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Preface

This book is designed to show how physical principles can be used at the advanced
undergraduate level to understand astronomical systems such as planets, stars,
galaxies, and the universe as a whole. It emerges from a pair of courses at Rutgers
University that attract not just astrophysics students but a broad audience of physics
and engineering students. The organization is therefore “physics-first”: we start with
key principles of physics and then examine applications to astronomical systems.

At Rutgers, each half of the book constitutes a coherent semester-length course;
while there is a little overlap (notably with cosmology in Chaps. 11 and 20),
the two halves are largely independent and complementary. Part I focuses on
gravity, because this is the dominant force in many astronomical systems and it
governs many types of motions we observe. The goal of Chaps.2-11 is to develop
a progressively richer understanding of gravity and the way astrophysicists use
gravitational motion to investigate mass.

Part II centers on one of the “big questions” we humans ask. Why are we here? is
admittedly beyond the realm of physics, but a related question is within our reach:
How did we come to be here? As the Sun was forming, various elements came
together in the right combination to form a rocky planet with a tenuous atmosphere.
On this planet Earth, the energy from the Sun and the gas in the atmosphere were
just right to allow the emergence of life. The energy that sustains us originates deep
inside our star, thanks to E = mc?. The atoms that comprise our bodies were forged
in previous generations of stars. Literally, we are star dust. The goal of Chaps. 12-20
is to understand the roles that electromagnetism as well as gas, atomic, and nuclear
physics play in this remarkable story.

I hope this book will help you learn to think like an astrophysicist. Rather than
memorizing facts about specific astronomical systems, you will learn to break the
systems into pieces you can analyze and understand using material that should
be familiar from introductory physics and vector calculus. (The necessary physics
topics are reviewed as they arise; vital aspects of vector calculus are reviewed in
Appendix A.) Then you will be equipped to investigate interesting systems that you

vii
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encounter in the future, even if they are not addressed in this book. Astrophysics
is a dynamic field of research—and one in which you can understand the physical
principles that underlie even the newest discoveries. So let’s have fun!

Piscataway Chuck Keeton
December 2013
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Constants of Nature

=2.9979 X 10°ms !

Speed of light (in vacuum) c
Newton’s gravitational constant G = 6.6738x 107 mPkg™"s72
Planck’s constant h = 6.6261 x 1073 Js

4.1357 x 107 % eVs
h = 1.0546 x 1073*Js
6.5821 x 107 eVs

Electron charge® e = 15189 x 10~ kg!/Zm3/2 5!
Electron mass m, = 9.1094 x 103! kg

Proton mass m,= 1.6726 x 10~ kg

Neutron mass m, = 1.6749 x 10?7 kg
Boltzmann’s constant kp = 13806 x 1072 JK~!

8.6173 x 10> eVK™!
Stefan-Boltzmann constant 0 =5.6704x 10" 8kgs 3 K™*
“Note: See Chap. 1 for remarks about the units of charge

Unit Conversions

Energy eV = 1.6022 x 107197
Time yr = 3.1557 X 107 s
Angle rad = 2.0626 x 10° arcsec
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XX
Astrophysical Scales
Mass Earth mass Mg = 5.974 x 10 kg
TJupiter mass M; = 1.899 x 10*" kg
Solar mass Mg = 1.989 x 10 kg
Length Earth radius Rg = 6.378 x 10°m

Jupiter radius

R, = 7.149x 10’ m

Solar radius

Ro = 6.955 x 10°m

Astronomical unit

AU = 1.496 x 10'"m

light-year ly = 9.461 x 10° m
parsec pc = 3.086 x 10®m
Luminosity Solar luminosity Lo =3.839 x 1020 Js™!

Astrophysical Symbols

® Sun
@ Earth

Mathematical Symbols

Astrophysicists employ a variety of mathematical relations. One skill I hope you
will develop is a sense of how and when they apply. This book uses what I think are
conventional symbols to indicate the different relations:

= strict equality

strict proportionality

R R

order-of-magnitude estimate

strict equivalence (often used for definitions)

close approximation (e.g., Taylor series expansion)

Here are symbols for comparative relations (with similar symbols for ‘less than’):

> strictly greater than
2 greater than or approximately equal to

> much (i.e., order of magnitude) greater than

We sometimes use symbols to indicate logical relationships:

= implies
< if and only if
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We use two symbols to indicate a statistical average (choosing between them based
on which notation is simpler in a given context):

(x) orx average of x
In Taylor series expansions, we indicate higher-order terms as follows:

O (x") aterm proportional to x”



Chapter 1
Introduction: Tools of the Trade

A concise way to state the scientific method in astrophysics is this: We use theory to
make quantitative predictions that can be compared with observations. Sometimes
we can solve the relevant equations with pencil and paper in a modest number of
steps, but other times we cannot. How do we proceed? Often we can use physical
insight and approximate calculations to understand the salient features of a system
without sweating the details. Before diving into technical material, it is good to
see how physical reasoning and estimation techniques (such as toy models, scaling
relations, Taylor series approximations, and dimensional analysis) offer a potent
approach to astrophysics.

1.1 What Is Gravity?

Understanding gravity opens the door to studying many fascinating systems, so it is
a natural place to begin. Plus, it provides a nice way to illustrate the analytic tools
that infuse our inquiry. You can probably recite Newton’s law of gravity,

GMm
= r2

F (1.1)

but where does it come from? Put yourself in Isaac Newton’s shoes and imagine you
are trying to understand the motion of planets. Johannes Kepler has combed through
reams of observational data and distilled three laws of planetary motion:

I. Planets move in elliptical orbits, with the Sun at one focus.
II. A line that connects a planet to the Sun sweeps out equal areas in equal times.
III. A planet’s orbital period P and average distance from the Sun g are related by

P? xd’

C. Keeton, Principles of Astrophysics: Using Gravity and Stellar Physics to Explore 1
the Cosmos, Undergraduate Lecture Notes in Physics, DOI 10.1007/978-1-4614-9236-8__1,
© Springer Science+Business Media New York 2014
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These are examples of empirical laws; they are extracted from, and provide a
powerful summary of, observational data, but they do not explain in any physical
way why planets move as they do. Empirical laws can, however, offer clues that
help us find physical explanations, if we know how to reason with them.

The first step is to recognize that Kepler’s third law is an example of a scaling
relation. It answers the question: If you move a planet farther from the Sun, will
its orbital period increase or decrease, and by how much? The second step is to
see if we can relate the scaling relation we know to something we want to learn.
While I cannot say for certain, I imagine Newton’s reasoning was something like
this: Galileo famously demonstrated that objects of different mass fall at the same
rate under the influence of gravity. Since a more massive object has more inertia, it
must feel more gravity; the gravitational force should therefore be proportional to
m. Then by Newton’s third law of motion (equal and opposite reactions),' the force
must be proportional to the product M m. Surely gravity depends on the distance
between two objects; intuitively it should decrease with distance, so let’s postulate

Mm

rl‘l

F «

where n is unknown. Let’s call the constant of proportionality K and write

_ KMm

rn

F

(1.2)

The third step is to connect the two scaling relations. Here we might introduce a
toy model that is deliberately simple but (we hope) rich enough to capture the
essential physics. To build a toy model for motion under the influence of gravity,
we ignore Kepler’s lesson about ellipses and just consider circles. From Newton’s
laws of motion, we know the force required to keep an object of mass m in a circular
orbit of radius r and speed v is

my 47mr
r P2

(1.3)

where we replace the orbital speed v with the period P = 277 /v in order to connect
with Kepler ITII. We then equate the force we have available (1.2) with the force we
need to explain the motion (1.3):

KMm _ 47mr

rn P2

'Newton’s laws of motion are independent of his law of gravity. We will discuss them later; for
now we take them as given.
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Rearranging yields

PZ — 4_7T2 n+1

KM
If we want to explain Kepler’s third law (P2 o r3), we apparently need the
gravitational force to follow an inverse square law (n = 2). This argument is only
heuristic; it cannot be taken as proof of Eq.(1.1). But imagine you were Newton
and had no one to tell you the law of gravity. An analysis like this would strongly
suggest the hypothesis that gravity is described by an inverse square law.>

Once we know the gravitational force law, we might wonder how it affects our
everyday experience on Earth. Strictly speaking, we already have everything we
need to determine how gravity weakens with height (/) above the surface of Earth
(indicated by the radius Rg):

_ GM@m
~ (Rg + h)?

This formula can be a little unwieldy, though, if we just want to know what happens
when we climb a mountain or fly in an airplane. Is there any way to simplify the
analysis when £ is much smaller than Rg? Yes! Rewriting F slightly lets us make
the following approximation:

GM, h\? GM, h h\?
F:—f’"(w—) ~ =222 1o (—) (1.4)
R} Rg R Rg Rg

If i < Rg then the second term in square brackets is much smaller than the first,
and the third term is smaller still so we can neglect it without making a significant
error. What we have done here is make a Taylor series expansion of F. This is a
form of estimation that we will use from time to time when we encounter functions
that are cumbersome, or we want to examine a function’s behavior over some fairly
narrow range. In Eq. (1.4), the Taylor series shows that at “lowest order” (i.e., in the
first term) the force of gravity is independent of height above the surface of Earth.
In elementary mechanics classes we often write this as F = mg where’

GMg  (6.67x 107" m’kg™" s72) x (5.97 x 10**kg)

= = 9.80ms >
RZ (6.38 x 106 m)? ms

2See p. 57 of Isaac Newton by James Gleick [1] for more discussion.

3Notice how I write and keep track of all units when doing the calculation. I strongly encourage
you to get in the habit of doing this; it will help you catch errors and remember to convert units
when necessary.
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The minus sign in the second term of Eq.(1.4) then says gravity weakens with
height. While we knew that already, the approximation offers a simple way to
quantify this effect. Suppose we ask how much gravity varies when you go up in
a building or an airplane, or into the upper parts of Earth’s atmosphere:

Example h 2h/Rg 1—2h/Rg
Building ~6m 2x 1078 0.999998
Airplane ~6km 2x 1073 0.998
Upper atmosphere ~60km 0.02 0.98

These numbers help us understand that you have to go pretty high (relative to the
atmosphere) for any change to be significant.

To recap: we have combined an empirical scaling relation with a toy model to
deduce the form of the gravitational force law. We did not do any complicated math;
rather, we used careful physical reasoning. We also used a Taylor series expansion
to examine how gravity varies with height. I hope this book will help you cultivate
these types of analysis skills, which can be quite valuable throughout astrophysics
and beyond.

1.2 Dimensions and Units

Most of the quantities we discuss in physics and astrophysics come as numbers
with some units attached (such as meters or light-years). The units are crucial;
the numbers are meaningless without them. That said, units themselves are merely
conventions for how we express measurements. The more fundamental quantities
are dimensions (such as length). The distinction may seem subtle, but it is important
because units are fungible while dimensions are not. Analyzing the dimensions that
matter for a particular problem can be a good first step, as we are about to see.

In this book we use a combination of SI and astrophysical units. While it may
seem unnecessarily complicated to mix different sets of units, there can be some
advantages. Using certain units can help build your intuition about the relevant
scales for different problems (e.g., it is more enlightening to specify star masses
in units of the mass of the Sun than in kilograms). Also, knowing that you may
encounter different sets of units can make you more vigilant about checking them.
As a general rule:

In calculations, always check dimensions and units!
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1.2.1 Fundamental Dimensions

The three key dimensions we use in physics are length, mass, and time. Here are
their units in the SI system:

Dimension Unit
Length [L] m
Mass [M] kg
Time [T] S

Other familiar quantities involve combinations of the fundamental dimensions:

locit dx LT
veloci V= —
Y dr
. d?x s
acceleration a = el [LT™]
force F = ma [MLT™?]
1
kinetic energy K = Emv2 [ML*T™
momentum p = my [MLT™']
angular momentum L=rxp [ML*T™!]
force 2
pressure P = [ML™ T
area
. number 3
number density n=—— [L77]
volume
) mass 3
mass density p = —— [ML™]
volume

We sometimes invent special units to measure certain quantities. Some of the special
units are clearly combinations of fundamental dimensions (and their associated
units):

Force  Newton N = kgms—2

Energy  Joule J =Nm
Energy  Electron volt eV =1.60x 107°J

Other special units might seem to be unique but turn out to be composites as well:

¢ Temperature is often measured on the Fahrenheit, Celsius, or Kelvin scale, but it
is actually a measure of energy. We can always convert a temperature in Kelvins
to an equivalent energy using £ = kp T where

kg = 1.38x 1075 JK™' = 8.62x10°eVK™!



6 1 Introduction: Tools of the Trade

is Boltzmann’s constant.* Astronomers sometimes invoke the equivalence
between temperature and energy by reporting the “temperature” of hot gas
in keV.

e Charge has a special unit—the Coulomb—in the SI system of units, but it
can actually be expressed in terms of the three fundamental dimensions. In the
Gaussian system of units, the force between charges ¢g; and g, separated by a
distance 7 is written with no proportionality constant’:

q1 92

F="3

With this convention, we can identify the dimensions of charge as follows:
q1gx =r’F
[0%] = [L* x MLT™?
= [0]=[M"2L¥?T7]

This is one case in which I favor the Gaussian system, because thinking of charge
in terms of the three fundamental dimensions turns out to be very helpful for
dimensional analysis (as we will see below). In centimeter-gram-second units the
value of the electron charge is e = 4.8032 x 107! g!/2¢cm?? s~!. Converting to
meter-kilogram-second units yields e = 1.5189 x 10~"*kg"/?m?2s~".

1.2.2 Constants of Nature

There are some special, fundamental numbers in physics:

Speed of light (in vacuum) ¢ = 2.9979 x 108 ms™! (LT
Newton’s grav. constant G = 66738 x107""mikg™'s™2 [MT'L3T7?
Planck’s constant A = 1.0546 x 10~ 3* kgm?s~! [ML2T™1
Electron charge e = 15189 x 107 kg2 m?/2s™"  [M'/2L32T]
Electron mass m, = 9.1094 x 10~ kg [M]

Proton mass m, = 1.6726 x 10727 kg [M]

Neutron mass m, = 1.6749 x 107" kg [M]

4We often drop the subscript B to simplify the notation. Any k that appears in conjunction with T’
is probably Boltzmann’s constant.

3You might ask whether we could do something similar to redefine the dimensions of mass. The
answer is no, because mass appears not only in F = GMm/r? but also in F = ma. We cannot
eliminate proportionality constants from both relations at the same time.
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These allow conversions between the fundamental dimensions:

* Time <« length: £ = ct ort = £/c (think of a “light-year”)

* Mass <> length: £ = GM/c?

+ Energy <> mass: E = mc?

¢ Energy <> time: E = hv where v is frequency (or inverse time)

Using these conversions, you could argue in principle that there is really one
fundamental dimension: length. Theoretical studies of general relativity or quantum
mechanics often do such conversions. We will stick with length, mass, and time,
though, because they are familiar and keeping track of all three dimensions can help
us check and interpret calculations.

1.2.3 Astrophysical Units

There are some numbers that are used so frequently in astrophysics that they act
as a de facto set of units. Using astrophysical units can help us interpret quantities
quickly; for example, it is easier to get an impression of an exoplanet’s properties if
we quote its mass and radius as 0.7 Myypiter and 1.6 Ryypicer than if we specify them
as 1.3 x 10*’ kg and 1.1 x 10® m. We need to remember, though, that the quantities
we take as reference values are not fundamental; they just happen to be quantities
that are familiar in our corner of the universe. (Part of our goal as astrophysicists
is to see if we can explain why these quantities have the values they do.) Here are
some of the quantities we will use as astrophysical units:

Mass Earth mass Mg = 5974x10%kg
Jupiter mass M, = 1.899 x 10> kg
Solar mass Mg = 1.989x10kg

length Earth radius Ry = 6378x10°m
Tupiter radius R;, = 17.149%x10'm
Solar radius Ro = 6.955%10%m
Astronomical unit AU = 1.496x10"m
Light-year ly = 9.461x10°m
Parsec pc = 3.086 x 10"°m

Our earlier discussion of Kepler’s third law illustrates the value of picking good
units. The proportionality means there is some constant K such that P?> = Ka’.
When we study planets orbiting the Sun, we can eliminate K by taking a ratio with
respect to Earth:

2 3 2 3 P a’
P"=Ka® and Pg=Kag = — ) = —
Pg
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Since Py = 1 yrand ag = 1 AU (by definition), we can write
P\’ a \3
=) = ( ) (1.5)
lyr 1 AU
If we measure a planet’s distance from the Sun in AU and orbital period in years,

we can write P? = a* without any additional constants.® Using appropriate units
for a problem can simplify things quite a bit.

1.2.4 Dimensional Analysis

Thinking about dimensions can be a good way to begin analyzing a particular
system. Before doing any detailed calculations, we might be able to make an
“educated guess” about the properties of a system just by finding combinations
of constants and scales that have the right dimensions. This approach cannot pin
down numerical factors of order unity (e.g., 2, , etc.), but those are rarely essential
for conceptual understanding. Nor can it tell us what to do if we find several
combinations of constants and scales that have the right dimensions. If that happens,
we can use physical reasoning to choose among the possibilities. Let’s see how this
works in a few examples.

Planetary Motion

Consider a planet orbiting at distance r from a star of mass M, and suppose we want
to determine the period of the orbit. To make a dimensional analysis estimate, we
start by listing the scales or constants that are involved in the problem. We are given
r and M, and we know gravity plays a role, so we write this list:

Distance r [L]
Mass M [M]
Gravity G [M~L3T2]

If we want to form a combination that has dimensions of time, we clearly need to
start with G~1/2, Then we include M ~1/2 to eliminate mass, and /2 to eliminate
length. Thus, we guess that the expression for orbital period should look like

5This works only for objects orbiting the Sun, because K depends on the mass of the central object.
Equation (1.5) implies that we can write K = 1yr> AU for motion around the Sun.
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32

P~—-—0F
(G M ) 1/2

Does our guess make sense? Consider the scalings: as M increases, the gravitational

force gets stronger, so things move faster and P decreases. Also, as r increases, P

increases with the specific relation

P2 xr?

This is the scaling in Kepler’s third law! In other words, we can recover Kepler 111
from dimensional analysis alone. The exact calculation for a circular orbit (which
we did in Sect. 1.1) gives

3/2

P=2r——
(GM)1/2

Our dimensional analysis estimate was right up to a factor of 2w ~ 6, which is

not bad for such a simple analysis. Even more important is the fact that we got the

scalings correct.

Black Hole

In Einstein’s general theory of relativity, a point mass has an “event horizon” out
of which no physical object can escape (see Sect. 10.6). What is the radius of the
event horizon of a black hole with mass M ? Again, we begin by listing the scales
and constants we think are relevant:

Mass M [M]
Gravity G [M1L3T72
Relativity c [LT™Y]

The combination that has dimensions of length is

GM
R~ ——
C2

The exact answer is the Schwarzschild radius of a black hole,

2GM
S =

c2

Here dimensional analysis comes within a factor of 2.
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Suppose we had incorrectly invoked quantum mechanics rather than gravity.
Then we would have used # = [M L?>T '] and constructed

h
R~ —
Mc
Think about this for a moment: it would imply that more massive objects have
smaller event horizons. That would not make sense! There may be different
combinations of scales and constants with the dimensions we are looking for, but
considering the physical scalings can help us identify the best choice.

Atom

How big is an atom? The size is determined by electrons orbiting under the
influence of the electric force from the nucleus. The force must involve the electric
charge, while an electron’s response to the force is affected by its mass. And the
whole problem is quantum mechanical in nature. Thus, we have:

Quantum mechanics h [ML?>T™1
Electric force e [M'/2L32T
Electron mass m, [M]

The combination with dimensions of length is

hz
m, e?

The scalings with e and m, make sense: increasing the charge would strengthen the
electric force and pull the electrons closer, while increasing that mass would mean
the electrons do not move as much (less acceleration for a given force). In fact, the
combination we have found is the Bohr radius a(, which is the radius of the lowest
electron energy level in the Bohr model of the hydrogen atom (see Sect. 13.4.1). We
take it as characteristic of the sizes of atoms.

1.3 Using the Tools

In Part II of this book we will encounter gases in various astrophysical contexts.
Even before we study the details, we can use dimensional analysis to understand the
key properties of the gases, and then deduce a few features—some straightforward,
some unexpected—of different types of stars.
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1.3.1 Phases of an Electron Gas

Our first goal is to uncover the equation of state relating the pressure of a gas to
its other physical properties. In many settings we will study, the gas is ionized and
most of the pressure comes from free electrons; hence we consider an electron gas.
There are different scenarios depending on whether the behavior of the gas depends
on quantum physics, relativity, both, or neither.

Ideal Gas

If quantum physics is not important, we can think of the gas as being made of
point particles that hardly interact with one another; this is a classic “ideal” gas.
Pressure is caused by particles bouncing off the walls of any container holding the
gas. Dimensionally, pressure is force per unit area so

[P]=[ML™'T™?]

What quantities might influence the pressure of a classical ideal electron gas? The
speed with which particles hit the wall depends on the temperature, and the rate at
which that happens depends on how many particles there are. Are temperature (or
equivalent energy) and number density enough?

Temperature kT ML*T?]
Number density n [L73]

In fact, simply multiplying these quantities gives dimensions of pressure, so we put
P~nkT

A detailed analysis reveals that there are no dimensionless factors, and we have
actually recovered the famous ideal gas law (see Sect. 12.1.3).

We might wonder whether relativity is important for an ideal gas. That is the
subject of Problem 1.5.

Classical Degenerate Gas

What happens when the density increases significantly? As the electrons squeeze
closer together, the main contribution to pressure comes from the fact that different
particles cannot occupy the same quantum state; in effect, the Pauli exclusion
principle kicks in to create what is known as electron degeneracy pressure. This
pressure would exist even if the temperature were zero, so the equation of state must
not involve 7. What does it depend on?
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Number density n (L7
Particle mass me [M]
Quantum mechanics h [ML?T™]

To this point we have built dimensional analysis estimates basically by trial and
error. We can be more systematic, though. Let’s postulate that the equation of state
has the form

P ~ 1% mbPn?

where the exponents o, 8, and y are to be determined. Plugging in the dimensions,
we obtain

M L' T2 ~ [MY L2 T x MP x L™%]
~ [Mot-l—ﬂ L2a—3y T—a]

To match the dimensions on the left- and right-hand sides, we need

l=a+p
—1 =2a -3y
-2 =—«

This is a system of three equations in three unknowns, whose solution is o = 2,

B = —1,and y = 5/3. Thus, our equation of state for a degenerate electron gas is
2
P~ h_ n5/3
M
A complete analysis gives a dimensionless factor of (372)*/3/5 = 1.91 (see
Sect. 17.1).

To find the transition between an ideal gas and a degenerate gas, we want to find
the point at which the two systems have comparable pressures. This is equivalent to
requiring

2

h
Pideal'\’Pdeg = kT ~ —n
ne

2/3

To find the transition between a classical and relativistic system, we can estimate a
typical speed
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and find that v becomes comparable to ¢ when the density reaches

3
n o~ (mZC) ~ 2x107m™3

Relativistic Degenerate Gas

Finally we come to the case of a degenerate gas in which the particles are moving
near the speed of light. The energy of relativistic particles is dominated by motion
rather than mass, so m, presumably drops out of the equation of state and ¢ enters.
Thus, our list of ingredients becomes:

Number density n [L73]
Relativity c [LT™]
Quantum mechanics h [ML?>T™1
As before, we put
P ~#%cPn?

[ML—IT—Z] — [Ma L2a+ﬂ—3y T—a—ﬂ]
and solve to find ¢ = 1, B = 1, y = 4/3. This yields the equation of state
P ~hen'?

Where is the transition between a relativistic ideal gas and a relativistic degenerate
gas? That would correspond to

kT’
Pideal’\’Pdeg = kT ~hen'/3 = n~(h_)
C

Phase Diagram

To recap, here are the equations of state we have estimated for the various scenarios
we have considered:

Ideal gas P~nkT
Classical degenerate gas P~ m; ' n>3
Relativistic degenerate gas P ~hen'

All of these expressions have dimensions of pressure, but our physical reasoning
has let us understand which expression corresponds to which physical context.
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Fig. 1.1 Phase diagram for an electron gas, identifying the regimes discussed in the text: classical
ideal gas, relativistic ideal gas, classical degenerate gas, and relativistic degenerate gas

We also found the transitions between different regimes, so we can sketch a phase
diagram as shown in Fig. 1.1. The boundaries between the different regions are not
sharp (because we have only done dimensional analysis, which is not exact). But
this analysis does give a general picture of the type of gas we will encounter in
different settings.

1.3.2 Stars, Familiar and Exotic

The preceding analysis may have seemed esoteric, but it proves to be very useful
for understanding different kinds of stars. To make the connection, let’s shift from
microscopic quantities like density and pressure to the macroscopic quantities that
we typically use to characterize an astrophysical object: mass M and radius R. We
can relate them as follows:

: M
mass density p ~ =
ber densit M
number density n ~
Y m, R3
GM?*/R> GM?
pressure P ~ ~

R? R4



1.3 Using the Tools 15

(Note that m, appears in the number density because protons dominate the mass
even if electrons dominate the pressure.) Now we can answer some interesting
questions about stars.

Ideal Gas
What is the temperature of a normal star composed of ideal gas?

P ~nkT

P GM?R™  GMm,
= T~ —= ~ ~
nk Mm;lR_3k kR

For the Sun, plugging in numbers gives

(6.67 x 107" m3 kg™ s72) x (1.99 x 103 kg) x (1.67 x 10727 kg)
(1.38 x 1078 kgm?s—2 K1) x (6.96 x 108 m)

~2x10"K

T

This estimate agrees surprisingly well with detailed stellar models (see Sect. 16.2.2).

