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Foreword to the Edition Published
by Universities Press

Lord Martin Rees

Professor of Cosmology and Astrophysics
Astronomer Royal

Master of Trinity College, Cambridge
Past President, Royal Society

If you chose 10,000 people at random, 9,999 would have something in common—
their business and their interests would lie on or near the Earth’s surface. The other
would be an astronomer. I'm lucky to be one of this strange breeds—as is
Dr. G. Srinivasan, the author of this series of monographs entitled The Present
Revolution in Astronomy. But astronomy isn’t just for astronomers. Its findings are
fascinating and it is as important to understand the cosmos as it is to appreciate the
rest of nature. The entire cosmos is part of our environment. Indeed, the dark night
sky is one feature that’s been essentially unchanged throughout all human history,
shared by all cultures—though it has been interpreted in many different ways.

Astronomers are the heirs to a long tradition. Astronomy is the oldest science—
except perhaps for medicine. Its origins lie in the need to establish a calendar, to
measure time, and to interpret the patterns and regularities seen in the sky. Our
knowledge is now advancing faster than ever before—thanks to powerful tele-
scopes and probes that travel to other planets. A wide public has shared the
excitement of this vicarious exploration.

We can’t send actual probes beyond our solar system, but with our telescopes,
we can study stars in detail. In the last decade, we have learnt something that’s
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made the night sky far more interesting. Stars aren’t mere twinkling ‘points of
light’. They’re orbited by retinues of planets, just like the Sun is. Some of these
planets may be like the Earth—but whether there is life on any of them is a
question that challenges future generations of scientists.

We have come to realise the immense scale of the universe—in both space and
time. We live in a galaxy containing more than a hundred billion stars; but this
galaxy is itself just one of a hundred billion visible with modern telescopes. By
looking far away in space, we can penetrate far back in time, because the light
from distant objects took a long time to reach us. Astronomers have an advantage
over geologists and fossil hunters: they can actually observe the past and trace
cosmic history right back to the formation of the first stars and galaxies. Indeed,
there is compelling evidence that our universe is the expanding aftermath of a “big
bang” nearly 14 billion years ago.

We have learnt one crucial thing about the universe: it is governed by physical
laws that we can understand, and these laws seem to be the same everywhere.
By analysing the light from a distant galaxy, we can infer that the atoms it’s made
of behave just like those we study in the laboratory. It’s because of this uniformity
that we can understand the structure of stars and their life cycles, and how, from
simple beginnings, stars, galaxies and planets emerged to form the complex
structured cosmos of which we are a part.

The cosmos is a unity. There are links between the very small—the microworld
of atoms—and the very large—stars and galaxies. Stars form, evolve and die
(sometimes explosively). They are powered by nuclear fusion—a controlled ver-
sion of what happens in a hydrogen bomb. Over their lifetime, this process gen-
erates, from pristine hydrogen, atoms of carbon, oxygen and iron. All the atoms on
Earth, and in our bodies are the ashes from long-dead stars. We are the ‘nuclear
waste’ from the fusion power that makes stars shine. To fully understand ourselves
and our origins, we must understand not only Darwinian evolution, but also the
atoms all life is made of, and the stars that made those atoms. This wonderful story
should be part of everyone’s education.

But there is another reason for studying astronomy. It allows us to probe the
laws of nature under far more extreme temperatures, pressures and energies than
can be achieved in laboratories here on Earth. It also allows us to study the
fundamental force of gravity, and how it relates to the nature of space and time.

This is undoubtedly the Golden Age of astronomy. With the advent of the space
age, new windows to the Universe have been opened. With giant observatories
orbiting high above the Earth’s atmosphere, one can now explore the Universe at a
wide range of wavelengths: radio waves, millimetre waves, infrared radiation,
visible radiation, ultraviolet radiation, X-rays and gamma rays. This has enabled
astronomers to make unprecedented progress pertaining to a variety of questions:
the nature of the stars and their life history; the formation of planets; the birth and
death of the stars; the graveyard of stars—white dwarfs, neutron stars and black
holes; galaxies; quasars; and the Universe at large.

This series of monographs entitled The Present Revolution in Astronomy is very
timely for it aims to survey the contemporary scene at an introductory level.
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Dr. G. Srinivasan, the author of this series of books, is an internationally acclaimed
leader in this enterprise. In particular, he has studied neutron stars, which manifest
an astonishing range of ‘extreme’ physics. Readers of these splendid and acces-
sible books will find Dr. Srinivasan to be a clear and enthusiastic guide to the
wonders and mysteries of the cosmos. We should all be grateful to him.

Cambridge Martin J. Rees
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The year 2009 was celebrated as the International Year of Astronomy. This was to
commemorate the 400th anniversary of Galileo’s pioneering observations with a
telescope, observations that revolutionised man’s perception of the heavenly
bodies.

Four centuries later, we are in the midst of another golden era in astronomy.
The advent of the space age has opened new windows to the Universe, resulting in
spectacular discoveries and unprecedented progress in our understanding of the
nature of celestial objects. At the same time, many new and outstanding questions
have emerged. Indeed, there are clear indications that the resolution of some of
these puzzles may require a major revision of fundamental physics itself. A deep
connection between the microcosm and the macrocosm is becoming apparent.

This series of monographs entitled The Present Revolution in Astronomy is
intended to convey the excitement of contemporary astronomy. The inspiration for
writing these monographs was the enthusiastic response of the students who
attended an intercollegiate course I taught for 5 years at St. Joseph’s College in
Bangalore. This course was not part of the regular academic curriculum, and was
open to interested students and teachers from all the colleges in the city. Inter-
estingly, more than half of the students in each batch were students of engineering,
rather than pure science. And yet, they were fascinated by the lure of astronomy.
Although the underlying theme of the course was The Present Revolution in
Astronomy, my idea was to use astronomy as a Trojan horse to get the young
students excited about the challenges that await them in the world of physics/
astronomy, engineering and technology. It was the unanimous view of these
students that I should develop these lectures into a series of books.

There is a second reason why I thought it would be worthwhile to write these
books. Historically, astronomy has always had a great appeal among the general
public. It is even more so today. The commissioning of new telescopes, and the
discoveries made with them receive wide publicity in the print as well as the
electronic media. Space Agencies like NASA, as well as leading astronomical
observatories, have impressive Public Outreach programmes. And yet, here in
India, hardly any of the universities offer astronomy as one of the subjects in the
undergraduate curriculum. As a result of the lack of familiarity with the subject,
very few students opt for a career in astronomy even though there are several truly

ix
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world class observing facilities in India. This series of books is intended to partly
remedy this lacuna.

Now, a few words about the scope of these monographs and the style in which
they are written. My primary objective is to introduce the reader, young and not so
young (!), to the presently unfolding revolution in astronomy. We shall discuss the
recent developments concerning a wide variety of topics: the nature of the stars and
their life history; the birth and death of the stars; the graveyard of stars—white
dwarfs, neutron stars and black holes; galaxies; quasars; and the Universe at large.

The monographs are not intended to be ‘textbooks’ in astronomy. Textbooks
have to develop the subject in a pedagogical manner, dwell on the experimental
methods and phenomenology, develop the mathematical aspects of the theory in a
systematic manner, include problems and exercises, etc. While all these are needed
to learn a subject seriously, conventional textbooks have a serious handicap.
Introductory books ‘begin at the beginning’ and seldom convey the excitement
surrounding contemporary developments. They tend to focus on questions that
have been resolved, rather than highlight what is not known. In contrast, this series
of books is intended to serve a different purpose. I hope they will give the reader an
introduction to the recent developments, as well as highlight the outstanding and
unsolved questions. I believe that a young reader would be more interested in the
unsolved puzzles, for that is where the challenges lie.

The books have a very different flavour compared to the traditional astronomy
books. For example, they do not discuss topics such as measurement of distances
to celestial objects, determination of their masses, luminosities, etc. Nor do they
dwell on coordinate systems to define their positions in the sky, the classification
of their spectra, etc. While all these are ‘bread and butter’ issues, it is my view that
a reader would learn these topics at a later stage in the normal course if he or she
decides to become a practising astronomer. The emphasis in this series of
monographs will be on physics, and for the following reason.

Among the many great discoveries made by Isaac Newton, perhaps the most
profound was his assertion that the Laws of Nature have universal validity. In other
words, the laws of physics that govern phenomena on Earth apply everywhere in
the Universe. Today, we take this assertion by Newton as an axiom. Indeed, during
the past couple of centuries, several seminal inputs to laboratory physics have
come from astronomical observations. The discovery of the law of gravitation,
emission and absorption lines in the spectrum of the atoms, the discovery of
Helium, the first verification of the predictions of the Special Theory of Relativity
and the General Theory of Relativity are some of the more important examples.
This is not surprising. The range of densities, temperatures and pressure that are
obtained in celestial bodies are staggering compared to what one encounters on
Earth. For example, the densities range from 1 atom/cm’> to 10%7 atoms/cm3, and
the temperatures range from 3 kelvin to 100 million kelvin—conditions that are
hard for us to comprehend. Consequently, one encounters many new and exotic
physical phenomena in celestial objects. Indeed, a few decades ago one would
have said that Astronomy is the home of physics. Today, however, it would be
more appropriate to say that Physics is the home of astronomy. We shall see the
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reason for this paradigm shift as we progress in this series. Therefore, we shall
concentrate on the physics of the celestial bodies—their nature, their stability, their
central engines, their radiation mechanisms, etc.

Having stated the objective of this series of books, I must add that I do not
assume any astronomical background from the reader. A knowledge of physics at,
say, the Halliday and Resnick level would be quite adequate to get started. We
shall develop the rest of the background as we go along. To meet the stated
objectives, I shall often be required to sacrifice rigour in the arguments in favour of
simple analogies and qualitative arguments. And I shall do so without any apol-
ogies! I shall consider my efforts worthwhile if these books manage to convey the
excitement of contemporary astronomy. As for the younger readers, I do hope that
these books will arouse their interest sufficiently enough for them to want to pursue
the topics further by going to more learned books.

When I was young, I had the pleasure and privilege to read the marvellous
books by great masters like Sir Arthur Eddington, Sir James Jeans and George
Gamow, books in which they explained the developments in physics and astron-
omy in the early part of the last century. There are several recent books, written in
a similar vein, by leading physicists and astrophysicists, of the present epoch. And
then there is the ‘Internet’! This series of monographs represents my very humble
efforts in the same spirit.

This Volume

In the first volume in this series, entitled What Are the Stars?, 1 discussed the
nature of the stars, their stability and the origin of the energy they radiate. One of
the fascinating things about stars is that they evolve as they age. This evolution is
different for stars of different masses. How stars end their lives when their supply
of energy is exhausted also depends on their mass. This volume is devoted to a
discussion of the evolution of stars and their ultimate fate. Historically speaking,
astronomers first worried about the ultimate fate of the stars, even before the
details of their evolution became clear.

I have divided this volume into two parts. The Part I is an account of the
remarkable predictions made during the 1920s and 1930s concerning the ultimate
fate of the stars. Since much of this development hinged on the emerging quantum
physics, I have given a detailed introduction to the relevant physics. These topics
will be useful to you should you decide to pursue studies in condensed matter
physics, nuclear physics, astrophysics, etc.

Part II is a summary of the life history of stars. This discussion is divided into
three parts: low-mass stars like our Sun, intermediate-mass stars, and massive stars.

As you read this volume, you will discover that much of contemporary
astrophysics has been built on the foundations erected by Subrahmanyan
Chandrasekhar in the 1930s. Since this volume has been written during his birth
centenary, I have included in it a brief biographical sketch of Chandrasekhar.
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Part I
A Historical Perspective



Chapter 1
What Are the Stars?

Globes of Gas

This chapter is intended to be a brief recap of the relevant parts of the first volume
in this series entitled What Are the Stars?

The major breakthrough in our understanding the nature of stars came with the
discovery by Fraunhofer in 1817. He demonstrated that the spectrum of sunlight
contained dark lines. In the mid 1850s, Kirchoff and Bunsen demonstrated in labo-
ratory experiments that such dark lines could be produced in the spectrum of light
from an opaque body by passing the light through transparent substances. This led
Kirchoff to formulate his comprehensive theory of radiation. It became clear from
these investigations that the outer layers of the Sun and the stars were gaseous, with
a composition similar to what we find on Earth. Thus, the picture emerged that the
stars are globes of gas, held together by their own gravity.

The beginning of our understanding of the true nature of the stars can be traced
back to the second half of the nineteenth century. J. Homer Lane was the first
person to investigate the details of the temperature distribution within a star. In 1870,
he published a seminal paper in American Journal of Science and Arts, entitled,
‘On the theoretical temperature of the Sun, under the hypothesis of a gaseous mass
maintaining its volume by its internal heat, and depending on the laws of gases as
known to terrestrial experiment’. Put simply, in this work Lane assumed that stellar
matter behaved as an ideal gas and obeyed Boyle’s law, as terrestrial gases do. The
basic idea was that the inward pull due to self-gravity was balanced by the pressure
of the gas, as indicated in Fig. 1.1.

But how do we know that the interior of the Sun is hot? A very simple argument
tells us that the mean temperature inside the Sun must be of the order of a few million
degrees kelvin.

G. Srinivasan, Life and Death of the Stars, Undergraduate Lecture Notes in Physics, 3
DOI: 10.1007/978-3-642-45384-7_1, © Springer-Verlag Berlin Heidelberg 2014
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Fig. 1.1 A star is stable
because the inward-directed
force due to self-gravity is

force
opposed, and balanced, by the
pressure of the gas. The weight
of the column of gas above

any point in the star must be < — ——— > | Gas pressure

countered by the pressure of

the gas. This condition must
be satisfied at every point in
the star. Otherwise the star

will not be in mechanical or
hydrostatic equilibrium

Gravitational

| Stars as globes of gas |

The Temperature of the Sun

To see this, let us invoke the famous virial theorem. This theorem is of very general
validity and is applicable as long as the system under consideration is statistically
stable. The theorem states that in the steady state the fotal energy of the system
is equal to one-half its potential energy. This powerful theorem can be invoked to
estimate the average temperature of the Sun. In this case, the total energy is the sum
of the stored thermal energy in the Sun and the gravitational potential energy of the
Sun due to self-attraction. According to the virial theorem,

1
Thermal Energy + Grav. Potential Energy = EGrav. Potential Energy.

Therefore,

1
Thermal Energy = — zGrav. Potential Energy. (1.1)

(Notice the minus sign on the right-hand side. Remember that the gravitational poten-
tial energy is negative. Therefore the minus sign is needed to make the right-hand
side positive). The gravitational potential energy of a sphere of mass M and radius R
is ~—GM?/R. The thermal energy of the Sun is just the sum of the kinetic energy of
the constituent particles. Let T be the average temperature of the Sun. We know from
the kinetic theory of gases that the average energy of the particles is %kB T.If Nis
the total number of independent particles, then the total thermal energy is %N kpT.
Thus, according to the virial theorem (1.1),

3NkT_lGM2
2P TR

(1.2)
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We know the mass and radius of the Sun. We can estimate the number of particles
by assuming some chemical composition. The above equation can then be solved for
the average temperature. This yields a value of 10 million kelvin. (Take a few minutes
to verify this. Assume for simplicity that the Sun is made solely of hydrogen. Since
you know the mass of the Sun, you can estimate the number of atoms in the Sun.)
I hope you are astonished by the power of the virial theorem, which enabled us to
make this estimate. Sitting here on Earth, we can say with considerable confidence
that the average temperature of the Sun must be ten million kelvin! We only needed
to know the mass and radius of the Sun to be able to make this estimate.

Hydrostatic Equilibrium

Next, let us set up the equation for the mechanical stability of the star. Consider
an imaginary concentric spherical surface of radius r inside the star, as shown in
Fig. 1.2. Let us place on this surface a small cylinder, whose axis points along the
outward radius at that point. The cross-section of this cylinder is of unit area of the
base and length dr and it contains stellar material. The density of this stellar material
is p(r), which is the value of density obtained at the distance r from the centre. The
gravitational force on that cylinder would be due to the mass interior to the imaginary
surface. Let us call this mass M (r).

As the area of cross-section of the cylinder is unity and its length is dr, the mass of
the infinitesimal cylinder is given by p(r)dr. The force of attraction between M (r)
and p(r)dr is

GM(r)p(r)dr

3 (1.3)

r

As you know, in Newton’s law the contribution to the force from the mass exterior
to the surface cancels out. If you know some calculus, I urge you try and prove this.
You will find it illuminating. The gravitational force on this infinitesimal cylinder
has to be balanced by the pressure differential on it.

This is just the difference between pressure measured at the two surfaces of the
cylinder at a distance from the centre equal to r and r + dr, respectively. Let us
denote this by d P. This pressure difference d P represents the force —d P acting on
the cylinder in the direction of increasing r. Thus the equation for the equilibrium of

the unit cylinder is
GM(r)p(r)dr

dP = !

r

One can rearrange this as

dP _ GM(r)p(r)

&= a9
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Fig. 1.2 Consider an infinitesimal cylinder at a distance r from the centre of unit cross-sectional
area and of height dr. The gravitational force acting on it will arise from the mass M(r) of material
interior to the spherical shell on which it lies. This has to be balanced by the difference in pressure
dP which represents a force —dP in the direction of increasing r (pointing outward from the centre).
This is the condition for hydrostatic equilibrium of the star, and must be satisfied at every point in
the star

The above equation is known as the equation of hydrostatic equilibrium. For a star
to be mechanically stable, this equation has to be satisfied at every point in the star.
Otherwise, as a distinguished astronomer said, ‘the punishment would be swift’. Any
violation of this condition of hydrostatic equilibrium would result in motions within
the star. For example, the material within our sample unit cylinder would either sink
or float up due to buoyancy.

Radiative Equilibrium

In Lane’s theory the pressure on the left-hand side of (1.4) is the pressure of an ideal
gas: pc = nkpT, where n is the number density of particles. He further assumed
that the internal heat is transported outwards by convection, very much like what
happens in our atmosphere. Around 1920, Sir Arthur Eddington at Cambridge
University introduced the idea of radiative equilibrium. In this scenario, the heat
flowing outward is transported by radiation, rather than convection or conduction.
This flux of radiation flowing from the interior towards the surface will exert pressure
on the stellar material. Eddington’s point was that the pressure that supports against
gravity is the sum of gas pressure and radiation pressure.

You will recall that the radiation has momentum E /c, where E is the energy and
c is the velocity of light (in the quantum picture, the momentum of a photon is 4v/c,
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Radiation flux Radiation flux

M%

V0N —— — F

|

dx

~

- X

Fig. 1.3 Radiation passes through a slab of stellar material of unit area and thickness dx from
both sides. Let the temperature on the two faces be 7' + dT and T, respectively. Consequently, the
flux of radiation and the pressure of radiation on one side will be more than on the other. There will
be a resultant pressure —dpp in the direction of the temperature gradient

where & stands for Planck’s constant and v is the frequency of the photon). Since
momentum is associated with radiation, it must exert pressure, just as gas particles
do. Let us consider a special kind of radiation known as black body radiation. This
is just radiation in an enclosure with absorbing walls maintained at a temperature 7.
Given enough time, the radiation in the cavity will come to thermal equilibrium with
the walls. It will be isotropic as regards the direction of flow and will be characterized
uniquely by the temperature of the walls of the cavity. An important result from the
nineteenth century is that the energy density of radiation in the cavity is proportional
to the fourth power of the absolute temperature:

E =aT?, (1.5)

where a is a universal constant known as Stefan’s constant. The above relation is
known as Stefan’s law. The pressure exerted by this radiation is

1
Pp = §aT“ (1.6)

Let us now understand the principle of radiative equilibrium. Pick any radial direction
in the star and call it the x axis, and let the positive direction of this axis be along
the temperature gradient. Consider a slab of stellar material of thickness dx and area
equal to one square centimetre held normal to the x axis (see Fig. 1.3).

Let the temperature of the two faces of the slab be 7" and T + dT, respectively.
Since pressure is force per unit area, the forces exerted by radiation on the two faces
are +pr and —(pr + dpr). The resultant force in the direction of the temperature
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Flux of radiation
Fommmmmmm— - ————— Fkpdx/c
C 0
& Fipdx / ¢
b4
0_--
g x-component of the momentum
F R acquired by the slab
dx

Fig. 1.4 The fraction of the radiation flux F absorbed by the slab will be equal to the flux multiplied
by the mass absorption coefficient per unit mass multiplied by the volume of the slab, thatis, Fxpdx.
Therefore the x-component of the momentum acquired by the slab per unit time will be Fxpdx/c.
For the slab to be in equilibrium, this x-component of the momentum absorbed from the radiation
must be equal to —dpg

gradient is —dpg. We have adopted the convention that the force is positive if it is
in the direction of gravity and negative if directed outwards.

This resultant force imparts momentum to the slab. For the slab to be in equilibrium
it must utilize this momentum in some fashion; otherwise, the slab will be set in
motion. What the material of the slab does is to absorb this momentum and use it to
supplement the gas pressure in its attempt to support itself against gravity.

Next we have to calculate the x-component of the momentum absorbed by the
material in the slab. Let us first introduce the mass absorption coefficient « . This is the
coefficient of absorption per gram of matter. Let F be the flux of radiation incident
on the slab (measured in ergs per square centimetre per second). The fraction of the
flux absorbed by the slab will be Frxpdx, where p is the density of matter in the slab.
Since the area of the slab is unity and its thickness is dx, the mass of the slab is just
pdx (see Fig. 1.4). The x-component of the momentum absorbed by the material per
unit time is

Fkpdx/c, (1.7)

where c is the velocity of light (Interestingly, the above result holds even if the
radiant flux is incident obliquely. If the angle of incidence is 6 then the distance
travelled by it through the slab is increased to dx sec 6. So the energy absorbed in the
slab increases by sec 6. But the x-component of the momentum absorbed remains
unchanged because to obtain the x-component, we have to multiply the above by
cos & which cancels sec 0).

Finally, we want to calculate the net momentum absorbed by the slab per unit
time. Remember that radiation is incident on the slab from both sides. Let us denote
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the flux from the left (outward flowing) by F; and the flux from the right by
F_. The net outward flux is given by

F=F,—-F_, (1.8)
and the net positive momentum gained by the slab is Fxpdx /c. Earlier we said that
for the slab to be in radiative equilibrium, the momentum gained per second by the
slab must be fully absorbed by the matter contained in it. Hence,

—dpr = Fkpdx/c,

or

o _cdrr (1.9)

kp dr

(We have replaced x by the radial co-ordinate, ). Substituting for the radiation
pressure from Stefan’s law, pgr = %a T4, we get for the net outward flux:

Fo ac dT* (1.10)
T B3kp dr ’

This is the famous result obtained first by Eddington. It says that net flux of radiation
is proportional to the pressure gradient and inversely proportional to the opacity of
the stellar matter (Eddington called kp the obstructive power of the material screen
through which the radiation is forced).

Eddington’s Theory of Stars

Eddington constructed a theory of stars based on the above principle of radiative
equilibrium. According to him, the pressure that balances gravity in Eq.(1.4) is the
sum of gas pressure and radiation pressure,

P = pG + pr, (1.11)

where T 1
pG = nkpT = 2582 pp = —aT?. (1.12)

wmp 3

In Eq. (1.12) we have expressed Boyle’s law in terms of the mass density p. Since
we shall be doing this in other contexts also, let us understand how this is done. If
our gas consisted of only one species of particles, then the number density, n, and
the mass density, p, are related by
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mass density

number density = —.
mass of the particle

The stellar plasma, however, consists of more than one species of particles; it consists
of electrons and nuclei of different elements. Therefore the correct thing to do would
be to divide the mass density by the average mass of the independent particles:

. mass densit
number density = d

average mass of the particles’

To define the average mass of the particles one needs to know the chemical compo-
sition of the plasma. It is customary to introduce the notion of the mean molecular
weight p in defining the relation between the number density of independent particles,
n, and the mass density, p,

n=—, (1.13)
nmp

where m , is the mass of the proton (since the mass of the neutron is very nearly
the same as that of the electron, we shall not distinguish between the two). The
terminology molecular weight is borrowed from chemistry and is a misnomer here.
In the present context, the term molecule really refers to the independent particles
of our gas, nuclei of different species and the electrons. It should be clear from the
above equation that m p is defined as the average mass of the independent particles
of the gas.

The Mass—Luminosity Relation

One of the most spectacular predictions of Eddington’s theory concerns the relation
between the mass and the luminosity of a star. The theory predicts that the luminosity
of a star is proportional to the cube of the mass,

(1.149)

This is a remarkable result. Notice that the radius of the star does not enter! One
would think that given a star of a certain mass, the luminosity it generates should
depend on its radius. After all, the internal temperature should be determined by the
radius—common sense tells us that smaller the star, the hotter it would be—and that,
in turn, should determine the rate of energy generation.

But the radius does not enter the expression for the luminosity. It is almost as
though the star knows the radius it must attain. Well, it does! The principle of radiative
equilibrium dictates to the star the luminosity it is allowed to generate, and that
luminosity is determined only by its mass and the opacity [notice that the opacity or
the mass absorption coefficient enters Eq. (1.10) for the net outward flux of radiation].
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Fig. 1.5 A log-log plot of the mass—luminosity relation using recent data. As shown, an exponent
of 3.5 fits the data very well. (From Encyclopedia.com: http://www.encyclopedia.com/doc/1E1-
masslumi.html, with the courtesy of the author.)

Given the opacity of the stellar material, the star will adjust itself to that combination
of RT such that the energy generated per unit time precisely compensates for the heat
energy lost from the surface per unit time. If the star were to generate more luminosity,
given that the rate at which the energy can diffuse outwards is determined by the
opacity, there will be a buildup of energy in the interior and the condition of radiative
equilibrium will be violated.

The prediction that L o< M3 was in excellent agreement with observations. More
recent data are shown in Fig. 1.5. As will be seen, L oc M3 gives an excellent fit to
this data set. This slope is very nearly what Eddington’s theory predicts.

Why Do the Stars Shine?

A much debated question towards the end of the nineteenth century concerned the
source of energy radiated by the Sun. Lane’s theory predicted a curious behaviour for
the stars. As the star radiates energy, the internal temperature must decrease (since
the internal energy is being radiated away). This will disturb the delicate balance
between the gravitational force and the pressure force. Consequently, gravity will
gain an upper hand, and the star will have no option but to contract. But this will
compress the gas and make it hotter. So we have the curious behaviour that as the
star radiates energy, it will get hotter! The stellar material has negative specific heat,
in violation of the laws of thermodynamics.


http://www.encyclopedia.com/doc/1E1-masslumi.html
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This led a Scottish engineer by name John Waterston to propose that
gravitational contraction of the Sun at the rate of a hundred metres a year would
provide an adequate supply of heat. This idea was picked up by the great German
physicist Hermann von Helmholtz since this seemed natural to him. Prior to this, the
German philosopher Immanuel Kant had proposed that the solar system was formed
due to the contraction of a giant cloud of gas. Helmholtz felt that this contraction
must be continuing still. Lord Kelvin, the High Priest of physics during that period,
also became convinced of this and abandoned his earlier preference that Sun’s heat
is due to the continuous bombardment of the Sun by meteorites.

Let us make sure that we are clear about this idea. When a star contracts, matter
moves towards the centre of the star; the difference in the gravitational potential
energy between the old configuration and the new configuration is converted into
heat. But there is a curious twist to this. Remember what we said earlier. As long as
the gas behaves as a perfect gas the star must get hotter as it radiates and contracts. So
the heat generated as the star contracts must be sufficient not only to replace the heat
lost as radiation but also to heat the star to a higher temperature. This is essential,
for otherwise the star has no option but to collapse.

Helmbholtz and Kelvin estimated that the Sun had been shining for about twenty
million years, and will continue to shine for another twenty million years or so.
Let us see how one may estimate this timescale. Recall our discussion of the
virial theorem: When a star contracts, only one-half of the gravitational poten-
tial energy released is available for radiation. The other half is stored as ther-
mal energy as explained in Eq.(1.1). The gravitational potential energy of the
Sun is ~—2GMé /Re. If we divide one-half of this by the rate at which the Sun
has been radiating, then we can get an estimate of how long the Sun has been
shining.

N —% gravitational potential energy _ GM% /Ro (1.15)

Luminosity Lo '
The present rate at which the Sun is losing energy is the Luminosity of the Sun
[Lo = 4 x 103 erg s7!]. Inserting the values for the mass and radius of the Sun, we
come to the conclusion that if the Sun had been radiating at the present luminosity,
then it could have done so only for about 20 million years [Convince yourself of this
by substituting the values]. This seemed a comfortably long time for Lord Kelvin.
Even though the geologists were convinced (even at that time) that the Earth was
older than 20 million years, Lord Kelvin was not bothered. He used his status to tell
the geologists to confine themselves to this timescale!

The discovery of radioactivity was the last nail in the coffin for the contraction
hypothesis. Using modern techniques, geologists were able to determine the age of
the older rocks, and this turned out to be more than a billion years. Now, if the earth
itself is several billion years old, the Sun must be even older than this. So, it was back
to square one, regarding explanations about the source of energy in the Sun and the
stars. But one could say this: if an external source of energy (such as meteorites),
as well as gravitational contraction, are ruled out then the star must contain some
hidden source of energy which enables it to shine for billions of years.
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What is this hidden source of energy? Sir Arthur S. Eddington provided the
breakthrough. Addressing the British Association in Cardiff on 24 August 1920,
Eddington argued that only subatomic energy is available in unlimited quantity. What
inspired Eddington to make this remarkable assertion was the discovery that had just
then been made by F. W. Aston, one of Rutherford’s students at the Cavendish Lab-
oratory in Cambridge. Using the mass spectrograph that he had just invented, Aston
was able to measure the masses of the atoms. One of the discoveries he made was that
the mass of four hydrogen nuclei was greater than the mass of one helium nucleus.
Eddington’s idea was that if four protons fuse to produce a helium nucleus then this
mass deficit would be converted into energy according to Einstein’s formula:

E = AMc>.

Let us examine this closely. The mass of four protons is 4 x 1.0081m,, (atomic mass
units), while the measured mass of the 4 He nucleus is 4.0039m,,. This means that a
mass of 2.85 x 10~2m,, has disappeared for every helium nucleus produced if, indeed,
the helium nucleus was produced by fusing four protons. This is roughly 0.7 % of the
original mass of hydrogen, and corresponds to energy measuring about 26.5 MeV.
Another way to say this is the following. If mass M of hydrogen is converted into
helium, then the energy released is 0.007 Mc? (Think of James Bond to remember
this formula!). The mass of the Sun is 2 x 1033 g, most of it hydrogen. By converting
most of it to helium, it can generate ~ 102 erg of energy. The rate at which it radiates
this energy (its luminosity) is 4 x 10°3 erg s~!. Therefore, the Sun can easily shine
for 10! years by tapping this source of subatomic energy.

0.007 Mg c?

1, ar Y —————,
nuclear LQ
0.007 x 2 x 10°3 x 10*'erg

~ 10" . 1.16
4 x 103erg s—! years (1.16)

Inuclear ™~

Can Stars Find Peace?

How long a star will shine will depend, of course, on its mass. The above estimate
is for a star of one solar mass. From Fig. 1.5, we saw that the luminosity of a star is
roughly proportional to M3-. Hence the nuclear timescale will be roughly propor-
tional to M ~2, In other words, a massive star will have a shorter lifetime than a star
with low mass. Although the massive star has more fuel, it spends it more furiously!

What will happen to a star when its supply of nuclear energy is exhausted? Will
it collapse to a point and disappear from this Universe, ot is there a new twist to the
story?

This book is devoted to a discussion of this question.



Chapter 2
Stars in Their Youth

The Hertzsprung—Russell Diagram

Perhaps the most important diagram in stellar astronomy is what is known as the
Hertzsprung—Russell diagram (H-R diagram). It is a plot of the luminosity of a star
versus its surface temperature (also known as the effective temperature). Most stars
you see in the sky when plotted in this diagram fall into a diagonal band known as
the main sequence. What is shown in Fig. 2.1 is a theoretical H-R diagram.

An important property of all stars that fall into this band is that they may be
regarded as chemically homogeneous, and are converting hydrogen to helium in
their cores. In a real sense, all the stars along this sequence have ‘recently’ formed
out of the interstellar gas. For this reason, this main sequence is often referred to as
the zero-age main sequence (ZAMS). This phase, during which hydrogen is being
fused into helium, has such a long duration that most stars visible in the sky are likely
to be in this phase (since stars spend most of their lives in this phase, the probability
of catching them in this phase will obviously be the greatest). If all the stars found in
the main sequence are chemically homogeneous and are converting hydrogen into
helium in their core, one may ask what distinguishes them. The most important factor
that determines the location of a star within the main sequence is the mass of the star.
Notice that in Fig. 2.1 the more massive stars have a higher luminosity, as one would
expect from Eddington’s theory.

The solid lines in Fig. 2.1 are loci of constant radii. Thus a 1 M zero-age star has
a radius very nearly equal to 1 R5. You may think this is a bit shady. Would one not
expect a 1 M, star to have a radius precisely equal to 1 R ? Well, the present radius
of the Sun is what we call 1 Rg. The 1M, star in Fig. 2.1 is a zero-age star. The Sun
descended on the main sequence nearly 5 billion years ago and its radius had changed
somewhat during this period. Similarly, a 10M zero-age star has a radius somewhat
less than 10Rq. This would suggest that the radius is roughly proportional to the
mass. More careful consideration shows that in the lower part of the main sequence
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Fig.2.1 The diagonal band shows the location of the main sequence in the theoretical Hertzsprung—
Russell diagram. This famous diagram is a plot of the luminosity versus the surface temperature
(also referred to as the effective temperature) of stars. Notice that the effective temperature increases
from right to left! The points indicate the theoretical location of stars of various masses when they
begin their lives

Rx M, (2.1)
while in the upper part of the main sequence (that is, for the more massive stars)

R o« M0 (2.2)
is a better approximation. The above relation between the radius and the mass, taken
together with the theoretical mass-luminosity relation will tell us how the surface
temperature will depend on the mass. We saw in Fig. 1.5 that M3 gives a reasonable
fit to the observational data on luminosity. But this is over the whole range of masses.
In the range 1-10 M, the data is better fit by an exponent 4, that is

4
Lo M". (2.3)
Using R oc M and L oc M*, together with L = (47rR2)aT§f, we get

Toge < M2 (2.4)
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on the main sequence. We know that the effective temperature of the Sun is 5,800 K.
Using this to deduce the proportionality constant in (2.4) we can deduce thata 10M,
star will have a surface temperature of about 20,000 K. To put it differently, while the
Sun is a yellow star, a 10 M star will be a blue star. Remember Wien’s displacement
law? The wavelength at which the black body spectrum has a maximum depends upon
the surface temperature of the black body.

The moral of the story is this: High-mass main sequence stars are more luminous
and intrinsically bluer than low-mass main sequence stars.

Energy Generation in the Main Sequence

As mentioned above, the most distinguishing feature of the stars on the main sequence
is that they are converting hydrogen into helium in their cores. In the Chap. 1 we
outlined the extraordinary conjecture by Eddington. But it took nearly twenty years
to work out the details. The first breakthrough in solving the problem of how stars
liberate energy came in 1938 when C. F. von Weizsicker discovered a nuclear cycle,
now known as the carbon—nitrogen—oxygen (CNO) cycle, in which hydrogen nuclei
could be fused using carbon as a catalyst. However, von Weizsécker did not work
out the rate at which energy could be produced in the stars using this CNO cycle or
how this rate would depend on the temperature that obtains in the stars.

The credit for this must go to Hans Bethe, the acknowledged master of nuclear
physics. In 1938, Bethe had just completed a set of three monumental review articles
in nuclear physics. These were known as Bethe’s Bible. The first textbooks in nuclear
physics were published only several years after the end of World War II. Until then,
physicists all over the world learnt their nuclear physics from these pedagogical
and authoritative articles by Bethe. In the 1930s, physicists were not concerned
with problems in astronomy. They were more interested in atomic and molecular
spectra, and nuclear physics. It was George Gamow who sensitized physicists about
the unsolved problems concerning stellar physics by convening a small conference
in Washington, D.C. Hans Bethe and many of the leading physicists were at that
conference. Within a few months of this, Hans Bethe had worked out, in great detail,
the synthesis of helium in stars and published his results in a landmark paper entitled,
Energy production in stars (1939). Bethe considered two processes. One of them has
come to be known as the p—p chain in which one builds helium out of hydrogen.
This is the process that is important for stars like the Sun, and stars of even lower
mass. The other process is the CNO cycle discovered earlier by von Weizsédcker, and
is the dominant process for stars more massive than the Sun.

We have discussed both these processes in detail in What Are the Stars? Here, we
shall briefly recall the steps involved in these reactions by reproducing the relevant
figures from there.
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Fig. 2.2 The synthesis of protons into helium nucleus. This is the main branch of the p—p chain
reaction, and accounts for 85 % of the energy generation. The remaining 15 % is through alternate
branches, which we shall not discuss here

The p—p Chain Reaction

Figure 2.2 summarizes the main channel in the proton—proton chain.

The CNO Cycle

The other route for the synthesis of helium is the Carbon-Nitrogen—Oxygen cycle,
first discovered by C. F. von Weizsicker. The details of this were worked out by Hans
Bethe in 1939. The CNO cycle requires the presence of some carbon, nitrogen or
oxygen which act as catalysts in chemical reactions.

Here also, like in the p—p chain, four protons are fused into one helium nucleus,
releasing roughly the same amount of energy as before (25 MeV per “He nucleus
produced).

All nuclear reactions are sensitive to temperature. Fusion of nuclei is made possi-
ble by quantum mechanical tunnelling through the repulsive coulomb barrier. Given
the like charges of the two colliding nuclei, the probability of such a tunnelling
depends very sensitively on the kinetic energy of the particles. And this, in turn,
depends upon the temperature of the stellar plasma (Figs.2.3 and 2.4).

The p—p chain is the least temperature-sensitive of all the fusion reactions. The
CNO cycle is much more sensitive to temperature. This has the consequence that
the p—p chain dominates at lower central temperatures (7, < 15 x 10°K). At higher
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Fig. 2.3 A pictorial representation of the CNO cycle. The bigger circles represent the nuclei
indicated. The small hatched circles are the protons and the small circles with dots are the neutrons

Fig. 2.4 In both the

p—p reaction chain and the
CNO cycle, four protons are
involved in forming a helium
nucleus. For every helium

nucleus that is synthesized,
two positrons and two electron >
neutrinos are emitted

4 Protons

central temperatures the CNO cycle dominates over the p—p chain. This is shown in
Fig.2.5.

Going back to the main sequence sketched in Fig. 2.1, for stars more massive than
the Sun the CNO cycle is the main process of energy generation, while for stars less
massive than the Sun the p—p chain is the main channel.
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Convection in Stars

Convection is a rather important phenomenon in stars. I refer the interested reader to
the companion volume, What Are the Stars? for a comprehensive discussion of why
convection occurs. Here, we shall merely state that a fluid in a gravitational field
will become unstable to the onset of convection if the temperature gradient exceeds a
critical value. This critical value is known as the adiabatic temperature gradient; this
is the rate at which the temperature of a blob of fluid will decrease if it is transported
upward (that is, against gravity) in an adiabatic manner.

In Eddington’s theory, stars are assumed to be in radiative equilibrium; the out-
ward flowing heat is transported by the outward flux of radiation itself. There is no
convection. But this assumption is not necessarily valid everywhere in a star. What
do modern calculations tell us regarding this?

Let us first consider stars in the lower part of the main sequence, namely the low
mass stars. They have cores which are in radiative equilibrium. As a consequence
of the relatively low temperature sensitivity of the p—p reactions, there are no steep
gradients in the rate of energy generation in the central region and, therefore, no steep
temperature gradients. But the outer layers of low mass stars tend to be convective.
The outer layers of these stars tend to be cooler. This, in turn, increases the opacity
of the outer regions. The presence of new species of ions, such as the negative ion of
hydrogen (hydrogen atom with two electrons!) results in a dramatic increase in the
opacity. This results in very steep temperature gradients, leading to convection. In
the Sun, for example, the outer 200,000 km (roughly one-third of its radius) is fully
convective. In stars of even lower mass, the convective region can penetrate right
down to the core.

The situation is exactly opposite in the upper part of the main sequence. In more
massive stars, the outer regions are in radiative equilibrium. Their high surface tem-
perature ensures that there are no steep temperature gradients in the outer layers.
But their cores tend to be fully convective. This is because of steep temperature
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Fig. 2.6 This figure summarizes some important differences between the stars in the upper part of
the main sequence and the lower part; the boundary is roughly around one solar mass

gradients in the core. The reason for this is the following. Remember that in these
stars the CNO cycle is the dominant energy generation mechanism, and this process
is very sensitive to temperature. Therefore, the energy production more centrally
concentrated, leading to steep temperature gradients.

The above mentioned characteristics of stars in the main sequence are summarized
in Fig.2.6.

The Lifetime of Stars

As mentioned above, the stars on the main sequence are infant stars. The more
massive among them would have formed only recently from interstellar gas. But
some of these infants, like our Sun, were born a long time ago. We believe that that
our solar system was formed roughly 4.5 billion years ago, but it is still in its infancy!

How long will the stars live? Perhaps it is more pertinent to ask how long the
present act of the stellar drama will last. The main theme in this first act is the
generation of energy by fusing hydrogen nuclei to form helium nuclei. This is often
referred to as hydrogen burning in the astronomical literature.

[At this stage, let me make a parenthetical remark. After resisting for long (!),
I have succumbed to the astronomers’ terminology of hydrogen burning. This
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is of course a misnomer. Combustion or burning is the sequence of exothermic
chemical reactions between a fuel and an oxidant accompanied by the production of
heat and conversion of chemical species. The release of heat can result in the produc-
tion of light in the form of either glowing or a flame. Fuels of interest often include
organic compounds (especially hydrocarbons) in the gas, liquid or solid phase.
A simple example can be seen in the combustion of hydrogen and oxygen, which is
a commonly used reaction in rocket engines: 2H, + O — 2H»O (gas) + heat. The
result is water vapour.

But this not what is happening in the stars! What is happening in the stars is fusion
reactions, in which nuclei are fused together and vast amount of energy is released.
So do not get confused if I occasionally slip into the astronomers’ jargon and use
phrases like helium burning, carbon burning, etc.]

The time 7y a star spends in the hydrogen-burning phase depends on its mass M.
This is because the luminosity L of a star (or the total energy radiated per unit time)
depends on the mass of the star rather strongly. We saw in Fig. 1.5 that M3 gives
a reasonable fit to the observational data on luminosity over the entire mass range.
Let Ey be the energy that can be released by fusion of hydrogen. The lifetime of the
star in this phase can be written as

Ey
= —. 2.5
TH 7 (2.5)

Let us assume for simplicity that the same fraction of the total mass of the star is
consumed in this phase in all stars. We then have Ey o< M¢? and

M
o~ M, (2.6)

The Sun has already spent 4.5 billion years on the main sequence and it will be another
6.5 billion years before it begins the second act and leaves the main sequence. So
the hydrogen burning lifetime of the Sun is ~10'° years. The main sequence lifetime
of stars of different mass can be estimated using this normalization and the scaling
relation (2.6). Today, with fast computers at our disposal, one can actually calculate
the lifetime by making some specific assumption about the abundance of hydrogen
in the stars at the beginning of their lives. The main sequence lifetimes from such
calculations is given in the table below.

M/Mg 1 4 5 6
71/107 years 700 8 4.9 33 2.5
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The Ultimate Fate of the Stars

Once the hydrogen in the core is exhausted, the curtain will come down on the first
act, and the subsequent acts of the stellar drama will follow. As we shall see, the
subsequent acts will be of shorter and shorter duration. Astonishingly, for a drama
that has gone on for tens of millions or billions of years, the final act will last only a
day or so! Instead of continuing with the story of the life history of stars in a logical
manner, we shall straightaway come to the point when the curtains come down at
the end of the last act.

As I remarked while concluding the first chapter, this book is devoted to the
question “What is the ultimate fate of the stars?” What will happen when the nuclear
reactions cease either because the central region is not hot enough or because it has
run out of fuel. Since no more heat will be generated, the star will be in a serious
predicament when the fossil heat is also radiated away.

Can the stars find peace?

It turns out that astronomers were confronted with this question way back in 1924,
many decades before one had a satisfactory understanding of the evolution of stars.
And they came up with some extraordinary answers.

Let us therefore go backwards in time to 1924 and get a historical perspective.



Chapter 3
White Dwarf Stars

The Strange Companion of Sirius

Eddington’s theory of stars was a great success. To recall, this theory was predicated
on the assumption that stars are globes of ideal gas in radiative equilibrium. The
spectacular agreement between many of the predictions of this theory and observa-
tions lulled astronomers into thinking that that last word on the subject had been said.
This feeling was shattered in 1924 when the American astronomer Walter Adams
made a remarkable discovery regarding the companion of Sirius. But we are jumping
the story! Let us go back and trace the history of this fascinating discovery.

Sirius is the brightest star in the night sky. You may be familiar with the very
conspicuous constellation of Orion (the hunter). Sirius (the dog) is very close to this
constellation. Since it is a very bright star, astronomers used it, along with other
bright stars, to determine the time and set the clocks by. But astronomers noticed that
Sirius was not a good clock star because its motion in the sky was a bit jerky. Let
me explain. Stars are not stationary in the Galaxy; they have velocities. This causes
their position in the plane of the sky to change. This is known as proper motion.
Under normal circumstances, one would expect this proper motion to be linear in
the sky. This was not the case with Sirius. In 1844, the great German astronomer
and mathematician Friedrich Wilhelm Bessel deduced that Sirius was describing
an elliptical orbit. Obviously there must be something for it to go around! Bessel
thus deduced that Sirius must have an invisible binary companion, with each star
moving around a common centre of mass. Bessel conjectured that the orbital period
of the star must be about half a century. The modern value of the orbital period is
50.09 years! One should not be surprised by this since Bessel was an extraordinary
astronomer and a great mathematician.

