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Abstract—Cyanobacterial Harmful Algal Blooms
(CyanoHABs) pose significant threats to aquatic ecosystems
and public health globally. Lake Champlain is particularly
vulnerable to recurring CyanoHAB events, especially in
its northern segment: Missisquoi Bay, St. Albans Bay, and
Northeast Arm, due to nutrient enrichment and climatic
variability. Remote sensing provides a scalable solution for
monitoring and forecasting these events, offering continuous
coverage where in-situ observations are sparse or unavailable.
In this study, we present a remote sensing-only forecasting
framework that combines Transformers and BiLSTM to predict
CyanoHAB intensities up to 14 days in advance. The system
utilizes Cyanobacterial Index data from the Cyanobacterial
Assessment Network and temperature data from Moderate
Resolution Imaging Spectroradiometer satellites to capture
long-range dependencies and sequential dynamics in satellite
time series. The dataset is very sparse, missing more than 30%
of the Cyanobacterial Index data and 90% of the temperature
data. A two-stage preprocessing pipeline addressed data gaps by
applying forward fill and weighted temporal imputation at the
pixel level, followed by smoothing to reduce the discontinuities
of CyanoHAB events. The raw dataset is transformed into
meaningful features through equal-frequency binning for
the Cyanobacterial Index values and extracted temperature
statistics. Transformer-BiLSTM model demonstrates strong
forecasting performance across multiple horizons, achieving F1
scores of 89.5%, 86.4%, and 85.5% at one-, two-, and three-day
forecasts, respectively, and maintaining an F1 score of 78.9%
with an AUC of 82.6% at the 14-day horizon. These results
confirm the model’s ability to capture complex spatiotemporal
dynamics from sparse satellite data and to provide reliable
early warning for CyanoHABs management. The dataset and
trained model weights are publicly available, facilitating further
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research in CyanoHABs forecasting.
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I. INTRODUCTION

Cyanobacterial harmful algal blooms (CyanoHABs) pose a
significant environmental challenge that affects water quality,
aquatic ecosystems, and public health in inland waters world-
wide. CyanoHABs are characterized by the excessive growth
of cyanobacteria in inland water systems, which produce
toxins harmful to humans, ecological health, and the broader
environment. Their formation is primarily attributed to eu-
trophication [1], and is exacerbated by anthropogenic activities
such as intensive agriculture [2], [3] and insufficient policy
actions to preserve the water quality of lake bodies [4]. The
combined effect of eutrophication and anthropogenic activities
leads to an increase in nutrient fluxes, accompanied by lighting
conditions, and water temperature favorable to cyanobacteria
that can lead to more severe and extensive CyanoHABs [4]–
[6]. CyanoHABs can drastically degrade inland-water quality
[7], [8], threaten public health [9]–[11], decrease biodiversity,
contribute to habitat loss [12], which in turn causes damage to
socioeconomic and ecological aspects of aquatic ecosystems
[13]. In freshwater systems, CyanoHABs species that produce
biotoxins are of particular concern as these toxins can accumu-
late in aquatic food webs, when consumed by humans, leading
to severe illness, paralysis, and even death [14]. According
to a scientific research summary from [15], CyanoHABs cost
$4.6B per year in estimated damages within the United States
alone. Early and reliable CyanoHABs forecasting systems can
help mitigate adverse effects or even prevent them.

Numerous studies have identified temperature as a factor
in the proliferation of CyanoHABs [16]–[25]. Other environ-
mental factors include precipitation [19], [26]–[28], nutrient
concentration [29]–[31], wind conditions [32], [33], and hy-
draulic retention time [34]–[36]. Although these CyanoHAB
drivers are well understood, early CyanoHAB forecasting
remains challenging, as environmental factors vary spatially
and temporally [37].

Given these growing concerns, numerous CyanoHABs fore-
casting models have been developed in recent years. However,
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the majority of these algorithms rely on in-situ sensors [37]–
[40] or manual water sampling [41]–[43], both of which
are costly and labor-intensive. These data sources are also
limited in their ability to capture large spatial areas, thereby
constraining the detection of temporal and spatial changes
in CyanoHABs, which are crucial for understanding their
formation.

Remote sensing offers a promising solution to the limita-
tions of sensor-based and manual sampling methods. Recent
technological advances in remote sensing can transform the
CyanoHABs monitoring landscape by providing data at higher
temporal and spatial resolutions, enabling comprehensive and
sophisticated modeling of the dynamic nature of CyanoHABs.

Many researchers have used remote sensing to forecast and
predict harmful algal blooms across aquatic systems over the
past decade [44]–[48]. Early demonstrations [44] focused on
marine red tides using data from the Coastal Zone Color
Scanner aboard Nimbus-7 in 1981. Although biologically dis-
tinct from freshwater cyanobacterial blooms, this pioneering
work established the remote-sensing foundations later adapted
for inland water monitoring and influenced the development
of sensors such as Moderate Resolution Imaging Spectrora-
diometer (MODIS), Medium Resolution Imaging Spectrom-
eter (MERIS), and the Sentinel satellites. Subsequent work
applied these sensors to freshwater CyanoHAB forecasting
using a range of machine-learning and statistical methods. [45]
utilized the MODIS data with XGBoost, Random Forest, and
Support Vector Machines to predict CyanoHAB occurrences
with lead times of 1 to 11 days. A sub-monthly CyanoHAB
forecasting model was developed by incorporating remote
sensing and environmental factors to predict CyanoHAB cell
counts [47]. Satellite-derived chlorophyll-a data were com-
bined with univariate time-series models, enabling 1 to 4
weeks of CyanoHABs forecast across 15 lakes worldwide [48].
A regression-based model was developed to predict the occur-
rence, spatial distribution, and intensity of CyanoHABs using
chlorophyll-a concentration imagery from MODIS satellites
[46].

Although these studies offer significant improvements for
CyanoHABs detection and forecasting, they have at least one
of the following drawbacks: 1) Limited transferability due to
a reliance on ground sensor data in addition to remote sensing
data, restricting the model’s scalability to regions without
ground sensing data; and 2) Most of these studies do not
include CyanoHABs intensities. Predicting the intensity of
CyanoHABs has a significant role in effective environmental
management and public health protection, and early awareness
helps inform public policy and protect human health.

To address the aforementioned limitations, we present a
Transformer-BiLSTM deep learning framework that combines
a multi-head, self-attention Transformer [49] and Bidirec-
tional Long Short-Term Memory (BiLSTM) architectures for
extended-horizon CyanoHAB intensity forecasting, utilizing
exclusively remote sensing data. The proposed Transformer-
BiLSTM model combines the global context modeling capa-
bility of Transformers with BiLSTM, further refining Trans-
formers’ contextual understanding by maintaining temporal
continuity and smoothing short-term variations. Unlike prior

approaches that are constrained to in situ data, the proposed
framework relies solely on satellite-derived inputs. To over-
come the inherent data sparsity challenges in satellite obser-
vations, the framework employs a two-stage preprocessing
pipeline that combines temporal imputation and smoothing
techniques. The model generates forecasts across five distinct
intensity classes (Low, Medium, High, Very High, and Ex-
treme Intensity CyanoHABs) with forecast horizons of 14
days. This approach effectively predicts the likelihood and
severity of CyanoHAB events across multiple time scales.
Fine-grained intensity forecasting with an extended lead time
provides environmental agencies and public health authorities
with timely and actionable insights for proactive risk assess-
ment and response planning.

We summarize our contributions in six principal ways:
• We introduce a hybrid Transformer-BiLSTM architecture

that integrates a multi-head, self-attention transformer
and BiLSTM architectures for predicting the occurrence
and intensity of CyanoHABs, enabling accurate forecast-
ing up to 14 days, bridging short and medium-range
early-warning needs.

• We formulate the task as a bin-wise, five-level intensity
prediction, allowing managers to assess not only whether
a bloom will occur but also its expected severity.

• Our approach exclusively utilizes remote sensing data for
CyanoHAB forecasting, overcoming sensor-based limita-
tions. To our knowledge, this is the first model to rely
entirely on remote sensing for multi-horizon CyanoHAB
incidence and intensity prediction.

• This framework represents the first CyanoHAB early-
warning system for Lake Champlain and is transferable to
other Contiguous United States freshwater systems using
freely available remote sensing data with minimal re-
training.

• We make our processed remote sensing dataset and pre-
processing pipeline publicly available to facilitate future
CyanoHABs research.

• The effectiveness of the Transformer-BiLSTM model is
evaluated against Advanced Deep Learning and Machine
Learning models. The proposed model demonstrates the
superiority of CyanoHABs’ early forecasting and inten-
sity prediction.

II. RELATED WORK

A. In-Situ Based CyanoHABs Forecasting

In-situ based CyanoHABs prediction relies on in-situ field
monitoring and is sometimes coupled with automated sensors.
These approaches often use parameters such as chlorophyll-a
concentrations, dissolved oxygen, nutrient fluxes, water tem-
perature, pH, and cyanobacteria cell counts to predict
CyanoHAB occurrence or intensity. The research investigating
the detrimental effects of excessive nutrients, specifically ni-
trogen and phosphorus, related increased CyanoHAB activity
to the exceedance of a critical N:P molar ratio [30]. A 7-
day forecasting model utilizing microcystin concentration as
the primary indicator and incorporating input features such
as pH, precipitation, temperature, dew point, and wind speed
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was developed to predict CyanoHABs in Iowa lakes [39]. A
hybrid deep learning approach combining wavelet analysis
with LSTM was developed to forecast the CyanoHABs in
Lake Mendota [40]. The research used hourly, daily, and
monthly chlorophyll concentrations and cyanobacterial cell
biomass counts to forecast CyanoHABs at hourly, daily, and
monthly resolutions. Boosted regression trees and artificial
neural networks are used to investigate the impact of high-
temporal-resolution physicochemical and meteorological data
features on the growth and decline of CyanoHABs in Upper
Klamath Lake, Oregon. The authors concluded that decreases
in inflows and lake-surface elevation, and increases in temper-
ature and phosphorus concentration, play a significant role in
CyanoHAB growth. Machine learning models for forecasting
CyanoHABs in coastal areas were studied using physical, geo-
chemical, and climate data to predict chlorophyll concentration
as a proxy for CyanoHABs in Biscayne Bay [50].

Recent works have begun incorporating attention mecha-
nisms into CyanoHABs forecasting [51]–[53]. Reverse-time
and dual-stage attention mechanisms are combined with re-
current imputation to achieve 1, 7, and 14-day CyanoHABs
forecasts at Nakdong River in South Korea [52]. Stacked
gradient-boosting trees with an attention-based CNN-LSTM
demonstrated that attention consistently boosted ensemble
skill over purely boosting or purely deep learning baselines
for CyanoHABs forecasting [53]. Most recently, a Temporal
Convolution Network fused with multi-head attention and
BiLSTM was developed to predict hour-ahead chlorophyll-a
from high-frequency buoy measurements [51]. While these
works confirm the value of attention for capturing abrupt
fluctuations, they remain sensor-bound and focus on either
binary CyanoHABs status or chlorophyll proxies at a single
location.