Classical Degenerate Gas
What would a star composed of a degenerate electron gas be like?

P~ h2 me—l n5/3
GMZR—4 ~ h2me—l(Mm;lR—3)5/3
hz

= R~ —FFfpp——
Gmem;/3M1/3

The scaling R o« M ~!/3 implies that more massive stars are smaller. While this may
seem counterintuitive, it is confirmed by more detailed calculations (see Sect. 17.2).
Consider a white dwarf with M ~ My:

R~ (1.05 x 1073 kgm?s™1)?
(9.11 x 10731 kg) x (1.67 x 10727 kg)5/3
1
* (6.67 x 1071 m3 kg™ s72) x (1.99 x 1030kg)!/3

~6x10°m

A white dwarf is roughly the size of Earth.
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Relativistic Degenerate Gas

Now let’s actually consider a neutron gas. What would a star composed of a
relativistic degenerate neutron gas be like?

P ~ hen*/?

GM? ( M )4/3
~ he | ——

All stars composed of a (highly) relativistic degenerate neutron gas have roughly
the same mass. In order for them to be relativistic, we need:

(5)

1 h3 1/2

Vv

¢

Such a star would be a little more massive that the Sun, but only as big as a city.
In fact, we observe this kind of object as a neutron star. (Real neutron stars are
probably not ultra-relativistic, but this analysis still gives a useful sense of the
physics. See Chap. 17 for more discussion.)

Problems

1.1. Use dimensional analysis to derive a relationship between the total mass M of
a gravitationally bound system, its size R, and the typical speed v of its components.
Then use it to answer the following questions.

(a) At what speed does the Earth orbit the Sun?

(b) Globular clusters typically contain ~10° stars moving at speeds of ~10kms™!.
How big are they?

(c) Spiral galaxies are typically about 10 kpc in size and rotate such that the stars
move at ~200 kms~!. Estimate the mass of a spiral galaxy (in M).

1.2. Type la supernovae are exploding stars that have played an important role in
observational cosmology (see Chap. 18).

(a) The exploding stars are white dwarfs that have a mass of about 1.4 My and a
radius of about 5,000 km. Use dimensional analysis to estimate the gravitational
binding energy of such a star.
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(b) The explosion is powered by nuclear fusion. How much mass must be converted
to energy (E = mc?) in order to overcome the binding energy and explode
the star?

1.3. Explosions such as Type Ia supernovae produce blast waves.

(a) Use dimensional analysis to estimate the size R of a blast wave at time ¢ after
an explosion with energy E, propagating into a medium of ambient density p.
(Hint: these are all the quantities you need; gravity is not directly relevant here.)

(b) Information about the first atomic bomb tests was kept secret, but the physicist
Geoffrey Taylor estimated the energy of one test from published photographs
showing a fireball expanding through the air [2]. If the blast wave reached 100 m
just 0.02 s after the explosion, what was the energy? What mass was converted
into energy? (Hint: you will need to look up the density of air.)

(c) How large would the remnant of a supernova (E ~ 10*]) be 1,000 years after
the explosion, as it expands into the interstellar medium with a typical density
of 10° hydrogen atom per cubic meter?

1.4. The universe is believed to be about 14 billion years old. Use dimensional
analysis to estimate the average density of the universe. About how many hydrogen
atoms are there in 1 m? of “empty” space?

1.5. Can we treat the center of the Sun as a classical ideal gas? Let’s find out.

(a) Consider a gas at temperature 7 composed of particles of mass m. Use
dimensional analysis to estimate the typical speed of the particles.

(b) Recall our estimate of the Sun’s central temperature, 7 ~ 2 x 107 K. This is
hot enough to ionize atoms, so electrons and nuclei move independently. What
is the typical speed of electrons? Of hydrogen nuclei? Are they relativistic?

(c) Atroughly what temperature does an electron gas become relativistic (v ~ ¢)?

1.6. Light carries momentum, so it creates pressure when it shines on something.
This has led people to propose using “solar sails” on interplanetary or interstellar
spacecraft.

(a) Use dimensional analysis to estimate the light pressure at a distance d from a
star with luminosity L (energy per unit time).

(b) Estimate the force on a solar sail with an area of 1km? that is 1 AU from the
Sun.

(c) Suppose that sail is pulling a 10 ton spacecraft. How long would it take to reach
Jupiter’s orbit (5.2 AU from the Sun)? For simplicity, assume the acceleration
remains constant even though it actually varies with distance from the star.

References

1. J. Gleick, Isaac Newton (Vintage Books, New York, 2004)
2. G. Taylor, Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 201(1065), 175 (1950)



Part I
Using Gravity and Motion
to Measure Mass



Chapter 2
Celestial Mechanics

Patterns of motion in the sky played a significant role in the historical development
of mechanics. Briefly reviewing the history lets us see how physical concepts and
models emerged from the empirical facts.

2.1 Motions in the Sky

Science often begins when people notice patterns in nature and try to understand
what causes them. One well-known pattern is the daily rising and setting of the Sun,
Moon, and stars. As the stars move across the sky each night, they look for all the
world like points of light on some kind of crystalline sphere rotating around Earth.
The Sun seems to move around Earth as well, although the relative positions of
the Sun and stars vary throughout the year (the collection of visible stars changes
with the season) so there must be two different crystalline spheres. The Moon is a
little more complicated because its position and phase both change throughout the
month, but both effects can be explained by placing the Moon on a sphere of its
own. In other words, most of the obvious motions in the sky can be explained with
the intuitive notion that Earth is fixed and objects in the sky move around us. This
is the classic geocentric model of the universe.

Problems arise, though, when we notice another set of motions in the sky: planets
are points of light that seem to “wander” among the stars.! Ancient societies knew
of five planets (the discovery of others had to await the invention of the telescope).
Mercury and Venus always stay fairly close to the Sun, appearing either in the west
after sunset or in the east before sunrise. Jupiter and Saturn can be seen across a
much wider range of positions, moving from west to east relative to the stars from
one night to the next. Mars is a bit like Jupiter and Saturn, but with a twist. Most of

!The term “planet” comes from the ancient Greek term aster planetes, or “wandering star.”

C. Keeton, Principles of Astrophysics: Using Gravity and Stellar Physics to Explore 21
the Cosmos, Undergraduate Lecture Notes in Physics, DOI 10.1007/978-1-4614-9236-8_ 2,
© Springer Science+Business Media New York 2014
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Fig. 2.1 Pictures taken across several months have been combined to illustrate Mars’s retrograde
motion. Relative to the background stars, Mars usually moves from right to left. However, from
November 15, 2007 to January 30, 2008 the planet moved from left to right, producing the loop
pattern shown here. In other cases retrograde motion can create a zigzag pattern. (Credit: Tung
Tezel (TWAN), reproduced by permission)

the time it moves from west to east, but every once in a while Mars appears to stop,
turn around and go from east to west for a few weeks, then turn around again and
resume its “normal” motion (relative to the stars). Today we can see this retrograde
motion very clearly in composite photographs, as shown in Fig. 2.1.

When scholars in ancient Greece tried to explain the apparent motions of
planets, they started with the assumption that the intrinsic motions involve circles.
Apollonius (c. 200 BC) constructed a model in which a planet moves on a small
circle (called an “epicycle”) that itself moves along a larger circle (called the
“deferent”). As shown in Fig.2.2, the composite motion can allow the planet to
move backward at certain points in its orbit (depending on the relative sizes and
speeds of the epicycle and deferent; see Problem 2.1). As the measurements became
more precise, Ptolemy (c. 100 AD) refined the model by shifting the center of the
deferent away from Earth and introducing yet a different point (called the “equant”)
around which the angular speed was defined.”

While Ptolemy’s model was admittedly complex, its quantitative success kept it
successful well into the Renaissance. Nicolaus Copernicus (1473—-1543) introduced
the first mathematically detailed alternative with the Sun at the center of motion.’

>There is a common misconception that Ptolemy and his successors added more and more
epicycles. They couldn’t; even one was hard enough to compute. See Chap. 4 of The Book Nobody
Read by Owen Gingerich [1].

3The geocentric model had been questioned much earlier by Aristarchus (c. 300 BC), but without
a fully developed alternative.
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Fig. 2.2 In the geocentric model, a planet moves on an epicycle (dotted) whose center moves
along a curve called the deferent (dashed). The combined motion (solid) can cause the planet to
move backward as viewed from Earth. In the full Ptolemaic model, the deferent was not perfectly
centered on Earth

In this heliocentric model, retrograde motion is an illusion that occurs when
fast-moving Earth overtakes a slower-moving outer planet (see Problem 2.2);
planets never actually move backward in space. Offering a simple explanation
of retrograde motion is not all that Copernicus’s model had going for it. The
heliocentric model also explained why the observed planets fall into two categories:
Mercury and Venus are never seen far from the Sun because their orbits are smaller
than Earth’s; while Mars, Jupiter, and Saturn can be seen near the Sun, on the
opposite side of the sky, or anywhere in between because their orbits are larger
than Earth’s. Last but not least, Copernicus’s model revealed a simple pattern in the
quantitative relation between a planet’s distance from the Sun and its orbital period.
To Copernicus, this was a striking success: “In no other way,” he wrote, “do we find
a wonderful commensurability and a sure harmonious connection between the size
of the orbit and the planet’s period” (quoted by Gingerich [1, p. 54]).

That said, the original heliocentric model was not without fault. Like the Greeks,
Copernicus assumed that planetary motion involved circles. While he was able to
eliminate equants and large epicycles, he still needed small epicycles to make the
model fit the data. That made Copernicus’s model about as mathematically complex
as Ptolemy’s, even if it was conceptually simpler.

Copernicus’s model made an important prediction: Earth moves in space. If that
is true, then our perspective on the stars should change as Earth travels from one
side of its orbit to the other (e.g., from January to July). Tycho Brahe (1546-1601),
who was perhaps the world’s greatest naked-eye astronomer, set out to test this
prediction. He amassed years’ worth of careful measurements of planet and star
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Fig. 2.3 Illustration of Kepler’s first and second laws of planetary motion. I. The ellipse indicates
the orbit, and the dot indicates the Sun at one focus. II. The time it takes the planet to travel from
A to B is the same as the time to travel from C to D, so the areas of the two shaded regions are
the same. This is a rather extreme example; the orbits of planets in our Solar System are much less
elongated

positions in an attempt to measure parallax, or small shifts in the apparent positions
of stars that should arise when we look from different sides of Earth’s orbit. Tycho
failed to find clear evidence for parallax, although now we know that stars are so far
away that parallax can only be detected with a good telescope. Tycho’s efforts did
ultimately provide support for the heliocentric model, although not in the way he
expected.

Shortly before he died, Tycho hired Johannes Kepler (1571-1630) as an assistant.
Kepler combed through Tycho’s measurements of planet positions and tried to
find a geometric model to explain the motion. He initially adopted Copernicus’s
heliocentric model with circular orbits modified by epicycles. Kepler found, though,
that the model could not quite reproduce Tycho’s high-quality data, notably for
Mars. Once he considered more general forms of motion, Kepler discovered that he
could fit the data using elliptical orbits. Working through the details, he eventually
extracted three laws of planetary motion:

I. Planets move in elliptical orbits, with the Sun at one focus.
II. A line that connects a planet to the Sun sweeps out equal areas in equal times
(see Fig.2.3).
III. A planet’s orbital period P (in years) and average distance from the Sun a
(in AU) are related by P2 = a°.

Suddenly the heliocentric model had an attractive and powerful quantitative frame-
work. Still, people continued to struggle with the notion of a moving Earth.

That situation finally began to change thanks to the work of Galileo Galilei
(1564-1642), who was arguably the first great experimental physicist. Using the
newly-invented telescope, Galileo made two key discoveries related to planetary
motion. First, he observed that Venus has phases just like the Moon. In the
geocentric model, Venus would always stay between Earth and the Sun so it could
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Fig. 2.4 Phases of Venus in the heliocentric model (not to scale). Full and gibbous phases can
occur only if Venus travels to the far side of the Sun

only have new and crescent phases. Galileo saw that Venus has quarter and gibbous
phases as well, which implies that Venus can go “behind” the Sun (as seen from
Earth; see Fig. 2.4). In other words, if we know that Venus is closer to the Sun than
Earth is, and the planet has a full cycle of phases, then it must orbit the Sun. Second,
Galileo discovered four moons orbiting Jupiter. While this did not directly prove
that planets orbit the Sun, it did demonstrate that objects can orbit something other
than Earth. On the basis of his evidence, Galileo argued strongly in favor of the
heliocentric model, most famously in his book Dialogue on the Two Chief World
Systems. The work violated dictates from the Catholic Church, causing the book to
be banned by the Roman Inquisition and Galileo to be placed under house arrest.
More than three and a half centuries later, Pope John Paul I renounced the Church’s
condemnation of Galileo.

2.2 Laws of Motion

All of those ideas set the stage for Isaac Newton (1642—-1727) to devise the fields
we now know as theoretical physics and calculus (among other accomplishments).
In 1665, Newton graduated from Cambridge but the university then closed because
of the plague. He went home and, working alone, entered a period of remarkable
intellectual creativity.4 Newton started with mathematics, inventing the idea of

“Historical aside: In 1665-1666 Newton solved the problems of motion and gravity to his
satisfaction, keeping a detailed notebook but not publishing his work. In 1684, Edmund Halley
visited Newton to pose the question: If gravity has an inverse square force law, what curve
will a planet follow? Newton knew the answer was an ellipse (see Sect.3.1), but only after
battling Robert Hooke for some time did he finally decide to write his famous work Philosophiae
Naturalis Principia Mathematica, or “Mathematical Principles of Natural Philosophy.” Newton’s
introduction of mathematical principles was profoundly important for the further development of
physics and astrophysics. See Isaac Newton by James Gleick [2] for more about the life and work
of this fascinating figure.



26 2 Celestial Mechanics

plotting solutions of equations as curves (a topic now known as algebraic geometry).
He developed calculus so he could analyze curves, using derivatives to represent
tangent lines and integrals to compute areas. Then Newton began to think about
curves representing trajectories of objects in motion. Before he could apply his
mathematical tools to motion, though, Newton had to introduce some new physical
concepts that became his famous laws of motion:

I. Imertia. An object will remain at rest or in uniform motion in a straight line
unless acted on by an unbalanced force.
II. Force and acceleration. A net force acting on an object produces an acceler-
ation in the same direction as the applied force. The acceleration and force are
related by

dv

F =ma=m-—
dr

2.1
III. Equal/opposite reaction. If object #1 exerts a force on object #2, then object
#2 exerts an equal and opposite force back on object #1: F, = —F5;.

These laws are general; they are not specific to planets. In fact, to explain planetary
motion Newton had to add one more law specifying the force. We will come to the
law of gravity in Sect. 2.3.

While they are often introduced as above, Newton’s laws of motion can be
restated in terms of quantities that do not change with time. Think of a rod: the
(x,y,z) coordinates of the endpoints depend on whether the rod is moving or
rotating, but the distance between the two endpoints is always the same. A quantity
that is “conserved” is usually thought to represent some fundamental property of
a system (such as the length of the rod). Stating physical theories in terms of
conservation laws can often help us find the simplest expressions of those theories.
Let’s see a few examples that are probably familiar but nonetheless valuable.

Momentum is defined by

p=mv

We can use this to rewrite Eq. (2.1) as

O
dt
While this might seem trivial, it is actually a nice generalization of Newton’s
second law. It helps us see that when there is no net force, momentum does not
change. Thus, Newton’s first law is fundamentally a statement of conservation of
momentum.
Angular momentum is defined by

L =rxp = m(rxv) 2.2)
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We will sometimes use the specific angular momentum, defined to be the angular
momentum per unit mass:

Nlle

=TrXxV 2.3)

Let’s take the derivative of angular momentum with respect to time:

dL. dr n dp
— = —x rx —
i ar P dr

=vx(mv) + rxF

=rxF

(The cross product of a vector with itself is zero, so the first term vanishes.) Clearly
if there is no net force then angular momentum is conserved. More interesting is a
situation in which the force is purely radial, F = F(r) t. In this case,

dL R
Pl rx|[F(r)r] = 0
We see that if a force is applied but there is no angular component to the force, then
angular momentum is conserved.

Energy. If a force acts on an object, it takes “work™ to move the object against
the force. The amount of work required to go from some initial position r; to final
position r ¢ can be calculated as

rf
AU :—/ F.dr 2.4)
rj

We call this potential energy because it is energy that would be released if the
object were to move back to the initial position. We include a minus sign because
the work acts against the force F, and we write AU to emphasize that this is an
energy difference. If desired, we can pick a reference point at which the potential is
defined to be zero and thus obtain a potential energy function U(r). Then Eq. (2.4)
can be inverted to say the force is obtained by differentiating the potential energy:

F=-VU (2.5)
(This is independent of the choice of zeropoint because any additive constant

vanishes in the derivative.) Now let’s return to Eq. (2.4) and use Newton’s second
law along with v = dr/dt to see what we can learn:

'y dv
AUZ—/II (m E)(le)
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Toward the end we identify K = (1/2) mv? as the kinetic energy, or energy of
motion. Trivially rewriting the final equation gives

AU +AK =0
or
AEtOI =0 where ElOt =U + K

This is the statement of conservation of energy. Note that potential and kinetic
energy are not separately conserved; in fact, one can be traded for the other. But
the combination—the total energy—is conserved. This is true for any force, at least
in the context of Newtonian physics.

2.3 Law of Gravity

In order to apply his general laws of motion to planets, Newton had to specify
the force that acts on planets to generate their motion. We saw in Chap. 1 how he
used Kepler’s third law to motivate the inverse square law form. To give a precise
formulation, let’s suppose that an object of mass M exerts a gravitational force on
a second object of mass m whose position relative to the first object is given by
the vector r. If the objects are both point masses, Newton’s law of gravity in vector
form reads

M
GMm . (2.6)

Fgrav (I') = - I'2
where T reminds us that the force is radial, and the minus signs indicates that gravity
is an attractive force.

What if the two objects are not point masses? One of Newton’s triumphs was to
show that the gravitational force outside a spherically symmetric object of mass
M is the same as that from a point mass M at the center of the object. Also,
the gravitational force inside a spherical shell is zero. To understand these results,
consider the setup in Fig.2.5. Let’s use spherical coordinates® but modify them

5See Sect. A.2 for a review.
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Fig. 2.5 Setup for computing the gravitational force from an extended spherical object

so 6 is measured from the x-axis while ¢ is in the direction perpendicular to the
page. Then complete the triangle by defining the side s and angle o as shown.
By symmetry, the net force on m is in the x-direction. The contribution to F, from
a small volume element dV at r and 0 is

GmpdV

dF, = —=—3

cosa 2.7

We would like to rewrite this in terms of R and 6. From the law of cosines,

s> =r>+ R*—2rRcosf (2.8)
and from the law of sines,
sin & sin 0 - . Rsin 6
= sina =
R s (r2 4+ R2 —2rRcos 6)1/2

Then the familiar trigonometric identity cos? « + sin> & = 1 yields

r— Rcosf
(r2 + R2—2rRcos0)!/2

cosa =

Putting the pieces together, we can write Eq. (2.7) as

r —Rcosf

dF, = -G
. "> ¥ R2_2rRcos6)¥

5 pdV

We obtain the net force by integrating, using the spherical volume element dV =
RZsin 6 dr df d¢:

r —Rcos6
(r2 + R? —2rRcos 0)3/2

T 2
Fy=—-Gm / dR R*p(R) / df sin@ / d¢
0 0



30 2 Celestial Mechanics

(We discuss the limits for the R integral below.) The ¢ integral gives 2. To evaluate
the 6 integral, change integration variables to s using Eq. (2.8). This yields

r+R 2_R2L 2
F. = —2xGm / R R?p(R) [ as 2P
[r—R| 2Rr?%s
G 2 R2 s=r—+R
= o /dR Rp(R) [—r + s:| (2.9)
r S s=|r—R|

Because of the absolute value, the value of the quantity in square brackets depends
on whether r — R is positive or negative:

2 2 s=r+R
—R
R<r = [—r +s} = 4R
s s=r—R
rz _ Rz s=r+R
R>r = [— + s:| =0
S s=R—r

The second result says there is no contribution to the integral in Eq. (2.9) from the
region with R > r. In other words, mass outside of r does not contribute to the
gravitational force at r (given spherical symmetry). Using the first result in Eq. (2.9)
lets us write

G r
Fo=-——2 / 47R? p(R) dR (2.10)
r 0

This integral gives M (r), or the total mass enclosed within radius r, Thus, we can
write the gravitational force from an extended, spherically-symmetric object (now
in vector form) as

GM(rym
—r

Fgrav (r) = - r2

@2.11)

Using Eq.(2.4), we can now determine the gravitational potential energy for
point masses:

ry
AUgrav = - / F grav * dr
r;
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This is also the potential energy outside any spherical object with total mass M.
As noted above, we must pick a reference point in order to define the full potential
energy function. The most common choice in astrophysics is to put the reference
point at infinity and define the potential energy to be zero there. This yields

U(r) =_GMm

2.12)

It can be valuable to factor out m:

O(r) = — = = (2.13)

This function is independent of m, so it describes the gravitational field around M
in a general way. We call it the gravitational potential of M. To see its utility,
consider:

ma=F=-VU=-mV® = a=-VP

All objects at a given position in the gravitational field of M experience the same
acceleration, regardless of their mass.

If we focus attention near the surface of Earth (as in introductory physics
courses), it may be convenient to adopt a different convention and let the reference
point for the potential be Earth’s surface. Then the potential energy at a height &
above the surface is written as

1 1
Uh)=-GM -
@) @m(R@'i‘h R@)

If h < Rg, we can make a Taylor series expansion and find
GMg

RS

=9.80ms >

U(h) ~ mgh where g =

Remember that this is valid only near the surface of Earth.

Application: Escape

In the next chapter we will see how Newton’s laws of motion and gravity come
together to explain Kepler’s laws. First, though, it is useful to do a short example
that illustrates how conservation laws can help us analyze certain problems quickly
and easily.

“What goes up must come down,” according to the common saying, but Newton
begged to differ. He discerned that the force causing an apple to fall from a tree is
the same force keeping the Moon in orbit around Earth; the key difference is that
the Moon’s forward motion keeps it from crashing into the ground. In principle,
if we could throw an apple hard enough we could give it enough motion to go up
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Fig. 2.6 The solid curve shows the gravitational potential energy; the dashed horizontal line
shows the total energy (which is conserved); and the difference between the two gives the kinetic
energy. Since kinetic energy cannot be negative, the object can never go beyond 7y«

and never come back down. (This works better with rockets than apples.) How hard
would we have to throw it?

To find out, suppose an object with mass m is at radius r and moving with speed
v in the gravitational field around mass M. Is there any limit on how far the small
object can go? If so, what is the maximum radius (ry,x) it can reach? How fast do
we need to make the object move if we want it to escape?

If we wanted to work with the original version of Newton’s laws of motion,
we would have to solve the differential equation d’r/dt> = —(GM/r?)t for all
trajectories that originate at radius r with speed v, and then we would have to search
among those trajectories to find ry,x. That does not sound like a simple task. But the
analysis gets much easier if we turn to conservation of energy. At any given r, the
total energy is the sum of the potential and kinetic terms,

GMm 1 )
+ -—mv
r 2

E=-—

(2.14)

We can think about this in terms of an energy diagram as in Fig. 2.6. The total energy
must be independent of radius. Since the kinetic term is non-negative, the potential
energy can never exceed the total energy. The maximum allowed radius is the place
where the kinetic energy vanishes and the potential energy equals the total energy,

GM
E=_20"M

2.15)

I'max

Equating (2.14) and (2.15) lets us solve for 7pyax:

1 2\
Fmax = (;_2GM) (2.16)
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Notice that we reached this answer in just three lines of algebra; we did not have to
specify the direction of motion or examine specific trajectories, or deal with vectors
and differential equations at all. Applying conservation of energy is a powerful
approach to this problem.

We can now ask how fast the object would have to be moving when it is at radius
r in order to escape the gravitational field altogether. This is the speed that allows
Imax t0 become infinity, and it is given by the value of v that causes the quantity in
parentheses in Eq. (2.16) to vanish:

26M\'?
Vesc = ( G ) (2.17)

r

We call this the escape velocity at a distance r from an object of mass M .

Problems

2.1. Consider a geocentric model for retrograde motion. Suppose the deferent has
radius R and angular speed 2, while the epicycle has radius @ < R and angular
speed w (about its center). Find the velocity vector in polar coordinates centered on
Earth. By analyzing the tangential velocity at the innermost points, show that the
condition to have retrograde motion is aw > RS2.

2.2. Here is a way to understand retrograde motion in the heliocentric model using
geometric reasoning (no equations required). Consider a system with two planets
orbiting the Sun along circles in the same plane. Suppose the outer planet takes
twice as long as the inner planet to orbit the star. Let # = 0 be the time when the
two planets are lined up on one side of the star.

(a) Sketch the orbits, and add some distant stars. Suppose both planets orbit and
spin in the counterclockwise direction. Indicate the directions in the star field
that an observer on the inner planet would identify as “east” and “west.”

(b) Sketch the positions of the planets a little before and after t+ = 0. In which
direction across the sky does the outer planet appear to move, as viewed from
the inner planet?

(c) Repeat part (b) at times when the planets are not lined up (for example, when
the inner planet has completed 1/4 or 1/2 of its orbit).