Eighteen years later, the invisible companion was actually seen by Alvan Clark.
In 1862, Clark discovered a faint companion to Sirius while testing a new telescope.
The brightness of the companion was 10~* times smaller than the brightness of
Sirius itself. Let us call Sirius and its companion Sirius A and Sirius B, respectively
(Fig.3.1). But the mass of Sirius B, deduced from the orbital period of Sirius A using

G. Srinivasan, Life and Death of the Stars, Undergraduate Lecture Notes in Physics, 25
DOI: 10.1007/978-3-642-45384-7_3, © Springer-Verlag Berlin Heidelberg 2014



26 3 White Dwarf Stars

Sirius A Sirius B

Fig. 3.1 The companion of Sirius turned out to be a very faint star, with brightness ten thousand
times smaller than the brightness of Sirius. But the mass of the companion was similar to that of
Sirius. This suggested that the companion must be a cool star, with a surface temperature much less
than that of Sirius

Kepler’s Law, was roughly the mass of the Sun. Since the mass of Sirius A was also
roughly a solar mass, it was reasonable to suppose that the radii of Sirius and its
companion must be roughly the same. The faintness of the companion, relative to
Sirius A, could easily be accounted for if the surface temperature of the companion
was [ess than that of Sirius A; in other words, if the companion was a red star, instead
of being a white star like Sirius A. Remember that the luminosity or the total amount
of energy radiated by an opaque body per unit time is given by

L = surface area x oT* = 47R? x o T*, (3.1)

where R is the radius and T the temperature of the body. The constant ¢ is the
Stefan—Boltzmann constant. Also recall that the spectrum of the radiation from an
opaque body peaks at a wavelength which is determined by its temperature (Wien’s
Displacement Law). If you look carefully at the stars in the sky you will find that
some are bluish, while some are red. This tells you immediately that the bluish star
is hotter than the reddish star. Let us now return to the faint companion of Sirius.
Since there is no reason to think that its radius would be very different from that of
Sirius, one would expect the companion to be a red star; the surface temperature of
the companion has to be much smaller to account for its low brightness (see Eq.3.1).
But there is a way to check this by measuring the colour of the star.

To determine the colour of a star, or equivalently its surface temperature, one has
to measure the spectrum of the light from the star. This was done by Walter Adams
in 1914 using the famous 100-inch telescope at the Mount Wilson Observatory in
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Sirius B

Sirius A

Fig. 3.2 Spectroscopic observations carried out by Walter Adams in 1914 showed that the surface
temperature of the companion was roughly the same as that of Sirius, contrary to what was thought
earlier. This implied that the radius of the companion of Sirius must be a hundred times smaller
than that of Sirius. This, in turn, implied that the mean density of the companion must be roughly a
million grams per cubic centimetre!

America (the world’s largest telescope at that time). Surprise, surprise. The compan-
ion of Sirius was a white hot star (like Sirius) and not a red star! This spelt trouble.
To see this let us go back to Eq. (3.1) and rewrite it as follows.

2 4

= =10 = R E. (3.2)
La Ry T
If the surface temperatures of the two stars are roughly the same, then the fact that
Sirius B is 10™* times fainter than Sirius A implies that its surface area must be
roughly 10~# times smaller. Equivalently, the radius of Sirius B must be 100 times
smaller than the radius of Sirius A. In other words, Sirius B must be roughly the size
of the Earth! This, however, would imply that the mean density of Sirius B must be
10°-10% g cm™3 (Fig.3.2). This appeared to be nonsensical, as Eddington put it.

Such an incredibly high density might defy comprehension, but the above con-
clusion was not nonsensical. This was established by Adams in 1924. In a very
challenging observation, he tried to kill two birds with one stone. He set out to test
one of the major predictions of Einstein’s General Theory of Relativity and, at the
same time, measure the radius of the companion of Sirius.

Gravitational Redshift

One of the important predictions of the General Theory of Relativity concerns the
propagation of light in a gravitational field. In Newtonian theory of gravity only
masses are affected by gravity. In Einstein’s theory, all forms of energy contribute
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Fig. 3.3 One of the important predictions of Einstein’s General Theory of Relativity is that gravi-
tational field will affect the propagation of light. Just as the kinetic energy of a stone thrown upward
from the Earth decreases with increasing height, and consequently slows down, similar thing must
happen to light also. Einstein’s theory predicts that the frequency of radiation will decrease as
it climbs out of a gravitational potential well. A simple-minded argument, intended to make this
plausible, is given in the figure

to gravity and are, therefore, affected by gravity. Since light is a form of energy, it is
to be expected that light is also affected by gravity. Imagine a body of mass M and
radius R. Let an atom on its surface emit radiation of wavelength \ or frequency v. As
the light propagates outwards, its wavelength will be stretched. Since the wavelength
becomes longer one refers to it as a redshift. You will be familiar with a similar
phenomenon when the source of light is moving away from the observer. In that
case, one refers to it as Doppler shift. Here, since gravity is responsible for the red
shift, one refers to it as gravitational redshift. Although this result is a prediction of
the General Theory of Relativity, one can anticipate this result within the premise
of the Special Theory of Relativity itself. Since it is difficult to deal with the wave
nature of light in Newtonian gravity, we shall switch to the photon picture. You will
recall that in 1905 Einstein introduced the revolutionary idea that light energy comes
in bundles which have come to be known as photons. The energy of a photon is
determined by the frequency of radiation and is given by the famous expression

E =hv, (3.3)
where £ is Planck’s constant. Using the Special Relativistic expression, E = mc?,
one might call (hv/c?) as the effective mass of the photon. Now we are ready to
attempt a poor man’s derivation of the gravitational red shift.

When we throw up a stone, it slows down. As you know, this happens for the
following reason. As the stone goes up, its potential energy increases. Consequently,
its kinetic energy decreases. Since the kinetic energy is determined by the velocity,
the stone slows down. A similar thing must happen to light. See Fig.3.3.
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Consider a photon climbing up the gravitational potential well from a radial dis-
tance 1 from the centre to 2. Let the initial energy of the photon be ir;. When it
reaches the radial position 2, its energy will be hv; —mgR, where the second term is
the increase in the potential energy. Now let us substitute (hv/c?) for the mass of the
photon, and ¢ = GM/R? for the acceleration due to gravity. A little simplification
shows that when the photon climbs from position 1 to 2, its frequency has decreased
by the expression given below:

GM
= 1-—). 34
v =1 ( Rc2) (34

This is gravitational redshift. If we had cast the result in terms of the wavelength,
we would find that the wavelength has been stretched. Note the essential difference
between this and a stone climbing the potential well. The kinetic energy of the
stone is determined by its velocity. Therefore, the velocity decreases as the kinetic
energy decreases. Light cannot slow down! The energy of the photon is related to its
frequency. As the energy of the photon decreases, its frequency must decrease.

The above result was obtained in a very heuristic manner. We used Newton’s
theory of gravity, the corpuscular theory of light due to Einstein and the Special
Theory of Relativity. Since gravitational redshift is a manifestly General Relativistic
effect, one must use the General Theory for a proper treatment. Well, this was done
by the great German physicist and astronomer Karl Schwarzschild in 1915. The
exact result for gravitational redshift is given below.

1 2GM
Voo = UV —
oo 0 RC2

Ao
2GM
(1 ~ RZ )

Surprisingly, our simple-minded derivation of Eq. (3.4) differs from the exact result
(3.5) only by a factor of 2 inside the parentheses. Notice two things in the above
result.

Moo = (3.5)

1. The larger the mass, the larger is the redshift.
2. The smaller the radius, the larger is the redshift.

There is one other magical result implicit in Eq. (3.5). When the radius of the object
is precisely equal to (2G M /c?), the frequency of the photon goes to zero and the
wavelength goes to infinity! We shall return to this most remarkable result in the next
book of this series entitled, Neutron Stars and Black Holes.
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Experimental Verification of Gravitational Redshift

Let us now return to the historic observation by Adams in 1924 using the 100-inch
telescope at Mount Wilson Observatory. His main objective was to test the important
prediction by Einstein of gravitational redshift of spectral lines. Why did he choose
the companion of Sirius? It is so faint that that any spectral line observations would
have been incredibly difficult. Why not choose a nearby star like the Sun? A look
at Eq.(3.5) will provide the answer. The magnitude of the red shift predicted by
Einstein’s theory depends upon the value of (M /R). While the mass of Sirius B was
comparable to the solar mass, Adams had concluded from his 1914 observations that
its radius might be a hundred times smaller than that of the Sun. Consequently, the
gravitational redshift would be much larger. This is why he chose the companion of
Sirius to test Einstein’s prediction. The importance of verifying Einstein’s prediction
of gravitational redshift cannot be overstated. In a letter to Eddington written on 15
December 1919, Einstein said,

If it were proved that this effect does not exist in nature, then the whole theory would have
to be abandoned.

Using the estimated values for the mass and radius of Sirius B, Adams calculated
the gravitational redshift that Einstein’s theory would predict (see Eq. (3.5)). For his
observation, he chose the H/3 and H~ lines of the hydrogen atom. The name of the
game was to accurately measure the wavelength of these lines in the spectrum of light
from Sirius B and compare them with what quantum theory of atoms would predict.
Since one knows the predicted wavelengths of these spectral lines very accurately,
such a comparison would reveal whether there is a shift in the wavelength. Well,
there was. What more, the measured redshift agreed very well with the prediction
of the General Theory of Relativity! One cannot overemphasize the importance of
this confirmation of one of the key predictions of Einstein’s theory of gravity. And
there was a bonus. If one accepts General Relativity, then this observation could be
regarded as a measurement of the radius of Sirius B! This is why Eddington said,
‘Professor Adams had killed two birds with one stone!’

To summarize this discussion, the measurement of the gravitational redshift
proved beyond doubt that the companion of Sirius was, indeed, a stellar mass object,
but of planetary size!

Before proceeding further, here is a little puzzle for you. Walter Adams was
undoubtedly a very clever experimentalist. An accurate determination of the redshift
of the spectral lines from Sirius B was a great technical achievement. But how can
we be sure that this redshift is caused by gravity. It could just as well be due to Sirius
B moving away from us. The redshift would then be due to good old Doppler effect!
Think about it.
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A Stellar Paradox: Have the Stars Enough Energy to Cool?

The discovery that the companion of Sirius is a white star had earlier led us to con-
clude that it must be a planetary size star. This, in turn, led us to the conclusion that
the mean density of this star must be close to a million grams per cubic centimetre.
Although this sounds nonsensical, the conclusion of the gravitational redshift mea-
surement has sealed all escape routes. We have no option but to accept that there are
objects in the sky with mean densities of the order of 10°g cm =3

This conclusion rattled Eddington. As usual, he was way ahead of the others in
realizing the fatal difficulty posed by such ultra dense stars. This is what Eddington
said:

I do not see how a star which has once got into this compressed condition is ever going to
get out of it ... Their high density is only possible because of the smashing of the atoms,
which in turn depends upon the high temperature. It does not seem permissible to suppose
that the matter can remain in this compressed state if the temperature falls ... When the
supply of subatomic energy fails and there is nothing to maintain the high temperature, then
on cooling down, the material will return to the normal density of terrestrial solids. The star
must, therefore, expand, and in order to regain a density a thousandfold less the radius must
expand tenfold. Energy would be required in order to force out the material against gravity.
Where is this energy to come from? . .. . the white dwarf can scarcely be supposed to have
had sufficient foresight to make special provision for this remote demand. Thus the star may
be in an awkward predicament—it will be losing heat continuously but will not have enough
energy to cool down.
From Stars and Atoms, 1927
Sir Arthur Eddington

‘The star will need energy to cool’. Put differently, imagine a body continuously
losing heat but with insufficient energy to grow cold! What is one to make of this
extraordinary statement? In less-cryptic terms, and in simple language, this is what
the paradox amounts to.

Let Ey denote the negative electrostatic energy of a unit volume of the white
dwarf material. At the high pressures inside a white dwarf, this energy per atom is
essentially the sum of all the ionization energies required to strip the atom of all
the electrons. And let Ex denote the kinetic energy per unit volume of completely
ionized matter. If such matter were released of the pressure to which it is subject,
then it could expand and resume the state of the ordinary unionized matter only if

Ex > Ey.

Is it guaranteed that this inequality will always be obeyed? An estimate of the elec-
trostatic energy is given by

4
3.

Ey =1.32x10'17%p (3.6)

We shall not pause to derive this. I request you to accept this result which can be
found in standard books on Electricity and Magnetism. The kinetic energy per unit
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volume is given by:

_ 3NkgT _ 3 kg

T2 V. 2umy

T
Ex pT =124 x 1082 (3.7)
I

This is easy to see. You will recall that the average energy of the particles is %k sT.
Multiplying this by the total number of particles N and dividing by the volume V we
get the desired result. We can also write the above result in terms of the mass density
p by multiplying and dividing the number density n = N/V by the average mass
of the particles. Since the gas consists of electrons and nuclei of different species,
one introduces the notion of the mean molecular weight p. The number density and
mass density are related by the expression:

n=_t_ (3.8)

B pmy
(See Chap. 3 of What Are the Stars? for a more detailed discussion of this.)
If this white dwarf material were released of the pressure to which it is subject, it
can resume the state of ordinary normal atoms only if Ex > Ey. Using Egs. (3.6)
and (3.7), it is easy to show that Ex > Ey only if

p < (0.94 x 1073T/uZ?)>. (3.9)

Clearly, the above inequality would be violated if the density is sufficiently high.
In other words, at sufficiently high density the star will not have enough energy to
expand and cool. This is what Eddington meant!

How was this stellar paradox resolved? Read on!
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Chapter 4
The Principles of Statistical Mechanics

Before discussing Fowler’s resolution of Eddington’s paradox, let us digress to
understand the developments that led Fowler to this seminal idea. It is essential that
we have some understanding of the basic ideas of quantum statistical mechanics.
This would also prepare us to discuss Chandrasekhar’s theory of white dwarfs and
the subsequent developments.

Classical Mechanics

Let us begin with a few words about classical mechanics. The subject of motion of
bodies has been erected on the foundation laid by Newton. Newton’s laws of motion
enable us to analyse a variety of problems, such as the motion and collision of billiard
balls, planetary motion, etc. What more, one can do this with great precision. We
are now able to launch a rocket which travels for many years, covers a distance
of many millions of kilometres and lands an instrument on one of the moons of
Jupiter or Saturn! If you think about it a little, you will appreciate what an incredible
achievement this is.

The key thing about classical mechanics is this. If you were dealing with an
individual particle or body, one can describe its motion with arbitrary precision—
there is no restriction on the precision to which we can determine its position and
momentum.

Statistical Mechanics

During the nineteenth century, physicists turned their attention to the study of gases.
One knew that the constituents of a gas were atoms and molecules. These atoms
constantly collide with one another, change their energy and direction of motion.

G. Srinivasan, Life and Death of the Stars, Undergraduate Lecture Notes in Physics, 33
DOI: 10.1007/978-3-642-45384-7_4, © Springer-Verlag Berlin Heidelberg 2014
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Physicists were interested in calculating gross properties of a gas, such as the pressure
it exerts on the walls of the container, its compressibility, specific heat, etc. The basic
assertion of the physicists was that these gross properties should be explainable
in terms of the motion of its parts, namely, atoms and molecules. For simplicity,
they assumed that the gas they were trying to describe was in thermal equilibrium.
The laws of mechanics which apply to substances in thermal equilibrium are called
statistical mechanics.

Let us pursue the description of a gas in thermal equilibrium. The first thing to
appreciate is that constant collisions introduce a serious complication. It is no longer
possible to state that a particular atom (let us say it is painted red) has a particular
velocity, say, 5.123456789 m/s. By the time you could determine its velocity, it would
have collided with some other atom and changed its speed and direction. Given
this, the only meaningful question one could ask is the following: how many atoms
are there with velocities in some range, say, between 5.123 and 5.124, and so on?
Mathematically put, one could ask: what is the fraction of molecules with velocities
between v and v + dv?

Maxwell’s Velocity Distribution

The Scottish physicist James Clerk Maxwell solved this major puzzle in 1852.
Consider a gas in a box, and let us first consider motion in one of the three dimen-
sions. Maxwell discovered that the probability that the particles will have a velocity
between v and v + dv is given by

2

kinetic energy m

f)dv = Cei( kT )dv — Ce™ 2T dv. 4.1)

The constant of proportionality can easily be determined by recognizing that the
integral of the above probability distribution over all velocities from —oo to 400
must be unity. Carrying out this integral, we find that C = /m/27kgT (if you
like mathematics, try to integrate Eq. (4.1) over all velocities and verify this result).
Since the motion of the particles in the three directions is independent, the probability
distribution for the three-dimensional velocity V is just the product

m(v%+v§+v§)
[y, vy, v)dvdvydv, e 2kT dvydvydv,.
( Ydvydv,d NS dudvyd 42)
Uy, Uy, U)dvydvydv, = | —— ) e 24T dv,dvydv,. .

fxyzxyz(zﬂ_kT) xAVydVz
It is better to remember this expression written in terms of the momentum. One
of the reasons for this is that the expression written in terms of the momentum
would be valid in special relativity also, that is, when the particles have speeds close
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to the speed of light. If written in terms of velocity, the expression would not be
valid in relativity. Since velocity and momentum are proportional (p = mv), the
probability distribution in terms of momentum will also have the same structure,
namely, proportional to e ~X-E-/k8T ‘Written in full, it will read as follows:

1 _
f(p)d>p = —— e T dp.dp,dp,. (4.3)
mmkT)2

Equations (4.2) and (4.3) are probability distributions for velocities and momenta,
respectively. Let the volume of the container be V and the total number of particles
be N. The probability function tells us about the fraction of particles in a velocity or
momentum range. A gas in thermal equilibrium will be uniformly distributed in the
box. Therefore, the fraction of particles in a given velocity range will be the same
in every unit volume; this is one of the requirements of the laws of thermodynamics.
Therefore, the number of atoms or molecules per unit volume with velocities in the
range dvy, dvy, dv,, or momenta in the range dp,, dpy, dp,, takes the form:

N 3 _m?

N ()dvidvydv, = v (27:7<T) : e” %7 dvydvydv,, “4.4)
N 1 _

N(p)dpxdpydp; = ——————e T dpydpydp;. 4.5)
V. QrmkT)?2

The above two expressions have been normalized for N / V particles per unit volume.
‘What this means is the following:

2

o o
N m o\3 _mv N
// N (v)dvydv,dv. = 7/// (27TkT)2 ¢ AT dv,dvydv; = 7. (46)
—0oQ —0oQ

The integral on the right-hand side is clearly equal to unity, since the probability
distribution has been properly normalized. If you would like to convince yourself of
this, go back to Eq. (4.1), and recall how the proportionality constant was derived.

The distribution described by Eq. (4.4) is the celebrated Maxwell’s velocity distrib-
ution. The derivation of this was undoubtedly one of the great hallmarks of nineteenth
century physics. Maxwell, of course, went on to make many more great discoveries.
The greatest among these was the discovery of the equations describing the electric
and magnetic fields—a discovery that puts Maxwell on the same pedestal as Einstein
in the history of physics.
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The Distribution of Speeds

Often we are not interested in the direction of the velocity vector, but only in its
magnitude. The magnitude of the velocity vector is, of course, the speed. In Eq. (4.4)
the probability involves only the square of the velocity and no change needs to be
made. The only factor in Eq. (4.4) that contains information about the direction
of the velocity is the infinitesimal volume dv,dv,dv, in velocity space. To derive
Maxwell’s distribution of speeds from the distribution of velocities all we have to do
is rewrite the expression the volume in velocity space with velocity between v and
V+dv in a form in which the information about the direction of the velocity vector is
erased. Well, all we have to do is to throw away the information about the direction
of the velocity vector. This is easily done! You may have encountered the spherical
polar coordinate system where the three coordinates replacing (x, y, z) are (r, 0, ©).
Here, r = /x2 + y2 + z2. In this coordinate system, the volume element dxdydz
becomes r2dr sin 0d6d . In our case,

dvydvydv, = v2dvsin 0dOdy. 4.7)

Since we do not want the angular information (remember that the angles 6 and ¢
contain the information on the direction), we shall get rid of it by allowing 6 to have
every possible value from 7/2 to —7/2 and ¢ to have all values from O to 27. This
amounts to integrating sin 8d0d ¢ over the range just mentioned. This will simply give
us 4. This should not surprise you since the solid angle of a sphere is 4. If you are
not comfortable with the above discussion, Fig. 4.1 should make this clear. Consider
the shell between the concentric spheres with radii v and v + dv, respectively. Every
vector having one end at the origin and of length in the range v and v 4 dv will have
its end point in this shell. And the volume of this shell is 47 v>dv.

Therefore, the distribution of speeds (or the modulus of the momentum) is given
by

Ndo = ¥ () B 4t 48
= —(— T .
(v)dv V(27rkT) e v dv, (4.8)

N o,
N(p)dp = — ————~¢ kT dxp2dp. (4.9)
V. QamkT)?

Please remember that in Eq. (4.8) the allowed values of the speed are from 0 to
oo. The magnitude of the momentum in Eq. (4.9) is over a similar range. Let us
now concentrate on Eq. (4.9) written in terms of the momentum, and rewrite it by
suppressing unnecessary details:

e

N(p)dp = Ce 2mkT 4z p*dp. (4.10)
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Volume of shell ‘
= 4mvldv

v+dv

v

X

Fig. 4.1 In classical statistical mechanics, all values of velocity (or momentum) are allowed.
Consider a certain value of the speed v. Since the velocity vector V can point in any direction, the
number of allowed values of speed less than v is simply equal to the volume of the sphere with
radius equal to v. Similarly, the number of allowed values of speed between v and v + dv is equal
to the volume of the shell 47v>dv. Note that this figure could also have been labelled with the
components of the momentum

The right-hand side of Eq. (4.10) is a product of two factors. The first is the probability
that the magnitude of the momentum will have a value in the range p and p + dp.
Let us call this f(p),

2

F(p) = Ce™ TFT . @11

The second factor (47 p>dp) in Eq. (4.10) is the volume of momentum space in the
range p and p + dp. Let us call this the density of states, given by the expression
g(p)dp. Using these two definitions, Eq. (4.10) can be rewritten as follows:

N(p)dp = f(p)g(p)dp

, 4.12)

N (p)dp = probability distribution x density of states. 4.13)

Written in this form, the expression is sufficiently general, so that it can be used for
classical systems as well as quantum systems that we shall soon discuss. Also, it is
very easy to remember!

Maxwell-Boltzmann Distribution

The fundamental discovery by Maxwell that we have just discussed was carried
forward by the great Austrian physicist Ludwig Boltzmann. He laid the founda-
tion and created the subject of statistical mechanics. Boltzmann recognized that the
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Boltzmann distribution

J(E)

O m——

Fig. 4.2 In classical statistical mechanics, the probability f(E) that a particle will have energy E
is given by the Boltzmann distribution shown in the figure. It is an exponential distribution with a
characteristic scale defined by kp T, where the constant kg is known as Boltzmann’s constant

probability distribution for velocities discovered by Maxwell was far more general.
In the problem we have been discussing, the atoms of the gas had only one degree of
freedom, namely, the translational degree of freedom. The only form of energy that
the atoms had was kinetic energy. If one was dealing a gas of molecules, then such
molecules could have additional degrees of freedom, such as rotational degree of
freedom, vibrational degree of freedom, and so on. There will be energy associated
with each of these degrees of freedom. We now know that atoms have internal struc-
ture. The electrons in the atoms could be in various quantum levels with different
energies.

Boltzmann was able to show that, in general, the probability distribution of energy
of a system in thermal equilibrium is given by:

E

f(E) e k8T, (4.14)

The constant kp in the above expression is now known as Boltzmann’s constant.
Remember that for f(E) to be a true probability distribution it should be normalized
so that the integral of f(E) over all energies is unity. See Fig. 4.2.

Let us next write the expression for N(E)dE, the average number of parti-
cles with energies between E and E 4 dE. This can be obtained from Eq. (4.10).
In Newtonian mechanics, energy and momentum are related by E = p?/2m. All one
has to do is to express the density of states in terms of the energy. It may be verified

that
p*dp =V 2m3VEdE. (4.15)
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Maxwell-Boltzmann distribution
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Fig.4.3 The figure shows the number of particles with energy between E and E +d E in Boltzmann
statistics, as shown in Eq. (4.16). This is referred to as the Maxwell-Boltzmann distribution, or
simply the Boltzmann distribution. The number distribution is a product of the probability f(E)
that a particle will have energy E and the density of states g(E)d E, which is the number of energy
values between E and E + d E. As may be seen from Eq. (4.15), g(E)dE «x ~EdE.For E < kT
the above distribution is proportional to ~/E, while for E > kT it decreases exponentially. This
exponential tail is characteristic of classical statistics

Therefore, Eq. (4.10) written in terms of the energy would read as given below:

N(E)dE = (.. .)e*k%\/EdE.

Restoring all the constants, we get:

N(E)dE:E 2\ VEdE. (4.16)
V\ J/rkT)3

Figure 4.3 shows a sketch of this important distribution. As an exercise, try to verify
that for small energies this function increases as v/ E, while it decreases exponentially
at large energies as e /KT,

Quantum Mechanics

Particles are Waves!

Before discussing the modification of Boltzmann’s statistical mechanics in quantum
theory, it would be useful to recall some of the salient differences between classical
and quantum mechanics. As we mentioned before, classical mechanics is determin-
istic. That is to say that the motion of an electron, for instance, can be described



40 4 The Principles of Statistical Mechanics

precisely, since in classical mechanics its position and momentum can be deter-
mined with arbitrary accuracy. This is not so in quantum mechanics. The underlying
reason for this is that the electron is a fuzzy object in quantum physics. The quantum
revolution began in 1924 with the French physicist Louis de Broglie making the
extraordinary suggestion that all particles must have wave characteristic also. This
has come to be known as particle-wave duality. You will recall that in 1905 Einstein
had introduced the notion that light energy comes in bundles or corpuscles, known
as photons. The photoelectric effect clearly showed that light has the characteristics
of particles, while the phenomenon of interference of light reveals the wave nature of
light. Louis de Broglie wondered why such a duality should not be true for particles
also! He argued that every particle could be ascribed a wavelength which is given
by:

A= —, (4.17)
p

where p is the momentum of the particle. This is now called de Broglie wavelength.
Notice that this equation holds for photons, as well as material particles; for the
momentum of the photon is hv/c = h/\.

The Wave Function

Louis de Broglie’s idea is one of the principles on which the superstructure of quantum
mechanics is built. If particles are waves then they must be solutions to some wave
equation. This equation was discovered by Erwin Schrodinger and is named after
him. Let us consider electrons to be specific. According to the wave mechanics
developed by Schrodinger, each state of the electron (known as quantum states)
represents a system of standing waves, or a normal mode of a harmonic vibration.
This is exactly like the vibrations of a plucked string in its fundamental mode or its
overtones.

Because an electron is a wave—and not a point particle—in quantum mechanics
we can only talk of an electron as a wave packet. And where is the electron in relation
to the wave packet? At any given instant, an observation might find the particle at any
point where the wave function W is different from zero. One is allowed to talk only
in terms of probability. The probability of finding the particle in the neighbourhood
of a point is given by |W|?, the square of the modulus of the wave function.

Heisenberg’s Uncertainty Principle

The fuzziness of the particles in quantum mechanics destroys the determinism which
is the hall mark of classical mechanics. This inherent indeterminacy in quantum
physics was stated in a mathematical form by Werner Heisenbergin 1927. Let us say
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that we design an experiment to very precisely measure the position and momentum
of an electron in a box. According to Heisenberg, one cannot do this. One is forbidden
from measuring both the position and momentum with infinite precision. If you try
to measure the position very accurately, then you will end up having a huge error in
your measurement of the momentum. Similarly, you cannot measure the momentum
very accurately without seriously compromising on the accuracy with which you can
determine the position of the electron. Stated more precisely, if Ax is the error in the
measurement of the position and Ap the error in the measurement of the momentum,
then:

ApAx > —, (4.18)

NS

where h is Planck’s constant. The wave—particle duality principle of de Broglie
and Heisenberg’s uncertainty principle are the two underlying axioms of quantum
mechanics, as we know it today. Einstein never liked the uncertainty principle.
He refused to accept it despite the incredible success of quantum mechanics dur-
ing the three decades before his death in 1955. But that is a different story. If you
would like to read more about the development of quantum mechanics I would like
to strongly recommend to you the three volumes of The Quantum Revolution, by
G. Venkataraman.

Discrete Energy Levels

A fundamental consequence of the wave nature of matter is that energy levels are
discrete in quantum mechanics. You already know from Bohr’s theory that the
allowed energy values of an electron in an atom are discrete. We call them energy
levels. The discreteness of the energy levels is quite general. Since this will be useful
soon, let us consider an electron in a one-dimensional box of length, L, and impen-
etrable walls. In other words, the electron is confined to 0 < x < L. The electron
can move freely in this range but rebounds at the two walls. This is equivalent to
the boundary condition that the wave function ¥ = O at x = 0 and at x = L. We
have already mentioned that according to Schrodinger, each state of the electron
corresponds to a standing wave solution. You know from the familiar example of the
vibrations of a string held at two points that the normal modes correspond to sine
waves with wavelength \ = ZTL, where n = 1, 2, 3, . ... The wave function of the
first three states are shown in Fig.4.4.

The allowed values of the energy, E, corresponding to these standing wave solu-
tions are given by:

n2h?

= —. 4.1
8mL2 (4.19)

n
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Fig.4.4 The wave functions of the first three discrete energy levels of a particle in a one-dimensional
box of length L. Notice that the wave functions satisfy the condition for standing waves. These are
precisely the same as the normal modes of vibration of a string fixed at the two ends

nZh?
£y n = 8mL2
E, E, < n?
E, « 7

Energy levels of a particle in a one-dimensional box

Fig. 4.5 The allowed values of the various discrete energy states are labelled by a quantum number,
n, which can assume values n = 1, 2, 3, .. .. Notice that the energy values are directly proportional
to the square of this quantum number, unlike in the case of the hydrogen atom where it is inversely
proportional to n2. Notice also that the energy levels are determined by the size of the box

We have not derived this expression, but it can be found in all elementary texts on
quantum mechanics (see Fig.4.5). Please notice two features of the allowed energy
values:

1. The allowed energy levels are discrete since n = 1, 2, 3, etc.
2. The smaller the box, the larger are the allowed values of the energy levels.

The above discussion can easily be generalized to electron in a three-dimensional box.

Quantum Statistical Mechanics

We are now ready to discuss the basic principles of quantum statistical mechanics.
You will recall that the need for statistical mechanics first arose in the context of the
kinetic theory of gases. To fix our ideas, let us mention two examples of problems
where the need arises for statistical mechanics while dealing with quantum systems.

1. First, let us consider a gas consisting of hydrogen atoms (see Fig.4.6). In classical
physics, the atoms were point particles. We now know that the hydrogen atom has
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Fig.4.6 Anexample toillustrate how statistical considerations enter quantum mechanics. Consider
a gas of, say, hydrogen atoms at a temperature, 7. When the gas is very dilute, all the atoms will
be in their ground state, that is, the lowest energy state with the quantum number, n = 1. But if
the density is sufficiently large, the atoms will frequently collide with one another. In the process,
the kinetic energy of the atoms (~%kT) can be converted to internal energy of the atoms. As a
consequence, all the atoms will no longer be in their lowest energy state, as illustrated in the figure.
The inverse of this process can, and will, also happen during collisions. After sufficient number of
collisions, excitation and de-excitation of the atoms, one can ask the following question: what is
the average number of atoms with the electron in a particular energy level? Statistical mechanics is
intended to answer questions such as this

an internal structure with an electron orbiting a proton at the centre. According
to Bohr’s theory, the orbiting electron can be in any of the allowed set of energy
levels, defined by a quantum number n. In an isolated atom, the electron will
generally be in the lowest quantum state with n = 1; the binding energy of this
level is —13.6 eV. But in a gas, not all the atoms will be in this lowest level.
At a finite temperature, the atoms in the gas will be constantly colliding with each
other. The energy gained in one such collision can be used to excite the electron
in that atom to a higher level. Whether it is excited to the level withn = 17, 101,
or 272 will depend upon how much energy is gained in the collision. Collisions
can also extract energy from an atom, causing an electron in, say, the n = 272
level to jump down to one of the lower levels. Now let us pose a question that
arises in practical situations.
Let us consider a gas of N hydrogen atoms. We would like to know what fraction
of the atoms are in a particular electronic energy level. In other words, we would
like to know the average value of N (E,,), where E,, are the internal energy levels
of the atom and should not be confused with the kinetic energy of the atoms.

2. Asasecond example, let us consider a gas of N electrons confined to a volume V.
As we discussed above, the energy of each electron is quantized, and can assume
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Fig. 4.7 A schematic representation of how energy levels are populated in Boltzmann statistics.
In thermal equilibrium, the ratio of population in the various levels is uniquely determined. Indeed,
this is how the concept of excitation temperature is defined. In true thermodynamic equilibrium, the
temperature so defined will be the same as the kinetic temperature that enters Maxwell’s velocity
distribution

only a set of discrete values. Let us designate these discrete energy levels by E,,.
Let the electron gas be in thermal equilibrium at a temperature 7. Clearly, not
all the electrons will have the same energy; one can safely anticipate that there
will be a distribution of energies. The question is, ‘What is the average number
of electrons with a particular energy?’

For a sufficiently dilute gas, at a sufficiently high temperature, the answer to this

question in both the examples mentioned above is given by Boltzmann’s statistics
(see Fig.4.7).

Boltzmann Statistics and Quantum Systems

Let us assume that although we are dealing with energy levels which are quantized,
the distribution of the given number of particles amongst these levels—the szatistics,
if you like—is still governed by classical statistical mechanics; in other words, the
Boltzmann statistics that we discussed earlier. The average number of particles with
energy equal to E, is given by:

N(E,) o« e En/kT (4.20)
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It follows that the ratio of the population in two energy levels is given by:

(Ei—Ej)
% e AT @21)
2

The Meaning of Temperature

There is another important way to look at this result. For a system in true thermal
equilibrium, the ratio of populations given by Eq. (4.21) defines what we mean by
temperature. Imagine that we are dealing with an assembly of atoms. Have you
wondered what we mean by the gas being at a certain temperature? You would have
first encountered the concept of temperature in thermodynamics. If you go back to
your books you will find that the nineteenth-century physicists had not done a good
job in defining the concept of temperature. This was set right once and for all in 1909
by the French mathematician Carathéodory. His formulation of thermodynamics
was for the first time logically consistent. How is temperature defined in statistical
mechanics?

Maxwell would have defined temperature as the width of his velocity distribution.
For convenience we have reproduced below Maxwell’s distribution of velocities,
given by Eq. (4.4).

N/ m \3 _m?
N ()dvydvydv, = 7 (m> e” %7 dvydvydv,
The function e="V"/%Tis very well known function in mathematics and is called a

Gaussian. It is a bell-shaped curve whose characteristic width is given by /kT /m.
So Maxwell would have said that temperature is nothing but the width of the velocity
distribution. Equivalently, he might have said that temperature is a measure of the
average energy of the particles, which is given by %kT.

But Boltzmann would have disagreed. He would have said that the concept of
temperature is defined by the ratio of population in different energy levels, defined
by Eq. (4.21).

Who is right? Well, both of them are right, if our gas of atoms is in true thermody-
namic equilibrium. In true thermodynamic equilibrium, frequent collisions between
the particles will ensure that the different degrees of freedom talk to each other, as
it were. Therefore, in true thermal equilibrium, the temperature derived by Maxwell
and Boltzmann would be the same!

Are there situations where the two temperatures would not be the same? Yes.
If the gas is extremely tenuous then there would not be sufficient number of colli-
sions to establish true thermal equilibrium. And such situations are very common
in astronomy. For example, the interstellar medium is very tenuous, with a number
density of roughly 1 atom per cm®! Compare this with a number density of roughly

10?3 atoms per cm? in terrestrial matter! Not surprisingly, in such a tenuous gas:
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e Matter and radiation will not come to thermal equilibrium. Consequently, if one
were to ascribe a certain temperature to the radiation (let us call it the radiation
temperature), it will not correspond to the temperature of the gas. In such situations,
the spectrum of radiation will not correspond to that of a black body.

e The kinetic degree of freedom will not come to equilibrium with the internal
degrees of freedom, such as the internal electronic levels, the vibrational levels,
the rotational levels, etc. Consequently, the kinetic temperature(defined in terms of
the width of the velocity distribution) will not be equal to the excitation temperature
(defined in terms of the ratio of population among the internal levels).

A rose by any other name would still be a rose. But this is not so for temperature,
except under conditions of true thermodynamic equilibrium!

Quantum Statistics

The rules of quantum statistics differ from those of classical statistics in three essential
ways. We shall now discuss them.

Cells in Phase Space

A useful concept in statistical physics is that of phase space. This is a six-dimensional
space, with three dimensions representing spatial co-ordinates (x, y, z), and the other
three dimensions representing the three components of the momentum (py, py, p;).
Let the gas be contained in a volume V, and let us focus on the allowed values of the
three components of the momenta.

In classical statistical mechanics, all values of the momenta are accessible to the
particles; there was no restriction. For example, the number of momentum values in
the interval p and p + dp is 47 p?dp. (Refer to Fig.4.1. Although this figure has
been labelled with the components of the velocity, it could also have been labelled
with the momenta.)

In quantum statistical mechanics, not all values of the momenta are allowed—only
certain discrete values are allowed. This is a simple consequence of the wave nature
of matter and we saw that in our discussion of an electron in a box (see Figs.4.4
and 4.5). Consequently, momentum space is not continuous but discrete. As may be
seen from Fig. 4.8, in quantum physics momentum space is constructed using basic
building blocks, or cells, whose volume is given by the expression:

AN
Volume of elementary cell = (z) =7 (4.22)

where V = L3 is the volume of our cubical box of length L.
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Pz

Fig. 4.8 In quantum mechanics only discrete values of momentum are allowed. We saw that in the
example of a particle in a one-dimensional box, but this is true in general. Consequently, momentum
space is not continuous as it is in classical physics (Fig. 4.1). Instead, it is made up by stacking cells.
The volume of these primitive cells is determined essentially by Heisenberg’s uncertainty principle.
Larger the volume of the box, smaller is the uncertainty in the momentum, and therefore the cells
are smaller. The bottom line is thatthere is one momentum state per cell in phase space

There is one allowed value of the combination (py, py, p;) inside each of these
cells. Let us say we are interested in the number of allowed momentum values less
than a certain value p. In classical physics, this is simply the volume of the sphere

of radius p, namely, (47” p3) per unit volume of the box. For a box of volume V,

the number of allowed momentum values are V (4{ p3). In quantum statistics, this

number is equal to the number of cells within the sphere, namely,
4m 4
3 PPV 3 P’
= . (4.23)

h3 h3
(+)
In Eqgs. (4.12) and (4.13) we had introduced the notion of the density of momentum
states:

g(p)dp = 4mp*dp.

This is the number of momentum values between p and p+dp. In quantum statistics,
the density of states is given by:

Varp2dp

3 (4.24)

g(p)dp =

The graininess of momentum space can also be understood in terms of Heisenberg’s
uncertainty principle. Let us consider the motion of the particle in a one-dimensional
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Fig. 4.9 Consider a value of yZ
the momentum vector whose
magnitude is p. The number
of states with the magnitude
of momentum less than this is
equal to the number of cells
inside the sphere of radius p.
This is just the volume of the
sphere divided by the volume
of the elementary cells, see
Eq. (4.24) Py

Py

box of length L. Recall that for the pair of variables position x and momentum, p,
according to the uncertainty principle:

AxApy > h.

Since we know that the particle is inside the box of length L, there is an uncertainty
in the momentum:

Apx ~ Z
In other words, we are not allowed to define the x-component of the momentum
of the particle with accuracy better than i /L; it is meaningless to do so! The same
argument applies to p, and p,. Therefore, the degree of graininess, if you like, is
given by:

h 3
ApxApyAp; ~ (Z) .

We thus recover our earlier result that there is only one momentum state per cell in
phase space. If one makes the box bigger, then the uncertainty in the momentum
becomes smaller. The volume of the cell decreases, and the number of cells within
a momentum range increases (refer to Figs.4.8 and 4.9).

Indistinguishable Particles

Let us next discuss the second fundamental difference between classical and quantum
statistical mechanics. Boltzmann derived his statistical distribution by assuming that
the particles are distinguishable. The atoms or molecules of the gas have identity
cards, even though they may be atoms of the same species. Boltzmann did not
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Fig. 4.10 This figure shows the number of ways in which two identical red balls and one blue ball
can be distributed among three boxes, with one ball per box. If the two red balls are distinguishable
(that is, not identical), then they could be labelled Ry and R;. Clearly, in each row of the above
figure, there would be another configuration with R and R; interchanged. Thus, there will be three
more arrangements possible

know about the constituents of the atoms—electrons, protons and neutrons. But he
would have assumed that they are distinguishable. In quantum statistics, elementary
particles of a given species are indistinguishable. In other words, whereas you can
distinguish between an electron and a proton, all electrons are to be regarded as
identical. Similarly, all neutrons are identical.

Where does this distinction between distinguishable identical particles enter the
discussion? Remember that the basic objective of statistical mechanics is to calculate
certain probability distributions. For example, we would like to know what the average
number of particles with a certain energy is. The fact that we are seeking an average
implies that if we do repeated measurements we would get different answers. Let
us say the total number of particles is N. The name of the game is to enumerate the
number of possible ways of distributing these particles among M levels, and have a
prescription to find the average occupancy in a given level. It is in this enumeration
that the distinction between distinguishable and identical particles comes in. Let us
consider a simple example. We want to distribute two red balls and one blue ball into
three boxes, with one ball per box. The various possibilities are shown in Fig.4.10
for identical red balls.

If the red balls are distinguishable (let us call them R; and R») then there would
be three more arrangements; one more arrangement for each row, with Ry and R,
interchanged. This seemingly innocuous distinction between distinguishable and
indistinguishable particles leads to very different statistics in quantum physics.
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Fig. 4.11 Let E be the energy of an electron in some quantum state. In the presence of an external
magnetic field, this energy level will split into two levels. This is because the magnetic moment of
the electron can be either parallel to the magnetic field, or antiparallel to it. The parallel configuration
will have a higher energy, as indicated in the figure. The energy difference between these two levels
will depend upon the strength of the applied field

Spin and Statistics

The above discussion should suffice to appreciate the essential differences between
classical and quantum statistical mechanics. In classical physics we had Boltzmann
statistics. Similarly, is there a unique statistics in quantum physics? The answer is
no. And that is because there are two families of particles in quantum physics. The
rule of distributing N elementary particles among M levels or states of a quantum
system depends upon which of the two families the elementary particles belong
to. Elementary particles are grouped into these two families depending upon an
important internal property of the particles known as spin. Let us discuss this a little.

In classical physics, an electron is characterized by its mass and charge. It can
also have angular momentum by virtue of its motion around the nucleus in an atom,
or due to its gyration in a magnetic field. We discussed this in the context of the
Zeeman Effect in What Are the Stars?. In 1925, Uhlenbeck and Goudsmit pointed
out that certain features in atomic spectra could be explained if the electron possessed
intrinsic angular momentum and magnetic moment. This angular momentum was not
by virtue of any orbital motion; it was intrinsic to the particle. They initially thought
that this might be due to the electron spinning or rotating about an axis through its
centre of mass, like the rotation of a fop. According to them, an electron is like a little
bar magnet. Its magnetic moment could be oriented either parallel or antiparallel to an
applied magnetic field. Obviously, the two orientations would have slightly different
energy (see Fig.4.11). Recall that two bar magnets in close proximity would have
different energy depending on whether the magnetic fields of the two magnets are
parallel or antiparallel. From a detailed analysis of atomic spectra, Uhlenbeck and
Goudsmit deduced that the internal angular momentum of the electron is equal to
%h, where h = ;’—W You may remember that Planck’s constant has the dimensions of
angular momentum (if you did not know it already, convince yourself of this).

The notion that this intrinsic angular momentum of the electron may be due to
the electron spinning about its axis has serious difficulties. If this were true then
the electron could have had any arbitrary spin angular momentum, depending upon
how fast it is spinning. But atomic spectra clearly showed that this was not the
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Table 4.1 Quantum numbers

. Particle Spin Fermion Boson
carried by some elementary
particles Electron 172 J
Positron 172 J
Neutrino 172 J
Proton 172 V4
Neutron 172 J
4 meson 172 V4
Omega 32 Vv
T meson 0 J
K meson 0 J
Photon 1 Vv
Graviton 2 J

case. The intrinsic angular momentum of the electron was equal to %h, and not any
arbitrary multiple of it. This unsatisfactory state of affairs was resolved in 1928
when the great English physicist P. A. M. Dirac discovered an equation which
brought the wave-mechanical theory of the electron into harmony with Einstein’s
special theory of relativity. The earlier wave equation, discovered by Schrodinger,
was not consistent with Special Relativity. The relativistic wave equation is now
known as Dirac Equation, and its discovery by Dirac is regarded as one of the greatest
achievements of twentieth century physics. The relevant point for us is that in Dirac’s
theory an electron is naturally endowed with an intrinsic angular momentum equal
to %h, and an associated magnetic moment.

Soon it became clear that all elementary particles must have this attribute of
intrinsic angular momentum, referred to as spin. One thus ascribes a spin quantum
number; s, to each species of particle. The associated spin angular momentum is s#.
This spin quantum number can take the values given below:

s=0 1, =2, -, ... (4.25)

N W
N |

1
b 2 9
This might sound odd to you because the quantum number you would be familiar
with—the principal quantum number, n, which Bohr introduced in the context of the

hydrogen atom—assumed only integral values n = 1,2, 3, .. .. But that is the way
it is. The spin quantum number can be either an integer (1,2, 3, ...) or half-integer
4.3

Table4.1 gives the spin quantum numbers of some of the more important elemen-
tary particles. Particles with half-integral spin quantum numbers are called fermions
and particles with integral spin quantum numbers are called bosons.

Let us now get back to our story of quantum statistical mechanics. We said that
the rule of populating N elementary particles among M levels or states depends upon
the family to which the particles belong. Fermions and bosons are the two families of
particles that we had in mind. If the particles under consideration are fermions (like
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electrons, protons and neutrons) then the rule of populating them is governed by what
is known as Fermi—Dirac Statistics. On the other hand, if the particles are bosons
then they obey a different quantum statistics, known as Bose—Einstein Statistics.
In this volume we shall be mainly concerned with electrons, protons and neutrons.
Therefore we shall devote the whole of Chap.5, ‘Fermi—Dirac Distribution’, to a
discussion of how Fermi-Dirac statistics can be applied to fermions.