Given our focus on the Lake Champlain study area, re-
viewing previous CyanoHABs monitoring and forecasting
studies conducted in this region is essential. A modified self-
organizing map was used to analyze relationships between
cyanobacteria blooms and environmental conditions in Lake
Champlain’s Missisquoi Bay [54]. The authors concluded that
low dissolved nitrogen-to-soluble reactive phosphorus ratios
and sediment anoxia strongly correlate with bloom conditions.
Bowling et al. A 9-year phytoplankton dataset from Missisquoi
Bay was analyzed using water samples collected from four
sites through manual field sampling methods, laboratory anal-
ysis, and meteorological data, showing weak correlations be-
tween environmental factors and cyanobacterial distributions,
with the heterogeneity of bloom patterns remaining largely
unexplained [55]. High-frequency sensor data, field sampling,
and long-term monitoring data were utilized to investigate
the internal drivers of cyanobacteria blooms in Missisquoi
Bay [56]. The authors found that internal phosphorus loading,
thermal stratification, and shifting nutrient limitations play a
vital role in bloom progression.

B. Remote Sensing CyanoHABs Detection
Remote sensing can capture the temporal and spatial

variability of CyanoHABs. Extensive literature [3], [45]–
[48], [57]–[60] describes the monitoring, detection, and

forecasting of CyanoHABs using remote sensing. MERIS,
Sentinel-2, Sentinel-3, and satellites equipped with moderate-
resolution imaging spectroradiometers (MODIS-Aqua and
MODIS-Terra) are transforming the CyanoHABs monitoring
and modeling landscape by providing higher-frequency, open-
source data. They can capture detailed images and information
about water bodies, enabling researchers to effectively detect
and track the development of CyanoHABs.

Four machine learning models were compared for fore-
casting CyanoHABs in Lake Erie at 10-, 20-, and 30-day
lead times [47]. The author used satellite-derived CI data
alongside meteorological, hydrodynamic, and nutrient data as
inputs to predict future CI values as a proxy for CyanoHABs
intensity. A. Gupta [47] compared four machine learning
models for forecasting harmful algal blooms in Lake Erie
at 10-, 20-, and 30-day lead times. A simple, generaliz-
able univariate forecasting model was developed to predict
cyanobacterial blooms using satellite-derived chlorophyll-a
data [48]. Forecasts were generated at 1-, 2-, and 4-week
horizons for 15 lakes worldwide. The 1-week model accurately
predicted high-risk blooms with 80% accuracy, comparable
to that of complex models. Landsat-8 and Sentinel-2 satellite
imagery were used to estimate chlorophyll-a, turbidity, and
phycocyanin concentrations using support vector and random
forest regression models [3]. The impact of spatial resolution
on the detection of CyanoHABs was investigated using data
from Landsat-8, Sentinel-2, and PlanetScope imagery [59].
The authors evaluated twenty bio-optical algorithms from
earlier studies to predict chlorophyll concentration, biomass,
phyco-cyanin concentration, etc. A spatiotemporal modeling
approach utilizing Bayesian hierarchical models was presented
to predict the likelihood of CyanoHABs in Florida’s freshwater
systems [60]. The authors used weekly composite images of
maximum cyanobacteria abundance from Sentinel-3 imagery,
along with ambient temperature, surface water temperature,
and precipitation data. A collaborative framework for mon-
itoring and predicting harmful algal bloom accumulation in
nearshore areas of Lake Chaohu was developed using a
coupled hydrodynamic-water quality-algae model [61]. The
authors integrated satellite remote sensing data, 42 land-based
video monitoring devices providing hourly coverage, and in-
situ buoy stations measuring chlorophyll-a and lake currents.
The framework provided real-time quantitative monitoring and
daily predictions of harmful algal bloom accumulation risks
in nearshore zones to support emergency lake management.
An extreme gradient boosting algorithm was used to estimate
chlorophyll concentrations as an indicator of CyanoHABs
by training on in-situ chlorophyll measurements and using
reflectance indices from Landsat-8 Operational Land Imager
(OLI) data along with other environmental inputs [62]. Re-
cently, [63] presented a multi-source monitoring and predic-
tion framework for CyanoHABs, integrating satellite, UAV,
ground-based, and in-situ systems to enable high-frequency,
nearshore-focused assessment in Lake Chaohu. By simulating
the growth-drift-accumulation dynamics, the presented method
significantly improves prediction accuracy and practical early
warning capabilities in eutrophic lakes.

Lake Champlain has been the subject of numerous
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CyanoHAB studies. Empirical regression models were used to
map in-situ data with corresponding Landsat bands and blue,
green, and red band ratios [64]. Pigment concentration retrieval
methods were evaluated in Missisquoi Bay, Lake Champlain,
demonstrating that empirically calibrated QuickBird data us-
ing NIR/Red band ratios could explain approximately 80%
of chlorophyll-a variability while achieving an R2 of 0.68
for Phycocyanin concentration mapping [65]. CyanoHABs in
Lake Champlain were mapped using Landsat-8 Operational
Land Imager, Rapid Eye, and Proba Compact High-Resolution
Imaging Spectrometer [43]. CyanoHABs were detected us-
ing band ratios to identify spatial patterns within the lake
and problematic bays with high phycocyanin concentrations.
MERIS and CI are used to estimate the cyanobacteria cell
counts (cells/mL) across eastern United States (US) lakes [66].
The authors identified good performance at low (10,000 to
109,000) and high (> 1,000,000) cell counts; however, the ap-
proach performed suboptimally at intermediate concentrations.
An ensemble-based system using down-scaled MODIS im-
agery was developed to estimate chlorophyll-a concentrations
in inland lakes [67]. The system combines adaptive modeling
and Gaussian quadrature to minimize classification and estima-
tion errors, thereby enhancing accuracy across bloom stages.
Recently, the variability of CyanoHABs in Missisquoi Bay,
Lake Champlain, was analyzed using satellite imagery from
OLCI and MODIS with the CI algorithm to assess temporal
and spatial occurrences of CyanoHABs [58].

While previous studies have enhanced our understanding
of CyanoHABs’ spatial and temporal distribution in Lake
Champlain, forecasting is limited due to reliance on in situ
sensor data and the limited temporal resolution of site-specific
remote sensing data. This dependence on location-specific
measurements restricts the transferability of the model to
other water bodies. Developing advanced forecasting systems
based exclusively on widely available remote sensing data is
crucial for creating models that can be deployed across diverse
freshwater ecosystems with minimal adaptation.

III. STUDY AREA

Lake Champlain is a glacially-formed lake that consists of
more than 70 islands and 54 beaches with annual economic
revenues of $580 million [68]–[70]. Lake Champlain is the
13th-largest lake in the US, situated between New York and
Vermont, and extending into Canada to the North. The lake
is 120 miles long with a surface area of 1127 km2 and a
volume of 25.8 km3 [71]. It is 19km at its widest point,
with an estimated maximum and mean depth of 122m and
23m, respectively [70]. With more than 800km of shoreline
and 21000 km2 in watershed area, it supports an approximate
population of 571,000 [68]. Despite its relatively small size,
the lake drainage basin is quite significant in comparison,
with a drainage ratio of 19:1 [72]. The large drainage basin
makes Lake Champlain susceptible to severe precipitation
events and snowmelt, with runoff from agriculture, industry,
and urbanization all contributing to eutrophication, which
subsequently leads to the growth of CyanoHABs. Figure 1
shows the approximate number of CyanoHABs events, at each

of the 12 Lake Champlain monitoring segments from January
2016 to November 2023.

This study focuses on three lake segments: Missisquoi
Bay, St. Albans Bay, and the Northeast Arm. The Northeast
Arm is categorized as mesotrophic, indicative of relatively
low nutrient levels and biological productivity. It makes up
about one-quarter of Lake Champlain’s surface area and has
a mean depth of 13m. Missisquoi Bay and St. Albans Bay
are eutrophic zones with elevated nutrient concentrations and
biological productivity. These areas, consequently, experience
the highest annual incidences of CyanoHABs, as reported in
Figure 1. Both bays - Missisquoi Bay and St. Albans Bay
- are shallow and warm, providing favorable conditions for
CyanoHABs growth. Missisquoi Bay has a mean depth of
2.5m, while St. Albans Bay has a mean depth of 8m [73].

IV. DATA COLLECTION & PROCESSING

We use satellite remote sensing time series from two
sources: the Cyanobacterial Index from the Cyanobacterial
Assessment Network (CyAN) [74], derived from ocean-color
satellite imagery at 300 m spatial resolution (daily and 7-
day maximum composites), and Moderate Resolution Imaging
Spectroradiometer (MODIS) [75] land surface temperature
(LST) at 1 km with separate day/night daily retrievals. The
study period spans January 2016 to November 2024 for three
Lake Champlain segments - Missisquoi Bay, St. Albans Bay,
and the Northeast Arm. All inputs are in the form of GeoTiff,
where shallow water pixels are masked, and aggregated to
segment–day records with statistical features extracted from
LST imagery. Further details are provided in the next four
subsections:1) Data Collection - downloading CI data from
CyAN and temperature data from MODIS, 2) Data sparsity
handling - addressing substantial data sparsity through tem-
poral imputation methods, 3) Data Extraction - extracting
model ready features with five CI intensity categories and ten
temperature statistics, 4) Class Balancing - temporal sampling
for class balancing to focus on high activity months with later
addition of negative samples from inactive months. Figure 2
illustrates the complete data pipeline steps visually.

A. Data Collection

1) Cyanobacterial Index Values: The Cyanobacterial Index
(CI), was initially developed by Wynne et al. [76] and refined
in [77] to detect large, monospecific cyanobacteria blooms in
Lake Erie. The CI exploits the unique pigment composition
of cyanobacteria, particularly their phycocyanin accessory
pigments and reduced chlorophyll-a fluorescence, which dis-
tinguishes them from eukaryotic phytoplankton. Chlorophyll
absorption is calculated by spectral analysis around 681 nm,
leveraging top-of-atmosphere reflectance measured at specific
wavelengths to determine the spectral shape and, subsequently,
the CI value. However, limitations were encountered when
estimating CI values, as highlighted first by the estimation
of positive CI values without cyanobacteria measurements in
Chesapeake Bay, Green Bay, and several New England lakes
[78]. This was addressed by [66], who introduced a conditional
equation adjustment, resulting in the CICyano algorithm.
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Fig. 1. The visual illustration of Lake Champlain shows 12 segments and their CyanoHABs events as a Bar Chart on the right side from 2016 to 2023. We
can see that Missisquoi Bay and St. Albans Bay experienced an extensive number of CyanoHABs during that duration. The right side map shows the three
stations - Missisquoi Bay, St. Albans Bay, and Northeast Arm - used in the study.

