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1) Let A and B represent two places. Place A is at 24° 18‟ N and

place B is at 36° 47‟ N. They have Longitudes 133° 39‟ E and

125° 24‟ W, respectively.

(a) Find the great circle arc AB?

(b) Find the angle PAB? where P is the north pole 

2.) What is the shortest distance between New Delhi and New York ?

(use latitudes and longitudes and distance in kms)

Assignment

3.) How is the RA and Dec coordinate system  more useful compared 

to other coordinate systems like: altitude-Azimuth and HA and Dec.? 

4.) Find out  best observing seasons for the star „Vega‟ and the cluster

Hyades? Also, find out dates on which  these are overhead for an

observer at  the Vainu Bappu Observatory, Kavalur?



Assignment

5.) A star whose luminosity is 200L(sun) has an apparent bolometric magnitude

mbol = 9.8. Given that the Sun‟s absolute bolometric magnitude Mbol = 4.8, 

determine the distance to the star ?

6.) What is the radius of star of the same Teff as the Sun but with luminosity 104

times larger?

7.)   Determine the value of airmass for a star with RA: 10h:30m:15s and Dec: 30deg:

15‟:15‟‟. Observations are from IAO, Hanle on 21 Feb 2007 at 8:00PM (IST).

8.) For a star in certain direction the colour excess E(B-V) is found out to be 1.0.

Given the measured magnitudes of Vmag = 8.0 and Bmag = 10.5, 

find out star‟s unreddened color B-V and its appropriate spectral class? 

9.) Find out the star Polaris altitude from IAO, Hanle ?

10. ) Two stars in a binary system are separated by 0.01” (arc-sec). Discuss the

observational strategy to study them?



Assignment

11) The H line in the spectrum of certain quasar found to to be shifted to 9000A.

Given the best estimated Ho (Hubble constant) determine  distance to the

quasar?

12) Images of two stars are 100 pixles apart on CCD chip of pixel size=15micron.

Given the VBT prime focus, find out the angular separation of the two stars

in the sky?

13) Two images of a cluster taken 10 years apart showed that the cluster moved

10.5‟(arc-minute) right angles to the line of sight. Given the wavelength

shift of 0.5A of H line, find the distance to the cluster?

14) A star of certain brightness is observed with HCT for 30min. exposure time.

The resultant image has S/N= 60. How large aperture is need to attain S/N=200

with the same set-up? 

15.) When does the Sun reaches closest to the Polaris and what is the angle between

them? 



Assignment

16) Stromgren photometry for two stars is given: star1 ( v=10.0, b=9.5 and y=8.0)

and star2 (v=12.0,b=10.5 and y=9.0). Discuss their relative metallicities?

17.)  What is the field of view for the VBT telescope with the Cassegrain focus?

It is fitted with an eye piece of FOV 40° and focal length of 500cm.          

18.) For a telescope of 50 cm the limiting magnitude (one can see thru the telescope)

is 15. To see stars as faint as 26th magnitude, what sort of telescope aperture

one should have?

19.) The pole star or Polaris has 2000 epoch coordinates RA:  02:31:49.08;

DEC: +89:15:50.8. Find out its coordinates for 10000 AD epoch?

20.) Find out plate scales and angular resolutions for HCT and VBT telescopes?



No        V           V-R    R-I   

01    10.540     0.710   0.680 

03    14.300     1.160   1.290 

03    14.250    1.120   1.340 

04   12.730    0.930   0.990

04  12.710    0.910   1.030 

05  15.170     1.290   1.510 

06  13.980    1.000   1.350

07  10.760   0.670   0.690

09  14.750   1.360   1.510 

10  12.510   0.860    0.910 

11  11.110    0.660    0.700 

12  13.110   1.070    1.270 

13  7.270    0.060     0.090 

14  17.070   1.520    1.730

15  13.970   0.990    1.210

17 16.820   1.610     1 .930 

18 17.660   1.720      2.040 

21. Evalutae the distance to the cluster using the data available below ?



The spherical triangle
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Any plane passing through the center of a sphere 

cuts the surface in a circle called a great circle. 

Any other plane cutting the sphere but not passing 

through the center is known as a small circle. Here, 

EAB is a great circle and CD is a small circle.

QOP is the diameter of the sphere which is ┴ to 

the plane EAB. Plane CD is || to plane EAB. OP 

is ┴ to planes EAB and CD. P and Q are the 

poles of great circle.

Let PCAQ and PDB any other two great circles. 

PS and PT are the tangents to PA and PB (easy to 

refer parts of great circles). The angle SPT or

The angle AOB (or the arc AB) is said to be a 

spherical angle. A spherical angle is defined only 

with reference to two intersecting great circles.

T

S

Mobile User



The spherical triangle
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Let A,X, Y are three points lying in the same 

hemisphere and joined by arcs (AX,AY and XY of 

great circles. The angle AXY is called spherical 

triangle and the angles at A, X, and Y are the angles 

of spherical triangle. Angle PCD is not a spherical

Triangle as CD is not a part of great circle.

Length of great cricle arc

AY = r x angle AOY, 

Where r is the radius of the great circle, and is 

constant for all the great circles on the sphere 

and can be set to unity. Thus, arc AY is said to 

be the angle AOY. This angle is measured in 

radians.
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The spherical triangle
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Length of a small circle arc:

CD = RC x angle CRD

AB  = OA x angle AOB

Since CD || EAB, CRD = AOB and OA = RC

Hence, CD =  (RC/OA) x AB

= (RC/OC) x AB

(OC=OA radii of the sphere)

As RC ┴ RO,  cos(RCO) = RC/OC

and as RC || OA, angle RCO = angle AOC

Therefore,

CD  = cos RCO x AB = AB x cos(AOC)

Thus, CD = AB x cos(AC)

or, since PA = 90°

CD = AB x sin(PC)



The spherical triangle: The Cosine-formula

A

O

radius OA ┴ AD and AE

The spherical angle BAC is the angle between 

the tangents at A to the great circles and which 

is equal angle DAE.  
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Let ABC be a spherical triangle. Thus,

BC (arc) = angle BOC =  a

AC (arc) = angle AOC = b

AB (arc) = angle AOB = c 

AD and AE be the tangents to the great

circles AC and AB respectively.

Let angle BAC = DAE = A



The spherical triangle: The Cosine-formula
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In the plane OAD, angle OAD = 90°

and angle AOD = angle AOB = c

In the triangle OAD:

AD = OA tan c;  OD = OA sec c …….1

In the triangle OAE:

AE = OA tan b;  OE = OA sec b………2 

Using the triangle DAE:

DE2 = AD2+AE2 – 2AD. AE cos DAE

DE2 = OA2 tan2c+OA2tan2b-2(OA tanc .OA tanb cosA...3



The spherical triangle: The Cosine-formula
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DE2 = OA2 tan2c+OA2tan2b-2(OA tanc .OA tanb cosA...3

DE2 = OA2 (tan2c+tan2b-2 tanb . tanc cosA)………….....4

Similarly from triangle DOE

DE2 = OD2 +OE2 – 2OD .OE cosDOE

= OA2sec2c + OA2sec2b-2OAsecc.OAsecb. Cosa

or

DE2= OA2(sec2c+sec2b-2secb.secc.cosa)……5      

From (4) and (5)

After simplification

Cos a = cos b . cos c +sin b . sin c. cos A

This is called cosine formula

Similarly sine formula

sin A/sin a = sin B/sin b = sin C/sin c



The earth: longitude and latitude
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The great circle (NKLY) perpendicular  to the 

earth‟s spin axis (POQ) is called  the equator.