Before we move on, a few words about Bose—Einstein statistics would be in
order. This statistics was discovered by S. N. Bose working in Calcutta. His main
objective was to derive the frequency spectrum of black body radiation, now known
as Planck’s Law, from fundamental principles. Although Planck had discovered the
nature of the spectrum, he had not provided a sufficiently satisfactory derivation. Bose
approached the problem of deriving Planck’s law as a problem of discovering the
statistical distribution of photons in thermal equilibrium with matter. He was able to
do this in 1924. His fundamental results were contained in two papers, which he sent
to Einstein, requesting him to translate them into German, and get them published
in a prestigious German Journal. Einstein did that! But even before he received the
second paper, Einstein realized that the statistical distribution for photons derived
by Bose was far more general, and fundamental, than Bose himself had realized.
In fact, in addition to translating Bose’s paper into German, and forwarding it for
publication, Einstein followed it up with a paper of his own, applying Bose’s statistics
to Helium nuclei. You may be aware that the helium nucleus consists of two neutrons
and two protons. As you can see from Table 4.1, both neutrons and protons have spin
equal to %h. Recall my earlier statement that the spin angular momentum vector
of a spin —%h particle can only point up or down (with respect to some chosen
axis). In other words, the spin angular momentum can be either +% or — % (in units
of /). Convince yourself that whatever may be the spin orientation of the two protons
and two neutrons inside the helium nucleus, the resultant spin of the four particles
must be an integral multiple of h. Therefore, the helium nucleus must obey Bose’s
statistics. Since it was Einstein who first realized this, one refers to the statistics as
Bose-Einstein statistics.

This generalization by Einstein may seem rather straightforward, but it has pro-
found consequence for the behaviour of liquid helium at extremely low temperatures,
and this was pointed out by Einstein in 1925. In 2001, 76 years after Einstein made
this prediction, three physicists were awarded the Nobel Prize for Physics for exper-
imentally demonstrating the phenomenon which is now known as Bose—FEinstein
Condensation. We shall discuss some of this in the next book in this series, enti-
tled, Neutron Stars and Black Holes, but we shall not digress to discuss it here.
I refer you to the delightful book, Bose And His Statistics, by G. Venkataraman for
a comprehensive and historical account.

Why do fermions and bosons obey different rules? What is the connection between
spin and statistics? This is a deep question. Pauli showed that the connection between
spin and statistics is to be found in relativistic quantum mechanics. Pauli’s arguments
are very involved and subtle. But no one has found a simple and straightforward
answer to this basic question. Let us hear what Feynman has to say about this:
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... It appears to be one of the few places in physics where there is a rule which can be stated
simply, but for which no one has found a simple and easy explanation. The explanation is
deep down in relativistic quantum mechanics. This probably means that we do not have a
complete understanding of the fundamental principle involved. For the moment, you will
just have to take it as one of the rules of the world.

This has been a long digression, but I hope you will find it useful to understand many
of the things we shall be discussing in this series. What we have been discussing is
also bread-and-butter stuff in modern condensed-matter physics.

After this review of the principles of statistical mechanics, let us now move on to
a more detailed account of the Fermi—Dirac distribution.



Chapter 5
Fermi-Dirac Distribution

As discussed in the previous chapter, the probability distribution of particles like the
electron, proton and neutron, with spin quantum number equal to [%], is given by
the Fermi—Dirac distribution. This distribution was first invented for the electron by
the Italian physicist Enrico Fermi. The relation of this distribution with quantum
mechanics was elucidated by Paul Dirac in a seminal paper published in 1926. Hence,
the names of both these great physicists are associated with this distribution (Fig.5.1).

Pauli’s Exclusion Principle

Wolfgang Pauli was the first to appreciate an important fact concerning spin %
particles like the electron. Let us consider two electrons in a box. Pauli noticed
that the wave function describing the two electrons must be antisymmetric in the
coordinates and spins of identical particles: that is, if the coordinates and spin of
one particle are interchanged as a group with those of another, the wave function
must merely change sign. In other words, we will pick up a minus sign. Another way
of saying this is that wave function must be antisymmetric if we exchange the two
particles. From this Pauli deduced a general rule which now bears his name:

No two electrons can be in the same electronic quantum state.

Fig. 5.1 Enrico Fermi (left)
and Paul A. M. Dirac (right)

G. Srinivasan, Life and Death of the Stars, Undergraduate Lecture Notes in Physics, 55
DOI: 10.1007/978-3-642-45384-7_5, © Springer-Verlag Berlin Heidelberg 2014
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Put more simply, if there is already an electron in a quantum state then a second
electron cannot occupy the same state. Hence, for electrons, the occupation number
of each state can only take the values 0 or 1. Pauli enunciated this extremely important
principle in 1925, before the discovery of wave mechanics by Schrodinger. Fermi and
Dirac, quite independently, realized the profound significance of Pauli’s Principle,
and went on to construct the probability distribution that we shall now discuss.

The Fermi—Dirac Distribution

Let us consider a perfect gas of fermions, say a gas of electrons. Such a gas is usually
referred to as a Fermi gas. The mean number of particles in the quantum state k, with
energy Ey, is given by

1

FED = g (5.1)

This is the probability distribution of a perfect gas obeying Fermi—Dirac statistics
(often referred to simply as the Fermi distribution). In the above expression, (i, is the
chemical potential. In simple terms, p is the energy needed to add one more particle
to the system. Its meaning will become clearer soon. The total number of particles
in the system, N, is obtained by adding up the mean number of particles in all the
quantum states:

1
Zk:f(Ek) = Z m =N. (5.2)

k

Equation (5.2) determines the chemical potential ;. as an implicit function of 7 and N.

Fermi Gas of Elementary Particles

Consider a gas made up of elementary particles, say, an electron gas. The energy of
an elementary particle is simply the kinetic energy of its motion.

1 2 2 2
E= -4} +p)). (5.3)

The distribution function in this case is just over the phase space of the particles.
You will remember that we introduced the notion of phase space when we were
discussing the Maxwell-Boltzmann gas. It is a six-dimensional space, with three
spatial dimensions (x,y, z) and three momentum dimensions (py, py, p;). Hence
the number of particles in an element of phase space dpxdpydp.dV is obtained by
multiplying the Fermi distribution of Eq. (5.1) by the density of states:
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1
AL

Fig. 5.2 To specify the quantum state of an electron, one has to specify not only its momentum (or
energy) but also the direction of spin. The spin angular momentum vector of an electron can point
in two opposite directions. Therefore, two electrons with the same momentum but spins pointing
in opposite directions represent two distinct quantum states. Hence one can put two electrons in
each cell in phase space, as shown in the figure. This would not be a violation of Pauli’s exclusion
principle

dp.dp,dp.dV Amp?dpdV

2 x h—3 =2x —
Remember that phase space is discrete since we are dealing with a quantum system.
That is why the elementary volume in phase space dp.dpydp.dV has been divided
by the volume of the cells, namely, /3. This will give us the number of cells in
the desired momentum interval (Refer to Eq. (4.24) and Figs.4.7 and 4.8). You will
notice that the above equation differs from Eq.(4.24) by a factor, 2. The meaning
of this should be clear from Fig.5.2. We are actually putting two electrons in each
quantum cell in phase space. Is this not a violation of Pauli’s exclusion principle,
according to which there can only be one electron in each quantum state? No, it need
not be a violation for the following reason: Remember that in quantum mechanics
an electron has two degrees of freedom: translational degree of freedom and spin
degree of freedom. By specifying the momentum of the particle, we are defining
the state of the electron as far as its translational degree of freedom is concerned.
But to complete the description of the quantum state of the particle, we also have
to specify the direction of the spin. Since the electron is a spin % particle, the spin
angular momentum vector can have two orientations, which we may call as up and
down. These two orientations of the spin correspond to two distinct quantum states.
Therefore, as long as we make sure that the two electrons have spins pointing in the
opposite direction, we can put them in the same cell in phase space without violating
Pauli’s exclusion principle!

The distribution over the momentum of the particle is obtained by substituting
the total volume Vof the gas for dV. The meaning of such a substitution should be
clear. If we are only interested in the magnitude of the momentum, the particles can
obviously be anywhere inside the box.
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Therefore, the number of electrons with the magnitude of the momentum between
p and p + dp is given by:

N(p)dp = f(p)g(p)dp,

1 8rpldpV
(e(Efu)/kT +1) o

N(p)dp = (5.4)

where E = p?/2m. Refer to Eqgs. (4.10) and (4.12) for the corresponding expression
in Boltzmann statistics. The Fermi distribution over the energy can be written down
by recalling Eq. (4.15)

pzdp = v2m3VEdE,
V8nv/2m3 ) 1

VEdE. (5.5)

3 (eE=/KT 1 1)

N(E)dE = (

Integrating Eq. (5.5) over the energy we obtain the total number of particles in the
gas:

N = (M) /Oo ;@dE. (5.6)
o

h3 e(E—p)/kT + 1)

The Degenerate Electron Gas

We shall now focus on the properties of an electron gas at very low temperatures. The
words low or high, big or small, have no meaning in physics. These adjectives must
be in comparison to something! A white dwarf star at a temperature of 10° K is a very
cold object in the context of the present discussion. As we shall see in the next book
in the series, a neutron star with an internal temperature of 10’ K should be regarded
as an incredibly cold object. The meaning of this will become clear presently.

An Electron Gas at Absolute Zero

The most dramatic way to bring out the difference between the Fermi distribution and
the Boltzmann distribution is by considering the statistical properties of an electron
gas at T=0 K. In classical physics, all motions cease at absolute zero. This is natural
because the motion of the particles is by virtue of heat; indeed, heat is just these
random motions. The internal energy of the gas is zero at T=0 K, and the pressure
of the gas also vanishes.
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Fig. 5.3 The degenerate electron gas. In Fermi-Dirac statistics, an electron gas has finite energy
even at the absolute zero of temperature. It has this energy by virtue of Pauli’s exclusion principle,
according to which there can be only one electron in a given quantum state. Therefore, the occupation
number of any state can only be zero or one. One could, in principle, populate the energy levels as
shown on the right-hand side of the figure. But this would not be the configuration with the lowest
total energy, as is required at absolute zero. The arrangement on the left, where we put two electrons
with opposite spins in each level, is clearly the lowest-energy configuration. The highest energy up
to which all states are fully occupied is known as the Fermi energy

This is not so for an electron gas because it is a quantum gas. Since electrons have
to obey Pauli’s exclusion principle, all the electrons cannot be put in the zero energy
state. Pauli’s principle demands that the occupation number of any state can only
be 0 or 1. Therefore, an electron gas will have finite energy even at absolute zero of
temperature! This energy has nothing to do with heat. The internal energy of the gas is
a consequence of Pauli’s exclusion principle. This is schematically shown in Fig. 5.3.

Having settled that, let us ask how the electrons will distribute themselves amongst
these energy levels. This is also shown in Fig.5.3. The fundamental principle here
is that the electrons will distribute themselves in such a way as to minimize the total
energy. The lowest total energy configuration is shown on the left. The first thing
is to exploit the fact that we can, in fact, put two electrons in each state, provided
they have opposite spins. This does not violate Pauli’s rule. So, starting from the
lowest energy level, we put two electrons in each state, till we run out of electrons.
The largest value of the energy up to which all the levels are full will, obviously, be
determined by the total number of electrons in the gas. This maximum energy up
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Fermi—Dirac distribution
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Fig. 5.4 The degenerate electron gas. As this plot of the Fermi—Dirac distribution for 7 = 0 shows,
the probability of occupancy is unity for all energies up to the Fermi energy, and zero for higher
energies

to which all levels are occupied, and above which all levels are empty, is called the
Fermi energy, Er. This is in accordance with the Fermi distribution function which
has been plotted in Fig.5.4 for T = 0 K. Convince yourself that at absolute zero the
probability of occupancy f(E) is unity for all states with E < Ef and zero for all
states with £ > Ef.

Let us now derive the expression for the Fermi momentum and Fermi energy of
a degenerate gas of N electrons in a volume V.

Fermi Momentum

It is convenient to go back to momentum space and determine what is known as
Fermi momentum, p,., which is related to the Fermi energy by Er = pﬁ /2m.

Let us start with the cell at the origin in Fig.5.5 and put two electrons in it
with opposite spin. Let us then move outward in a systematic manner, in all three
directions, putting two electrons in each cell. At some stage, we shall run out of
electrons. Let p,. be the radius of the sphere that defines the outer envelope of the
occupied cells. You might wonder how you can get a sphere by stacking cubes! Well,
if the number of cubes is very large, or if the cubes are small, then the stack of cubes
will approximate a sphere to a very good accuracy.

The radius of the sphere, p,., inside which all the cells are occupied, and outside
which all the cells are empty is known as the Fermi momentum (refer to Fig.5.5).
Given a volume V, the Fermi momentum is determined by the total number of
particles N. The number of cells inside the sphere will be equal to the volume of the
sphere divided by the volume of the quantum cells.
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Fig. 5.5 This figure explains the concept of Fermi momentum. Given N electrons, the way to
populate the cells in phase space is to start with the cell at the origin and move outwards, putting
two electrons in each cell, until one has run out of electrons. The radius of the sphere circumscribing
the filled cells is known as the Fermi momentum p,.. The physical significance of p,. is that this is the
highest momentum of the electrons. As may be seen from Eq. (5.7) and (5.8), the Fermi momentum
is proportional to the one-third power of the electron density

(%)
(%)

(Refer to Fig.4.7). Since we are putting two electrons in each cell,

Number of occupied cells =

o\ 3

2V (4
N = 2 x number of occupied cells = — (—Fpi) . 5.7)

Simplifying Eq.(5.7) we get for the Fermi momentum:

—(2 %h My 5.8
v = () (7). oY

The Fermi momentum is thus proportional to the one-third power of the number

density of electrons:
1
M) 5.9)
Dp X v) (5.

Fermi Energy

The Fermi energy can now be easily determined. Using Eq. (5.8), we get:
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The above result is very important. Refer back to Fig.5.3. The Fermi energy is the
maximum energy of the electrons at absolute zero. All the energy levels up to that
value are full. Therefore, if we want to add one more electron to the box then one
can only do so if it has energy of at least Er. In Eq.(5.1) I introduced the notion
of the chemical potential p, which is the energy needed to add one more particle to
the system. We now see that the chemical potential of a Fermi gas at absolute zero
coincides with the Fermi energy.

1= Ep. (5.12)

The important feature of Egs. (5.9) and (5.11) is illustrated in Fig. 5.6. Given the total
number of electrons, both the Fermi momentum and the Fermi energy will increase
if we decrease the volume (p,. n%; Er « n%; n = N/V). Letus try to understand
this via the uncertainty principle. You will recall from our discussion in Chap.4,
‘The Principles of Statistical Mechanics’, that the discreteness of momentum space
was a direct consequence of the uncertainty principle. The length, breadth and height
of the elementary cells in phase space was determined by the uncertainty in the three
components of the momentum, which, in turn, is determined by the size of the box
(Apyx ~ h/L, etc.). Consequently, the volume of the quantum cells is given by:
oo

=7
see Fig.4.7). It is therefore easy to see why the size of the Fermi sphere in Fig.5.6
increases with decreasing volume. The increase in the Fermi energy is a direct con-
sequence of this.

h
Volume of cell = (Z

Ground State Energy of a Degenerate Electron Gas

It should be clear from the above discussion that an electron gas has energy even at
absolute zero of temperature. This energy is often referred to as ground state energy
or zero point energy. Let us now calculate this energy.

Etotal =/O Ef(E)g(E)dE. (5.13)

You will recall that f(E) is the probability that the state with energy E is occupied,
and g(E)dE is the number of levels with energy in the range E to E + dE. Look at
this equation in the following manner. Imagine that you own a skyscraper apartment
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Fig. 5.6 As the density of the electron gas increases, both the Fermi momentum and the Fermi
energy increase. As may be seen from Eq. (5.18) the average energy of the electrons at absolute zero
is %E r. Therefore the total energy, equal to the average energy times the total number of electrons,
also increases with increasing density. As a consequence, one can compress an electron gas only
by virtue of giving it enormous energy. Since this energy is an inevitable consequence of Pauli’s
exclusion principle, it represents ground state energy; the electron gas cannot have less energy than
this!

building. The rent for the apartment increases as you go to higher floors, since the
view is better. The total rent you will collect from the building is equal to the sum of
the rent from each floor. The rent from each floor is equal to the product of the rent
per apartment on a given floor, multiplied by the probability that the apartment is
occupied, multiplied by the number of apartments on that floor! This is exactly the
prescription given in Eq. (5.13) for calculating the total energy of the gas. We can
now use Eq. (5.5) to evaluate the total energy.

V8 2m? o 1
Efotal = (l’l—3 /0 Emﬁdfj (5.14)

At absolute zero, the probability of occupancy is 1 for E < Ef and zero for E > Ef
(Fig. 5.4). Therefore, the upper limit of the integral in Eq. (5.14) can be replaced by
Er. Therefore,
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V8m/2m3 Er 4
Etotal = (T)/o E2dE (5.15)

Integrating the above equation, we obtain

V8ra/2m3 2 3
Etotal = (T) gEf (5.16)

Let us now substitute Eq. (5.10) for Er. After some simplification, we get

2 2 2 5
e 33V PN v AV P (VY 5.17)
Tl =90\8z) m \v “10\8r) m\v '

It is more useful to remember this result in terms of the average energy per particle
a7 =0K:

E 3
Total _ gEF (5.18)

Averageenergy =< E > =

This is a very important result.

1. In classical statistics, the average energy of the particles is %kT. The particles
have no energy at absolute zero.
2. But in Fermi—Dirac statistics, the average energy of the particles is %EF.

. . . 2
3. The denser the electron gas, the greater is this average energy since Er o n3.

Degeneracy Pressure

In classical statistical mechanics, the pressure of an ideal gas is related to its
temperature. According to Boyle’s Law, P = nkT. It is obvious that this pressure
tends to zero as we approach absolute zero. Let us now calculate the pressure of a
degenerate electron gas at absolute zero. We expect it to have a nonzero pressure
even at absolute zero since it has internal energy. According to thermodynamics,

pressure is related to the internal energy by the relation:
2 Eint
=—-—. 5.19
3V (5.19)

If you are not familiar with this result, let us derive Boyle’s Law using this relation.
The total internal energy of an ideal classical gas is given by
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3
Eine = N x average energy of particles= N x EkT'

Therefore, %E‘i}“ = nkT, which is the expression for pressure according to Boyle’s
Law.

The pressure of a degenerate electron gas can be obtained from Eq. (5.17). Using
the second of the expressions on the right-hand side, we get

2 5 5

2FEtom 1 £ 3\3h (N\3 N\3
P —(2ZYy 2E(2 = 5.20
dee = 37y 5(87r) m(V) O((V) (5:20)

Notice some of the important features of the above expression for the pressure of a
Fermi gas.

1. A Fermi gas exerts nonzero pressure even at absolute zero.

2. The degeneracy pressure is n%

3. The mass of the fermion enters the denominator of Eq. (5.20). Since the proton (or
neutron) is roughly two-thousand times heavier than the electron, the degeneracy
pressure of a neutron gas or a proton gas will be about two thousand times less
than the pressure of the electron gas, even though the number density of neutron
or protons might be the same as that of the electrons.

Fermi Gas at Finite Temperature

So far we have discussed the properties of an electron gas at absolute zero. We did
this to bring out the essential difference between classical and quantum statistics. But
in real physical situations, the electron gas will be at a finite temperature. Consider a
metal like copper. It is a very good conductor because there are a lot of free electrons
that are not tied to individual nuclei. When we bring atoms together, copper atoms
in this case, the outermost electrons become unbound. These electrons are free to
wander around the entire volume of the metal. We thus have an electron gas. Are we to
describe these electrons using Fermi—Dirac distribution or Boltzmann distribution?

In order to answer this question, let us perturb the zero-temperature Fermi distri-
bution shown in Fig.5.7 by heating the electron gas. The description we have given
of a strongly degenerate Fermi gas can be used as an excellent approximation for
temperatures sufficiently close to absolute zero. The condition that this description
should be applicable at finite temperatures requires that the thermal energy kT be
very small compared to the Fermi energy EF:

kT <« EF (5.21)

Let us go back to our discussion of the free electron gas in copper at room temper-
ature ~300 K. The Fermi energy of the electrons can be calculated using Eq. (5.10).
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Fermi-Dirac distribution
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Fig. 5.7 The figure shows the Fermi—Dirac distribution at finite temperature. Since kT < Ef,
the zero-temperature distribution (Fig. 5.4) is modified only slightly. A few electrons just below the
Fermi energy move to higher energies, and the probability distribution develops a tail whose width
is roughly k7. Below a depth of kT, the electron distribution remains unaltered—the thermal energy
is not enough to alter the distribution below this depth. When k7" > EF, the tail is fully developed
and we shall recover the Boltzmann distribution

A simple calculation gives Ep~ a few electron volts. Now, 1eV is approximately
equal to 10* kelvin, in temperature units. To put it differently,

1eV
kp

~ 10* K

Clearly, the thermal energy k7 is much smaller than the Fermi energy EF.
Therefore, the electron gas in copper should be regarded as strongly degenerate
at room temperature.

As we increase the temperature of the gas, the Fermi distribution develops a tail
whose width is ~kT (see Fig.5.7). A few electrons originally below the Fermi energy
can spill over. Since kT < EF itis only the electrons with energy already close to the
Fermi energy that can spill over. As the temperature is increased further, the tail of the
Fermi distribution will become a little more pronounced. The temperature determined
by the relation kTo = EF is often referred to as the degeneracy temperature. This is
roughly the temperature at which quantum effects begin to become important. Notice
that this is not a fixed temperature. It depends on the electron density, since the Fermi
energy depends on the electron density.

At T > Ty, the Fermi distribution will transform to the familiar Boltzmann
distribution. This is because, in a dilute gas, at sufficiently high temperatures, Pauli’s
exclusion principle is unlikely to have any observable consequences.

We are now ready to discuss R. H. Fowler’s historic resolution of Eddington’s
paradox concerning the companion of Sirius.



Chapter 6
Quantum Stars

Fowler to the Rescue of White Dwarfs

Let us now pick up from where we left off at the end of Chap.3, “White Dwarf
Stars’. We were discussing the strange companion of Sirius, a star with a mean
density approximately equal to a million times the density of the Sun. You will recall
that Eddington was concerned what will happen to such ultra-dense stars when their
supply of subatomic energy fails. He famously stated, ‘The star will need energy
in order to cool’. Sir Ralph Howard Fowler, shown in Fig.6.1, a colleague of
Eddington and a professor of theoretical physics at Cambridge University stated
Eddington’s paradox thus: ‘The stellar material will have radiated so much energy
that it has less energy than the same matter in normal atoms expanded at the absolute
zero of temperature. If part of it were removed from the star and the pressure taken
off, what could it do?’

We argued in Chap. 3 that if the pressure is released, the stellar matter can resume
its original state of existence as a collection of normal atoms only if the kinetic energy
per unit volume is greater than the attractive electrostatic energy per unit volume.
We concluded that this condition would be met only if

p < (0.94 x 1073T/uz?)3.

At densities and temperatures expected in the interior of the white dwarf, the kinetic
energy per unit volume will, in fact, be less than the electrostatic energy:

Ex (perfect gas) < Ey.

Consequently, the matter will not be able to resume the state of being a collection
of ordinary atoms, and the star will, indeed, be in an awkward predicament when its
energy supply fails, as Eddington had feared. This is, of course, assuming that the
stellar matter behaved as a perfect gas.
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Fig. 6.1 Sir Ralph Howard
Fowler

R. H. Fowler resolved this paradox in 1926 by invoking what was at the time
hot-off-the-press statistical mechanics of Fermi and Dirac. This paper by Fowler is
one of the great landmarks in the development of our ideas concerning stellar structure
and stellar evolution. What is equally remarkable was the speed with which Fowler
had absorbed the new development and applied it to resolve the above paradox. Dirac
was one of Fowler’s students when he derived the statistical distribution we intro-
duced in Chap.5, ‘Fermi—Dirac Distribution’. Fowler communicated Dirac’s paper
to the Royal Society on 26 August 1926. On 3 November, Fowler communicated a
paper of his own to the Royal Society in which he applied the new statistics to an
assembly of identical particles; in other words, this was much of what we described in
Chap. 5. On 10 December, Fowler presented a paper entitled, ‘Dense matter’, before
the Royal Astronomical Society. In this historic paper Fowler drew attention to the
fact that the electron gas in matter that was as dense as in the companion of Sirius
must be degenerate (in the sense in which we explained in the previous chapter).

Thus, Fowler was the very first person to apply the new statistics of Fermi and
Dirac. Extraordinarily, the first application of a new quantum principle was to a star!
Soon after that, Pauli invoked the Fermi—Dirac statistics to explain the paramagnetism
of the alkali metals. This was followed by a classic paper by the great German
physicist Arnold Sommerfeld in which he developed what has come to be known as
the Free Electron Theory of Metals. (Sommerfeld had a reputation as a great teacher
and attracted many brilliant young men. Among his students from that epoch are
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Wolfgang Pauli, Peter Debye, Werner Heisenberg, Gregor Wenzel, Hans Bethe,
Rudolf Peierls and others! A list that is unmatched in the history of science.)

Fowler’s resolution of Eddington’s paradox was simply this: since the electrons
will be degenerate at the densities and temperatures in the white dwarfs, the kinetic
energy, Ex per unit volume should be evaluated using the Fermi—Dirac statistics and
not using Boyle’s law. He showed that when Ek is so evaluated, it is indeed much
greater than Ey .

Ex (Fermi-Dirac) > Ey

So, if the pressure is taken off, the stellar material will be able to assume its original
state of normal atoms. The white dwarfs need not worry! When their supply of heat
is exhausted, Pauli’s Exclusion Principle and Fermi—Dirac statistics would ensure
that they would die a peaceful death.

Enter Chandra

The year 1928 was a momentous one in the history of Indian science. In February
that year, C. V. Raman and his student K. S. Krishnan discovered an important
effect which has come to be known as the Raman Effect. Raman’s nephew, Subrah-
manyan Chandrasekhar, shown in Fig. 6.2, was a first year B.Sc. Honours student
at Presidency College, Madras (now Chennai). That summer, after completing his
first year, Chandra (as he came to be known the world over) went to Calcutta (now
Kolkata), to visit Raman and his young students at the Indian Association for the
Cultivation of Science.

The place was buzzing with excitement. Raman was in a state of euphoria. There
was expectation that Raman would be awarded the Nobel Prize for this important
discovery he had made. This came true in 1930, when Raman was awarded the
Nobel Prize for Physics. Young Chandra must have felt inspired to be in such an
environment.

In the fall of 1928, Arnold Sommerfeld visited Madras and delivered a lecture at
the Presidency College. Chandra was terribly excited, not only because Sommerfeld
was one of the greatest physicists in the world, but also because he had read Som-
merfeld’s book, Atomic Structure and Spectral Lines. He took an appointment and
went to meet Sommerfeld at his hotel. It was during this conversation that Chandra
learnt of the great transformation that was taking place in physics: the discovery
of wave mechanics by Schrodinger, and the new developments due to Heisenberg,
Dirac, Pauli and others. Sommerfeld also talked about the new developments in
statistical mechanics due to Fermi and Dirac. In fact, he gave Chandra a copy of his
unpublished paper, ‘The free electron theory of metals’.

This meeting with Sommerfeld had a great impact on Chandra’s evolution as
a physicist. He carefully studied the paper that Sommerfeld had given him. This
paper was in German, but this posed no difficulty since, like most serious students of
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Fig. 6.2 Subrahmanyan
Chandrasekhar

physics at that time, Chandra was well versed in German. Thus he learnt about the
new statistics of Fermi and Dirac. He immersed himself in the University Library and
frantically acquainted himself with the new developments in physics. Among other
things, he came across the paper by Fowler that we have referred to. Within a few
months, he had written a paper entitled, ‘Compton scattering and the new statistics’.
Having written this paper, he had the audacity to send it to Fowler in Cambridge,
requesting him to communicate it to the Royal Society! Fowler was sufficiently
impressed with the paper that he got it published in the journal, Proceeding of the
Royal Society. Chandra was barely eighteen years old at that time!
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Fig. 6.3 1In a diffused star like the Sun, the inward pull due to gravity is balanced by the combined
effect of the pressure of ideal gas and radiation pressure. While the gas pressure depends on both
density and temperature, radiation pressure depends upon temperature alone. The relative proportion
of gas pressure and radiation pressure depends upon the mass of the star, with radiation pressure
becoming increasingly important in more massive stars. Fowler’s brilliant idea was that in a white
dwarf gravity is balanced by the pressure of the electrons that arises due to Pauli’s exclusion principle.
Since this pressure exists even at absolute zero, a white dwarf can be stable even at absolute zero!

Chandrasekhar’s Theory of the White Dwarfs

Chandra did not rest on his laurels. He was inspired by Fowler’s paper on the dense
stars and went on to construct a proper theory of the white dwarfs. He had read
Eddington’s book, The Internal Constitution of the Stars, and mastered all the
mathematical tools needed to do this. Let us now discuss the main new results
obtained by him.

Since Chandra’s starting point was the remarkable paper by Fowler, let us briefly
recall what Fowler had suggested. The essence of Fowler’s prescient suggestion is
schematically shown in Fig. 6.3.

You will recall that in Eddington’s theory the stellar material is assumed to be
an ideal gas. The inward-directed gravity is balanced by the combined effect of gas
pressure and radiation pressure. Fowler’s idea was that in a highly dense star such
as a white dwarf, gravity is balanced by the degeneracy pressure of the electrons.

One thing that Chandra set out to do was to obtain the relationship between the
mass and the radius of a white dwarf. To derive the mass—radius relation, one must
integrate the equation of hydrostatic equilibrium, with an assumed equation of state
(that is, an expression for the pressure in terms of the density). We discussed this
equation in Chap. 1 of What Are the stars?, but let us recall it once again:

P GM(r)p(r)

= > (6.1)

In Eddington’s theory, the pressure on the left-hand side of the above equation is the
sum of gas pressure and radiation pressure:
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P =pG + pr, (6.2)
where,
kgT
pG = nkgT = 228 6.3)
Himy
1 4
PR = gaT . (6.4)

Following the suggestion by Fowler, Chandrasekhar assumed that the pressure that
balances gravity in a white dwarf is the degeneracy pressure of the electrons:

2 5

2Erom 1 ( 3\3 K (N3
P — = = (=) Z(Z) . 6.5
T3y 5(871) me \V ©>

Here, N is the number of electrons in volume V. It would be more useful to follow
Eq. (6.3) for Boyle’s law and rewrite the degeneracy pressure as a function of the
mass density p, instead of the number density n = (N/V).

If we were dealing with a gas of protons, say, then p = n,m,, where n, is the
number density of protons, and n1, is the mass of the proton. On the other hand, if the
gas is ionized hydrogen then there will be equal number of electrons and protons, with
ne = np. Butthe mass of the electronis negligible when compared with the mass of the
proton. Therefore, we should keep this in mind when we convert the number density
of electrons into mass density. Since the mass is essentially determined by the number
of protons, p = n,m,. However, since n, = ny, it follows, p = n,m, = n.my, or
Ne = p/myp.

Things will be slightly more complicated if the gas is an admixture of hydrogen,
helium, carbon, etc. Each atom of helium, for example, will contribute two electrons
and four nucleons (neutrons plus protons) to the stellar plasma. Therefore, the number
density of electrons will be one-half the number density of nucleons:

1 1
Ne = E(nn + np) = znnucleon& (6.6)

Multiplying and dividing the right-hand side by m,,, we get

Ne = Mnucleon’p L 6.7)
2my, 2my,

Instead of helium, let us consider some other heavy element (A, Z), where A is the

number of nucleons and Z is the number of electrons. In this case,

Ne Z

Nnucleon A
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Hence, Eq. (6.7) can be written in the more general form:

V4 Z Npucleon™ o P
Ne = —Nnpucleon = — — L = A = . (6.8)
A A np Zmp 2mp

You will notice that in Eq. (6.8) we have substituted 2 for (A/Z) in the denominator. If
you refer to the famous Periodic Table, you will discover that for all elements barring
hydrogen, the number of protons inside the nucleus is very nearly equal to the number
of neutrons. In other words, (A/Z) =~ 2 for all elements (except hydrogen). In reality,
one does not have pure hydrogen or helium or carbon or oxygen, etc. One has an
admixture of various elements. One then introduces the concept of mean molecular
weight per electron, [1., and writes (6.8) in the generalized form:

0
ne =

= . (6.9)
ettty

It is an interesting to note that as long as there is no hydrogen, |, ~ 2, regardless of
the relative abundance of elements. As we shall see in later chapters, by the time a star
ends its life as a white dwarf, it would have consumed all the hydrogen in the core.
And itis the core that then becomes a white dwarf. Thus, ., & 2 is a good assumption.
Do not be confused by the term, mean molecular weight. It is a misnomer! It should
be clear from Eq. (6.9) that j.m,is the average mass per particle. To summarise the
above discussion, if we want to convert the number density of electrons to the mass
density, the prescription is:

Ne = —.
2my,

After this digression, let us go back to Eq. (6.5) and rewrite the electron degeneracy
pressure in terms of the mass density:

Pgeg =K1/0~%’ (6.10)

where

2
3\3 n? 1
&) o (6.11)
s me( 3
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Mass—Radius Relation

To model a white dwarf of a certain mass we have to solve the equation of hydrostatic
equilibrium, Eq. (6.2), supplemented by the equation of state (6.10):

P GM(Mp(r)
dr — r2 ’

3
3

PdegzKlp .

This is an easier problem than the one Eddington had to solve. In the case of gaseous
stars, the total pressure is a function of both density and temperature, see Egs. (6.3)
and (6.4). Therefore, the density gradient in the star, and the temperature gradient,
are interrelated. In the case of a white dwarf, the degeneracy pressure is a function
of density only. Strictly speaking, this is true only at absolute zero. You will say that
the companion of Sirius is a very hot star. That is true! But as I remarked in Chap. 5,
The Fermi—Dirac distribution, under the temperature and density that are found in a
white dwarf, kT < Er, and our zero-temperature approximation to the white dwarf
is an extremely good assumption.

There is an elaborate mathematical machinery to solve an equation of the type
(6.2), when the pressure is related to the density as follows:

P=Kp'tn. (6.12)
Such an equation of state is known as a polytrope of index n. In our case, n = %
Using this standard machinery, Chandrasekhar derived the following relationship
between the radius and mass of a white dwarf:

K 1
R= — | (6.13)
0.424G M3

In Eq.(6.13), K| is the constant defined by (6.11) and G is Newton’s constant of
gravity. Equation (6.13) is the famous mass—radius relation for white dwarfs, derived
by Chandrasekhar in 1929: The radius of a white dwarf is inversely proportional to
the cube root of the mass. This is graphically shown in Fig. 6.4.

Let us now try to derive this using a heuristic derivation. The equation we want
to solve is:

ap_ GM(r)p(r)
a2
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Mass—radius relation for white dwarfs

=~ 10*km

—_— M

Fig. 6.4 The mass—radius relation for white dwarfs derived by Chandrasekhar in 1929. The radius
is inversely proportional to the cube root of the mass of the white dwarf. This is in contrast to
terrestrial matter, planets, etc. for which the radius will increase as the mass increases. A white
dwarf with a mass equal to the mass of the Sun will have a radius roughly equal to the radius of the
Earth! Remember that the radius of the Sun is roughly a million kilometres. Consequently, the mean
density of a white dwarf of one solar mass will be roughly a million grams per cubic centimetre

Let us replace the differential by a difference:

d_P - (P(r) — Psurface) N f
dr R R’
Here, R is the radius of the star. Remember that the pressure at the surface is zero.
With this approximation, the equation of hydrostatic equilibrium reads:

P Mp (6.14)
— X —=. .
ROR

(In the simple-minded discussion below, we shall not display the fundamental con-
stants, numerical constants, etc.) Let us now use the equation of state

S
P p3,

and p « 1%. With these substitutions, Eq. (6.14) gives
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Simplifying, we get:

Ro M~ (6.15)

So our simple exercise gives the famous result obtained by Chandrasekhar! But ours
is what is known as a scaling relation; it can tell how the radius depends on the
mass. Our simple treatment cannot give the value of the constant of proportionality
in Eq. (6.15). Chandrasekhar’s result, described by Eq. (6.13) gives the constant of
proportionality! Let us rewrite his result by substituting for K; from Eq.(6.11),
inserting the numerical values for the constants, and taking the logarithm of both
sides of Eq. (6.13):

R 1 M 5
loglo ]?_Q = —g loglo ]W_G - 5 loglo He — 1.397. (616)

For amass equal to the solar mass and ., = 2,Eq. (6.16) predicts R = 1.26x 10_2R@
(approximately 10,000km) and a mean density of 7.0 x 10° g cm™>. These values
are precisely of the order of the radii and mean densities encountered in white dwarf
stars, such as the companion of Sirius. I am sure you are intrigued by an important
feature of Fig.6.3. In our experience, as the mass increases, the size of the object
increases. It is exactly the opposite for a white dwarf! Think about this.

Besides the mass—radius relation, Chandrasekhar derived two other important
results from his theory, which we have summarized below.

1. The radius of a white dwarf is inversely proportional to the cube root of the
mass.

2. The mean density is proportional to the square of the mass.

3. The central density is six times the mean density.

Before proceeding further, we should ask the following question. Why was it
that Fowler and Chandrasekhar considered only the pressure of the electrons? After
all, the stellar plasma consists of an equal number of protons and roughly an equal
number of neutrons. Since neutrons and protons are Fermions they, too, obey the
Fermi—Dirac statistics. Therefore, should we not consider the degeneracy pressure
of the nucleons also? This should bother you, since in a classical gas obeying Boyles’
law, all the species of particles contribute to the pressure in equal measure, if their
number densities are the same. This is because of the equipartition theorem according
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to which the average energy of the particles is %kT, regardless of their mass; a proton
or a neutron have the same average energy as an electron (their speeds will, of course,
be different). Therefore all the species of particles contribute equally to the internal
energy and the pressure.

But this is not so for a Fermi gas. If you refer back to Eq. (5.20) which we have
reproduced for ready reference, you will see that the mass of the particle enters the
denominator of the expression for the degeneracy pressure.

2 .9 3
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Therefore the quantum pressure of the neutrons and protons is roughly two-thousand
times less than that of the electrons, even if their number densities are the same.

Quite apart from that, one should not assume that the nucleons should necessar-
ily be described by quantum statistics. If you recall our discussion in Chap.5, the
condition for a Fermi gas to regarded as degenerate is that the thermal energy kT is
very small compared to the Fermi energy EF:

kT < EF.

While this condition would be satisfied for the electron gas, this inequality may not
hold for the nucleons. This is because the mass of the particle enters the denominator
of the expression for the Fermi energy, see Eq. (5.10):

_pi_ 3IN\23 2 /N3
T o2m - \ 87 2m \V '

‘We could therefore have a situation where

Er

kT < EF (electrons) = degenerate electrons
but kT ~ Er (nucleons) = nondegenerate nucleons.

So the bottom line is the following. Only the electrons are completely degenerate in a
white dwarf. It is the pressure of the electrons that balances gravity in a white dwarf.
The protons and neutrons are silent spectators. The nominal pressure they exert is
only by virtue of their modest thermal motion at the temperature of the white dwarf.
This pressure is negligible compared to the pressure exerted by the electrons.

All Stars will Ultimately Find Peace

The mass-radius relation (6.13) predicts finite equilibrium configurations for all
stars. All stars will therefore find peace ultimately as white dwarfs. Eddington would
have found it comforting to know, ‘all stars will have the necessary energy to cool’.
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Fig. 6.5 The ground state
of a degenerate electron gas. T'=0K
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You might think that there is something fishy in this. After all, gaseous stars were
also stable for millions to billions of years. But they got into trouble when their
supply of heat was exhausted. How can we be sure that a similar fate is not in store
for white dwarfs? What if the internal energy of the white dwarf is radiated away?
If that happens, the white dwarf will also be doomed. But this cannot and will not
happen! It is like a young person inheriting a huge fortune from a rich uncle, but
the money is held by a Trust; he or she cannot touch it until they attain a certain
age! Similarly, although a white dwarf has an incredible amount of internal energy,
it cannot expend it—it is held in trust forever. Fowler put it most eloquently in his
historic paper of 1926.

The black dwarf material is best likened to a single gigantic molecule in its lowest quantum
state. On the Fermi—Dirac statistics, its high density can be achieved in one and only one
way, in virtue of a correspondingly great energy content. But this energy can no more be
expended in radiation than the energy of a normal atom or molecule. The only difference
between black dwarf matter and a normal molecule is that the molecule can exist in a free
state while the black dwarf matter can only so exist under very high external pressure.

So beautifully put! I hope Fowler’s reasoning is clear to you. As we stressed in
the previous chapter, the enormous energy possessed by the electron gas is zero point
energy or ground state energy. This is like the energy of an electron in the n = 1 level
of a hydrogen atom. Although the electron has 13.6eV of energy, it cannot spend
it because there are no allowed levels with lower energy. Similarly, a completely
degenerate electron gas cannot lower its energy any further than shown in Fig. 6.5,
without violating Pauli’s Exclusion Principle, which, of course, it cannot do.

So we can say that white dwarfs are forever!



Chapter 7
The Chandrasekhar Limit

Relativistic Stars

Chandrasekhar gathered his results and wrote up a paper in the beginning of 1930.
He was still a student at the Presidency College in Madras. By the time he completed
his BSc Honours, he had secured a Government of India Scholarship to study under
Fowler in Cambridge. He sailed from Bombay (now Mumbai), on 31 July 1930.
During the voyage, he started thinking about physics again. Upon reading the man-
uscript of the paper he had written he began to wonder whether his theory provided
a good description for white dwarfs of all masses. And the reason for this second
thought was the following.
You will recall that the Fermi momentum increases with increasing density as:

3 %h Ny 3 (7.1)
e R — —_ [0'¢ . .
PF 87 \% "

According to Chandrasekhar’s theory, the mean density of a white dwarf increases
as the square of the mass, and the central density is six times the mean density (see
Fig.6.4). Chandrasekhar estimated that even in a white dwarf of one solar mass, the
central density is so large that the Fermi momentum would be comparable to mc,

PF ~ mc.

To put it differently, the electrons on the surface of the Fermi sphere (see Fig. 7.1) will
have speeds close to that of light. This meant that the variation of mass with velocity
predicted by Einstein’s Special Theory of Relativity must be taken into account in
obtaining the equation of state (that is, the expression for the pressure in terms of the
density). Obviously, this effect would be much more pronounced in a white dwarf
with mass greater than one solar mass. Chandrasekhar decided to obtain the equation
of state for a fully relativistic electron gas in which all the particles, and not just those
near the centre of the star, had speeds close to the speed of light, that is, p &~ mc
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Pz
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Fig. 7.1 As may be seen in this reproduction of Fig. 5.6, as the density of fermions increases, the

maximum momentum, pr, increases as n% The maximum energy, Er, increases as n% When
the density becomes sufficiently large, like it does near the centre of a white dwarf, the maximum
momentum becomes comparable with mc. Consequently, the variation of mass with velocity pre-
dicted by Einstein’s special theory of relativity will have to be taken into account while determining
the degeneracy pressure

for all particles. He then went on to recalculate the mass—radius relation. Before
telling you what he found, let us refresh our memory about the variation of mass
with velocity predicted by the special theory of relativity.

Relation Between Mass and Energy in Special Relativity

Let m, be the mass of a particle at rest; this is known as the rest mass. In Newtonian
mechanics, the inertial mass of the particle (the proportionality constant between
force and acceleration in the equation F' = ma) is just m,; the mass of the particle
is independent of velocity. But according to Einstein, the inertial mass m varies with
velocity as:
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me

m=— (12)
(1 —v2/c?)2

The momentum p of a particle moving with a velocity v is then given by

myv
p=mv=— . (7.3)
(1 —v2/c?)2
I am sure you know the famous relation between mass and energy,
E = mc> (7.4)

This energy consists of two parts: the energy equivalent of the rest mass, also called
the rest energy m,c? and the kinetic energy Tyip. We can write

1
Thin = (m — mp)c* = mpc* | ——= —1). (7.5)
V1 —=v2/c?
Let us now write the total energy of the particle in a form that is useful.
2
E=m=—"° __ (7.6)

(1 _ v2/62)1/2~

The inertial mass m and the momentum p can be written as

E Ev
m=c—2 p=mv=c—2. (7.7)
Squaring both sides of Eq. (7.6) and using Eq. (7.7) we get
E? = m%c4 + p2c2 (7.8)

It would be a good exercise for you to convince yourself that when the velocity of the
particle is much less than the speed of light (v/c < 1), Eq. (7.8) will reduce to the
Newtonian expression, £ = %mvz. The relations given above suggest that inertial
mass may be a property of energy rather than of matter as such, each erg of energy
possessing, or having associated with it, 1 /c¢> gram of mass. The law of conservation
of mass then becomes merely another aspect of the conservation of energy.
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Degeneracy Pressure of an Ultra-Relativistic Gas

Let us now derive the relation between pressure and density of an ultra-relativistic
electron gas. In the ultra-relativistic limit the kinetic energy of the electron is much
greater than its rest mass energy. Therefore, Eq. (7.8) can be approximated as

E ~ pc. (7.9)

Strictly speaking, Eq. (7.9) is valid only when v = c. For a photon gas, p = hv/c
and Eq. (7.9) reduces to the familiar £ = hv.

We will follow the same steps as in Chap. 5, ‘Fermi—Dirac Distribution’, with the
difference that for an ultra-relativistic gas, £ = pc and not the Newtonian expression
p?/2m; the rest of the steps will be identical. The first step in calculating the pressure
is to calculate the total energy of the gas at absolute zero. We shall use the general
expression (5.13) for the total energy:

ETotal =/0 Ef(E) g(E)E.

At absolute zero, the probability function f(E) is unity for E < Er and zero for
E > EF (see Fig.5.4). Replacing the upper limit of the integration by Er, we get

Ep
Etowt = /0 E g(E) dE. (7.10)

In the above expression, g(E)d E is the number of states in the energy interval being
considered. Earlier, we got this from the density of states in momentum space g(p)dp
as in Eq. (5.4):

&V,

3 dp.

g(p)dp =

by using the nonrelativistic relation between the momentum and energy, namely,
E = p?/2m. This gave us

8V
g(E)dE = 2—3\/2m3«/EdE.