The CICyano algorithm is widely validated for CyanoHABs
monitoring in freshwater systems. Mishra [79] validated
CICyano for detecting toxin-producing cyanobacterial blooms
across 30 U.S. lakes using MERIS and Sentinel-3 OLCI
satellite data matched with field-measured microcystin con-
centrations. Using over 280 matchups from 2005-2019 and a
microcystin threshold of 0.2µg/L, the algorithm achieved 84%
accuracy with 90% recall and 87% precision when validated
against both microcystin and cyanobacteria cell density. Coffer
[80] conducted a national-scale assessment of cyanobacterial
blooms across 2,321 U.S. lakes, revealing strong seasonal and
regional variability with typical summer-fall peaks. Wynne
[58] applied CICyano to monitor CyanoHAB variability in
Lake Champlain’s Missisquoi Bay, finding strong interannual
variability linked to temperature and atmospheric instability.
The algorithm has been operationally deployed across multiple
U.S. states for bloom monitoring [66], [81], [82] and has
informed state health advisories in California, Oregon, New
York, Idaho, New Jersey, Utah, Vermont, and Wyoming [83]–
[86].

The CyAN employs the CICyano algorithm to estimate
cyanobacterial concentrations within US lakes. CyAN is a
collaborative effort between the United States Environmental
Protection Agency, National Aeronautics and Space Admin-
istration, National Oceanic and Atmospheric Administration,
and United States Geological Survey that leverages Euro-
pean Space Agency sensors: Medium Resolution Imaging

Spectrometer (2002-2012) and Ocean and Land Color Instru-
ment on Sentinel-3A/B (2016-present) to detect and quantify
cyanobacterial algal blooms. Data from this effort are available
as GeoTiff files containing either daily outputs or 7-day
maximum value composites, both with a spatial resolution of
300m. We downloaded the daily GeoTiff files from January
2016 to November 2024 for our study. 1 The broad time range
provides sufficient temporal data to capture the dynamic nature
of the CyanoHABs.

2) Temperature: Previous studies [17]–[19], [26], [27]
suggested a strong correlation between temperature and
CyanoHABs growth. JC Ho [19] concluded that increased
temperatures and longer summers increase chlorophyll con-
centrations, implying cyanobacterial growth. Therefore, we
employed temperature data for CyanoHABs modeling.

The temperature data are downloaded from the Moderate
Resolution Imaging Spectroradiometer (MODIS) [75], specif-
ically from MODIS Land Surface Temperature and Emissivity.
The data are in the form of GeoTiff files with a daily temporal
resolution and spatial resolution of 1km and contain day and
night temperatures.2

1Dataset available at https://oceancolor.gsfc.nasa.gov/about/projects/cyan/
2Dataset available at Google Earth Engine https://developers.google.com/

earth-engine/datasets/catalog/MODIS 061 MOD11A1

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2026.3656470

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://oceancolor.gsfc.nasa.gov/about/projects/cyan/
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD11A1
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD11A1


IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. XX, NO. X, MONTH YEAR 6

Data ExtractionData Sparsity
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Fig. 2. Complete data processing pipeline for CyanoHABs prediction, from data acquisition through class balancing. The workflow consists of four stages:
data downloading (CI and temperature), data sparsity management through imputation, data extraction for feature engineering, and class balancing using
temporal sampling strategies.

B. Data Sparsity
Remote sensing data for CyanoHAB detection face sig-

nificant challenges due to missing values caused by cloud
cover and sensor limitations, with approximately 35% of
the CI data and 87.88% of the temperature data missing in
Missisquoi Bay. Such sparsity disrupts the temporal continuity
needed for effective time-series modeling. While sophisticated
spatial reconstruction methods such as Data Interpolating
Empirical Orthogonal Functions (DINEOF) [87] have proven
effective for satellite data gap-filling [88]–[90], we adopted
a temporally-focused imputation strategy optimized for se-
quential forecasting. EOF-based approaches leverage spatial
covariance but can attenuate onset/peak/decline transitions that
are critical for learning CyanoHABs progression. Furthermore,
our temperature dataset’s extreme sparsity approaches the
practical limits of iterative matrix decomposition, while our
pixel-level approach with strict criteria (requiring ≥ 2 valid
observations within 3-day windows) and linear complexity
supports efficient near-real-time operational forecasting.

We present a two-stage imputation strategy to reconstruct
bloom dynamics while preserving natural transitions between
bloom states: (1) temporal data imputation and (2) temporal
continuity restoration for CyanoHAB events. Imputation is
performed on a segment-specific basis, ensuring that data from
one segment does not affect others. Before processing, shallow
pixels with a depth of less than 3m were filtered out using
the official Lake Champlain bathymetry dataset provided by
the Vermont Center for Geographic Information [91], as these
pixels often display elevated CI values without actual blooms,
allowing us to focus our analysis on pixels where CyanoHABs
can be more reliably detected.

1) Temporal Data Imputation: The imputation strategy
utilizes two complementary approaches: Last Observation Car-
ried Forward and Weighted Temporal Window Imputation, ap-

plied at the pixel level for both the CI and temperature datasets.
While Weighted Temporal Window Imputation could be used
alone, we first apply Last Observation Carried Forward to
preserve the day-to-day progression of CyanoHABs dynamics
better. This ordering ensures that when recent values suggest
persistence, the imputation reflects that continuity rather than
diluting intensity through averaging.

Last Observation Carried Forward (LOCF): We imple-
mented LOCF at the pixel level, examining each spatial coor-
dinate sequentially across time. For pixels with missing values
at time t, we checked if the exact spatial location contained
a valid, non-imputed observation at time t − 1. This value is
propagated forward when available to fill the current missing
value. This constraint maintains data integrity by balancing the
need for completeness against the risk of introducing artificial
patterns. LOCF is particularly important given the gradual day-
to-day evolution typical in environmental systems. As shown
in Figure 3, the LOCF application reduced the missing values
of CI data at Missisquoi Bay from 35% to 27%, and missing
temperature data from 87.88% to 82.89%.

Weighted Temporal Window Imputation: After LOCF, we
applied a weighted temporal window approach utilizing a 3-
day historical window. For each missing pixel value at time t,
we computed a weighted mean of the available observations
over times t− 1, t− 2, and t− 3, assigning more importance
to recent observations. Specifically, we used weights of 3, 2,
and 1 for t − 1, t − 2, and t − 3, respectively. The imputed
value x̂t is calculated as:

x̂t =
3xt−1 + 2xt−2 + xt−3

3 + 2 + 1
(1)

This imputation is conditionally applied only when at least
two of the three observations within the window are valid
(non-missing), ensuring sufficient information density for es-
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Fig. 3. Visualization of data sparsity. B. represents before while A. represents after. (a) Shows Cyanobacterial Index Values missing percentage at different
imputation stages, while (b) shows Temperature data missing percentage. The green bars illustrate around 30% of the original Cyanobacterial Index Values
and around 90% of the Temperature data are missing. The orange bar shows the dataset after performing Forward Fill, indicating a significant addition of data
points. The purple represents the dataset after Weighted Temporal Window Imputation, indicating further reduction in data missing percentage. We constrained
further imputation to avoid adding too much noise.

timation. In cases where t − 1 is missing, the imputation is
based on the available values at t− 2 and t− 3, reducing the
influence of recent trends but still capturing nearby temporal
structure. We limited weighted temporal window imputation
to a maximum of two consecutive days per pixel to prevent
the propagation of error. As illustrated in Figure 3, weighted
temporal imputation further decreased the percentage of miss-
ing CI data at Missisquoi Bay from 27% to 17%, while the
percentage of missing temperature data values was reduced
from 82.89% to 77.69%.

2) Temporal Continuity Restoration in CyanoHABs Events:
Following data imputation, we observed discontinuities in
CyanoHAB event signatures where gaps of 3-7 days created
artificial interruptions in bloom progression. We implemented
a targeted continuity restoration procedure specifically for
CI data to address this limitation, as these values directly
indicate the presence and intensity of CyanoHABs. Temporal
discontinuities were systematically identified through visual
inspection of daily CI data across all segments. When these
discontinuities aligned with periods of missing data during
active bloom phases, a simplified version of the weighted tem-
poral imputation was applied. The missing pixel values were
estimated using the weighted mean of valid observations from
the previous three days, with all missing values excluded from
the computation. All continuity restoration was performed at
the pixel level before any spatial summarization, ensuring that
temporal coherence is restored directly in the raw CI rasters
rather than in the aggregated time series

The restoration preserved the natural temporal evolution of
CyanoHABs events and assisted the model to learn accurate
transition patterns between CyanoHABs states. Unlike the
initial data imputation phase, which uniformly addressed all
missing values, this restoration step was selectively applied
only to positive CyanoHABs periods. Gaps longer than 7 days
were excluded to avoid introducing excessive noise, and no
restoration was performed for gaps between non-bloom days,
as maintaining continuity in bloom-free intervals was deemed
less critical for model performance.

C. Data Extraction

The proposed data imputation strategies effectively restore
temporal continuity and preserve the evolution of CyanoHABs
at the pixel level. However, extending imputation beyond our
constrained approach to fill all remaining gaps would intro-
duce large-scale artificial patterns, as statistical reconstruction
methods cannot capture true environmental variability during
unobserved periods. The combination of remaining data spar-
sity and relatively coarse spatial resolution (300m for CI and
1km for temperature) limits the reliability of fine-scale spatial
forecasting. To address these constraints while preserving
dominant CyanoHABs dynamics, we adopt a segment-level
feature-extraction that aggregates pixel information into inten-
sity bins and statistical descriptors. This spatial summarization
mitigates remaining missing values while amplifying coherent
bloom signals over pixel-level noise.

1) Cyanobacterial Index Data Extraction: While forecast-
ing the occurrence of CyanoHABs provides valuable in-
formation for policymakers and water resource managers,
the practical utility of these forecasts increases substantially
when intensity predictions are included. Traditional binary
classification approaches predict simple presence or absence
of CyanoHABs, while useful, fail to capture the critical
nuance of bloom severity that drives management decisions.
A low-intensity bloom may require only monitoring and
public advisories, while an extreme bloom demands immediate
interventions such as water treatment facility adjustments or
recreational area closures.