PGK is the meridian which passes through the 

Greenwich Observatory is called principal 

meridian or GM.

PHLQ is any other meridian intersecting the 

equator at L.

Longitude:

Angle KOL or the arc KL on the equator is 

defined to be the longitude of the meridian 

PHLQ. Measured from 0-180deg east of GM 

and 0-180deg west of GM.  All the positions 

on meridian PHLQ have same longitude

equator

Principal meridian
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The earth: longitude and latitude
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Latitude:

equator

Principal meridian

Let  „J‟ be a place on the meridian PHJQ. The 

angle LOJ or the great circle arc LJ is the 

latitude of the place J. If the place is above 

the equator it is said to be latitude north, if it 

is below it is latitude south.

Thus position of any place on the Earth is 

specified by the two fundamental great circles: 

the equator and the principal meridian.

If Ø be the latitude of J. POL=90°. Therefore,

PJ = 90° – Ø is called co-latitude of J. All 

places which have the same latitude as 

Greenwich lie on the small circle MGHX, 

which is parallel to the equator, called parallel 

of latitude.
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The earth: longitude and latitude
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Nautical mile: 

equator

Principal meridian

Length of the small circle HX is given 

interms of the length of the equator as

HX = LY cosθ

where θ is the latitude of the Greenwich.

Defined as the distance between two points 

subtending an angle of one arc minute at the 

center of the earth. Thus

1° = 60 nautical miles (one NM = 6080feet)



The celestial sphere: Altitude and Azimuth
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Point Z on the CS vertically over head at point 

O (observer) is called zenith.

The plane through O at right angles to OZ is the 

plane of horizon, cutting the celestial sphere at 

NAS, called celestial horizon or the horizon

Any great circle passing through Z is called 

vertical circle. Here, ZXA is the vertical 

circle. Let X be the position of star at any 

given moment. In the plane ZXA, angle 

AOX or the great circle arc XA is called the 

altitude of X.

Since OZ is perpendicular to OA the zenith 

distance,  

ZX(Z) = 90º (ZA) – altitude (XA)



The celestial sphere: Altitude and Azimuth
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LXM is a parallel of altitude. All the stars  which 

lie on this small circle have same altitude and also 

same zenith distance. Thus, if one knows „z‟ or the 

the altitude of a star, its parallel of altitude is 

specified. 

OP is parallel to the spin axis of the earth. The 

point „P‟ is called celestial north pole or the 

north pole. Stars around north pole move very 

little/none  relative to O unlike stars over head.

A star which least changes its altitude or the 

direction relative to O is called north pole 

star or Polaris. Thus, position of Polaris is

Invariable through out the night.



The celestial sphere: Altitude and Azimuth
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Azimuth:

Verticle circle through „P‟ I.e., ZPN is defined as 

principal vertical circle. The point N is north point 

of horizon, similarly S, W, and E. Also, called 

cardinal points.

X is the position of star on any vertical circle 

(ZXA). Angle PZX or the great circle arc NA is 

defined as Azimuth of X east  or west depending 

on X‟s position. When the azimuth is 90º E or

90º W it is said to be on the prime vertical i.e.,

it is vertical circle passining either east point E or

the west point W.

POZ is the angle between the radius of the earth (OZ)

and the earth‟s axis OP is called colatitude of the observer,  

or PZ = 90º - , where  is latitude of the observer. Thus,

PN = 90º - PZ = ; Thus altitude of the pole

star is equal to the observer’s latitude.
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The celestial sphere: Declination and Hour angle
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The great circle RWT perpendicular  to OP is called 

celestial equator which is parallel to the earth‟s Equator.

E

Z is the pole of the horizon and P is the pole of the 

celestial equator. W and E are cardinal points 90°

from all points on the great circle through Z and P. 

Thus, NW = SW = EN = ES = 90°.

Since stars are at great distances the angle 

between the straight line joining observer 

and any star, and the line OP (|| to earth’s 

axis) remains unaltered.

As the earth rotates about OP any star X makes a 

small circle LXM || to the CE. PXDQ be the semi-

great circle through X and the poles of the CS (P and 

Q). Then the angle DOX or the arc DX is defined as 

the declination (δ) of the star. Hence, north polar 

distance of the star is   PX = 90° - δ.

Astrophysicist Akki
Sticky Note



The celestial sphere: Declination and Hour angle
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The small circle LXM is called P parallel of 

declination. All points on this have same δ.

PZRSQ is a semi-great circle called observer’s 

meridian. Star (L) on the observer‟s meridian is 

said to be at transit. Star at L is at its greatest 

altitude and at least zenith distance (ZL). It‟s 

altitude keep changing and reaches horizon at F 

and minimum at M. Again at G star rises and 

reaches high at L. Thus, star from L describes 

360° along a small circle LXM.

At any moment star’s position on LXM is 

specified by the angle at P between the observer’s 

meridian and the meridian through the star 

(PXQ). Thus, the angle RPX or the arc RD on the 

equator is called hour angle (H). H is measured 

from O – 24 hours (0-360°) westwards.



The celestial sphere: Right ascension and Declination
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Let γ be an equatorial star and X any other star on 

the meridian through X cutting CE at D. As

X passes across the sky, we know its δ or DX is 

constant and also X‟s relative position with γ

remains same. Thus, γD is constant i.e the angle 

between the meridians of γ and D remains constant.

Therefore, with respect to γ as a reference point 

on the CE the position of X is completely 

specified. The angle γPX or the arc γD on the 

CE is defined as right ascension (α). The point 

of reference γ is called the vernal equinox or 

the first point of Aries.
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The celestial sphere: Right ascension and Declination
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The α is measured eastwards from Oh – 24h. And, 

Rγ = RD + Dγ;  

where RD (RPX) is the hour angle of X and Rγ is 

the hour angle of γ. The hour angle of γ is called 

the sidereal time (S.T).

S.T = H.A of X + R.A of X

S.T = H + α

Thus, when γ is on the Observer’s Meridian

(PZRSQ), the HA of γ Is 0h and S.T is 0h. When 

γ is next on the OM, 24h elapsed. This is the 

time required to complete one rotation of the 

earth about it‟s axis. This time is called a 

sidereal day. 



Galactic Latitude and Longitude

Here, fundamental great circle is the galactic equator 

with the intersection of the galactic plane with the 

celestial sphere. G and G‟ are rge north and south 

galactic poles (after IAU).

The galactic latitude (b) of a star X on this great circle 

GXG‟ is the angular distance from the galactic

Equator to X. This is measured from -90° at south 

galactic pole to +90° at north galactic pole.

Zero point for longitude is the center of the 

galaxy. The longitude (l) of star x is the angular 

distance from the center to the great circle GXG‟. 

This is measured from 0-360°.

Further study: conversion of Galactic coordinates (l,b)

to equatorial coordinates (α,δ). See Binney and 

Merrified (Galactic Astronomy)



The earth’s orbit:  The ecliptic motion
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Imagine the earth is at the center of celestial 

sphere. The Sun appears to make an elliptical

Orbit around the earth. The sun makes one 

complete circuit of the heavens in one year. The 

plane of the orbit is called the plane of ecliptic. 

The great circle in which this plane intersects

the celestial sphere is called the ecliptic.