In the extreme relativistic limit £ # p2/ 2m, but E = pc. Using this we obtain

8V

g(E)dE = mE%JE. (7.11)

This expression for the density of states differs from the nonrelativistic expression
in two respects.
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1. g(E) o E?, instead of JVE.
2. The mass of the particle does not enter the expression.

Using Egs. (7.11) in (7.10) and integrating, we obtain for the ground state energy of
a relativistic electron gas:

2V
Etow = 55 E}. (7.12)

Since E = pc for a relativistic gas, EF = prc (not p% /2m). Using the expression
(5.8) for the Fermi momentum, we obtain

3\ /3 N /3
Er =p,c= (§) hc (V) (7.13)

Notice two important differences between this expression for the Fermi energy and
the earlier one in Eq. (5.10). For a relativistic gas,

1 2
1. Ep «xn3 andnotn3, and

2. The mass of the particle does not enter the expression. This is as it should be. In
the extreme relativistic case, the rest mass energy of the particle is insignificant
compared to the kinetic energy. To put it differently, the energy depends only on
the momentum and not on the rest mass.

Note the interesting fact that expression (7.1) for the Fermi momentum remains the
same in the nonrelativistic and relativistic case. The Fermi momentum, which has
the significance of the maximum momentum of the particles is determined only by
the total number of particles and the size of the cells in phase space (refer to Fig. 5.5).
Neither of these depends on the speed of the particle. As you will see in Chap. 8, “The
Absurd Behaviour of Stars’, although correct, this conclusion got Chandrasekhar into
a great deal of trouble!

Substituting Eq. (7.13) in (7.12), we obtain for the total energy at absolute zero,

303\ (N\}
ETotaIZVZ g hc v . (7.14)

The pressure of a relativistic gas is related to the internal energy by

_ lETotal
3 Vv

(7.15)

In the nonrelativistic case described by Eq. (5.19), the prefactor was 2/3. There are
many ways of understanding Eq. (7.15) but we shall not get into it here. If you recall,
radiation pressure is also one-third of the energy density of radiation in the cavity:
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L
Prad = 3aT
The general rule is the following. If one is dealing with particles with finite rest
mass, the prefactor relating pressure and energy density is 2/3. For radiation, as well
as particles which may be assumed to travel at speeds close to that of light, the
prefactor is 1/3. Combining Eqgs. (7.14) and (7.15) we finally obtain for the pressure
of a relativistic electron gas:

1
I ETotal 1 (3)\3 4
P = —-—— = — — h 3. 7'16
rel 37 v 3 ( ) cn ( )

Written in terms of the mass density:

4
Prel = Ky p3 (7.17)

The constant K5 is given by

hc

Ky = (7.18)

0| —
/N
S| w
N—"

wl—

i
3

(/Jemp) ;
Let us summarize.

1. The pressure of a relativistic gas is proportional to p*/3. In the nonrelativistic
case, it is proportional to p>/3.

2. The pressure of a relativistic gas is independent of the mass of the particle, unlike
in the nonrelativistic case.

The above results were derived for the first time by Chandrasekhar during his voyage
to England.

A Startling Discovery by Chandrasekhar

Having obtained the equation of state of a relativistic gas, Chandrasekhar took the
next step to model such completely relativistic stars. The procedure was the same as
discussed in Chap. 6, ‘Quantum Stars’. One has to solve the equation of hydrostatic
equilibrium:

dP GM(r)p(r)

&= 719

with the pressure now being given by equation (7.17):
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4
3

Prel = Kyp3.
This is again a polytropic equation of state:
P=Kp'*h

with n = 3. Chandrasekhar knew how to solve this problem in a mathematically
exact manner. He knew that in the case of a polytrope of index n = 3, the radius of
the star is uniquely determined by K», the constant of proportionality in the pressure—
density relation (7.17). Before telling you the exact result he found, let us, as we did
in the nonrelativistic case, do an elementary derivation and prepare ourselves for the
shock! Let us, once again, make the approximation

d_P ~ (P(r) — Psurface) _ £
dr R R
With this approximation equation (7.19) for equilibrium gives

P  Mp

X —>.
R R?

Let us now use P « p% and p x % in the above equation. We get
4
1 (M3 M (M
=) x={=)-
R\R3 RZ\ R3

4
M3 M2
R’ RS

Simplifying, we get

(7.20)

This is a most surprising and extraordinary result. In the nonrelativistic case, the
same steps led us to a relation between mass and radius of the star (refer to Egs. 6.14
and 6.15). Equation (7.20) does not, however, yield a relation between the mass and
the radius. The radius, in fact drops out of the result since the same power of the
radius appears on both sides of the above equation! The only variable that remains
is the mass.

We are thus forced to conclude from Eq. (7.20) that

1. A completely relativistic star has no radius,
2. However, a completely relativistic star has a unique mass.

Our simple scaling argument cannot give the value of this unique mass. Since
Chandrasekhar solved the equation for equilibrium exactly, he was able to derive
its value. He obtained
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(%)
M=4n|{—) 6.89.
G

Substituting for K, from Eq. (7.18) and simplifying

he\? 1 1
Mo =0197| (=) — | x (7.21)
GJ) my | wg

This is one of the most beautiful results in physics, and let us savour it. In What Are
the Stars? we asked the question, “Why do the stars have nearly the same mass?’
The lightest known star is about 3 x 1032 g, and the heaviest about 2 x 10% g. The
majority are between 1033 and 10°*g. We argued that Eddington’s theory of the
stars in which gravity is balanced by the combined pressure of the gas and radiation
isolates a combination of fundamental constants with the dimension of mass, and
that this gives a characteristic scale for the masses of the stars. This combination of
fundamental constants was

he\? 1
) L =290Mm,.
G m%,

Note that the numerical value of this mass scale is 29.2 times the mass of the Sun.
Thus, a star which may be described by Eddington’s theory must have mass which
is a few times the mass of the Sun. His theory tells us that the characteristic mass
of stars would be a few times 10°3 g (recall that the mass of the Sun is 2 x 1033 g).
Eddington’s stars will not be of planetary mass, nor would they be thousands of times
more massive than 1033 g.

Once again, we encounter the same combination of fundamental constants in Eq.
(7.21). This time, however, it does not provide a scale for the measurement of masses.
It gives a unique value for the mass of a completely relativistic white dwarf. Let us
go back to the parable of the physicists on a cloud-bound planet that we discussed
at length in, What Are the Stars? This time, let the physicists construct objects in
which gravity is balanced by the degeneracy pressure of relativistic electrons. To their
great surprise, they would find that such stars would have a unique mass determined
solely by a combination of fundamental constants. The numerical value of this unique

mass is ,
he2 1 1
Mcp = 0.197 (—c) — | x =
GJ) my | pe

1 1
=0.197 x 29.2Mo x — =5.76Mp X —. (7.22)
Me’ e

For an assumed value of p, = 2, we get
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Mcn = 1.4Mg (7.23)

This unique mass of a fully relativistic white dwarf given by Eq. (7.21) has come to
be known as the Chandrasekhar Limiting Mass. It is important to stress that this is
an exact result.

Whereas Chandrasekhar did not take much time to discover this startling result,
he could not make head or tail of it! Why it was appropriate to call it a limiting mass
became clear only four years later, in 1934.

The Chandrasekhar Limit

After a long journey, Chandrasekhar reached Cambridge early in September 1930.
But he had to wait for a month before his first meeting with Fowler, just a few days
before the semester started. The first thing he did was to show the paper on his theory
of the white dwarfs. Fowler was very appreciative of it and complimented him. Next,
Chandra showed Fowler the intriguing result he had obtained during the voyage.
Regarding this, Fowler was sceptical. But he did send it to the famous astronomer
E.A. Milne for his learned comments. Unfortunately, Milne was also very sceptical
of the result on the limiting mass.

As Chandra was to remark later, he himself was intrigued, puzzled and confused
by the result he had obtained. What did it mean? Soon a picture emerged in his mind.
Perhaps the relation R oc M ~!/3 given by the nonrelativistic theory was modified by
the inclusion of the relativistic effects in the following way. Consider a white dwarf
as consisting of a nonrelativistic envelope (in which P o< p>/3) and a relativistic core
(in which P « p4/ 3), as shown in Fig.7.2. As we go to more massive white dwarfs,
one would expect that the envelope will shrink in mass and the core will grow in
mass. The completely relativistic model, considered as a limit of such composite
stars is a point mass with p = oo!

This was Chandra’s conjecture, but he was still puzzled. If the critical mass he had
derived is a limiting mass, then what is the fate of stars more massive than 1.4Mg?
Even though the true significance of his result eluded him, he was convinced of
its correctness and potential importance. He therefore submitted it for publication.
Since both Fowler and Milne were lukewarm in their responses, he sent it to The
Astrophysical Journal, published in America, rather than a British journal! The paper
was published in 1931. Although ignored for more than three decades, this paper is
now recognized as one of the most significant papers in contemporary astronomy.

Although the question concerning the ultimate fate of the stars was not settled,
Chandra had to move on and worry about his thesis. Given the uncertainty, he chose
an entirely different topic for his thesis, a study of the interaction between radiation
and matter in the atmosphere of stars (a work that brought him much recognition
and fame).
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Fig. 7.2 Chandrasekhar conjectured that the unique mass he had obtained for a fully relativistic
white dwarf may be visualized as a limit of the sequence shown above. In the limit M — 0, all the
electrons in the white dwarf will be nonrelativistic, but as one goes to more massive white dwarfs,
the electrons near the centre will be relativistic and one may think of them as forming a core. As we
go to more massive stars, the mass contained in the relativistic core will increase. Note, however,
the size of the core will decrease because of the inverse relationship between the radius and mass
in degenerate stars! Finally, when the entire star becomes relativistic at M = Mcy, the radius goes
to zero and the density becomes infinite

But he returned to white dwarfs in 1934. By that time he had obtained his doctorate
and secured the much coveted Fellowship of Trinity College, Cambridge (the only
other Indian to have secured this most prestigious Fellowship was the legendary
mathematician Srinivasa Ramanujan). This time he decided to tackle this problem
head on, and not make any approximations. Remember that he had calculated the
internal constitution of white dwarfs in two limiting cases:

1. When the velocity of the particles was small compared to the velocity of light. In
this limit, Newtonian mechanics is valid and the kinetic energy of the particles
is given by E = %mvz. The degeneracy pressure of the electrons was given by
P = K;p/3, as shown in Eq. (6.10).

2. When the velocity of the electrons was very nearly equal to the speed of light. In
this extreme relativistic limit, £ = pc, like for the photon gas. The pressure is
given by P = Kyp*/3, as shown in Eq. (7.17).

In a real white dwarf, not all the electrons will have speed v ~ ¢. While the electrons
near the centre (where the density is six times the average density) may be relativistic,
those in the outer region may have speed v < c. Therefore, the correct thing to do
would be to use the general expression for the energy as in Eq. (7.8)

1
E:(ﬁ&+m&ﬁ? (7.24)
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As remarked earlier, this expression reduces to E = %m v? in the limit v < ¢, and
E = pcinthelimit v ~ c. One can derive the expression for the degeneracy pressure
by using Eq. (7.24) for the energy of the particle. The derivation will proceed along
the same lines as before. Chandrasekhar did this, and the expression for the pressure

that he obtained is 1

_ —_(P)3
P=Af(x),x= (B) , (7.25)
where
_ 7rm4cs7 _ 87Tm3c3uemp (7.26)
33 33
and
Fx) =x(x>+ 1D"2@2x* —3) + 3sinh ! x. (7.27)

Although this looks horribly complicated, it is quite straightforward to derive the
above expression. If you have the patience you might verify that in the limit of low
electron density (x < 1) the above expression reduces to the nonrelativistic result
P = K;p/3, and in the limit of high electron density (x > 1) we recover our earlier
result in the relativistic limit P = K,p*/3.

The next step was to derive the exact mass—radius relation. Again, we have to
repeat our earlier steps, this time with the equation of state given by the expression
(7.25). Today, modern computers would make this a simple exercise. But this was
quite an involved thing to do in 1934. Undeterred, Chandra plunged in and calculated
the mass—radius relation point by point. It was heavy numerical work. At some stage
Eddington borrowed a mechanical hand calculator from a Norwegian visitor and gave
it to Chandra; this Swedish calculator was the only one around! After many months
of labour, Chandra derived the exact mass—radius relation, which is schematically
shown in Fig.7.3.

Let us look at this figure carefully. The dashed curve is the approximate theory
which neglects special relativistic effects, namely, the variation of mass with velocity.
That theory predicts an equilibrium configuration for all masses. The solid line is
the exact theory. As would be expected, the exact theory predicts the same mass—
radius relation as the approximate theory for M — 0. In white dwarfs having very
low masses, the density is small enough that the electrons do not have velocities
comparable to light. Naturally, special relativistic effects are unimportant. But the
exact theory deviates from the approximate theory as one goes to more massive
white dwarfs, takes a nose dive around one solar mass and the radius tends to zero
for M — M(cy. Therefore, finite equilibrium configurations exist only for M < Mcy,.

Let us pause to understand the implications of this result. Eddington was worried
that the stars like the companion of Sirius ‘did not have enough energy to cool’. Fowler
rescued these stars. He argued that stars will eventually pass into a white dwarf stage
and cool, thus becoming black dwarfs. But Chandrasekhar’s remarkable discovery
showed that stars more massive than Mcy cannot find equilibrium as white dwarfs,
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Mass—radius relation for white dwarfs

-

\ Exact theory

Fig. 7.3 This figure has been adapted from the historic paper by Chandrasekhar (1935) in which he
presented his exact theory of white dwarfs. The dashed curve is the approximate theory in which the
electrons were regarded as nonrelativistic. The solid curve is the exact mass—radius relation. We see
that that the approximate theory agrees with the exact theory in the limit of very low mass. But the
exact theory deviates from the approximate theory as one goes to more massive white dwarfs, takes
a nose dive around one solar mass, and the radius tends to zero for M — Mcy. For an explanation
of the circles superimposed on the exact curve, refer to Fig.7.2

Hence, they will not have the necessary energy to cool. Thus, stars with M > Mcy
will be in an awkward predicament when their supply of subatomic energy fails!

Can All Stars Find Peace?

The exact theory of Chandrasekhar confirmed his earlier intuition that the unique
mass he had discovered:

he\? 1 1
MCh =0.197 - — X ") = 14M®
GJ) my | pg

should be interpreted as a limiting mass of white dwarfs. What then is the fate of stars
more massive than this? Interestingly, Chandrasekhar had found the answer to this
question in 1932 itself, even before he had found an exact solution of the white dwarf
problem. In a remarkable paper published in 1932, he had obtained the fundamental
result:



Can All Stars Find Peace? 91

If radiation pressure is more than 9.2 percent of the total pressure
(gas pressure plus radiation pressure)then matter cannot become
degenerate, however high the density may become.

We shall now prove this.

You will remember from our discussion of the Fermi—Dirac distribution that fermi-
ons should be regarded as degenerate if Er > kT, that is, if the Fermi energy is
much greater than the thermal energy. Alternatively, one can say that a gas should be
considered as degenerate if the numerical value of the pressure calculated from the
Fermi—Dirac distribution is much greater than the value of the pressure calculated
using Boyle’s law,

Pdeg > Pideal gas- (7.28)

Conversely, if the classical pressure exerted by the electrons is much greater than
the degeneracy pressure of the electrons then matter cannot be regarded as degen-
erate. You might think there is something fishy in this. After all, Fowler came to
the conclusion that the matter inside the companion of Sirius should be regarded as
degenerate because Er >> kT. This implies that pgeg >> Pideal gas- YOU can easily
convince yourself of this as follows. The nonrelativistic degeneracy pressure of the
electrons is given by

203\ 12 (N\? 2(N
Pdeg = 3 (g) . (7) =3 (V) Er. (7.29)
(refer to Eqgs. (5.10) and (5.20)), while the classical pressure of the electrons is
given by
= (ﬁ) kT. (7.30)
Pe vV

A comparison of Egs. (7.29) and (7.30) shows that since Er > kT for a degenerate
gas, it follows that pdeg > Pideal gas-

Why should Chandrasekhar entertain the possibility that this condition may be
reversed in more massive stars? After all, one would expect the density to be even
greater in a more massive star. But then, the internal temperature would also be greater
in a more massive star. Since the classical pressure given by Eq. (7.30) depends
upon both the density and temperature, one cannot assume that the inequality (7.28)
would necessarily be satisfied in a star more massive than the Chandrasekhar limiting
mass. That is why Chandrasekhar investigated the general condition for matter to be
regarded as degenerate.

However, comparing degeneracy pressure and classical pressure is like comparing
apples and oranges! While the former depends only on the density, the latter depends
on both the density and temperature. But there is a little trick we employed in What
Are the Stars?, which we shall use once again. Let us introduce a fraction 3 defined
as follows:
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Piot = pe + Prad

1 1
= Bpe = 11— ﬂprad
1 pkT I 1 4

(7.31)

The meaning of [ is clear. It is the fraction of the total pressure contributed by the
classical pressure p,ofthe electrons, while (1 — (3) is the fraction due to the radiation
pressure pr,q. Let us equate the two sides in the last of the three equations above and
express 7T in terms of 3 and p:

1 pkT 1 1
_L =———aT*
/Bﬂemp 1-33

Simplifying, we obtain

T:F k ﬂrp%. (7.32)
apemp f3

We can now use Eq. (7.32) to substitute for 7 in the expression for the classical
pressure of the electrons:

4 3
b — KT :[3( k ) (ﬂ)} ot (7.33)
Helh p a \Hemp B

We have succeeded in writing the pressure of an ideal gas in terms of p and 3, instead
pand T. We can now compare apples and oranges. But what do we compare it with—
the nonrelativistic degeneracy pressure or the relativistic version? Chandrasekhar’s
exact theory of white dwarfs established beyond doubt that the electrons are fully
relativistic by the time we reach a mass of 1.4M, in the sequence of white dwarfs.
It is therefore reasonable to suppose that if degeneracy sets in at all in stars more
massive than 1.4Mg, it will do so with the electron fully relativistic. Therefore, we
should compare the ideal gas pressure of the electrons with the relativistic degeneracy
pressure Py = sz% (see Egs. (7.17) and (7.18)).

Again we have a dilemma. If electrons are relativistic, are we justified in using
Boyle’s law to calculate the ideal gas pressure of the electrons? After all, Boyle’s law
predates special relativity by several centuries. Yes, Boyle’s law is valid in relativity
also! To quote Chandrasekhar from his 1932 paper,

In this connection it will have to be remembered that considerations of relativity do not affect
the equation of state of a perfect gas. p = nkT is true independent of relativity!
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One cannot but admire this clarity of thinking by a twenty-two year old boy! Therefore

the classical pressure of the electrons will be greater than the degeneracy pressure,
that is, pe > P, if

1
kT 3 k \'[/1- :
Pe = PR = | = ( ) (—ﬂ) p% > sz% = Prel.
Heln p a \HeMmp B

Cancelling the density dependence on both sides, we obtain the condition for
Pe > Pre1 as

4 3
F( k) GLEX]>KZ (7.34)
a \ ftemp I6]

Substituting for K, from Eq. (7.18), and inserting the value for Stefan’s constant, a,
the above inequality reduces to

9601 — 3
™ B

1— 3> 0.092.

Recall that (1 — () is the fraction of the total pressure due to radiation,

> 1.

This can be recast as

Prad = (1 = 3) Prot.

Thus, if radiation pressure is greater than 9.2 percent of the total pressure, then
Pe > Prel, and matter cannot be regarded as degenerate. As we shall see in later
chapters, this exact result is of singular importance in all the contemporary schemes
of stellar evolution. This conclusion has been schematically represented in Fig.7.4.

You may remember from Volume 1, What Are the Stars?, that one of Eddington’s
important insights was that the magnitude of the radiation pressure increases with
increasing mass. In the centre of the Sun, for example, radiation pressure is only
about 3 percent of the total pressure. As one goes to more massive stars, one would
encounter a critical mass, Mcritical in Which radiation pressure is precisely equal
to 9.2 percent of the total pressure. Therefore, matter cannot become degenerate in
stars more massive than this critical mass. Consequently, eventually attaining a white
dwarf stage is impossible for these stars. These stars will be in serious trouble when
their supply of nuclear energy is exhausted. Since Pauli’s exclusion principle and
Fermi—Dirac statistics cannot save them, they will have no option but to collapse
indefinitely until they become point objects with infinite density!

Using Eddington’s Standard Model for the stars, Chandrasekhar estimated this
critical mass to be approximately 1.6Mq, just a little more than the limiting mass
for white dwarfs. But this estimate of the critical mass based on the Standard Model
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Fig. 7.4 This figure schematically summarizes two startling discoveries made by Chandrasekhar.
(1) There is a limiting mass for white dwarfs. This limiting mass, known as the Chandrasekhar
limit, Mcy, is determined solely by fundamental constants. Its numerical value is 1.4Mg (on the
assumption that the star had exhausted all the hydrogen before becoming degenerate). (2) There is
a critical mass for stars. Stars with mass greater than this critical value will not become degenerate,
however high the density may become. Such stars cannot be saved by Pauli’s exclusion principle
when their supply of nuclear energy is exhausted. They will have no option but to collapse to a
singularity

is not correct. However, as we shall see later in this volume, modern considerations
do show that radiation pressure plays an increasingly dominant role as the mass of
the star increases, and that stars with mass greater than about 8 M do not develop
degeneracy in their interior. Thus the basic arguments due to Chandrasekhar of nearly
eighty years ago, summarized in Fig. 7.4, have been sustained!



Chapter 8
The Absurd Behaviour of Stars: Not All Stars
will have Energy to Cool

Some Remarkable Assertions

As we saw, Chandrasekhar made two remarkable discoveries during the short period
1930-1934.

1.

In 1930, he stumbled upon the intriguing result that a completely relativistic
degenerate star has a unique mass:

My = 0.197 (hc)3 ! L am
ch = L. — — | X — = 1. o-
G) m} w2

Chandrasekhar established the true significance of the above result through
detailed numerical calculations done in 1934. His exact theory of white dwarfs
clearly showed that the above mass should be regarded as a limiting mass of
white dwarf configurations. Stars more massive than this limiting mass cannot
find equilibrium as white dwarfs.

In 1932, Chandrasekhar proved a theorem that showed that matter cannot become
degenerate if radiation pressure exceeds 9.2 percent of the total pressure. It fol-
lowed from this theorem that sufficiently massive stars can never develop degen-
erate cores during their evolution.

These two discoveries are now seen to be at the base of the present revolution in
astronomy. Chandrasekhar was so confident of the correctness of his results that his
epochmaking papers contained some bold and emphatic statements.

For example, his 1932 paper contained the following statements:

For all stars of mass greater than Mcritical the perfect gas equation of state does not break
down, however high the density may become, and the matter does not become degenerate.
An appeal to the Fermi—Dirac statistics to avoid the central singularity cannot be made.
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Great progress in the analysis of stellar structure is not possible before we can answer the
following fundamental question: Given an enclosure containing electrons and atomic nuclei
(total charge zero) what happens if we go on compressing the material indefinitely?

S. Chandrasekhar (1932)

In a preliminary announcement of his exact result, he concluded:

Finally, it is necessary to emphasize one major result of the whole investigation, namely,
that it must be taken as well established that the life history of a star of small mass must be
essentially different from the life history of a star of large mass. For a star of small mass
the natural white dwarf stage is an initial step towards complete extinction. A star of large
mass (>Mcritical) cannot pass into the white dwarf stage, and one is left speculating on other
possibilities.

S. Chandrasekhar (1934)

Eddington’s Tirade

These were remarkably prescient statements. And they have stood the test of time.
But at that time, the entire astronomical community chose to ignore the remarkable
discoveries made by young Chandra. Their attitude of benign neglect was prompted
by the fact that some of the High Priests of astronomy had openly declared that
Chandra had got it all wrong. I have already remarked that both Fowler and Milne
were very sceptical about the result on the completely relativistic degenerate star that
Chandra had obtained during his voyage to England. Fowler did not understand it,
just as Chandra did not understand it at that time. Milne did not accept Chandra’s
discovery because it contradicted his theory according to which all gaseous stars had
degenerate cores. So the notion that degenerate cores cannot exist in stars with mass
exceeding a limit was unacceptable to him. Faced with this reaction, and anticipating
difficulties in getting his paper published in a British journal, Chandra sent his 1932
paper to a famous German journal for publication. But as luck would have it, the
journal sent his paper to Milne for his critical advice. Although Milne (reluctantly)
approved the paper for publication, he wrote a letter to Chandra in which he said,
‘... the paper contains a mistake in principle, and in any case it would only do your
reputation harm if it were printed’.

As for Eddington, he was confident that an exact theory of degenerate stars would
show that there is no such thing as a limiting mass. So why panic at this stage?
As already mentioned, Chandra returned to this problem after completing his
Doctoral Thesis, and after securing the prestigious Fellowship of Trinity College.
Chandra went to Russia in July 1934. One of the places he visited was the famous
Pulkovo Observatory in Leningrad. There he met the renowned Armenian astronomer
Victor Ambartsumian, who encouraged him to work out the theory of white dwarfs
without making any approximations. He embarked on this soon after he returned to
Cambridge. Eddington took great interest in the progress of Chandra’s calculations.
He must have been aghast to see the radius of the white dwarf taking a nose dive to
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zero as the mass approached the limiting mass, but he did not express any view and
played his cards close to his chest.

In January 1935, Chandra was invited to present a paper at the meeting of the
Royal Astronomical Society in London. It was in this historic meeting that Chandra
presented the conclusions of his exact theory of white dwarfs. Soon after his
presentation, the President of the Society invited Eddington to speak. Chandra knew
that Eddington was going to speak but he was not aware of what the theme of his talk
would be. He was therefore aghast when Eddington rose to speak on the topic, rela-
tivistic degeneracy. Naturally, this came as a great shock to Chandra. But worse was
to follow. The main thrust of Eddington’s talk was that there is no such thing as rela-
tivistic degeneracy and, therefore, Chandrasekhar’s conclusions must be summarily
rejected. He began by discussing the history of the problem, the paradox he had
posed in 1924, and the way Fowler had solved the problem by invoking Fermi—Dirac
statistics. Eddington was annoyed that Chandrasekhar had resurrected the original
paradox. Let me quote a few sentences from Eddington’s speech:

I do not know whether I shall escape from this meeting alive, but the point of my paper is
that there is no such thing as relativistic degeneracy!

Chandrasekhar, using the relativistic formula which has been accepted for the last five years,
shows that a star of mass greater than a certain limit M remains a perfect gas and can never
cool down. The star has to go on radiating and radiating, and contracting and contracting
until, I suppose, it gets down to a few km radius, when gravity becomes strong enough to
hold in the radiation, and the star can at last find peace.

... Dr. Chandrasekhar had got this result before, but he has rubbed it in in his last paper; and,
when discussing with him, I felt driven to the conclusion that this was almost a reductio ad
absurdum of the relativistic degeneracy formula. Various accidents may intervene to save the
star, but I want more protection than that. / think there should be a law of Nature to prevent
a star from behaving in this absurd way.

He then went on to discuss where he thought the idea of relativistic degeneracy had
gone wrong. His contention was that the formula for relativistic degeneracy is based
on a combination of relativistic mechanics and nonrelativistic quantum theory. The
implication of his remarks was that Pauli’s exclusion principle may not be valid
in relativistic quantum mechanics! Eddington claimed that when quantum statistical
mechanics is properly formulated within the framework of relativity, the old formula,
P =K, ,05 /3, will, once again, prevail, and that Fowler’s solution of the 1924 paradox
will hold good for all stars. According to Eddington, stars will not behave in the absurd
manner indicated by Chandrasekhar’s theory. All stars will have energy to cool!
Well, the High Priest had spoken, and the bandwagon started rolling. Many
astronomers, notably Milne, climbed on the bandwagon to express their objection to
Chandrasekhar’s discovery. Needless to say, young Chandra was shattered. Instead
of being hailed as a rising superstar in science, he was ridiculed. Faced with this
situation Chandra did the only thing he could to counter the mighty Eddington.
He appealed to the physicists at Neils Bohr’s Institute in Copenhagen. Since he had
spent one year there (in 1932) he knew many of them personally. During that period,
Neils Bohr’s Institute was the ‘Mecca of Physics’. All the young geniuses were
attracted to Copenhagen. Bohr had a great reputation as a teacher, philosopher and
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as someone who inspired people to do great things. And this list was truly impressive:
Fowler, Dirac, Heisenberg, Pauli, Jordon, Max Born, Oskar Klein, Leon Rosenfeld,
Victor Weisskopf, Max Delbriick, and many more! In one of his letters to his father
Chandra wrote: ‘It could be said only of Bohr that he is not only a great mind but
one whose influence on the contemporary geniuses has been colossal. In fact in the
whole range of mathematics and physics history, it would be difficult to find Bohr’s
equal—at the moment I can think of only one name—Gauss’.

So Chandra wrote to his close friend Leon Rosenfeld, explaining Eddington’s
objections to relativistic degeneracy, in particular to Pauli’s Principle in relativity.
Rosenfeld discussed Eddington’s objections with Bohr and wrote back to Chandra:

Bohr and I are absolutely unable to see any meaning in Eddington’s statements . . . It seems
to us that Eddington’s statement that several high-speed electrons might be in one cell of the
phase space would imply that to another observer several slow speed electrons, in contrast
to Pauli’s Principle, would be in the same cell ... Could you perhaps induce Eddington to
state his views in terms intelligible to humble mortals? . . .

(Rosenfeld had simply demolished Eddington’s argument! Let us understand
Rosenfeld’s counter attack. The only way Eddington could reject Chandrasekhar’s
discovery was to argue that Pauli’s Exclusion Principle was not valid in Special The-
ory of Relativity. He agreed with Fermi and Dirac that as long as the electrons were
slow (that is, nonrelativistic), one can put only two electrons in each cell in phase
space. But he maintained that if the electrons were fast (or relativistic) one could put
as many electrons in each cell in phase space as one wanted. The whole point about
Special Theory of Relativity is that what appears a fast electron to one observer might
be a slow electron for another observer. Eddington might think he has packed a cell
with fast electrons. But to another observer, the cell is packed with slow electrons,
which would be a violation of Pauli’s Principle! This trivial mistake by Eddington
is astonishing because he had written an authoritative book on Einstein’s Theory of
Relativity).

A few days later Chandrasekhar sent a copy of Eddington’s manuscript to Rosen-
feld requesting him to show it to Pauli and Bohr. Rosenfeld replied:

... After having courageously read Eddington’s paper twice, I have nothing to change my
previous statements; it is the wildest nonsense!

Pauli’s reaction was characteristic: ‘Eddington did not understand physics’. Chandra
also wrote to Dirac. He, too, thought that there was absolutely nothing wrong with
Chandra’s treatment of the problem.

Although the great physicists were convinced that Eddington’s objections were
ridiculous, they did not want to openly confront him. They simply could not be
bothered. At that time, physicists were not interested in astrophysical problems.
Remember that at that time the problem of energy generation in the Sun had not yet
been solved. Bohr, for example, felt that since astronomers could not answer even
that basic question, it was premature for physicists to get involved in astronomy.
Interestingly, the problem of energy generation was eventually solved in 1938 by
the physicist Hans Bethe! Another brilliant physicist who was into astrophysical
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Fig. 8.1 This figure has been reproduced from George Gamow’s book, The Birth and Death of the
Sun. The symbols on the rising potion of the curve represent (from left to right) the Moon, the Earth,
Saturn and Jupiter. To quote Gamow: ‘Note that for masses greater than 460,000 times the mass
of the Earth the radius becomes zero! The words for mass and radius are in Dr Chandrasekhar’s
original Tamil’

problems even at that time was George Gamow (in fact, it was Gamow who got
Bethe interested in the stellar energy problem). Gamow was not only a most creative
physicist; he was also a great communicator and wrote many wonderful popular
books explaining the most recent developments in physics. In one of them, entitled,
The Birth and Death of the Sun, and published in 1940, he discussed Chandrasekhar’s
work on white dwarfs. Figure 8.1 has been reproduced from this classic book.

Getting back to our story, Milne was not amused by Chandra appealing to the
great physicists to come to his rescue. In a letter to Chandra, Milne wrote:

Your marshalling of authorities such as Bohr, Pauli, Fowler, Wilson, etc., very impressive
as it is, leaves me cold. If the consequences of quantum mechanics contradict very obvious,
much more immediate, considerations, then something must be wrong with the principles
underlying the derivation ...To me it is clear that matter cannot behave as you predict ... A
theory must not be used as a doctrine, to compel belief ...

Eddington is nearly always wrong in his work in the long run, and I am quite prepared to
believe that he is wrong here, in his details. But I hold by my general considerations.

As for Eddington, he carried on his tirade at various meetings. His last meeting with
Chandra was in Paris in July 1939. Eddington tried to reach out to Chandra, but was
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not willing to change his stance. Soon World War II broke out, and Eddington died
in 1944.

The astronomical community continued to ignore Chandrasekhar’s seminal
discoveries for more than three decades. By then Chandra was quite famous for
his numerous other contributions. Many awards came his way. He was elected a
Fellow of the Royal Society in 1944. The Royal Astronomical Society gave him the
Gold Medal in 1952. A year later he received the coveted Bruce Medal. But none of
these awards mentioned his work on white dwarfs!

Finally, things changed in the 1960s. This decade saw the discovery of Binary
X-ray Sources, Quasars and Neutron stars. This Golden Age of great discoveries
culminated with the discovery of the first stellar mass Black Hole in 1973. It became
amply clear that not all stars have sufficient energy to cool.

In 1974, Chandra was given the Dannie Heineman Prize. And for the very first
time, his work on white dwarfs was mentioned! Quite extraordinary, is it not?
Curiously, by the time Chandra passed away in 1995, most astronomers remembered
him almost exclusively for his monumental work on white dwarfs.



Chapter 9
Guest Stars

The Oriental Astronomers

Every now and then, the serenity and permanence of the sky is disturbed by the
appearance in the sky of a new star. The most diligent observers of these new stars
during the first two millennia were the oriental astronomers, notably in China, Japan
and Korea. They not only observed them, but also recorded detailed description.
Figure 9.1 shows the inscription on a Chinese oracle bone dating back to 1300 BC.
Such oracle bones were made from an animal’s shoulder blade, and often inscribed
with a question. The inscription shown in the figure reads:

On the 7th day of the month a great new star appeared in the company of Antares.

Typically, these new stars could be seen for several months, sometimes even
during the day! Occasionally they could be seen for a couple of years. The Chinese
astronomers called them guest stars; like well-mannered guests, they left after a
while! Chinese astronomers spent a great deal of effort looking for such guest stars.
Such events were believed to foretell important earthly events such as the birth or
death of a prince.

The Guest Star of AD 1006

Historical records tell us that the Chinese recorded six guest stars during the first and
second millennium: AD 185, 386, 393, 1006, 1054 and 1181. By far the brightest of
them was the Guest star of 1006. The most vivid description of this is by the Egyptian
Ali Ridwan, who lived in Cairo. Ali recorded the position of this star, as well as the
exact positions of the planets at the time of the first sighting of this star. He described
it thus:
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Fig. 9.1 A Chinese oracle bone dating back to 1300 BC with a description of a guest star. This is
the oldest known record of a guest star. Figure reproduced from, Science and Civilization in China,
by J. Needham, Cambridge University Press

It was a large nayzak, round in shape and its size two-and-a-half or three times the size of
Venus. Its light illuminated the horizon and it twinkled a great deal. It was a little more than
a quarter of the brightness of the Moon.

The Chinese, too, had seen this star. According to their recordings, ‘it illuminated
the horizon’, ‘it cast shadows’, ‘objects could be seen in its light’ and so on. Clearly,
it was a very bright star, and it could be seen for several years.

The Guest Star of AD 1054

Perhaps the most famous of the guest stars was seen on July 4 1054 (anticipating
America’s Independence Day by several centuries?!). This was in the constellation
Taurus, the Bull; the Bull being chased by Orion, the Hunter. It is clear from the
detailed description that a month before it reached its maximum brightness it was
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as bright as Jupiter, and was visible during daylight for 23 days after it reached
maximum brightness. It eventually faded away 630days later.

This particular Guest star will be the focus of our attention in the next book in
this series, Neutron Stars and Black Holes.

De Nova Stella of AD 1572

The Guest star of AD 1572 was seen and described by many European astronomers
and mathematicians. But the most comprehensive study of this new star, Nova Stella
(in Latin), was by another rising star—this time in the world of astronomy. He was the
young Danish astronomer by name Tycho Brahe, shown in Fig.9.2. As Johannes
Kepler, later to be his pupil, said, ‘If that star did nothing else at least it announced
and produced a great astronomer’.

Tycho Brahe gathered all his observations of this guest star in his famous book,
De Nova Stella, published in 1573. Here is his description of the first seeing:

Last evening in the month of November, on the eleventh day of that month, in the evening,
after sunset, when according to my habit, I was contemplating the stars in a clear sky, when
I noticed that a new and unusual star, surpassing the other stars in brilliancy, was shining
almost directly above my head; and since I had, almost from boyhood, known all the stars
of the heavens perfectly, it was quite evident to me that there had never before been any star
in that place in the sky, even the smallest, to say nothing of a star so conspicuously bright as
this.

Using his homemade instrument, he measured the position of the star very accurately.
And he did this as often as he could. The purpose, of course, was to detect any
motion. After eighteen months of painstaking observations he concluded that there
is no motion. This ruled out the possibility that the new star might be associated with
a planet. To quote Tycho Brahe:

I conclude therefore that this star is not some kind of comet or a fiery meteor ... but that it
is a star shining in the firmament itself.

One of the very important things that Tycho Brahe did was to measure the brightness
of the new star at regular intervals, by comparing its brightness at any given time with
the brightness of other known stars in the sky. And he did this very meticulously. Since
the brightness of the standard stars are unlikely to have changed in the intervening
four centuries, one can use Tycho Brahe’s description to derive what is known as the
light curve of the new star of 1572. Such light curves—a plot of the variation of the
brightness with time—are now recognized to be crucial. Here is a sample of Tycho
Brahe’s description of the changing brightness of the new star:

When first seen the nova outshone all fixed stars, Vega and Sirius included. It was even a
little brighter than Jupiter.

The nova was as bright as Venus in November [1572]. In December, it was about equal to
Jupiter. In January [1573] it was a little fainter than Jupiter and surpassed considerably the
brighter stars of the first class. In February and March it was as bright as the last-named
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Fig. 9.2 Tycho Brahe (AD
1546-1601)

group of stars. In April and May it was equal to the stars of the second magnitude. After a
further decrease in June, it reached the third magnitude in July and August ... At the end of
1573 the nova hardly exceeded the stars of the fifth magnitude. Finally, in March 1574, it
became so faint that it could not be seen any more.

Kepler’s Nova Stella of AD 1604

Tycho Brahe died in 1601. But his research in astronomy was continued and carried
forward by his pupil and assistant Johannes Kepler. In 1604, Kepler had the privilege
of detecting another nova stella. And he studied it with the thoroughness that was the
hallmark of everything he did. He, too, like Tycho had done, obtained a very accurate
light curve. Unfortunately, all this was just before the advent of the astronomical
telescope. As you know, the first astronomical observations with a telescope were
done in 1609 by Galileo Galilei, observations that revolutionized astronomy.

The Guest Star in the Andromeda Nebula

Although we owe a lot to the oriental astronomers, and European astronomers like
Tycho Brahe and Johannes Kepler, the true nature of the guest stars continued to be
a big mystery. This was to change dramatically around 1930.
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Fig. 9.3 The great spiral galaxy M31 in the constellation Andromeda (from the Wikimedia Com-
mons, with the kind permission of the author, John Lanoue). Countless such spiral nebulae were
thought to be part of our galaxy until Edwin Hubble established that this nebula was at a distance
of nearly three million light years. Since our galaxy is only a hundred thousand light years across,
M31 could not be in our galaxy. It had to be a galaxy in its own right!

The beginning of this chapter of the story goes back to 1885. One night in August
1885, the Russian astronomer E. Hartwig was entertaining some friends at his obser-
vatory. Some of them were curious to look through the telescope. So he decided
to show them the Great Spiral Nebula M31 in the constellation Andromeda (see
Fig.9.3), an object which he observed regularly. He was astonished to find a bright
new star near the centre of the nebula. Although he was absolutely sure that the star
had not been there fifteen days earlier, he could not convince the Director of the
observatory. He was allowed to announce this discovery only a week later after he
and the Director had confirmed the existence of this new star. Hartwig followed the
brightness of this new star for 180days after its maximum brightness, after which it
could not be observed. This nova was named S. Andromedae.

The Great Debate

At the dawn of the twentieth century, the nature of the large number of such spiral
nebulae was not at all clear. Some felt that they were beyond our own Milky Way,
while others argued that they were part of our galaxy. This debate gathered momen-
tum with the discovery of more novae in spiral nebulae. By this time, astronomical
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Fig. 9.4 The supernova that occurred in 1994 in the galaxy NGC 4526. This galaxy is at a distance
of 55million light years, compared to a mere 3million light years in the case of the Andromeda
galaxy. Notice that the brightness of the supernova (at the bottom left) is a significant fraction of
the brightness of the central region of the galaxy. The dark lanes seen in this image are the spiral
arms of the galaxy. Like in our own galaxy, there are a lot of dust clouds in the spiral arms. These
opaque clouds are the gas clouds from which massive stars form, and which eventually explode as
supernovae. [Credit: NASA, ESA, Hubble Key Project Team, and The High-Z Supernova Search
Team]

photography had become more sophisticated. Several leading astronomers obtained
photographic images of M3 1. These threw up several more novae in M31, but all of
them were much fainter than S. Andromedae. It became clear that S. Andromedae
was not a typical nova in M31. In 1917, the American astronomer H. D. Curtis
noticed that the typical novae in M31 were roughly 10,000 times fainter than the
typical novae in our own Galaxy. From this he concluded that M31 must be roughly
500,000 light years from us—a distance much larger than the size of our Milky Way
Galaxy. This led Curtis to advance the so-called island universes hypothesis, which
held that spiral nebulae were actually independent galaxies. But the distinguished
astronomer Harlow Shapley at Harvard University strongly disagreed with this con-
clusion. In 1920, a formal debate took place between Shapley and Curtis under the
auspices of the National Academy of Sciences in Washington, DC. But the great
debate was inconclusive.

The stalemate was finally broken in 1923. Using the powerful 100-inch telescope
at Mount Wilson in California, Edwin Hubble identified for the first time a few
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variable stars known as cepheids in M31. The point about these stars is that the
distance to this class of stars could be uniquely determined by determining the period
of waxing and waning of their intensity. This discovery enabled Hubble to determine
the distance to M31—The Great Andromeda Nebula was roughly 3 million light years
from us. This proved beyond all doubt that the Great Spiral Nebula in Andromeda
was not part of our Galaxy. It was an entirely separate galaxy, containing a hundred
billion stars.

A Super Nova?

The resolution of one problem threw up another one. The mystery of the typical
novae in M31 being 10,000 times fainter than the novae in our Galaxy was finally
solved—the Andromeda Galaxy was three million light years away. It was as simple
asthat. But S. Andromedae of 1885 now posed a very serious problem. At its brightest,
S. Andromedae was roughly one-sixth as bright as the entire galaxy. Yes, one-sixth as
bright as the light from a hundred billion stars! Since a photograph of S. Andromedae
is not readily available, we have shown in Fig. 9.4 another example of a super bright
nova in an external galaxy to illustrate how the light from such a nova can be a
substantial fraction of the light from the entire galaxy.

By 1933, random photography of galaxies threw up many more examples of
novae whose brightness nearly equalled the brightness of the host galaxy. This led
the astrophysicist Fritz Zwicky at the California Institute of Technology to coin the
phrase supernova!



Chapter 10
Supernovae, Neutron Stars and Black Holes

As was mentioned in the Chap. 9, it was Fritz Zwicky who christened the ultrabright
Novae Stella as Supernovae. According to the folklore, he is supposed to have first
used this phrase during one of his class room lectures in 1931. Zwicky estimated that
in a supernova, such as S Andromedae of 1885, the energy released during a period
of a few weeks could equal what the Sun would radiate in a million years! How is this
energy produced? Zwicky and his colleague Walter Baade (one of the world’s most
distinguished observational astronomer) rejected the possibility that this staggering
amount of energy is produced by the same process that makes the Sun shine. But
remember that in 1931 one did not know the details of how stars generated energy;
that great problem was solved only in 1938 by Hans Bethe. At the time we are talking
about, there was just the conjecture by Eddington that stars generated their energy
by converting hydrogen to helium.

The Discovery of the Neutron

The year is 1931. Let us go over to Cambridge to see what is happening there. Lord
Rutherford was very concerned with the general difficulty in reconciling Bohr’s
theory of electrons rotating around the proton-filled nucleus, and the isotopes of
elements. According to Bohr’s model of the atoms, the number of positively charged
particles inside the nucleus must be equal to the number of orbiting electrons. This
means that once we specify the atomic charge, the atomic mass (which is essentially
the mass of the nucleus) should be uniquely determined. But Rutherford and his
colleagues had discovered that many elements had isoropes. All the isotopes of a
given element had the same atomic charge, but different atomic mass. This meant
that while the charge of the nucleus of all the isotopes of an element was determined
by the number of orbiting electrons, the mass of the nucleus was not determined
by the number of electrons; it varied. This is only possible if the nucleus contained
neutral particles in addition to the protons. If the number of these neutral particles was
different in the different isotopes, then that would explain why their nuclear masses
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were different. Since no neutral particle was known in 1930, Rutherford was forced
postulate the neutral doublet—a bound pair of an electron and a proton—although
there was no experimental proof of this. Incidentally, this is exactly what Eddington
did to make a helium nucleus out of four protons. He packed two electrons and four
protons into the nucleus to make the net positive charge of the helium nucleus equal
to two!

