# Impacts of Wildfire on a California Reservoir: Water Quality Analysis



Kareem Hannoun, WQS

Imad Hannoun, WQS Jordan Switzer, Casitas MWD Ira Rackley, WQS

11/17/2022



## - LAKE CASITAS AND THOMAS FIRE

## - WATER QUALITY

## - INFLOW





- LAKE CASITAS AND THOMAS FIRE

## - WATER QUALITY

- INFLOW





### WILDFIRES IN THE WEST

#### Wildfires Continue to Increase in Frequency and Severity

- Fire season extends later into year
- Megafires increasing significantly in last 20 years







### **DROUGHT CONTINUES IN WEST**





### WILDFIRES AND WATER QUALITY: RIVERS AND STREAMS

#### **Direct Effects**

- Sediment loads
  - Anoxic inflows
  - Nutrient loading
  - Sedimentation
- High water temperatures
- Heavy metals

#### **Lingering Effects**

- Slope instability
- Continued nutrient loading



Ventura River March 2018 Photo Credit: Paul Jenkin Venturariver.org



### WILDFIRES AND WATER QUALITY: RESERVOIRS

#### **Sediment Flows and Small Reservoirs**

- Post-fire inflows can inundate reservoirs with sediment and nutrients
- Water can become untreatable

#### Medium and Large Reservoirs

- How does reservoir storage level and design effect post-fire water quality?

#### Wildfire and Drought

- Drought can exacerbate effects of wildfire on reservoirs
  - Low reservoir storage
  - Episodic inflows



Matilija Reservoir Photo Credit: Paul Jenkin Venturariver.org



## - LAKE CASITAS AND THOMAS FIRE

## - WATER QUALITY

- INFLOW





### LAKE CASITAS

#### 238,000 Acre-Feet Storage Volume

Drinking water supply

#### **Sustained Drought**

- Reservoir level dropping since 2012
  - ~35% capacity before Thomas Fire
- Direct and indirect watershed
  - Direct \_
    - Coyote and Santa Ana Creeks
    - Direct rainfall and runoff
  - Indirect
    - Upper Ventura River
    - Matilija Creek
    - North Fork Matilija Creek
  - All flows episodic
  - Does not receive imported water





### LAKE CASITAS INFLOWS





### **ROBLES DIVERSION AND FISH PASSAGE FACILITY**

- Approximately two miles downstream of Matilija Reservoir
- Diverts water via 5.4-mile canal with 500 cfs capacity
- Modified in 2005 for passage of endangered Southern California Steelhead
- Majority of water enters reservoir through diversion structure
- Diversions typically occur following large storm events
- Diversion structure allows sediment to settle



Robles Diversion and Fish Passage Facility 2019



### **ADDITIONAL IMPROVEMENTS**

#### Hypolimnetic Oxygenation System

- Installed in 2015 to address water quality concerns

#### **Other Infrastructure**

- Multi-port outlet tower
- Robles Diversion







**Mobley Engineering** 

### **THOMAS FIRE**

#### Largest Wildfire in Modern California History at the Time

- 282,000 acres
- Spread December 4 2017 January 12 2018
- Burned majority of Lake Casitas direct and indirect watershed
- Immediately preceded typical winter rainfall season



Terra Satellite (December 5, 2017)



#### **THOMAS FIRE BURN SEVERITY**



![](_page_13_Picture_2.jpeg)

## - LAKE CASITAS AND THOMAS FIRE

## - WATER QUALITY

## - INFLOW

![](_page_14_Picture_5.jpeg)

![](_page_14_Picture_6.jpeg)

### INFLOW WATER QUALITY: FLOW AND TURBIDITY

#### Inflows

- Lake Casitas receives winter inflows from direct and indirect watershed

#### Sediment

- High turbidity and sediment load measured during winter 2018/2019
  - Lower turbidity since 2019

![](_page_15_Figure_6.jpeg)