2.3. To practice/review working with vectors, compute the specific angular momen-
tum for straight line motion r(z) = vt X + b ¥. Is angular momentum conserved?
Should it be?

2.4. Consider conservation of energy and angular momentum as applied to an
elliptical orbit.

(a) At what point in an elliptical orbit does a planet move fastest? Slowest?
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(b) Sketch the kinetic and potential energies as a function of time for a planet in an
elliptical orbit.

2.5. Consider a uniform sphere with mass M and radius R. Compute the gravita-
tional force on a particle of mass m at any radius 0 < r < oo. Then compute the
corresponding gravitational potential. You make take the potential to be zero at the
center of the sphere.

2.6. Consider a particle of mass m released from rest at a distance ry from a point
mass M (and assume M >> m so M does not move). Use conservation of energy to
find the speed v, which is also dr/d¢. Then compute the acceleration and show that
the motion satisfies Newton’s laws.

2.7. For a sufficiently small object, compute the radius at which the escape velocity
equals the speed of light. Since nothing can go faster than the speed of light, this
is the “Schwarzschild radius” for the event horizon of a black hole. What is the
Schwarzschild radius of a black hole the mass of Earth? Of the Sun?

2.8. Could you jump off an asteroid? Let’s find out.

(a) Estimate the velocity you achieve when you jump straight up on Earth. Hint:
use the height you reach to estimate the change in your potential energy, and
then use conservation of energy to estimate your initial kinetic energy.

(b) Now estimate the size of the largest asteroid you could escape from by jumping.
You will need to make an assumption about the asteroid’s density; just explain
your reasoning.
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Chapter 3
Gravitational One-Body Problem

Newton’s laws of motion and gravity come together to explain the motion of planets
around the Sun, plus a wide range of other astrophysical systems. In this chapter we
study systems in which the source of gravity (e.g., the Sun) is stationary and a single
object (e.g., a planet) is in motion. While Newton’s third law tells us that a planet’s
gravitational pull must also cause the Sun to move, the Sun is so much more massive
than any of its planets that its motion can be neglected as a first approximation.
In Chap. 4 we will generalize to the case in which both objects move.

3.1 Deriving Kepler’s Laws

Kepler’s laws provide a great way to analyze orbital motion, since they are already
focused on relevant properties of orbits, but in their initial form they were purely
empirical and limited to motion around the Sun. If we can use Newton’s laws to
justify and generalize Kepler’s, then we can use the latter to analyze orbital motion
in a wide range of settings.
Since Kepler taught us to work with ellipses, we begin by reviewing their

geometry. An ellipse is specified mathematically as the solution of the equation

X2 2

P + 7= 1 3.1
We can assume a > b without loss of generality, so Eq.(3.1) is written in a
coordinate system where the long or “major” axis of the ellipse is along the x-axis,
while the short or “minor” axis is along the y-axis. There are two special points
inside the ellipse called foci (plural of focus) that are a distance ¢ = +v/a? — b2 from
the center along the major axis. They are special because the combined distance to
the two foci is constant along the ellipse. We define the eccentricity of an ellipse to
be the dimensionless ratio e = ¢/a, such that a circle has ¢ = 0 and more elongated

C. Keeton, Principles of Astrophysics: Using Gravity and Stellar Physics to Explore 35
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Fig. 3.1 An ellipse with eccentricity e = 0.6. The distance from the center to the curve is a along
the major axis, and the foci (points) are located a distance ae from the center. The area of the
ellipse is A = mwa?(1 — €?)'/2. In the text we use polar coordinates (r, ¢) centered on one focus.
The pericenter and apocenter distances are indicated: r, = a(1 —e) andr, = a(l + e)

ellipses have higher eccentricities up to the limit e = 1. Using the eccentricity we
can rewrite b = a~/1 — 2 and then specify the size and shape of an ellipse using
(a, e) instead of (a, b).

Kepler also taught us that the Sun is at one focus of an elliptical orbit, so if we
introduce polar coordinates (7, ¢) centered on the Sun then we have (see Fig.3.1)

X =ae+rcos¢ y =rsing
Plugging into Eq. (3.1) yields

(ae +rcosg)’  (rsing)®
a? a’(l —e?)

Rearranging, we can write this as

1 —e?cos’¢ r? r )
———— 5 t2ecosp ——1+e =0

1—e a a
This is a quadratic equation for r, so it has two solutions. Taking the positive solution
(since radius must be positive), we obtain

2
poad—e) (3.2)
1+ecose
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This is the equation for an ellipse in polar coordinates centered on a focus.
The points on the ellipse that are closest and farthest from the star have ¢ =
and ¢ = m, respectively; these are known as pericenter and apocenter.' Their
radii are

pericenter, r, = a(l —e) apocenter, r, = a(l + e) (3.3)
Our goal now is to connect the geometry to the physical principles represented by

Newton’s laws. Since the gravitational force is radial it makes sense to use spherical
polar coordinates in which the acceleration vector has the form (see Sect. A.2)

d?r dé d¢>
=|—_—r[=) —rsin?0 r
dr? dr dr
d20  _drd# do\?|
+ |:rd—t2+2d—td—t—rsm9c039(dt) :|0
d 0d
+ I:rsm9—¢+ n9 d¢ 2r cos ¢:|¢

dr dr

Newton’s second law gives a = F/m, which yields the three component equations

2
dr r (%) —rsin’6 (d¢) = _oM (3.4a)
d r2

de? dt
a0 _drdd dg\?
r—+2—r——rsm90039 ¢ =0 (3.4b)
de? dr dr dr
a2
d
r31n9—¢+2 9——¢+2 Qd—d—d) =0 (3.4¢)

We can solve Eq. (3.4b) if 6 is fixed to 7/2, so the motion is confined to a plane
(which we are taking to be the equatorial plane). Then Eq. (3.4¢) simplifies to

dg
o4 (r E) =0 (3.5)

If we recall the specific angular momentum from Eq. (2.3),

(rf')x(d—rf'+r%(]3)‘ )

b= = lrxvl = dr ar ar

I'Special versions of these terms are used for certain situations: perigee/apogee for an orbit around
Earth, and perihelion/aphelion for an orbit around the Sun.
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then we see that Eq. (3.5) says angular momentum is conserved (also see Sect.2.2).
This, finally, lets us rewrite the radial equation (3.4a) as

dr 02 GM
- = 3.7
ez 13 r?
To solve this equation, let’s shift from 7 to ¢ as the independent variable and also
make the substitution r = 1/u. The derivative becomes

dr d(l/u)d_¢> _ _i%ﬁuz . —E%

dt  d¢ At u2de  dé

In the second step we use the chain rule of derivatives, and in the third step we use
d¢/dt = £/r?. By a similar analysis, the second derivative is

d%r d du ) 2 2dzu
@ @(‘%)‘“ = e

Plugging this into Eq. (3.7) and simplifying yields

d’u GM

If the right-hand side were zero, this would be the equation for a simple harmonic
oscillator and the solution would have the form uy = B cos¢ where B is some
constant. To deal with the constant on the right-hand side, we just need to add
GM/ £2 to up (which works because the constant does not affect the derivative term).
In other words, the solution has the form u = B cos¢$ + GM/{>. Without loss of
generality, we can define a new constant e such that B = GMe/{* and our final
solution is

1 GM
@ = u(p) = 6—2(1+ecos¢) (3.9)

Comparing with Eq.(3.2), we see that this curve describes an ellipse, and the
constant e we have defined here is nothing more than the eccentricity of the ellipse.

To examine Kepler’s second law, we need to consider the area dA swept out by a
planet’s motion in some small time interval d¢. From the geometry shown in Fig. 3.2,
the area is

1 1 dA 14
dA = - |rxvdt| = -|{|dt = — = 3.10
g Irxvar] = 5le] a2 G-10
This is constant because angular momentum is conserved. Thus, Kepler’s second
law is a direct consequence of the fact that gravity is a central force.
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Fig. 3.2 A particle at
position r moving with
velocity v for an infinitesimal
time interval d¢ sweeps out a
small triangle. By the
properties of the cross
product, the area of the
triangle is

dA = (1/2)|r x vdt|
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Now we come to Kepler’s third law. By comparing Eqs. (3.2) and (3.9), we can

express the specific angular momentum in terms of the orbital elements as

¢ =[GMa(1 —¢*)]'"?

Then from Eq. (3.10) the rate at which area is swept out is

dA _ 1 a2

Since this is constant, the area swept out in one period is

dA P
A = d—txP = E[GMa(1—ez)]

1/2

But this has to equal the area of the ellipse, which is
A =mab = na’ (1 —ez)l/2
Equating (3.12) and (3.13) and solving for P yields

P = —é];; a’

@3.11)

(3.12)

(3.13)

(3.14)

This is Kepler’s third law, but now in a general form that explicitly shows the
proportionality factor between P2 and a*, which depends on the mass of the central

object.

To recap, here again are Kepler’s empirical laws of planetary motion, along with

Newton’s physical explanation of them:

I. The orbit is an ellipse because that shape is the solution of Newton’s laws of

motion under the influence of an inverse square gravitational force.

II. The rate at which area is swept out is constant because of conservation of

angular momentum, which holds because gravity is a central force.

III. The relation P? o a® holds because gravity has an inverse square force law.
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3.2 Using Kepler III: Motion — Mass

With Newton’s generalization, Kepler’s third law becomes a powerful principle for
astrophysics. Rearranging Eq. (3.14), we can write

_ 4r2a3
- GP?

This form is notable because the right-hand side involves quantities we can
measure—the size and period of an orbit—while the left-hand side is something we
may want to know—the mass of an astrophysical object. As we explore applications,
we will encounter a number of practical challenges (mostly related to measuring a
accurately), but the fundamental principle remains valid: if we can observe motion
and interpret it using Newton’s laws, we can infer mass. Mass is a key property
of astronomical systems that is difficult to measure directly, so the motion—mass
principle is valuable in a wide range of contexts.

(3.15)

3.2.1 The Black Hole at the Center of the Milky Way

At the center of the Milky Way galaxy is a compact source known as Sagittarius A*
(often abbreviated as Sgr A*) that emits light across the electromagnetic spectrum.
At radio wavelengths, high-resolution observations have constrained the size to be
<0.3 AU [1]. At X-ray wavelengths corresponding to photon energies®> between 2
and 10 keV, the luminosity is greater than 102 J s~ [2]. What could be so energetic
yet compact?

Beginning in the 1990s, powerful telescopes and clever observational techniques
made it possible to resolve individual stars in the Galactic Center, as shown in
Fig.3.3. Dedicated observers discovered that the stars are moving, mapped the
motions, and ultimately found that the orbits appear to be ellipses with Sgr A* as a
common focus. In other words, the stars orbiting Sgr A* form a Keplerian system
that is directly analogous to the planets orbiting the Sun.

We can therefore use the motion — mass principle to measure the mass of
Sgr A*. Stars #2, 16, and 19 (labeled in Fig. 3.3) are particularly important because
they have been tracked long enough to pass pericenter, so their orbits are well
constrained. Fitting ellipses to the motion yields the following orbital parameters
(taken from Ghez et al. [3]; see Gillessen et al. [4] for updated data):

Star P (yr) a (AU) r, (AU)
2 14.53 919 122
16 36 1,680 45
19 37.3 1,720 287

2X-ray astronomers often quote energy rather than frequency or wavelength using the quantum
relation £ = hv = hc/A.
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Fig. 3.3 Stars near the Galactic Center. The left panel shows a snapshot from May 2000, while the
right panel shows some of the orbits traced over time (plotted on a different scale) (Credit: Ghez
et al. [3]. Reproduced by permission of the AAS)

Applying Eq. (3.15) to star #2 yields
4% x (919 x 1.50 x 10! m)3
(6.67 x 1071 m3kg ™! s72) x (14.53 x 3.16 x 107 5)2
=73 x10%*kg
=3.7x10° Mg

M:

Repeating the analysis for other stars gives consistent results. In other words, from
the motions of stars we conclude that there is an object with nearly four million
times the mass of the Sun lying at the center of the Milky Way. From the radio and
X-ray observations, and the pericenter distances, we know this object is luminous
and compact. What could it be? The only plausible answer is a black hole—indeed,
a supermassive black hole (SMBH).

At this point you may have some questions:

* Why did we treat this as a one-body problem?
The black hole is even more massive relative to the stars than the Sun is compared
to the planets, so its reflex motion is negligible.

e Could Sgr A* be anything other than a black hole?
Could it be a single star? No: in Chap. 16 we will see that there is no way for a
single star to be anywhere near this massive. Could it be a cluster of stars? Again,
no: in Sect. 3.3.2 below we will see that such a massive and compact star cluster
would “evaporate” due to stellar dynamical effects.
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o Ifitis a black hole, why haven’t we used relativity?
As we will see in Chap. 10, relativistic effects become important on scales
comparable to the Schwarzschild radius of a black hole. For Sgr A* this is

2GM
c2

Rs = = 1.1x10%m = 0.07AU

Even star #16 stays far enough from the black hole that Newtonian gravity gives
a reasonable approximation to the motion.

» Can we see the event horizon?
The Galactic Center is about Rgc ~ 8 kpc away, so the angle subtended by the
black hole’s event horizon is (using the small-angle approximation)

R
Rgc
1.1 x 10°m
8% 3.09 x 101°m
180deg 3,600 arcsec
X X
mrad 1 deg

¢

%

=45x%x10""rad

= 9.3 x 107° arcsec

At optical wavelengths, the best resolution that can be achieved today is
0.05-0.1 arcsec (with the Hubble Space Telescope, or adaptive optics from the
ground). At radio wavelengths, it is possible to use an array of telescopes with a
technique called interferometry to achieve a resolution of 10™* arcsec or better.
While observations have not directly revealed the event horizon, they do seem to
be on the verge of resolving some of the interesting structure in Sgr A* [1].

3.2.2 Supermassive Black Holes in Other Galaxies

Our galaxy is not the only one with a supermassive black hole at the center;
evidence is growing that every massive galaxy hosts such an object. In most cases
we cannot study the black holes in as much detail as Sgr A*, but we can still use the
motion—mass principle to infer their masses.

NGC 4258

After the Milky Way, the galaxy with the best constraints on a supermassive black
hole is NGC 4258. (The name refers to the galaxy’s entry in the New General
Catalogue of Nebulae and Clusters of Stars [5].) Radio observations reveal water
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Fig. 3.4 The top panel shows a sketch of the disk of gas orbiting the black hole at the center of
NGC 4258, with some maser positions indicated. The bottom panel shows the radio spectrum. The
inset shows the line-of-sight velocity as a function of position, along with a Keplerian rotation
curve. (The middle part of the Keplerian curve corresponds to “sideways” motion in the front part
of the rotating disk) (Reprinted by permission from Macmillan Publishers Ltd: Herrnstein et al.

[6], © 1999)

masers® orbiting the center of the galaxy. While the orbital period is too long for
us to see the masers shift position, we can still measure motion. Masers emit light
at very specific wavelengths, but if they are moving toward or away from us the
emission is shifted to shorter or longer wavelengths by the Doppler effect. For non-
relativistic motion, the shift in wavelength is AA/A, = v/c where A, is the emitted
wavelength, and v is the component of velocity along the line of sight with the
convention that v > 0 if the object is moving away from us and v < 0 if it is moving
toward us. (See Sect. 10.2.4 for a full discussion of the relativistic Doppler effect.)
Figure 3.4 shows that masers closer to the center of NGC 4258 move faster, and the
motion is consistent with orbits around an object with mass (3.940.1)x 107 M, [6].

3Maser originally stood for “microwave amplification by stimulated emission of radiation,”
although “microwave” is now sometimes replaced by “molecular.” A laser is similar to a maser
except that it operates in the visible portion of the electromagnetic spectrum (the “I” stands for
“light,” specifically meaning visible light).
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Galaxy M84 Nucleus

WFPC2
Hubble Space Telescope

Fig. 3.5 On the left is an image of the galaxy NGC 4374 (also known as M84), taken with the
Wide Field and Planetary Camera 2 on the Hubble Space Telescope. The small box shows the
region whose spectrum was recorded with the Space Telescope Imaging Spectrograph, as shown
on the right. The zigzag pattern is created by the Doppler shift of light from stars and gas orbiting a
supermassive black hole at the center of the galaxy (Credit: Gary Bower, Richard Green (NOAO),
the STIS Instrument Definition Team, and NASA)

The current upper limit on the size of the object is 0.16 pc, so the size constraint is
not nearly as strong as for Sgr A*. Nevertheless, astronomers believe the central
object is a black hole.

NGC 4374

At present there are no other galaxies where we can observe individual objects
moving around the center of the galaxy. Still, we can measure collections of stars or
gas moving around in the centers of many galaxies. As an example, Fig. 3.5 shows
an optical spectrum of the galaxy NGC 4374. The light from stars and gas on one
side of the galaxy center is shifted toward bluer wavelengths by the Doppler effect,
while the light from stars and gas on the other side of the center is shifted toward
redder wavelengths. Also, objects closer to the center move faster. The motion again
reveals a central massive object, this time with a mass of nearly 9 x 10% Mg, [7].

A Supermassive Black Hole in Every Galaxy?

Similar observations in other galaxies have shown that whenever we can make
good measurements we find evidence for supermassive black holes. Astronomers
now suspect that every massive galaxy harbors a central black hole, and the black
hole masses range from a few million to more than a billion times the mass of
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Fig. 3.6 Relation between black hole mass (indicated here by M) and galaxy velocity dispersion.
The solid line shows the best fit to the data, which scales as M o ¢*92. The dashed lines show
uncertainties in the fit (Credit: Tremaine et al. [8]. Reproduced by permission of the AAS. (See [9]
for an updated version of this relation))

the Sun. What’s more, the mass of the black hole appears to be closely related to the
properties of the galaxy in which it resides.

We will study galaxies later (in Chaps. 7 and 8), but for now we note that most
galaxies can be described in terms of two types of structures: a flat disk in which the
star orbits lie mostly in a plane; and a rounder spheroid in which the star orbits have
random orientations. Spiral galaxies usually have large disks surrounding smaller
spheroids known as bulges, while elliptical galaxies are pure spheroids. Since the
motion in spheroids is random, we characterize it by examining the distribution
of star velocities (strictly speaking, the component along the line of sight) and
computing the statistical standard deviation, which we call the velocity dispersion.

A striking discovery about supermassive black holes is that the black hole mass
is correlated with the velocity dispersion of the spheroidal component of its host
galaxy, as shown in Fig.3.6. You may wonder: why should it be remarkable that
motion (o) is closely related to mass (M)? Most of the stars used to measure
the velocity dispersion lie far enough from the black hole that they should hardly
notice its gravity.* Yet the stars seem to know how much the black hole weighs—
or, conversely, the black hole knows how fast the stars move. Astronomers are still

“We quantify this idea in terms of a gravitational “sphere of influence” in Sect. 3.3.1.
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trying to understand how this came to be: observers are trying to see whether the
M -0 relation was the same in the past, while theorists are trying to understand
whether the processes by which black holes and spheroids grow might be related to
one another. The final answers are not known, but the discovery of the M -o relation
has sparked a lot of new research.

3.2.3 Active Galactic Nuclei

Direct motion-based measurements of black hole masses can be made only in
relatively nearby galaxies, where we can resolve the motion on small scales.
Nevertheless, strong indirect evidence suggests that supermassive black holes are
common in galaxies throughout the universe.

The evidence comes from Active Galactic Nuclei (AGN)—an umbrella term for
galaxies that emit huge amounts of energy from their centers. There are many types
of AGN but for our purposes there are two key features. First, these objects can be
very luminous, reaching L ~ 10'> L. Second, AGN can vary on time scales as
short as At ~ 1h. The variability lets us place an upper limit on the size, because a
source can change coherently only if information about the physical conditions can
travel across the source. If we imagine that something changes in the middle of the
source, the time it would take for that information to reach the edge is At = R/c
(and perhaps much longer if the information propagates at less than the speed of
light). If At ~ 1h then we can infer

R < cAt ~30x10°ms™" x3,600s ~ 10”m ~ 7AU

~

In other words, an AGN can be as bright as a galaxy, but smaller than the Solar
System! What might be so energetic? A supermassive black hole.

You may ask: Aren’t black holes supposed to be black? How can they emit so
much energy? While nothing can escape a black hole once it has fallen in, a lot of
energy can be emitted as matter approaches a black hole. Imagine mass falling in
atarate M = dM /dt. In time df, an amount M dr falls into the black hole, and as
it falls from infinity to the event horizon it releases potential energy

GM

dU ~ — M dr

s

(We will use Newtonian gravity for this simple estimate.) As atoms fall in, their
kinetic energy must increase to conserve energy. As they speed up, they bump into
one another more and more often, causing the gas to heat up and radiate. If all the
potential energy that was liberated gets converted to light, the total luminosity (light
energy per unit time) could be as large as

dU

L ~ |—
dt

GM . GM . 1.
~ Mo~ ——— M ~ -M
R, 2GM/c? 2
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As mass falls into a black hole, a significant fraction of its rest mass energy could
be converted into light.

There are some caveats. The energy release is probably gradual; it does not all
happen at the event horizon. Some of the energy might even vanish into the black
hole. Also, a proper analysis should account for relativity. Detailed analyses indicate
that the energy release has the form (e.g., [10])

L~eM:c?

where the “efficiency” is ¢ ~ 0.06 — 0.42 and ¢ ~ 0.1 is a typical value. Even so,
it is fair to say that black holes are the most efficient machines in the universe for
converting mass into energy.’

3.3 Related Concepts

Let us briefly step away from the main story to address two topics that arose
in Sect.3.2. The notion of a gravitational sphere of influence is important for
interpreting the M-o relation, and it is an interesting variant of the one-body
problem. The concept of stellar dynamical evaporation is important for interpreting
constraints on supermassive black holes (particularly Sgr A*), and it provides a nice
application of dimensional analysis.

3.3.1 Sphere of Influence

In Sect. 3.2.2 we mentioned that astronomers were surprised to find a tight relation
between the masses of supermassive black holes and the velocity dispersions of
the spheroids in which they are embedded. Why was that a surprise? To find out,
let’s estimate the size of the region in which a black hole has a significant influence
on the motions of stars. To be more specific, let’s define a black hole’s “sphere of
influence” to be the region where the gravity from the black hole is stronger than
the gravity from the rest of the matter in the galaxy. At radius r, the strength of the
gravitational force from the black hole is

GMynm
Fon(r) = r—;h

What about the force from the galaxy? For simplicity, let’s assume the galaxy is
spherically symmetric. From Eq. (2.11), the force is then

SFor comparison, the energy released by fusion in stars corresponds to an efficiency ¢ = 0.007
(see Sect. 15.2).
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GMga(r)m
Fatr) = SHOm

where M, (r) is the mass enclosed by a sphere of radius 7. In Chaps.7 and 8 we
will see that a simple model for a galaxy with velocity dispersion o is the isothermal
sphere, which has density

2

Peill) = 556

The mass enclosed by radius r is

T o? ) 2
— / r—
Mgal(r) = /0 W 471(r) dr’' = —r
so the gravitational force from the galaxy is

Gm 20%r 202%m
Fa) = 2576 = =

In order to have the force from the black hole exceed the force from the rest of the
mass in the galaxy, we need

GMym  20%m
— >
r r

Thus, the black hole’s sphere of influence is the region with r < Ry where

_ GMy,

Ro 202

From the observed M -o relation, a galaxy with 0 ~ 200kms™! hosts a black hole
of about My, ~ 108 M. By our estimate, the black hole’s sphere of influence is
then

~(6.67x 107" m? kg™ s72) x (10% x 1.99 x 10 kg)

R
0 2x (2x10°ms—1)2

=1.7x10"m = 5.4pc

For a massive galaxy with 0 ~ 330 kms™' that hosts a huge black hole with My, ~
10° M, we get

Ry = 6.1x10"m = 20pc
These distances are very small compared with the size of a galaxy (which is typically

measured in kpc). In other words, even a supermassive black hole does not have
enough mass compared with its galaxy to have a strong effect on the entire galaxy.
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The M-o relation must arise from some indirect connection between the way
galaxies form and the way supermassive black holes grow inside galaxies.

3.3.2 Stellar Dynamical Evaporation

In Sect.3.2.1 we learned that stellar motions reveal Sgr A* to be massive and
compact, but they do not definitively prove it to be a black hole, so we should
consider alternatives. We said it cannot be a single star, but could it be a cluster
of stars?

If millions of stars are confined to a small space, they will occasionally pass
very close to each other. Since gravity gets strong when separations get small, close
interactions can impart enough force to eject one of the stars from the cluster. Let’s
use dimensional analysis to estimate the time it would take for a star cluster to
“evaporate” in this way.® Suppose there are N stars of mass m (so the total mass
is M = Nm), in a region of size R. For dimensional analysis, what do we have to
work with?

Cluster mass M [M]

Star mass m [M]

Number of stars N —

Cluster size R [L]

Gravity G [MT'L’T7?

We need G~'/2 to get a time, and then we need R3/? to eliminate length. We have a
choice of mass: M or m. Since the evaporation interactions involve individual stars,
I think the key mass is m. There may also be some factor that depends on the number
of stars N; we will come back to that in a moment. To this point, our analysis of
dimensions gives a guess of the form

R3/2
Tevap ~ W

Now let’s consider the number of stars. I imagine that there are two places
where N enters. First, since stars are ejected one by one the time it takes to
evaporate the cluster should have a factor of N. Second, if we pack more stars
into a fixed space, gravity will be stronger, and the stars will move faster. That
will cause interactions to happen more quickly, decreasing the evaporation time.
In Problem 1.1 you used dimensional analysis to estimate the typical velocity
of stars in a gravitationally bound system; the upshot is that speed scales as

5See Sect.3.2 of Galaxies in the Universe by Sparke and Gallagher [11] for a complementary
analysis of evaporation.
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v o« N'/2, which suggests that the evaporation time should have a factor of N ~!/2.