Motivated by this operational need, we formulated the
CyanoHABs forecasting problem as a multi-class classification
task to predict both occurrence and intensity levels, provid-
ing actionable intelligence about the expected severity range
of CyanoHAB events. The CI values, which range from 0
to 253, directly correspond to cyanobacterial concentrations,
where 0 indicates CyanoHABs absence and positive values
indicate CyanoHABs presence, with larger values indicating
higher bloom intensity. We established five distinct intensity
categories to capture the full spectrum of bloom severity:
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Low Intensity, Medium Intensity, High Intensity, Very High
Intensity, and Extreme Intensity CyanoHABs. The specific
ranges for each intensity category are determined using equal-
frequency binning applied separately to each segment’s histor-
ical CI data. These categories allow stakeholders to anticipate
the severity of upcoming events and implement proportional
response measures.

After establishing the five intensity categories, we developed
a threshold detection mechanism to determine whether each
category will be active (positive) or inactive (negative) for a
given forecast period. A positive classification for any intensity
category indicates that CyanoHABs events are expected to
occur within that category’s CI value range, enabling targeted
management responses. For example, a positive prediction
for the Extreme Intensity category signals the anticipated
presence of a severe CyanoHAB event requiring immediate
intervention, while a negative prediction suggests that extreme-
level blooms are unlikely to develop during the forecast period.

To determine these thresholds, we implemented a data-
driven approach that analyzes the historical distribution of
pixel counts within each intensity category. Rather than ap-
plying arbitrary cutoffs, past CI values are examined, and
for each day, the histogram of pixel counts is created for
each intensity bin. For Low and Medium intensity categories,
we applied the 50th percentile as the threshold, requiring a
substantial number of pixels to trigger a positive classification.
This conservative approach is used to minimize false positives
for these early forming CyanoHAB events. For the High-
intensity category, we used the 60th percentile, acknowledging
that while these events are more concerning, they still occur
frequently enough to warrant moderate thresholds. However,
for Very High and Extreme intensity categories, we adopted
a highly sensitive approach with a threshold of one pixel.
This ensures that even minimal evidence of severe bloom
development triggers alerts, as missing these high-risk events
could have serious public health and ecological consequences.
Each segment’s thresholds are calibrated independently using
its specific historical data patterns.

To the best of our knowledge, no standardized ecologi-
cal risk thresholds exist for CI-based CyanoHAB intensities.
Therefore, we adopt a novel segment-specific binning strategy
based on historical percentiles, enabling our model to reflect
relative bloom severity and support actionable intensity-aware
forecasting.

2) Temperature Data Extraction: Applying the same bin-
ning method used for CI data extraction might have resulted
in unbalanced bin distributions due to missing temperature
measurements and the dataset’s relatively coarser spatial res-
olution. Instead, we implemented a statistical approach to
extract temperature statistics for each segment of interest and
each day. We extracted five distinct statistical features from
both daytime and nighttime temperature measurements: min-
imum, maximum, mean, standard deviation, and range. The
range is the difference between the maximum and minimum
temperature, while standard deviation provides the spread of
the temperature from the mean temperature. This approach
yields ten temperature-related features per day per segment,
providing a richer representation of temperature conditions

than simple binning would allow.

D. Class Balancing

Our dataset exhibits substantial class imbalance in target
labels with a negative-to-positive ratio of approximately 5:1.
This imbalance biases model predictions toward the majority
class. To address this challenge, a targeted temporal sampling
strategy is implemented. For each segment, months with
consistent CyanoHABs formations are identified (e.g., June
through October for Missisquoi Bay), and sequence creation
is extended to include the month preceding these high-activity
periods. Sequences and their multi-label targets are created
using overlapping windows throughout this time frame (see
section V for sequence and target creation), resulting in most
samples representing positive CyanoHABs events. Negative
samples from inactive or low-activity months (e.g., April, May,
and November for Missisquoi Bay) are selected to balance
the distribution. This approach preserves the critical temporal
context needed for sequence modeling while achieving a more
balanced class distribution.

V. SEQUENTIAL DATA FORMATION

CyanoHABs do not emerge from a single day’s conditions,
and they result from the cumulative effects of environmental
and hydrological conditions that develop over days to weeks.
As a result, a single daily observation lacks the temporal
context required to distinguish transient favorable conditions
from sustained environmental drivers that lead to the initiation
and intensification of CyanoHABs. To capture these dynamics,
we structured the dataset sequentially by feeding the model
temporally ordered input sequences rather than isolated daily
observations. In addition to the CI value and temperature data,
temporal features such as the day of the year, season, and
month are added using the timestamp data. The input sequence
and targets are created segment-wise, then concatenated into
a single dataset to train the model on all segments combined.
A rolling-window approach is used for sequence and target
creation, where each input sequence comprises 15 consecutive
days, with corresponding targets derived for a 14-day forecast
horizon. The sequence window advances by one day for each
new sample to ensure the capture of all temporal patterns. The
segment signatures are omitted to force the model to learn a
general CyanoHABs trend rather than segment-specific ones.

Given the daily data collection D for each segment s from
a set of three monitoring segments S: Missisquoi Bay, St.
Albans Bay, and Northeast Arm, each segment s ∈ S contains
data spanning Ts days. Let L = 15 represent the number of
days used as input sequence length, and H is the forecast
horizon.

For each starting day t such that 1 ≤ t ≤ Ts − (L + H),
we create an input sequence Xs

t as:

Xs
t =

(
xs
t , x

s
t+1, . . . , x

s
t+L−1

)
Here Xs

t ∈ RL×F represents an input sequence for segment
s starting on day t, where F represents the dimensionality of
the daily feature vector. Using a rolling window approach, we
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advance one day forward for each new sequence, continuing
until reaching the maximum valid starting day that allows for
both a complete 15-day input sequence and the full H-day
forecast horizon.

For target creation, we classify each intensity bin for each
day h within the H-day forecast horizon. Let bd,i denote the
pixel count in the ith intensity bin on day d. For each forecast
day h ∈ 1, 2, 3, . . . ,H and each bin i ∈ 1, 2, 3, 4, 5, the target
is calculated as:

yst,h,i =

{
1 if bsd=t+L−1+h,i ≥ τsi
0 Otherwise

}
(2)

where τsi represents the threshold for ith bin for s.
These thresholds are determined through statistical analysis

of historical pixel distributions. For each segment and intensity
bin, we extracted historical pixel counts and calculated the
50th percentile to establish thresholds τ = (τ1, τ2, τ3, τ4, τ5).
This approach ensures a balanced distribution between positive
and negative classes rather than using arbitrary threshold
values.

The target creation results in a multidimensional target
tensor Y s

t ∈ 0, 1H×5, where each element indicates whether a
specific intensity class will exceed its threshold on a particular
forecast day. For a 14-day forecast horizon, this creates 70
binary classification targets per input sequence, providing
detailed information about both the timing and intensity of
potential bloom events.

VI. METHODOLOGY

Given that the forecasting objective is to predict the occur-
rence and intensity of CyanoHAB as a function of temporally
evolving environmental conditions, the problem is naturally
formulated as a sequence modeling task. Following data
extraction, the inputs consist of structured scalar time series
rather than dense spatial fields, making temporal dependency
modeling the primary requirement. Accordingly, we adopt a
sequence-based Transformer architecture, which is well-suited
for capturing long-range temporal relationships.

The proposed Transformer-BiLSTM architecture addresses
the inherent complexity of CyanoHAB dynamics through
a Temporal Sequence Forecasting Attention Network (TS-
FAN) designed to capture temporal patterns in sequential
features. TS-FAN combines an embedding layer to process
the data sparsity, followed by sinusoidal positional encodings
that provide temporal context. A multi-head self-attention
block processes different aspects of the sequence in parallel,
while layer normalization and residual skip connections ensure
stable training and improved gradient flow. A deep feed-
forward network, structured as sequential neural blocks, refines
feature representations through hierarchical transformations. A
bidirectional LSTM further enhances sequential modeling by
incorporating both past and future contexts. The forecasting
task predicts the occurrence of future CyanoHABs events
along with their intensities across five distinct levels (Low,
Medium, High, Very High, and Extreme) for each day in a
14-day forecast horizon. Given an input sequence Xt, where
Xt ∈ RL×F (see Section V) with L = 15 representing the

sequence length and F the number of features, we define an
Transformer-BiLSTM function f as:

Yt = f(Xt) where f : RL×F → 0, 1H×5 (3)

The function f maps the input time series with 15 time
steps and F features to an H × 5 dimensional binary output
matrix, where H = 14 is the forecast horizon and 5 represents
the intensity levels. For each forecast day h ∈ 1, 2, ..., 14
and intensity level i ∈ 1, 2, 3, 4, 5, the corresponding output
element is either 1 to indicate the presence of CyanoHABs
event within the specific intensity level or 0 to indicate the
absence of the CyanoHABs event. This results in 70 binary
classification outputs per input sequence, providing detailed
information about both the timing and intensity of potential
CyanoHABs events. The overall network architecture is illus-
trated in Figure 4.

A. Transformer-BiLSTM Architecture

1) TS-FAN: Given the critical role of temporal dependen-
cies in the CyanoHAB’s life cycle, it is essential to effectively
capture the temporal relationships within the input sequence
data. TS-FAN uses temporal feature extraction components to
effectively model the complex temporal patterns and interac-
tions inherent in the sequence data.

Given an input sequence Xt, it is first processed by an
embedding layer. The layer takes the input sequence Xt =
(x1, x2, x3, ..., xL), where L = 15, each xt ∈ RF dimensional
sparse feature vector, and it maps to a dense dimension D,
producing an embedded sequence E ∈ RL×D. The projec-
tion unifies heterogeneous numerical features into a common
representation and ensures compatibility with the Transformer
attention mechanism, which operates in a fixed-dimensional
embedding space. Following [49], we add positional encoding
to the processed input sequence, allowing the model to under-
stand the temporal structure. The positional encoding (PE)
adds a unique vector at each position p within a sequence and
is defined.

PE(p, 2i) = sin
( p

100002i/D

)
,

PE(p, 2i+ 1) = cos
( p

100002i/D

)
.