U

T γR is celestial equator and YγM is the 

ecliptic. The ecliptic is inclined at an angle of 

about 23.5° to the CE. Angle MγR is called the 

obliquity of the ecliptic.



The earth’s orbit:  The ecliptic motion
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Ecliptic touches the celestial equator twice a year 

at γ and U. Between γ and M and M and U the sun 

is on the north pole side of the equator and between 

U and Y and Y and γ the sun is on the south pole 

side of the equator.

The position γ, at which the sun’s declination 

changes from south to north, is the vernal 

equinox. RA of the star  (X) is measured with 

reference to γ along the CE eastwards. γD is 

X‟s RA and DX is its δ.

At γ sun‟s RA  and δ are zero (March 21) called 

vernal equinox. At M RA is 6h and δ is 23.5° N 

(June 21: summer solstice). At U RA the sun‟s RA

Is 12h and δ is zero (Sept. 21: autumnal equinox).

At Y RA is 18h and δ is 23.5 S (December 21:

winter solstice).



The earth’s orbit:  The ecliptic motion

At γ sun‟s RA  and δ are zero (March 21) called vernal equinox (march 21).

Three months later sun  is 6h from γ and δ is 23.5° N (June 21: summer solstice).   

Six months later sun is 12h  (its RA) from γ and its δ is zero (Sept. 21: autumnal 

equinox). Sun‟s RA is 18 h and its δ is 23.5 S  on December 21 called winter solstice.



Seasons

The most northerly point of the ecliptic is called, in the northern

hemisphere, the summer solstice (RA=6h). At this point the Earth is topped 

towards the Sun giving longer hours of daylight and warmer weather.

The most southerly point is the winter solstice (RA: 18h) giving longer night 

hours and colder weather for northern parts of the globe.



Sidereal Time
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C is the center for both the Earth and the CS. g is the 

position of Greenwich and l is any other Place on earth.

Longitude on erath is the angle between plq and pgq.

Q

q

Extend Cg and Cl to produce CG and CL so

that meet CS. Now G and L zenith positions

of an observer at g and l on the earth‟s surface,

respectively.

For a star X the angle GPX is the hour angle

for an observer at g and angle LPX is the hour

angle of star X for an observer at l.



Sidereal Time
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Angle GPX = angle LPX + angle GPL (=angle gpl)

H.A of X at g = H.A of X at l + longitude (w) of l

This also holds good for the equinox and the

sidereal time is H.A of γ

ST at g = ST at l +- long. of l

or

ST. at l (LST)   = ST at g (GST) +- long of l

+ve for east longitudes and –ve for west longitudes



Sidereal Day

The time it takes for the Earth to spin 360 degrees with respect to the star. 

This has been found out to be 23 hours, 56 minutes.

Solar Day: It is also found the Earth takes 24 hours to spin 360 degrees

With respect to the Sun. 



Precession
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Precession was noted by Hipparchus in the 2nd

century B.C.
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Precession makes  the north pole P (defined by the 

Earths‟s Spin axis) describing a small circle around K.

K is the pole of the ecliptic.

P1

The circle around K found out to be having a

period of about 26,000 yrs. Two thousand years

ago the Pole P was 12 degrees from Polaris, now

it is just 1 degree. One may predict in another

12,000 years, Vega in Lyra will be the pole star.

Say P is the north pole at the beginning of 2000

and P1 be north pole position at the beginning

of 2001. PP1 is the arc of a small circle around K.



Precession
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F γG is the CE with north pole at P. One year later

F1 γG1 is the CE corresponding to the north pole 

position at P1. Similarly, γ and γ1 are vernal equinox 

Positions for year 2000 and 2001, respectively.

Due to the precession the north celestial pole moves

uniformly along the small circle arc PP1 and the

equinox moves uniformly backwards along the

ecliptic from γ to γ1. The movement of γ along the

ecliptic is called the precession of equinox. This

is found to be at the rate of 50”.3 per year.

This has an effect on star‟s RA and Dec. Let C γ1

be a great circle arc right angles to CE F γG.

γC = γ γ1 cos ε,       where ε is the 

obliquity of   the ecliptic. Thus,

γC = 50”.3 cos ε

One may find rate of change in RA  0.008s per sidereal day



Precession

For a star of (α,δ) at one epoch and (α1,δ1) at another epoch the change

in RA and Dec are related as

Δ δ = ψ sin ε cos α

Δα = ψ (cos ε + sin ε sin α tan δ )

Where, ψ is yearly rate of change in RA, and ε obliquity (23° 27‟)



Distances: Parallax

Star

Sun

E1
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d

π
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At a point E1 on the Earth, the direction to a 

star S is along the line E1S and at point E2 (six 

months later) Its direction is along E2s. 

During the course of the year, the apparent 

position of a star traces out an elliptical path 

called the parallactic ellipse.  Lines E2s and 

E1s contain an angle π.

Let r be radius of the earth orbit

and d is the distance to the star

Then,

tan(π) = r/d or d = r/tan(π) radians

Or d = r/ π radians (as the angle is 

very small).

Converting radians into arc 

seconds (2 π radians = 360°)

π” = 206265 π radians

d = 206265 r/ π”  (define one AU so that r=1 AU), 

thus

d = 206265/ π” AU

Parsec (pc) is the distance at which a star would 

have a parallax of 1”. 

1pc = 206265 AU = 3.086 X 1013 km = 3.26light 

years.             

d = 1/ π” pc



The distance to the Hyades cluster

Radial velocity Vr = C δλ/λ

For stars that are too far away to measure a 

reliable parallax we can apply a different 

geometrical method if those stars belong to a 

close cluster. We measure the distance from an

Actual radial velocity and a proper motion



The distance to the Hyades cluster

If a group of stars is moving together, we can sketch the motion of each 

star in space as shown. The point of convergence is determined on a chart 

of the sky by simply extending the lines of proper motion of each star and

Finding their point of intersection.



The distance to the Hyades cluster

θ is the angle between  the space velocity (v) and the radial

velocity  vr. Thus, the tranverse velocity is given as

Relationship between distance traveled (x), velocity (vt) and 

time (Δt) is

Since D is very large tanΔθ = Δθ,  and the relation between

D and x is  written as

Where, Δθ/Δt =μ, expressed in arcsec/yr.

Pc = 3.09x1013 km, radian = 206265 arcsec, 1year = 3.16X107



Distances: Parallax

Star‟s parallax is the reciprocal of its distance. 

Farther the star smaller is the parallax.

F.W. Bessel in 1838 was the first to measure parallax 

for star 61 Cygni which is 0.29”.

Hipparcos  (High precision parallax collecting satellite)

satellite in 1989 (launcched by ESA) measured

accurate parallaxes for about 120,000 stars upto distances

of 1kpc with errors  of 10% for stars below 100pc. 

The catalogue was released in 1997.

Gaia is European space mission to measure astrometry 

for one billion stars in our Galaxy. Gaia will measure 

stars down to mv = 20. It measures 24microns at 

mv=15 implying measuring the diameter of a human

Hair from 1000km. Gaia will be launched in Dec 2011

and data is expected from 2016.



Distance to the Sun: What is 1 AU in Km?

The sun is too bright to see background stars.

Base line of the Earth‟s diamter is small 

compared to the distance to the sun.

Method a: timing the passage of either Venus or 

mercury across the sun‟s disk from two well 

separated places on the Earth. Timing should be

Synchronized. Difference in timings between the 

two observations of start or end of the transit is 

the angle at the Sun between the directions of 

two observers. Separation between the two 

observing locations on the earth in km is known.