Incorporating both of these factors yields
R3/2 N NR3 1/2 MR3 1/2
Tevap ™~ ~ ~
P (Gm)V/2 N2 ( Gm ) (GmZ)
Let’s plug in numbers. Our mass estimate for Sgr A* is M = 3.7 x 10° M. Strictly

speaking, all we know from the motion is that the mass is confined within a region
R < 45 AU. If we assume all stars are like the Sun, we have m ~ M. Then:

o ~ [(3.7 x 10° x 1.99 x 103 kg) x (45 x 1.50 x 10!! m)T/2
(6.67 x 1071 m3 kg™ s72) x (1.99 x 1030kg)?
~2.9%x107s
~ 90,000 yr

While this estimate from dimensional analysis may be fairly crude, it certainly
indicates that if Sgr A* were a cluster of normal stars it would have evaporated
long ago.

We are left with the conclusion that Sgr A* is probably a black hole. Even
though we have not yet detected the event horizon—that is the holy grail of black
hole studies—we have assembled a strong case in which the Kepler’s laws and the
motion — mass principle have played a key role.

Problems

3.1. Sketch the orbital speed v as a function of orbital size r for a planet in a circular
orbit about the Sun. This is known as a Keplerian rotation curve.

3.2. Consider a rocket orbiting Earth in an orbit that is initially circular.

(a) If the rocket fires a short burst from its engine to apply a force in the same
direction as its motion, what happens to the shape of the orbit? Sketch the
before and after orbits. Hint: think about the kinetic and potential energies just
before and just after the burst, and refer back to Problem 2.4.

(b) Repeat part (a) with the engine firing in the opposite direction.

(c) How would a rocket have to fire its engine if it wanted to move to an orbit that
is larger but still circular?

3.3. Suppose a comet orbits the Sun with a period of 27 years, and the closest it
gets to the Sun is 3 AU. At the point in its orbit when it is moving slowest, how far
is the comet from the Sun?
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3.4. If the Moon orbited above Earth’s equator at a distance of 42,200km from
Earth’s center how would it appear to an observer on Earth? Describe the cycle of
phases the observer would see.

3.5. Use the orbital data for Jupiter’s Galilean moons to compute Jupiter’s mass.
Verify that all four moons give consistent results.

P (days) a (103 km)
Io 1.769 421.7
Europa 3.551 670.9
Ganymede 7.155 1,070.4
Callisto 16.689 1,882.7

3.6. Derive expressions for the orbital speeds at pericenter and apocenter of an
elliptical orbit. Then consider the stars observed to orbit the black hole at the center
of the Milky Way. Which star moves fastest at pericenter? (Be quantitative.)

3.7. Suppose you discover an extrasolar planet orbiting a star of mass 2M with an
orbital period of 3 months. What is the semimajor axis of the planet’s orbit?

3.8. The black hole in NGC 4374 has been studied using the Doppler shift of light
with a wavelength of about 6,600 A. What is the wavelength shift of light emitted
from gas that orbits the black hole at a distance of 30 pc?

3.9. Revisit the analysis of a black hole’s sphere of influence (Sect. 3.3.1) assuming
a uniform density of stars. Express your answer in terms of pg,rs and equivalently in
terms of the mass and radius of a spherical galaxy with uniform density.
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Chapter 4
Gravitational Two-Body Problem

Now we are ready to study what happens when two objects interact via gravity
and both are free to move. As we will see, there is a deep connection between
the one-body and two-body problems that provides a powerful opportunity to
understand binary star systems and extrasolar planets.

4.1 Equivalent One-Body Problem

Our first task is to solve the equations of motion and find the orbits in the two-
body problem. We can do this by uncovering a mathematical equivalence with the
one-body problem, which we have already solved.

4.1.1 Setup

Consider the gravitational interaction between mass 7, at position r; and mass 7,
at position r,, as sketched in Fig. 4.1. Introducing a few new quantities will clarify
our analysis. Define the separation vector,

r=r,—r; 4.1)
and the center of mass position,

mir| + mor;

R= 11 T722 (4.2)
my + my
Also define the total mass,
M =my +m, “4.3)
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Fig. 4.1 Geometry of the two-body problem. The left panel shows a general reference frame and
indicates the vectors to the two objects (r; and r,) along with the vector to the center of mass (R).
The right panel shows the reference frame with the center of mass at the origin

and the reduced mass,

mpm 1 1 1
L L N . (4.4)
mi + my M mi mo

As defined, the total and reduced masses obey the product relation
Mp = mim; (4.5)
With these definitions, we can rewrite the positions as

r=R—"r and n=R+r (4.6)
mj my

Notice that the two objects are always on opposite sides of the center of mass. While
this should be apparent from the term “center,” it is a good point to keep in mind
when visualizing motion in the two-body problem.

Intuitively, the gravitational force on object #1 should point toward object #2,
which means the force vector F; is parallel to the separation vector r. The force on
object #2 points in the opposite direction, so F; has the opposite sign. Newton’s law
of gravity tells us that both forces have strength Gmm,/r>. Putting these pieces
together, we can write the forces as

G R
forceon #1: F| = +w r (4.7a)
r
G N
forceon#2:  Fp = ——12 ¢ (4.7b)
r

4.1.2 Motion

Let’s first consider the acceleration of the center of mass:
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e

R <F1+F2) -0

drz2 mp; +my m; +my

d’R 1 ( d’r dzrz) 1
In the first step we replace R using Eq. (4.2). In the second step we use Newton’s
second law to put m; d?r; / dt?* = F;, and in the third step we use Newton’s third law
(in the form of 4.7). We learn that the center of mass does not accelerate.
Therefore we can define an inertial reference with the center of mass at the origin,
so R = 0. Shifting to this center of mass frame for the remainder of the analysis,
we can write

ry = —ir and r, = ir 4.8)
mi my

Note that when we deal with vectors, r; and r, have opposite signs, and the
separation vector still includes a minus sign: r = r, —r;. But if we just consider the
lengths of vectors, we know the length of the separation vector is (not surprisingly)
the sum of the lengths of r; and r;:

e[ = [ri| + |r2]
The ratio of lengths is interesting:

[ra| gy
L 49
|ry]| my )

Even before we fully characterize the motion, we realize that the orbits of the two
objects are scaled versions of one another, with the scaling given by the (inverse)
mass ratio.

To analyze the motion in detail, consider the equation of motion for object #1:

2
mi % =F
d’r  Gmym, ,
Har T Tt
., $r_ oM, (4.10)
de? r2

We first use Eq. (4.8) for r; and Eq. (4.7a) for F|, and then use Eq. (4.5) to replace
mm;. Considering object #2 yields the same equation. This equation should look
familiar: it is the equation of motion for the gravitational one-body problem. The key
lesson is that a two-body problem with masses m| and mj is mathematically
equivalent to a one-body problem with mass M = m| + m,.
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Fig. 4.2 Sample two-body problem with a 2:1 mass ratio and eccentricity e = 0.6 (right) and the
equivalent one-body problem (/eft). The two-body orbits are scaled down versions of the one-body
ellipse, with the same eccentricity. They share a common focus at the center of mass of the system
(denoted by [J). As the separation vector sweeps around, it is pinned at the center of mass

We know from Eq. (3.9) that the solution to the one-body problem has the form

a (1 —ez)
r=——>= (4.11)
1 +ecos¢

We can then use Eq. (4.8) to say that the orbits for the two-body problem are smaller
ellipses with semimajor axes

a, = ia and a, = ia 4.12)
mi my

The orbits are arranged so the two ellipses share a common focus (at the center
of mass) and the two objects always lie on opposite sides of the center of mass.
The association between a two-body problem and its equivalent one-body analog is
illustrated in Fig. 4.2.

As we use the one-body analogy, we need to keep in mind that it is a math-
ematical connection more than a physical one. It is not correct to say that a
problem with masses m; and m, orbiting each other is physically equivalent to a
problem with masses M and p orbiting each other. The issue is that a physical
scenario with masses M and p would itself be a two-body problem so both objects
would move, but the mathematical equivalence is to a one-body problem in which
M is stationary. The analogy between the two-body and one-body problems is
powerful, but it must be used with some care.

4.1.3 Energy and Angular Momentum

We have seen the analogy with the equation of motion, but does it extend to energy
and angular momentum? Let’s start with kinetic energy. Equation (4.8) implies that
the velocity vectors are related by
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V| = —iv and v, = iv (4.13)
mi my

where v = dr/dt is the time derivative of the separation vector. (We are still working
in the center of mass frame.) The kinetic energy of each object is then

1 2
P=-Ewp

1
Ki = ~my|v; 2

2
The gravitational potential energy between the two objects is

U = _Gm1m2 _ _GM,LL
r r

where we use Eq. (4.5). The total energy can therefore be written as

1 1 G
E = 57111|V1|2 + zmz|V2|2 -2

11 1 GMp

RYERNEL R

m;  ms r

1 GM

— - 2R (4.14)
2 r

where we use Eq. (4.4) to simplify the first term. A similar analysis of the angular
momentum yields

L =mir; Xvy + mary; X v,

= (ur) x (ﬂ) + (ur) x (ﬂ)
mi my

( 1 1 ) 5
=|—+ —|purxyv
mi my
= UrXV (4.15)
The analogy continues to be useful: the final expressions for both energy and angular

momentum have forms appropriate for an object of mass p orbiting a (stationary)
object of mass M in a one-body problem.

4.1.4 Velocity Curve

Equation (4.13) gives general relations for the velocity, but it is worthwhile to dig
into the details because a lot of what we can learn about binary stars and exoplanets
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comes from analyzing velocities. We focus here on v for the one-body problem,
since v; and v, can be obtained from it. To begin, we find the components of v in
polar coordinates. The angular component is

_dp f (1 +ecosg)
Yo = rd_t T r a(l—¢€?) (4.16)

where we recall that the specific angular momentum £ = r2?d¢/d¢ is constant, and
we use Eq. (4.11) for r. The radial component of velocity is

dr dr d¢p a(l —e?)esing do _ lesing

d  dp dt  (I4+ecosp)? dt  a(l —e?) “.17)

v, =

We use the chain rule to rewrite the derivative, then evaluate dr /d¢ from Eq. (4.11),
and finally substitute for d¢p/dt using Eq.(4.16). We can convert to Cartesian
coordinates as follows:

[vxi| _ |:cos(¢ + ¢o) —sin(¢p + ¢o)i| [vr i|
vy sin(¢ + ¢o)  cos(¢ + o) | [ vy

where we now allow a general coordinate system in which the major axis of the
ellipse lies at angle ¢. Carrying out the matrix multiplication yields

__Lesingo + sin(¢ + ¢o)] and v = £[e cos g + cos(¢ + ¢o)] (4.18)

o a(l —e?) ’ a(l —e?)

To this point we have mainly characterized the orbit as a function of ¢, and we
have not discussed ¢(¢) in much detail. It turns out to be easier to keep ¢ as
the independent variable and compute the time dependence as #(¢). Recall from
Eq.(3.10) that area in the ellipse is swept out at the rate dA/d¢ = £/2 where
¢ = /GMa(l —e?) is the specific angular momentum. If we rewrite this as
dt = (2/€)dA and use dA = (1/2)r>d¢ in polar coordinates, we can integrate
to obtain

(= [r@ra

Using r(¢) from Eq. (4.11) yields'

'With help from Mathematica [1].
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a’(1—e?)?

_ d¢
L= 14 /(H—ecosd))2

N [ (1—e2)3/2 1+e 2| (1—e2)(1+ecose)

(We choose the constant of integration so t = 0 at ¢ = 0.) It is convenient to deal
with the factor involving a and £ by expressing ¢ in units of the orbital period,

t 1 1—e\ /2 1—eH)/2g
Lo 2 Joan! ¢ and|_clze)Tsing (4.19)
P 2xn 1+e 2 1 +ecos¢

Note that a circular orbit has ¢ = 0 and hence 1/ P = ¢/2n, which makes sense.

Now we have the ingredients to understand the shapes of orbits and velocity
curves for the two-body problem. Figure 4.3 shows examples with different
eccentricities. Recall that the orbits must share a common focus at the center of
mass, and the two objects must always lie on opposite sides of this point. If the
eccentricity is zero, the orbits are circular and concentric, and the velocity we would
measure with the Doppler effect is a sinusoidal function (because it is a projection of
circular motion). If the eccentricity is nonzero, the orbit centers are offset from one
another, and the velocity curve is less regular. These two effects give us the ability
to determine the eccentricity from the shape of the orbits or velocity curves.

4.1.5 Application to the Solar System

Let’s see how the two-body theory applies to the Solar System and consider whether
it was reasonable for Kepler to neglect the Sun’s motion. We just want to get a sense
of the numbers, so we examine the Sun’s interaction with one planet at a time and
assume circular orbits for simplicity. For the Sun/Earth system, here are the key
quantities:
a=1AU = 150 x 10''m
P=1lyr = 316x10"s
m; = 1.99 x 10¥kg
my = 5.97 x 10 kg

The corresponding reduced mass is

o= M2 597 % 10%kg
my + mj
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Fig. 4.3 Examples of two-body orbits and velocity curves. The three rows correspond to different
eccentricities. The left column shows the orbital configuration, with X indicating the center of mass
and e indicating the object positions at ¢+ = 0. The right column shows the Doppler velocity we
would measure if Earth were off to the left (The observed velocity curve depends on how the orbit
is oriented with respect to our line of sight; see Eq. 4.18)

(Note that u ~ mj, when m, < mj.) From Eq. (4.12), the amplitude of the Sun’s
motion induced by Earth is

5.97 x 102k
ap = 22 X T B 150x 10" m = 4.49x10°m = 6.5x 10~ Rg
1.99 x 1030 kg

The speed of this motion is

2ra; 2w x (449 % 10° m)

- = 0.089ms™!
P 316 x107s ms

V1

Since Jupiter is the most massive planet, let’s consider it as well:

a=520AU = 7.78 x 10'' m
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P =11.86yr = 3.74x 10%s
m; = 1.99 x 10*kg
my = 1.90 x 10%" kg

The corresponding reduced mass is

o= M 90 % 10% kg
my + mj

The amplitude of the Sun’s motion induced by Jupiter is

1.90 x 10?7 kg

_— 11 — 8 —
1.99 x 109 kg x (7.78 x 10" m) 7.42 x 10°m 1.07 Ro

a) =

and the speed of this motion is

27 x (7.42 x 108 m)

= 12.45ms™!
374 x 108s

V) =

Jupiter affects the Sun more than Earth does, because its larger mass more than
compensates for its greater distance.

The Sun’s actual motion is more complicated than we have accounted for here,
because it is influenced by all objects in the Solar System at once. Even so, the
lesson is that the Sun’s position changes only by an amount comparable to its size,
and its speed is around a dozen meters per second. Such motion was too small for
Kepler to detect, which is why he and then Newton could treat planetary motion as
a one-body problem.

4.1.6 Kepler III Revisited

To conclude our discussion of the theory, let’s see how the motion—mass principle
applies to the two-body problem. We know from Sect.3.1 that the equation of
motion (4.10) leads to an expression for the orbital period of the form

42a?

P? =
GM

Each object in the two-body system has this same orbital period (they have to stay on
opposite sides of the center of mass, after all). Using M = m; + m, from Eq. (4.3)
and a = a; + a; from Eq. (4.12), we can now write the generalized version of
Kepler’s third law for two-body problems:
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2 _ 4+ @)’

Gy +ma) (4.20)

We can still use motion to measure mass in binary systems, but we must understand
that what Kepler’s third law gives is fotal mass. In the applications below we
will consider if and when it is possible to decompose the total mass into the two
individual components.

4.2 Binary Stars

Binary systems provide an opportunity to measure accurate masses for stars using
two-body theory. We identify three classes of binaries based on what we are able
to observe. In a visual binary, we can watch the stars move on the sky and follow
their orbits. In a spectroscopic binary, we can detect absorption lines in the stars’
spectra and use the Doppler effect to measure the velocities along the line of sight.
In an eclipsing binary, the orbit is nearly edge-on and the stars periodically pass in
front of each other. These categories are complementary; any given system may fall
into one, two, or all three of them. The way we measure motion is different in each
case, so let’s take them one by one and see what we can learn about mass.

4.2.1 Background: Inclination

Before we proceed, there is one bit of technical background to discuss. We can
observe two dimensions of position projected onto the “plane of the sky,”* but
the third dimension of distance is often difficult to determine. Even when it can
be found, the distance is not precise enough to reveal changes in position along the
line of sight. The quantity we can measure along the line of sight is velocity, using
the Doppler effect.

This is an issue for binary stars because the orbital plane can have an arbitrary
orientation with respect to the line of sight. We define the inclination angle i to be
the angle between the orbital plane and the plane of the sky, as shown in Fig.4.4.
To be more precise, let i be a unit vector perpendicular to the orbital plane, which
we call the normal vector. The inclination is the angle between the normal vector
and the line of sight; this is the same as the polar angle 0 if we express 1 in spherical

2In Chap. 14 we study spectral lines created by atoms and molecules in the outer layers of stars.
3Strictly speaking, we measure angles on the spherical sky. If the angular extent of a system is

small, we can project onto a plane tangent to the sphere to obtain Euclidean coordinates without
making a significant error.
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Fig. 4.4 Illustration of inclination. The top row shows nearly side-on views, while the bottom row
shows the corresponding face-on views (looking down the z-axis). The columns display different
inclinations: i = 0° (left), i = 30° (middle), and i = 60° (right)

coordinates. With this definition, a face-on orbit has i = 0° while an edge-on orbit
hasi = 90°.

To specify what we can measure, let (Xin(, Vint, Zin) be the intrinsic coordinate
system in which the orbital motion is in the (Xiy, Vint)-plane, while (Xobs, Vobs, Zobs)
is the observed coordinate system in which we are looking along the zops-axis. The
two frames are rotated with respect to one another by the angle i. Let’s choose
coordinates so the x-axes line up and the rotation applies to the y- and z-directions.
Then the observed position is related to the intrinsic position by

Xobs = Xint and  Yobs = Yint COSI (4.21)

(Recall that the intrinsic orbital motion has zj,; = 0.) The measured velocity along
the line of sight is

Vz,obs = Vy.int sini (4.22)

The factors of cosi and sini will be important in what follows. For each type of
binary system, we need to consider whether the inclination can be determined, and
how it affects our analysis.

Inclination can run between 0° and 90°, but the values are not all equally likely.
If orientations are random in space, the normal vector will be distributed uniformly
over the unit sphere. Figure 4.5 shows that there is more area on the sphere with a
larger value of 7, and less area with a smaller value of i. In fact, the area is such that
the probability distribution for inclination is

p(i) =sini (4.23)
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Fig. 4.5 If orbital orientations are random, the normal vector will be distributed uniformly over the
unit sphere. The small black band indicates the set of normal vectors that correspond to inclinations
in the range 5° < i < 10°, while the large band has 40° < i < 45°. Larger inclinations have a
higher probability of being seen, with p(i) = sini

This factor of sini is the same as the factor of sinf in the spherical coordinate
volume element, dV = r2sin 0 dr d6 d¢.

4.2.2 Visual Binary

If we can see both stars and watch them move, we can measure the period and
trace the orbits directly. Can we determine the inclination? This might seem tricky
at first because inclination causes an orbit to look squashed (due to the cosi
factor in Eq.4.21): a circle can look like an ellipse, or an ellipse can look more
flattened than it truly is. There is, however, an important distinction between the
configuration of orbits in a system with inclined circular orbits and a system with
face-on elliptical orbits, as you can understand through Problem 4.1. The analysis is
a little more subtle when the orbits are both elliptical and inclined, but the key idea
is that the true orbits must satisfy Kepler’s laws while the projected orbits may not.
This principle makes it possible to deduce the true orbits and hence determine the
inclination.

The challenge with visual binaries is that we can only measure the angular size
of the orbits. If «; and o, are the angles subtended by the semimajor axes of the
orbits, the corresponding physical lengths are

a; = Dtano; ~ Do;

where D is the distance to the binary system, and we are using the small-angle
approximation tanco; =~ ¢o;. We can still find the mass ratio using Eq.(4.9):
my/my = aj/a; = a1/, Butif we want to find the actual masses using Eq. (4.20),
we need to know the distance:

472 D3 (o) + ap)?
GP?

Inclination is not a problem for visual binaries, but distance is.

my +myp =
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4.2.3 Spectroscopic Binary

If a binary system is too distant and/or small, we may not be able to resolve the two
stars on the sky. We can still analyze the motion, though, by using spectroscopy.
As the stars move in their orbits, the Doppler effect causes each star’s spectral lines
to shift to shorter wavelengths when the star is moving toward us, and to longer
wavelengths when the star is moving away.

Double-Line System

If we see distinct spectral lines from both stars, we can measure both of the Doppler
velocity curves. The amplitude of the velocity curve for star #1 can be found by
using Eqs. (4.13) and (4.18) for the intrinsic velocity and including a factor of sini
from projection (Eq. 4.22):

n ¢ . 0 2ra ini
= __ - = = T §ini

my a(l —e?) myp P(1—e2)1/2
where we simplify using Eqgs. (3.11) and (4.20). The expression for k; is similar,
with m, replacing m . If we measure both velocity amplitudes and take the ratio,
most of the factors drop out,

k
L_m (4.24)
ki my

and we can determine the ratio of masses directly from the measurements. Also, if
we add the velocity amplitudes we find:

sini = —————— sini

1
itk = “(_+ P(1—en)i P(1—e2)2

1 2ra 2ra

mi my

where we use Eq. (4.4) to simplify. Thus, we can write the semimajor axis in terms
of the measurable* quantities ki, k», P, and e as

PA—e)V2 ky+k
g= PU—e) " kitk (4.25)
2 sin i

Using this in Kepler’s third law gives the total mass as

my +m, =

_2\3/2 3
P(1—e?) (k1+k2) 426)

2nG sini

“Recall from Sect. 4.1.4 that we can determine e from the shape of the velocity curves.
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For a spectroscopic binary, we can measure the absolute masses only if we know i.
That makes spectroscopic binaries the opposite of visual binaries in the sense that
distance is not a problem, but inclination is. If the inclination is unknown, the
observables determine only the products 1, sin® i and m, sin’ i .

Single-Line System

If one object (say, star #2) is faint, we may not be able to detect its absorption lines
in the spectrum. We can still use the wavelength oscillations of the lines we do see
to deduce that star #1 is in a binary orbit, and to measure its velocity amplitude k;
as well as the orbital period P and eccentricity e. Now what can we do? Let’s go
back to Eq. (4.26) and use Eq. (4.24) to eliminate k,, since it is not measurable:

P(1-2)/2
iy = PO (

2n G

k1+k1m1/m2)3 _ PU=e)’” ( ki m2+m1)3
sini N sini

2n G sini  my

Rearranging yields

mysini P\ 2)1/2
(my + my)*/3 ~\276 (1= h *427)

In other words, we can use the observables to infer a funny combination of masses,
along with the usual inclination factor.

What good is this? Let’s make two assumptions. First, suppose m, < m; so the
left-hand side is approximately

my sin i
2/3
ml/

Second, suppose we have some way to estimate m; (perhaps from other properties
of the star, such as its brightness and color). Then we can move m to the right-hand
side in Eq. (4.27) and write

2P 1/3
My sini = (’;;G) (1— )2 (4.28)

As we will see in Sect.4.3, these two assumptions are reasonable for extrasolar
planets, so measuring Doppler velocities of stars lets us determine m, sini for
planets orbiting those stars.
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Fig. 4.6 Schematic light curve for an eclipsing binary, and the corresponding star configurations.
(Left) During the primary eclipse, the small star is coming out of the page and moving left-to-right
in front of the large star. (Right) During the secondary eclipse, the small star is going into the page
and moving right-to-left behind the large star. In this example, the large star has a higher surface
brightness (luminosity per unit area) than the small star

4.2.4 Eclipsing Binary

If a binary system is very close to edge-on, one star can fully or partially eclipse
the other. The light curve, or brightness as a function of time, will dip during the
eclipse events as shown in Fig. 4.6. Eclipses can occur only if i ~ 90° (orsini ~ 1),
so seeing them solves the inclination problem in spectroscopic binaries and lets us
determine the absolute masses of the two stars.

Eclipses contain information about the sizes of stars as well. In Sect.4.3.2, we
will see that eclipse depth alone can reveal the relative sizes of the stars (or, in the
case below, a star and a planet). If we combine eclipses with Doppler velocities,
we can go a step further and determine the absolute sizes. For example, the time
between points A and B in Fig.4.6 is the time it takes for the stars to move
(relative to one another) by the diameter of the small star. Since the stars are moving
in opposite directions, their relative speed is v; + v,. The radius of the smaller star
is therefore

1
Rynan = E(Vl + VZ)(IB - tA)

(How would you determine the radius of the larger star?)

4.3 Extrasolar Planets

Since 1995, hundreds of planets have been discovered around other stars using the
techniques we just discussed. A star+planet system acts as a single-line spectro-
scopic binary, while an edge-on system acts as an eclipsing binary. The effects
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Fig. 4.7 Radial velocity curve for the star 51 Peg, where ¢ denotes orbital phase (Credit: Marcy
et al. [2]. Reproduced by permission of the AAS (Also see Mayor et al. [3]))

are generally small—speeds are typically tens of meters per second or smaller,
and eclipse depths are at the percent level or smaller—but they can now be
measured routinely. Systems in which we can measure both motion and eclipses
are particularly valuable, as we will see.