James Chadwick was to unlock the door to this basic problem in 1932. Chadwick
was Rutherford’s student at the University of Manchester, and moved with his master
to the Cavendish Laboratory in Cambridge in 1919. He became Rutherford’s trusted
assistant during the period of intense creativity at the Cavendish Laboratory. In 1932,
Joliot and Curie published the observation that alpha particles incident on Beryllium
produced evidence of carbon and an intense 55MeV ‘gamma ray’. Chadwick and
Rutherford immediately realized that this result must be wrong; the energy of the
gamma ray was too high and they suspected that a neutral particle must be involved.
Within weeks, Chadwick established the reaction

‘Be +*He — 2C +'n

The particle on the right-hand side was a neutral particle, and Chadwick christened
it the neutron. Chadwick determined the ratio of the mass of the neutron to that of
the proton to be 1.0090 (the modern value is 1.0085). This neutral particle penetrated
even lead. Chadwick received the Nobel Prize for this discovery in 1935. With this
discovery, the list of elementary particles had grown to three: the electron, proton
and the neutron. One was now in a position to explain the isotopes of the elements.

The isotopes of an element had the same number of protons,
but different number of neutrons in the nucleus.

The Origin of Supernovae

A year after the discovery of the neutron, Baade and Zwicky, shown in Fig. 10.1,
published one of the most extraordinary papers in all of astronomical literature.
They presented a joint paper at the December 1933 meeting of The American Phys-
ical Society held at Stanford University in California. The abstract of this talk was
published in January 1934 in the Society’s journal The Physical Review. This is
now recognized to be one of the most prescient papers in the history of physics and
astronomy. We have, therefore, reproduced below the abstract of this paper in its
entirety:
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Fig. 10.1 Fritz Zwicky (left) and Walter Baade (right)

JANUARY 15, 1934 PHYSICAL REVIEW VOLUME 45
Supernovae and Cosmic Rays
by
W. Baade and F. Zwicky

Supernovae flare up in every stellar system (nebula) once in several centuries.
The lifetime of a supernova is about twenty days and its absolute brightness
at maximum may be as high as Myjs= —14M. The visible radiation L, of a
supernova is about 108 times the radiation of our Sun, that is, L, = 3.78 x
104 ergs/s. Calculations indicate that the total radiation, visible and invisible,
is of the order of Ly = 107L, = 3.78 x 10*8 ergs/s.

The supernova therefore emits during its life a total energy Er > 10°Ly =
3.78 x 10°3 ergs. If supernova initially are quite ordinary stars of mass M < 1034
g, E7/c? is of the same order as M itself. In the supernova process mass in bulk
is annihilated. In addition the hypothesis suggests itself that cosmic rays are
produced by supernovae. Assuming that in every nebula one supernova occurs
every thousand years, the intensity of cosmic rays to be observed on the earth
should be of the order of ¢ = 3 x 1073 erg/cm? s. The observational values are
about 0 = 2 x 1073 erg/cm? s (Millikan, Regener).
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Fig. 10.2 A gaseous star of a few solar masses and radius of the order of 10 million km implodes
and becomes a neutron star. Since a star is essentially made of hydrogen, initially the star consisted
of roughly 10%7 protons and equal number of electrons. According to Baade and Zwicky, somehow
all these protons got converted to neutrons! A neutron star is just like a gigantic atomic nucleus,
with the neutrons practically touching one another. Under such conditions, the density of matter
would be 1014 g cm~3. This is, indeed, the density of atomic nuclei that we are made of!

With all reserve we advance the view that supernovae represent the transitions
from ordinary stars into neutron stars,which in their final stages consist of
extremely closely packed neutrons.

This paper is remarkable for the density of brilliant ideas!

e It asserts for the first time the existence of supernovae as a distinct class of astro-
nomical objects.

e It introduces for the first time the name supernovae.

e It estimates correctly the total energy released in a supernova, although the rea-
soning is wrong. One may say that they got the answer right for the wrong reason!

e It gives a theoretical scenario for how cosmic rays are produced.

e It invents the concept of neutron stars.

e It suggests that supernovae represent transitions of ordinary stars into neutron
stars.

I hope you are impressed! Let us try to understand the last point first. Their basic
idea is explained in Figs. 10.2 and 10.3.

Baade and Zwicky realized that not only an enormous amount of energy had to
be released; it had to be released in a short period of time. This ruled out the standard
processes that produce energy in a steady manner in the stars; they did not know
what these processes were, but it did not matter to them. One way to release energy
quickly is if the star were to suddenly collapse to a small radius. Let us say that the
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Fig. 10.3 When a neutron star of roughly a solar mass is formed, the gravitational potential energy
released will be of the order of 10 % of its rest mass energy! Baade and Zwicky conjectured that
this energy release causes the supernova explosion

original radius of the star was ~10million km, and the final radius is ~10km. The
gravitational potential energy that would be released in the process would be

AE = (PE)initial — (PE)fina - (10.1)
Recall that the gravitational potential energy of a mass M with radius R is

o GM?
Gravitational P.E. ~ — X (10.2)

Therefore, the energy released during the implosion of the star is

GM? GM? GM?
E leased = { ([ ——— ) - [ - ~ ~0.1Mc%. (103
fierey refease {( 107km) ( IOkm)] 10km ¢ (103)

The last step in Eq. (10.3) can be verified by multiplying and dividing GM? /R by ¢,
and assuming that M ~ M. Therefore, the gravitational binding energy released is
roughly 10 % of the rest mass energy of the neutron star. It is the energy you would
get if you annihilated 10 % of the mass of the star!
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Before proceeding, let us try to understand the result presented in Eq.(10.3) in
relation to Eddington’s idea of how stars generate the energy they radiate. In 1920,
Eddington conjectured that the source of energy in the Sun and the stars must be
the transmutation of the elements, more specifically the conversion of hydrogen into
helium. You will recall that he was led to this conclusion by the experimental findings
of EEW. Aston, working in Rutherford’s laboratory in Cambridge. Aston’s interest
was to measure the masses of the atoms accurately. One of the discoveries he made
was that the mass of four hydrogen nuclei was greater than the mass of the helium
nuclei. Eddington’s idea was that if four protons fuse into a helium nucleus then this
mass deficit would be converted into energy according to Einstein’s formula

E = AMc?

Let us examine this closely. The mass of four protons is 4 x 1.0081 m,, (atomic mass
units), while the measured mass of the 4He nucleus is 4.0039 m,,. This means that
a mass of 2.85 x 1072 m,, has disappeared for every helium nucleus produced if,
indeed, the helium nucleus is produced by fusing four protons. One refers to

AM =2.85x% 10 2m,

as the mass deficit. E = AMc? is referred to as the binding energy of the helium
nucleus. This binding is due to the nuclear force, the force that holds the nucleus
together. If it were not for this strong binding, the nuclei of atoms would break up due
to the coulomb repulsion between the protons. This mass deficit is roughly 0.7 % of
the original mass of hydrogen (that is, the mass of four protons), and corresponds to
an energy of about 26.5 MeV. This is the energy released when one helium nucleus
is fused together. Conversely, if we want to break apart a helium nucleus, this is the
energy we would have to spend. If mass M of hydrogen is converted into helium,
then the energy released is 0.007 Mc?. The mass of the sun is 2 x 1033 g, most of it
hydrogen. By converting most of it to helium, it can generate ~102 erg of energy.
The rate at which it radiates this energy (its luminosity) is 4 x 1033 erg/s. Therefore,
the sun can easily shine for 10'! years by tapping this source of subatomic energy.
This was Eddington’s idea.

The energy released in the formation of a neutron star is again the binding energy.
But this time the binding is due to gravity. One can speak of a mass deficit in this
case also. The mass of the resultant neutron star, measured in terms of its gravity, is
less than the sum of the masses of the neutrons. This mass deficit is roughly 10 % of
the sum of the masses of the neutrons. The mass deficit when four protons are fused
together is only 0.7 % of the mass of the four protons. Therefore, the energy released
in the formation of a neutron star, per gram of matter, is much larger than the energy
released in fusion reactions. Basically, this was the idea of Baade and Zwicky. And
if this energy could be released in a short time, then one would have explained the
energetics of a supernova.

You might be somewhat surprised by the above conclusion that the gravitational
binding energy released during the formation of a neutron star far exceeds the nuclear
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binding energy. After all, gravitational force is supposed to be 1040 times weaker
than the strong nuclear force! This is, of course, true. When we are dealing with
a few particles inside a nucleus, the nuclear force dominates over the gravitational
force. But when we are dealing with a gigantic nucleus consisting of 10°7 particles,
gravitational force is stronger by a huge margin. When we are at school, we are told
that the Sun is the ultimate source of energy on Earth. In a similar fashion, in most
astronomical situations gravity is the ultimate source of energy.

Now that we understand how Baade and Zwicky produced the energy observed
in a supernova, let us now go to the next step in their argument. If a star like our
Sun, with a radius of a million km and a mean density of 1.4 g cm™3, collapsed to
radius of 10km, the density of the resultant star would be a few times 10'4 g cm™3
(since density is inversely proportional to R?, a decrease in the radius by a factor
of 10° would mean an increase in density by a factor of 10'3). Such an incredible
density may sound ridiculous to you. But we are all made of atomic nuclei whose
density is ~2.5 x 10'* g cm™3. Perhaps you did not know this. Take your favourite
element from the Periodic Table, and estimate the density of the nucleus by dividing
its mass by its volume. You will get the above number! Do convince yourself of this.
The fact that our mean density is close to that of water—which is why we float in
water—is simply because the mean distance between the ultra dense nuclei is very
large. The mean distance between the atoms is ~ 10~8 c¢m, while the size of the nuclei
is ~10713 cm. The next step is easy. If you pack the star into a small sphere with
nuclear density, you will get a gigantic nucleus. A gigantic nucleus 10km in radius,
instead of 103 cm!

However, since hydrogen was the most abundant element in our original star, such
a giant nucleus should consist mostly of profons. But Baade and Zwicky talked of a
neutron star and not a proton star. They not only did not give any reason for this, they
are silent on this! How and why did the protons transform themselves to neutrons?
You might say that this is a minor matter. Whether the result of the implosion is a
neutron star or a proton star, its mass and size would be the same. And, therefore,
the gravitational potential energy released would be the same. Hence, as for as the
origin of supernovae is concerned, it really does not matter if it is a neutron star or a
proton star.

Having discussed the brilliant ideas in the historic paper by Baade and Zwicky,
let us also take stock of some of its weak points.

1. As mentioned above, they do not give any reasons for why the result of the implo-
sion would be a neutron star. Indeed, the physics underlying the neutronization
of matter had not yet been discovered in 1933.

2. Baade and Zwicky do not give any reason for why a star would implode. One
possibility is, of course, that the star was a failed white dwarf. If its mass exceeded
the Chandrasekhar Limiting Mass, it would have no option but to collapse beyond
the white dwarf stage. But there is no reference in their paper to Chandrasekhar’s
seminal discoveries!
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3. Nor do they give any argument for the timescale in which such a collapse would
take place. This was crucial for explaining the supernova phenomenon. The details
of such an implosion became clear only in the 1960s.

So the paper by Baade and Zwicky was a shot in the dark in many respects. But the
important thing is that their extraordinary predictions have now been observationally
verified. We now know that supernovae signal the birth of neutron stars! Baade and
Zwicky might have been ‘right for the wrong reasons’ with regard to the details. But
they were right!

Neutronization of Matter

As mentioned above, Chadwick discovered the neutron in 1932. At that time the
nature of the forces that hold the nuclei together was ill understood. A formal theory
of radioactivity, also known as beta decay, was discovered by Enrico Fermi only in
1934. Let us briefly recall the basic idea of Fermi’s theory. In beta decay, radioactive
nuclei emit /3 rays or electrons. Fermi explained that this is due to neutrons inside
the nucleus decaying to protons, electrons and antineutrinos.

n—>p+e +v

You may recall that Pauli had postulated that a neutral particle must be emitted in
such a decay. After Chadwick had discovered the heavy neutral particle, which he
called the neutron, Fermi christened the light neutral particle emitted in beta decay as
neutrino. The neutrino was a central character in our story about energy generation
in the Sun. The electron and the neutrino do not exist inside the nucleus. According
to Fermi, they are spontaneously created when a neutron decays, just as photons are
spontaneously created when an electron jumps from a higher energy level to a lower
energy level in an atom. Fermi was to make many profound contributions to physics,
both theoretical as well as experimental. His theory of beta decay was perhaps his
most important theoretical discovery. Interestingly, his discovery paper was rejected
by the prestigious British journal Nature because it considered the paper, too remote
from reality! Fermi’s paper was published by the German journal, Zeitschrift fiir
Physik in 1934, and finally published by Nature five years later, after Fermi’s work
had been widely accepted.

In the radioactive decay we have been discussing, the charge of the nucleus
increases by one since a neutron is converted to a proton (with the electron and
the neutrino escaping):

(A, Z)= (A, Z+1) +e + 7.

In the above reaction, A is the atomic mass and Z is the atomic charge. There is
another type of beta decay, known as inverse beta decay or electron capture. The
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Fig. 10.4 Inverse beta decay or electron capture. An electron in the K-shell of a neutral atom is
swallowed by the nucleus. A proton inside the nucleus interacts with this electron and transforms
itself into a neutron. The neutrino emitted during this reaction escapes. What is actually observed
is a soft x-ray photon emitted when an outer electron jumps to the vacant state in the K-shell

theory of electron capture was first discussed by Giancarlo Wick soon after Fermi
discovered the theory of beta decay. Wick was one of the many young brilliant
students working with Fermi in Rome. The electron capture process is explained in
Fig.10.4. You will remember from your atomic physics course that the innermost
electronic shell, known as the K-shell, can accommodate two electrons. In heavy
elements, the nucleus gobbles up one of the K-shell electrons, and a proton inside
the nucleus is converted to a neutron. The neutrino emitted in this process escapes.
Noticing that there is a vacancy in the K-shell, an electron in one of the higher levels
jumps to the K-shell. The energy difference is emitted as a soft x-ray. It is quite
difficult to detect soft x-rays since they are easily absorbed. But they were eventually
detected in 1937 by Luis Alvarez, confirming the ideas on electron capture. He first
succeeded in detecting soft x-ray in vanadium-48, and from other heavy elements
subsequently.

These ideas of Fermi and Wick were extended by the physicist Hund in 1936.
He pointed out that this process of inverse beta decay would occur even if the
electrons were not ‘bound electrons’. In other words, if we have a Fermi gas of
protons and electrons—like one has in a white dwarf—the inverse beta decay would
occur provided the density was sufficiently large.
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Neutron Cores of Massive Stars

The above-mentioned ideas formed the basis of a most remarkable paper entitled,
Origin of Stellar Energy, by the most distinguished Russian theoretical physicist Lev
Landau published in 1938 in the journal Nature (Fig. 10.5). This prescient paper was
forwarded to Nature by none other than Neils Bohr. But that is a different story.

The notion of a neutron star, with proper theoretical ideas to support it, can be
traced to this paper which was barely half a page long! When Landau wrote this
paper, the origin of stellar energy was still a mystery; Hans Bethe was to solve that
problem only later that year. Landau invented neutron stars to solve this problem.
There are two parts to Landau’s paper. In the first part, he argues that at very high
densities it would be energetically more favourable for matter to exist in a neutronic
state. He then goes on to argue that if such neutron cores existed inside stars, it would
be straightforward to explain the sustained luminosity of the Sun for several billion
years. Let us first try to understand the idea of a neutronic state (see Fig. 10.6).

As we know, matter consists of nuclei and electrons. This is the kind of matter that
we are familiar with. Landau called it electronic state of matter. In our discussion so
far of gaseous stars and white dwarfs, we have assumed—and quite correctly—that
stellar matter is also of the electronic type. As we have seen in the earlier chapters,
the electrons become degenerate when the density becomes high. And because the
degeneracy pressure can be immense, matter becomes quite incompressible. This
is why white dwarfs are stable. Landau argued that if electrons combine with the
nuclei to form neutrons, then the resultant matter would be much more compressible
and, therefore, can attain higher densities. The end result of this process would be
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Fig. 10.6 This explains Landau’s idea of how matter becomes neutron rich at densities beyond
a critical density ~10'! g cm™3. Although this process is endothermic, the gain in gravitational
potential energy due to the contraction of the sphere will compensate for the energy spent in the
neutronization

a degenerate neutron gas, in which all the nuclei have combined to with electrons
to form neutrons. It is easy to see why such a matter would initially be soft or
compressible. As electrons disappear, the degeneracy pressure of the electrons will
decrease (since this pressure is determined by the density). As a consequence, the
compressibility of the matter would increase. It is true that since neutrons also obey
Fermi—Dirac statistics they, too, will exert pressure, but as we have argued earlier,
the pressure of nonrelativistic neutrons (or protons) will be 2000 times smaller than
the pressure due to the electrons because of the greater mass of the neutrons. The
pressure of the neutrons will become appreciable only when the density reaches
~10' g cm™3. When this density is attained, neutronic matter will also become
incompressible and stable.

But there is a catch in what we have just said. The reaction p +e¢~ — n+visa
strongly endothermic reaction, that is, we have to supply energy for this reaction to
take place. To transform one gram of electronic matter into neutronic matter would
cost us 7 x 10'8 erg. This is why the neutronic state of matter is unfavourable under
normal conditions. Itis good thing, too! Otherwise, atoms as we know them will cease
to exist. And we, too, will cease to exist. But Landau was terribly clever. He argued
that when the mass of the body becomes very large, the gravitational energy gained
in going over to the neutronic state compensates for the loss in internal energy.

Let us now return to the second part of Landau’s paper. Landau’s main motivation
was to invent a mechanism for sustained energy generation in the stars. Let us assume,
for a moment, that every star has a neutron core. Atoms outside the core would fall in
and will be accelerated to high speeds because of the enormous surface gravity of the
neutron core (GMcore/ Rczore). When these atoms impact on the surface of the neutron
core, their enormous kinetic energy would be converted to heat. Since the kinetic
energy at the time of impact would be roughly 10% of the rest mass energy Mc?,
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the energy released in the forms of heat would be of the same order. In this scenario
due to Landau, the ultimate source of energy is the intense gravity of the neutron
core. Thus, both Baade and Zwicky, and Landau, were tapping the same source of
energy. Baade and Zwicky used the sudden energy release during the formation of
the neutron star to produce the supernova.

Having formed a neutron star, Landau used it to generate energy in a steady
manner by accreting normal matter onto it.

But the million dollar question is this: how come there are neutron cores at the
centres of stars? You may recall our earlier criticism of Baade and Zwicky. We
remarked that they did not give any reason for why a star would implode to form a
neutron star. But Landau had an explanation for that! In 1932, five years before his
Nature paper that we are discussing, Landau had independently discovered the Chan-
drasekhar Limiting Mass for electron degenerate stars. He, too, like Chandrasekhar
had done two years earlier in 1930, obtained the limiting mass to be about 1.5 M.
Landau clearly stated in that paper, ‘for M > 1.5 M there exists in the whole quan-
tum theory no cause for preventing the system from collapsing to a point’. Five years
later, developments in physics enabled Landau to state that such collapsing objects
would find equilibrium as neutron cores.

Let me make a couple of observations before passing on to the Chap. 11 of this
remarkable story.

e In 1932, after having independently discovered the Chandrasekhar Limit, Landau
rejected it! To quote from that paper:

As in reality such masses [M > 1.5 M] exist quietly as stars and do not show any such
ridiculous tendencies we must conclude that all star heavier than 1.5 M certainly possess
regions in which the laws of quantum mechanics (and therefore of quantum statistics) are
violated.

Even the great Landau made the same mistake as Eddington and Milne!

e Landau had no explanation for why a star like the Sun, with a mass less than the
critical mass, should possess a neutron core. He recognized this difficulty in his
1938 paper.

e We now know that star generate their energy by the transmutation of hydrogen into
helium. Eddington conjectured this in 1920, and Hans Bethe worked out all the
details in 1938. But the final proof came only in the year 2000 with the resolution
of the solar neutrino puzzle (You will find a detailed discussion of this in the first
book in this series, What Are the Stars?). Landau’s mechanism, ingenious as it is,
is not the correct answer for the origin of stellar energy. But, as we shall see in the
next volume in this series, Neutron Stars and Black Holes, 1.andau’s mechanism
described in Fig. 10.7 is the correct explanation in a different context! It is now well
established that there are countless number of neutron stars in binary systems with
gaseous companions. The strong gravity of the neutron star pulls matter from the
companion star. And when this matter accretes on to the surface of the neutron star,
the neutron star becomes a very powerful x ray source. It is now widely accepted
that these x rays are produced by the very same mechanism described in Fig. 10.7.
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Fig. 10.7 Landau’s mechanism for generating energy in stars

Interestingly, this idea was reinvented in 1964 by another Russian genius by the
name Ya. B. Zeldovich.

The Maximum Mass of Neutron Stars

This remarkable paper by Landau attracted the immediate attention of another bril-
liant physicist. He was Robert Oppenheimer (shown in Fig. 10.8), a professor at the
University of California at Berkeley, and also at CalTech. Oppenheimer was intrigued
by Landau’s estimate that a neutron star could have a mass as small as 0.001 M. He
and his research associate Robert Serber thought about it very hard and came to the
conclusion that Landau had got it wrong! After writing up their result and sending
it to the Physical Review, Oppenheimer started thinking about a different question.
Landau wanted to know what the minimum mass for a neutron star is. Oppenheimer
wanted to know what the maximum mass was. I shall now explain how Oppenheimer
and his student Volkoff answered this question.

The stability of a neutron star should be understood in a manner very similar to
that of a white dwarf. As we saw, in a white dwarf the inward pull of gravity is
balanced by the degeneracy pressure of the electrons. In a neutron star, gravity is
balanced by the degeneracy pressure of the neutrons. Although the pressure due to
the neutrons is negligible at white dwarf densities (because of their larger mass),
by the time the density increases to 104 g cm™3 the pressure due to the neutrons is
sufficient to arrest gravity. Therefore, to construct models of neutron stars of various
masses, we could simply apply Chandrasekhar’s theory of white dwarfs to a neutron
star.

If we were to adapt Chandrasekhar’s theory, the stability of a neutron star is to be
understood in terms of the equations,
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Fig. 10.8 J. Robert Oppenheimer
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where the pressure due to the neutrons is given by
5
Pdeg =Kjp3 (10.5)
L3\ 2 1
Ki=-{—) ———. (10.6)
s\8r/) m, 3
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Equation (10.4) is the equation of hydrostatic equilibrium we have encountered
before in Eq.(6.2). The expressions (10.5) and (10.6) are identical in structure to
Egs. (6.10) and (6.11), respectively. The constant of proportionality K; in Eq. (6.11)
for the pressure of an electron gas and Eq. (10.6) for a neutron gas differ slightly in
two respects:

(i) The mass of the neutron replaces the mass of the electron in the denominator, and

(ii)) The mean molecular weight per neutron p,, replaces the mean molecular weight
per electron 1. For electrons, we assumed fi, to be 2. For the neutrons we have
to set j, = 1.

The latter point is easy to see. We introduced p, when we converted the number
density of electrons into mass density. To do this, we had to multiply and divide
by the mass per electron. Each atom contributes A heavy particles and Z electrons.
Therefore, the mass of the material per electronis(A/Z)m . We argued that (A/Z) ~
2 (except for hydrogen). Hence, the mass per electron is 2m, and p, = 2. In the
case of a pure neutron gas, to convert the number density to mass density we simply
have to multiply and divide by the mass of the neutron. In other words, 1, = 1.
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Chandrasekhar’s Theory for Neutron Stars

The mass—radius relation for neutron stars can be obtained in a manner identical to
how we obtained this relation for white dwarfs (see the steps leading up to Eq. (6.15)).
Not surprisingly, we shall get the same relation as Eq. (6.13) for white dwarfs:

( Ky ) 1

R= —

0.1124G M3 (10.7)
Ro M3

The constant of proportionality is, of course, different, as comparison of Eqs. (6.11)
and (10.6) will reveal. Because of this the radius of a one solar mass neutron star
will be much smaller than that of a white dwarf of the same mass. Using (10.6) and
(6.11), the ratio of the radius of a neutron star to that of a white dwarf of the same
mass can be written as

R (neutron star) _ KDns _me 5
R(white dwarf)  (K\)yp  my

Remembering that the mass of the neutron is 2000 times the mass of the electron and
le = 2, you can easily verify that the radius of a one solar mass neutron star will be
roughly 15km (instead of 10,000 km for white dwarf, and a million km for the Sun).

The ‘Chandrasekhar Limiting Mass’ for Neutron Stars

We saw that Chandrasekhar’s original theory of white dwarfs was only approximate
since he assumed the electrons to be nonrelativistic. Inclusion of the effects of Special
Relativity led to a limiting mass, given by,

he\? 1 1 1
MCh =0.197 - — X — = 576M@ X -
GJ) my | g e

For an assumed value of 1, = 2, we get the well known result Mcy, = 1.4 Mg.Ina
similar manner, Chandrasekhar’s theory if applied to a neutron star would predict a
limiting mass for neutron stars given by the same expression, with y = 1:

3
he\? 1
Mecp(neutron star) = 0.197 | (=) = | = 5.76 Mg, (10.8)
G m%,

At this limiting mass, the neutron star would be fully relativistic, and its radius would
be zero.
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Neutron Stars in General Relativity

If you are a careful reader, you would have noticed that Chandrasekhar’s theory of
white dwarfs was an exact theory in as far as the treatment of quantum statistics and
the variation of mass with velocity predicted by the Special Theory of Relativity. But
for the gravitational force, he assumed Newton’s laws. This will be seen clearly in
Eq.(10.4), for hydrostatic equilibrium.

The essential difference between Einstein’s theory of gravity (which is described
by the General Theory of Relativity) and Newton’s theory is that in Einstein’s theory
all forms of energy contribute to gravity. Thus, the internal energy is also a source
of gravity.

Having pointed this out, I should add that Newton’s law of gravity is quite adequate
when we are dealing with white dwarfs. It is true that in the relativistic electron gas
the kinetic energy of the electrons is comparable to the rest mass energy of the
electrons; that is what we mean by saying that the electrons are relativistic. But the
internal energy of the electron gas is very small compared to the rest mass energy of
the nuclei, which constitute the major part of the mass of the star. In a white dwarf,
therefore, gravitational effects are determined by the rest mass of the nuclei; the
contribution to gravity from the energy of the electrons is very negligible. This is
why Newton’s theory adequately describes gravity in a white dwarf.

But it is a different matter altogether when we are discussing a neutron star of
large mass. There one expects the neutrons to be relativistic, just as the electrons
were relativistic in a massive white dwarf. In a relativistic neutron gas, the kinetic
energy of the neutrons is comparable to the rest mass energy of the neutrons. Hence,
the internal energy of the neutrons will contribute to gravity in a significant way. If
this is the case, the right-hand side of the equation of hydrostatic equilibrium (10.4)
would have to be modified to take into account General Relativity.

Oppenheimer realized this, and made the necessary modifications. We shall not
dwell on that here since we shall be discussing all this in detail in a subsequent
volume devoted to Neutron Stars and Black Holes. To summarize, to derive the
maximum mass of neutron stars Oppenheimer and Volkoff repeated Chandrasekhar’s
calculations, but with two modifications:

1. They used the degeneracy pressure of the neutrons, instead of electrons.
2. They used Einstein’s theory for the description of gravity.

The rest was just tedious calculation, which young Volkoff carried out with great care
and fortitude. Their conclusion was published in 1938 and is explained schematically
in Fig. 10.9.

Oppenheimer and Volkoff drew the following conclusions from their work:

e The maximum mass of neutron stars is 0.7 M.
e The radius of the neutron star of this mass would be about 10km, and
e The central density of a neutron star of maximum mass would be ~5 x 103

g cm 3.
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Fig. 10.9 Oppenheimer and Volkoff assumed that a neutron star consists essentially of neutrons.
For the pressure of the neutrons they used the ideal Fermi gas equation of state as given by Chan-
drasekhar. The solid curve is the mass—radius relation they would have obtained on the assumption
that the neutrons were nonrelativistic and Newtonian gravity. This relation would predict a radius
of roughly 15km for a neutron star of one solar mass. The dashed curve would be the neutron-star
analogue of Chandrasekhar’s exact theory of white dwarfs. This would predict a maximum mass
of 5.76 M. A star of this mass would be fully relativistic and have zero radius. Oppenheimer and
Volkoff modified Chandrasekhar’s treatment of gravity to take into account the effects of General
Relativity. According to their calculations, the limiting mass of neutron stars is 0.7 M,

There are several points about their result which deserve elaboration.

1. You may be surprised that a neutron star with the maximum mass has finite radius.
In contrast, a white dwarf with a maximum mass of 1.4 Mg has zero radius! At the
Chandrasekhar limit for white dwarfs, the electrons would be fully relativistic; all
the electrons would have speed almost equal to the speed of light. This is one of the
reasons why the maximum mass of neutron stars is less than the Chandrasekhar
limit for neutron stars, which is 5.76 M. A neutron star of mass equal to 5.76 Mg
would be fully relativistic and have zero radius, but in a neutron star of 0.7 Mg
the neutrons are only mildly relativistic. This is why it has a finite radius.

2. The reason why the maximum mass is less than 5.76 M, is that Oppenheimer and
Volkoff treated gravity using General Relativity. As mentioned earlier, in General
Relativity the internal energy also contributes to gravity. A smaller maximum
mass is what we should expect, since gravity is stronger in General Relativity.

3. Since the neutron star has a finite radius at the maximum mass, one can ask the
following question: What happens if we increase the mass of the star beyond the
maximum mass? Put slightly differently, ‘In what sense is it the maximum mass?’
The answer is the following. For a star to be stable, the central density should
increase with increasing mass. This condition is satisfied till we reach the max-
imum mass, but is violated beyond this mass. In other words, no stable stars are
possible beyond the maximum mass. We shall defer a more careful discussion of
this to the next volume in this series.
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Fig. 10.10 This figure summarizes the conclusions as of 1938

4. Oppenheimer realized that their result for the maximum mass can only be regarded
as an approximation. This is because they had ignored the effect of the nuclear
force between the neutrons. They had treated neutrons as an ideal Fermi gas.
Recall that in an ideal gas the energy of interaction between the particles is neg-
ligible compared to the kinetic energy of the particles. This may not be a good
approximation at densities when the neutrons are practically touching one another.
But in 1938, the nature of the nuclear force was not fully understood. It was not
even clear whether it was attractive or repulsive at neutron star densities. Oppen-
heimer’s intuition told him that at very short distances the nuclear force might be
repulsive (we now know that he was right). If nuclear force is repulsive at very
short distance, then it would help in supporting a star of a larger mass than what the
degeneracy pressure alone was able to support. This intuition led Oppenheimer
and Volkoff to guess that when proper account is taken of the nuclear force, the
maximum mass of neutron stars might be a few solar masses. Seventy years later,
we believe that the maximum mass of neutron star is around 2 solar masses.
(By the way, there is an interesting point here that deserves comment.
Chandrasekhar also assumed that the electrons in a white dwarf can be regarded
an ideal Fermi gas. At the high densities that obtain in a white dwarf, one would
expect the coulomb interaction between the electrons to be quite significant. Why
did Chandrasekhar not worry about it? He did not have to! I shall tell you the
answer now, and let you think about it. The reason why a high-density electron
gas can be regarded as ideal is that an electron gas has the peculiar property that
it becomes more ideal as the density increases! But this is not true of a neutron
gas. We shall return to this in the next volume.)

The conclusions, as of 1938, concerning the ultimate fate of stars are summarized in
Fig.10.10.

Black Holes

The discovery of the maximum mass for neutron stars naturally led Oppenheimer
to the question, ‘What is the fate of massive stars that cannot find equilibrium as
neutron stars?’ Like Chandrasekhar a few years earlier, Oppenheimer was also left
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speculating: Either the Fermi equation of state must fail at very high densities, or
that the star will continue to contract indefinitely never reaching equilibrium’.

In 1939, Oppenheimer and Snyder (another brilliant student!) chose between
these alternatives. They did this by carefully studying the implosion of a massive
star. Of course, they had to make some simplifying assumptions about the star. They
assumed that the star was spherical and nonrotating. Having made these assumptions,
Snyder did the calculations in a mathematically exact manner within the framework
of Einstein’s General Theory of Relativity. And their conclusion was staggering!
The best way to convey the impact of what they found is to quote the concluding
sentences from their historic paper:

When all thermonuclear sources of energy are exhausted a sufficiently heavy star will
collapse. This contraction will continue indefinitely till the radius of the star approaches
asymptotically its gravitational radius. Light from the surface of the star will be progres-
sively reddened and can escape over a progressively narrower range of angles till eventually
the star tends to close itself off from any communication with a distant observer. Only its
gravitational field persists.

Oppenheimer and Snyder, 1939

Put simply, the star will become a black hole!
This result of Oppenheimer and Snyder confirmed Chandrasekhar assertion of
1932. Let us recall that prophetic statement:

For all stars of mass greater than Mcyiiical the perfect gas equation of state does not break
down, however high the density may become, and the matter does not become degenerate.
An appeal to the Fermi—Dirac statistics to avoid the central singularity cannot be made.

S. Chandrasekhar, 1932

Oppenheimer and Snyder had confirmed Eddington’s fear. Let us recall Eddington’s
speech at the eventful meeting of the Royal Astronomical Society in January 1935.

The star has to go on radiating and radiating, and contracting and contracting until, I suppose,
it gets down to a few km radius, when gravity becomes strong enough to hold in the radiation,
and the star can at last find peace....

Various accidents may intervene to save the star, but [ want more protection than that. / think
there should be a law of Nature to prevent a star from behaving in this absurd way.

A.S.Eddington, 1935

As was mentioned earlier, Eddington and Chandrasekhar met for the last time in Paris
in July 1939. Assimilating the work of Oppenheimer and Volkoff, Chandrasekhar
concluded his talk at that conference as follows:

If the degenerate cores attain sufficiently high densities (as is possible for these stars) the
protons and electrons will combine to form neutrons. This would cause a sudden diminution
of pressure resulting in the collapse of the star onto a neutron core giving rise to an enormous
liberation of gravitational energy. This may be the origin of the supernova phenomenon.

S. Chandrasekhar, 1939

This is where matters stood in 1939. Figure 10.11 is a grand summary of the spectac-
ular conclusions we have discussed in the preceding chapters, conclusions arrived
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Fig. 10.11 The ultimate fate of stars. This was the scenario in 1939

at by Fowler, Chandrasekhar, Baade and Zwicky and Oppenheimer and his students

Volkoff and Snyder.

Within weeks after the Paris conference World War II broke out. All the great
physicists whose names we have encountered so far dedicated themselves to war
efforts to defeat Hitler. The pursuit of science was interrupted for 6 years.
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Subrahmanyan Chandrasekhar [1910-1995]

This volume of the series is being written during the Birth Centenary of
Chandrasekhar. It is, therefore, appropriate that I include a brief sketch of his life
and work. There is a tendency, particularly among non-scientists, to imagine
scientists to be sterile and trivial personalities, totally devoid of any aesthetic
sense. To dispel this, I have concentrated, in what follows, not so much on his
science, but on his personality. Read on!

Subrahmanyan Chandrasekhar was a legend in his own time. When he passed
away on 21 August 1995, prominent and detailed obituaries appeared in leading
newspapers and magazines all over the world. Unfortunately, he was remembered
mostly for his very early work on white dwarfs and the belated Nobel Prize he
received, 53 years later.
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But Chandra (as he was fondly known) was much more than a person who made
a great discovery. He was one of the colossal figures of twentieth century science.
Very few can match his sustained creativity and productivity for 65 years. His
achievements have permanence in their character, and in his productivity and
scholarship he has been compared with Lord Rayleigh and the great mathemati-
cian Henri Poincaré. As a mathematical physicist, he is regarded as one of the all
time greats.

Chandra was born on 19 October 1910. He was born into a very cultured and
gifted family. He burst into the international scientific scene at the young age of 18
years, when he was in the second year of his B.Sc. course in Presidency College,
Madras. The year was 1928. In February 1928, C. V. Raman and his students, K.
S. Krishnan among them, had discovered what has now come to be known as the
Raman Effect. That summer, Chandra went to Calcutta to visit his uncle
Sir C. V. Raman. The Indian Association for Cultivation of Science, where Raman
had made the great discovery, was buzzing with excitement. A. H. Compton had
just been awarded the Nobel Prize for the discovery of what is now known as the
Compton Effect. There was expectation that Raman, too, would win the Prize. It
was in this highly charged atmosphere that Chandra wrote his first scientific paper
entitled the “Thermodynamics of Compton scattering with reference to the interior
of stars’. Soon after his return to Madras, the great German physicist Arnold
Sommerfeld visited Madras. It was from him that Chandra learnt about the new
developments in physics, in particular the discovery of the new statistics by Fermi
and Dirac. Sommerfeld gave Chandra a copy of his paper in which he had used the
new statistics to explain the behaviour of electrons in metals. Inspired by this,
Chandra looked for another problem to ‘apply the new statistics’. The newly
discovered Compton Effect suggested an interesting problem. Within 2 months he
had written a paper entitled, ‘Compton Scattering and the New Statistics’. What is
extraordinary is that he was so confident of the significance and correctness of his
results that he sent the paper to R. H. Fowler in Cambridge requesting him to
communicate it to theProceedings of the Royal Society. Fowler did that, and the
paper was published a few months later. Chandra was barely 18 years old at that
time. And he never looked back after that. By the time he completed his degree in
1930, he had done his famous work on the theory of white dwarfs.

In 1930, Chandra went to Cambridge to work under the supervision of Fowler.
We have already narrated this part of the story in Chaps. 6-8. The period between
1930 and 1935 was the most brilliant phase of his career. The papers he wrote
during this period are now widely recognised to be at the base of the present
revolution in astronomy. But unfortunately they were not seen so at that time. As
we saw, the main reason was that Eddington did not believe the fundamental
discovery Chandra had made. Faced with the enormous pressure of finding himself
at the centre of a controversy with the leading astrophysicist in the world, Chandra
decided to leave the subject of stellar structure altogether and move on to other
things. He also decided to leave Cambridge. Just around that time he received an
offer of a Research Associateship from Yerkes Observatory of the University of
Chicago. The Director of the Observatory at that time was the distinguished
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astronomer Otto Struve. He was in the process of hiring some of the world’s most
brilliant astronomers and astrophysicists, and Chandra was one of them. Chandra
stayed at the University of Chicago till he passed away.

Having decided to leave the subject of stellar structure, Chandra gathered
together all his results and published a book entitled, An Introduction to the Study
of Stellar Structure. This book is universally acclaimed to be masterpiece of the
first rank. He was only 28 years old at that time.

Next he turned to the problem of the dynamics of star clusters. The novel way
he approached the problems led to the birth of a new subject called Stellar
Dynamics. In 1942, barely 4 years after the publication of his first book, he
published his second book, Principles of Stellar Dynamics. One can say in ret-
rospect that this was an unusual book in the sense that Chandra did not leave the
field immediately. He continued to write a series of papers on the subject, some of
them with the very famous mathematician John von Neumann, on the subject of
the statistics of the gravitational field. It is in these papers that the seminal idea of
dynamical friction was introduced and its consequences explored.

The next period 1943—-1948 was devoted to an investigation of the extremely
difficult problem of radiative transfer in stellar and planetary atmospheres.
Incredibly, in that short span of time he managed to get exact analytical solutions
to a large number of problems which had remained unsolved for nearly a century.
Chandra often said that this phase of his career gave him the greatest satisfaction.
His monumental book, entitled, Radiative Transfer, was published in 1950.

During the next decade he devoted his attention almost entirely to the difficult
problem of the statistical description of turbulence, and hydrodynamic and
hydromagnetic stability. He realised that unless substantial progress was made in
these branches of physics, many interesting problems in astrophysics could not be
approached. His mammoth book, Hydrodynamic and Hydromagnetic Stability,
was published in 1961.

In the beginning of 1960s he was asked to give a series of four lectures at Yale
University. He chose for the topic of his lectures, Rotation of astronomical bodies.
While preparing for these lectures he became aware of the classic works of giants
like Maclauren, Riemann, Jacobi and others. He realised, ‘the subject, neverthe-
less, had been left in an incomplete state with many gaps and omissions, and some
plain errors and misconceptions’. He devoted the next 6 years to clean up this
extremely difficult field left incomplete by some of the greatest figures in the
history of mathematics. The result was the publication of his book, Ellipsoidal
Figures of Equilibrium, in 1969.

Around 1965 he got interested in General Relativity. The great revolution in
Relativistic Astrophysics was just below the horizon. Chandra was very appre-
hensive about entering this field dominated by young brilliant stars like Roger
Penrose and Stephen Hawking. The first problem he chose to attack suited his
taste, talent and temperament. He went back to a problem he had worked on in
Cambridge; he had started this work in collaboration with the great mathematician
von Neumann. But the papers were never written. When World War II broke out,
von Neumann got busy with war efforts in America. Chandra returned to this
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problem in 1964. There were two aspects to this problem: (1) What is the influence
of General Relativity concerning the stability of stars? (2) Do dissipative effects of
gravitational radiation induce instabilities in rotating stars? Both these questions
were well posed, and were amenable to the kind of analysis in which he was the
supreme master. This led to a series of papers which acquired great significance
with the discovery of Pulsars, Quasars and Active Galactic Nuclei.

Next Chandra turned to the theory of gravitational radiation. As you are aware,
in Newton’s theory of gravity there is no gravitational radiation. Einstein and his
collaborators had argued that gravitational radiation is a natural consequence of
the General Theory of Relativity, just as the existence of electromagnetic radiation
is a natural consequence of Maxwell’s electrodynamics. But they could demon-
strate this only with an approximate version of the full theory. So there were
reasons to be cautious. Experience has taught us that very often the results
obtained from an approximate version of a theory could be spurious. Therefore,
not everyone was convinced about the existence of gravitational radiation. In 1964
Sir Hermann Bondi (one of the authors of the Steady State Theory of the Universe)
wrote a classic paper in which he gave compelling arguments that gravitational
radiation is a natural prediction of Einstein’s General Theory of Relativity. The
problem that Chandra set out to solve was the following. Since the General Theory
of Relativity encompasses Newtonian theory as a limiting case, when the velocity
of the bodies is small compared to the speed of light, one can try to develop
Einstein’s theory as a series expansion in powers of (v/c), with Newton’s theory as
the first term:

General Relativity = Newton’s Theory + terms of order (v/c)
+ terms of order (v/c)* + - --

When v < ¢, one can drop all except the first term on the right hand side, and
we recover Newton’s theory of gravity. As the velocity increases, relativistic
effects become more and more important. Consequently, one will have to retain
more and more terms to have a satisfactory theory of gravity. When v ~ c, one
will have to keep all the terms on the right-hand side. Such an approach is known
as post-Newtonian approximations. Let us get back to gravitational radiation.
Bondi had demonstrated that gravitational radiation exists in the exact theory of
gravity. This raises an interesting question. Does gravitational radiation exist only
in the full theory, or does it appear already in one of the post-Newtonian
approximations to the full theory? Put differently, as we include terms of higher
and higher order in (v/c), does gravitational radiation dramatically appear at some
stage? It was this fundamental question that Chandra set out to answer with one of
his students Yavuz Nutku. Within 2 years they were able to demonstrate the
existence of gravitational radiation when one includes terms up to order (v/ic)".
This result had a tremendous impact on the general relativity community. Chandra
was 60 years old then!

Just around that time relativistic astrophysics was coming of age. Penrose and
Hawking had published their famous paper on thesingularity theorem. Neutron
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stars had been discovered. Convincing arguments had been made that Quasars
must harbour supermassive black holes. All this led to a revival of activity in
general relativity. Some of the most brilliant students went to work on the physics
of black holes. You will recall that Chandra’s research career began with the study
of white dwarves. Fundamental discoveries made by him in the early 1930s led
one to the concept of black holes and singularities. It was therefore natural that
Chandra, too, should enter this field. The problem he chose to concentrate on
concerned the stability of black holes against external perturbations, such as
electromagnetic waves and gravitational waves. Characteristically, after working
on these problems for a number of years, and publishing a series of technically
very difficult papers, he wrote a monumental book: The Mathematical Theory of
Black Holes. This book was reviewed by Roger Penrose, the man who started the
second revolution in relativity. Penrose ended his review thus: “There is no doubt
in my mind that this book is a masterpiece. It is clearly intended to last a long time.
It will’.

Chandra was 75 years old at this stage. Many in the physics community were
wondering what he would turn to next. Or would he take it easy and retire? He did
neither of these, but continued with unabated enthusiasm. The problem he turned
to next was the extremely difficult problem of collision of gravitational waves.
When he decided to make this field his own, there were only two or three papers
written on the subject; one of them by his former student Nutku and the others by
Penrose. Very special assumptions had been made in these papers. Characteristi-
cally, Chandra wanted to solve this problem in all its generality. By 1988 he had
done so!

Finally, at the ripe age of 80 years Chandra turned to the most difficult and the
most ambitious project he had ever undertaken—to write a commentary on
Newton’s Principia. Like many, Chandra regarded this book as the greatest
intellectual achievement of the human mind. Like everything else he started, he
completed this project successfully. His book on Newton’s Principia was pub-
lished just a few weeks before he died.

Chandra began his research career at the age of 18 years. He sustained a very
high level of productivity until he was 85 years old. During those 65 years or so, he
wrote nearly 400 papers, none of them trivial and most of them significant. It is
difficult to point to very many scientists who were creative for 65 years at the limit
of their abilities. Sir Neville Mott and Hans Bethe are two names that come to my
mind.

Chandra was a unique physicist even amongst the very great ones. He was
unique in his attitude to science, his quest for perspectives and beauty in science.
The most distinctive character of Chandra’s scientific work was his attitude to
science in general. As I have mentioned, there were seven periods in his life. He
wrote six monumental books in which each subject was presented from a unified
perspective, which was his own. About this attitude of striving to understand
things in their own way, within his own framework, Chandra has written:
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‘After the early preparatory years my work has followed a certain pattern motivated,
principally, by quest after perspectives. In practice, this quest had consisted of my
choosing (after trials and tribulations) a certain area which appears amenable to cultivation
and compatible with my taste, abilities, and temperament. And when after some years of
study I feel that I have accumulated sufficient body of knowledge and achieved a view of
my own, I have the urge to present my point of view ‘ab initio’ in a coherent account with
order, form and structure’.

Attaining complete understanding of an area, grasping and internalising it was
the essence of Chandra’s scientific life. To quote Chandra:

‘If one’s motivations are not galvanised to pursue science for its own sake, one’s scientific
life has not matured properly’.