But transits are very rare. Recent one was 2004 

(earlier one was in 1882).

r

dθ

tan (θ) = r/d km.

Venus transit:

Θ = 8.794”



Distance to the Sun: What is 1 AU in Km?

θ

d

sun

Earth

Venus

cos(θ) = r/d or  r= cos(θ) X 1au

or  r =  cos(46.3°) X 1AU = 0.6905 AU

r

Method b: Venus orbits inside the Earth‟s orbit. We 

observe Venus to make angular separation from the sun 

(called elongation). This varies from 0° to some 

maximum. At maximum the directions of Venus –sun 

and earth – Venus form right angles.

Maximum elongation:

Next is to measure Venus‟s distance using parallax 

method with the aid of background stars. Or use a 

radar beam and measure the time for the round

trip.  

Thus, r = speed of light ( c ) X  t/2 (km)

where t is the time elapsed.

Therefore,  c X t/2 = 0.6905 AU

1 AU = 1.4959 X 108 km



Size of the Earth

p

θ

In 200 B.C  Eratosthenes attempted to measure 

Earth‟s size and he could get circumference, 

c=40,000 Km. Today‟s values are 40,075 km along 

the equator and 40,008 km through the poles.

Θ/360° = r/c

r

It was just overhead in Syene in Egypt. At the same 

time in Alexandria he measured the angle 7.5° made

by the shadow. The cities are 5000 stadia  (800 km) 

apart.

θ



Stellar Distances: main sequence method

(m-M)V = 5log(d/10)

d =10
((mv-MV+5)/5)

All stars in a cluster lie at the same distance 

allowing us to determine the distance by making 

an H-R diagram  by plotting apparent magnitude 

and the colour (B-V or V-K) of stars. We can 

calculate the distance to the cluster by comparing 

with the standard H-R diagram of true luminosities 

and the colour. The method of obtaining the 

cluster distance is called main sequence fitting.

Or



SNIa: distance indicators

They are luminous

Same peak amplitude with little dispersion

Physics of SN1a understood well

Local tests for calibration.

Problem: prediction of SN exposion

1-2 per galaxy in a millenium



Cepheid variables: distance indicators

Henrietta Leavitt was first to notice that the cepheids in Large Magellanic clouds 

have relationship between their apparent brightness (mv) and the period. Brighter 

Cepheids have longer pulsation periods . Since all the stars in the LMC are at the 

same distance from us , the period must be related to the luminosity.



Red shifts (Z): cosmic distance scales

Red shift (z)  =  λ/ λ°

Where, λ° is the rest wavelength

Hubble law states that farther the galaxy 

larger is the value of z, which is

D = cz/H°

Where, H° is the Hubble constant and c is the

Velocity of the light.

Ho = 100 h km s-1 Mp c-1  

where, h is 0.5 to 1.0. One also make 

an estimate of age of the universe 

using t = D/v as v = cz (for v << c)



Proper motion



Stellar Radii



Stellar Masses



Stellar magnitude system

Stellar magnitude system predates the telescope and

is based on human eye.

Hipparchus, the Greak Astronomer , in 200 BC, first divided the naked 

eye stars into six brightness classes. He produced a catalogue of 1000 

stars ranking them by “magnitudes” one through six. The first magnitude  

star is the brightest and the sixth one is the faintest to the eye.

Pogson (1857) (the director of the Madras Observatory) placed the magnitude

On precise scale. It was observed that a first magnitude star is about 100 times

brighter than the 6th magnitude i.e., 5 magnitudes lower.

Thus, the light flux ratio for a one-magnitude difference was found to be 1001/5 or 2.512.

One may write this as 1st magnitude star is 2.5122-1 hrighter in intensity than the 2nd magnitude

Star, and 2.5123-1 than the 3rd magnitude star and so on.



Stellar magnitudes

f1/f2 = 2.5 (m2-m1 =  100.4(m2-m1)

or log (f1/f2)  = 0.4(m2-m1)

m1-m2       = -2.5 log (f1/f2)

f1 and f2 are fluxes received on the earth which are functions of true 

brightness of star, its distance, extinction caused by intervening 

medium, wavelength and the detector  

Note: m1-m2 = 0.921 log e (f2/f1). The scale is defined by

ancient Greeks  was essentially based on natural logarithms.



Stellar magnitudes

f  1/d2

m1-m2 = -2.5log (d2/d1)2

This is useful to estimate distances to an unknown cluster

or a star if the difference in magnitudes is given.



Absolute magnitudes

It is measure of the intrinsic brightness of a star and is

Defined as the apparent magnitude that a star has when

Placed at a distance of 10 parsec (pc) from the Earth.

Flux received on the Earth at distance „d‟ and ‟10pc‟

Is written as   

f = (D/d)2 F;

f (d) /F (10)  =[10 pc/d]2; for D= 10 pc; 

m-M = -2.5 log [f(d) /F(10)]

= -2.5 log [10 pc/d]2

m-M  = 5logd -5

where, M is the absolute magnitude and the

quantity (m-M) is called the distance modulus.



Absolute magnitudes

m-M  = 5logd -5

If we know m and M we can estimate distance to the star

Absolute magnitudes are generally expressed as Mv. Note this

is not total output energy of the star. 

Distance modulas of the Sun is mv-Mv = - 31.57 and 

its Mv = +4.83.

Star light gets dimmer due to intervening ISM. Photons get scattered 

and/or absorbed by atoms and molecules in the space. Net effect of the 

dimming is expressed in  magnitudes.  Above expression is rewritten as,

m-M  = 5logd –5 + A

Where A is called interstellar extinction which is 

strong strong function of wavelength.



Bolometric magnitudes

Total measured radiation at all wavelengths from a star is defined as 

bolometric magnitude which is defined as mbol and Mbol for apparent and 

absolute bolometric magnitudes, respectively.

If a star is a strong infrared or ultraviolet emitter, its bolometric agnitude 

will differ greatly from its visual magnitude. The bolometric correction 

(BC) is the visual magnitude of an object minus its bolometric magnitude.

Mbol = MV + BC.



Bolometric magnitudes

Class Main Sequence Giants Supergiants

O3 -4.3 -4.2 -4.0

B0 -3.00 -2.9 -2.7

A0 -0.15 -0.24 -0.3

F0 -0.01 0.01 0.14

G0 -0.10 -0.13 -0.1

K0 -0.24 -0.42 -0.38

M0 -1.21 -1.28 -1.3

M8 -4.0

Mbol = MV + BC.



Stellar luminosities

Total  energy output of a star per unit time is known as luminosity.

Bolometric magnitudes and luminosities are related by Pogson‟s

equation

Using Stefan‟s law, for a star of radius R and the area of the

Spehere  4R2

Mbol(sun) – Mbol = 2.5 log (L/L(sun))

L = 4R2  Te
4

Say the star is at a distance r from the observer. Enery received

on the earth per unit area is

E = L/ 4r2  = ¼ 2  Te
4

Where  is the angular diameter of a star. And in the case of Sun

this is written as 

Esun = ¼ 2
sun  Te

4
sun;    = 1920” for the Sun



Black body radiation:



The Wien and Stefan-Boltzman law

The Wien Law gives the wavelength of the peak of the radiation distribution, while 

the Stefan-Boltzmann Law gives the total energy being emitted at all wavelengths 

by the blackbody (which is the area under the Planck Law curve). Thus, the Wien 

Law explains the shift of the peak to shorter wavelengths as the temperature 

increases, while the Stefan-Boltzmann Law explains the growth in the height of the 

curve as the temperature increases. Notice that this growth is very abrupt, since it 

varies as the fourth power of the temperature.