4.3.1 Doppler Planets

A star with a planet is a prime example of a single-line spectroscopic binary; the
planet contributes very little light to the spectrum, so it does not introduce detectable
absorption lines, but its gravity causes the star to “wobble” so the spectral lines
oscillate in wavelength. As we saw in Eq. (4.28), if the planet is much less massive
than the star then we can estimate m, sini, but we need to know the mass of
the star. This can be often inferred from the star’s visible properties; as we will
see in Chap. 16, there are good relations between the mass, luminosity, color, and
spectroscopic properties of stars.

The first extrasolar planet discovered orbits the star 51 Peg [3]. Figure 4.7 shows
that the star’s velocity curve is nearly sinusoidal, indicating that the orbit is close to
circular. The measured period, eccentricity, and velocity amplitude are [4]

P =423day = 3.65x10°s
e =0.013
ki = 55.9ms™!
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The mass of the star is estimated to be m; = 1.05 Mg = 2.09 x 10*°kg. Using
these values in Eq. (4.28) yields for the planet:

(2.09 x 10%kg)? x (3.65 x 10°s)
27 % (6.67 x 10~ m3kg™! s72)

=8.73 x 10%°kg
=0.46 M,

1/3
mysini = [ } (1-0.013%)"2 % 55.9ms™!

So m; sini is comparable to the mass of Jupiter and much smaller than the mass
of a typical star. Does that automatically imply that m, itself is small, i.e., that the
second object is a planet? The alternative is that i is small, i.e., that the second object
is a star but the orbits are very close to face-on. The early phase of exoplanet studies
faced this key question: do low values of m, sini indicate planets or just binary star
systems in nearly face-on orbits?

One way to proceed is to make a statistical argument and point out that only
a small fraction of orbits are nearly face-on. If observed m, sini values are small
because m, is large but i is small, then we would expect there to be many other
systems where i and hence m;sini are larger. How many? In order for us to
misinterpret a stellar companion with mass M; as a planet less massive than Jupiter,
we would need

M
Mgsini <M; = l'§sin_1 (M])

s

The probability for this to occur is

sin™! (M /My)
Pr = / p(i) di
0

where p(i) = sini from Eq.(4.23). If there are Ny systems overall, and N,
systems in which we think the companion is a planet less massive than Jupiter,
then N/ Ny is given by this probability. Therefore we can compute

N, sin ™1 (M / M)
N = / sini di
tot 0

M
=1-—cos (sin_1 J)
M;
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Fig. 4.8 Transit light curve for HD 209458, from Hubble Space Telescope observations. The left
panel shows four individual eclipses (vertically offset for clarity), while the right panel shows all
events superimposed (Credit: Brown et al. [7]. Reproduced by permission of the AAS)

where in the last step we make a Taylor series expansion assuming M; < M.
If the true companion mass were My = Mg, then we would expect Nyt /N; =
2.2 x 10°, or more than a million times as many “stellar” companions as “planetary”
companions. Even if the true companion mass were as low as M, = 0.08 Mg
(which is the smallest mass we consider to be a star; see Chap. 16), we would still
expect N/ Ny = 14,000. In other words, if systems like 51 Peg were really stellar
binaries seen nearly face-on, there ought to be many more systems seen at moderate
inclinations with larger values of mjsini. The statistics suggested otherwise,
but the argument was indirect and did not actually prove that the objects are
planets.

4.3.2 Transiting Planets

Strong confirmation that some companions are in fact planets came with the
discovery of planets that cross in front of their stars and produce eclipsing binaries.
As we noted in Sect.4.2.4, seeing a transit proves that a system is very close to
edge-on, so sini A 1 and m; sini accurately represents the companion’s mass.
The first transiting planet found orbits a star called HD 209458 [5,6]. The eclipse
light curve, shown in Fig. 4.8, is more complicated than the simple flat-bottomed
curve sketched in Fig. 4.6. Previously we assumed the star was a flat, uniformly-
bright disk, but in fact it is a sphere emitting light isotropically and we receive more
light from the part of the surface that faces us and less light from the limbs. This
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Fig. 4.9 Schematic diagram of the HD 209458 eclipse (Credit: Brown et al. [7]. Reproduced by
permission of the AAS)

“limb darkening” effect can be incorporated into detailed models of the eclipse,
leading to the picture shown in Fig. 4.9.

Transits reveal the size of the planet, with the simplest analysis using just the
depth of the eclipse. The planet blocks a fraction of the star’s visible area given by

7R2 R\’
o= T ()
NRI R1

where R and R; are the radii of the star and planet, respectively. If we assume the
star is a uniform disk (again, not correct but reasonable for a simple estimate), then
fea 1s also the fraction of the star’s light that is blocked during the eclipse. Once
we see an eclipse, we can use the depth to measure the size of the planet in relation
to the size of the star. Then with an independent estimate of the star’s size we can
determine the planet’s actual size, which we can finally combine with the mass to
estimate the density. This is a big step toward understanding the physical properties
and compositions of exoplanets.
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Application to HD 209458
Let’s examine the numbers for HD 209458b> [8]. This is a system with both Doppler
and transit information, so we can use a joint analysis to learn a lot about the planet.

The star’s mass and radius are estimated to be

m; = 113 Mg = 2.25x 10¥kg
Ry = 1.16 Ry = 8.07x10°m

The orbital period and velocity amplitude for the star’s motion are

P =3.52day = 3.04x10°s
ky =84.7ms™!

(The orbital eccentricity is small and assumed to be 0.) From the motion we can
compute the mass of the companion:

[(2.25 x 103kg)? x (3.04 x 10°s)
~ L 27 x (6.67 x 10~ m3kg ' s72)
=1.31x 10" kg

=0.69 M,

1/3
} x 84.7ms™!

where we use sini & 1. Also, rearranging Kepler’s third law and approximating
my + my ~ m lets us find the semimajor axis, which is the distance of the planet
from the star:

GmlPZ 173
a =~
(555)

1/3
_ [(6.67 x 107 m3 kg™ s72) x (2.25 x 103 kg) x (3.04 x 10° s)2:| /

47?2

~ 7.06 x 10°m
~ 0.047 AU

5By convention, planets are named by appending letters starting with “b” to the name of the star.
For example, HD 209458b is a planet orbiting the star HD 209458.
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The eclipse depth is 1.46 %, so the planet’s size relative to the star is estimated to be

R
sz = (0.0146)'/* = 0.12
1

Factoring in the star’s size yields for the planet:
R, = 98x10'm = 1.4R,

Now combining the mass and radius lets us compute the mean density®

3l’)12

- = 340kgm™> = 0.34gcm™
4.7th £ £

P2 =

There are many things to say:

* The planet is roughly the mass and size of Jupiter, but is very close to its star.

* The density is much less than that of water, so the planet must be gaseous
(as opposed to a rocky world like Earth).

* The planet is less massive but larger than Jupiter. It appears to be “puffed up”
compared to Jupiter, presumably by heat from its star.

The discovery of large, massive planets very close to their stars—planets now called
hot Jupiters—came as an enormous surprise and posed a significant challenge to
theories of planet formation. In the traditional picture, which we will examine in
Sect. 19.4.2, planets close to a star are expected to be rocky (like the terrestrial
planets Mercury, Venus, Earth, and Mars in our Solar System) because it was too hot
near the star for planetesimals to accumulate much gas or ice. Only planets forming
farther from the star were able to collect volatile elements and grow much bigger.
It seems difficult to change that picture, so the idea has emerged that hot Jupiters
formed much farther from their stars than they are now, and then migrated inwards.
Understanding how this migration occurred is a hot topic (pardon the pun) in planet
formation theory.

4.3.3 Status of Exoplanet Research

Studies of exoplanets are advancing at an amazing rate. As of December 2013,
more than 400 planets have been detected by the Doppler technique. With sensitive
spectrographs it is now possible to measure star velocities as small as 0.25ms™!

SWe follow common practice and quote planet densities in CGS rather than MKS units because
densities are of order unity in gcm™3. For example, water has a density of 1 gcm™ at standard
temperature and pressure on Earth, while rocks and metals have densities of several g cm 3. Earth’s
average density is about 5.5 g cm™3.
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and thus to find planets with m sini values comparable to the mass of Earth [9].
Well-measured velocity curves can reveal complicated motion caused by multiple
planets; the most populous Doppler system found so far has at least five and perhaps
as many as seven planets [10]. At the same time, more than 250 planets have been
detected by the transit technique, along with some 2,500 more candidates from the
Kepler mission. Kepler’s precise transit measurements make it possible to discover
planets as small as Mercury [11], systems with as many as six planets [12], and even
planets orbiting binary stars [13, 14]. (Another technique for finding planets is based
on gravitational microlensing, which we will discuss in Sect.9.2.4.)

After finding planets, the next step is to characterize their physical properties.
As we saw with HD 209458b, measuring both mass and radius lets us use the mean
density to investigate the bulk composition. There seems to be a lot of diversity: for
example, the planet Kepler-10b has a mass of 4.6 Mg and a density of 8.8 gcm™,
suggesting that it is made of rock and metals [15], while Kepler-11e has a mass of
8.0 Mg and a density of 0.58 gcm ™3, suggesting that it has a significant amount of
light gas such as hydrogen and helium [12].

With transiting hot Jupiters we can investigate planetary atmospheres in some
detail.” For example, spectra taking during a transit can reveal absorption by atoms
and molecules when the star’s light passes through the planet’s atmosphere [16].
Infrared observations are sensitive to light emitted by hot planets. Most of time we
receive light from both the star and planet, but during the secondary eclipse (when
the planet goes behind the star; see Fig. 4.6) we receive light only from the star; we
can use the difference to determine the brightness and temperature of the planet.
We can even measure differences between daytime and nighttime temperatures and
then investigate how effectively winds and clouds distribute heat across the planet
[17, 18]. (For a more comprehensive review of work on exoplanet atmospheres,
see [19].)

There is broad interest in finding planets similar to Earth. We could think about
similarity in terms of mass, size, composition, etc., but perhaps the most tantalizing
aspect is the ability to host life. On Earth it seems that liquid water is important for
life, so we typically define the “habitable zone” around a star to be the region in
which water could exist in liquid form (see Chap. 13, especially Problem 13.7).
Kepler has found several planets that lie in the habitable zone and are between
40 and 140 % larger than Earth [20-22]. Their compositions are not known so
it remains to be seen whether these planets are like Earth, Venus, or something
altogether different. Nevertheless, it is remarkable to see how far exoplanet research
has advanced in less than two decades since 51 Peg b was discovered—and to think
that it all rests on the foundation of the gravitational two-body problem.

7We defer our own study of atmospheric physics to Chaps. 12 and 13; here we briefly summarize
recent work on exoplanets.
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Problems

4.1. Imagine that we see two visual binary systems with the orbits shown below
(x denotes the center of mass). One represents a system with elongated orbits
viewed face-on, while the other represents a system with circular orbits that are
inclined to our line of sight. How can you determine which is which?

4.2. Here are the orbits of two stars in a binary system, along with Doppler velocity
curves measured by an observer off to the left and in the plane of the orbits. (The
velocity units are not important for this question.)

ot

to I;Tarth

X
velocity
(=]

|
(S

0 02040608 1 0 02040608 1

time (fraction of a period)

(a) Which orbit corresponds to the more massive star? How do you know?

(b) Which velocity curve belongs to which star? How do you know?

(c) Consider the points on the velocity curve marked below. Sketch the correspond-
ing locations of the two stars on the orbits. Briefly explain your reasoning.
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4.3. Consider the following eclipse light curve for a star. How many planets does
the star have? What can you deduce about the relative sizes and orbital radii of the
planets?
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4.4. In a visual binary, we need to know the period (P), angular extent of the
semimajor axis (&), and distance (d) to determine the star masses (see Sect.4.2.2).
Often the main source of uncertainty is d. If our measurement of the distance is
d £ oy, the fractional uncertainty is f; = 0,/d.

(a) If the fractional uncertainty in the distance is f;, what is the corresponding
fractional uncertainty in the total mass of the binary system?

(b) The brightest star in our night sky, Sirius, is a visual binary system. The brighter
star has a4 = 2.5”, the fainter star has g = 5.0”, and the orbital period is
50.05 yr [23]. The distance to the Sirius system is 2.64 £ 0.01 pc. What are the
masses of Sirius A and B? What are the uncertainties in the masses?

(c) When we analyze stars orbiting the black hole at the center of the Milky Way
(Sect. 3.2.1), we are essentially studying a visual binary with one really massive
component. If our estimate of the distance to the center of the Milky Way is
8.33 + 0.35kpc [24], what is the fractional uncertainty in our estimate of the
black hole mass?

4.5. The binary system J0737—3039 has two pulsars orbiting with period P =
0.102 day and eccentricity e = 0.088 [25,26]. It is nearly edge-on, and the velocity
amplitudes are k; = 302.9kms™! and k, = 324.5kms~'. What are the masses of
the two pulsars? What is the distance between the pulsars?

4.6. Imagine that an alien astronomer observes Jupiter transiting the Sun. For this
problem, you may take Jupiter’s orbit to be circular and assume that Jupiter crosses
the center of the star and does not emit any light itself. Define time 7 = O to be the
middle of the eclipse.

(a) Plot the radial velocity curve the alien astronomer would measure, spanning at
least one period. Be quantitative; label the axes with appropriate units.

(b) Plot the eclipse light curve. Make sure to identify all phases of the eclipse and
quantify when each phase starts and ends. Also specify the depth of the eclipse
(as a fraction of the uneclipsed brightness of the Sun).

4.7. Show that the geometric probability for having a system oriented so that we
see a transiting planet is P &~ R./a where R, is the radius of the star and a is the
orbital separation. Hint: use a geometric argument similar to the one in Sect. 4.3.1.



References 77

4.8. The Kepler space mission is searching for Earth-like planets using the transit
technique.

(a)

(b)

(©)

(d)

Kepler is observing about 100,000 stars. If every one is just like the Sun, with
an Earth orbiting at 1 AU, how many would show transits? Use the probability
from Problem 4.7

Imagine that Kepler discovers a system that is an exact analog to our Solar
System: “New Earth” orbiting “New Sol.” How deep is the transit? How long
does each transit last? Assume the planet crosses the center of the star.

The reactionary group Just One Earth disputes the notion that “New Earth” is
a planet and argues that it is a white dwarf instead. A white dwarf is about the
same size as Earth but much more massive (Mwp &~ 0.6 Mg). Calculate New
Sol’s radial velocity amplitude for the cases in which New Earth is (i) a planet,
or (ii) a white dwarf. (Keep the orbital period the same.)

We can now make radial velocity measurements with uncertainties of about
40 cms™!. Could we tell whether New Earth is a planet or a white dwarf?

4.9. Kepler has found some planets that orbit binary star systems. The presence of
two stars complicates the motion (see Chap. 6), but not too much if the planetary
orbit is large compared with the stellar orbits. (In this problem, assume the stars and
planet all move in the same plane.)

(a)

(b)

Consider a coordinate system with the binary center of mass at the origin and
the two stars on the x-axis. Let the semimajor axis of the binary orbit be a,,.
Use a Taylor series expansion to show that the gravitational potential far from
the stars can be written in polar coordinates (r, ¢) as

D =~

G(M, + My) GMM, a? 1+30052¢+ﬁ 1
r My + M, r3 4

star
ﬁ) (4.29)

Equation (4.29) indicates that a circumbinary orbit will be approximately
Keplerian, with deviations that scale with the ratio (@,/ aplane[)z where apjanet
is the semimajor axis of the planetary orbit (in the Keplerian approximation).
Compute this ratio for the Kepler-16 system [13]. The two stars have velocity
amplitudes 13.7 and 46.5kms™', and their orbit has period 41.1day and
eccentricity 0.16. The planet has a nearly circular orbit with period 228.8 day.
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Chapter 5
Tidal Forces

Most of our analysis so far has used point masses. Now we ask whether the sizes of
objects affect their gravitational interaction. For the source of gravity, size does not
matter if the object is spherically symmetric (see Sect. 2.3). For the farget of gravity,
however, size does matter because gravity pulls harder on one side of the object than
on the other. Newton studied this problem and realized that variations in the Moon’s
gravity across Earth’s surface would “squeeze” the oceans and create the tides. This
phenomenon is therefore known as the tidal force, and it has a variety of interesting
consequences.

5.1 Derivation of the Tidal Force

Consider the gravitational force on an object of radius R from an object of mass
M a distance r away (see Fig.5.1). To use specific terminology, let’s say the target
of gravity is a planet and the source of gravity is a moon (later we will reverse
the picture). Let’s also say the moon lies in the planet’s equatorial plane; while
this is not quite correct for the Earth/Moon system, it allows us to use familiar
geographic terms like equator, poles, and latitude. In this analysis we work in the
plane containing the moon as well as the center and poles of the planet; everything
else can be obtained by rotating around the line between the planet and moon.
Since the force of gravity scales as 1/r2, the side of planet that faces the moon
feels a stronger force than the side of the planet away from the moon. The force on
the center of planet causes the planet as a whole to move (orbiting the center of mass
of the planet/moon system), so what creates the tidal force is the difference between
the force at the surface and the force at the center. This differential force pulls “up”
(relative to the planet’s surface) near the equator and “down” near the poles.
Consider a small object of mass m on the surface at latitude #. We draw the
triangle shown in Fig. 5.1, and call s the length of the third side while « is the other

C. Keeton, Principles of Astrophysics: Using Gravity and Stellar Physics to Explore 79
the Cosmos, Undergraduate Lecture Notes in Physics, DOI 10.1007/978-1-4614-9236-8_5,
© Springer Science+Business Media New York 2014
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Fig. 5.1 The strength and direction of the gravitational force from the source on the right are
denoted with arrows. Gravity varies across the surface of the planet, leading to a tidal force. The
dashed lines indicate the geometry we use to analyze the tidal force at the position indicated by [J

angle. These are important because s and o determine the strength and direction
of the gravitational force, respectively. Specifically, the gravitational force from the
moon on the small object m is

GMm
§2

F(0) = (cosa X —sina ¥)

We would like to rewrite this in terms of coordinates on the planet (i.e., R and 0).
As we saw with a similar analysis in Sect. 2.3, trigonometric identities let us write

s> =r* (1 + £ —2&cosb)

. £sin 6
sina =
“ (1 + &2 —2Ecosh)!/2
1—&cosf
cosa =

(1 + £2 —2Ecos0)1/2
where we introduce £ = R/r. We can then write the force as
GMm (1 —&cos@)x—Esinfy

r2 (14§ —2&cosh)3/?

~ G%m [(1+26cosO)k—Esinb §+ O (€7)]

F(0) =

where we do a Taylor series expansion in & because we expect this ratio to be small
for many planet/moon systems. We have found the force at the surface of the planet.
For comparison, the force at the center of the planet is

GMm |
F0= mX

72
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Fig. 5.2 The arrows indicate e T ...

the direction and amplitude of - ~ .
the tidal force AF / \
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The tidal force is the difference,

Mm
2

AF(H) = F(9) —Fy ~ ¢ [26 cosO X — Esin6 § + O (£7)]

Since the X and ¥ components are both linear in &, we can pull this factor out front
and write

GMmR R
AF(9) ~ r;n |:2cosé X—sinfy+ 0 (7)} (5.1)

This is the general form of the tidal force on an object of size R that is a distance r
away from the source of gravity (in the approximation R/r < 1). The geometry is
shown in Fig.5.2.

It is useful to consider the components of AF relative to directions on the planet.
The component perpendicular to the surface (“vertical”) is

~

AFy = AF-R
= GM;HR(ZCOSG)A(—sinG)A')-(cos@f&—i—sin@i')
,
= G]\;ISmR (2cos® 6 — sin 6)
- GﬂmeR (3cos?0 — 1) (5.2)

The component parallel to the surface (“horizontal”) is

AFyoriz = AF -8
GMmR s PN N
= <2c039x—sm9y)-(—sm@x—i—cos@y)
GMmR
3

= -3 sin @ cos 0 (5.3)
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Given the sign convention that 0 points “north,” the horizontal force A Fj,oi, always
points toward the equator. Here are a few additional notes:

e The maximum “pull up” (at the equator) is twice the maximum “push down”
(at the poles).

* The horizontal component of the tidal force is largest at midlatitudes.

» Relative to the surface (i.e., in terms of vertical and horizontal components), the
tidal force is the same on the near and far sides of the planet.

e The maximum strength of the tidal force occurs along the line between the
objects and is given by

2GMmR

AFmax = 3

5.2 Effects of Tidal Forces

Since the strength scales as AF o« R/r?, the tidal force is important for large
objects that are near the source of gravity. There are variety of systems in which
tidal forces play an interesting role.

5.2.1 Earth/Moon

Like Newton, we first consider the Earth. We mentioned tidal forces from the Moon,
but in principle there could be tidal forces from the Sun as well. Which are more
important on Earth? The maximum tidal force from each is

2GMomR 2GMyioonm R
3—@m and A Fyoo, = ;"[—m

T'Sun "Moon

A}:Sun =

The ratio is

AFvoon  Myioon ( Tswn \© _ 7.35x102kg (150 x 10" m* -
AFsw Mo T 1.99x 103%kg \ 3.84x 108m ] — 7

'Moon

Although the Moon is much less massive than the Sun, it is so much closer that
it exerts the stronger tidal force. Nevertheless, the Sun’s effect is not negligible.
It modulates the height of tides induced by the Moon, sometimes creating high tides
that are higher than average (known as “spring tides”) or low tides that are lower
than average (“neap tides”; see Problem 5.1).

How does the tidal force from the Moon compare with Earth’s own gravity? Let’s
consider the maximum vertical component of the tidal force:
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Another way to think about this is that the maximum tidal force from the Moon
would create an acceleration of just 1.1 x 107% m s~2 in the vertical direction. Thus,
the vertical component of the tidal force would be very difficult to detect against the
backdrop of the Earth’s gravity.

The horizontal component of the tidal force is a different story, though. Earth’s
own gravity has a tangential component only to the extent that Earth is not a
perfect sphere, which is a small effect. The horizontal tidal force therefore has little
opposition beyond the rigidity of material on Earth’s surface. It acts on water in
the oceans (which, after all, is fluid rather than rigid) to create tidal “bulges” on the
near and far sides of Earth (relative to the Moon). Analyzing ocean tides in detail
requires advanced material, such as fluid dynamics on a rotating surface, but we can
still understand several notable features.

As Earth rotates through the tidal bulges, we see two high tides and two low
tides each day. Shore dwellers know the cycle of tides actually lasts longer than
1 day (almost 25 h) because a point on Earth’s surface must complete a little more
than one full rotation to “catch up” with the Moon moving in its own orbit. Also,
friction between rock and water slows Earth’s rotation; the length of the day is
increasing at a rate of few milliseconds per century. While this effect is small, it
can be measured using historical records of eclipse timing [1] as well as geological
records of sedimentation that is influenced by tides [2].

As Earth’s spin slows, its rotational angular momentum decreases; to keep total
angular momentum conserved, the Moon drifts farther away at a rate of about 4 cm
per year. We can measure this by timing how long it takes laser pulses to travel out
to the Moon and back to Earth, reflecting off mirrors left on the Moon by Apollo
astronauts [3]. The changes to Earth’s rotation and the Moon’s orbit will cease only
when Earth’s rotation period equals the Moon’s orbital period, i.e., when the Earth
and Moon are in synchronous rotation. At that point we would say Earth is tidally
locked with the Moon (although we are unlikely to get there because it would take
longer than the lifetime of the Sun).

So far we have considered the Moon’s effect on Earth, but we can invert the
picture and consider the tidal force on the Moon created by gravity from Earth.
How do the forces compare? As we have seen, the maximum tidal force on Earth
from the Moon is

2GMMoonn’lREarth

3
r Moon

AFon Earth =
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while the maximum tidal force on the Moon from Earth is

2G Mgy Rnmoon
A}:on Moon = M (54)
rMoon
The ratio is
AFOH Moon MEarthRMoon _ (597 X 1024 kg) X (174 X 106 m) 222

AFon tath  MwioonRean  (7.35 x 102kg) x (6.38 x 10°m)

The tidal force on the Moon is strong enough to raise tidal bulges in the rock itself.
The rotational deceleration has been so strong that the Moon is already tidally locked
with Earth, which explains why we always see the same face of the Moon.

5.2.2 Jupiter’s Moon Io

Another system that displays fascinating tidal phenomena is Jupiter and its moon
To. Let’s examine the tidal force from Jupiter on Io,

ZGM_]umeIO

3
rIo

AFon[o =

and use the tidal force from Earth on our Moon (Eq. 5.4) as a reference point. Here
are the numbers we need to make the comparison:

Mplanel (kg) Rmoon (kIIl) r (km)
Moon 5.97 x 10%* 1,737 3.84 x 10°
Io 1.90 x 10?7 1,821 4.22 x 10°

Io and the Moon are fairly similar in terms of their size and distance from the
planet, but of course Io’s planet is much more massive than the Moon’s planet. That
causes the ratio of tidal forces to be

A}:on Moon MEarth RMoon Tlo

Ao 1o _ MJup Ry, ("Moon)3 — 250

Tidal effects are much stronger on Io than on the Moon. They have caused Io to be
tidally locked with Jupiter.