Along with research, teaching was an integral part of Chandra’s life. He prepared
his classroom lectures with painstaking thoroughness, and they were delivered in a
masterful way; every step of every argument was written on the board in his
beautiful handwriting. More than 50 students worked with Chandra for their Ph.D.
degrees. He considered his collaboration with young scientists an essential part of
his scientific style. Indeed, he regarded his collaboration with young people more
valuable than his collaboration with giants like von Neumann, Fermi and others!
Young students who had the privilege of working with him benefitted enormously.
To quote one of them: ‘Chandra would transmit an enthusiasm, not in the ordinary
sense that we will go and solve this or that difficult problem, but regarding how, in
the end, after painstaking and lengthy calculations things would fall into place.
Miraculous cancellations would occur and simple results would emerge’.

It is equally true that Chandra found it very inspiring to work with young
people. This was particularly true after he got into General Relativity. He once
said:

‘I consider myself very fortunate in having made up my mind to do relativity. Among

other things, for the first time, certainly after the early forties, I felt I was working in an

area in which many others were far more equipped than I was. I thought I had a chance of
having a close scientific proximity with people of the highest calibre. Certainly, to have
known well and consider among my friends people like Roger Penrose, Stephen Hawking,

Brandon Carter, Kip Thorne, James Bardeen—it is a marvellous experience, it is a kind of

intellectual stimulation which I had not had before. Of course, I worked with Fermi. Fermi

was a very great physicist, but here I am now in the community of young brilliant men.

Even though in age I am very much elder than these people it has always been a satis-

faction to me that these people treat me as their equal’.

This degree of genuine modesty is very rare indeed!

Chandra’s writings have become legendary not only for their thoroughness,
lucidity and scholarship, they also have a distinct style. Elegance and love for and
attention to the language played as important role in his writings, as scientific facts
and weaving them into mathematical formulae. Weisskopf, a very well-known
physicist and who knew Chandra since his visit to Niels Bohr’s institute in
Copenhagen, Denmark in 1932, has said: ‘He has an incomparable style. Good
English style is a lost art in physics but he has it, and this wonderful feeling for the
essential and a feeling for beauty’. In a similar vein, Lyman Spitzer of Princeton
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University had remarked: ‘It is a rewarding aesthetic experience to listen to
Chandra’s lectures and study the development of theoretical structures at his
hands. The pleasure I get is the same as I get when I go to an art gallery and admire
paintings’.

Chandra’s deep interest in literature and classical music comes through in a
transparent manner in his lectures and writings. To quote Weisskopf again, ‘Right
from the beginning, but even more later on, he became sort of the most pure
example of the ideal scholar in physics... nothing of vanity, nothing of pushiness,
nothing of job seeking, publicity seeking, or even recognition seeking...His deep
education, his humanistic approach to these problems, his knowledge of world
literature, and in particular English literature, are outstanding. I mean you would
hardly find another physicist or astronomer who is so deeply civilised’.

An important aspect of Chandra’s science was his quest for beauty in science.
One may ask the question as to the extent to which the quest for beauty is an aim in
the pursuit of science. He very seldom stated his own answers to such questions,
but one may infer his views through his illustrations and examples of what other
great scientists have responded to as beautiful. For example in a memorable lecture
devoted to this question he quotes G. N. Watson’s reactions to one of Srinivasa
Ramanujan’s incredible identities:

‘...such a formula gives me a thrill which is indistinguishable from the thrill I feel when I
enter the Sagrestia Nuova of Capelle Medicee and see before me the austere beauty of
Day, Night, Evening and Dawn which Michelangelo has set over the tombs of Giuliano
de’ Medici and Lorenzo de’ Medici’.

G. N. Watson

Chandra was fond of narrating what Werner Heisenberg thought was one of the
truly momentous discoveries in the history of mankind:

“This was the discovery by Pythagorus that vibrating strings, under equal tension, sound

together harmoniously if their lengths are in simple numerical ratios; in this discovery, for

the first time, profound connection between the intelligible and the beautiful was made’.
Werner Heisenberg

Those who have had the privilege of listening to Chandra’s lectures, and
reading his papers, will know that his concept of beauty in science was based on
the following two criteria:

There is no excellent beauty that hath not some strangeness in the proportions.
Francis Bacon
Beauty is the proper conformity of the parts to one another and to the whole.
Heisenberg

That was Chandra! But all said and done, a scientist should be evaluated on the
basis of his or her achievements. When Lord Rayleigh died, J. J. Thompson (who
discovered the electron) gave the memorial address in the famous Westminster
Abbey in London. He said:

“There are some great men of science whose charm consists in having said the first word
on a subject, in having introduced some new idea which has proved fruitful; there are
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others whose charm consists perhaps in having said the last word on the subject, and who
have reduced the subject to logical consistency and clearness. Lord Rayleigh belonged to
the second group’.

Chandra belonged to both groups! He and Rayleigh are perhaps the two greatest

pillars of mathematical physics. But Chandra also had the privilege of saying the
first word on a subject several times. He discovered:

1.
2.

AR

The maximum mass of white dwarves.

That sufficiently massive stars cannot develop degeneracy, and will collapse to
a singularity.

Dynamical friction in stellar systems.

Relativistic instabilities leading to gravitational collapse.

Gravitational radiation reaction.

Gravitational radiation-reaction-driven instability in rotating stars.

Chandra was himself very modest is assessing his own contributions.

Let me end this sketch of one of the truly great scientist by quoting Chandra
himself:

“The pursuit of science has often been compared to the scaling of mountains, high and not
so high. But who amongst us can hope, even in imagination, to scale the Everest and reach
its summit when the sky is blue and the air is still, and in the stillness of the air survey the
entire Himalayan range in the dazzling white of the snow stretching to infinity? None of us
can hope for a comparable vision of nature and of the universe around us. But there is
nothing mean or lowly in standing in the valley below and awaiting the sun to rise over
Kanchenjunga.’

S. Chandrasekhar

There is no doubt in my mind that posterity will regard Chandra as the most distin-
guished astrophysicist of the twentieth century.
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Chapter 11
To Burn or Not to Burn

Nuclear Cycles

In Chap. 2 of this volume we discussed the main sequence of stars. In this phase of
their lives, the stars are fusing hydrogen to helium in their cores. In stars less massive
than the Sun, this proceeds via the proton—proton chain, while the CNO cycle is the
dominant mechanism in stars more massive than the Sun. What happens after the
hydrogen in the core is exhausted? Details apart, the answer to this question is rather
simple. When all the hydrogen in the core is exhausted, the star will be left with a
helium core and one would expect the helium to fuse to form carbon. When all the
helium in the core is exhausted, carbon should fuse to form oxygen and so on. This
is shown schematically in Fig. 11.1.

The basic idea of the nuclear cycle is that the by product of one fusion reaction
is the fuel for the next. In more colloquial terms, the ashes of one stage of burning
will be the fuel for the next stage.

I mentioned earlier that the stellar drama has many acts. Figure 11.1 would suggest
that it should be just a one-act play, with many scenes. Why is this not the case?
To appreciate this, let us recall some of our earlier discussion concerning fusion
reactions in the Sun (see Chap. 5, ‘Energy Generation in the Stars’, in What Are the
Stars?).

Quantum Tunnelling

The main obstacle to fusing two nuclei together is the strong coulomb repulsion at
short distances. For the case of two protons colliding against each other, the height
of the coulomb barrier is ~1MeV (see Fig. 11.2). To put it differently, when the
distance between the two protons is comparable to their size, the Coulomb repulsion
energy
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Core Nuclear
heatlng Cyc|es

Fig. 11.1 Fusion reactions in stars proceed in cycles. The contraction of an inert core leads to
heating. When the critical temperature is reached, the inert fuel will begin to fuse. When the fuel is
exhausted, the core will, once again, become inert and consequently contract

Tunnelling through the Coulomb barrier
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Fig. 11.2 For two protons to fuse together, they have to overcome the coulomb repulsion barrier.
The height of this barrier is roughly 1 MeV. But the average energy of protons (at the central
temperature of the order of 107 K) is only about 1,000 eV. Therefore, fusion is only possible due
to quantum tunnelling through the coulomb barrier. The tunnelling probability is an exponential
function
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2

Ecou = — ~ 1 MeV, (11.1)
ro

where rg ~ 10~'3 cm. Do the protons near the centre of the Sun have enough
energy to overcome this repulsion? Recall that the central temperature in the
Sun is about 15 million degrees. The average energy of the protons is, therefore,
~1000 eV (remember that 10* K is of the order of 1 eV in energy units: kg x 10*
K =& 1eV). This means that the typical energy of the protons is a thousand times
less than the height of the potential barrier, which is ~1 MeV. A proton with energy
~1000 eV at infinity can never hope to climb the potential hill and fall into the hole
at the centre. According to classical physics, it can only roll up the hill to a point
where all its kinetic energy has been converted into potential energy (which is the
point r; in Fig. 11.2); it is forbidden for the particle to temporarily borrow energy,
climb up the hill and fall into the hole.

This great puzzle was solved in 1928 independently by the brilliant Russian physi-
cist George Gamow, and by Condon and Gurney in the United States. The resolution
of the problem invoked the newly emerging quantum physics. The underlying prin-
ciple of quantum physics is the duality between particles and waves. It is this wave
nature of particles that allows an alpha particle to escape from the nucleus. An anal-
ogy from optics (originally given by Gamow) will give us a feeling for how one may
view this.

Imagine a beam of light incident on the boundary between two media at an angle
greater than the critical angle. According to the laws of geometrical optics, we will
have a total reflection of the incident beam—all the light will be reflected at the
interface between the two media and no disturbance occurs in the second medium.
However, if the same problem is treated within the wave theory of light, it is found
that there is, in fact, some disturbance in the second medium as well. This is the
phenomenon of evanescent waves; a phenomenon which is appreciable for a distance
of the order of a few wavelengths of light. The evanescent wave decays exponentially
as we go into the second medium. There is no interpretation of this disturbance which
occurs in the second medium (which is predicted and measured by experiment) in
the geometrical theory of light.

In the same manner, when we go from classical physics to quantum physics there
is a possibility of particles penetrating potential barriers, or funnelling through poten-
tial barriers. This possibility arises due to the wave nature of particles in quantum
physics. Soon after the discovery of the theory of alpha decay by Gamow, and inde-
pendently by Condon and Gurney, the transmutation of elements by proton capture
was considered by Atkinson and Houtermans in 1929.

Given a potential barrier of a certain shape, the transparency or tunnelling prob-
ability can be calculated using wave mechanics. You will find the derivation in any
introductory text on quantum mechanics for a variety of barrier shapes, such as tri-
angular barrier, a rectangular barrier, the Coulomb barrier, etc. The transparency or
the tunnelling probability through a barrier is defined as follows:
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T Transmitted Intensity (11.2)
ransparency = . .
P Y Incident Intensity

For an arbitrary barrier such as the one shown in the inset of Fig. 11.2, the trans-
parency is given by

b
72/ ‘/Zfz—’g(V(x)fE)dx
a .

It is worth noting the important features of the above expression for the tunnelling
probability.

Transparency ~ e (11.3)

1. The tunnelling probability is an exponential function.

2. Given a barrier of a certain height V, the tunnelling probability increases expo-
nentially with increasing energy of the incident particle.

3. The tunnelling probability decreases exponentially with increasing thickness of
the barrier.

4. The probability of tunnelling is greater for particles of smaller mass.

So our success rate in fusing two protons together (the reaction rate, in the technical
jargon) will depend upon an interplay between two opposite trends: an exponen-
tially increasing tunnelling probability with increasing energy and an exponentially
decreasing fraction of particles with increasing energy (recall the Boltzmann distri-
bution).

A proper calculation for the case of the Coulomb barrier shows that the number
of fusion reaction per unit volume and per unit time will involve an integral of the
type:

o8] 1
J:/ e EIKT g=n/E2 g | (11.4)
0

The first exponential factor is the Maxwellian tail of the energy distribution and
the second factor is the exponentially increasing tunnelling probability. The product
of these two exponentials will give a peak, known as the Gamow peak. The area
under this peak will determine the reaction rate. This is shown in Fig. 11.3.

Now let us get back to the nuclear cycles (Fig. 11.1). You will notice that between
the exhaustion of fuel and the commencement of the next stage of fusion there are
two important steps: core contraction and core heating. This is why the stellar drama
has many acts and is not a one-act-drama. To understand this better, let us go back
to the Coulomb barrier.

When two protons collide against each other the height of the Coulomb barrier
is ~1 MeV. When two helium nuclei collide, the height of the barrier is ~4 MeV
(since each nucleus has two protons). The height of the barrier is ~36 MeV when
two carbon nuclei with six protons collide. Let us fix the energy of collision to be
the same in all these three cases. Clearly, the width of the barrier through which
the particles will have to tunnel increases dramatically as the height of the barrier
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Fig. 11.3 Figure illustrates the significance of the so-called Gamow peak. The number of fusion
reactions per unit volume per unit time depends upon two factors: an exponentially decreasing
number of particles with increasing energy, and an exponentially increasing tunnelling probability

with increasing energy
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Fig. 11.4 This figure shows why the successive phases of nuclear fusion require higher tempera-
tures. This is primarily because the height of the coulomb barrier increases with increasing electric
charge of the fusing particles. For example, the height of the barrier for the fusion of helium is four
times higher than for the fusion of protons

increases (refer to Fig. 11.4). And as we mentioned above, the tunnelling probability
decreases exponentially with increasing thickness of the barrier. It therefore follows
that to fuse helium nuclei together the average energy of the particles will have to
be much greater than at the centre of the Sun. In other words, the stellar plasma has
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Hydrogen burning
in a shell
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contracts, Helium burning
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Fig. 11.5 At the end of the main sequence phase, a star will have an inert helium core, surrounded

by a shell where hydrogen is still fusing to helium. Since the inert core is not generating heat, it

will contract, and consequently heat up. When the temperature reaches about 103 K, helium will

fuse to produce carbon and oxygen

to be at a much higher temperature than the temperature that obtains at the centre of
the Sun. The temperature has to be even higher to fuse carbon nuclei. This heating
up can be, in principle, achieved by the contraction of the core. But as we shall soon
discuss, the contraction of the core does not guarantee the heating up of the core.
This depends upon whether the core material behaves as an ideal gas or not. Let us
assume for the moment that the contraction of the core will result in the heating of
the core, and anticipate what the next acts of the stellar drama are likely to be.

Helium Burning

Towards the end of the main sequence phase, the star will develop a helium core. But
this core will be inert, since it is not hot enough. However, energy generation will
not completely stop—there will be action elsewhere! Although all the hydrogen in
the core has been exhausted, there is an enormous amount of hydrogen outside the
core. Unfortunately, the temperature is not high enough for hydrogen fusion in the
extended envelope of the star. But the hydrogen in a thin shell surrounding, and in
contact with, the inert core will be hot enough for the synthesis of helium to continue.
So the star will have a shell source of luminosity, although energy generation in the
core has stopped temporarily (see Fig. 11.5).

Since the core is no longer generating heat, the hydrostatic equilibrium would be
temporarily disturbed. Gravity would overwhelm the resistance offered by the core
and squeeze it. As a consequence, the inert helium core will heat up (let us assume
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that this happens). When the temperature of the core reaches a value of ~10% K,
helium nuclei will start to fuse.

The by-products of this phase of fusion will be '2C and '°0. The reactions proceed
as follows:

“He + “He = ®Be,
SBe + ‘He — '2C + 1. (11.5)

The key reaction in the fusion of helium is the formation of '>C from three “He
nuclei. This is known as the triple alpha reaction (remember that Rutherford’s alpha
particle is just a *He nucleus). The synthesis of '>C takes place in two steps. In
the first step, two alpha particles form a beryllium nucleus. The ground state of ®Be
nucleus is about 100 keV higher in energy and it is therefore unstable. Left to itself, it
will decay back to two alpha particles in about 10~ second (this is why we have the
arrows pointing in both directions in the first of the two reactions above). Fortunately,
the mean interval between the collision of two alpha particles is much shorter than
this timescale. Consequently, a third alpha particle can be expected to collide with
the beryllium nucleus before it decays back to two alpha particles (the second step
in the reaction shown in 11.5). The binding energy released per '>C nucleus formed
is about 7.3 MeV. The energy released per unit mass in the triple alpha reaction (in
which helium is synthesized into carbon) is about 10 times smaller than in the case
of the CNO cycle (in which hydrogen is synthesized into helium).

Once a sufficient concentration of '?C has been produced, further capture of alpha
particles result in the production of oxygen, neon, etc.:

2C 4+ “He —» 190 + ~,
10 + *He — 'Ne + ~. (11.6)

Carbon Burning and Oxygen Burning

As a result of helium burning the star will now develop a carbon—oxygen core. But
this core will be more centrally condensed and less massive than the original helium
core. The reason is that to form the C—O core one needs a much higher temperature
~108 K, and this is likely to obtain only near the centre.

Just as the helium core formed at the end of the main sequence phase was inert,
the carbon—oxygen core will also be inert initially. For two carbon nuclei to tunnel
through the very high Coulomb barrier and fuse, the temperature has to be in excess
of 5 x 10% K. The inert carbon—oxygen core will contract and heat up, just as the
inert helium core did. When the temperature reaches 500 million degrees, carbon
nuclei will fuse. Unlike in the case of hydrogen burning and helium burning, it is a
much more complicated business to calculate accurately the end products of carbon
burning. The general consensus is that the end products of carbon fusion will be as
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follows:
2Cc 4+ 2C - ?Ne and **Mg. (11.7)

Remember that the core produced by the fusion of helium also contains '°O. Thus,
at the end of carbon burning, the core will contain 160y, 20Ne and 24Mg.

Because of the even bigger Coulomb barrier, the fusion of oxygen will not be
possible till the central temperature becomes even higher (see Fig. 11.4). When the
temperature reaches 10° K, oxygen nuclei will fuse to produce a variety of products:

190 4+ 10 — S+,
— 3P+ p,
— 31S 4 n,

— BSit+a

The proton and the alpha particle produced in the above reactions will be immediately
absorbed, giving rise to secondary reactions. We shall not go into all that complicated
stuff! It would be safe to say that among the end products of oxygen burning one
would find a substantial amount of Silicon (Si).

Beyond Oxygen Burning

What happens next? It is even more complicated than during oxygen burning. Now
the ambient temperature is well in excess of several billion degrees. At these tem-
peratures, some of the more loosely bound nuclei will be broken up. This is known
as Photodisintegration of nuclei, in analogy with Photoionization of the atoms. At
T > 10° K the radiation field will consist mainly of gamma rays with energy in the
MeV range. These can be absorbed by the nuclei, raising them to excited states. Such
nuclei in excited states are prone to radioactive decay, emitting alpha particles. As
a result of photodisintegration there will be an appreciable number of free neutrons,
protons and alpha particles inside the core. These will react with silicon and grad-
ually build up heavier elements. This process will go on till *°Fe is reached. If you
would like to forget all the intermediate steps, one might loosely say that the next
phase after oxygen burning is silicon burning,

288i + 288i — OFe. (11.8)

And then the fusion reactions will cease; this is the end of the road. To understand
this, we should visit a plot of the binding energy of various nuclei. This is shown in
Fig. 11.6.

What is plotted in the figure is the average binding energy per nucleon versus the
number of nucleons in the nucleus. Consider some nucleus of atomic mass number A.
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Fig. 11.6 Figure shows the experimentally measured binding energy of nuclei. The y-axis is the
average binding energy per nucleon in MeV. The x-axis is the atomic number. As may be seen, S°Fe
is the most stable nucleus. Beyond this, the binding energy per nucleon decreases. This means that
is we want to fuse iron to form heavier elements, the reaction will be endothermic; it will cost us
energy

Let its mass be M;c. A nucleus is stable because its mass is less than the sum of the
masses of the neutron and protons in the nucleus (recall Aston’s discovery). This is
known as the mass deficit. This mass deficit is equal to the sum of the mass of the
(A — Z) neutrons plus the mass of Z protons minus the mass of the nucleus. The
binding energy of the nucleus is equal to (mass deficit x ¢?).

Ep = [(A— Z)my + Zmp — Muuc] x 2. (11.9)

When comparing how strongly different nuclei are bound, it is useful to define the
average binding energy per nucleon,

b o+ (11.10)

What is plotted in Fig. 11.6 is the experimentally measured value of this quantity f
as a function of A. The important features of this plot that you must observe are the
following:

1. f rises sharply from hydrogen, flattens out and reaches a maximum for *®Fe. The
maximum value is 8.5 MeV.

2. Beyond *°Fe, the binding energy per nucleon gradually decreases.

3. Barring hydrogen, the typical value of f is around 8 MeV.
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4. The binding energy released when hydrogen fuses to form *He is much larger
than the energy released in subsequent fusion reactions.

5. %Fe is the most stable nucleus. This is why the synthesis of °Fe is the last act of
the stellar drama.

The Onion Skin Model

If the nuclear cycle proceeds as we have discussed, after the fuel is exhausted in the
core, fusion reaction will continue in a concentric shell around the inert core. Such
a shell source can last for a very long time. In fact a particular shell source may last
well into the next nuclear cycle. Remember that each nuclear cycle will generate
its own shell source. Each successive phase of the nuclear cycle will be of shorter
and shorter duration. Therefore, when the iron core forms, there will be many shell
sources from the previous phases of the nuclear cycle. The star will resemble an
onion, as shown in Fig. 11.7.

To Burn or Not to Burn

Do we expect every star to develop an onion structure like shown in Fig. 11.7?
Do we expect that in all stars the nuclear reactions will go all the way till an iron
core forms? We have assumed in the above discussion that the sequence of nuclear
cycles proceed without any obstacle. This assumption may or may not be correct.
The key assumption we have made is that the inert core will contract and heat up;
once the temperature of the contracting core reaches the ignition temperature, the
next phase of the fusion reactions will begin. So the crucial thing to settle is whether
the contracting core of a star will heat up. And if it heats up, will it get hot enough
for the ashes of the previous phase to ignite. The answer to this will depend upon
the equation of state.

Ideal Gas

If the stellar plasma in the core behaves as an ideal gas then it will certainly heat up
when the density of the core increases as a consequence of its contraction. It is not
difficult to figure out the increase in the temperature for a corresponding increase in
the density.

Let us start with the requirement that for the core to be stable the gravitational
pressure at the centre must be equal to the gas pressure:
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Shell sources

Fig. 11.7 The onion skin model of a star. As we shall see in later chapters, the nuclear cycle will
proceed all the way in massive stars. The final stage will be the synthesis of silicon to form an iron
core. This will be surrounded by a thin shells consisting of silicon, oxygen, neon, carbon, helium,
followed by an extended hydrogen envelope. At this stage, there will be multiple shell sources where
fusion reactions are still taking place

PGray = Pgas (11.11)
where 5
GM pck T,
PGray ~ R Pgas = L, . (11.12)

Here p. and T, are the central density and temperature, respectively (If you are
not familiar with the expression for the gravitational pressure, you may refer to the
companion volume, What Are the Stars?). Taking the logarithm of both sides in
(11.11) and using (11.12) we obtain,

log Pg = log p. +log T, + constant. (11.13)

The gravitational pressure can be recast as Pg o« M>/3p*/3. Taking the logarithm of
this we get

4
log Pg = 3 log p + constant. (11.14)

Since the mass of the star is not a variable, we have absorbed it into the constant in
(11.14). Combining (11.14) and (11.13) we obtain the desired relation

1
log T, = 3 log p. + constant. (11.15)
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Fig. 11.8 If the core of the star obeys the ideal gas law, then it will heat up upon contraction

The relation (11.15) can also be written as follows:

dT.  ldpc
T. 3 pe

(11.16)

This tells us that as long as the gas can be regarded as ideal, an increase in the
density of the core will result in the core heating up.

In Eq. (11.11) we ignored radiation pressure. A more general relation would have
been

pkT 1 4,
P =——+ zaT". (11.17)
pump 3

The right-hand side of the above equation now includes both gas pressure and radia-
tion pressure. We shall not pause to derive it here, but it can be shown that Eq. (11.16)
is valid even when we include radiation pressure. The heating up of an ideal gas core
upon contraction is shown in Fig. 11.8.

Degenerate Core

If the core is degenerate, however, its response is very different under compression
(see Fig. 11.9). Although initially the core might be well described by the equation
of state of an ideal gas, there is no guarantee that this would be a good description
as its density increases. You may recall from our earlier discussion that the gas
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Fig. 11.9 If the core of the star is degenerate, then contraction will not lead to heating. It will
just become more degenerate. But, as we shall see, secondary effects, such as a surrounding shell
source, can lead to the core heating up

may be regarded as ideal if the thermal energy k7 is much greater than the Fermi
energy Er (kT > EF). As the density increases the Fermi energy will also increase
(Ep o p*/3). At some stage, kT ~ Ep, and the gas becomes partially degenerate.
As the density increases further, Er will become greater than the thermal energy k7T
and the gas should be regarded as fully degenerate (kT < EF).

When we compress a fully degenerate gas, its temperature does not increase sig-
nificantly. The Fermi energy will increase and the gas becomes even more degenerate.

It is instructive to see the behaviour of the gas under compression in a log 7" versus
log p plot (see Fig. 11.10). The sloping rectangular boxes in Fig. 11.10 represent the
transition between the ideal gas behaviour (on the left) and degenerate gas (on the
right). Along the boxes, kT & E . For a nonrelativistic degenerate gas Ep o p?/3.
Therefore, the rectangular box along which kT ~ Ep will have a slope of 2/3 in
a log T versus log p plot (This box has been labelled as NRD). For a relativistic
degenerate gas, Ep o« p'/3. Accordingly, the rectangular box labelled RD will
have a slope of 1/3.

Let us consider the core of a star whose initial position in the diagram is labelled
as (1). As the core contracts, it will heat up and its trajectory will be along a path
whose slope is 1/3 (see Fig. 11.10). As it contracts even more, it will enter the
domain of partial degeneracy. At this stage, a further increase in density will lead to
only a marginal increase in temperature. When the core becomes fully degenerate,
the density will increase at a constant temperature. At some stage, the degeneracy
pressure will arrest gravity, and there will be no further contraction. As the gas loses
its fossil heat its trajectory will swing downward and the gas will cool at a constant
density. The core labelled (2) will have a similar trajectory in the plot.
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Fig. 11.10 This figure explains the behaviour of an ideal gas sphere under compression. Notice
that the temperature and density are plotted in logarithmic units. The ‘rectangular boxes’ mark the
transition from ideal gas behaviour to degeneracy. In the region to the right, the electrons will be
degenerate; beyond a density of 107 (in cgs units), the electrons will be relativistically degenerate.
Along the rectangular boxes, kT ~ Er, which is the criterion for degeneracy to set in. Consider
the sphere whose starting point is (2). As we increase the density, the temperature will increase.
At some density, which depends upon the temperature, the gas will become degenerate. A further
increase in density will not result in an increase in the temperature. At some stage, degeneracy
pressure will prevent any further compression. From then onwards, the sphere will cool due to the
loss of fossil heat, and it will do so at constant density. In contrast, a sphere whose starting point is
@ will remain nondegenerate at all densities

Now let us consider the core (3). Its initial position corresponds to a much higher
temperature. As it contracts it will heat up, and its trajectory will, again, have a slope
1/3. But this time, the core never crosses the boundary of degeneracy and it will
continue to heat up.

What does all this mean for stars of different mass? This is schematically shown
in Fig. 11.11.

Consider two stars of masses M; and M>, and let the initial location of their cores
be as shown in Fig. 11.11. Let us first consider the star of mass M;. As may be seen
in the figure, its core is already close to the boundary separating the ideal gas domain
and the domain of degeneracy. As the core contracts and the density increases it will
heat up. During this process of continued contraction of the core the staris moving to
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Fig. 11.11 This is essentially the same as Fig. 11.10. Since the fate of star is really decided by its
core, we have shown the trajectory of the core for two different stellar masses, M and M. Since
the core of a more massive star will be hotter, for the same density, it is reasonable that My > M.
Simple considerations explained in Fig. 11.10 tell us that stars up to a certain mass will end up as
degenerate stars (white dwarfs). Stars above a critical mass will never become degenerate, however
high the density may become

the right. At some stage degeneracy will set in. After that there will be a brief phase
during which the density will increase, with the temperature remaining more or less
constant. Soon degeneracy pressure will prevent further contraction of the core and
it will become a white dwarf.

What will be the composition of the white dwarf? That depends on the initial mass
of the star. If the central temperature reaches 10" K, the fusion of hydrogen into helium
will take place. If the temperature continues to increase till it reaches 108 K, then
fusion of helium into carbon will occur. As we shall see in the subsequent chapters,
the stellar drama will end here for all stars with initial mass less than about 9M,.
The carbon core will enter the region of degeneracy and will eventually become a
C-O white dwarf. Initially the white dwarf will be very hot. But it will cool as the
stored heat is radiated away.

Let us stay with Fig. 11.11 and consider the star of mass M. The first thing to
appreciate is that one expects M» to be more massive than M| This follows from the
fact that although their initial densities are the same, the core of M is hotter. One
can therefore say from general considerations that M, must be the moremassive star.
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Since the temperature of the core of the star with mass M> is greater than that of the
star of mass M1, one would expect radiation pressure to be more important in this
core. You will remember Eddington’s dictum that radiation pressure will become
increasingly important as the mass of the star increases. This guess can be verified
quite easily, although we shall not attempt to do so here.

Let us now return to the trajectory of the more massive star M> in Fig. 11.11.
As its core contracts, it continues to heat up. The core of the star never becomes
degenerate however high the density may become. Its trajectory misses the boundary
of nonrelativistic degeneracy, as well relativistic degeneracy. Notice that its trajectory
is parallel to the boundary between ideal gas domain and the domain of relativistic
degeneracy; both have a slope of 1/3. We may expect that in such a star, and stars
even more massive, the nuclear cycle will proceed all the way till an iron core forms
at the centre and the star develops an onion skin structure.

Let us now summarize the discussion in this chapter.

1. Between each stage of the nuclear cycle, the inert core has to contract and heat
up for the fusion reactions to proceed.

2. Successive stages of nuclear fusion reactions require higher and higher central
temperatures. Fusion of helium into carbon requires 7 ~ 10 K, while the fusion
of carbon into oxygen, neon and magnesium requires 7 ~ 5 x 103 K. Oxygen
burning requires 7 ~ 10° K.

3. The cores produced by successive stages of the nuclear cycle tend to be smaller
in mass and more centrally concentrated.

4. If the contracting inert core behaves as a classical ideal gas then it will heat
up as it contracts. The nuclear cycle will proceed uninterrupted as long as this
trend of contraction resulting in heating continues, and the necessary ignition
temperatures are reached.

5. However, if degeneracy sets in as the core contracts then it will not heat up further
as the core contracts further. Therefore, the nuclear cycle will be interrupted by
the onset of degeneracy.

6. Stars up to a certain critical mass will develop degenerate cores and are likely to
end their lives as white dwarfs—in most cases, as carbon-oxygen white dwarfs.

7. The cores of stars more massive than the critical mass will never become degener-
ate, however high the density may become. This confirms the remarkable predic-
tion made by Chandrasekhar in 1932 (refer back to Chap. 7, The Chandrasekhar
Limit, and Fig. 7.4 in particular).

8. The nuclear cycle will proceed the full course in these massive stars, and the stars
will eventually develop an iron core, with many shell sources surrounding it.

This is as far as one can go with the kind of qualitative reasoning we have been
pursuing. To go beyond this, one has to resort to actual numerical calculations with
fast computers. There is one other thing: so far, we have concentrated exclusively
on what is happening in the core of the star. Admittedly, this is where the energy
generation is taking place. But how does the rest of the star respond to all this? After
all, what we see is the surface of the star!


http://dx.doi.org/10.1007/978-3-642-45384-7_7
http://dx.doi.org/10.1007/978-3-642-45384-7_7

To Burn or Not to Burn 155

In the next four chapters we shall briefly summarize what modern investigations
have taught us about the life history of stars. Since the life history depends upon the
mass, we shall break up the discussion into three parts: low mass stars like the Sun,
intermediate mass stars and massive stars. In the next chapter, we shall outline the
life history of the Sun.



Chapter 12
What Does the Future Hold for the Sun?

Early Evolution

In the preceding chapter we discussed the evolution of the core of the star. We saw
that the life history of the core depends upon the mass of the star. But the core is not
what we see! We shall now turn to a brief discussion of what modern calculations tell
us about evolution of the stars, in particular, how the outer layers of the star respond
to the evolution of the core. The evolution of stars is best understood by looking
at the Hertzsprung—Russell diagram we introduce in Fig. 12.1. The movement of
a star in this diagram, as it evolves, will tell us how its radius, temperature and
luminosity vary in response to the behaviour of the core of the star. As we shall see,
the behaviour of the stars in the lower part of the Main Sequence is in some respects
qualitatively different from that of the more massive stars. Therefore, we shall divide
our discussion into three parts, as indicated in Fig. 12.1. In this chapter, we shall
discuss stars with mass less than about 2.5Mg. Specifically, we shall consider how
our Sun will evolve in the future. In the next chapter we shall discuss stars in the
intermediate mass range, that is, stars in the mass range 2.5Mo—-9Mg. Finally, we
shall take up the evolution of stars more massive than, say, 10Mg.

If you refer back to Chap. 2, Fig.2.6, you will notice that an essential difference
between stars in the lower and upper part of the main sequence is that low-mass stars
have radiative cores, while intermediate-mass stars and massive stars have convective
cores. This has a major implication for how the helium core grows in mass as the
star consumes the hydrogen in the central region. In the Sun, for example, the helium
core grows in mass rather slowly, starting with zero mass. The helium core, which
is the result of fusion of hydrogen, will be inert. This is because the temperature of
the helium core will be much less than 10® K needed for helium to fuse. In fact,
since there is no energy generation in the inert helium core, its temperature will be
essentially that of the shell surrounding it in which hydrogen is being fused into
helium. The helium produced in the shell adds to the mass of the core. And this
process of the growth of the mass of the core is rather slow since the efficiency of
helium production in the p—p chain reaction is rather small.

G. Srinivasan, Life and Death of the Stars, Undergraduate Lecture Notes in Physics, 157
DOI: 10.1007/978-3-642-45384-7_12, © Springer-Verlag Berlin Heidelberg 2014
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Fig. 12.1 The Hertzsprung—Russell diagram showing the main sequence of stars. In this chapter,
we shall discuss the life history of stars in the lower part of the main sequence, namely, stars less
massive than 2.5 Mg

Therefore, this phase in which there is an inert helium core, surrounded by a
shell in which hydrogen is burning, lasts for a very long time—a nuclear timescale.
Consequently, one may expect to see many stars in the sky which are in this phase.
Two important things happen to the star during this phase:

1. The envelope of the star will expand dramatically, and
2. The luminosity of the star will increase nearly a thousandfold.

Let us discuss these two points in some detail.

The Star Becomes a Red Giant

Since the helium core is inert it will contract due to the weight of the overlying
layers of the star. As the core contracts, the gravitational energy released will lead to
an expansion of the outer layers. This is an example of a general behaviour known
as gravo-thermal catastrophe, illustrated in Fig. 12.2. The basic point is that self-
gravitating systems have negative specific heat (we have encountered this before). If
heat is allowed to flow between two such systems, the hotter one loses heat and gets
hotter while the colder system gains heat and gets even colder! In the case of the star
we are considering, a contraction of the core will lead to an expansion of the outer
layers.
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Fig. 12.2 This figure illustrates a general principle, namely, when the core of the star contracts,
the envelope will expand. The energy for lifting the envelope comes from the gravitational energy
gained in the contraction of the core

Such a behaviour is quite generic. It is important in stellar systems known as
Globular Clusters. These are gravitationally bound systems of nearly a million stars;
with each star moving in the average gravitational potential of all other stars, just as
atoms in a star are held together by the combined gravity of all other atoms. These
globular clusters undergo what is known as core-collapse—the core of the star cluster
suddenly contracts. When this happens, the cluster as a whole expands.

As the star expands, its surface temperature will decrease and it will become a red
star. Thus, our Sun will become a red giant even as its inert helium core contracts.

The Ultraluminous Giant Star

As the inert helium core grows in mass, the luminosity of the hydrogen burning
shell surrounding it will increase. This may be traced to a very simple reason. As
the core contracts, the surface gravity of the core will increase (this is just another
terminology for acceleration due to gravity at the surface). This enhanced gravity
will squeeze the thin shell of hydrogen that is burning outside the core, increase
its density and temperature, and thus increasing the luminosity of the shell source.
Detailed considerations show that in this prolonged phase during which the entire
luminosity of the star is generated by the shell source, the luminosity is essentially
determined by the mass and radius of the core, and is independent of the mass of the
star. And the luminosity is a strong function of the mass of the core:

L~M]. (12.1)



160 12 What Does the Future Hold for the Sun?

Red Giant Star Moo ~ 0.45 M,
R, ~ 102R,

core

Contracting inert
helium core

1Re

Hydrogen 'burring -
in a shell Convective Degenerate
envelope helium core

Fig. 12.3 The structure of a red giant star. Right at the centre, there is a contracting inert helium
core. The luminosity of the star is generated in a hydrogen burning shell surrounding the inert
core. The envelope expands as the core contracts, and the star becomes a giant. Simultaneously, the
envelope of the star becomes convectively unstable

Detailed calculations show that the luminosity of the star will increase by a factor of
thousand during this phase.

Itis important to bear in mind that as the core contracts, it will become degenerate.
Remember that the central density of the Sun is already ~150g.cm 3. So the core is
very close to becoming degenerate. When the central density increases further, the
helium core will become degenerate (refer back to Chap. 11, Figs. 11.10 and 11.11).
As the mass of the degenerate helium core grows, its radius will decrease. (Recall the
inverse relation between the mass and radius of white dwarfs.) The degenerate core
is not quite the white dwarf we discussed in earlier chapters, but it is getting there!

The internal structure of a red giant star is shown in Fig.12.3. An important
transformation has occurred to our star as it expanded to become a giant star—if has
become fully convective. We saw in Fig.2.6 that stars in the lower part of the main
sequence have convective envelopes whereas a star in the upper main sequence would
have a radiative envelope. And we discussed plausible reasons for this important
difference. To understand the convective outer layers of the Sun, we invoked an
increase in the opacity of the outer layers due to new species of absorbing ions,
such as the negative ion of hydrogen. But there is a more fundamental, and generic,
reason for the convective envelopes. And that has to do with their location in the
H-R diagram. We shall now mention this in passing. Let us look at Fig. 12.4.
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Fig. 12.4 The Hayashi line. The nearly vertical dashed line is the boundary between stable stars
(to the left) and unstable stars (to the right). Stars along the Hayashi line will be fully convective.
As the Sun evolves out of the main sequence, it will move to the right in the H-R diagram. As its
radius increases, and the surface temperature decreases, it will encounter the Hayashi line. Since it
cannot cross the line, it moves vertically and becomes a giant star

We have already commented that as the core of the star contracts its envelope will
expand; initially, the luminosity generated by the hydrogen burning shell remains
more or less constant. This will make the star move towards the right in the diagram
(look at the lines of constant radius in Fig. 12.4). Since its surface temperature will
decrease as moves towards the right, the temperature gradient in the star will increase.
At some stage, the temperature gradient will exceed the critical or adiabatic tem-
perature gradient and the star will become convective. The near-vertical dashed line
labelled the Hayashi line in Fig. 12.4 is the locus of fully convective stars (strictly
speaking, it is the locus for a star of given mass and chemical composition). That
means that all stars on that line will be fully convective. But the Hayashi line is far
more significant. Without going into a detailed argument we shall merely mention
that the region to the right of the Hayashi line is forbidden for stars in hydrostatic
equilibrium. The track of the star as it evolves to a red giant is shown in the figure.
As the star moves to the right of the diagram, it encounters the Hayashi line. At that
point, it becomes fully convective. Since it cannot cross this line, it moves up along
it as its luminosity increases dramatically.
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Fig. 12.5 Since the helium core of a red giant star is degenerate, it runs into trouble when helium
ignites. Since there is no safety valve, there will be a runaway reaction. For a short while (till the
safety valve turns on) the luminosity generated will be incredibly large. But none of it will reach
the surface since it will be absorbed

The Helium Bomb

Even as the star becomes a giant, the mass of the helium core has been growing. As
the mass of the core grows, and it contracts, its temperature will also increase. This
may seem contrary to what I had said earlier. I had argued that whereas an ideal gas
core will heat up upon contraction, a contracting degenerate core will not heat up (see
Figs.11.8 and 11.9). That is true. In the present context, the temperature of the core
increases due to a secondary reason. Because the degenerate core will have very high
thermal conductivity, it will be at the same temperature as the surrounding shell in
which hydrogen continues to burn. As mentioned earlier, as the core mass increases
the shell luminosity increases dramatically, as in Eq.(12.1), and the temperature of
the shell increases. If you like, the core is surrounded by a hot plate which is getting
hotter and hotter. At some stage, the temperature of the core will reach 108 K and
helium can ignite. Numerical calculations show that helium begins to fuse to carbon
and oxygen when the mass of the helium core grows to

] Meore (at helium ignition) ~ 0.45M. \ (12.2)

Remarkably, this critical mass of the core when helium can ignite is independent of
the mass of the star. The star is so distended by now (R &~ 50R) that the core is not
affected by the overlying envelope of the star!

When helium ignites in the degenerate core, all hell breaks loose! The reason can
be seen in Fig. 12.5.
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Fig. 12.6 As the degenerate helium core gets hotter and hotter—due to the runaway energy
generation—a stage will be reached when the core is no longer degenerate; kT will become much
greater than Er. Once the core ceases to be degenerate, an increase in the temperature will lead
to an increase in the pressure, and the safety valve will turn on. The star has been saved from a
catastrophe!

When helium ignites in the core, the core which was inert till now has a new source
of energy. This will increase the temperature of the core and the fusion reaction
will go faster. But because the core is degenerate, the pressure of the core will
not increase in response to an increase in the temperature. Remember that when
kT <« EF (which is the condition for strong degeneracy) the pressure is, to a very

good approximation, independent of temperature; the pressure is o ,o%. Since the
pressure does not increase, the core cannot expand. Since the core is hotter now than
when helium fusion started, the reaction will proceed even faster. The triple alpha
reaction that we discussed in Chap. 11 is extremely sensitive to the temperature,
with the reaction rate increasing as 7%°. Therefore we will have a runaway energy
generation—a helium bomb! For a few seconds after helium ignites in the core,
the luminosity generated will be ~10'" solar luminosity! This enormous amount of
energy is easily absorbed by the star.

Why does the star not blow up? It is because the helium bomb will soon fizzle
out! As the temperature of the core increases dramatically, the core will become less
and less degenerate. Soon, kT will become comparable to Er, and then kT > EF.
The core is no more degenerate; it will be an ideal gas. And when this happens, the
safety valve comes into operation. This is described in Fig. 12.6.
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Fig.12.7 When helium starts burning in the core, the core will expand. This will cause the envelope
to contract. The red giant star will, once again, become a dwarf star

In an ideal gas, the pressure will increase in response to an increase in the temper-
ature. An increase in the pressure will make the core expand. Since work is done in
the expansion, the core will cool. This will reduce the rate of production of energy,
causing the core to once again contract to the original radius. This is the safety
valve that is at work in the Sun. It is this safety valve that prevents the Sun from
blowing up.

To summarize the above discussion, when helium ignites in the core of the Sun—
some 7 billion years from now—it will very nearly blow itself up. Fortunately, the
safety valve will come into operation before this happens. But, as we shall see in the
next chapter, such a rescue is not guaranteed at later stages of evolution!

Helium Burning in the Core

Once the core becomes nondegenerate, and the imminent danger has passed, helium
will begin to fuse in a steady manner in the core. Remember that hydrogen is still
burning in a shell surrounding the core. The onset of energy production in the core
will cause the core to expand. And when the core expands, the star will contract; the
mirror principle once again in operation (see Fig. 12.7). This will cause the star to
contract. The expansion of the core has another consequence. The temperature of the
core, as well as the hydrogen burning shell, will decrease, resulting in a decrease in
the luminosity of the star compared to the red giant phase. Consequently, the Sun
will descend in the H-R diagram.
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Fig. 12.8 The Red Supergiant star. The contracting inert carbon—oxygen core causes the star to
expand to become a supergiant. When the Sun becomes a supergiant, its radius will be 300 times
larger than the present radius—much bigger than the radius of Earth’s orbit around the Sun. The
Earth and the inner planets will be engulfed by the Sun! The inert degenerate core will be surrounded
by a helium burning shell, and also a hydrogen burning shell

The Supergiant Star

Two things will happen in this phase. The mass of the helium core will grow due
to hydrogen being fused to helium in the shell surrounding the core. At the same
time, helium will be converted to carbon and oxygen (as discussed in the previous
chapter). After some time a carbon—oxygen core will be formed at the centre of the
helium core. The inert carbon—oxygen core will be surrounded by two shell sources;
helium will be fusing in the inner shell, and hydrogen will be fusing in the outer
shell.

The inert carbon—oxygen core will contract due to the weight of the overlying
layers, just as the inert helium core had contracted earlier. As a consequence, the star
will expand once again. Since the carbon—oxygen core is much more compact and
dense than the original inert helium core, the gravitational potential energy released
during its contraction will be much greater. The star will thus expand to an even larger
radius than the red giant, and become a red supergiant star. The internal structure of
such a red supergiant star is shown in Fig. 12.8.
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Fig. 12.9 The panel at the centre of the figure shows the trajectory of a star like the Sun in the H-R
diagram. The structure of the star in the various phases is also shown

Notice that the radius of the supergiant is about 300 solar radii, which means
that when the Sun becomes a supergiant it will engulf the Earth and the other inner
planets. But do not worrys; it is not going to happen for several billion years!

Figure 12.9 summarizes the evolution of the Sun from its present phase on the
main sequence till it becomes a red supergiant.

The Observational Hertzsprung-Russell Diagram

Let us now confront these theoretical results with observational data. The best way
to do this would be to construct an H-R diagram with actual data and compare it
with the inset at the centre of Fig. 12.9. Although such a H-R diagram has been
constructed using observations that stretched over a century, the main difficulty was
an accurate determination of the distances to the stars. Obviously, this distance would
be needed in the calculations to convert the observed brightness of the stars to their
intrinsic brightness or luminosity. Parallax measurements would be one of the best
ways to determine the distance to nearby stars. You will recall that parallax is the
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Fig. 12.10 This figure explains the concept of stellar parallax. The line of sight to a nearby star
with respect to very distant stars will change as the Earth moves in its orbit around the Sun. Since
we know the radius of the orbit, one can estimate the distance to a nearby star by measuring the
parallax angle defined in the figure

angular shift in the position of a star in the sky with respect to very distance stars,
as the Earth moves around the Sun. This is explained in Fig. 12.10.