Filters

Optical devices called filters may be devised that allow light to pass 

in a limited range of wavelengths. In astronomy, a variety of filters 

are used to emphasize light in a particular wavelength region, but 

the most common are called the U (ultraviolet), B (blue), and 

photovisual (V) filters. Their transmission of light as a function of 

wavelength, as well as the response of the average human eye, is 

illustrated in the following figure.  This is known is broadband UBV

Or Johnson photometry.



Filters:Colour Indices

A color index is defined by taking the difference in magnitudes  at two different 

wavelengths.  For example, the B-V color index is defined by taking the difference 

between the magnitudes in the blue and visual regions of the spectrum and the U-

B color index is the analogous difference between the UV and blue regions of the 

spectrum. 

Colour Index = mB - mV = B-V



Filters: Colour Indices

The star Spica has apparent magnitudes U = -0.24, B = 0.7, and V = 0.9 in the UV, 

blue, and visual regions, respectively. Its colours are

B - V = 0.7 - 0.9 = - 0.2 

U - B = -0.24 -0.7 = - 0.94 

Negative values of color indices  indicate that Spica is a hot star, with most of its 

radiation coming at shorter wavelengths. On the other hand, for Antares B = 2.7 

and V=0.9, and the B - V color index is 

B - V = 2.7 - 0.9 = 1.8 

The positive value  indicates that Antares is a cool star, with most of its radiation 

coming at longer wavelengths



UV excess: Formation of the Galaxy

Eggen, Lynden-Bell and

Sandage (1962)

Rapid collapse model for

the Galaxy formation

“The stars with largest UV excess

are moving in highly elliptical

orbits, where as stars with little

or no excess move in circular

orbits”



Filters: Stromgren four colour system

Filter     Peak      bandpass

The Stromgrem system is an intermediate-band width system which provides 

astrophysically important information.

y (yellow) filter matches the visual magnitude and corresponds to V

b (blue) filter is centered about 300A to the red of B filter in UBV

to reduce the effects of line blanketing.



Sromgren System:

y

b
v

u

Line blanketing

Balmer discontinuity

Wavelength

fl
u
x

3500 550047004100

(b-y) is a good indicator of color and effective 

temperature

In the absence of blanketing, the continuum

slope would be roughly equal to (v-b).

v filter is defined such a way (v-b) is affected by blanketing 

and the difference,

m1 = (v-b) – (b-y)

measures strength of the blanketing and hence the 

metallicity. 

The Balmer discontinuity, the index c1 is 

defined as

c1 = (u-v) – (v-b)

nearly free from line blanketing.



uvby photometry: large scale Galactic surveys

Fig 2. Photometric Teff and [M/H] for a sample of 82 stars compared with our (Reddy et al. 

2003) spectroscopically derived Teff and [Fe/H] values.

Difference Teffs – Teff(p) =  71 +-47 K

[Fe/H] –[M/H]  =  0.05 +- 0.09



Magnitude calibration 

The observerd flux (f) is related to the actual stellar flux (f0
)

outside the earth‟s atmosphere, by

Actual stellar flux

Transmission of atmosphere

Efficiency of telescope+detector

Transmission of the filter

http://www.astro.virginia.edu/class/majewski/astr313/

Some of the material is adopted from the source: 



Extinction in mag. as a function of  at zenith


Airmass (mag) as a function of z

•At z=60o you look through 2 airmass ( 

from plane parallel approximation).

•At z=71o you look through 3 airmass 

(from spherical shell atmosphere model). 

•At limit of z=90o you look through 38 

airmass (derived with spherical shell 

formula).

Magnitude Calibration: Atmospheric extinction



Magnitude calibration: Atmospheric extinction

zenith

1
 a

ir
 m

as
s

X
Z

To calculate proper magnitudes on an 

absolute scale, one needs to correct for 

extinction in photometry

quote mags as seen at "top of atmosphere“

Need to understand how many magnitudes of 

flux lost per given amount of atmosphere 

depends on altitude above horizon

Z: zenith distance angle between zenith  and the star: 

(90 - altitude)

One airmass: amount of atmosphere seen at Z = 0

X : total atmosphere column determined in units of 

airmass



Atmospheric extinction 

zenith
1

 a
ir

 m
as

s

XZ

Using plane parallel approximation

cos z = 1/X

or

X = sec z   (good for Z <= 60)

Using spherical shell atmospheric correction

X = sec z – 0.0018167 (sec z – 1)-0.002875(sec z-1)2 

–0.0008083(sec z –1)3

Z=90, X=38(maximum)

Z=0, X=1

Z=60, X=2

cos z = sin  sin  + cos  cos  cos h

or

: your latitude; : star‟s dec;  h: hour angle



Atmospheric extinction 

The linear relationship between loss of brightness 

in magnitudes and airmass is known as  Bouguer’s

law.

The constant of proportionality, k,  is called  

the extinction coefficient .

To solve for k we need to monitor a  star as it 

changes its airmass (position with respect  to 

the zenith) and apparent brightness (in magnitudes).

We know k is k()

X

U
V

R

I

B

kB

o

Thus,

V(X=0) = VX- kVX

B(X=0) = BX- kBX and so on …



Atmospheric extinction:correction 

X
o

k is steeper as we go from red to blue:  for

standard UBVRI filters k is approximately

kU = 0.50 mag/X

kB = 0.25 mag/X

kV = 0.20 mag/X

kB = 0.25 mag/X 

kI = 0.05 mag/X

color shows an airmass effect. The colour extinction 

coefficient is written as 

Co = Bo-Vo = (Bx – kBX) – (Vx-kvX)

= (B-V)X – X(kB-Kv)

= C – kcX

higher the airmass redder the stars
1.0 1.5 2.0

V

B

Corrected colour index

measured index



Atmospheric extinction: first-order correction

Extinction is difficult model as it depends many A 

variables within the atmosphere.  A first order

Approximation is to account for the largest contributor, 

the air mass variation. The first order extinction 

correction terms are written as follows

v0 = v – k‟v X

(b-v)0 = (b-v) – k‟bvX

(u-b)0  = (u-b) – k‟ubX

Where, k‟ is called principalextinctioncoefficient (magnitudes per unit airmass) 

and the subscript 0 denotes magnitudes above the atmosphere.

The values of the extinction coefficients can then be found by following

One star thru changing air masses and plotting the color index or magnitude

Versus X. The slope of the line is the k‟ and the intercept is m0



Magnitude calibration: reduction to a standard system

In addition to correcting for airmass, one also needs to account for any 

differences between your equipment (telescope + detector + filter) and the 

standard system of equipment (i.e. standard bandpass).

Standard magnitudes and colors are written as

V = ε(B-V) + v0 + v

(B-V) = μ(b-v)0 + bv

(U-B) = ψ(u-b)0 + ub

U, B, V are standard magnitudes, ‟s are zero-points. ε ,μ, ψ are called

Transformation coefficients.Values with 0 subscript are the values corrected

for atmospheric extinction

Zero-points and transformation coefficients could be determined by measuring

several stars whose standard magnitudes and colors are known.The slope

of the best-fitted line for a plot of (V-v0) versus (B-V) will be the ε.