Io’s orbit is slightly eccentric, with e = 0.0041. This may not seem like a lot,
but it means Io’s distance varies by 0.8 % between pericenter and apocenter, which
translates into a 2.4 % change in the strength of the tidal force. This may not seem
like a lot either, but 2.4 % of a strong tidal force is significant. Plus, the variation
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happens over the course of Io’s orbital period, which is just 1.8 days. In essence, Io
has been flexing every few days for more than 4 billion years, creating a significant
amount of internal heat from friction' [4]. The cumulative heating has been strong
enough to create volcanoes that have been observed by several spacecraft visiting
Jupiter and its moons [5, 6]. The volcanoes on Io are perhaps the most striking
manifestation of the amount of energy associated with tidal forces.

5.2.3 Extrasolar Planets

Tidal forces can be relevant for planets as well—especially hot Jupiters, since they
are large and close to their stars. One interesting case is the planet that transits HD
209458 (see Sect. 4.3.2). Careful observations have shown that gas is escaping from
the planet [7]. Heat from the star allows some of the gas molecules to exceed the
planet’s escape velocity (see Chap. 12 for more discussion), but the tidal force from
the star contributes by helping to counteract the planet’s gravity.

Many hot Jupiters are expected to be tidally locked to their stars. While direct
evidence is difficult to obtain, there is indirect evidence for tidal locking from studies
that examine how heat from a star is distributed across a planet by atmospheric
circulation [8,9]. It is even conceivable that a star could be tidally locked to a planet.
This may be the case for Tau Bodtis: the rotation period of the star (measured from
flux variability) is consistent with the orbital period of its planet [10, 11].

5.3 Tidal Disruption

When the tidal force from a planet pulls “up” on a moon’s surface, it acts against the
moon’s self gravity. If the tidal force gets strong enough, it could actually tear the
moon apart. To estimate when this occurs, let’s adopt a simple criterion: if the tidal
force “up” at the equator exceeds the gravitational force “down,” the surface will be
ripped off. (We remark on a more realistic criterion below.)

Consider a moon with mass M, and radius R,,, which is orbiting a planet with
mass M, and radius R,. Suppose the moon is a distance r from the planet. As we
have seen, the tidal force up at the equator of the moon is

2GM,mR
Fign = ——5——
r
while the gravitational force down is
GM,,;m
F, grav — R,%l

!'Think of repeatedly bending a paper clip back and forth.
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According to the simple criterion we are using, tidal disruption will occur when
Fgrav 5 Flidab or
GM,,m < 2GM,mR,,
R~ r3

M
r <2 M—f’ R}
Ppr 53
<2 ,O_m R,
where we switch from mass to mean density using M = (4/3)wR?p. We find that
the moon will be torn apart if it gets closer than

P 1/3
r< (2 —") R, (5.5)
Jo

Notice that the threshold depends on the density of the moon, but not its size.

The preceding analysis applies to a moon that is rigid enough to maintain
its shape as it is peeled away layer by layer. Edouard Roche considered a more
general scenario in which the moon gets distorted even before it is disrupted. Tidal
distortion stretches the moon in the radial direction (relative to the planet), which
enhances the difference between the surface and center of the moon and causes
disruption to occur at a somewhat larger distance from the planet. Roche found that
a loosely bound moon would be disrupted when

P 1/3
r<24 (—”) R, (5.6)

Pm

This condition is now called the Roche limit. The most conspicuous consequence
of tidal disruption is Saturn’s rings. You can explore this idea and some other
interesting scenarios in the problems below.

Problems

5.1. Spring tides occur when the Sun is oriented in a way that reinforces the Moon’s
tidal force, while neap tides occur when the Sun partially cancels the Moon’s effect.
Sketch the arrangements of the Earth, Moon, and Sun that lead to spring and neap
tides.

5.2. Saturn has mass 5.7 x 10* kg and radius 60,300 km.

(a) Find an image of Saturn and estimate the radius of the outer edge of the rings,
in units of Saturn’s radius.
(b) Compute Saturn’s average mass density.
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(c) What is the minimum density that a moon of Saturn orbiting at the outer edge
of the rings must have to resist tidal disruption?

(d) Itisthoughtthat Saturn’s rings are composed of bodies made of water ice. Is this
consistent with your answer from part (c)?

5.3. Neptune has mass 1.02 x 106 kg and radius 24,764 km. Its moon Triton has
mass 2.14 x 10?2 kg, radius 1,353 km, and orbital period 5.88 day. Triton’s orbit is
“backwards” (retrograde) relative to Neptune’s spin, so tidal forces are causing the
orbit to shrink. Simulations predict that Triton will cross Neptune’s Roche limit in
a few billion years [12].

(a) Where is the Roche limit for the Neptune/Triton system?
(b) Assuming Triton will reach the Roche limit in 2 billion years, approximately
how fast is its orbit shrinking?

5.4. You may have heard that a person falling feet-first into a black hole would be
stretched out by the tidal force, in a process affectionately called “spaghettification.”
But would the effect actually be dramatic? Let’s consider:

(a) Use scaling relations to determine whether the tidal force at the event horizon
gets stronger or weaker as the black hole mass increases.

(b) It seems reasonable to say that we would “feel” the stretching only if the tidal
acceleration exceeds the familiar acceleration due to gravity on Earth. Find
the black hole mass that would produce such a tidal acceleration at the event
horizon.

(c) Use your results from (a) and (b) to say whether we would be spaghettified by
the black hole at the center of the Milky Way.

(d) What about by the black hole in the binary system M33-X7 (M ~ 16 My)?

5.5. In 1994 the comet Shoemaker-Levy 9 collided with Jupiter. The comet was
actually a set of fragments that hit Jupiter one after the other, producing a series
of explosions that visibly scarred the planet. Why fragments? It is believed that the
comet had been tidally disrupted during a previous close pass by Jupiter (probably
in 1992). How close must the comet have come to Jupiter?

5.6. Suppose an asteroid is headed straight for Earth. People have talked about
using a rocket or bomb to divert the asteroid. You need not only to prevent a
collision, but also to avoid having the asteroid be tidally disrupted. (Creating a bunch
of asteroid rubble around Earth would be no good!) If you reach the asteroid when
it is 1 AU from Earth, how much “sideways” velocity would you need to impart?
How about if you reach it when it is 384,000km from Earth (the same distance as
the Moon)?

You may assume the Earth and asteroid form an isolated system; in other words,
you can neglect the effects of the Moon, the Sun, and everything else in the Solar
System. You may assume the asteroid started from rest infinitely far from Earth.

Hint: think about the trajectory the asteroid will follow once you have diverted
it, and about energy and angular momentum.



88

R

AN AW =

11
12

5 Tidal Forces

eferences

. ER. Stephenson, Astron. Geophys. 44(2), 2.22 (2003)

. G.E. Williams, Rev. Geophys. 38, 37 (2000)

. J.O. Dickey et al., Science 265(5171), 482 (1994)

. S.J. Peale, P. Cassen, R.T. Reynolds, Science 203, 892 (1979)

. L.A. Morabito, S.P. Synnott, PN. Kupferman, S.A. Collins, Science 204, 972 (1979)

. D.A. Williams, L.P. Keszthelyi, D.A. Crown, J.A. Yff, W.L. Jaeger, PM. Schenk, P.E. Geissler,
T.L. Becker, Icarus 214, 91 (2011)

. A. Vidal-Madjar, A. Lecavelier des Etangs, J.M. Désert, G.E. Ballester, R. Ferlet, G. Hébrard,
M. Mayor, Nature 422, 143 (2003)

. H.A. Knutson, D. Charbonneau, L.E. Allen, J.J. Fortney, E. Agol, N.B. Cowan, A.P. Showman,
C.S. Cooper, S.T. Megeath, Nature 447, 183 (2007)

. S. Faigler, L. Tal-Or, T. Mazeh, D.W. Latham, L.A. Buchhave, Astrophys. J. 771, 26 (2013)

. S.L. Baliunas, G.W. Henry, R.A. Donahue, F.C. Fekel, W.H. Soon, Astrophys. J. Lett. 474,
L119 (1997)

. R.P. Butler, G.W. Marcy, E. Williams, H. Hauser, P. Shirts, Astrophys. J. Lett. 474, L115 (1997)

. C.E Chyba, D.G. Jankowski, P.D. Nicholson, Astron. Astrophys. 219, L23 (1989)



Chapter 6
Gravitational Three-Body Problem

After solving the one- and two-body problems, generalizing to the three-body
problem should be easy, right? No! In fact, it was the gravitational three-body
problem that led Henri Poincaré to discover dynamical “chaos” [1]. Some systems
are so sensitive to initial conditions that a tiny shift today can dramatically change
the long-term behavior. The Solar System is actually an example: despite being
well-approximated by the two-body problem, planetary motion is formally chaotic
because of gravitational interactions among planets [2]. We cannot solve the three-
body problem in general, but we can gain valuable insights from two cases that are
simplified but still relevant for systems ranging from satellites near Earth to planets
around distant stars.

6.1 Two “Stars’ and One “Planet”

First consider a three-body problem in which two of the objects are much more
massive than the third. Let’s use the language of a “planet” (mass m) moving around
two “stars” (masses M| and M5), although we will examine a variety of systems.
We assume m < M, M, so the planet does not affect the stars’ motion. Let’s
further assume the stars have circular orbits, and the planet moves in their orbital
plane. This is clearly a restricted version of the three-body problem, but it is one
that has some interesting applications.

6.1.1 Theory: Lagrange Points

To analyze this problem, it is convenient to work in a reference frame that rotates
at the same angular frequency as the stars so we can keep the stars fixed and focus
on the planet. We have to be careful, though, because Newton’s laws in their usual

C. Keeton, Principles of Astrophysics: Using Gravity and Stellar Physics to Explore 89
the Cosmos, Undergraduate Lecture Notes in Physics, DOI 10.1007/978-1-4614-9236-8_6,
© Springer Science+Business Media New York 2014



90 6 Gravitational Three-Body Problem

form hold only in an inertial (i.e., non-rotating) reference frame. In Sect. A.3 we
find that acceleration measured in a rotating reference frame (ay) is related to
acceleration measured in a fixed reference frame (afgyeq) via

dQ
aﬁxed=arot+QX(QXl')+ZQXVrO[+EXI‘

where €2 is a vector that points along the rotation axis and has an amplitude equal to
the rotational frequency w = 27/ P. Newton’s second law relates the true force to
the acceleration in the fixed frame: Fyue = m agxeq. We can retain the form of this
law in the rotating frame if we define an effective force such that Fegr = m ayo.
Clearly we need

dQ
Fefszmle—mQx(er)—Zmvarm—mExr (6.1)

The second term is known as the centrifugal force, and it is what you feel “pulling”
you outward on a merry-go-round. The third term is known as the Coriolis force,
and it is important for systems like airplanes and weather moving around the
rotating Earth. The fourth term is known as the Euler force, and it applies only
if the rotation rate is not uniform; it vanishes for problems like ours in which €2 is
constant.

It is important to remember that these are not real forces; they are just
consequences of working in a rotating reference frame, and are sometimes called
“fictitious forces.” Nevertheless, they do need to be taken into account when
working in a rotating frame.!

With the planet’s motion restricted to the orbital plane of the stars, r is
perpendicular to  and the centrifugal force simplifies:  x (2 x r) = —w’r.
If we neglect the Coriolis force (because it depends on the speed of the planet and
is generally small for the systems we consider), then the effective force is

2
Feff = Fyye + mo’r

The associated potential energy is

2 1 2.2
Ut = — | Fegp-dr = — | Fype rdr— | mo“r-dr = Ume—zma) r

(In principle there is a constant of integration, but it only affects the unobservable
zeropoint of the potential.) We know Uy for the two stars (see Eq.2.12), so we can
write down the effective potential,

! And they certainly don’t feel fictitious when you make a sharp, fast turn in a car!
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Fig. 6.1 Contour plot of the effective potential for a restricted three-body problem in which the
primary objects have a 2:1 mass ratio. The Lagrange points are labeled; L, L,, and L3 are saddle
points, while L, and Ls are local maxima. Contours are chosen to pass through L;—Lj. The
two small dots mark the primary masses; they are surrounded by white regions only because the
grayscale does not capture the divergence @y — —00 near M; and M,

U GM GM 1
By = —0 = - T7L T2 22 (6.2)
m r—ry] |r—r] 2

This function is plotted in Fig. 6.1 for an illustrative example. Since @y is a function
in two dimensions, it can have three types of critical points where the derivatives
vanish: local minima, local maxima, and saddle points. In the restricted three-
body problem, the effective potential has three saddle points, which all lie on the
line joining the two stars, and two local maxima, which make equilateral triangles
with the two stars (regardless of the stars’ masses; see Problem 6.3). These are
collectively known as Lagrange points after Joseph-Louis Lagrange, and they are
labeled as follows:

e [ ,: between the two stars

e L,: “behind” the less massive star
¢ L3: “behind” the more massive star
e L4/Ls: leading/trailing by 60°

Formally, the saddle points L;—L3 are unstable equilibria: a particle at rest can stay
put, but any little nudge will cause it to roll away. It is possible, though, to find small
orbits around L, L,, or L3 [3]. Despite being local maxima, L4 and L5 turn out to
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Fig. 6.2 Locations of known asteroids in the inner Solar System. Main belt asteroids are shown
in white, while Trojan asteroids associated with Jupiter are colored green. The Trojans are divided
into the “Trojan” and “Greek” camps (Credit: Wikimedia Commons)

be stable equilibria if the mass ratio is M/ M, > 24.96. The analysis of stability
involves the Coriolis force, which goes beyond the level of detail we are considering
here [4].

6.1.2 Applications

Lagrange points are important for natural and artificial objects in our own Solar
System, and for certain types of binary star systems as well.

Sometimes we want to place a satellite away from Earth but in a location where
it will not drift off. The Lagrange points for the Sun/Earth system are natural
choices. Several satellites observing the Sun, including the Solar and Heliospheric
Observatory, are at L;. Several telescopes, including the Wilkinson Microwave
Anisotropy Probe and the Planck spacecraft (both observing the Cosmic Microwave
Background radiation; see Sect. 20.1), are at L.

The L4 and Ls Lagrange points of the Sun/Jupiter system host a few thousand
asteroids collectively known as “Trojan” asteroids (see Fig.6.2). These objects
are not actually fixed at L4 or Ls; they move in sizable regions but are trapped in
stable orbits around the Lagrange points (again, see [4] for more about stability).
There are also some Trojan asteroids associated with Neptune, Mars, and even
Earth [5].
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Fig. 6.3 If one component of a binary (gray) expands and fills its Roche lobe (middle), mass can
flow out and envelop the companion (right). Here the dashed line shows the effective potential
contour that passes through the Lagrange point L

The Lagrange point L; plays a prominent role in binary systems with two stars
close together. If one star puffs up (for example, when it becomes a red giant; see
Sect. 16.3), then matter near the surface might actually feel stronger gravity from
the companion than from its own star. In that case mass can begin to flow from one
star to the other. The equipotential contour running through L; marks the transition
zone, which we call the Roche lobe. This scenario, which is pictured in Fig. 6.3, can
have several consequences:

* Accretion. To conserve angular momentum, the transferred matter often settles
into a disk around the second star and then slowly spirals in.

* Energy release. When matter drops from L; onto the accretion disk or star,
potential energy is converted into kinetic energy, which is further converted into
heat and light; we can observe X-rays from accretion onto neutron stars and black
holes.

* Nova. If the second star is a white dwarf, hydrogen can accumulate and heat up
to the point that nuclear fusion occurs on the surface; this can make the system
much brighter for a few weeks or months, in a phenomenon we call a nova.

* Supernova. If enough mass accumulates on a white dwarf, it can carry the white
dwarf over the “Chandrasekhar limit” of about 1.4 Mg (see Sect.17.2) and
cause the white dwarf to explode as a Type la supernova; these objects have
become important probes of the expanding universe (see Sect. 18.2).

6.2 One “Planet” and Two “Moons”

Now consider a different limit in which one object far outweighs the other two
(M > m,,m3). This limit can describe a variety of systems, but we will initially
use the language of a “planet” with two “moons.”
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I

Fig. 6.4 The top row shows four successive points of closest approach for two bodies in a 2:1
orbital resonance. At each snapshot in time, the dots show the positions of the two bodies, and the
arrow indicates the direction of the force exerted by the outer body on the inner body. The bottom
row show a case that is not in resonance, with a frequency ratio of 2.2:1

6.2.1 Theory: Resonances

The planet dominates the gravitational field and keeps the moons moving in
Keplerian orbits, but whenever the moons approach one another they exchange a
small gravitational “kick.” In general, the kicks occur at different locations in the
orbits, so they have different directions and tend to average out over time (see the
bottom row of Fig. 6.4). Suppose, however, that the inner moon completes exactly
two orbits while the outer moon completes one:

1
PzZEPS & wr =2ws

In this case the kicks happen at the same place in the orbit and in the same
direction (see the top row of Fig. 6.4) so they tend to add up over time. Any integer
combination of orbits can likewise let the gravitational kicks combine coherently.
If the inner moon goes around m times®> while the outer moon goes around 7
times, then

mPy, =nPs < — =
w3

w? m

n
and we call this an m:n resonance (for example, a 2:1 resonance, 3:2 resonance,
etc.). In any single orbit the gravity between the moons is weak compared with the
gravity from the planet, but the accumulated perturbations can have some interesting
consequences.

2Here we briefly use m as an integer, not a mass.
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Fig. 6.5 Orbital properties of objects in the outer Solar System. Different colors indicate different
classes of objects; we focus on the blue points, which are in orbital resonances with Neptune. The
dashed line marks the semimajor axis of Neptune; the solid curves indicate orbits whose perihelion
is interior to the semimajor axis of Neptune (upper curve) or Pluto (lower curve) (Credit: David
Jewitt, UCLA)

6.2.2 Applications

One effect of orbital resonances is to lock groups of objects into related orbits.
We see this in the Jupiter system; here are the orbital periods and frequencies for
three of the moons that Galileo discovered:

P (day)  (day™")
Io 1.769 3.552
Europa 3.551 1.769
Ganymede 7.155 0.878

These moons are in a joint 4:2:1 resonance. The mutual gravitational interaction
causes lo’s orbit to be more elongated than it would have been otherwise, which
couples with the tidal force from Jupiter (Sect. 5.2.2) to make Io the most geolog-
ically active body in the Solar System. We also see resonances in the outer Solar
System. Figure 6.5 shows the distribution of semimajor axes and eccentricies for
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known “trans-Neptunian objects.” There are notable groupings of objects in 1:1,
4:3, 3:2, and 2:1 resonances with Neptune. (Pluto is part of the group in the 3:2
resonance.)

We might ask how objects come to be in resonance. With the trans-Neptunian
objects, an intriguing possibility is that Neptune migrated outward during the planet
formation process, causing the location of the resonance to travel outward as well.
If the moving resonance captured an object like Pluto, the gravitational interaction
would have caused Pluto to migrate such that it remained trapped in resonance [6].
In this way Neptune’s migration may have swept a number of objects into resonance.
Ongoing research is examining whether a similar process happened among Jupiter’s
moons to create the resonance between lo, Europa, and Ganymede [7].

In a complementary action, resonances can also clear gaps in extended structures.
One example is the dark band called the Cassini division in Saturn’s rings.
Objects cannot stay in this region because they would be in resonance with one
of Saturn’s moons (see Problem 6.5); the gravitational kicks would elongate the
orbit, move the apocenter into the outer ring, and cause these objects to collide with
other ring constituents [8]. Another example involves asteroids that lie in the “main
belt” between the orbits of Mars and Jupiter. While the distribution of positions
in space looks fairly continuous (Fig. 6.2), the distribution of semimajor axes has
conspicuous dips at certain values (notably 2.5 and 3.3 AU; see Fig. 6.6).> These
Kirkwood gaps are associated with Jupiter resonances (especially 3:1, 3:2, and
7:3). Even the outer edge of the asteroid belt seems to have been sculpted by a 2:1
resonance with Jupiter.

Problems

6.1. A staple of science fiction is the idea that you could spin a spaceship or space
station so that the centrifugal force simulates gravity. How fast would a spaceship
with a radius of 10 m have to spin to mimic the gravity on the surface of Earth? How
about a space station with a radius of 100 m?

6.2. There are a few known three-body solutions beyond the restricted three-body
problem and resonances. Lagrange found a solution with the three bodies forming
an equilateral triangle. For this problem, assume the masses are the same.

(a) If the initial velocities are zero, what will happen to the system? Estimate how
long it takes the system to reach its final state.

(b) Find the rotational velocity required to balance the gravitational attraction and
keep the masses moving along a circular obit.

3You might ask why the Kirkwood gaps are not apparent in a snapshot of positions in space. Since
asteroid orbits can be moderately elliptical, an asteroid with a given semimajor axis can be found
at a range of radii. The gaps in a plot of semimajor axis get smeared out in a plot of position.
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Fig. 6.6 Distribution of semimajor axes for main-belt asteroids. The “Kirkwood gaps” in the
distribution coincide with orbital resonances with Jupiter (dashed lines) (Credit: NASA/JPL-
Caltech)

(c) Is the circular rotating configuration stable? Give a qualitative description of
what happens if the velocity is slightly larger or smaller than the “critical”
velocity from part (b), or if one of the masses moves slightly inward or outward.

6.3. Consider the restricted three-body problem from Sect.6.1. Let’s show that
Fer = 0 at the Lagrange point L4. Recall that L4 makes an equilateral triangle
with the two masses.

(a) What is the net gravitational force on a particle of mass m at L4? Work in
Cartesian coordinates, and express your answer in terms of M, M, and a.

(b) Convert the result from part (a) into polar coordinates centered on the M/M,
center of mass. You should find that the force is radial.

(c) Compute the centrifugal force at L4 in terms of M, M,, and a. Hint: use
Kepler’s laws to find w.

(d) Show that the effective force vanishes at L.

6.4. Here is a way to find the locations of closest approach for two orbiting bodies.
Consider a planet going around a star in a circular orbit. Its phase angle increases
steadily with time, going from 0° to 360° in one period, then jumping back down to
0° and repeating. If the orbital period is 1 yr, the plot looks like this:
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(a) Overplot the phase angle for a planet in a 2:1 resonance with the first. Show that
the closest approaches always occur at the same phase (top row of Fig. 6.4).

(b) Now consider a frequency ratio of 2.2:1. Show that the closest approaches do
not occur at the same phase (bottom row of Fig. 6.4).

(c) What does a 3:1 resonance look like? Show both the phase plot and the closest
approach configurations.

6.5. The Cassini division is approximately 118,000km from the center of Saturn.
Below are the orbital radii of some of Saturn’s major moons. Which one is
responsible for the Cassini division? How do you know? (Hint: you do not explicitly
need the orbital periods.)

Mimas 185,000 km
Enceladus 238,000 km
Tethys 295,000 km
Dione 377,000 km
Rhea 527,000 km
Titan 1,222,000 km
lapetus 3,560,000 km

6.6. How common are resonances between planets in extrasolar planetary systems?
Use exoplanet data available online to look for resonances.
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Chapter 7
Extended Mass Distributions: Spiral Galaxies

There is much to say about galaxies,! but with our current theme we focus on
motion and mass. The stars in a galaxy are always moving, but the sheer number of
them means the galaxy’s overall mass distribution hardly changes with time.? To a
good approximation we can take the mass distribution to be static, which makes
the gravitational force static and effectively puts us back in the realm of the one-
body problem. The difference now is that the mass distribution is spatially extended,
which affects the gravitational force and therefore the motion.

7.1 Galaxy Properties

Before we analyze the action, let’s set the stage by reviewing the general properties
of galaxies. Observed galaxies generally fall into three categories (see Fig.7.1 for
examples):

* Spiral galaxies contain stars, gas, and dust that is mostly confined to a thin,
rotating disk, although some of the mass may lie in a central bulge. Spiral arms
run through the disk, and a straight “bar” may or may not be present in the middle.

» Elliptical galaxies contain mostly stars (little gas or dust) in a smooth, feature-
less, ellipsoidal distribution of light.

» Irregular galaxies include everything that is not spiral or elliptical.

Edwin Hubble introduced an organizational scheme known as the “tuning fork”
diagram, which is shown in Fig.7.2. Elliptical galaxies are placed on the left and
classified by their degree of flattening. Spiral galaxies are divided into barred and

!'See the book by Sparke and Gallagher [1] for a more thorough discussion of galaxies.

2Unless the galaxy is undergoing some dramatic event such as a collision. We will examine
interactions between galaxies in Sect. 8.3.

C. Keeton, Principles of Astrophysics: Using Gravity and Stellar Physics to Explore 99
the Cosmos, Undergraduate Lecture Notes in Physics, DOI 10.1007/978-1-4614-9236-8_7,
© Springer Science+Business Media New York 2014
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Fig. 7.1 (Left) Spiral galaxy M101 (Credit: NASA, ESA, K. Kuntz (JHU), F. Bresolin (University
of Hawaii), J. Trauger (Jet Propulsion Lab), J. Mould (NOAO), Y.-H. Chu (University of Illinois,
Urbana), and STScl). (Right) Elliptical galaxy NGC 4458 (Credit: NASA, ESA, and E. Peng
(Peking University, Beijing))

The Hubble
Tuning Fork

S0

Ellipticals Unbarred spirals

Lenticular

<0

GALAXY 200

I3

Fig. 7.2 A modern version of Edwin Hubble’s “tuning fork” diagram of galaxy types. Elliptical
galaxies (left) are classified by shape. Spiral galaxies are divided into barred (bottom) and unbarred
(top) families. Lenticular galaxies lie at the transition (Figure created by Karen Masters using
astronomical images from the Sloan Digital Sky Survey. Reproduced by permission)

unbarred families and further classified by the size of the bulge relative to the
disk and the degree to which spiral arms are wound tightly or loosely. (Some
galaxies labeled “lenticular” have intermediate structures with disks but no apparent
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spiral arms.) For historical reasons, galaxies toward the left are referred to as
“early-type” and galaxies toward the right as “late-type,” but please be aware that
the names are not meant to have any temporal connotations (see [2]).