You are undoubtedly familiar with the concept of parallax. Imagine you are trav-
elling in a train, and have a window-seat. The nearby scenery (the trees, the lamp
posts, or houses) will appear to move with respect to a distant hill or some such land
mark. This is what is known as parallax shift. You will see a similar phenomenon
when you look at the stars in the sky. The line of sight to a nearby star with respect to
very distant stars will change as the Earth moves in its orbit around the Sun. Every
six months, the Earth moves nearly 300 million kilometres. The Earth—Sun distance
(defined as one Astronomical Unit) is roughly 150 million kilometres (or 150 solar
radii). Therefore, the diameter of Earth’s orbit around the Sun is roughly 300 million
kilometres. Obviously, the parallax shift would be maximum when the Earth is at
diametrically opposite points in its orbit. As the Earth revolves around the Sun, the
nearby stars will appear to move on a circle with respect to the distant stars. The
relation between the parallax shift and the distance to a nearby star is explained in
Fig. 12.10. You may be interested in a little bit of history concerning stellar parallax.

The ancient Greeks debated whether the Universe was Heliocentric or Geocentric.
One of the staunch exponents of the Heliocentric system was Aristarchus of Samos
(320 BC-250 BC). He explicitly stated that if the Earth revolved around the Sun,
then the nearby stars would appear to move in the sky with respect to the distant stars.
He looked for this effect but could not detect any parallactic motion. But he did not
abandon his heliocentric model of the Universe. Instead, he concluded that the stars
must be very far away! A little later, the very well known Astronomer, mathematician
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and geographer Hipparchus (190 BC-120 BC) undertook a systematic study to detect
the parallactic motion. Incidentally, Hipparchus was the founder of Trigonometry!
He, too, could not detect any parallax. The parallax shift in the position of the stars
is very tiny (less than one second of arc) had to wait for the advent of the telescope
to detect this. The famous astronomer and mathematician Bessel had the privilege of
detecting the first parallax shift in 1838.

In 1989, the European Space Agency launched a satellite named HIPPARCOS
(High Precision Parallax Collecting Satellite) to accurately measure the distances to
stars—the acronym was chosen in honour of the prescient efforts by Hipparchus,
more than two thousand years earlier! HIPPARCOS has accurately measured the
distance to more than a million stars. One of the things this has enabled astronomers
to do is to construct the Hertzsprung—Russell diagram with a large number of stars.
Figure 12.11 is the H-R diagram constructed with the data obtained with the HIP-
PARCOS satellite. This diagram contains 23,000 stars! The Main Sequence is clearly
seen. We also see a large number of sunlike stars ascending the Giant Branch. Several
white dwarfs are also seen in the bottom left-hand side corner of the diagram.
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Fig. 12.12 The Helix Nebula. At the centre of the envelope ejected by a red supergiant one can
see the core of the star. When this cools, it becomes a degenerate white dwarf. Such nebulae are
known as Planetary Nebulae. [Courtesy of NASA, ESA, C.R. O’Dell (Vanderbilt University), and
M. Meixner, P. McCullough, and G. Bacon (Space Telescope Science Institute)]
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Fig. 12.13 A summary of the life history of a low-mass star like the Sun

Thermal Pulses and Mass Ejection

When the Sun becomes a supergiant, it will find itself in a precarious situation. The
two shell sources in the interior become coupled and thermally unstable.
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This leads to a cyclic phenomenon known as thermal pulses. As a result of these
thermal pulses, the luminosity and the surface temperature of the star can vary appre-
ciably with each pulse. During this phase of thermal instability the star will lose mass
dramatically. On the one hand, the hydrogen at the bottom of the envelope is being
converted to helium in the shell. At the same time, mass is being lost by the surface.
While all this makes sense qualitatively, the details are still not clear. What is amply
clear is that the mass ejection during this phase results in what is popularly referred
to as Planetary Nebulae, such as the one shown in Fig. 12.12.

As the envelope is ejected, the hot carbon—oxygen core will be gradually exposed.
What is left of the original star will move left in the H-R diagram since the surface
temperature increases towards the left. When the envelope is completely lost, only
the degenerate core remains and the Sun will at last find peace as a carbon—oxygen
white dwarf! Fig.12.13 summarizes the life history of low-mass stars like the Sun.



Chapter 13
Life History of Intermediate Mass Stars

The Helium Core

We shall now discuss the evolution of stars in the intermediate mass range of 2.5
to 9 M ©. These are located in the upper part of the main sequence (see Fig. 12.1).
An essential difference between these stars and low-mass stars like the Sun is the
nature of the helium core and its behaviour. In the Sun, for example, the core is
in radiative equilibrium. The formation of the helium core (due to the fusion of
hydrogen) depends only on the local rate of helium production. This results in the
gradual formation of the helium core, starting with zero mass. And once formed,
the helium core is in a degenerate state. The mass of the core grows essentially
due to hydrogen burning in the shell surrounding the core. Thus the growth of the
core occurs over a nuclear timescale, lasting many billions of years. This is why the
transformation of the star into a giant is a gradual process, and we can catch the stars
in this phase.

In contrast, the cores of stars in the upper part of the main sequence are convec-
tive. Because of convection, more and more hydrogen from the outer periphery of
the central region is brought into the central region, where conditions are right for
fusion reactions. This hydrogen is, in turn, converted to helium. Thus one expects a
substantial helium core at the end of the central hydrogen burning phase. And this
helium core will not be degenerate.

The Schonberg—Chandrasekhar Limit

Thus, at the end of the main sequence phase, a star of intermediate mass will have a
well formed helium core, surrounded by a hydrogen-rich envelope. Since the helium
core will be inert, it will be isothermal. Models of such stars—with isothermal helium
core surrounded by a hydrogen envelope—were studied by Chandrasekhar and his
Research Associate by name Schonberg in 1942. Their most important conclusion—
as borne out by subsequent developments—was the following:

G. Srinivasan, Life and Death of the Stars, Undergraduate Lecture Notes in Physics, 171
DOI: 10.1007/978-3-642-45384-7_13, © Springer-Verlag Berlin Heidelberg 2014
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Fig. 13.1 This is a plot of the radius of a nondegenerate isothermal core versus the mass of the
core. As the core grows in mass, the star moves along the upper branch. When the mass of the
core reaches a critical value—roughly 10 % of the mass of the star—then the only stable branch
corresponds to a much smaller core radius. Therefore, the core suddenly contracts. This results in
a sudden expansion of the star into a giant

e There are no equilibrium configurations with the isothermal cores having mass
exceeding a critical mass.

Schonberg and Chandrasekhar estimated this upper limit to the mass of the isothermal
core to be roughly fen percent of the mass of the star.

Meore (Schonberg—Chandrasekharlimit) ~ 0.1 Mgy, .

It is customary to define q = M./M as the ratio of the mass of the core to the mass
of the star. The upper limit to the mass of the isothermal core has come to be known
as the Schonberg—Chandrasekhar Limit: qsc = 0.1. This limit is certainly exceeded
by the helium cores left behind after central hydrogen burning in stars of the upper
main sequence. What, then, is the significance of this limit?

This is explained in Fig. 13.1. What is shown in this figure is a series of equilibrium
solutions—with an isothermal core and an envelope—for a star of 3 solar mass.
Plotted along the y-axis is the radius of the isothermal core and the mass of the core
is plotted along the x-axis. As will be seen, there are three branches to the curve.
The solid lines represent thermally stable branches and the dashed section represents
thermally unstable models. When the mass of the core is small, the star is in the upper
branch; the core is nondegenerate along this branch. This corresponds to a dwarf star
close to the main sequence. As the mass of the core increases due to hydrogen burning
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Fig. 13.2 This figure shows the trajectory of an intermediate mass star in the H-R diagram as the
core reaches the Schonberg—Chandrasekhar Limit. Originally the star is close to the main sequence.
With sudden contraction of the core, and the consequent expansion of the envelope, the star moves
very rapidly towards the Hayashi line. From then on, it ascends the giant branch. Since the transition
to a giant is very rapid—it happens on a thermal timescale, rather than a nuclear timescale—we are
unlikely to catch many intermediate mass stars in the process of this transition. Indeed, very few
stars are actually seen in the region of the H-R diagram marked as the Hertzsprung gap

in the shell, the location of the core in this diagram will move along this upper branch,
maintaining equilibrium with the envelope. This will proceed continuously till the
core mass reaches the turning point qsc, which is the Schonberg—Chandrasekhar
Limit. When the mass of the core exceeds this critical value, the only equilibrium
models are in the lower branch, and the core will have to contract discontinuously.
The sudden contraction of the core will be accompanied by an expansion of the star,
and the star will move rapidly in the H-R diagram from the vicinity of the main
sequence to the region of the Hayashi line. This is shown in Fig. 13.2.

This central conclusion, namely that the core will contract in an abrupt manner, and
the star will expand to become a giant, is borne out by detailed numerical calculations
done in recent years. The core contraction and the expansion of the star happen in
a very short time ~ a few million years. This is to be contrasted with billions of
years for a star like the Sun. Since stars of intermediate mass evolve from the main
sequence to the giant branch rather quickly, one would not expect to catch them
during this transformation.

Indeed, there is a region in the H-R diagram known as the Hertzsprung gap in
which there are very few stars. This may be seen in Fig. 13.3 (which is a reproduction
of Fig. 12.11) which shows the H-R diagram plotted with the data obtained from the
HIPPARCOS satellite. Whereas we clearly see the stars of roughly the mass of the
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Sun evolving from the main sequence and ascending the giant branch, we do not see
the more massive stars evolving into giants.

This had been a puzzle for a long time. In contemporary literature, the sudden con-
traction of the core when the mass of the core reaches the Schonberg—Chandrasekhar
Limit, and the consequent expansion of the star, is taken as the explanation of the
Hertzsprung gap.

Central Helium Burning

The rapid contraction of the core will result in the heating of the core. When the
temperature reaches 103 K, helium will start to fuse in the core. For a star of 5 Mgy
this will happen at the age of approximately 60 million years. This is a relatively
short time compared to 8 billion years for a 1 M, star; the Sun will burn hydrogen in
the core for another 3 billion years! Further, since the helium core of the intermediate
mass stars will not be degenerate, there will be no helium flash; the safety valve will
be on and helium burning will be quiescent. When helium burning sets in, the star will
be ared giant located close to the Hayashi line. One would, therefore, expect the star
to be highly convective, and detailed calculations bear this out. The outer convection
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zone penetrates very deep into the star. The larger the mass of the star, the deeper the
convection zone penetrates. This large-scale convection enables the nuclear species
produced near the centre to be dredged up to the surface; convection provides a
conveyer belt, so to speak, connecting the surface to the deep interior. Once these
nuclei are present near the surface, they can be seen and studied spectroscopically.

You will remember that while on the main sequence (when hydrogen burns in the
core) stars in the upper main sequence will have radiative envelopes, but convective
cores. The core will continue to be convective when helium burns in the core. The high
temperature sensitivity of helium burning causes a strong concentration of energy
generation, leading to a steep temperature gradient in the core. This, in turn, results
convective instability of the core. Now, since the star is near the Hayashi track, the
outer layers will also be convective.

As we discussed in an earlier chapter, the triple alpha reaction produces carbon:
3o — '2C. As the abundance of carbon increases, oxygen begins to form through the
reaction '>C+*He — 90 ++. As *He gets depleted, the formation of '°0 becomes
more dominant than the formation of '>C. Calculations show that when all the helium
in the core is exhausted, there is roughly equal abundance of >C and '°O. Fora5 M,
star, the helium burning phase lasts about 10 million years, which is roughly 20 % of
the main sequence phase.

The Carbon-Oxygen Core

When helium is exhausted in the central region, a dense core consisting of carbon
and oxygen, roughly in equal proportion, is formed. Helium will continue to burn in
a concentric shell surrounding the inert C—O core. Further out, there will be a shell
in which hydrogen will burn for a while. The luminosity of the star will be due to
these two shells. The helium burning shell will add more carbon and oxygen to the
core. As the mass of the core increases, it will contract. The mirror principle will
come into effect once again. The contraction of the core will result in the expansion
of the star. The contraction of the core will also result in the increase in luminosity of
the helium burning shell. As a result, the luminosity of the star will increase nearly
tenfold.

As the core contracts, it will move progressively towards the right in the log 7 —
log p plane, and will soon become degenerate. This is shown in Fig. 13.4.

To Be or Not to Be!

The carbon—oxygen core becoming degenerate is not necessarily the end of the story
for these intermediate-mass stars. We saw in the previous chapter that the cores of
stars in the lower main sequence (M < 2.5 M) become degenerate when hydrogen
is exhausted in the core. Therefore, when Helium eventually ignites in the core, the
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Fig. 13.4 Calculated evolutionary trajectories of the cores of low mass and intermediate-mass
stars are schematically shown in this figure (This figure has been adapted from the textbook, Stellar
Structure and volution by Kippenhahn and Weigert). In the case of the low-mass stars, the helium
cores become degenerate. Helium ignites only when the mass of the degenerate core grows to
0.45 Mg . This results in a runaway energy generation for a while. These stars are saved because the
core, once again, moves to the left of the dashed line, and becomes nondegenerate. In the case of
intermediate-mass stars, helium cores remain nondegenerate. However, their carbon—oxygen cores
do become degenerate. Because of severe cooling due to neutrino emission, a degenerate carbon
core will ignite only when the mass of the core reaches 1.4 M. If the core does reach this mass,
there will be an explosive carbon detonation, and the whole star will be blown apart!

core will be in a degenerate state. Consequently, there will be a thermal runaway
(see Fig.12.5). Fortunately, because of the rapid heating the core will cease to be
degenerate and the safety valve will turn on before any damage is done (see Fig. 12.6
and the related discussion). Calculations show that the degenerate helium core will
ignite when its mass grows to 0.45 My, regardless of the mass of the star. This is
schematically shown in Fig. 13.4.

Let us return to our discussion of the carbon—oxygen cores of intermediate-mass
stars. If helium did not continue to burn in a shell surrounding the core, it will be the
end of the story for the star. The degenerate core will cool down at constant density
and become a white dwarf. But the star need not have such a peaceful death! Since
the helium burning shell will produce more and more carbon and oxygen, the mass of
the core will increase. Because the core is now degenerate, its radius will decrease as
its mass increases (recall the inverse relation between mass and radius of degenerate
stars). More importantly, the gravitational energy released in the contraction can heat
up the core—if there is no mechanism for heat loss.
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Fig. 13.5 At very high tem-
peratures, neutrinos are pro-
duced in a variety of processes
summarized here |

Neutrino Processes

Pair annihilation neutrinos: e +et > v+7v |

| Photon neutrinos: y+e  —e +v+v |

| Plasma neutrinos: plasmon — v +v |

| Bremsstrahlung neutrinos: ¢~ + nucleus — ¢~ + nucleus + v +§|

There is an important new cooling mechanism at very high density and tempera-
ture. At temperatures less than about 10% K, and density less than about 107 g cm™3,
the main mechanism for cooling is the emission of photons. At higher temperatures
and densities, emission of neutrinos is the main cooling mechanism. And it is very
effective, since the neutrinos escape very easily. So far we have encountered the elu-
sive neutrino only in the context of nuclear reactions. We first encountered it in the
context of beta decay, and later in the context of various fusion reactions. But there
are other channels for the copious production of neutrinos—channels unrelated to
nuclear reactions. These are summarized in Fig.13.5.

1. Pair annihilation neutrinos: At temperature greater than ~10° K, photons in the
tail of the black body spectrum can produce electron—positron pairs. The condition
is that the energy of the photon must be greater than twice the rest mass energy
of the electron: hv > 2mc? (remember that the electron and positron have the
same mass). These electron—positron pairs will soon annihilate, with each such
annihilation giving rise to two or three photons. There is, however, a very small
probability that the annihilation will result in a neutrino—antineutrino pair. This
will happen once in about 10'® annihilations. This is a very important process
under the conditions we are considering.

2. Photon neutrinos: 7y + e~ — e~ + v + v. You may recall the process known
as Compton scattering. An x-ray or gamma ray photon scatters off an electron
and changes its energy. In very rare cases, the scattered photon is replaced by a
neutrino—antineutrino pair.

3. Plasma neutrinos: We have encountered the electron gas before. But we have not
had the occasion to discuss an important property of such a gas. The electrons,
in a background of positive charges (to make the system electrically neutral)
can undergo collective oscillations. These collective oscillations are known as
plasmons. The characteristic frequency of these quantum oscillations is given by

2 4rne?

wl,_
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The energy of the plasma waves depends upon its wavelength; just the energy of
sound waves depends on its wavelength, but we shall not digress into those details.
Plasma oscillations play a very important role in the propagation of electromag-
netic waves in metals, the ionosphere of the Earth etc. The important thing to
appreciate in the present context is that these plasma oscillations can lose energy
by creating neutrino—antineutrino pairs.

4. Bremsstrahlung neutrinos: When an electron scatters off a nucleus—due to the
coulomb interactions between the two—it will experience acceleration (or decel-
eration), and will emit radiation. This is known as Bremsstrahlung (or brake
radiation). You may be interested to know that this is how x-rays are produced
in the x-ray generators that one finds in hospitals. Az very high temperature and
densities, the decelerating electron can create a neutrino-antineutrino pair.

All these processes are very temperature sensitive, with the neutrino luminosity
increasing dramatically as the temperature increases.

Let us now get back to our discussion of the carbon oxygen core which is growing
in mass, contracting and heating up adiabatically. If its temperature reaches about
5 x 108 K, carbon can fuse. Unfortunately, if it does happen, there will be a thermal
runaway (see Fig. 12.5) and the star will blow itself up! Therefore, whether the star
survives or detonates itself by igniting carbon depends upon how effective the cooling
of the core due to neutrino emission is. Clearly, there are two competing effects:

1. The energy released in the fusion reaction (which heats up the core).
2. The energy lost due to neutrino emission (which cools the core). The efficiency
of this mechanism increases with increasing temperature.

Detailed calculations show that till the core attains a mass very nearly equal to 1.4 M,
neutrino cooling dominates. In other words, the cooling of the carbon—oxygen core
due to neutrino emission will prevent the core attaining the temperature needed for
the ignition of carbon as long as the mass of the core is less than about 1.4 M, (see
Fig.13.6). By the way, this value of the critical mass of the core has nothing to do
with the Chandrasekhar limiting mass, which is equal to 1.44 M ! This is just a near
coincidence—or, is it?

If the star is more massive than 1.4 Mg, there is no reason why the carbon—
oxygen core cannot reach this critical mass. One would therefore expect all stars
more massive than 1.4 M to blow up. Till the late 1980s, this was thought to be
the mechanism of the so called Type I Supernova in which no stellar remnant is left
behind.

Then came the evidence from different quarters that stars with mass less than
about 9 M, will save themselves from such a carbon detonation catastrophe. What
changed the whole scenario was the discovery of white dwarfs in young clusters of
stars, such as the Pleiades shown in Fig. 13.7.
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Fig. 13.6 As the mass of the degenerate carbon—oxygen core grows, it will contract (remember the
inverse relation between mass and radius for degenerate configurations). The gravitational binding
energy released will heat the core. So the core will move in a northeasterly direction in this plot.
Even as the core heats up, cooling due to neutrino emission becomes more and more dominant.
Indeed, if carbon was to ignite, the sudden heating of the core due to the energy released will result
in such a dramatic increase in the cooling due to neutrinos, that the carbon burning will be quenched.
In other words, cooling due to neutrinos dominates over the energy that would be released by fusion
reactions. This remains so till the core grows to 1.4 M. Beyond this critical mass, energy released
by carbon burning exceeds the energy loss due to the neutrinos. Unfortunately, carbon burning will
be runaway reaction, and the star will be blown apart

Fig. 13.7 The Pleiades, or Seven Sisters, is an open star cluster containing middle-aged hot stars
located in the constellation of Taurus. It is among the star clusters nearest to Earth and is the cluster
most obvious to the naked eye in the night sky. Pleiades has several meanings in different cultures
and traditions
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Fig. 13.8 The H-R diagram of a cluster of stars. Remember that all the stars in a cluster are born
at the same time. Since massive stars evolve faster, the more massive ones would have evolved out
of the main sequence and ended their lives. Only stars whose main sequence lifetime is greater or
equal to the age of the cluster would still be on the main sequence. The maximum mass of the stars
on the main sequence is known as the furnoff mass. In a young cluster like the Pleiades, the turnoff
mass is as high as 6 or 7 M. And yet, there are white dwarfs in these clusters. This is only possible
if stars more massive than the turnoff mass somehow manage to end their lives peacefully as white
dwarfs!

The Pleiades cluster is at a distance of about 350 light years and contains roughly
1,000 stars. The cluster is dominated by hot blue and extremely luminous stars that
have formed within the last 100million years. It is thus a young cluster of stars
presumably born in the same birth event. And yet, there are many white dwarfs in
the cluster. It is fairly certain that these white dwarfs are original cluster members.
If we accept the notion that white dwarfs are end states of stars less massive than the
Chandrasekhar mass limit of 1.4 M, then we have a serious dilemma. We have seen
that a low mass star like our Sun will take many billions of years to evolve from the
main sequence. And yet, the cluster is only about 100 million years old! How could
the white dwarfs have formed?

Figure 13.8 shows the Hertzsprung—Russell diagram for a young star cluster like
the Pleiades. Notice that only stars in the upper part of the Zero-age Main Sequence
(ZAMS), with mass greater than the turnoff mass, have evolved out of the main
sequence, and ended their lives. For star with mass less than the furnoff mass, the
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evolution time on the main sequence far exceeds the age of the cluster; they are,
therefore, still on the main sequence. The turnoff mass will, of course, depend upon
the age of the cluster. The older the cluster, the smaller will be the turnoff mass.
Globular clusters, for example, are as old as the Galaxy itself (many billions of years
old). In these clusters, one finds only very low mass stars. All other stars have had
enough time to evolve and find ultimate peace as white dwarfs or neutron stars. In
young clusters like the Pleiades and Hyades, the turnoff mass is around 6 or 7 M.
The meaning of this is clear: Only stars more massive than, say, 7 M have had time
to evolve. It follows therefore that the white dwarfs in these clusters are the end states
of stars more massive than the turnoff mass!

How could this be? A star of, say, 8 M, should have blown itself up. The carbon—
oxygen core of such a star could have easily grown to a mass of 1.4 M, at which
point carbon would have ignited, resulting in a detonation of the star. The only way
to avoid this is if the star lost a great deal of mass and thus prevented the core
from growing to the critical mass. This is shown schematically in Fig. 13.9. In recent
times, there is observational evidence for mass loss from stars. This could be due to
a variety of reasons:

Strong winds from the surface.

Mass loss due to rapid rotation of the star.

Periodic mass ejection during thermal pulsation of the star.

The sudden core contraction, resulting in a sudden expansion of the envelope
(recall the Schonberg—Chandrasekhar limit), etc.

el s

Figure 13.10 shows the evolution of stars of three different initial masses. Here,
My > M, > M3. The degenerate carbon—oxygen core grows in mass, even as the
star loses mass from the surface. In stars more massive than M» the core will grow
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Fig.13.10 A time sequence of the evolution of stars with three different initial masses; M| > M» >
M3. Even as the degenerate carbon-oxygen core increases in mass, the star is losing its envelope
due to a variety of processes. Notice that as the mass of the core increases, its radius decreases. If
the star manages to lose all its envelope before the core mass reaches the critical value of 1.4 M,
the carbon will not ignite, and the core will become a white dwarf. Thus, stars less massive than
M3 will die peacefully as carbon—oxygen white dwarfs

to the critical mass before the envelope is completely lost. Carbon will ignite in the
cores of these stars, resulting in an explosion of the star. In stars less massive than
M>, the envelope is lost before the core grows to the critical mass. Such core will
cool down at constant density and end their lives as white dwarfs.

The existence of white dwarfs in young clusters like Pleiades, Hyades, etc. strongly
suggests that star with mass less than about 9 M, will find ultimate peace as white
dwarfs (see Fig.13.11). While one might argue whether the upper mass for the
formation of white dwarfs is 8 or 9 M, there is compelling observational evidence
that the upper mass limit is in this range.

The main conclusion of this chapter is that intermediate-mass stars with masses
from 2.5 to 9 M, will find their ultimate peace as carbon—oxygen white dwarfs. In
the previous chapter, we concluded that stars in the lower part of the main sequence
will also die as white dwarfs. Stars with mass less than about 0.5 M, will not be able
to ignite helium formed during the main sequence phase; their cores will never get
hot enough for this to happen. If they manage to get rid of the hydrogen envelope
they will end up as helium white dwarfs. But the catch is that the evolution time for a



To Be or Not to Be!

log (central temperature)

7.5

Hydrogen

— | Ignition !

c AN /
lines — " ;| Degeneracy
Carbon ~~--

-~

Carbon-Oxygen
7 Mg , white dwarfs

/
I /] I I I

0 2 4 6 8 10
log (central density)

183

Fig.13.11 Observations of white dwarfs in young star clusters like the Pleiades and Hyades strongly
support the conclusion that stars with mass up to about 9 M, end their lives as carbon—oxygen white

dwarfs. The stars manage to lose enough mass to prevent the core from growing to 1.4 Mg

star of such a low mass is more than the present age of the Universe! Therefore, the
helium white dwarfs that we do occasionally find in the Galaxy must have formed
via a different route. One possibility is that the star lost its entire hydrogen envelope
to a close companion. But we shall not get into all those details.

The important thing is that all stars up to 9 M will find ultimate peace. They will
have enough energy to cool!



Chapter 14
Diamonds in the Sky

The Population of White Dwarfs

The final conclusion regarding the ultimate fate of stars less massive than about 9
Mg is summarized in Fig. 14.1. It would be interesting to know what fraction of
stars end up as white dwarfs. For this, we have to go to the Initial Mass Function
(IMF) of stars in the galaxy. The IMF, usually denoted by W (M)dM, is the number
of stars formed per year per cubic parsec within an interval of mass between M and
M + dM. A parsec is the distance to the star whose parallax angle is 1 second of
arc (see Fig. 12.10); one parsec is roughly equal to three light years. In 1955, Edwin
Salpeter found that

WU (M)dM = 2 x 107 2M 23 am stars/year /cubic parsec. (14.1)

This famous Salpeter Initial Mass Function is sketched in Fig. 14.2. This function
will enable us to determine what fraction of stars end up as white dwarfs, and what
fraction end up as neutron stars or black holes. The ratio of the area under the curve
from 0.5Mg to 9Mg to the area under curve from 9Mg to oo will gives us the ratio
of white dwarfs to neutron stars plus black holes,

number of proto white dwarfs f(g s W(M)dM
number of proto NS/BH Jo W (M)dM

(14.2)

A simple exercise will tell you that 98 % of all stars are or will become white dwarfs.
It is equally interesting to ask what fraction of mass is locked up as white dwarfs.
To get the answer to this, all we have to do is to multiply the IMF by the mass M
of the star and integrate. Try to convince yourself that roughly 94 % of all matter
that formed stars is either already locked up as white dwarfs, or is in stars that will
eventually become white dwarfs. Only 6 % of the mass is in the form of neutron stars,
or is in stars that will end their lives as neutron stars or black holes.

G. Srinivasan, Life and Death of the Stars, Undergraduate Lecture Notes in Physics, 185
DOI: 10.1007/978-3-642-45384-7_14, © Springer-Verlag Berlin Heidelberg 2014
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This has an interesting implication. At the present age of our Galaxy, roughly half
the matter is in the form of stars, and the other half is in the form of giant interstellar
clouds of gas. Stars continue to form from these clouds of gas. But stars also return
gas to the interstellar medium. However, it is only the more massive stars that explode
as supernovae, and return most of their mass back to the Galaxy. Since the initial
mass function of stars has a negative slope, in each generation of star formation the
majority of newly born stars will be low-mass stars and therefore the majority of
stars will end their lives as white dwarfs.

Eventually, there will be no interstellar gas left in the Galaxy! And the only stars
that will be left behind will be very low mass stars which have still not evolved.
Are there such systems? Yes, indeed. Our Galaxy contains a few hundred very old
stellar systems known as globular clusters. Typically, they contain about a million
stars, going around a common centre of mass. These globular clusters have hardly
any gas. And their stellar population consists almost exclusively of very low mass
stars. The more massive stars have all evolved and ended their lives, leaving behind
white dwarfs, neutron stars and black holes. Another type of stellar systems with
hardly any gas left are the so called elliptical galaxies. These are not flat like the
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spiral galaxies (Our own Milky Way Galaxy is an example of a spiral galaxy), but
more like a rugby ball (an ellipsoid). These galaxies have very little gas left; and
only very old, low-mass stars populate them.

Masses of White Dwarfs

Determination of the masses of white dwarfs relies on spectroscopy. Theoretically,
a white dwarf should be a soup of atomic nuclei and degenerate electrons. But most
white dwarfs have a very thin, and very pure, atmosphere. Observations tell us that
this will be either hydrogen or helium. Emission lines from hydrogen atoms or helium
ions can be detected in the spectrum of white dwarfs. These emanate from the thin
outer layer. The mass of this layer is, however, extremely small, amounting to only
about 10 to 1073 M. One of the techniques employed to determine the mass of a
white dwarf is to determine the gravitational redshift of the wavelength of the spectral
lines emanating from the surface (see Chap.3, ‘The strange companion of Sirius’).
This, used in conjunction with Einstein’s formula for the redshift, will give us the
combination of mass and radius. One can now use the empirical mass—radius relation
for white dwarf, and estimate the mass. Although such an estimate is prone to error,
one can use it to derive the distribution of masses of white dwarfs using a very large
sample. This has been done.

An extremely interesting fact to emerge in the 1990s is that the mass distribution
of white dwarfs is quite narrow! The mean mass of white dwarfs is about 0.6M¢. The
width of the mass distribution is only about 0.14M¢,. This raises the question ‘Why
such a narrow mass distribution?” We shall not digress to discuss this interesting
question. But it would be worthwhile to at least indicate the line of thinking that
provides a plausible answer. You will recall from our discussion in the previous
chapter (see Figs.13.9 and 13.10) that the progenitor star is losing mass from its
surface, even as the carbon—oxygen core is growing in mass. The rate at which the
star loses mass is related to the luminosity it generates. The luminosity, in turn, is
determined by the rate at which the mass of the core grows. So you may be able to
detect a vague connection between the rate at which the core grows in mass, and
the rate at which the star loses mass. Such a conspiracy can result in a convergent
situation, leading to an almost unique mass for the white dwarfs, with a relatively
small spread.

Magnetic White Dwarfs

Fairly strong magnetic fields have been detected in white dwarfs. There are two
primary ways of detecting magnetic fields: (i) Strong magnetic fields produce mea-
surable circular polarization in the spectrum, (ii) Zeeman Effect—the splitting of
spectral lines due to the magnetic field (you may like to refer to our discussion of
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Zeeman Effect in What Are the Stars?). At present there are about 50 magnetic
white dwarfs, with fields in excess of 10* Gauss (which is 10,000 times bigger than
the Sun’s average magnetic field!). Roughly 15 of them have fields less than 107 G,
an equal number have fields between 107 and 108 G. Interestingly, roughly 15 white
dwarfs have field between 10% and 10° G. The magnetic axis is usually not aligned
with the rotation axis of the white dwarf.

What is the origin of the magnetic field? Why do some white dwarfs have huge
fields, while others have none? There is reasonable consensus that the observed mag-
netic fields are fossil fields, that is, they are not generated at present, but inherited
from their progenitors. Large-scale magnetic fields are usually created by current
loops. Such current loops are driven by convective motions of the charged fluid.
The point to bear in mind is that such motions are unlikely in a white dwarf or a
neutron star. Since there is a dense and degenerate electron gas in a white dwarf,
the star will have extremely high thermal conductivity (terrestrial metals have high
thermal conductivity for the same reason). Such a high conductivity will ensure
that the white dwarf is essentially isothermal; that is, there will be no apprecia-
ble temperature gradients (this is the case with metals, too). You will recall from
our earlier discussions, strong temperature gradients are essential for convection to
set in. And convective motions are needed for any dynamo action. This is the reason
why the observed fields have to be fossil fields.

How does this work? Most stars have magnetic fields. Some stars, known as Ap
stars, have strong magnetic fields of the order of 1000 G. Such fields are presumable
generated in their cores due to dynamo action. As the core of the progenitor star
contracts and becomes degenerate, there will be an amplification of the field due to
flux conservation. This is a consequence of what is known as flux freezing. You may
recall from your solid state physics course that high thermal conductivity implies
high electrical conductivity. The ratio of the thermal conductivity to the electrical
conductivity is a constant, which is proportional to the temperature. This is known
as Wiedemann—Franz’s Law. In a medium of high electrical conductivity (such as a
metal or a plasma), the magnetic flux will be frozen in. To put it differently, it will cost
a lot of energy to separate the field from the conducting medium. If we try to move
the conducting material, the field will move along with it. Conversely, if we try to
move the field, then the magnetic field will drag the medium with it. This fundamental
principle was first elucidated by the Swedish Physicist Hannes Alfvén, a discovery
that earned him a Nobel Prize for Physics in 1970. Imagine that there is a magnetic
field of strength B at the centre of a conducting sphere of radius R. An immediate
consequence of flux freezing is that when the sphere contracts from a radius R; to
R, B x 4w R? = constant. In other words,

B1R? = ByR3. (14.3)

As may be seen from (14.3), during contraction, the magnetic field gets amplified by a
factor which is equal to the square of the ratio of the radii. It is therefore plausible that
the observed fields of white dwarfs are fossil fields, amplified during the contraction
of the core of the progenitor. As we shall see in the next volume, neutron stars have
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magnetic fields in excess of 10'? Gauss. The radius of a white dwarf is of the order
of 10,000 km, while that of a neutron star is only of the order of 10km. Therefore, if
the end result of stellar evolution is a neutron star, then one can anticipate a further
amplification of the fossil field by a factor of 10°. That would nicely give us a field
of the order of 10'2 G!

Cooling of White Dwarfs

A topic of contemporary interest is the rate of cooling of white dwarfs. If one has a
good theory of the cooling rate then one can estimate the ages of white dwarfs. Of
particular interest is the age determination of the coolest white dwarfs (presumably
the oldest). It has been said that ‘the history of star formation in our Galaxy is written
in the coolest white dwarfs’. In other words, since the coolest white dwarfs are the
remnants of the oldest stars in the Galaxy, by studying their statistics, one can hope
to recreate the history of star formation rate.

If the white dwarfs did not have a thin atmosphere, then the theory of cooling
would be straightforward. As we have mentioned earlier, degenerate matter has very
high thermal and electrical conductivity. It is therefore safe to assume that the white
dwarf will be isothermal, namely, the temperature will be the same everywhere in
the star at any given moment. Since there is no energy generation in a white dwarf,
the energy radiated by it is only the fossil heat. In the absence of any atmosphere, a
white dwarf will obviously radiate as a black body. Do not be confused by the term
black body. In the present context, any opaque body in which matter and radiation
have come to a thermal equilibrium will radiate as a black body. The spectrum of
radiation emitted by it will be known as black body radiation. Further the total
energy radiated per unit time (or luminosity) will be L = (47w R*)o T*, where T is the
temperature and R is the radius of the star. This will result in a decrease in the stored
heat energy and, therefore, the temperature. This, in turn, will result in a decrease
in the luminosity. The moral of the story is that as the white dwarf cools, the rate of
cooling will decrease. This can be formally expressed by the following equation:

oT
L o (specific heat) x M x o (14.4)

You will remember that the heat capacity of a body is the specific heat multiplied by
the mass; specific heat is defined per unit mass. For a body like a white dwarf, there
are two contributions to the specific heat: the degenerate electron gas and the ideal
gas of ions. We shall not go into the details here, but it turns out that the specific heat
of the degenerate electron gas is much smaller than that of the ions. Another way
of stating this is the following: the heat energy is mainly in the form of the motion
of the ions. Although the degenerate electrons are moving like mad, that motion is
zero-point motion, and nothing to do with heat. You will recall that because the ions
are much more massive than the electrons, they can still be regarded as an ideal gas.
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Fig. 14.3 A cooling white dwarf is like a hot metal with an insulating blanket around it. Whereas
heat is transported extremely efficiently in the bulk of the star by the degenerate electrons, in the
tenuous atmosphere, heat is transported by radiation (very much like in the envelope of the Sun).
Like in a star, radiative heat transport is diffusive, and limited by the opacity of the matter. The
lower the temperature, greater is the opacity

The specific heat of an ideal gas (at constant volume) is independent of temperature,
and given by a very simple expression: ¢y = %NkB, where N is the number of ions.
This is the well-known Dulong and Petit’s law.

But our problem is a little more complicated (see Fig. 14.3). White dwarfs do
have an atmosphere. Although the mass of the atmosphere is only of the order of
10~* Mg, it is like an insulating blanket around the white dwarf. Heat transport
in the atmosphere is by radiation itself. And this is a diffusive process. The mean
free path of the photons is governed by the opacity of the atmosphere. The various
absorption and scattering processes that photons encounter in a star will, again, be
operative here. We shall not go into the details here, but merely say that the opacity
or obstructive power of the atmosphere will increase as the white dwarf cools.

The internal temperature of an infant white dwarf could be as high as 107 K. At
these temperatures, cooling by neutrino emission is more effective than cooling by
photons. This will be so for the first 107 years or more. After that photons take over
from the neutrinos. During this later phase, the effective surface temperature of the
white dwarf may be much less than its internal temperature. When the luminosity of
the white dwarf has declined to about 10™#L, (by this time the effective surface tem-
perature would have dropped to less than 10,000 K) the ions are expected to solidify
and crystallize. This, too, has implications for the cooling of white dwarfs. When
ions crystallize, the latent heat released will temporarily heat up the white dwarf!
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Fig. 14.4 The cooling curve of white dwarfs. Mestel’s theory (the solid line) ignores the role of
neutrinos in the cooling process. It also ignores the effects of crystallization of the interior. It is
important to note that neutrinos contribute to the cooling in a significant manner for the first ten
million years or more

After the ions solidify, the specific heat is due to the vibrations of the lattice. As the
solid cools, the vibrations of the ions about their equilibrium positions become less
vigorous, and the specific heat drops rapidly with decreasing temperature. Why the
specific heat of a solid decreases with temperature was a great puzzle at the begin-
ning of the twentieth century. This puzzle was solved in 1907 by Albert Einstein by
invoking the radical idea that the atoms in a solid are quantum oscillators. You will
remember that in 1905 Einstein had introduced the notion that the energy of electro-
magnetic radiation is quantized. These two papers by Einstein laid the foundation for
the quantum theory of matter and radiation. While the photoelectric effect provided
the evidence for the quantum nature of radiation, it is the discovery of the Raman
Effect (in 1928) that provided the evidence for the quantum nature of matter (C. V.
Raman was awarded the Nobel Prize for Physics in 1930).

To get back to our white dwarf, the crystallization of its interior, and the conse-
quent decrease in the specific heat, will result in a dramatic increase in the cooling
rate. Lower specific heat means lower heat capacity, that is, smaller capacity to
hold in the heat. In Fig. 14.4 we have schematically shown the cooling curve for a
0.6M. carbon—oxygen white dwarf. The solid line is the standard theory that was
originally advanced by Mestel in 1952. It ignores the role of the neutrinos, as well
as the effects of crystallization. Notice that a white dwarf crystallizes only after its
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Table 14.1 Properties of graphite and diamond

Graphite is one of the softest materials known Diamond is the hardest substance known
Graphite is a very good lubricant Diamond is abrasive

Graphite is a conductor of electricity Diamond is a very good insulator

Graphite is used for thermal insulation Diamond is an excellent thermal conductor
Graphite is black and opaque Diamond is transparent and brilliant
Graphite crystallizes in a hexagonal pattern Diamond crystallizes in a cubic structure

luminosity has dropped to 10~*L,. By that time, it is several billion years old, and its
temperature would have dropped to a mere 6000 K. Since the radius of a white dwarf
is roughly 1072R, for an assumed temperature of 6000K (which is the effective
surface temperature of the Sun), its luminosity will be

Lwp = 47R* x o T* = 47(107?Re)? x 0 (6000)* = 10™*Lg. (14.5)

Diamonds in the Sky

The suggestion that very old white dwarfs will crystallize was made way back
in the 1960s. A further interesting suggestion was made in the 1980s by a series
of astronomers. They argued that in very old carbon—oxygen white dwarfs (>5 x
10? years), carbon and oxygen will phase separate before crystallization. In this sce-
nario, oxygen will settle towards the centre of the star like snow flakes falling to the
ground. As a consequence, when the interior solidifies, it will have a solid oxygen
core, surrounded by an envelope of solid carbon.

Carbon occurs in many different forms. The most common and familiar among
them are graphite and diamond. Interestingly, these two phases of carbon are as
different as they can be! These differences are summarized in Table 14.1 and Fig. 14.5.

If graphite and diamond both consist of carbon atoms, can we convert graphite
into diamond? Indeed, we can! All one has to do is to subject graphite to enormous
pressure. To understand this, let us look at what is known as the phase diagram.
Fig. 14.6 shows the theoretical phase diagram of carbon. Such a diagram tells you the
range of temperature and pressure in which a particular phase is the stable equilibrium
phase. The pressure is plotted along the vertical axis, in units of giga pascal (named
after the French scientist Pascal). Atmospheric pressure, also called a bar, is equal
to 10° Pascal. One giga pascal is 10° Pa, or ten thousand atmospheres.

You can see that if the temperature is less than about 4000 K, graphite can be
transformed to diamond by applying sufficient pressure. This is how artificial dia-
monds are produced! These are seldom of gem quality. How does Nature do it? As
we go down beneath the surface of the earth, the pressure increases. In regions where
the temperature and the pressure are both in the correct range, carbon derived from
buried organic matter got converted to diamond millions of years ago. Here is an
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Fig. 14.6 A theoretical phase diagram of carbon. The vertical axis is the pressure and the horizontal
axis is the temperature. Such a phase diagram shows the regions in which carbon exists as vapour,
liquid, graphite and diamond

interesting question for you! When we mine the diamonds, and bring them to the
surface, they are no longer subjected to immense pressure. Why does the diamond not
revert back to the state of graphite? If you want to know more about this, I refer you
to the fascinating monograph by G. Venkataraman, ‘The Many Phases of Matter’.
Let us get back to our ageing carbon—oxygen white dwarf. We were talking
about the conjecture that when these white dwarfs crystallize, there will be a phase
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Fig. 14.7 This image taken
with the Hubble Space Tele-
scope shows a close up of
ancient white dwarfs in the
Milky Way Galaxy [Courtesy
NASA and H. Richer (Univer-
sity of British Columbia)]

separation. Oxygen will settle towards the centre of the star, and crystallize. This
will be surrounded by solid carbon. A further conjecture is that, because of the enor-
mous pressure that will obtain inside a white dwarf, the carbon will crystallize into
the diamond structure! We began this chapter by remarking the roughly 98 % of the
stars will end their lives as white dwarfs. A vast majority of them will, ultimately,
become diamonds in the sky!

Lucy in the Sky with Diamonds

So the sky is probably full of cosmic diamonds. If you can lay your hands on one
of these, you will be the richest person on Earth! The largest diamond on Earth is
the 546-carat Golden Jubilee Diamond which was cut from a stone brought out of
the Premier mine in South Africa. The cosmic diamond we are talking about is 10
billion trillion trillion carats! (Fig.14.7).

Astronomers may have finally found one of these! The white dwarf in question
(discovered in 2004) is roughly 50 light years from the earth in the constellation
Centaurus. Its official name is BPM-37093, rather unromantic. But astronomers have
decided to call it Lucy, after the famous song by the iconic Beatles Lucy in the Sky
with Diamonds. How do we know this white dwarf has crystallized?
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Asteroseismology

Many white dwarfs pulsate; the intensity of light we receive from them shows periodic
variations. These could be radial vibrations or more complicated vibrations (known
as nonradial oscillations). By determining the frequency of these modes, one can
infer the conditions that prevail inside the star. This is just like trying to understand
the properties of the material of a bell, or a gong, by studying its vibrational modes.
This is precisely how we infer the properties of the interior of the Earth. That is the
discipline of seismology. If you have had the chance to read the previous volume
in this series, What Are the Stars? you will remember that helioseismology has
enabled astronomers to infer the conditions that prevail inside the Sun with incredible
precision. In a similar manner, asteroseismology is the study of the pulsations of white
dwarfs. Since white dwarfs are much farther away than the Sun, observations are
more difficult. Nevertheless, astronomers have been able to deduce many properties
of pulsating white dwarfs, such as its rotation rate. One of the questions that can be
resolved by asteroseismology is whether the interior is fluid or a solid. Astronomers
have come to the conclusion that Lucy has crystallized. There is some argument as
to whether 90 % of the interior, or 75 %, has solidified. But there is consensus that
a major fraction of the interior has solidified. If this conclusion is correct then our
understanding of the phase diagram of carbon enables us to say with some confidence
that we have found one of the cosmic diamonds!



Chapter 15
Exploding Stars

The Fate of Massive Stars

It now remains for us to discuss the evolution of the more massive stars, stars more
massive than about 10M. The evolution of these stars through the helium burning
phase is more or less the same as that of the intermediate-mass stars which we dis-
cussed in Chap. 14, ‘Life history of intermediate-mass stars’. The essential difference
is that in the massive stars the carbon-oxygen core never becomes degenerate during
the contraction. Figure 15.1 shows the computed evolutionary track for a 15M, star.

Since the carbon core will be nondegenerate, when carbon does ignite it will do
so in a quiescent manner. With the danger of the core becoming degenerate at last
out of the way, the subsequent phases will also proceed in an uneventful manner.
The end products of these phases will be neon, oxygen, and finally silicon. In the
final nuclear cycle, silicon will fuse to form 56Fe. As we discussed earlier, iron is
the final stage for spontaneous fusion. The ®Fe nucleus is the most strongly bound
of all nuclei, and further fusion will cost energy, rather than release energy. After
millions of years, the star has finally reached the end of the road.