(4)

Here, p denotes the temporal position in the input se-
quence, and i indexes the embedding dimensions, where D
is the embedding dimensionality. The division by 100002i/D

creates wavelengths that form a geometric progression from
2π to 10000 · 2π, allowing the model to learn to attend to
relative positions with varying periods. This scaling ensures
that positional encodings across dimensions have different
frequencies, making each position uniquely identifiable. Once
the embeddings have been augmented with PE, the resultant
positionally encoded vectors EPE are forwarded to the en-
coder layer. Importantly, positional encoding is applied once
after the embedding layer, and EPE serves as the residual
input to the self-attention sublayer, which adds it to the output
of multi-head attention to stabilize optimization and ensure
effective gradient flow. We use a single encoder layer, which

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2026.3656470

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. XX, NO. X, MONTH YEAR 10

Embedding Layer Positional Encoding Encoder Layer

Temporal Sequence Forecasting Attention Network

Sequential Neural Block

Q

Se
lf 

A
tte

nt
io

n 

C
on

ca
te

na
te

Linear
Projections

Q
Q
Q

K
K
K
K

V
V
V
V

Multi Head Self Attention

BiLSTM 

Download Remote
Sensing Data

Data Sparsity

Data Processing Pipeline

Data Pipeline

Data Extraction Class Balancing

CyanoHABs Intensity Forecasting Transformer - BiLSTM Architecture

Fully Connected Layer

Layer Normalization Leaky ReLU

Dropout
Final Output: 5 Intensity Classes x Forecast Horizon

(Low, Medium, High, Very High, And Extreme Intensity CyanoHABs)

Forecasting Head

Sequential Data Formation

Transformer Network

Positionally Encoded
Features

Scalar Sequential Data

Fig. 4. The diagram illustrates the Transformer-BiLSTM model for CyanoHABs Intensity forecasting. The system processes 15 days of remote sensing inputs
through an embedding layer, positional encoding, a Transformer encoder with multi-head self-attention, and a bidirectional LSTM block. The final output
layer predicts five CyanoHAB intensity classes (Low to Extreme) across a 14-day forecast horizon. The pipeline incorporates preprocessing steps to address
data sparsity and ensure class balance.

contains normalization layers, eight attention heads, and a
sequential neural block. We replace the simple feed-forward
network in the encoder layer with a deeper neural network,
which we named sequential neural blocks. The input sequence
EPE is passed to the encoder layer, which first applies layer
normalization to stabilize gradients.

Enorm = LayerNorm(EPE) (5)

The normalized embeddings Enorm are then processed by
the multi-head attention mechanism within each head, where
each head h computes attention scores based on queries Q,
keys K, and values V . Specifically, for each h, we have:

Qh,Kh, Vh = EnormWQ
h , EnormWK

h , EnormWV
h (6)

Where, WQ
h ,WK

h ,WV
h are learnable weighted metrics
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of each head h, with assigned weights that are optimized
during training. Here, the network takes the representation
Qh and compares every other representation Kh of the
sub-sequence to determine the attention scores. Simply, it
represents the relationship of each Qh with every other Kh,
and the results are represented by values Vh. Subsequently,
the softmax function is applied to normalize the attention
scores between the range of 0 to 1, where 1 represents
maximum correspondence, and it follows:

Attention(Qh,Kh, Vh) = softmax

(
QhK

Transpose
h√
dk

)
Vh

(7)
Here, Transpose represents the transpose operation, and dk

represents the dimensionality of the keys. The latter is used
to scale down the dot product so that it does not become too
large, facilitating stable gradient flow during training.

Next, the outputs of all attention heads are concatenated and
projected linearly. The resulting self-attention output is added
to the positionally encoded input EPE via a residual con-
nection to stabilize learning. The output of the self-attention
sublayer is denoted by ϑ and is computed as:

ϑ = EPE +Dropout(MHA(Enorm)) (8)

The multi-head self-attention module captures complex tem-
poral dependencies by processing sequential data patterns. To
further refine these temporal representations, we replaced the
traditional feed-forward network in multi-head self-attention
with a deeper and customized feed-forward network named
Sequential Neural Blocks (SNB). SNB consists of three se-
quential blocks of fully connected layers, layer normalization,
LeakyReLU, and a dropout layer, followed by a fully con-
nected layer. These components refine complex interactions
among features, stabilize learning, introduce non-linearity, and
prevent overfitting.

Given resultant output sequence ϑ from multi-head self-
attention, it is passed to SNB, where it is processed by the
first sequential block, mapping it to a new feature space:

ζ1 = Dropout(L.ReLU(L.Norm(Z1 = ϑW1 + b1))) (9)

Here, W1 & b1 are weight metrics and bias term of a
fully connected layer of the first block, respectively, and Z1

represents the intermediate representation. This is passed to
the layer norm to stabilize the Z1 distribution, which is passed
to the non-linear activation function to introduce the linearity.
The subsequent dropout layer reduces the risk of overfitting.

The output of the first block is represented as ζ1 and is
passed to the second block to refine the abstractions further,
which outputs ζ2. The third block further refines those rep-
resentations and passes to the fully connected layer, which
transforms the representations to a requisite feature dimension
ζ4, ensuring compatibility for a residual skip connection. The
ζ4 is added to the multi-head self-attention ϑ output before
passing to the BiLSTM. This is shown below:

Enout = ϑ+ ζ4 (10)

The Encoder layer effectively captures temporal dependen-
cies. We incorporate a BiLSTM layer to further enhance the
model’s ability to process temporal information. It processes
the encoded representations sequentially in both forward and
backward directions, providing temporal context that strength-
ens the model’s predictive capabilities. Given Enout as input
from the encoder, BiLSTM computes the hidden states

−→
h

and
←−
h in forward and backward directions, respectively.

Afterward, the forward and backward outputs are concatenated
to form a representation that encompasses information from
past and future contexts.

Ht = [
−→
h ;
←−
h ] (11)

Here, Ht denotes the final aggregated BiLSTM representa-
tion.

2) Forecasting Head: The Forecasting Head consists of a
fully connected layer and convert the model-specific temporal
representation Ht into a multi-output binary prediction over
a 14-day forecast horizon. The output consists of 70 binary
values representing the presence or absence of CyanoHABs
across five intensity levels for each of the next 14 days. For-
mally, the forecasting head performs the following operation:

Foutt,h,i =

{
1 if σ ((HtWfh + bfh)h,i) > θh,i,

0 otherwise
(12)

∀h ∈ {1, . . . , 14}, i ∈ {1, . . . , 5}

Here, Foutt,h,i is the predicted binary label for day h
and intensity level i for the input sequence at time t. The
representation Ht ∈ Rd is the output of BiLSTM, and terms
Wfh ∈ Rd×70 and bfh ∈ R70 are the weights and bias of
the fully connected output layer. The sigmoid function σ maps
each output to the range [0, 1], and the threshold θh,i (typically
set to 0.5) is used to determine the binary class assignment.

3) Persistence Model (Baseline): To establish a comparison
baseline, we include a Persistence Model that assumes bloom
intensity classes remain unchanged over the forecast horizon.
This approach is motivated by the temporal continuity ob-
served in CyanoHAB events, where bloom conditions on day
t often persist to subsequent days. Formally, the persistence
model assumes that the bloom intensity classes observed at
time t remain unchanged for each of the next 14 days:

ŷt+h = yt, for h = 1, 2, . . . , 14 (13)

Here, yt ∈ 0, 15 is the binary vector representing the
presence or absence of CyanoHABs across five intensity levels
(Low, Medium, High, Very High, Extreme) on day t. The
prediction ŷt+h at future horizon h is identical to yt, implying
no evolution in bloom conditions.

While the persistence model does not involve any learning
or parameter optimization, it serves as a strong short-term
benchmark. Its relevance is especially notable in short-range
forecasts (e.g., Day 1), where it occasionally outperforms
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learning-based models due to the slow-changing nature of
bloom patterns. However, its inability to adapt to evolving
environmental conditions leads to rapid performance degrada-
tion over longer horizons, thereby emphasizing the need for
dynamic, data-driven approaches.

B. Loss Functions

The Transformer-BiLSTM outputs a binary prediction for
the presence or absence of CyanoHABs across five intensity
levels for each of the 14 forecast days, resulting in a total of
70 binary classification tasks per input sequence. To optimize
model performance, we apply the Binary Cross-Entropy (BCE)
loss to these outputs. The BCE loss is defined as:

BCE (yi, ŷi) = −
1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)]

(14)
Here, yi and ŷi denote the ground truth and predicted

probability for the ith binary output, respectively, and N = 70
is the total number of outputs per sequence.

VII. TEMPORAL DATA AUGMENTATION

Transformer-based models typically require substantial
training data to learn complex patterns and relationships
effectively. However, the available dataset comprises only a
few thousand sequences, which presents a significant challenge
for model training. To address this limitation and enhance
model generalization, the research implements a sophisticated
temporal data augmentation strategy that respects the physical
constraints and seasonality patterns of CyanoHABs.

The augmentation strategy is applied only during training to
prevent data leakage into validation and test sets. It modifies
two key aspects of the dataset: CyanoHABs intensity bins, and
temperature statistics.

1) CyanoHABs Intensity Bin Augmentation: As introduced
earlier (see Section IV-C), the CI values were discretized
into five segment-specific intensity categories - Low, Medium,
High, Very High, and Extreme - using an equal-frequency
binning strategy. Each of these categories corresponds to a CI
intensity bin, representing a distinct range of bloom severity. In
this section, we refer to these five intensity classes as bins for
brevity. Since CyanoHAB events exhibit strong seasonality, a
month-dependent augmentation strategy introduces variability
into bin values. Importantly, augmentation is applied only
when a bin has at least three observed pixels, ensuring that
artificial bloom events are not introduced during naturally
inactive months. The magnitude and direction of adjustments
vary seasonally: This is explained below:
Peak bloom months:

• If the bin count exceeds its segment-specific threshold
by more than 10 pixels, it is considered a significant
deviation. In this case, we randomly perturb the value
by up to ±8 pixels to simulate realistic fluctuations in
bloom intensity.

• If the count is above the threshold but with a smaller
margin (1–10 pixels), we apply minor adjustments of up
to ±3 pixels.

• If the count is below the threshold but above the minimum
pixel threshold of 3, we apply small positive or negative
changes up to ±3 to maintain variability near bloom onset.

Non Peak bloom months:
• Adjustments are more conservative, with a maximum

perturbation of ±3 pixels to reflect the naturally lower
CyanoHABs activity.

• If the bin count exceeds the threshold by more than 3
pixels, it is perturbed by up to ±3 pixels.

• If the count is just slightly above the threshold of mini-
mum pixels of 3, we apply only positive perturbations of
0 to +2 to reflect very low cell counts.

2) Temperature Data Augmentation: Temperature serves a
significant role in CyanoHAB development, where signifi-
cant fluctuations can influence bloom dynamics. Controlled
perturbations alter day and night temperature features while
the system maintains physical consistency. This is explained
below:

• Day and night minimum and maximum temperatures are
perturbed within a narrow range of –0.1°C to +0.16°C
to simulate natural variability without altering ecological
regimes. Larger perturbations (e.g., +5°C) could shift
environmental conditions from moderate to warm, mis-
leading the model. The selected range ensures stability
of bloom-relevant conditions.