(For more details and examples please see Henden and Kaitchuk)



Extinction correction derivation:

Ignoring curvature of the earth and assuming plane parallel atmosphere

And altitude above 30°, one can write relation between the flux Fλ0

Above the atmosphere and Fλ thru the atmosphere,

Fλ/Fλ0 = exp (-0
s 
αλ ds;     αλ absorption coefficient

Fλ0 Fλ = Fλ0 - dFλ

ds

αλ

λ = αλ ds;   is the optical depth

Thus, Fλ/Fλ0 = e - λ

Converting these into magnitudes, one may write as

mλ-mλ = -2.5log Fλ/Fλ0

(1)

(2)

(1) + (2)
(3)

(4)



Extinction correction derivation:

Fλ0 Fλ = Fλ0 - dFλ

ds

αλ

mλ-mλ0 = -2.5log (e - λ) ;(5) (3) +(4)

mλ-mλ0 = 2.5 (log (e) λ

or

mλ0 = mλ – 1.086 λ(6)

Variation of  with the star‟s position can be deduced as follows

cos z = y/s or s = y sec z

s
y z

ds = dy secz

(7)

(8)

λ = sec z  αλ dy (2) + (8)(9)

(10) mλ0 = mλ – k‟ sec z (6) + (9)



Atmospheric extinction: second-order correction

Bandwidth of filters, particularly UBV system, has effect on the extinction and the 

corresponding correction is called second-order extinction correction. Within the 

band pass flux at some wavelengths suffer more than at others. Blue wavelengths suffer 

more than red ones.  In the case of hot stars one may underestimate extinction by 

adopting mean extinction and for the red stars one may overestimate extinction.

We may modify the k‟ as k‟v  k‟v + k‟‟v (b-v)

k‟bv  k‟bv + k‟bv (b-v)

v0 = v – k‟v X - k‟‟v (b-v) X

(b-v)0 = (b-v) – k‟bvX - k‟bv (b-v) X

To solve for k‟‟s one needs to observe a close pair of stars with very

different colours so that their air mass is almost same.

v01 – v02 = (v1 – k‟v X - k‟‟v (b-v)1 X ) – (v2 – k‟v X - k‟‟v (b-v)2 X )

Δv0 = Δv – k’’v Δ(b-v)X

Similarly, Δ(b-v)0 = Δ(b-v) – k”bv Δ(b-v)X



Interstellar Extinction
The amount of extinction varies as a function of wavelength such that it is 

highest at short wavelengths and lowest at longer wavelengths. There are 

approximately 30 magnitudes of visual extinction towards the centre of our 

galaxy. Such regions of high extinction are investigated at infrared and radio 

wavelengths for obvious reasons! 

Note the 2200 Angstrom bump possibly

due to the presence of carbon in the

form of spherical graphite grains in the 

ISM. 



Interstellar Extinction

The observed colour index B-V is related to the 

intrinsic  colour index (B-V)0:

B-V = (B-V)0 + E(B-V)

Where E(B-V) is the colour excess

For normal regions of the ISM the colour 

excess is related to the visual extinction AV: 

Values of X(x) = A/E B-V for 1.0 <=x<=2.7



Interstellar Extinction

Values of X(x) = A/E B-V for 1.0 <=x<=2.7

x        X(x)              x        X(x)

1.0        1.36              2.0     3.56

1.2        1.84              2.2     3.96

1.4        2.24              2.4     4.26

1.6        2.66              2.6     4.52

1.8        3.14              2.7     4.64

(adopted from Seaton 1979 MNRAS)

x= 1/ ()

This helps to find out interstellar extinction at any given wavelength

for the known values of E(B-V).



Telescopes:  A Few definitions

1. To allow collection of photons over a larger area. Helps to detect

fainter objects and to measure with greater accuracy

2. To allow higher angular resolution. Helps to resolve and study

spatial information of extended objects.

Two main functions of telescopes

Focal plane

Primary image

Collecting aperture

Optic axis
D

F (focal length)



Telescopes: focal ratio (f)

Focal plane

Primary image

Collecting aperture

Optic axis
D

F (focal length)

Focal length (F) is the distance between the light collecting

aperture and the primary image or the focal plane.

A plane through focal point and at right angles to the optic axis

is called the focal plane.

Focal ratio, f is defined as the ratio of the focal length F and 

the diameter D, of an aperture

f = F/D



Telescopes: Plate Scale 


Chief rays

F

s

The relationship between the size of 

the image on the focal plane and the 

angular field in the sky represented bit 

this image is governed by the focal 

length of the telescope.

 is the angle between the rays coming

from two stars in the sky and “s” is

the linear separation between the

two images in the focal plane, 

Thus,    s = F tan 

Or    s = F  as  is very small

 is in radians. In order to study images in detail larger separation is required 

and hence long telescope focus. The correspondence between  and s is 

called plate scale of the telescope and is expressed in arc-sec/mm

d/ds = 1/F radians

= 206265/F arc-sec/mm;    F and s are in mm and  is arc-sec



The telescope: flux collector

The larger the telescope, the greater is the amount of collected

radiation for detection 

If an object such as a star is considered as a point source, its telescope image

Is also considered as a point source, no matter how large a telescope is

Stellar brightness, flux F, might be expressed in units of energy s-1 m-2 -1

Determination of the signal-to-noise ratio of any measurement is performed in terms

of photons arriving at the detector within some wavelength interval over a certain

amount of time. 

Number of photons at the telescope aperture

N = /4  D2 X t  1 F/hc d

energy associated with each photon E = hc/ is substitued



The telescope: signal-to-noise ratio (S/N) 

Number of photons at the telescope aperture

N = /4  D2 X t  1 F/hc d

D telescope diameter, t  is integration time, 1 and 2 are the cut-on and cut-off

wavelengths. For relatively constant photon enery over of the given wavelength

One may write this as

N = /4  D2 X t   1 F/hc 

The arrival of photons at the telescope is a statistical process. When the arriving

Flux is low, fluctuations are clearly seen which are said be photon shot noise

Uncertainty of any measurement is given by   N (square root of N)

This error = N +-N

S/N = N/ N  = N  D2 t  D t



The telescope: resolving power 

The resolving power of a telescope may be defined as the ability of a telescope to 

separate objects with a small angle between them. There is a fundamental limit to 

any telescope to resolve objects which is called the theoretical resolving power.

Consider a point source and its radiation as wavefronts 

which are in phase.

As time proceeds wavefronts expand  and their direction 

of propagation is right angles to the surface of wavefronts.

A star at infinity, the wavefronts are in the form of parallel

Planes by the time they arrive at the telescope.

Effect of the aperture is to  alter the shape of the wavefronts

by introducing a differential phase change so that image

is produced. It is in the form of a diffraction pattern.



The telescope: resolving power 

The pattern is caused by the interruption of the plane

Wavefronts by the telescope aperture

Resultant diffraction pattern produced from a point

object appears as a spot at the center of a system of

concentric rings.

Energy contained in each ring decreases according

to the number of the ring. It is predicted central spot

contains 84% of the energy.

The central spot is sometimes referred to as the Airy disk

after it‟s first investigator.



The telescope: resolving power 

Intensity scan along a line through the center

of the pattern. The central spot shows maximum

of intensity.

 is the angle subtended at the aperture by the

center of the Air disk and a point in the

diffraction pattern.