![](_page_15_Picture_7.jpeg)

### INFLOW WATER QUALITY: DO AND TEMPERATURE

**Dissolved Oxygen Lower** 

![](_page_16_Figure_2.jpeg)

![](_page_16_Picture_3.jpeg)

**Inflow Temperature Not Clearly Impacted** 

### **INFLOW WATER QUALITY: METALS AND NUTRIENTS**

TN (mg/L)

10<sup>0</sup>

#### **Metal Concentrations**

- Several orders of magnitude increase in concentrations of many metals

#### **Nutrient Loads**

Nutrient concentrations increase by an order of magnitude following wildfire

![](_page_17_Figure_5.jpeg)

Solutions

## - LAKE CASITAS AND THOMAS FIRE

## - WATER QUALITY

- INFLOW

![](_page_18_Picture_5.jpeg)

![](_page_18_Picture_6.jpeg)

### IN-RESERVOIR WATER QUALITY: TEMPERATURE AND DO

#### **Reservoir Temperature Unaffected**

#### **Dissolved Oxygen Remains High**

- Hypolimnetic Oxygen System (HOS) installed in 2015 to improve water quality
- HOS used extensively in 2018 and 2019
- Decreased oxygenation in 2021 correlated to lower HOS flow rates

![](_page_19_Figure_6.jpeg)

![](_page_19_Picture_7.jpeg)

### **IN-RESERVOIR WATER QUALITY: DO SPATIAL VARIATION**

![](_page_20_Figure_1.jpeg)

![](_page_20_Picture_2.jpeg)

Approximate sampling locations 2014-2020

![](_page_20_Picture_4.jpeg)

### **IN-RESERVOIR WATER QUALITY: NUTRIENTS**

#### **Nitrogen Increased One Year Post-Fire**

- Little increase immediately following wildfire

![](_page_21_Figure_3.jpeg)

![](_page_21_Figure_4.jpeg)

#### Phosphorus Concentrations Remain Low

### **IN-RESERVOIR WATER QUALITY: NITROGEN**

#### **Shift Towards NO<sub>2</sub> + NO<sub>3</sub> Post-HOS**

No  $NH_3$  observed at dam since HOS installation, including post-fire

![](_page_22_Figure_3.jpeg)

olutions

#### **TOC Increased Following Wildfire**

- High Total Organic Carbon (TOC) can lead to concerns about disinfection byproducts in potable water
- TOC Increases in early 2018
  - Concentrations within 2012-2017 range
  - Water remains treatable
  - TOC has since decreased

![](_page_23_Figure_7.jpeg)

![](_page_23_Picture_8.jpeg)

### **IN-RESERVOIR WATER QUALITY: OUTLET TURBIDITY**

#### **Reservoir Outlet Turbidity Remains Low**

- Outlet port changed several times postfire to select water with best treatability and lowest turbidity

![](_page_24_Figure_3.jpeg)

![](_page_24_Picture_4.jpeg)

## - LAKE CASITAS AND THOMAS FIRE

## - WATER QUALITY

## - INFLOW

![](_page_25_Picture_5.jpeg)

![](_page_25_Picture_6.jpeg)

#### **Significant Impacts to Inflow**

- High inflow turbidity
- Increased nutrient loading

#### Minimal Impacts to In-Reservoir Water Quality

- Water quality remained similar to pre-fire
- Dissolved oxygen remained high
- Nutrient concentrations similar to pre-fire levels

#### **Mitigating Factors**

- Large storage volume, with multi-year retention time
  - Distance from inlet to outlet (~3 miles)
- Robles Diversion
- HOS
- Multi-port outlet tower

![](_page_26_Picture_14.jpeg)

Casitas Water

![](_page_26_Picture_16.jpeg)

### **Dr. Kareem Hannoun**

Water Quality Solutions

Khannoun@wqsinc.com

Wqsinc.com

![](_page_27_Picture_5.jpeg)