• Dependent features such as mean, range, and standard
deviation are recalculated following perturbation to main-
tain internal consistency.

• Constraints enforce that day and night minimum tempera-
tures remain lower than their respective maximum values
to preserve physically valid relationships.

This augmentation is applied to 50% of the training se-
quences. The objective is to expose the model to plausible
thermal variations while avoiding excessive artificial noise.
Despite 90% spatial missingness, the use of aggregated statis-
tics across interpolated days provides a sufficient signal to
benefit from this augmentation strategy.

VIII. RESULTS

A. Implementation Details

The Transformer-BiLSTM is implemented using PyTorch
[92], a widely adopted deep learning framework. Several
strategies are used to ensure robust training despite the chal-
lenges of sparse satellite data.

For optimization, we employ the AdamW optimizer with
a learning rate of 0.0005 and a weight decay of 0.09. The
weight decay term helps reduce overfitting by discouraging
excessively large weight values, promoting simpler and more
generalizable models. A Cosine Annealing scheduler with
Warm Restarts enhances the learning trajectory and cyclically
resets the learning rate every five epochs. This approach allows
the model to escape local minima and achieve better conver-
gence. Early stopping prevents over-training by monitoring the
validation’s F1 performance and preserving the model’s best
state. Label smoothing [93] enhances generalization by intro-
ducing a small amount of uncertainty in the target distribution,
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TABLE I
PERFORMANCE METRICS FOR INDIVIDUAL MODELS AND THE TRANSFORMER-BILSTM FOR THE 14TH DAY ACROSS A 14-DAY FORECAST HORIZON.
THE TRANSFORMER-BILSTM CONSISTENTLY OUTPERFORMED ALL MODELS ACROSS ALL METRICS FOR LONG-TERM CYANOHABS FORECASTING.

Model Category Model Acc (%) Precision (%) Recall (%) F1 (%) AUC (%)
Baseline Persistence Model 71.34 71.68 71.34 71.54 70.42

Machine Learning
Support Vector
Machines

43.29 62.20 51.91 55.29 80.12

XGBoost 41.77 61.22 53.67 56.68 80.16

Random Forest 45.45 63.38 57.89 59.36 82.11

Deep Learning

Transformer 74.95 74.35 74.95 74.08 77.18

Transformer-Custom
Attention

75.08 74.48 75.08 74.30 77.04

Transformer-BiGRU 77.13 76.97 77.13 77.04 81.01

Transformer-LSTM 77.47 77.39 77.47 77.43 80.85

BiLSTM 77.71 77.38 77.71 77.46 80.32

Transformer-GRU 77.95 78.43 77.95 78.13 82.53

Transformer-BiLSTM 78.94 78.80 78.94 78.86 82.55

which prevents overconfidence in predictions. Gradient clip-
ping with a threshold of 3.0 stabilizes training by preventing
exploding gradients, which is particularly important for the
recurrent components. The model is trained for 70 epochs
with parameter updates governed by the minimization of
BCE Loss. During evaluation, model outputs are thresholded
using a default cutoff of 0.5. Any predicted confidence score
ŷ ≥ 0.5 or above is considered a positive prediction for
the corresponding intensity class, while scores below this
threshold are treated as negative.

The proposed model is trained on a personal computing
setup equipped with a 13th Gen Intel Core i7-13700H pro-
cessor, 32GB RAM, and an NVIDIA GeForce RTX 4070
GPU. This shows the model does not take much resources,
which allows deployment in resource-constrained environ-
ments, making it practical for operational CyanoHAB intensity
forecasting systems.

B. Evaluation Metrics

The forecasting model is evaluated using accuracy,
precision, recall, and F1 scores. These are calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 Scores =
2× (Precision× Recall)

Precision + Recall

Here, TP, TN, FP, and FN are True Positives, True Neg-
atives, False Positives, and False Negatives, respectively. In
addition, we report the Area Under the Curve (AUC) to
evaluate each model’s performance. AUC assesses the model’s
ability to discriminate between classes across a range of
classification thresholds.

C. Intensity Forecasting Evaluation

1) Quantitative Evaluation: To evaluate the proposed
Transformer-BiLSTM for CyanoHAB intensity forecasting,
we compared it with two sets of architectures designed ex-
plicitly for this study. The first set covers three commonly
used machine-learning algorithms, which include Random
Forest (RF) [94], Support Vector Machine (SVM) [95], and
XGBoost [96]. The second set consists of six custom deep-
learning architectures. These include standalone Transformer-
only and BiLSTM-only models, as well as four hybrid variants
that pair a Transformer encoder with LSTM, BiLSTM, GRU,
or BiGRU modules. In addition, we include a Transformer
variant equipped with a custom temporal attention pooling
mechanism, referred to as Transformer-Custom Attention. This
benchmark provides a comprehensive performance evaluation
against both traditional and state-of-the-art approaches.

For standalone architectures, the Transformer-only model
processes input directly through the encoder layer to the
forecasting head, while the BiLSTM-only model employs an
embedding layer before BiLSTM processing and subsequent
prediction. The hybrid configurations combine transformers
with Long Short Term Memory (LSTM) [97], Gated Recurrent
Unit (GRU) [98], and Bidirectional Gated Recurrent Unit
(BiGRU), alongside a Custom Attention layer. In these hybrid
models, encoder outputs serve as inputs to their respective
recurrent or attention blocks, e.g., Transformer-BiGRU for-
wards the encoded sequence to a BiGRU layer for bidirectional
processing. Besides utilizing established recurrent units, we
incorporated a custom attention layer in Transformer-Custom
Attention to provide additional emphasis on the most im-
portant time steps essential for accurate prediction. It uses
a custom temporal attention pooling layer applied to the
Transformer encoder outputs. Specifically, given the encoded
sequence representations, a learnable linear projection assigns
a scalar importance score to each time step, which is normal-
ized using a softmax function to produce temporal attention
weights. Mathematically, it is formulated as:
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Fig. 5. Visualization F1 scores of each model for each day across the 14-day forecast horizon for all segments. F1 score trends across a 14-day forecast
horizon for all individual models and the Transformer-BiLSTM model. Forecast performance generally declines with increasing lead time. The Transformer-
BiLSTM outperforms individual model across longer-forecast ranges and perform competitively for short and medium forecast. Vertical dashed lines demarcate
short-range (Days 1-4), medium-range (Days 5-9), and long-range (Days 10–14) forecasts. Circular markers denote discrete evaluation points at each forecast
day.

αt = softmax(wTht), Z =
∑
t

αtht

Here, ht denotes the transformer encoder output at time
step t. The vector w ∈ RD is a trainable parameter that
assigns a scalar importance score wTht to each time step. A
softmax operation is applied across all time steps to produce
normalized temporal attention weights αt. The final sequence
representation Z is computed as a weighted sum of the encoder
outputs, emphasizing temporally critical observations before
forecasting.

All deep learning based models were trained under identical
conditions as detailed in Section VIII-A, using data from 2016
to 2021 for training, 2022 for validation, and 2023-2024 for
testing, maintaining consistent data preprocessing pipelines,
loss functions, and optimizer configurations with the proposed
Transformer-BiLSTM architecture. Training was standardized
at 70 epochs across all models, with the exception of the
custom attention variant, which required extended training of
120 epochs due to its additional learnable parameters and
increased computational complexity. Performance evaluation
utilized standard metrics, including accuracy, precision, recall,
and F1 score.

The machine learning models were trained on identical
data splits but required different preprocessing since Random
Forest, XGBoost, and SVM operate on fixed-length vectors
rather than sequences. Input data was flattened before pro-
cessing. The Random Forest comprised 600 trees grown to
full depth with a minimum of two samples per leaf, wrapped
in a MultiOutputClassifier from Scikit-learn [99] to predict

70 binary labels simultaneously (14 days × 5 classes). The
SVM used RBF-kernel with probability estimates enabled,
embedded in a One-Vs-Rest wrapper from Scikit-learn to
train one classifier per label for consistent AUC computation.
XGBoost followed the same preprocessing pipeline and One-
Vs-Rest ensemble approach, learning one boosted tree model
per output label.

Table I summarizes the forecasting performance of each
model over a 14-day prediction horizon. Notably, the metrics
presented in Table I represent the performance specifically
for the 14th day forecast. The results show deep learning
models significantly outperform traditional machine learning
approaches.

The Transformer-BiLSTM architecture achieves the highest
performance across all metrics, with 78.94% accuracy, 78.80%
precision, 78.94% recall, 78.86% F1 score, and an AUC of
82.65%. This highlights the effectiveness of combining self-
attention mechanisms with bidirectional sequence modeling
to capture both contextual information and temporal depen-
dencies in CyanoHAB dynamics. The Transformer-GRU and
standalone BiLSTM models also performed strongly, achiev-
ing F1 scores of 78.13% and 77.46%, and AUC of 82.53%
and 80.32%, respectively. Notably, all hybrid architectures
consistently outperformed the baseline Transformer model
over a more extended forecast period. While the Transformer-
Custom Attention Layer showed modest improvement over
the baseline, the integration of recurrent components yielded
substantially better results. This highlights the importance of
integrating both attention-based architectures and temporal
modeling for extended forecasting tasks, as neither mechanism
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alone has proven sufficient to maintain performance at longer
prediction intervals.

The machine-learning models trail deep learning based
models in point metrics; however, their AUC scores are com-
paratively high. Random Forest reaches an AUC of 82.1 %,
and both SVM and XGBoost exceed 80 %, despite accuracy
in the low to mid 40% range. This disparity indicates that
tree and kernel-based methods rank bloom risk reasonably
well but struggle to convert those rankings into correct hard
labels once a decision threshold is set. In other words, they
discern separability yet lack calibrated decision boundaries for
the multi-label, highly imbalanced setting

The Persistence Model, used as a naive temporal base-
line for deep learning based models, achieved an F1 score
of 71.70%. While it performed competitively in short-term
forecasts (see Figure 5), its performance significantly deteri-
orated over longer horizons, as exemplified by its last-place
ranking on Day 14. This trend reflects its inability to adapt to
dynamic bloom transitions and further underscores the value of
learning-based models for medium to long-range forecasting.

One can observe that Transformer-BiLSTM consistently
delivered the most balanced performance across all metrics.
This suggests that the combination of bidirectional sequen-
tial modeling and self-attention leads to more temporally
coherent and context-rich representations. The Transformer’s
global attention captures long-range dependencies while BiL-
STM’s dual-directional processing models local temporal pat-
terns, enabling the architecture to effectively identify subtle
CyanoHAB dynamics such as bloom progression and decay
phases. This combined approach proves particularly valu-
able for extended forecast horizons, where neither attention
mechanisms nor recurrent processing alone maintains optimal
prediction accuracy.