Low mass stars like the Sun had to contend with a helium bomb. They had to
defuse the bomb before the star blew up. Intermediate stars had to be very clever
to avoid the ignition of carbon in their degenerate cores; neutrinos came to their
rescue. A massive star does not have to be ingenious and shed much of its mass to
prevent the ignition of carbon in the core. The nuclear history of massive stars is
quite uneventful. We had anticipated this in our historical perspective. Let us recall
Chandrasekhar’s remarkable statement of 1932:

For all stars of mass greater than M isical, the perfect gas equation of state does not break
down, however high the density may become, and the matter does not become degenerate.

Let us recall also the basis for this assertion. Chandrasekhar had shown that if radi-
ation pressure exceeds 9.2 % of the total pressure, the ideas gas law will not break
down. This is illustrated in Fig. 15.2, which has been adapted from Chandrasekhar’s
original paper of 1932. What one is attempting to do is to compare the degeneracy
pressure of the electrons with the pressure calculated by assuming that the electrons

G. Srinivasan, Life and Death of the Stars, Undergraduate Lecture Notes in Physics, 197
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Fig. 15.1 This figure shows schematically the result of a modern evolutionary calculation for
a 15M¢, star. The solid line is the evolutionary track of the core of the star. The core remains
nondegenerate through the successive phases of nuclear burning. Consequently, the fusion reactions
proceed in a controlled manner, and the end product is a degenerate iron core. The figure has been
adapted from the textbook, Stellar Structure and Evolution, by Kippenhahn and Weigert

obey the ideal gas law of Charles and Boyle, with radiation pressure contribut-
ing in different measures. The degeneracy pressure of the electron gas is given by
P = Kip°/? (nonrelativistic) and P = K,p*/ (relativistic). These are the two
thick lines. The lines labelled (1) to (4) represent the ideal gas equation of state of
the electrons, with radiation pressure contributing to the total pressure in different
measures. At first sight, you might be surprised that one can even plot the ideal gas
equation of state in a (P, p)-plot since the gas pressure is a function of both density
and temperature.

But this difficulty can be overcome by using the trick that Eddington introduced.
One introduces a dimensionless fraction 3 defined as follows:

Pt = ﬁ Prad

1

B
] KT\ 1 (1 (15.1)
— B (/xpemp> - 1-3 (§aT )

Equating the two sides of the second equation above and simplifying, one gets

k \*3(0-— 3
pgas=c(ﬁ)p§=[( ) 3¢ B)} 3. (15.2)

HeM p a B

The above equation expresses the gas pressure in terms of the density and (. For
intermediate steps leading to Eq. (15.2) refer to Chap. 7, in paticular, Egs. (7.31) to
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Fig. 15.2 The equation of state for an ideal gas (with radiation) is plotted as a function of the
mass density. Although the pressure is a function of density and temperature, one can replace
the temperature by the dimensionless fraction (3, which is the ratio of gas pressure to the TOTAL
pressure. The various lines of slope 4/3, and labelled (D) to (3, represent the pressure of the ideal
gas for various values of 3. The pressure of a degenerate electron gas is shown by the two thick
lines. As may be seen, the dashed line which is the ideal gas with 3 = 0.908, that is, gas pressure
is 90.8 % and radiation pressure is 9.2 % of the total pressure, respectively, is the borderline case.
When radiation pressure exceeds 9.2 % of the total pressure (or 3 < 0.908), the ideal gas does not
become degenerate no matter how high the density becomes. This remarkable theorem was proved
by Chandrasekhar in 1932. Indeed, this figure has been adapted from the famous paper published
in Zeitschrift fiir Astrophysik in 1932

(7.34). The meaning of 3 is clear. 3 is the ratio of gas pressure to the total pressure.
It follows that (1 — (3) is the ratio of radiation pressure to the total pressure. The lines
(D to @ have been labelled with the value of (. Decreasing [3 signifies increasing
proportion of radiation pressure. Recall also Eddington’s dictum: radiation pressure
is more important as we go to more massive stars. Therefore, the lines with decreasing
0 (or, equivalently, increasing radiation pressure) represent more and more massive
stars.

Let us now look at Fig. 15.2 closely. The line (D) represents a star in which gas
pressure contributes 98 % to the total pressure and radiation pressure contributes
only 2 %. This line will intersect the nonrelativistic degeneracy pressure. Therefore,
degeneracy will set in in such stars. Recall that the condition for degeneracy is that
the numerical value of the pressure calculated using Fermi—Dirac statistics is greater
than the pressure calculated using Boyle’s law (at the same density and temperature).
The line ©) corresponds to the critical value of radiation pressure equal to 9.2 % of
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Fig. 15.3 The cores of stars more massive than about 10Mg never become degenerate, however
high the density may become. In such stars, the nuclear fusion reactions proceed in a quiescent
manner till an inert iron core is formed

the total pressure. This line not only does not intersect the nonrelativistic degeneracy
line, it also misses the relativistic degeneracy line (both have a slope of %). This is,
of course, true of even more massive stars in which (1 — () is greater than 0.092, that
is, radiation pressure exceeds 9.2 % of the total pressure. In these stars, degeneracy
will never set in, however high the density may become. The evolution of the core
of a massive star is shown in Fig. 15.3. A comparison with Fig. 15.1 shows that this
conclusion dating back to 1932, based only on very general considerations, is fully
borne out by modern calculations.

The Final Day!

The carbon burning phase lasts for a relatively short time in comparison to the helium
burning phase, let alone the hydrogen burning phase. For a star of 15M,, the carbon
burning phase lasts only about 6,000 years, while for a 25Mg, star it lasts only for a
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The final moments in the life of a massive star
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Fig. 15.4 After an uneventful life of many millions of years, the fate of a massive star will be
decided in an incredibly short time of the order of a day. On the final day of its life, Silicon will
fuse in the innermost region to produce an iron core. Because of extremely efficient cooling due
to neutrino emission, radiation pressure will, at last, become less than 9.2 % of the total pressure,
and the core will become degenerate. And when the mass of this degenerate iron core grows to the
Chandrasekhar limiting mass, it will collapse

hundred years! As we have already seen, during this phase there is strong neutrino
emission. The neutrino luminosity of the star can equal, or even exceed, the photon
luminosity of the star! Since the neutrinos escape, this results in the cooling of the
core. But despite this the radiation pressure remains greater than 9.2 % of the total
pressure, and consequently the core remains nondegenerate (Fig. 15.4).

The duration of the subsequent phases of the nuclear cycle are even shorter. The
final act of the nuclear drama—the silicon burning phase—is extremely short. For a
25 solar mass star, the silicon burning phase lasts only about a day! The neutrino
luminosity is incredibly large during this phase, roughly a million times the photon
luminosity. The result of silicon burning is the formation of an iron core. Since the
iron core is inert, it contracts to a density of about 1010 g cm ™3, with the central
temperature of the order of 10'° K. Cooling due to the neutrinos finally reduces the
radiation pressure below the critical value of 9.2 %, and the iron core becomes degen-
erate at last! It will now be supported by the degeneracy pressure of the electrons. So
the star has an iron white dwarf at its centre. And the mass of this white dwarf will
grow rapidly—as more silicon is converted to iron—till it reaches the Chandrasekhar
limiting mass for white dwarfs. The electrons will be relativistically degenerate.

The Collapse of the Core

Atthis stage, the core becomes dynamically unstable and collapses. Historically, there
have been many scenarios for why this collapse occurs. But the most persuasive one,
at the time of writing this monograph, is the following. The electrons are relativistic
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Fig. 15.5 This figure explains our present understanding of how the core collapses. The inner part
of the core will collapse homologously (that is, preserving the radial density profile, even as it
collapses), while the outer part of the core falls freely

and have a Fermi energy Er ~ 8 MeV. This is the ideal condition for inverse beta
decay (also known as electron capture) to set in. You will recall from our earlier
discussion that in inverse beta decay an electron combines with a proton to form a
neutron: e~ + p — n +v. This neutronization of nuclei results in a rapid decrease in
the number of electrons. Since the degeneracy prejsure of the relativistic electrons

is proportional to the density of electrons (P, o n3), there is a sudden diminishing
of pressure. This will accelerate the collapse of the core. Clearly, this is a runaway
process. There has been a great deal of effort to work out the details of this collapse,
but it is a formidable problem. Let us try to understand this collapse at a basic level
(see Fig. 15.5).

Calculations show that the inner part of the core collapses homologously. What
this means is that during the collapse the radial density profile is maintained. If you
think about it a little bit, you can convince yourself that in order for the radial density
profile to remain the same, the outer shells have to fall in with greater speed than the
inner shells. In contrast, the outer regions of the iron core are falling in with a radial
velocity which decreases with increasing distance from the centre. This is just like
a stone falling freely towards the Earth. The boundary between the inner and outer
regions of the core is not rigidly fixed. As the collapse proceeds, there is less and less
mass in the homologously collapsing region and more and more mass in the freely
falling region.
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The collapse is extremely short lived. The free fall time gives a good estimate for
the duration of the collapse. The characteristic timescale for free fall is given by

1
N —. 15.3
Tt NGT (15.3)

For an initial density of 10'© g cm™>, one obtains a timescale of 40 milliseconds.
For a density of 104 g cm™3, the free fall timescale is roughly 0.5 millisecond. Let
us digress for a moment before proceeding. Consider the following problems: (i) A
particle orbiting the Earth very close to the surface, (ii) A particle executing simple
harmonic oscillations in a tunnel dug through the Earth, (iii) The vibration of the
Earth. In all these cases, the characteristic timescale is ~(G p) /2. Think about why
this is so!

Before outlining what happens during and after the collapse, let me tell you the
end of the story first. The result of the collapse is the formation of a neutron star. The
gravitational binding energy released in the process blows up the rest of the star, and
this results in a supernova. Although this sounds plausible, the details of how the
gravitational energy is actually utilized to produce an explosion are still somewhat
uncertain. This is despite very many clever physicists working on this problem for
several decades. Let us try to get a flavour of the complexity involved.

Let us first estimate the gravitational energy released in the collapse of the core.
As already mentioned, the iron core has a mass roughly equal to the Chandrasekhar
mass. Its density is of the order of 10'% g cm™> and its radius is about a thousand
kilometres. If the final configuration is a stable equilibrium configuration, then the
energy released would be:

1 1 GM?>
( - ) A SO 3 10erg. (15.4)
Rfinat  Rinitial 10 km

3

E~ GM?>

core

This is to be compared with the energy needed to expel the entire envelope of the
star. The binding energy of the entire star—core plus the envelope—is just the grav-
itational potential energy

GM?
— = 10%rg (15.5)

for a 10M¢ star, with a radius of a few million kilometres. Therefore, there is no
difficulty in principle to produce a stellar explosion. The energy to expel the envelope
is only a very small fraction of the energy released in the collapse of the core.

Let us now try to get a feeling for how the collapse proceeds. The inner part of the
core collapses faster than the outer part (see Fig. 15.6). The collapse of the inner core
is halted when it reaches the nuclear density of the order of 2.5 x 104 g cm™3. The
infall is arrested due to the resistance of the nuclear matter to further compression.
You may recall that while the nuclear force is strongly attractive at nuclear density of
the order of 10'* g cm™3, it is strongly repulsive at higher density. Actually, the core
will overshoot the nuclear density and bounce back. If the core were perfectly elastic



204 15 Exploding Stars

(a) (b) (c)

(d) (e)

Core collapse — Neutron star — Supernova

Fig. 15.6 This figure explains how the birth of the neutron star triggers a supernova explosion. The
inner part of the core collapses to form a neutron star. The neutron star overshoots its equilibrium
radius and bounces back. This leads to the formation of a shock wave. This shock wave encounters
the infalling outer core, reverses it motion, and eventually blows apart the rest of the star

it would have enough kinetic energy to bring it back to the original position—but
there can be no explosion! To have the huge amount of gravitational potential energy
at the star’s disposal, the collapsed core must be a stable equilibrium configuration.
Otherwise, the kinetic energy of the infall will, once again, be converted to potential
energy and we would be back to square one. Imagine you drop a rubber ball from
the terrace of your house. As it falls, the potential energy is converted into kinetic
energy. If the ball was perfectly elastic it would bounce back into your hand; but it
will not have any energy left to impart a vertical momentum to your hand. If the ball
was made of clay, for example, it will flatten upon hitting the ground, and you will
hear a thud. But the ball of clay will stay on the ground. What has happened should
be clear. Part of the potential energy has been used up to deform the ball and the
remaining part heats up the patch of ground, creates sound waves, etc.

In a similar fashion, for the neutron star formed as a result of the infall to be a
stable star in equilibrium, energy equal to its binding energy (3 x 10°3erg) would
have to be radiated away. We shall presently argue thatthis energy is released in the
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form of neutrinos. Let us take this for granted for the present, and try to understand
the collapse of the core. As we said, the inner part of the core collapses beyond the
nuclear density and bounces back. As it bounces back, it encounters the infalling
material of the outer part of the core. This reverses the infall of the outer core,
creating a pressure wave. This pressure wave propagates outwards in an environment
of decreasing density. This causes the pressure wave to steepen and become a shock
wave. It had been generally assumed that this shock wave causes the stellar explosion.
After all, one needs only a very small fraction of the binding energy of the neutron
star to explode the rest of the star.

But actual calculations showed that the shock stalled or fizzled out, instead of
expelling the envelope in an explosive manner. In retrospect, the reason is not difficult
to understand. You will recall that initially the collapsing core consists mainly of iron.
As the inner core collapsed, the nuclei became neutron rich due to inverse beta decay.
When nuclear density was reached, the individual nuclei lost their identity and merged
to form a nuclear fluid. This is the neutron star. The infalling outer core (a shell, if
you like) is mainly composed of iron. When the outgoing shock wave interacts with
the infalling matter, it heats it up to very high temperature. Consequently, the iron
nuclei in the infalling shell of matter are broken up into free nucleons. The energy
for this, of course, comes at the expense of the kinetic energy of the shock wave.
As a result, the shock wave has only a small fraction of the initial kinetic energy,
and that is not adequate to produce an explosive ejection of the envelope. Obviously,
something has to re-energize the shock. According to modern ideas, it is the neutrinos
that come to the rescue.

The Trapping of the Neutrinos!

This might surprise you a great deal since neutrinos are supposed to interact extremely
weakly with matter. In more technical terms, the cross-section for interaction of
neutrinos with matter is incredibly small:

2
E,
oy w( ! ) 107*cm? ~ 10~ *cm?, (15.6)
2
mecC

for neutrinos with energy of the order of MeV (Neutrinos produced in nuclear fusion
reactions have energy of this order). The above neutrino cross-section is 10™!3 times
smaller than the corresponding cross-section for the interaction of photons with
matter. You may perhaps be more familiar with the concept of ‘mean free path’. The
mean free path of the neutrinos in matter is related to the cross-section by

I, = (15.7)
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where n is the number of scatterers per unit volume (notice that the mean free path has
a the dimension of a ‘length’). Multiplying and dividing by the mass of the scatterers
(protons and neutrons), the above expression for the mean free path can be expressed
in terms of the mass density p as

2 x 10%%cm

L, " ——m (15.8)
p

where the mass density is in cgs units. For normal stellar matter with density p ~
1 g cm™3, the mean free path of the neutrinos is several hundred light years! This
is why it took more than two decades to discover them.

Given this, how can one expect neutrinos to play any role in stellar explosions?
What one needs is a piston which is moving out. How can neutrinos possibly act as
a piston? Well, two things conspire to make the neutrinos a major player.

1. The density of the iron core is roughly 10'% g cm™3, and as the core collapses the
density becomes even larger. This will drastically decrease the mean free path.

2. The other factor that greatly increases the cross-section for the neutrinos produced
during the collapse of the core is their high energy. As we have discussed, the
electrons in the collapsing core are highly degenerate and relativistic. The Fermi
energy of the electrons is of the order of 10 MeV. The neutrinos produced during
the collapse have typical energy of the same order. Notice that the neutrino cross-
section is proportional to the square of the energy of the neutrinos, measured in
units of the rest mass energy of the electrons (refer to Eq. 15.6).

3. Equally important is the huge enhancement of the scattering cross-section that
arises due to the Unified Theory of Weak and Electromagnetic Forces—the theory
due to Salam, Weinberg and Glashow. Let us consider a nucleus with A nucleons.
In Fermi’s theory of weak interaction, the scattering of the neutrinos by the nucle-
ons inside a given nucleus is incoherent. That is, the scattering by the individual
nucleons is independent of one another. There is no phase relationship between the
scatterers. But in the unified electro-weak theory, the scattering from the nucleus
will be coherent. In such a situation, the fotal scattering cross-section due to a
nucleus will be proportional to the square of the number of scatterers, A*(and not
the number of scatterers). Such a coherent scattering cross-section is given by

E, \* 2inas 2
o, ~ <—2) A2107%5 cm?. (15.9)

MeC
For A =100 and E, =~ 10 MeV, the coherent scattering cross-section is roughly
oy, ~ 10 cm?. (15.10)

This should be compared with our earlier estimate of 107** cm? (Eq. 15.6)! The
coherent scattering cross-section is a hunded thousand times larger.
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Fig. 15.7 At the density of terrestrial matter, neutrinos have a mean free path of many light years.
But the mean free path becomes comparable to the size of the collapsing core when the density
reaches 10'2 g cm™3. Hence, the neutrinos produced during the collapse due to the neutronization
of matter, as well as the thermal neutrinos produced by the infant neutron star, will be trapped.
They can only diffuse out, till they reach the neutrino photosphere. The trapped neutrinos will exert
enormous pressure. Since almost the entire binding energy of the neutron star is released in the
form of neutrinos, neutrinos play a central role in producing the supernova explosion

This greatly enhanced scattering cross-section, and very high density, implies a
mean free path for the neutrinos that is smaller than the dimension of the core. Let
us estimate the mean free path. We have

1 Am, 2x10"7

I, ~ = A

noy POy P

(15.11)

It is instructive to compare Eqs.(15.11) and (15.8), the corresponding expression
derived using the incoherent scattering cross-section. In the case of independent
scattering by the individual nucleons, to convert the number density of scatterers to
the mass density we multiplied and divided by the mass of the nucleon. In the case
where the nucleons inside a nucleus scatter the neutrinos coherently, the scattering
entities are the nuclei, rather than individual nucleons. This is why in (15.11) we
have multiplied and divided by the mass of the nucleus (Am ) to convert the number
density to mass density. The important thing is that mean free path of the neutrinos
given by Eq.(15.11) is a thousand times less than estimated with the old physics
(Eq. 15.8). Note that at a density of 10'> g cm™3 the mean free path becomes much
less than the size of the inner core. Thus the collapsing core becomes opaque to
neutrinos. The neutrinos are trapped by the collapsing core! Like the photons inside
a star, they can only diffuse out, till they reach an imaginary surface, which we shall
call the neutrino photosphere, in analogy with the photosphere of the Sun. Once the
neutrinos diffusively reach the photosphere, they can stream out without any further
appreciable scattering (see Fig. 15.7).
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The Neutrino Bomb!

We have already seen that the binding energy of a neutron star is about 3 x 103 erg
(see Eq. 15.4). Most of this energy is, in fact, released in the form of neutrinos! Let
us understand this in simple terms. The degenerate iron core of 1.4M¢ had roughly
2 x 10%7 baryons, with neutrons and protons in equal proportion. Since the result of
the collapse is a neutron star, 10°7 protons would have been transformed to neutrons
through the reaction p+e~ — n+1%. Thus 1037 electron neutrinos would have been
produced during the neutronization during the infall. If we assume that the average
energy of these neutrinos is about 10 MeV, then the energy of the neutrinos would add
upto 10%% eV or 2 x 10°2 erg. This is roughly 10 % of the binding energy released. But
not all neutrinos will have this energy. Remember that the neutrinos are no longer the
elusive particles that can traverse unchallenged for hundreds of light years. Instead,
they are now trapped in the collapsing inner core of the star. Their small mean free
path is by virtue of their effective interaction with matter. Recall what happens to
photons trapped in a similar fashion in an opaque body. As Kirchoff taught us, they
will eventually come to thermal equilibrium with matter. This will now be so for the
neutrinos as well. The neutrinos can no longer be regarded as independent particles.
They will have to be described by a statistical distribution. This will either be the
Boltzmann distribution or the Fermi—Dirac distribution (remember that neutrinos are
Fermions) depending upon whether kp7T > Ef or kgT < Ep. When all this is
taken into account, the upshot is that the electron neutrinos produced during the
infall will account for only 1 % of the binding energy of the neutron star.

What about the remaining 99 % of the binding energy? Remember that our newly
formed neutron star will be incredibly hot. Its internal temperature would be about
10! K. At such a high temperature, there will be copious production of neutrinos by
the various processes described in Fig. 13.5. There will be neutrinos and antineutrinos
in equal numbers. And neutrinos of all three flavours—electron neutrinos, muon
neutrinos and tau neutrinos will be produced with roughly equal probability. The
production of these neutrinos will result in the cooling of the neutron star, just as the
emission of black body radiation cools a hot opaque body (cooling due to neutrino
emission is the dominant mechanism at the temperatures that obtain in a newly
formed neutron star). Calculations suggest that the cooling time will be very short,
ranging from 1 second to a few seconds. So there will be second burst of neutrino
production. The earlier neutrino burst will mostly be electron neutrinos produced
during the infall. These neutrinos are produced in a few milliseconds and account for
roughly 1 % of the binding energy released. The second burst of neutrino production
will be thermal neutrinos. These will be produced in a timescale of the order of a
second or so, and account for 99 % of the binding energy released.

Remember that all these neutrinos are trapped inside the collapsed core. They
will, therefore, exert an enormous outward pressure, just as the stellar plasma and
the radiation exert outward pressure in a gaseous star like the Sun. We thus have a
neutrino piston! It is this pressure due to the trapped neutrinos that energizes the
tiring outward moving shock wave created by the overshoot and bounce of the newly
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formed neutron star. To summarize, the current understanding is that the supernova
explosion of a massive star is triggered by a neutrino bomb!

If you find all this confusing, the following analogy might help to clarify what we
have discussed above. Consider a big meteorite hitting the Earth. First there will be
tremendous burst of sound waves. Imagine that we want this burst of sound waves—
which might even become a shock wave—to do some work, but discover that it does
not have enough energy. Not all is lost. Much of the kinetic energy of the meteorite
will, in fact, go into heating the patch of earth where it struck. This hot patch will
radiate. If this radiation is emitted in a short burst then the major fraction of the kinetic
energy of the infalling meteorite will be in this radiation burst. If the conditions are
suitable, then such a burst of radiation can do the task you had in mind.

A Guest Star is Born!

Let us summarize, once again, the current understanding of the fate of massive
stars. The inner part of the degenerate iron core collapses a little faster and forms a
neutron star. The neutron star overshoots its equilibrium radius and bounces back.
This generates an outward moving shock wave. What drives the shock is the thermal
pressure of the neutrinos which are trapped inside the core. These neutrinos are
created during the neutronization of matter in the core, as well as by a variety of
processes that dominate at very high temperatures of the order of 10'! K. Nearly
99 % of the binding energy of the neutron star are released in the form of these
thermal neutrinos.

The outward moving shock blows apart the envelope of the star. Having heated
and set in motion the envelope, the shock propagates into the vast space between the
stars. When the shock wave exits the star, there will be an ultraviolet flash, or even an
x-ray flash. The wavelength range in which the intensity is maximum depends upon
the temperature of the shock wave (Recall Wien’s Displacement Law). Immediately
behind the shock wave will be the heated ejecta. The mass of the ejecta will essentially
be the mass of the original star minus the mass of the stellar remnant left behind
(neutron star of mass 1.4M,). Observations tell us that initially the expansion velocity
of the ejecta can be in excess of 10,000 km/s. This is deduced from the Doppler shift
of the spectral lines from the hot ejecta. Since the supernova ejecta contains several
solar mass of stellar material, such a high velocity implies that the kinetic energy of
the expanding ejecta will be roughly 1032 erg. This is much more than the Sun will
radiate in its entire life!

Atthe time of the explosion, the ejecta will be opaque (in technical jargon, optically
thick) and hence will radiate as a black body. As this fireball expands, it will remain
opaque for a while. And since its surface area will increase with time, the luminosity
of the supernova will increase with time (Fig. 15.8). Recall that for a black body

Luminosity = (surface area) x oT*. (15.12)
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Light curve of ‘core collapse’ supemova
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Fig. 15.8 A sketch of the light curve of a supernova triggered by the formation of a neutron star.
Initially, the ejecta will be opaque, and hence radiate like a black body. As the ejecta expands, its
luminosity will increase because of the increase in the surface area; the temperature of the ejecta
does not decrease appreciably. This is the section of the light curve marked (1). The luminosity will
start to decline when the ejecta becomes transparent, and also cools (2). If there is no other source
of energy, the luminosity of the supernova will decline by many orders of magnitude within about
hundred days. But, as may be seen in the figure, the luminosity declines much more slowly. The
energy released in the radioactive decay of cobalt in the ejecta into iron, with a half life of about
77 days, is responsible for the long tail labelled (3)

After the ejecta expands for a few days (or weeks) it will become transparent (or
optically thin). From then onwards the luminosity will decrease with time. Once the
ejecta becomes transparent, the radiation emitted by it will consist of a continuum,
with absorption lines from the atoms superimposed on it. Since the envelope consists
mainly of hydrogen, we would expect to see strong absorption features corresponding
to the Balmer lines. These lines are, indeed, seen very prominently in the spectrum of
light from the supernova. After about hundred days the supernova light curve declines
exponentially; this is the long tail in Fig. 15.8. During this phase, the main source of
energy which powers the light curve is the radioactive decay of the unstable isotope
of Cobalt. Earlier, when we discussed the termination of the exothermic nuclear
fusion reactions, we said that the final product will be ggFe since it has the largest
binding energy. Strictly speaking, we should have said that the final stable nucleus
will be ggFe. Some radioactive nickel (ggNi) will also be produced. This isotope of
nickel has 28 protons. This nickel will decay to cobalt, which, in turn, will decay to
ggFe. The decay will proceed as follows:
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Ni — 38Co+ €™, (half life = 6 days)
3%Co — %Fe 4 T, (half life = 77 days) (15.13)

The energy released in the radioactive decay of cobalt to iron is what powers the
light curve at later times. You may ask why is there nickel and cobalt in the supernova
ejecta? Firstly, the core will still contain the unstable isotopes of nickel at the time
of implosion. This is because the final phase of silicon burning, during which the
iron group of elements are synthesized, lasts only a day or so. Second, recall that the
outermost layers of the degenerate iron core were expelled by the outward moving
shock. Therefore, the ejecta will contain some iron and nickel.

Historically, only visible radiation was detected from supernovae. Today, one has
been able to detect prompt radio and x-ray emission from supernovae. Since the
emission mechanism is different at different wavelengths, a multiwavelength study
of supernovae will shed much light not only on the nature of the explosion, but also
on the abundance of elements synthesized, the acceleration of cosmic rays during
the explosion, etc. This is an extremely active field today.

Although the light from the supernova will fade away in a few months, the blast
wave, and the ejecta, will continue to expand in the vast space between the stars.
Initially, the ejecta will expand freely according Newton’s law of motion. As the
blast wave sweeps up more and more matter in the interstellar space, the ejecta will
slow down, just as a bulldozer slows down as it ploughs more and more earth. Finally,
after several thousand years, the expanding blast wave will come to rest. This will
happen when the thermal pressure inside the cavity excavated by the blast wave
becomes equal to the ambient pressure of the interstellar medium. By that time, the
initial kinetic energy of the ejecta would have been deposited into the interstellar
medium. Remember that it is great deal of energy, of the order of 10°? erg. Since a
massive star explodes in our Galaxy every 30 or 40 years, the expanding blast waves
cause havoc in the interstellar medium. They heat up the gas to millions of degrees;
they accelerate interstellar clouds of gas; they trigger the collapse of giant clouds,
leading to the birth of new stars. Thus, there is a symbiotic relation between the birth
and death of stars!

Diamonds are not for Ever!

The explosions of massive stars that we have been discussing are classified as Type IT
supernovae. Their main characteristic is that the ejecta is rich in hydrogen, and they
leave behind a neutron star. There is another type of supernovae which do not show
any hydrogen in its spectrum, and which do not leave behind any stellar remnant.
These are known as Type Ia supernovae.

Till the 1980s, it was believed that these supernovae are the explosions of interme-
diate mass stars when they ignite carbon in their degenerate cores. Since the whole
star is blown apart, no stellar remnant will be left behind. But this scenario had to
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be abandoned when white dwarfs were discovered in young open clusters of stars.
We discussed this in detail in the preceding chapter. You will recall that according
to present understanding, all stars with mass up to about 9M, will end their lives
as white dwarfs. Therefore, the single star scenario for Type I supernovae has now
been abandoned.

Accreting White Dwarfs in Close Binary Systems

According to the currently prevalent opinion, Type I supernovae are the result of white
dwarfs being pushed over the Chandrasekhar limiting mass. One of the scenarios in
which this can happen is the following. The majority of stars we see in the sky are, in
fact, binary stars—two stars going around a common centre of mass. In some cases,
the more massive of the two stars could have ended its life as a white dwarf. So we
will have a binary consisting of a white dwarf and a gaseous star. At some stage,
the companion star will also evolve and become a giant. If the binary is very tight,
tidal forces could result in matter from the outer layers of the giant star being torn
apart from the parent star and accreting onto the white dwarf. If this mass accretion
onto the white dwarf lasts long enough, then the mass of the white dwarf could
eventually grow to the Chandrasekhar limit, resulting in a collapse. It is not at all
clear whether the collapse will just lead to the formation of a neutron star or result in
the detonation and destruction of the white dwarf. Remember that the mass limit for
both these possibilities is roughly 1.4Mq. As we discussed in the previous chapter,
the effectiveness of the cooling by the neutrinos can tip the balance either way.

But there is a fundamental difficulty with this scenario. Most white dwarfs have
a mass of around 0.6 M. This implies that a white dwarf in a binary would have
to accrete about 0.8 M, from its companion before it reaches the Chandrasekhar
limiting mass. Observations of accreting white dwarfs—from which we can infer the
typical accretion rate—tell us that it would take about a billion years or more to accrete
such a large amount of mass. So there is a dilemma.

e The companion star must be massive enough to donate a large amount of mass to
the white dwarf.

e And yet, it must live long enough to actually donate nearly a solar mass worth of
material to the white dwarf!

Remember that the more massive a star is, shorter is its life. This is the dilemma.
Even if assume that the white dwarf has a suitable and obliging companion, it is
not at all obvious that it will be able to accept and retain this mass. The difficulty
is the following. It is clear that the accreting matter, ripped apart from the outer
layers of the giant star, would be mostly hydrogen. When this hydrogen settles on the
surface of the white dwarf, it will be compacted to a very high density, and very high
temperature, due to the strong surface gravity of the white dwarf. Thus the accreted
gas will find the conditions just right for hydrogen to fuse to helium. Recall that
this is precisely what happens in the hydrogen burning shell surrounding the inert
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Fig. 15.9 Accreting white dwarf in a binary system. Matter from the outer layers of the companion
is ripped out due to the strong gravity of the white dwarfs. This matter cannot directly fall onto the
white dwarf. This is because it has angular momentum, by virtue of the fact that the two stars are
going around the common centre of mass. The matter can only fall in by spiralling in. In the process,
an accretion disk is formed around the white dwarf. When matter finally reaches the surface of the
white dwarf, there is no guarantee that it will stay there! If the accreted matter burns explosively, then
it will be ejected from the surface. Such mass ejections are identified with the Nova phenomenon

helium core of a red giant star. But there is an important difference. In the present
case, there is nothing equivalent to the envelope of the star sitting on top of the
accreted matter. Consequently, the energy released in the process (the synthesis of
the accreted hydrogen into helium) will blow off the accreted matter. This is a quite
common occurrence and is identified with the phenomenon of Novae—as opposed
to Supernovae. It is, therefore, very unlikely that the accreting white dwarf will grow
in mass and reach the Chandrasekhar limit. The only possibility for this to happen
is if matter accretes at an unrealistically large rate. In that case, the energy released
by the fusion reaction on the surface will not be able to lift and expel the accreted
matter. Detailed calculations show that while this is possible in principle, it is very
unlikely.

This raises the following interesting question: is there any other scenario for a
white dwarf to grow in mass, and get pushed over the Chandrasekhar limit?

Coalescence of White Dwarfs

Yes! Occasionally, the evolution of binary stars will lead to a white dwarf binary;
both stars ending their lives peacefully as white dwarfs (Fig. 15.9). Let us assume
that they are both carbon—oxygen white dwarfs; after all, they are the most common
variety. Now we will leave it to Einstein’s theory of gravity to make the two white
dwarfs spiral in and eventually merge. If the total mass of the two white dwarfs
equals or exceeds the Chandrasekhar limit, then carbon will ignite and we will have
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an explosion. You will ask “Why should they spiral in? After all, the Earth and
the other planets have been safely orbiting the Sun ever since the solar system was
formed!” Let us try to understand the underlying physics.

Gravitational Radiation

Let us first discuss the classical physics problem of an electron going around a proton.
Since the electron is in a curved orbit, it will experience acceleration equal to v>/r,
where v is the orbital speed and r is the radius of the orbit. According to Maxwell’s
theory, an accelerating electron will radiate electromagnetic radiation. Since the
radiated energy can only come at the expense of the orbital energy, the orbit will
shrink. In other words, the electron will spiral into the proton (By the way, the same
thing will happen to artificial satellites orbiting the Earth. In this case, friction due
to the atmosphere causes the satellite to lose energy). You may remember that J.J.
Thompson’s model of the hydrogen atom had to be abandoned because of this—the
atom would not be stable. Niels Bohr solved that problem by introducing quantum
mechanics.

In a similar fashion, a body of mass m; going around another body of mass
mo will emit gravitational radiation. In Newton’s theory of gravity, there is no
such thing as gravitational radiation. But Einstein’s theory—the General Theory of
Relativity—predicts the existence of gravitational radiation. Like electromagnetic
waves, gravitational waves will also propagate at the speed of light. Since the energy
radiated in the form of gravitational waves will have to come at the expense of the
orbital energy (like in the example mentioned in the preceding paragraph), the orbit
will shrink, and the two bodies will eventually coalesce. The question is one of
timescale. The energy radiated as gravitational waves per unit time depends upon
the masses and the radius of the orbit a in the following manner:

4
L=—‘Z—f=§(f—5) %m%(mlerz)ais. (15.14)

The larger the mass, the larger is the luminosity. The smaller the orbit, the larger is
the luminosity. For a circular orbit, the rate of shrinking of the orbit is given by the
formula:
da _ 64 (G3/c5 iy Gy + )= (15.15)
i = 5 ) 1mo(mq my PR .

As the orbital separation decreases, the rate of decrease increases. So the two stars
will spiral into each other at an ever-increasing rate (see Fig. 15.10).

There has been no direct detection of gravitational waves, as yet. Several very
sophisticated experiments are under way to detect these waves, but success is still
some years away. In the mean time, there is indirect, but very compelling, evidence
for the existence of these waves. There are a couple of double neutron star systems
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Fig. 15.10 An artist’s impression of two white dwarfs spiralling towards each other. Such a close
binary of two white dwarfs has actually been found by the Chandra X-ray Observatory. The system
known as JO806 is roughly 1600 light years away. Incredibly, the orbital period of the binary is only
321seconds! Such a close binary will rapidly spiral in due to the emission of gravitational radiation,
and eventually coalesce. The result will be a Supernova of Type I [Credit: NASA/Tod Strohmayer
(GSFC)/Dana Berry (Chandra X-ray Observatory)]

with extremely small orbital separation. The orbital period is only a couple of hours,
and the orbital separation is less than a solar radius! The important point is this. The
orbit of these double neutron star systems is observed to be shrinking. And the rate at
which the semimajor axis is shrinking agrees spectacularly well with the prediction
made by Einstein’s theory (see Eq. 15.15). The scientific community is so convinced
of this that J. H. Taylor and R.A. Hulse, the discoverers of the first double neutron
star system in which this effect was first seen, were awarded the Nobel Prize for
physics. Faced with this compelling evidence, we must conclude that gravitational
waves do exist. It is only a matter of time before they are actually detected in a direct
experiment.

Let us return to our story of the double white dwarf binary. If the initial orbit of
such a system is sufficiently tight, then one can hope for a merger in a timescale
< 10' years. The merger will not only increase the mass to the Chandrasekhar
limit, it will also result in a considerable heating. Both these will help the carbon
detonation scenario, resulting in a Type I supernova. This is the current scenario for
these rare supernovae.

An interesting thing about Type I supernovae is that their luminosity at maximum
is the same. In other words, they are standard candles. It is this fact that makes
them so invaluable in cosmological studies. Indeed, if is the detection of these stan-
dard candles in distant galaxies that has enabled astronomers to conclude that the
Universe is not only expanding, but the expansion is accelerating.
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Black Holes

The main theme of this chapter has been the collapse of the degenerate iron core
that forms at the end of the nuclear cycles. We have argued that the result of the
collapse will be a neutron star of mass very nearly equal to 1.4 M. The neutron
star overshoots its equilibrium radius and bounces back. The shock wave due to this,
aided by the burst of neutrinos from the cooling of the infant neutron star, produces
the supernova explosion.

In some cases, a stable neutron star may not be the end product of the collapse,
and the result of the collapse may be a black hole. This can happen due to a variety
of reasons.

1. The shock may stall, despite help from the neutrinos. In such cases, there could be
a substantial infall of matter onto the newly formed neutron star. If this accreted
matter gets neutronized, and increases the mass of the neutron star to the limit-
ing mass for neutron stars (roughly two solar mass) then there will be a further
implosion, resulting in a black hole.

2. If the neutron star matter is not stiff enough, then there will be no bounce back
at all. This can happen if the particles such as m mesons and K mesons sponta-
neously occur near the core of the neutron star. Unlike the neutron and the proton,
these mesons obey Bose—Einstein statistics. Since they do not have to obey Pauli’s
exclusion principle, they would all condense into the zero momentum state. Con-
sequently, their contribution to the pressure would be zero. This would render the
neutron star matter rather soft. Under such circumstances, the neutron star would
be unstable and continue to collapse. The collapsing core will directly form a
black hole.

The details of how black holes form from the collapse of massive stars are not
clear at the moment. But there is mounting evidence for the existence of stellar mass
black holes. This leads us to conclude that at least in some cases, the end product of
the evolution of massive stars will be black holes. And on that note, let us conclude
our review of the life history of stars.
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‘We began with a historical perspective of the end-states of stars. Our story began with
the discovery of the companion of Sirius, and the startling realization that its mean
density must be roughly a million times the density of our Sun. Eddington feared
that such stars will find themselves in an awkward predicament when their supply
of subatomic energy is exhausted. He argued that such stars will not be able to save
themselves by expanding. This paradox was resolved in 1926 by R. H. Fowler by
invoking the newly discovered Fermi—Dirac statistics. It is remarkable that this was
the very first application of the new quantum statistics. It is quite extraordinary that the
stability of a body as large as a star is to be understood in terms of electrons having to
obey Pauli’s exclusion principle! This prescient suggestion by Fowler was followed
up young Chandrasekhar, who constructed a complete theory of white dwarfs. He
concluded that all stars, regardless of their mass, will ultimately find peace as white
dwarfs.

Unfortunately, this sense of security did not last long. Chandrasekhar himself
found the flaw in the above conclusion. During his long voyage to England in 1930,
he made the startling discovery that stable white dwarf configurations are not possible
for stars with masses higher than 1.4M. By 1934, he had established that 1.4M, is
the limiting mass for white dwarfs. Stars more massive than this cannot be supported
against gravity by the degeneracy pressure of the electrons.

This raised the following basic question. What is the fate of stars more massive
than the Chandrasekhar mass limit for white dwarfs? Chandrasekhar had already
found an answer to this in 1932. He showed that if the mass of a star exceeded a
certain critical mass, matter will never become degenerate however large the density
may become. Clearly, such stars cannot be saved from gravitational collapse by
appealing to Fermi—Dirac statistics. Based on this conclusion, Chandrasekhar made
the bold prediction that sufficiently massive stars will collapse to form singularities.

The fate of stars with mass greater than 1.4 M, but less than the above-mentioned
critical mass, was still unclear. The answer to this question came with the discovery of
the neutron in 1932. In 1937, Landau argued that the collapse of a star will eventually
be halted when the electrons combine with the protons to form neutrons. When the
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density of stellar matter reaches the nuclear density ~10'4 g/cm3, the degeneracy
pressure of the neutrons will arrest the gravitational collapse.

The concept of a neutron star stimulated Oppenheimer and Volkoff to investigate
whether there was a maximum mass for neutron stars, just as there is maximum mass
for white dwarfs. In 1938, they came to the conclusion that it is not possible to have
stable neutron stars if their masses exceeded roughly 0.7M . But this mass limit for
neutron stars was not to be regarded as an exact result. This was due to an inadequate
understanding of nuclear forces at the time. The important conclusion was that there
will be maximum mass for the neutron star.

This discovery led Oppenheimer and his student Snyder to study the collapse of
a massive star within the premise of Einstein’s General Theory of Relativity. In a
remarkable paper published in 1939, they came to the conclusion that sufficiently
massive stars will collapse to form black holes. Although they did not highlight it,
in the General Theory of Relativity, a star that collapses to form a black hole has no
option but to continue to collapse till, eventually, it becomes a spacetime singularity.

These theoretical predictions regarding the ultimate fate of stars were made by
1939. There was one additional prediction concerning stars that collapse to form neu-
tron stars. And this extremely prescient prediction was made by Baade and Zwicky
in 1934. They advanced the revolutionary idea that when a star collapses to form a
neutron star at its centre, the gravitational binding energy released will produce a
spectacular stellar explosion. They hypothesized that this may be the origin of the
supernovae.

It would be instructive to gather together the explicit and implicit predictions that
were made by 1939, based upon very general considerations:

1. The maximum mass of stars that will find peace as white dwarfs will be 1.4M.
2. Stars more massive than this would continue to collapse, and eventually find
equilibrium as neutron stars.
. Their birth will be accompanied by a burst of neutrinos and a supernova explosion.
4. The masses of neutron stars will be very nearly equal to the Chandrasekhar mass
limit for white dwarfs, namely, 1.4Mq.
5. In stars above a certain critical mass, radiation pressure will prevent degeneracy
from setting in. Consequently, such stars will become black holes, and a collapse
to a singularity is inevitable.

(O8]

An examination of Fig.E.1 will convince you that the modern conclusions con-
cerning the end states of stars are remarkably similar to the above mentioned con-
clusions! You will notice that the upper value of the initial mass of the star that will
end up as a white dwarf is larger than the Chandrasekhar limiting mass for white
dwarfs. This is because stars lose a substantial amount of mass before ending their
lives. But this was not known in the 1930.

As for the critical mass above which a star will become a black hole, it is still
uncertain!

Modern observations have also spectacularly confirmed the three other predictions
made in the 1930s.
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Fig. E.1 A summary of our The graveyard of stars
current understanding of the

ultimate fate of stars
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1. The presence of a neutron star at the centre of the Crab Nebula, the remnant of the
supernova explosion of 1054 AD, as well as in many other supernova remnants,
firmly establishes the connection between neutron stars and supernovae.

2. The detection of the burst of neutrinos on 23 February 1987 from the supernova in
the Large Magellanic Cloud finally provided the definitive proof for the conjecture
by Baade and Zwicky that the birth of a neutron star triggers the supernova, as
well as Landau’s conjecture of neutronization of matter at very high densities.

3. The fact that the measured masses of neutron stars is invariably very close to
1.4 M, is a spectacular confirmation of the existence of the Chandrasekhar Limit,
a result which Eddington had rejected! And on that note we shall end this mono-
graph.

A Sneak Preview

The next volume in this series, entitled Neutron Stars and Black Holes, will be
devoted to the physics and astrophysics of neutron stars and black holes. Here is a
partial list of the topics that will be discussed.

Pulsars: Neutron stars manifest themselves in two different ways. Solitary neutron
stars, rapidly rotating, and endowed with incredibly large magnetic fields of the order
of thousand million gauss, are detected as pulsating stars. They are known as pulsars.
This population of neutron stars is mainly detected through the radio waves they
emit. Interestingly, this radio emission is coherent, just the light emitted by a laser is
coherent.

Binary Neutron Stars: Although smaller in number compared to radio pulsars, the
population of neutron stars in binary systems are wonderful laboratories for a variety
of physical processes. Neutron stars accreting matter from gaseous companion stars
manifest themselves as extremely luminous x-ray sources. Double neutron star sys-
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tems with extremely small orbital separation are wonderful laboratories for verifying
various predictions of Einstein’s General Theory of Relativity with unprecedented
accuracy.

Recycled Pulsars: Pulsars age and die. Occasionally, they are resurrected from
their graveyard. In their reincarnation, they spin incredibly rapidly. These are the
millisecond pulsars.

The Physics of neutron stars: There is fascinating and exotic physics associated
with the interior of neutron stars. To give just one example, although the temperature
inside a neutron star will be of the order of several million kelvin, there are compelling
reasons to believe that the neutrons in the interior will be in a superfluid state, and
the protons in a superconducting state. In terrestrial matter, these phenomena occur
only at extremely low temperatures of the order of a few kelvin!

Black Holes

There is now compelling observational evidence for the existence of black holes. In
the current volume we discussed black holes which are the end products of stellar
evolution. We shall discuss this evidence. One of the paradigms of contemporary
astronomy 1is that almost every galaxy has a giant black hole at its centre. These
supermassive black holes, ranging in mass from a million solar mass to a billion
solar mass, are the central engines that power the quasars. We shall discuss the
formation of these black holes, as well as the physical phenomena that occur in their
vicinity.

Although the General Theory of Relativity attracted the attention of the physi-
cists soon after it was published, it was mainly in the context of cosmology. Very
few astronomers believed that the theory would be relevant for astronomical bod-
ies. Remember, not many astronomers or physicists took serious note of the great
discoveries by Chandrasekhar and Oppenheimer. But things changed with the dis-
covery of neutron stars and quasars. There was a renaissance. The second half of
the twentieth century was the golden age of General Relativity. During this period,
many important theorems were proved concerning the properties of black holes.
These developments culminated in Hawking’s discovery that particles can come out
of black holes. Black holes can evaporate! In this discovery, one saw glimpses of a
fusion between Einstein’s theory of gravity and quantum mechanics. A qualitative
description of these exciting developments will form an important part of the next
volume.
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