NO PROBLEM IS FOUND WITH THIS INSPECTION, THE SYSTEM IS OKAY: OTHERWISE INSPECT EACH PARTS

INSPECTION OF BVSV

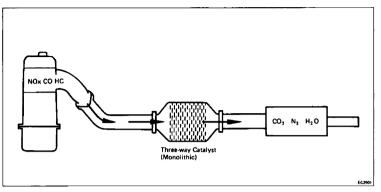
CHECK BYSY BY BLOWING AIR INTO PIPE

- (a) Drain the coolant from the radiator into a suitable container.
- (b) Remove the BVSV from the water outlet.
- (c) Cool the BVSV to below 45°C (113°F) with cool water.
- (d) Check that air flows from pipe J to the air filter.
- (e) Heat the BVSV to above 66°C (151°F) with hot water.
- (f) Check that air flows from pipe J to pipe K.
- If a problem is found, replace the BVSV.
- (g) Apply liquid sealer to the threads of the BVSV and install.
- (h) Fill the radiator with coolant.

INSPECTION OF EGR VACUUM MODULATOR

CHECK EGR VACUUM MODULATOR OPERATION

- (a) Disconnect the vacuum hoses from ports P,Q and R of the EGR vacuum modulator.
 - (b) Block ports P and R with your finger.
- (c) Slow air into port Q. Check that the air passes through to the air filter side freely.
- (d) Start the engine and maintain speed at 2,500 rpm.
- (e) Repeat the above test. Check that there is a strong resistance to pir flow.
- (f) Reconnect the vacuum hoses to the proper locations.

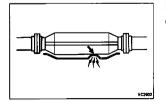

INSPECTION OF EGR VALVE

1. REMOVE EGR VALVE

Check the valve for sticking and heavy carbon deposits.
If a problem is found, replace it.

2. REINSTALL EGR VALVE WITH NEW GASKET

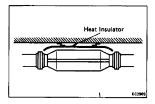
THREE-WAY CATALYST (TWC) SYSTEM



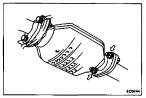
To reduce HC, CO and NOx emissions, they are oxidized, reduced and converted to nitrogen (N_2), carbon dioxide (CO_2) and water (H_2O) by the catalyst.

Exhaust port		TWC	Exhaust Gas
HC, CO AND NOx	\Longrightarrow	OXIDATION AND REDUCTION	CO ₂ H ₂ O N ₂

INSPECTION OF EXHAUST PIPE ASSEMBLY


- 1. CHECK CONNECTIONS FOR LOOSENESS OR DAMAGE
- 2. CHECK CLAMPS FOR WEAKNESS, CRACKS OR DAMAGE

INSPECTION OF CATALYTIC CONVERTER


CHECK FOR DENTS OR DAMAGE

If any part of protector is damaged or dented to the extent that it conjects the catalyst, repair or replace.

INSPECTION OF HEAT INSULATOR

- . CHECK HEAT INSULATOR FOR DAMAGE
- 2. CHECK FOR ADEQUATE CLEARANCE BETWEEN CATALYTIC CONVERTER AND HEAT INSULATOR

REPLACEMENT OF CATALYTIC CONVERTER

I. REMOVE CONVERTER

- (a) Jack up the vehicle.
- (b) Check that the converter is cool.
- (c) Remove the bolts at the front and rear of the converter.
 - (d) Remove the converter and gaskets.

2. INSTALL CONVERTER

- (a) Place new gaskets on the converter front and rear pipes, and connect the converter to the exhaust pipes.
- (b) Tighten the bolts.

Torque (Converter to exhaust pipe): 440 kg-cm (32 ft-lb, 43 N·m)

(c) Reinstall the bracket bolts and tighten them.