Further F1 scores analysis was conducted to examine how
model performance changes across the forecast horizon. Since
the Machine Learning based model showed lower F1 scores,
this comparison focused on the deep-learning architectures and
the Persistence model only. Figure 5 illustrates the F1 scores
of the persistence model and each deep learning model for
each day across the 14-day forecasting period. In the short-
range forecasts (Days 1–4), all models demonstrate strong
performance, with the standalone Transformer performing
comparably to the Transformer-BiLSTM during the initial
days. The Persistence Model, due to the temporal continuity
of CyanoHAB events, performs competitively on Day 1, even
marginally outperforming learning-based models. However,
this advantage is short-lived; its static assumption becomes
increasingly inaccurate with time, and it quickly deteriorates,
reaching the lowest F1 score by Day 14.

A notable transition occurs as the forecast horizon extends
into the long-range period (Days 10-14). While the stan-
dalone Transformer shows a steep decline in performance
beyond Day 9, the Transformer-BiLSTM model takes control
and consistently outperforms all other models in the long-
range period. This superior long-range performance reflects
the hybrid architecture’s ability to effectively combine short-
term contextual understanding via attention mechanisms with
robust long-term dependency modeling through bidirectional

recurrence. Other hybrid models like Transformer-GRU also
show better stability than the standalone Transformer, but
the Transformer-BiLSTM consistently achieves the highest F1
scores in long-range CyanoHAB intensity forecasting.

2) Qualitative Evaluation: To evaluate the qualitative per-
formance of our forecasting models, we employed the Proba-
bility of Detection (POD), also known as the Hit Rate. POD
quantifies the proportion of observed events that are correctly
predicted by the model, providing insight into the model’s
ability to identify true positive occurrences.

The use of POD in harmful algal bloom (HAB) forecast-
ing has been well-documented in previous studies. For in-
stance, the National Oceanic and Atmospheric Administration
(NOAA) utilized POD [100] to assess the performance of
its HAB Operational Forecast System in the western Gulf of
Mexico. This system provided forecasts of bloom transport and
associated respiratory irritation, with POD serving as a key
metric for evaluating forecast accuracy over multiple years.
Similarly, the California Harmful Algae Risk Mapping system
was designed to predict the spatial likelihood of Pseudo-
nitzschia blooms and associated domoic acid events along
the California coast [101]. In its initial skill assessments,
the system incorporated POD by comparing model-generated
probabilities with observed bloom occurrences to evaluate
forecasting reliability.

Mathematically, the Probability of Detection is defined as:

POD/Hit Rate =
α

α+ c

Here, α represents the number of hits (instances where
an event was both observed and correctly forecasted) and c
denotes the number of misses (instances where an event was
observed but not forecasted).

The POD value ranges from 0 to 1, with a value of 1
indicating perfect detection (all observed events were correctly
forecasted), and a value of 0 indicating no detection (none
of the observed events were forecasted). Intermediate values
reflect the proportion of observed events that were successfully
predicted.

While POD is formally equivalent to Recall, we used it as a
concise visual summary to interpret multihorizon predictions.
Given the 14-day forecast window, directly comparing daily
predictions can be visually cluttered. The POD thus provides a
readable behavior of detection consistency across the forecast
horizon, supporting qualitative model assessment. We calcu-
lated the POD for each station-day by comparing the model’s
predictions with the actual observations. The comprehensive
analysis for each station’s hit rate is presented below.

a) Missisquoi Bay: The time series visualization for
Missisquoi Bay (Figure 6) illustrates the hit rate analy-
sis during 2023 and 2024. The visualization demonstrates
the model’s ability to capture CyanoHAB seasonal patterns
across different CyanoHABs phases. During non-CyanoHAB
periods, the model achieves a higher hit rate, as seen in
June 2023, accurately identifying the absence of CyanoHABs
across all intensity categories. During transition periods when
CyanoHABs begin forming or dissipating, hit rates naturally
decrease, reflecting the inherent challenge of predicting these
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Fig. 6. Temporal hit rate analysis for Missisquoi Bay across the 2023-2024 test period. The visualization reveals seasonal patterns in CyanoHAB prediction
accuracy, with higher hit rates during established CyanoHAB phases and variation during transitions. The patterns between 2023 and 2024 demonstrate the
model’s adaptability to different CyanoHAB dynamics while maintaining robust seasonal forecasting capabilities.

Fig. 7. Temporal hit rate analysis for St. Albans Bay across the 2023-2024 test period. The visualization shows later CyanoHABs formations compared to
Missisquoi Bay. The fragmented CyanoHABs patterns create more frequent hit rate fluctuations during the season.

dynamic phases. This pattern is visible in early August 2023,
where the hit rate transitions from 1.0 to approximately 0.5.
The model maintains strong performance during established
CyanoHABs periods, with hit rates stabilizing between 0.8 and
1.0, demonstrating its capability to forecast stable CyanoHAB
states accurately.

The comparison between 2023 and 2024 reveals the model’s
adaptability to varying CyanoHAB dynamics. The 2023 pat-
tern shows a clear seasonal progression: non-CyanoHABs pe-
riod (June), transition phase (July), peak CyanoHABs (August-
September), and gradual decline (October). The 2024 data
presents a more complex pattern with earlier CyanoHABs
initiation in June and multiple formation-dissipation cycles
throughout the season. Despite these variations, the model
successfully tracks the overall seasonal trends in both years,
with hit rates recovering during peak CyanoHABs periods and
maintaining high accuracy during stable conditions.

These temporal patterns illustrate the model’s robust per-
formance in capturing CyanoHAB seasonal dynamics. While
hit rates fluctuate during transition periods - a natural charac-
teristic of environmental forecasting - the model consistently
identifies the broader seasonal patterns and maintains high
accuracy during both CyanoHABs and non-CyanoHABs stable
states.

b) St. Albans Bay: The time series visualization for St.
Albans Bay (Figure 7) reveals different CyanoHABs charac-
teristics compared to Missisquoi Bay. The visualization high-
lights distinct temporal and ecological patterns in CyanoHAB
dynamics compared to Missisquoi Bay. CyanoHABs develop-
ment in St. Albans tends to occur later in the season, typically
beginning around middle or late July, as indicated by the initial
drop in hit rate during that period. This temporal shift likely
reflects different environmental conditions, possibly related to
varying warming patterns or nutrient dynamics between the
two locations.

The CyanoHABs phase in St. Albans is characterized by
fragmented and intermittent activity, reflected in the oscillating
hit rate values throughout August and September. These fluctu-
ations imply multiple short-lived or low-intensity CyanoHABs
events, which challenge prediction continuity. Despite this,
the model demonstrates consistent recovery in hit rate during
sustained CyanoHABs phases, such as late September and
early October for both years, where performance stabilizes
with a higher hit rate.

Year-to-year differences are also notable. While 2023 ex-
hibits more variable hit rates during the CyanoHABs season,
2024 shows a smoother and stable trajectory, indicating longer
CyanoHABs events with more substantial alignment between
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Fig. 8. Hit rate time series for the Northeast Arm Upper Side segment across 2023 and 2024. The diagram illustrates consistent fluctuations in hit rate during
August to October, corresponding to fragmented and short-lived CyanoHAB events.

Fig. 9. Hit rate time series for the Northeast Arm Lower Side segment across 2023 and 2024. In 2023, the model achieves stable performance during sustained
CyanoHABs periods in late September, reflecting more persistent CyanoHAB activity. In contrast, 2024 exhibits increased variability in hit rates, indicating
fragmented and intermittent CyanoHABs patterns.

model forecasts and observations. This pattern suggests that
CyanoHABs drivers in 2024 may have been more consistent,
enhancing forecast reliability at this site.

c) Northeast Arm: The Northeast Arm, an oligotrophic
zone characterized by relatively low nutrient levels and bio-
logical productivity, is divided into upper and lower sections
for analysis due to their distinct CyanoHAB characteristics.
The upper side is shown in Figure 8, exhibits CyanoHABs
that start forming in late August and persist intermittently
through October. The consistent fluctuations in hit rate during
these months for both 2023 and 2024 suggest frequent, short-
duration, and fragmented CyanoHABs events, which present
challenges for sustained predictive accuracy.

The lower side is depicted in Figure 9, demonstrating a more
stable CyanoHABs structure, particularly in late September
2023, as evidenced by the extended period of high hit rate.
This suggests longer-lasting and more predictable CyanoHAB
conditions during that period. However, 2024 presents a
different pattern: the hit rate exhibits frequent fluctuations,
indicating that CyanoHABs events in the lower region became
more intermittent and fragmented, resembling the instability
seen in the Upper Side. These variations highlight the interan-
nual variability in CyanoHABs dynamics and environmental
forcing.

The contrast between the two sub-regions, especially in
2023, demonstrates the benefit of spatial subdivision. While
both sides are geographically adjacent, their temporal pat-
terns, CyanoHABs persistence, and ecological responses differ
meaningfully. This justifies the modeling decision to split the
Northeast Arm, enabling more precise detection and charac-
terization of localized CyanoHAB behavior.

IX. DISCUSSION

Remote sensing data are used to forecast the occurrence
of CyanoHABs in Lake Champlain’s three key segments:
Missisquoi Bay, St. Albans Bay, and Northeast Arm, over a 14-
day forecast horizon. The CI Values from the Cyanobacterial
Assessment network indicate the intensity of CyanoHABs.
Other data features include Temperature and temporal data
features. The proposed research addresses two fundamental
questions: 1) Given the nature of sparse remote sensing data,
can we precisely forecast the CyanoHABs? 2) If we can
forecast CyanoHABs early, can we also predict their intensity?

The experimental results affirm both questions. The
Transformer-BiLSTM can reliably predict the early occur-
rences of CyanoHABs, along with their intensities, across
all five classes within a 14-day forecast horizon. Despite
the inherent complexity of a 14-day forecasting window,
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Fig. 10. Model prediction confidence scores for five CyanoHAB intensity classes in Missisquoi Bay. The graph displays confidence values for Low (blue),
Medium (green), High (orange), Very High (red), and Extreme (purple) intensity classes. High confidence scores align with known bloom periods in August
to October 2023 and June to September 2024, while near-zero confidence appears during non-bloom seasons, demonstrating the model’s ability to recognize
seasonal patterns.