7.1.1 Luminosity Profiles

When quantifying galaxy properties, the most salient distinction is between disks
and spheroids. Disks are just what you think. Spheroids are roundish (spherical or
ellipsoidal) distributions of stars like those found in elliptical galaxies and the bulges
of spiral galaxies.

Face-on disks seem to be quite symmetric, apart from the spiral arms. The
measured brightness profile is well described by the exponential disk model,

I(R) = Iy e R/ (7.1)

The quantity /(R) is called surface brightness; it has dimensions of luminosity per
unit area and is often measured in L pc™2. Also, Iy is the surface brightness at the
center of the disk, and /g is the disk scale length. If we want to speak about the
surface mass density (mass per unit area, often in Mg pc_z), we write

Y(R) = Xye R/ (7.2)

We usually assume the light and mass distributions have the same scale length
so I(R) and X (R) are proportional to one another. However, the value of the
proportionality constant—called the mass-to-light ratio—is not well known. Even
though we understand the relation between luminosity and mass for individual
stars, at least during the main stage of their lives (see Sect. 16.2), we have limited
information about the mix of stars that make up a given galaxy.

The exponential disk model has two notable limitations. First, it explicitly omits
spiral arms. While spiral structure stands out in the light distribution, it is less
dramatic in the mass distribution. We will ignore spiral arms initially but consider
them in Sect. 7.4.4. Second, the model does not account for the thickness of the disk.
In edge-on disks, the vertical extent is much smaller than the horizontal size, so we
often approximate disks as being infinitesimally thin. We study disk thickness in
Sect.7.4.2.

Spheroids have some depth along the line of sight, but all we can measure is the
projected surface brightness distribution. Spheroids typically follow what is called
the de Vaucouleurs R'/* law after Gérard de Vaucouleurs,

I(R) = I, e 767 (R/R) (1.3)
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Fig. 7.3 Surface brightness profile of the galaxy NGC 3379. The vertical axis is pup =
—2.5log,, I +const where [ is the surface brightness and B indicates that the measurements were
taken through a filter that transmits blue light. Because of the minus sign, brighter regions have
smaller values of u . For the de Vaucouleurs model we expect g = —8.3268 (R/R,)"/*+const,
which is shown as the dashed line (Credit: de Vaucouleurs and Capaccioli [3]. Reproduced by
permission of the AAS)

This is an empirical fit to the data, and it is written with a factor of 7.67 in the
exponent so the effective radius R, also winds up being the half-light radius, or
the radius that encloses half of the light. The de Vaucouleurs profile is shown in
Fig.7.3. As written, Eq. (7.3) describes a galaxy that looks circular, but it is can be
generalized to handle galaxies that look elliptical by replacing R with the elliptical
radius (x> + y%/q?)"/?> where ¢ = b/a is the axis ratio of the ellipse.

7.1.2 Concepts of Motion

Distinguishing between disks and spheroids also makes sense in terms of motion.
In a disk, the stars move on orbits that are nearly circular and coplanar, so the disk
rotates coherently. We can plot a rotation curve showing orbital speed as a function
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Fig. 7.4 Hypothetical rotation curve for an edge-on spiral galaxy with v. = 220kms™!, based
on the model discussed in Sect.7.3.2. The horizontal axis is position relative to the center of the
galaxy. Here the left side of the galaxy is rotating toward us and the right side is rotating away

0.8
= 06
204

0.2

0 | l L
=500 0 500
speed (km/s)

Fig. 7.5 Hypothetical velocity distribution for a galaxy that has a velocity dispersion of o0 =
155kms™!. The vertical axis is the number of stars with a given velocity relative to the center of
the galaxy, scaled to a peak of 1

of position in the galaxy (see Fig.7.4). As we discussed in Sect.4.2.1, if a disk is
inclined by angle i then what we measure with the Doppler effect is vops = Vipe Sin,
where viy is the intrinsic speed. We can estimate the inclination because a circular
disk will appear in projection as an ellipse whose axis ratio is cosi. Thus, it is
usually feasible to correct for inclination and recover the intrinsic rotation curve of
a disk galaxy.

In a spheroid, the star orbits have random orientations, so stars in any small
region of the galaxy are moving every which way. Since there is no coherent
rotation to measure, we plot the distribution of velocities instead (see Fig.7.5).
The distribution is usually close to Gaussian: if v is the Doppler speed relative to
the center of the galaxy, the number of stars as a function of v is approximately
N(v) o« exp(—v?/20?). The standard deviation of the distribution, o, is typically
referred to the velocity dispersion in galaxy dynamics. When analyzing spheroids,
we must keep in mind that the measured distribution includes all stars throughout
the thickness of the galaxy.
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7.2 Equations of Motion

For the rest of this chapter we focus on spiral galaxies (we study elliptical galaxies
in Chap. 8). The disk defines a preferred plane, and the main component of motion is
tangential in that plane, but there are small components of radial motion within the
disk and vertical motion perpendicular to the disk. A flat disk has axial symmetry,
but we begin with the case of spherical symmetry to connect with our previous work.
As we will see, there is good evidence that galaxies are embedded in “dark matter
halos” that are fairly round, so spherical models do have some relevance for spiral
galaxies.

7.2.1 Spherical Symmetry

In Sect. 3.1 we studied the equation of motion for a point mass. We now consider a
case that retains spherical symmetry but allows an arbitrary radial dependence, so
the gravitational potential @ depends on r but not on 6 or ¢. The analysis follows
Sect. 3.1 except that the acceleration is replaced by

so the three components of the equation of motion are

> o\’ dp\>  do
ST (D) —rsin?e i =—— (7.4a)
de? de de dr
d?0  _drdéd _ dg\?
rm +255 —rsinf cos 6 (E) =0 (7.4b)
d? dr d do d
rsin@%—}—Zsin@d—;d—?—i—hcos@d—tg =0 (7.4¢)

As before the motion is confined to a plane that we can take to be the equatorial
plane, and angular momentum is conserved. The radial equation (7.4a) is then

d2r d¢\? do
—_ =7 —_— —_— ——
dr? dr dr

If M(r) is the mass enclosed within r, the generalization of Eq.(2.13) for the
gravitational potential is>

() = —G/ M) 4,

72

3We can write this as an indefinite integral because @ is only defined up to an arbitrary constant.
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so the radial equation of motion can be written as

2 2
dr_r(d_¢>) :_GM(I') (75)

dr? dr r2

This is the generalization of Eq. (3.7) to an extended, spherical mass distribution.

7.2.2 Axial Symmetry

In cylindrical coordinates (R, ¢, z), the acceleration vector can be expressed as (see
Sect. A.2)

d’R dp\? | 1d do\ » d%z
a=|——-R(— R —— R — 7
[dz2 (dt) JrRdt( dt)¢+dt2
Suppose the mass distribution and gravitational potential are symmetric about the
z-axis, which means they are independent of the azimuthal angle ¢. This is not
strictly true in the presence of spiral arms, but it is a reasonable approximation that

captures the key physics. In this model, the gravitational potential can only depend
on R and z:

® = P(R,2)

The three vector components of Newton’s second law are

d’R do\? Bl
1d (de—d’) = (7.6b)
R dt dr
d’z 0P

We will examine each of these equations below.

7.3 Rotational Dynamics

Since the main component of spiral motion is ordered rotation, let’s begin our
analysis there. Suppose for the time being that all stars move on perfect circular
orbits. How does the mass determine the motion, and what can we learn by
observing that motion?
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7.3.1 Predictions

If the mass distribution is spherically symmetric, we can analyze the motion using
Eq. (7.5). For pure circular motion, the radius is constant so d*r/d¢?> = 0 and we
can solve the equation to find the angular speed

dr ~— r3

dp [GM(r) } 12
The corresponding physical speed is

1/2
. [%} (1.7)

v(r) = ra .

where we write v(r) to emphasize that speed may vary with radius. (This result can
also be derived by setting the centripetal acceleration for a circular orbit, a = v?/r,
equal to the acceleration due to gravity, a = GM(r)/r?.) Equation (7.7) is useful
if we know the mass distribution and want to compute the corresponding rotation
curve. If instead we measure the rotation curve, we can invert the relation to find the
mass:

(7.8)

This is the motion/mass principle applied to rotating spherical objects. Note that
outside an object with a finite extent, M (r) becomes constant and Eq. (7.7) recovers
the Keplerian rotation curve v oc /2,

The analysis of a disk is more involved. In the idealized case of an infinitesimally
thin disk, the density is zero everywhere except in the z = 0 plane. The approach
is to solve the Laplace equation V2@ = 0 for z # 0 and then apply appropriate
boundary conditions at z = 0. See Sect. 2.6 of Galactic Dynamics by Binney and
Tremaine [4] for the complete analysis. We are most interested in motion within the
disk, so we quote the general expression for the gravitational potential in the z = 0
plane,

o0 o0
®(R,0) = —27G / dk Jo(kR) / dR' R’ Jo(kR') (R
0 0

where X' (R’) is the surface mass density in the disk, and Jj is a Bessel function.
For an exponential disk with X (R’) = Xyexp(—R’/hg), the integrals can be
evaluated to yield

o =—rosa () 5 ) - (55) 0 )]
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Fig. 7.6 Predicted rotation curve for an exponential disk, plotted in scaled units

where Iy, Ko, I;, and K are modified Bessel functions. For pure circular motion,
the equation of motion (7.6a) lets us compute the circular speed to find

R? R R R R
R’ = nGZ— |lo| = | Kol =— |- L) Ki [ 5— 7.9
VR = “hr [ ’ (ZhR) ’ (ZhR) 1 (ZhR) 1 (ZhR)} 72
This rotation curve is plotted in Fig. 7.6. The important qualitative features are that
the curve peaks at

Fmax = 2.15hg  and v = 1.56(GZohg)"/?

and then declines with radius. Since the disk mass is finite, the rotation curve
approaches the Keplerian form at large radius.

7.3.2 Observations and Interpretation

Real rotation curves may be more complicated than Fig. 7.6 because disks need not
be perfectly exponential, and stellar bulge or gaseous components can also affect the
motion. Even so, as a general rule rotation curves should decrease in the outer part
of disks if spiral galaxies contain only the stars and gas we see. It therefore came as
a surprise in the 1970s when Vera Rubin and others began to discover that observed
rotation curves do not match predictions. Today we see that some rotation curve fall
but not as much as expected, others rise all the way to the largest radii at which they
are measured, and many remain approximately constant over a wide range of radii
(see Fig.7.7). The shapes have been seen so many times that the term flat rotation
curves has entered the lexicon of astronomy.

What is going on? If the observed rotation speed is higher than expected, then
the gravitational force must be stronger than expected, so there must be more mass
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Rinh

Fig. 7.7 Observed rotation curves for a sample of galaxies. The horizontal axis is plotted in units
of the disk scale length (Credit: Sofue et al. [5]. Reproduced by permission of the AAS)

than expected. Whatever this mass is, we seem not to detect any light from it. That,
in a nutshell, is the original argument for dark matter.*

Let’s look for the simplest scenario that could give rise to rotation curves similar

to what is observed. As a toy model, let’s suppose the rotation curve is perfectly flat
at all radii: v(r) = v, where v, is the constant circular velocity. Let’s also suppose
the mass distribution is spherical. This is obviously wrong—the stellar distribution
is manifestly not spherical—so why should we make the assumption?

It is simple, and simple can often be good for capturing key ideas without getting
bogged down in details.

We do see some stars (individually and in globular clusters) in a round stellar
“halo” around the disk.

We also see satellite galaxies whose motions imply a roundish halo.
Gravitational lensing provides evidence for roundish halos (see Chap. 9).
Galaxy formation models suggest that disks should be embedded in dark matter
halos that are fairly round.

With the spherical assumption, Eq. (7.8) gives the enclosed mass as

S}

rv
M@r)=—=°
(r="5
The corresponding density is
") 1 dM(r) vl
r) = = -
P dzr?  dr 4G r?

“Evidence for “missing mass” appeared as early as the 1930s, from an analysis of motions in
the Coma cluster of galaxies by Fritz Zwicky [6] and an analysis of vertical motions of stars in
the Milky Way by Jan Oort [7]. Those analyses were hindered, especially by poor knowledge of
mass-to-light ratios, but notice that they too were based on the motion—>mass principle.
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This model is known as an isothermal sphere because any gas in the system will
reach an equilibrium with the same (“iso”) temperature (“therm”) everywhere.’
While this is admittedly a toy model, it is a very useful one that we will see several
times in the next few chapters. The simplicity does raise a few concerns:

* In the model, p diverges as r — O; this is not devastating, but it is inconvenient.

* In the model, v remains constant all the way down to the origin, whereas in real
galaxies the rotation speed tends to be small near the center.

* In the inner parts of real galaxies, there is probably more stellar matter than dark
matter (more on this in a moment).

One way to address these concerns is to modify the density profile slightly and write

v? 1

p()_47rG a’+r?

(7.10)

where a is referred to as the core radius, because when r < a the model has a
central “core” where the density is approximately constant. When r > a the model
reduces to p o 2. This model is referred to as a softened isothermal sphere,
although the word “softened” is sometimes dropped. Let’s derive the rotation curve
for a softened isothermal sphere. First, the enclosed mass is

r N2
471/0 () p(rdr' = —/ az(—i’:)(r’)z dr’

vza r/a x2 2 1
= £ —dx = Ye 1-— d
G Jo 1+x2 o /0 ( 1+x2) o

2

vc( —1”)
= —|(r—atan " —

G a

where we change variables using x = r’/a to make the integral dimensionless.
The rotation speed is then

M(r)

Q

1/2
v(r) = |:GM(r)i| = v (1 L an™! 1)1/2 (7.11)
r a

r

It is useful to understand the limiting behavior. If » > a then a/r approaches
zero while tan™! (r/a) approaches 7 /2, so the second term in parentheses vanishes.
This means v(r) approaches a constant at large radii, so the rotation curve
is asymptotically flat. At small radii r < a, we can use a Taylor series expansion:
tan~!(x) ~ x — 5+ % — ... This gives v o r at small radii, which seems to match
observed rotation curves.

SWe will study gas in a gravitational potential in Sect. 12.2.
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We have been focusing on the physical speed of the stars, but let’s briefly consider
the angular speed @ = v/r. At small radii, where the rotation curve rises linearly,

Ve T Ve

V3 a x/ga

In other words, stars at different radii all take the same amount of time to go around.
This is known as solid body rotation because it describes the rotation of an object
(such as a compact disk) in which all the atoms are connected to one another.
By contrast, in the flat part of the rotation curve,

= constant

v(r) = = o) =

viry=v. = ow)= VTL

which is not constant. This corresponds to differential rotation, and it is generic for
spiral galaxies in the sense that it occurs even if the rotation curve is not perfectly
flat. Differential rotation will be crucial when we study spiral structure in Sect. 7.4.4.

7.3.3 Cold Dark Matter

While the spherical model was instructive, it omitted known parts of the galaxy: the
stellar disk and bulge, and perhaps gas as well. If we want to study dark matter in
any detail, we need to build models that account for all the components of a galaxy,
and in order to do that we need to consider how multiple components combine.
By the principle of superposition, densities and masses just add:

Mo, = Mgk + Mbulge + Mgas + Mo

We have seen that expressions for mass involve v2, so the sum of masses translates
into

2 __ .2 2 2 2
Viot = Vdisk + Vbulge + Vgas + Vhalo (712)

To quantify the disk, bulge, and gas components, we can take the observed
distributions and apply a mass-to-light ratio to obtain model mass distributions.
If the mass-to-light ratio is not well known (see Sect.7.1.1), it can be treated as
a free parameter when fitting models to data.

To quantify the dark matter component, people have taken two basic approaches.
One is to look for the simplest model that can reproduce the data. The softened
isothermal sphere fits the bill. By increasing the core radius, we can reduce the
density of dark matter at small radii and let stars dominate the mass there. Then we
can adjust the v, parameter for the halo component to keep the circular velocity high
at large radii (where the contributions from stars and gas are falling off). Whether
or not this model has a deep physical motivation, it seems to be successful in fitting
the data. This is the type of model shown in the left panel of Fig. 7.8.
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Fig. 7.8 Points show the measured rotation curve for the galaxy ESO 287-G13, while the solid
curve shows a fit that includes contributions from the stellar disk (dotted), the gaseous disk (short
dash), and the dark matter halo (long dash). In the left panel, the halo is treated with a Burkert
model, which is similar to the isothermal model discussed in the text. In the right panel, the halo
is treated with an NFW model. The small bottom panels show the residuals, or the differences
between data and model. Note that 1 kpc corresponds to 5.8” (Credit: Gentile et al. [8], reproduced
by permission of Oxford University Press on behalf of the Royal Astronomical Society)

The second approach is to try to predict the properties of dark matter halos
and compare those predictions with observations. What do we know about dark
matter?

¢ It must be non-relativistic; otherwise it would move too fast to collect around
galaxies.

* As a starting point, we assume that dark matter feels gravity but is not affected
by any other forces.

* From studies of “nucleosynthesis” in the early universe (see Sect.20.2), we
know that most of the dark matter cannot be composed of protons, neutrons,
and electrons. It must be something exotic—probably some other kind of
fundamental particle.

These are the tenets of the Cold Dark Matter (CDM)® paradigm, which has
become the foundation for modern cosmology. In Chap. 11 we will see that this
model is remarkably successful at describing the global structure of the universe.’

Since the 1980s, people have used computer simulations to study how galaxies
form in a universe dominated by cold dark matter. They find that simulated dark
matter halos can be described by a density profile of the form

A

P

6<Cold” refers to the fact that the particles are slow compared with the speed of light. As we will
see in Chap. 12, the temperature of a gas is related to the typical speed of its constituent particles.

7With one important modification: dark energy.
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Fig. 7.9 Rotation curve for a spherical NFW model with A = 10'° M and r; = 1kpc

where r; is a ‘“scale radius” and A is a constant that has dimensions of mass
(although it should not be interpreted as the total mass of the halo). This is called
the Navarro-Frenk-White (NFW) profile after the scientists who first made the
prediction [9, 10]. An important feature of the NFW profile is that the density
diverges as p oc r~! at small radius. This is referred to as a cusp, in contrast with
the core in the softened isothermal model.

To test the prediction, we need to compute the NFW rotation curve. First, the
enclosed mass is

r/

——d
(rg +17)? '

rstr _ rs+r 1 )
:471A/ i rsdw=47rA/ -5 dw
s W2 Iy w W2

=4nA[1n(1+1)— : }
s ry+r

In the third step we change variables using ¥’ = w — r;. The rotation speed is then

1/2 172
Wr) = [%} - (4JrGA [%m (1+ri) - 1+FD (7.14)

This rotation curve is shown in Fig. 7.9. The presence of the central cusp causes the
rotation curve to increase more quickly at small radius (v oc /2 when r < ry)
than it does for the isothermal model with a flat core. The dependence p o r— for
r > ry is steeper than the isothermal model, so the rotation curve declines slowly
at large radius.

You might think this would lead to a nice application of the scientific method:
we have both a prediction and data to test it. The situation is murky, though.

!

M(r) = 4 /Or(r’)2 p(r)dr' = 4mA /Or
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For ESO 287-G13 (Fig. 7.8), an isothermal model is formally better than an NFW
model, although the main differences are at small radii where the motion may
be complicated. For other galaxies, NFW fits seem to be favored. The challenge
here is dealing with devils that lurk in the details for both observations and
interpretation. With the measurements, we must worry about systematic effects such
as the placement of the slit used to measure the spectrum, and blurring from the
atmosphere. With the analysis, we usually assume the dark matter halo is spherical,
the disk is thin, and the orbits are perfectly circular; while those assumptions may
seem reasonable, they might not be strictly true, and relaxing them could affect
the conclusions. The last point to recall is that there are uncertainties in the rotation
curve data themselves, the inclination, and the mass-to-light ratio. All together, these
effects can permit a range of successful models, and it is difficult to say for certain
whether rotation curves “prefer” cusps or cores.

To bypass some of the details, we could just ask how much dark matter is found in
the central regions of galaxies. There seems to be less dark matter than CDM models
would predict. However, it is not clear if that represents a fundamental problem with
the CDM paradigm. It may just indicate that there are aspects of galaxy formation—
which is complicated, after all—that are not fully understood. For our purposes,
what is important is to follow the physical reasoning that astronomers use to find
evidence for dark matter in galaxies and deduce its abundance and distribution.

7.3.4 Is Dark Matter Real?

Throughout the preceding analysis we relied on Newton’s laws of gravity and
motion to connect rotation curves with the underlying mass distribution. When
we saw a discrepancy, we imagined that we have the right laws of physics but the
wrong ideas about how mass is distributed. That approach seems reasonable because
Newton’s laws (and Einstein’s generalizations of them; see Chap. 10) have been well
tested. However, most of the tests have taken place on Earth and in the Solar System,
where the accelerations are much larger than the accelerations of stars in galaxies:

Situation Acceleration (ms™2)
Surface of Earth 9.8

Moon orbiting Earth 0.003

Earth orbiting Sun 0.006

Sun orbiting Galaxy 2x 10710

In the 1980s, Mordehai Milgrom asked: What if Newton’s laws break down at low
accelerations? After all, we already know they fail at high speeds (for relativity) or
short distances (for quantum mechanics). Milgrom proposed to modify Newton’s
second law when the acceleration is smaller than some value aq:
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ma (a> ap)

F={ p (7.15)
m— (a < ap)
ao

This idea is known as Modified Newtonian Dynamics (MOND) because what
changes is not the force of gravity but rather a particle’s response to the force. In a
series of papers, Milgrom argued that applying MOND below ag ~ 107'9ms™2
could explain galaxy rotation curves as well as an observed correlation between the
rotation speeds and luminosities of spiral galaxies [11-13]. You can explore these
ideas in Problem 7.5.

Another possibility is to modify Newton’s law of gravity so the force is
something other than F = GMm/r?. We know the usual force law works very
well on scales ranging from labs on Earth to the Solar System, so the idea would be
to have a force law that is equivalent to F = GMm/r? at “small” radii but has a
different form at radii larger than some value ry.

Most astronomers prefer the idea of dark matter to that of modified dynamics
or gravity. While MOND can successfully explain galaxy dynamics, it faces more
trouble with galaxy clusters (most famously, the Bullet Cluster; see Sect.9.4) and
the universe as a whole. Even MOND requires some amount of dark matter to
explain these systems. Supporters of MOND suggest the additional mass could be
provided by massive neutrinos, but it remains to be seen whether this hypothesis
works out in detail (e.g., [14-16]). In my view, strong evidence supports the
conventional theory of dark matter. Still, there is value in exploring alternatives
because scientific disputes like dark matter versus MOND are ultimately settled by
developing different models and testing them with observations.

7.4 Beyond Rotation

To this point we have focused on tangential motion, which is the predominant form
of motion in spiral galaxy disks. Stars can, however, have small components of
motion in the radial and vertical directions. We can analyze the additional motion
using Eq. (7.6).

7.4.1 Tangential Motion

The tangential component of the equation of motion is
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This is conservation of angular momentum—but only of the component of angular
momentum that corresponds to motion around the z-axis,

d
l, = de—‘f = Rvy (7.16)

This conservation law follows from axisymmetry (similar to the way in which

conservation of the full angular momentum vector follows from spherical symmetry
in Sect. 2.2).

7.4.2 Vertical Motion

The vertical component of the equation of motion is

d’z Gl 17

2 9z (.17
We cannot solve this equation in general without knowing the gravitational potential
@(R, 7). However, we can learn a lot if we consider small motions. Since disks are
thin, the stars never get very far from the midplane, so we might consider z to be
small and make a Taylor series expansion of the potential:

0P

P
0z 2

1 2
I+ z—| 3 + ... (7.18)
2 2" o

P(R,2) ~ Dy(R) +

0

If we take the “middle” of the disk (indicated by the subscript 0) to be the place
where 0@ /dz = 0, the second term vanishes and Egs. (7.17) and (7.18) combine
to give

2 2
&z 5 ,  0°®
= —V"Z Where V:—2

— 7.19
dr? Z (7.19)

0

This is an equation for simple harmonic motion (The angular frequency v may
depend on R but it is independent of z.) Physically, any star above the disk will
be pulled down. The star will pass through the disk, come out the other side, and
then be pulled back up. The star will keep going back and forth, oscillating in the
vertical direction with a period of P = 27 /v.

Our Sun is presently about 25 pc out of the midplane of the Milky Way and
moving away at a speed of about 7kms™! [17, 18].
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Example: Uniform Disk

Consider a simple model in which the disk density is uniform. (This can be viewed
as an approximation that is valid in a small region of a more realistic disk model.)
Let’s explicitly derive the equation of motion and check that the preceding analysis
makes sense. We start with the following formal analysis:

a=-Vo
V-a=-V2® = —47Gp

/(V-a)dV:—4nG/pdV

%a -dA = —-47GM;, (7.20)

In the second line, we use the Poisson equation, V2@ = 47Gp. From the third
to the fourth line, we use Gauss’s divergence theorem to rewrite the volume
integral on the left as a surface integral. (You may have seen a similar analysis
in electromagnetism.) The fourth line tells us the surface integral of the acceleration
vector is given by the mass enclosed by that surface.