Positions for minima intensity are given by

sin n = mn /D

for small angle

n = mn /D

n = number of the minima, m is the numerical factor, 

is wavelength and D is the diameter of the telescope.

m =1.22 for n=1

m= 2.23 for n=2

m = 3.24 for n=3



The telescope: resolving power 

n = mn /D

It will only be possible to resolve resultant image as 

being two components if the individual Airy disks are 

well separated

According to Rayleigh‟s criterian, two images are  said 

to be resolved when the center of one Airy disk falls on 

the first minimum of the other diffraction pattern.

Thus, it should be possible to resolve two stars

If they are separate by an angle greater than

 = 1.22 /D (radians)

or

 = 206265 X 1.22 /D (arc-sec)  

This is known as theoretical angular

resolving power of the telescope

At 5500A and for 

2m telescope  is 

0.07”



The telescope: magnifying power 

The magnifying power, m, of the optical system is 

defined as the ratio of the angle subtended by the 

virtual image at the eye, αe, and the angle αc, 

subtended by the object at the aperture. Thus,

m = αe/αc

The aperture acts as the entrance pupil and the 

image of the aperture formed by the eyepiece 

acts as the exit pupil.

The distance from the eyepiece to the exit

pupil is called eye relief (v)

All the rays from the field which can be viewed 

by the telescope pass thru the exit pupil and eye 

should be placed at this position



The telescope: magnifying power 

m = αe/αc

From figure, we may write 

tan αe = h/v  or αe = h/v

tan αc = h/u  or αc = h/u

Where, h distance from optical axis to

chief ray at the eyepiece

Using general lens formula

1/u +1/v = 1/Fe

We write,

1/v = u-Fe/uFe  and 

1/v = Fc/Fe(Fc+Fe)

Where u = Fc + Fe (see the figure)



The telescope: magnifying power

αe = hFc/Fe(Fc+Fe)  and

αc = h/Fc+Fe

Therefore,  m = αe/αc = Fc/Fe

Also m = D/d

Where, D is the diameter of the aperture

and d is the diameter of the exit pupil

Many stars which appear to be singe to the

unaided eye are found to be double when 

viewed with the telescope due to magnification

of the separation.



The telescope: magnifying power

Magnification limits:

lower limit:  m >= D/d or >= D/8

Where d ~ 8mm for pupil of the eye (

exit pupil <= entrance pupil of the eye)

This suggests all the light collected at the 

aperture is available for viewing by the 

eye. For less m values, some light is lost.

The upper limit is set by the impracticality

of making eyepieces with very

small focal length. For the image to be seen

without loss in the quality of the eye‟s

Function, the exit pupil must be larger than

0.8mm. Thus

upper limit m <= D/0.8



The telescope: field of view (FOV) 

The field of view is a function of the optics of the eyepiece itself and its 

magnification which is a function of the telescope focal length. Typical 

eyepieces have field of view ranging from 40° to 65° or more.. 

There are three basic facts to know about any eyepiece, the eyepiece focal length

(e), the diameter of the  exit pupil, and the eyepiece field of view known as the 

effective field of view.

The eyepiece field of view is the theoretical field of view in degrees the eyepiece

would provide at a magnification of one. The eyepiece field of view varies with the 

type of eyepiece. The actual telescope field of view is calculated by dividing the 

eyepiece field of view by the magnification.

Eyepiece field of view = 40°

Telescope field of view = Eyepiece field of view / Magnification

= 40/48

= 0.83 degrees

= 50.0 minutes of arc



The telescope: limiting magnitude 

The amount of energy collected by an aperture is proportional to its area.

For star light, the limit of unaided eye detection is set at about 6th magnitude.

Amount of power, P (ergs/s) collected from flux, f (ergs s-1 mm-2) depends

on the area of the telescope aperture

P = fA or P  fd2

f  p/d2

Usinf Pogson‟s equation, we form the relation

m= -2.5log10 f +c

m =-2.5log10 (p) +5log10(d) + const.

We define the limiting magnitude as the magnitude where the received power P

drops to an arbitrarily low value below which eye or eye+telescope can‟t detect

the source.



The telescope: limiting magnitude 

d2 = 8mm for the diameter of the eye pupil and mlim2 = 6 for the unaided eye

For 50cm telescope, mlim

is about 15.0

(this is for a perfect telescope with 100% transmission efficiency)

By rounding off the figures, the equation for the mlim may be written as

mlim = 6 + 5log10(D) - 5
For 50 cm telescope, mlim is about

14.5.

Thus,  mlim = -2.5log10 (Plim) + 5log10 (d) +const

All other things are equal (sky condition, distance to the source) the limiting magnitude

of the telescope depends only on the diameter of the aperture

mlim1 = mlim2 + 5log10 (d1) – 5log10 (d2)

mlim1 = 6 + 5log10(d1) -5log10 (8)

mlim = 1.485 + 5log10 (d)

D  diameter of the telescope and is expressed in mm



The telescope: limiting magnitude ( D t)

A star‟s image on a photographic plate (CCD) can be considered to be a point. 

Energy collected into the point is proportional to the apparent brightness of the 

star, the area of the aperture, and integration time of the exposure.

The eye needs to receive about 200 photons/s to sense an image.

Ee  = 200 X 4/Xd2 photons s-1 mm-2     (1)

Where d = 8mm for the dark adopted eye pupil

a photographic star image requires collection of 50000 photons to register. 

Energy arrival rate Et per unit area and per unit time at the telescope aperture

Is written as

Et = 50000/tD2   X 4/ photons s-1 mm-2    (2)

Where, D is diameter of the telescope and is expressed in mm, t is the exposure time

in seconds



The telescope: limiting magnitude ( D t)

Ee  = 200 X 4/Xd2 photons s-1 mm-2     (1)

Et = 50000/tD2   X 4/ photons s-1 mm-2    (2)

Pogson‟s equation allows us to form the relation

mt-me = -2.5 log Et/Ee

mt-me  = 2.5log10 (tD2) – 2.5log10 (1.6X104)

By putting me =6 the value obtained for mt corresponds to the

limiting magnitude mlim of the star which can be recorded by

a telescope of diamter D and esposure time t(s), hence

mlim = 6 + 5log10 D +2.5log10 t – 10.5

= -4.5 + 5log10 D + 2.5log10t

For 50cm telescope with an exposure

time of 1000 s, one may record a star

of 16.5 mag.



There are two basic types of telescopes: refractors and 

reflectors. Both have their advantages and disadvantages

Telescopes

Assignment:

Find out plate scales and angular resolutions for HCT and VBT telescopes?

(use IIA web pages for the relevant information)



Telescopes: Refractors

Refracting telescopes gather light with a lens, directing it to

the eyepiece. Small  scopes are often of this type, as they

are simple to operate and maintain. Larger refractors, however,

are very difficult to  build.

The first telescope to be pointed toward the 

heavens by Galilio in 1609. They really have changed

very little and operate by the same principle.



Telescopes: Refractors

From the very beginning, refractors suffered from a problem

caused by refraction of light. Not all wavelengths, or colors, meet

at the same point called chromatic aberration.

Unfortunately, focal lengths must be fairly  long for all

wavelengths to converge close to each other.

Two-element lenses, called achromats, must be figured on 4 

surfaces, as opposed  to one for a reflector. Refractors cost a 

great deal more. 

They can only be supported around the edge of the lens. This limits 

the size of the optics.

The tube length is very long.