Fig. 11. Spatial comparison between model forecasts and CyAN satellite
observations of Missisquoi Bay during July 2024. Each row gives a different
lead time—Day-1 (7 July), Day-7 (13 July), and Day-14 (20 July). The top
shows the Transformer-BiLSTM prediction for each CI intensity class (Low,
Medium, High, Very High, Extreme); the bottom shows the corresponding
satellite mask, followed by the composite satellite map on the far right. One
can observe the missing pixels in the complete composite of the Missisquoi
Bay station. The model correctly preserves the correct class mix over the full
14-day horizon.

the Transformer-BiLSTM consistently demonstrates seasonal
CyanoHABs events and predictions alignments across different
stations and years. The model captures both the onset and du-
ration of CyanoHAB activity and maintains strong forecasting
performance even under varying seasonal patterns and inter-
annual conditions. Across all regions, the hit rate time series
reflects the seasonal nature of CyanoHABs, with prediction
accuracy adapting to site-specific CyanoHABs dynamics. For
instance, the model detects early CyanoHAB formation in

Fig. 12. Spatial comparison between model forecasts and Cyan satellite
observations of Missisquoi Bay from 16 July to 29 July, 2024. One can observe
the alignment between predictions and targets. We can also see that on July
29, the targeted image is sparser compared to Day-7 and Day-1 images, which
adds an additional layer of complexity due to not having enough pixels for
predictions.

Missisquoi Bay during June 2024, captures intermittent events
in St. Albans Bay, and differentiates between the fragmented
CyanoHAB behavior of the Upper Northeast Arm and the
more sustained patterns seen in the Lower Side. These results
also validate the spatial subdivision of the Northeast Arm,
where distinct hit rate profiles reveal different ecological
responses within geographically proximate zones.

Analysis of prediction confidence scores provides addi-
tional insights into the system’s performance, further val-
idating the model’s forecasting reliability. The model pro-
vides confidence scores that align with known CyanoHAB
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Fig. 13. Same layout as earlier diagrams. The Day-1 forecast underestimates
the initial outbreak, yet the Day-7 (28 August) and Day-14 (4 September)
predictions catch up to the observed magnitude and intensity distribution. This
rapid convergence shows that while abrupt bloom onsets can be missed, the
model quickly adjusts once the larger-scale environmental drivers dominate.

Fig. 14. Forecast skill during a late-season bloom that extends from 23
September to 10 October 2023 in Missisquoi Bay. Both the model and the
observations maintain High and Extreme-class pixels well past the usual
summer window, confirming that the bloom persists into early October. The
model mirrors this prolonged event, capturing its intensity on Day-1, retaining
the full class spectrum on Day-7, and reflecting the gradual decline in Extreme
pixels by Day-14.

patterns, as shown in Figure 10 for Missisquoi Bay. High
confidence is observed during peak CyanoHAB periods across
all intensity classes, whereas confidence levels are near zero
during non-CyanoHAB seasons. These patterns demonstrate
that the model has correctly learned the seasonal dynamics
of CyanoHABs without overfitting. The apparent differences
between 2023 and 2024 confidence patterns indicate that the
model accurately captures year-to-year variations. During the
CyanoHAB start and end periods, confidence scores differ
between intensity classes, with low-intensity HABs exhibiting
higher confidence than extreme events, reflecting the natural
progression of CyanoHABs. These confidence patterns con-

firm that the model effectively forecasts CyanoHAB presence
and intensity levels despite data sparsity.

Figures 11–14 further validate this behavior by setting
predictions following satellite observations for four represen-
tative CyanoHABs events. These diagrams illustrate the bin-
classification framework used in this study (See Section IV-C).
Each row corresponds to a forecast lead time (Day-1, 7,
14). The five left-hand tiles show the predicted presence
of CyanoHABs for the discrete CI-intensity bins, while the
matching tiles beneath them display the satellite-derived masks
for the same day. The composite on the far right shows the
complete Missisquoi Bay station CI file after performing the
data imputation (See Section IV-B). Since the problem is
formulated at the bin level rather than at the true pixel scale,
the model predicts each intensity bin and does not attempt
sub-pixel localization. Figures 11–12 show two July 2024
cases, the forecast assigns pixels to all five intensity classes
at the Day-1 horizon and maintains a similar class composi-
tion through Day-14, aligning with the observed CyanoHABs
events. The Figure 13 illustrates a different behavior: the Day-
1 forecast underestimates an abrupt flare-up, yet by Day-7 it
reproduces the observed bloom magnitude and by Day-14 it
represents the bay-wide distribution, indicating rapid model
adjustment once larger-scale drivers prevail. The Figure 14
shows a late-September to early-October sequence that depicts
a high-intensity bloom that persists beyond the typical season;
both forecast and satellite data retain High- and Extreme-class
pixels into early October, implying that warmer surface waters
and extended stratification are lengthening bloom lifetimes.

Since six additional models were trained for performance
evaluation against the Transformer-BiLSTM model (see Sec-
tion VIII-C1), we evaluated an ensemble approach to as-
sess potential performance gains. The ensemble method av-
eraged predictions from all seven models to generate final
forecasts. While the ensemble approach achieved marginally
better performance with an F1 score of 79.09 compared to
the Transformer-BiLSTM’s F1 score of 78.86, the improve-
ment was minimal at only 0.23 percentage points. However,
ensemble implementation requires independent training and
testing of each constituent model, significantly increasing com-
putational complexity and deployment overhead. Given the
marginal performance enhancement, the single Transformer-
BiLSTM model presents a more practical solution for opera-
tional deployment, offering faster inference times and reduced
computational requirements.

The model also demonstrated generalization to unusual
CyanoHAB conditions not present in the training data, par-
ticularly evident during the June and July 2024 period. As
illustrated in Figure 15, 2024 exhibited unprecedented early-
season CyanoHAB events with exceptional intensity levels
not observed during the training period. While training years
showed CyanoHAB events predominantly in late July with
moderate pixel counts, 2024 presented high-intensity events
beginning in early June, with pixel counts higher than in any
previous training year. This represents a significant departure
from historical patterns, with hundreds of pixels across all
intensity classes, including the extreme category. Despite
never encountering such conditions during training, the model
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Fig. 15. CyanoHAB intensity distribution for June and July across all years from 2016 to 2024 in Missisquoi Bay, showing pixel counts for five intensity
classes. Low is shown in blue, Medium in green, High in orange, Very High in red, and purple indicates Extreme Intensity CyanoHABs. Background colors
indicate data partition: gray represents training data years, light gray represents validation years, and light orange represents testing years. One can observe the
presence of CyanoHABs events in late July, with moderate or minimal pixel counts in June. The 2024 testing data shows a dramatic shift with unprecedented
early-season blooms beginning in early June and exceptionally high pixel counts across all intensity classes.

accurately forecast these anomalous events as confirmed in
Figure 6. This capacity to predict CyanoHAB patterns, rather
than merely reproducing historical observations, validates the
model’s ability to learn fundamental environmental relation-
ships governing CyanoHAB formation, rather than simply
memorizing seasonal templates.

These predictions of unusual events reveal spatial and
temporal heterogeneity across Lake Champlain that presents
substantial forecasting challenges. The unprecedented early-
season CyanoHAB events observed in Missisquoi Bay in
June 2024, with pixel counts exceeding historical patterns,
suggest potential shifts in CyanoHAB dynamics that may be
attributable to changing environmental conditions. Each mon-
itoring segment shows distinct CyanoHAB patterns: persistent
high-intensity events in Missisquoi Bay, episodic patterns in
St. Albans Bay, and complex regional variations in North-
east Arm. These differences highlight the localized nature of
CyanoHAB formation processes. Notably, the counterintuitive
finding is that the lower side of the Northeast Arm, despite its
oligotrophic designation and distance from the nutrient-rich
zone of Missisquoi Bay, exhibited more stable events than the
upper side in 2024. This suggests that complex hydrodynamic
processes, beyond simple nutrient gradients, influence the
development of CyanoHABs. The significant inter-annual vari-
ability observed between 2023 and 2024 across all segments

further complicates forecasting efforts, with some locations
showing earlier CyanoHAB onset, others displaying more
substantial fragmentation, and all exhibiting distinct intensity
distribution patterns. These findings demonstrate that effective
CyanoHAB forecasting requires sophisticated algorithms and
consideration of site-specific ecological dynamics.

X. CONCLUSION

This work utilizes remote sensing data to present a
Transformer-BiLSTM framework for forecasting CyanoHAB
occurrences and intensity levels at three key segments in Lake
Champlain: Missisquoi Bay, St. Albans Bay, and Northeast
Arm. The system is designed to provide day-by-day forecasts
across a 14-day horizon, offering fine-grained temporal in-
sights into the dynamics of CyanoHABs. The research uses
two remote sensing data features: Cyanobacterial Index values
and Temperature. The system addresses data sparsity through
a two-stage preprocessing pipeline combining forward fill and
weighted temporal imputation, enabling effective forecasting
despite significant missing data in both CI values and temper-
ature measurements. A temporal data augmentation strategy
is also presented to address the limited training dataset while
preserving physically plausible relationships.

The model demonstrated generalization to novel CyanoHAB
patterns, including unprecedented early-season high-intensity
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events in 2024 that were not represented in the training data.
Analysis across different monitoring segments reveals distinct
spatial characteristics: persistent high-intensity CyanoHABs
in Missisquoi Bay, episodic patterns in St. Albans Bay, and
complex regional variations in Northeast Arm. These segment-
specific patterns and significant inter-annual variability be-
tween 2023 and 2024 highlight the importance of localized
approaches for effective CyanoHAB management. Compared
to a persistence baseline, which performed better on day
1, the Transformer-BiLSTM consistently outperformed across
the 14-day horizon, with a 7.62 percentage point advan-
tage by day 14, confirming its robustness in capturing the
evolving behavior of CyanoHABs. Comparative evaluation
against seven advanced deep learning architectures further val-
idated the Transformer-BiLSTM’s performance for extended
forecasting horizons. While Transformer-only models demon-
strated competitive performance in short-term predictions,
the Transformer-BiLSTM architecture outperformed them for
longer-duration forecasting tasks. Prediction confidence scores
provided further validation of the model’s interpretability. High
confidence aligned with peak CyanoHAB periods across all
intensity classes, while confidence diminished in off-season in-
tervals. Inter-annual variations in confidence patterns between
2023 and 2024 reflected the model’s sensitivity to year-specific
dynamics without overfitting.

The proposed framework effectively forecasts CyanoHAB
occurrences and intensity levels over a 14-day horizon. How-
ever, we acknowledge potential areas for future enhancement.
Current predictions provide segment-level resolution; moving
toward pixel-level localization will improve spatial specificity.
The reliance on MODIS temperature data poses a challenge
due to its planned decommissioning, which necessitates tran-
sitioning to alternative sources like Visible Infrared Imaging
Radiometer Suite, or Sentinel-3 Sea and Land Surface Tem-
perature Radiometer. Future work addresses these limitations
by developing a pixel-level forecasting system and integrating
additional satellite-based input features to ensure continuity.
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