Telescopes: Refractors

Built during the years 1880 to 1888.
When completed, the Lick Refractor 
was the largest  refracting telescope in 
the world. Even today, it is second in 
size  only to the 40-inch Yerkes 
Observatory refractor.

Great Lick  36-inch Refractor 40 inch-Yerkes refractor

Yerkes Observatory was completed and 

dedicated in 1897.  Credit goes to

George Ellery Hale and it was funded

by Charles Tyson Yerkes



Telescopes: Refractors : Chromatic aberration

As the light passes through the lens it suffers from chromatic 

aberration.

The lens-makers formula expresses focal length F as

1/F = (n-1) (1/r1 – 1/r2)

n-1= refractive power of the material and r1 and r2 radii of curvature

Longitudinal chromatic aberration (along the optical axis)

and lateral chromatic aberration (along the focal plane)



Telescopes: Refractors : Chromatic aberration

Chromatic aberration can be removed 

by lens system by combining +ve lens 

with –ve lens with different (n-1) so 

thatthe dispersion cancels out.

1/F = 1/F1 + 1/F2

F  = F1F2/F1+F2

F = k/(n-1); where K = r1r2/(r2-r1)

By combing above equations, 

F = k1k2/(k2(n1-1)+k1(n2-1))



Telescopes: Refractors : Chromatic aberration

Aim of the combination is to provide

a system whose focal lengths is identical

in the blue and red ends of the spectrum.The

achromatic condition is

k1k2/(k2(n1B-1)+k1(n2B-1))  = k1k2/(k2(n1R-1)+k1(n2R-1))

or                           k1/k2   = -n1B-n1R/(n2B-n2R) 

n1R and n2B are greater than n1R and n2R . Thus k1/k2 is laway

-ve and is achived by combining +ve and –ve lens



Telescopes: Refractors : Spherical aberration

Amount of spherical aberration depends on the shape of a lens

The shape factor,

q = r2 + r1/r2-r1

Where, r2 and r1 are radii of the two lens surface.

It is found that spherical aberration is minimum when q is close to +0.7



Telescopes: Refractors : Spherical aberration



Telescopes: Refractors : Coma



Telescopes: Reflectors

A spherical concave mirror of radius,r, has a focal point at a distance equal

to  r/2 from the mirror surface. Images from distant objects form in a plane

at right angles to the optics axis.

In order to have access to the primary image, the central part of mirror

surface will be ineffective. This gave rise two basic forms of reflectors

: Newtonian and Cassegrain systems 



Telescopes: Reflectors

Spherical aberration

Assignment:

make a study on parabolic and

spherical mirrors. Discuss their

Pros and cons in astronomy (use any 

available source).



Telescopes: Reflectors: Newtonian

The simplest type of reflecting telescope employing a concave parabolic 

primary mirror. The light reflects off the mirror and comes to a focus on-axis. A 

small flat mirror, called the Newtonian Diagonal, is placed before the focus to 

direct the beam to the side where it can be readily examined. The size of the 

diagonal mirror increases as the focal ratio of the optic becomes faster.



Telescopes: Reflectors: Newtonian

a) The tube length is very long.

b) The field is very poorly corrected, 

especially for fast focal ratios.

c) For visual observations the observer 

must climb tall ladders to reach the 

eyepiece.

d) For electronic detectors the 

equipment must be placed far from 

the telescope axes and longer cable 

lengths are required.

e) Heat from the equipment or observer 

is likely to degrade the image 

quality.

For these reasons the Newtonian is a poor choice for a 

modern research instrument or public outreach facility



Telescopes: Reflectors: The Cassegrain system

The Cassegrain is the most common system 

for the modern observatory. The flat

Newtonian diagonal is replaced with a

secondary mirror with a convex surface.

Light is reflected back through a hole in the

primary mirror.

A Cassegrain telescope has advantages:

a) The tube length is compact.

b) The focal plane and hence instrumentation

is readily accessible



Telescopes: Reflectors: The Schmidt telescope

The UK Schmidt Telescope (UKST) is a

special purpose camera, a survey telescope

with a very wide-angle field of view. 

It was designed to photograph 6.6 x 6.6 

degree areas of the night sky on photographic 

plates 356 x 356 mm (14 x 14 inches) square.

From 1973 to 1988, the UKST was operated

by the Royal Observatory,

Edinburgh .



Astronomical seeing

Earth‟s atmosphere is turbulent due to airflows. As 

a result wavefronts thru the atmosphere are 

subjected to the random phase delays.

Two consequences: intensity scintillation

seeing

Minute temeperature differences between

the individual pockets of air within the atmosphere

introduce small differences in refractive

index resulting wavefronts get corrugated

ro/α = 100/3 X 206265 = 7 km

The typical height at which the deforming taking

is given by

α is angular size of corrugation and ro is the physica

size (found from experiments) 



Adaptive optics 

AO provides a clearer  view of the universe by compensating for atmospheric 

turbulence that causes  stars to "twinkle.“  The adaptive optics adjustment is made 

with a deformable mirror that is almost  infinitely adjustable. It changes shape 

in numerous places hundreds of times per second, compensating for changing 

atmospheric conditions to focus light precisely. Essentially, when a celestial

object is to be observed, a fairly bright star nearby is  monitored, and a correction 

is made for the "twinkle" that is observed. This correction is then applied to the

object when it is observed.



Adaptive optics- laser guided star

. hey shine a  narrow sodium laser beam up through the atmosphere. At an altitude of 

about 60 miles,  the laser beam makes a small amount of sodium gas glow. The 

reflected glow from the  glowing gas serves as the artificial guide star for the 

adaptive-optics system. 



Adaptive optics

Adaptive optics is a technique that allows ground-based telescopes to remove 

the blurring affects caused by Earth's atmosphere. The image below shows 

the  dramatic improvement gained through the use of adaptive optics. 

The binary star IW Tau is revealed 

through adaptive optics.The stars 

have a 0.3 arc second separation.

the images 



Adaptive optics



Adaptive optics



Atmospheric light transmission



Telescopes: Mountings

The classical mounting for an astronomical telescope is to have

an axis parallel  to the Earth's north-south axis, called an

equatorial mounting.

Another popular mounting is Altazimuth mounting which

requires track the star on two axes with varying drive rates. 

Now that computer controlled drive systems can be made

which allow constantly varying drive rates to be used on two axes..



Mountings: Equatorial

The telescope moves north-south about the declination 

axis and east-west about the polar axis.

To point at a target requires  moving the telescope about both axes.

To track a target, however, requires  movement about the polar axis

only, at the same rate that Earth spins.

chief advantage of the equatorial mounting: the N-S position  doesn't change, 

and a single drive can regulate the E-W tracking.

main drawback is that the polar axis is difficult to orientate with respect to the

ground, and it is different for every observatory.

Positioning the mounting at odd angles creates difficulties that

increase rapidly as the  size and  mass of the telescope increase. 



Horseshoe mounting (equatorial)

The horseshoe mount is a design that avoids the limitation of the yoke with respect 

to objects near the pole. It involves mounting the telescope in a frame like this:

2.3m vbt 5m Hale at Palomer



Telescopes-Mounts: Altazimuth

WHT 4.2m canary islands, Spain HCT 2.0m, Hanle, India



A few modern telescopes (HET)

10.0 m telescope



A few modern telescopes (keck)



A few modren telescopes (GMT)

~26 m and projected completion in 2016



A few modren telescope (OWL)

ESA‟s over whelmingly large telescope (100m)