Let’s take the surface of integration to be a small box that extends from —z to +z
and has cross sectional area S (the shape of S is arbitrary). For vertical acceleration,
the integral on the left-hand side of Eq. (7.20) has aS for the top and another a§
for the bottom, giving a total of 2a.S. The mass inside the box is the density, p, times
the volume, 2zS. Putting the pieces together, we have

2a8 = —4nG x2zSp = a=—4nGpz

This is the vertical acceleration at height z in a uniform density disk. Since the
vertical acceleration is a = d*z/d¢?, the key equation is

d?z

d_[2 = —47TGPZ

This is the equation for a simple harmonic oscillator, as expected. The vertical
oscillation frequency is v = (47Gp)'/2.
Application: Disk Thickness

Real spiral galaxy disks have finite thicknesses. Empirically, the vertical distribution
is often characterized as an exponential function,

0(z2) o e—|z|/hz
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where /1, is the scale height. At any given time, some stars are moving up and others
down, so there is a distribution of vertical velocities and it is natural to characterize
the distribution using the vertical velocity dispersion o,. When quantified in this
way, the Milky Way seems to have two disk components (see [17,19] and references
therein). The “thin” disk has 1, ~ 300 pc and 0. ~ 18 kms™!, and it tends to contain
younger stars. The “thick” disk has 4, ~ 900 pc and 0, ~ 35kms™!, and it tends to
contain older stars. The disk scale radius is 2z & 3.5kpc so even the “thick” disk
is still thin in comparison with its radial extent. Other spiral galaxies show similar
structures [20].

Disk thickness can be created by a variety of mechanisms. When a star encoun-
ters an object such as another star, a gas cloud, or a spiral arm, the gravitational
interaction can give the star a “kick” in the vertical direction. Also, if a star migrates
out from the center of the galaxy, any vertical motion can be amplified. Finally,
an external event such as a small galaxy falling into the Milky Way can generate
vertical motion. There is a lot of interest in using the vertical structure of galaxy
disks to understand the processes that have driven their evolution over billions of
years (see [21] and references therein).

7.4.3 Radial Motion

Finally, we come to the radial component of the equation of motion (7.6a). Using
Eq. (7.16) to rewrite d¢p/d¢ in terms of the constant £,, we obtain

d’R ap L2 AP,
ex _ 7t 0%t (7.21)
dr? R R? oR
In the last step we introduce the effective potential
gz
— Z
Peir(R) = D(R) + 75 (7.22)

As with vertical motion, we cannot solve the equation of motion in general without
knowing the potential, but we can make progress by considering small deviations
from a constant radius. A circular orbit has d°R/dt> = 0, so by Eq.(7.21) the
derivative d®.g/ IR must be zero at the radius of the circular orbit. Let’s call this
radius Ry, and then write the radius more generally as

R =Ry+ AR
where we expect AR to be small. Then we can make a Taylor series expansion:

0D, 1 0’®,
Tl AR fr

- AR? + ... 7.23
R |,0N TR | BN T (7:23)

Deii(R) ~ Dei(Ro) +
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The first term disappears when we take the derivative. The second term vanishes
because we just noted that d@.s/dR = 0 at Ry. Thus the only meaningful term is
the third, and using it in Eq. (7.21) yields

2
¢AR) _ —«* AR (7.24)
dr?

This is again an equation for simple harmonic motion with angular frequency

, D
K™ =
OR? |,

(7.25)

Stars can oscillate in and out (in addition to up and down), all while orbiting the
center of the galaxy. The radial oscillations can actually be viewed as a small circle
superimposed on the main circular orbit—in other words, as an epicycle. The idea
originally introduced by ancient Greeks to explain the retrograde motion of planets
(see Sect. 2.1) has reemerged, albeit in a different form! Because of this connection,
K is called the epicycle frequency.

Example: Point Mass

Consider motion around a point mass. Obviously this is not a good model for a
galaxy, but it serves as an instructive example. A point mass has spherical symmetry,
but we can think of that as a type of axial symmetry as well. The gravitational
potential is

P(r) = _oM

so the effective potential is

GM  ¢?

Der(r) = — 32

and the epicycle frequency is
(P To (oM 2\ [ 26M G 12
“T e “lar ez 2 U s T

We know a circular orbit at radius r has velocity vy = (GM/ r)!/2 and hence
€ = rvy = (GMr)"/2. Plugging this in yields

GM\?
= (_) —w
r3
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t=0 t=0.5 t=1
t=1.5 t=2 t=25
t=3 t=3.5

Fig. 7.10 Tllustration of the winding problem. The dot denotes the Sun, and the time is in units of
the time it takes the Sun to orbit the Milky Way (which is addressed in Problem 7.1)

where w = vg4/r is the angular frequency. In other words, around a point mass
the epicycle frequency exactly equals the angular frequency. That, in turn, allows
the orbit to be perfectly closed (the object returns exactly to its starting point). We
already knew this from our analysis of Kepler’s laws and the one-body problem, but
now we see it in a different context.

7.4.4 Application to Spiral Arms

We finally have the tools to examine the defining feature of spiral galaxies, namely
spiral arms. We noted in Sect. 7.3.2 that spiral galaxy disks have differential rotation,
meaning the orbital period varies with radius. As a result, if we paint a stripe on a
galaxy, it will wrap up and look like a spiral, as shown in Fig.7.10. This is good,
right? Well, yes and no.

The “yes” applies to certain kinds of spiral galaxies called flocculent spirals,
like NGC 4414 shown in Fig. 7.11. Flocculent means fluffy; this term is applied to
galaxies with little wisps of spiral structure, rather than grand spiral arms. Here the
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Fig. 7.11 Hubble Space Telescope image of the flocculent spiral galaxy NGC 4414 (Credit: NASA
and The Hubble Heritage Team (STScI/AURA))

idea is that if you have a little cloud of gas that forms some stars, differential rotation
can stretch the cloud out into a wispy structure like what is seen in these galaxies.

The “no” applies to grand design spirals, or galaxies where the spiral arms
run through the whole disk, like the one shown in Fig.7.1. The problem is that
differential rotation causes spirals to wind up way too fast to survive for billions of
years. This is known as the winding problem, and it means the simplest imaginable
explanation of spiral arms cannot be correct.

How can we proceed? Imagine creating an arrangement of stars labeled by
j =1,...,N. From Sect.7.4.3 we know each star will execute radial oscillations
given by

Rj(t) =a+ bcos(kt + o)
where a is the radius of the reference circle, b is the amplitude of the radial

oscillations, « is the epicycle frequency, and «; is the initial phase of the oscillations.
While the star is doing this, it is also moving around the galaxy with angle

¢;(t) = pjo + wt

where w is the angular speed and ¢ is the starting angle for star j. The star’s x
and y positions as a function of time are then

xj(t):Rj(t)cos¢>j(t) yj(t):Rj(Z)sinq&j(Z)
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t=0 t=0.5 t=1

t=1.5 t=2 t=2.5

~

Fig. 7.12 Evolution of a collection of stars following epicyclic orbits. The pattern rotates at a
different speed than the stars themselves. The color coding illustrates that the stars move through
the pattern

To get stars evenly distributed around the galaxy, we set

2nj

=N

To get a nice oval-shaped pattern of stars, let’s relate «; to ¢ ;o by setting
Olj = 2¢j0

When we do all this, the arrangement at # = 0 looks like the first panel in Fig. 7.12.
This example hasa = 1 and » = 0.1.

What happens at later times? Each star follows its epicyclic orbit, oscillating in
radius as it orbits the galaxy. But the pattern appears to rotate more slowly, as shown
in the remaining panels of Fig. 7.12. It is crucial to understand that the motion of the
pattern is different from the motion of the individual stars.
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@

Fig. 7.13 How to set up nested ovals to create a spiral pattern (see [22])

How can we think about the pattern motion? The position of star j at time ¢ is
given by

R;j(t) =a+ bcos(kt + 2¢;9) (7.26a)
¢ (1) = ¢pjo + wt (7.26b)

The star that is farthest from the center of the galaxy (greatest R) is the one that has

Kt
Kt+2¢j0=() = ¢j0=—7

Plugging this into Eq. (7.26b), we find that the angular position of this farthest star is

K
0=(o-3)
¢ j @) w 5
In other words, the long axis of the oval pattern rotates with an angular frequency
given by the pattern speed

2,=0- (7.27)

K
2
The example in Fig. 7.12 has w = 6.28 and x = 10.05, yielding £2,, = 1.26. The
time it takes for the pattern to rotate once is P = 27/$2, = 5.0. Thus, the pattern
of stars rotates five times more slowly than any individual star. The color coding in
the figure is designed to show this. Notice, for example, that at # = 0.5 each star has
moved halfway around the galaxy, but the oval pattern has rotated by only 36°.
How does this help with spiral structure? At + = 0 we can set up nested ovals to
create a spiral pattern, as shown in Fig. 7.13. When we let this evolve, as shown in
Fig.7.14, the spiral winds up much less quickly than before. Working with patterns
that can occur thanks to epicyclic orbits, we can mitigate the winding problem.
There is still more that can be said about the dynamics of spirals. To this point we
have imagined that the stars move in a smooth, constant gravitational field, but in
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Fig. 7.14 If stars move on epicyclic orbits, they can form spiral patterns that rotate more slowly
than the stars themselves, which helps mitigate the winding problem

fact they feel an additional force from the local overdensity of matter in a spiral arm.
Lin and Shu [23,24] developed this notion into a hypothesis that spiral arms are self-
sustaining density waves propagating through galaxy disks. The physical picture is
often likened to a traffic jam, with stars as cars that catch the jam from behind, slow
down as they move through it, and then escape out the front and keep going. The
Lin-Shu hypothesis has stimulated extensive work on the theory of density waves in
disks (see [24]), but whether it truly describes real spirals is still unclear. In general,
the hypothesis can explain why there is more star formation in spiral arms than
elsewhere in the disk: the buildup and compression of gas in the arms can kick-start
the formation process (see Chap. 19). In detail, though, the predictions may not be
consistent with new observations of the spatial distribution of features associated
with star formation [25]. Regardless of how the story turns out, the key point for us
is that spiral arms are patterns (rather than fixed groups of stars) whose behavior
seem to be connected to the epicyclic motion we have studied here.
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Problems

7.1. Consider the exponential disk model in Eq. (7.1).

(a) Show that the total brightness of the exponential disk is liora = anoh%. Hint:
change variables to x = R/ hg, and use integration by parts.

(b) What fraction of the total light is contained within one disk scale length (R <
hr)? Within three disk scale lengths (R < 3hg)?

7.2. The Milky Way has a rotation curve that is approximately flat with a circular
speed of about 220 kms™!. The Sun is about 8 kpc from the center of our Galaxy.
In this problem you may assume the mass distribution of the Milky Way is
spherical.

(a) How much mass is enclosed by the orbit of the Sun (in Mg)?

(b) Assuming an appropriate mass distribution, what is the density of mass in the
vicinity of the Sun (in Mg pc™3)?

(c) How long does it take the Sun to make one orbit of our Galaxy?

7.3. Recall the rotation curve data and models for the galaxy ESO 287-G13 shown
in Fig. 7.8. Answer the following questions for both types of models.

(a) What is the mass of dark matter within 50”7
(b) What fraction of the total mass within 50” is dark matter? (Here you may
assume all the mass is in a spherical distribution.)

7.4. Here is the rotation curve for the galaxy UGC 5166, along with a model that
includes a spheroidal bulge component (data from [26], figure courtesy Kristine
Spekkens).

300
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100

0|||||||||||||||||||||||||
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(a) What is the total mass of the bulge? Hint: check several values of the radius to
make sure you’ve gotten all the enclosed bulge mass.
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(b) A popular model for the mass distribution in a spheroid is the Hernquist model,

M total 4

PO = @t

where Mo, is the total mass and a is a constant with dimensions of length.
Derive the rotation curve for this model.

(c) Fit the Hernquist model to the bulge component in UGC 5166 and plot your
derived rotation curve (with r in kpc and v in kms™"). Hint: use the total bulge
mass from part (a), and use trial and error to find a reasonable value for a.

7.5. In Modified Newtonian Dynamics, Newton’s second law is replaced by
F = ma?/ay for accelerations smaller than some value ag (see Eq.7.15).

(a) In this scheme, what is the rotation curve around a point mass?
(b) Assuming that all spiral galaxies have the same ratio of mass to light, what is
the scaling relation between circular velocity and luminosity in MOND?

7.6. The vertical motion of stars in a spiral galaxy depends on the gravity exerted
by the disk, so it allows us to “weigh” the disk.

(a) Use dimensional analysis to derive an estimate of the mass density p of a spiral
galaxy disk, in terms of its scale height /., its vertical velocity dispersion o,
and a relevant physical constant.

(b) Use the disk parameters given in Sect. 7.4.2 to estimate the mass density of the
Milky Way’s disk, in Mg pc3. Do the thin and thick disks give a consistent
results to the level of precision we might expect from dimensional analysis?

7.7. Recall from Sect.7.4.2 that the vertical of motion for a uniform density disk
corresponds to simple harmonic motion with angular frequency v = (47 Gp)'/>.
The motion can therefore be written as

7(t) = Asin(vt) 4+ B cos(vt)
where A and B are constants.®

(a) The mass density near the Sun is about p = 0.1 Mg pc_3 [28]. The Sun is about
25 pc above the midplane of the disk and rising at 7kms™". Find the constants
A and B, then plot the Sun’s vertical motion. Label the axes and be quantitative.

(b) Some people have suggested that the Sun’s motion through spiral arms and/or
the Galactic disk may affect climate and even mass extinctions on Earth [29,30].
(Passing through higher-density regions increases the chance of encounters with
other stars or gas clouds that could send comets toward the inner Solar System.)
When did the Sun last cross the midplane of the disk?

7.8. How does the epicycle frequency compare with the angular frequency for an
isothermal sphere? The gravitational potential is @(r) = v? In(r) + constant. Using
the isothermal model for the Milky Way, what is the epicycle period for the Sun?

8This question is inspired in part by a problem in the book by Carroll and Ostlie [27].
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Chapter 8
N-Body Problem: Elliptical Galaxies

In Chap.7 we treated galaxies as if each star orbits in a fixed gravitational field.
In fact, the gravity comes from other stars and particles of dark matter, which
themselves are moving. How can we analyze a collection of particles that move
under the influence of each other’s gravity? While we can write down the exact
equations of motion, we should not expect to solve them by hand. Where we can
make progress is understanding statistical properties of the motion. The statistical
approach is applicable to elliptical galaxies and a range of other systems.

8.1 Gravitational N-Body Problem

We begin by developing a formal framework for analyzing the collective motion of
N particles interacting via gravity.

8.1.1 Equations of Motion

The force on any one object in the system is a vector sum of contributions from all
the other objects. When we write the force vectors, it is useful to avoid unit vectors
by writing ¥ = r/|r|. In the one-body problem, the force can then be written as

GMm GMm
F = —rr = ———7r
Ir|? Ir|?

In the N -body problem, the force on star ¢ from star 8 is

Gmgmg
fup = —— B (5, — 1)
Ire —rg]
C. Keeton, Principles of Astrophysics: Using Gravity and Stellar Physics to Explore 127
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Notice that if we reverse the indices we have
fup = —fpa 8.1)

which is Newton’s third law of motion. The total force on star « is the sum of forces
from all the other stars,

Fo= Y fy (8.2)

The sum notation means that 8 runs over all values from 1 to N, except for the case
when 8 matches «. Thus, the equation of motion for star ¢ is

dt2 =- 2 5 |3 (o —1p) (8.3)
B; B#a

With « running from 1 to N, this constitutes the complete set of equations of motion
for the system. It is a system of N coupled second-order differential equations.

8.1.2 Conservation of Energy

As we have seen before, analyzing energy can be a good way to understand a system.
The kinetic and potential energies for the N-body problem are

1 1 Gmy
=3 > malve” and U = - > AL (8.4)
@ o ap 17 T

In the expression for potential energy, the sum runs over all values of & and 8 except
when they match each other. The factor of 1/2 enters because the sum in this form
counts each pair of stars twice. When we compute a sum like this, we can exchange
the indices @ and B everywhere and still get the same result. In other words for the
potential energy we can write

1 Gmgmg 1 Gmgmy
R I e
o.B; aF#p o.B; aFp

We will use this index switching trick a few times below.

In Sect.2.2 we saw conservation of energy as a general principle, but now we
ask whether and how it holds in a complicated N-body system. To test energy
conservation, we clearly need to compute the time derivative of the total energy.
Evaluating dK /df and dU/d¢ from Eq. (8.4) gives:
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dE dv, 1 Gmgmg
— = E aVo  — — E —— (ry — 1) - (Vvy —
; a MgV, ” + | ( 8) - (Vo — Vg)

T
d 2aﬁ; o ry —Ig
1
=2 Farva =5 3 fpr(Va—vp) (8.5)
o a.B; aFfp
Let’s see what we can do with the second term:
1 1 1
E Z faﬂ‘(Va_Vﬂ)zz Z faﬂ-Va—E Z faﬂ-Vﬂ
a.f; aFp a.f; aFp a.f; aFp
1 1
:E Z faﬂ'va_z Z fﬁa'va
a.B; aFp a.f; aFp
1 1
= 5 Z faﬂ * Vy —+ 5 Z faﬂ *Vy
a.p; a#p a.B; aFfp
= 2 fuve
o.B; aFfp

In the second step we exchange the indices « and § in the second term. In the third
step we use Eq. (8.1). In the last step, we notice that the two terms are identical and
combine them.

Now going back to Eq. (8.5), we can write

%:ZFa'Va_ Z faﬁ'va
a

o.B; aFfp

ZZ F, — Z faﬂ * Vo

B; a#p
The quantity in parentheses vanishes by Eq. (8.2), leaving

dE
—~ 0
dr

Thus energy is in fact conserved. While the final result is not surprising, the analysis
itself is enlightening as we learn to handle complex systems. Seeing the analysis also
helps us remember that what is conserved is the fotal energy of all stars. Stars can
exchange energy, both between kinetic and potential and among different stars, so
conservation of energy does not apply to individual objects. But it does apply to the
system as a whole.
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8.1.3 Virial Theorem
Let’s now examine the quantity
0= Z My Ty Vo
o

which we call the virial.! Its time derivative is

do dv,

- = va Va o+ Zmr o = 2K+ ZF ‘ry (86)

What can we do with the second term?

ZFa'ra:_ Z |Grn—arnﬂ(ra_rﬂ)'ra
o

2 Iy —
o.B; aFp
1 Gmgmyg
— rg—ry)-r
2 Irﬂ—l‘l?’(ﬁ e
o.B; a#p
1 Gmgmg
= —= ry —rg) -(rg —r
5 2 Ty ) ()
a.f; aFp
_ 1 Z Gmgmg
- ry rﬁl
a.B; a#p
=U 8.7)

In the second step we split the sum into two identical terms and then exchange the
indices & and B in the second term. In the third and fourth lines we combine the
two terms and simplify. In the last step we realize that what we have is the total
gravitational potential energy. So when we go back to Eq. 8.6 we have

do

2K+U = — 8.8
+ m (8.8)

Now consider averaging over time t. If f(¢) is some function of time, we define the
time average to be

_ 1
(f) = T/O S(@) de (8.9)

You can think of the quantity Q as the time derivative of something like a moment of inertia (see
Sect. A4). If we put I = Y, 2my|ry|* then Q = dI/dt.
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When we take the time average of Eq. (8.8) we obtain:

2(K>+(U)Zlforgd1=%[Q(f)—Q(0)]=0 for T = oo

T dr

At the last step we assume that Q remains finite, so the whole quantity vanishes if
we average over a long enough time interval (because of the 7 in the denominator).
We do not actually have to know anything about Q except that it remains finite, as
it should for a well-behaved system.

The bottom line from this analysis is:

2(K) + (U) =0 (8.10)

This is known as the virial theorem. It looks a little bit like conservation of energy,
but it is quite different. Conservation of energy is instantaneous, whereas the virial
theorem describes the average properties of a system. Also, the virial theorem has
that funny factor of two.

One way in which the virial theorem is like conservation of energy is that it is
exact (at least for time-averaged quantities). It is not a result of dimensional analysis,
estimation, or approximation. While we will sometimes employ it for estimation, the
virial theorem is really much deeper.

8.1.4 A Simple Application: N =2

The derivation above holds for any N > 2, so the virial theorem ought to apply to
the familiar two-body problem. For simplicity, first consider a two-body problem
with a large central mass M, and a small mass m < M in a circular orbit with
radius R; this is effectively a one-body problem. We have seen that the orbital speed
isv = y/GM/R, so the kinetic and potential energies are

Because the orbit is circular, these quantities are constant in time, so (K) = K and
(U) = U. Clearly the virial theorem is satisfied: 2 (K) + (U) = 0.

Now let’s relax the conditions and allow for elliptical orbits with two bodies
of arbitrary masses, m; and m,. We showed in Chap.4 that this problem can be
expressed as an equivalent one-body problem with a reduced mass p orbiting a
fixed total mass M. With elliptical orbits, the speed and separation, and hence the
kinetic and potential energies, vary with time but we can compute their average as
follows. From Sect. 4.1.3 we know the potential energy is
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GMu
r

U =

where the orbit follows the ellipse

2 1
r(¢)=G_M 1+ecosg 8.11)

To compute the average, we just need to integrate over one full orbital period; after
that, averaging over more orbits will not change the results. Therefore we can take
T = P in Eq.(8.9):

L7 Gy
W)= P/o ran ¢

GMu (> 1 dt
P Sy r(g) dg

GMu 27
TPl ),

_ MK/ZT[ d¢
P Jy 14ecose

GMu(1 —e?)'/? 27

B 2ma (1 —e2)l/2
GMpu

4

de

r(¢)dé

In the second step we change integration variables from 7 to ¢, and in the third
step we use d¢/dt = £/r>. In the fourth step we use Eq.(8.11), and finally we
carry out the integration” and also use our expressions for £ and P from Egs. (3.11)
and (3.14).

For the kinetic energy, we can use the components of the velocity vector from
Sect. 4.1.4 to write

GMpu

_ 2, 2\ . GMp 2
K = (v,.+v¢) = 2a(l— e (1+e +Zecos¢)

(S~

Then the average is

GMpu

(K) = et =P

/Zﬂ (1+e”+2ecosg) 94
0 d¢

2With help from Mathematica [1].
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_ GMpu(1—e?)'/? /2” 1 +e*+2ecos¢
0

dra (1 + ecos ¢)?
_ GMp(1— e?)/? 2
B dma (1—e?2)1/2
_ GMu
T 2a

In the first step we change integration variables as before, in the second step we
again use d¢/dt = £/r? and substitute for £ and P, and in the third step we carry
out the integration. The bottom line is:

GM GM
_ 2“ and (U)=-—H o 2(K)y+(U)=0
a a

(K)

The virial theorem is satisfied for the general two-body problem (as it must be).

8.2 Elliptical Galaxies

The N = 2 example was a case in which we already knew the complete motion.
The power of the virial theorem becomes more apparent when N > 2 and a
complete, exact description of the motion is not available. Let’s see how it leads to
a motion — mass principle for elliptical galaxies. We will study a spherical system
with radius R and total mass M, but similar concepts apply to ellipsoidal systems
(with some geometric complications that are not essential here).

8.2.1 Potential Energy

When we average over time, the individual stars blur out and we get what looks
like a smooth mass distribution. If the system is in equilibrium, we can compute the
potential energy for the corresponding smooth case and take that to be (U ).

Let’s imagine building the distribution of stars by assembling spherical shells
like the layers of an onion. Suppose we have a sphere of radius r and enclosed mass
M(r), and we add to it a shell of thickness dr and density p(r). The mass of this new
layer is

dm = 4xrp(r)dr
If we bring the shell in from infinity, its gravitational potential energy is

dU(r) = —GM(rﬂ = —4mw GM(r) p(r) rdr
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The total potential energy is found by summing all the shells,
R
U= —47tG/ M(r) p(r)rdr (8.12)
0

For an infinite distribution, we extend the integral to R — oo as long as the density
falls off faster than p o r~2 (otherwise the integral diverges). The potential energy
depends on how the mass is distributed, so let’s examine two simple examples.

Example: Uniform Density Sphere with Radius R
Here the density is
p(r) = p (constant)

so the enclosed mass is
4 3 4 3
M(r) = gzrpr = total mass M = gnpR

The potential energy integral is then:

U

Ry
3
—47tG/ —npr’ prdr
0o 3

= —Enszz X l R’
3 5
16 3IM 2
= -——n’GR’ | —=
15 47R3
3 GM?
=3 % (8.13)

Example: Finite Isothermal Sphere with Radius R

Here the density is

2

1%
e R

p(r)

so the enclosed mass is

2 R 2
M(r) = % = totalmass M = Tv
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The potential energy integral is then:

2

Ry oy
U:—47tG/0 E4nGr2rdr

_ VR

G
B (GM)2 R

R G

GM?

=z (8.14)

From these two examples, and from dimensional analysis, we deduce that the
potential energy for a sphere of mass M and radius R has the general form

GM?

({U)=-n—

(8.15)

where 7 is a dimensionless factor of order unity that depends on the density profile.
We have seen that n = 1 for an isothermal sphere and 7 = 3/5 for a uniform sphere;
other distributions can lead to other values for 7.

8.2.2 Kinetic Energy
In a reference frame centered on the galaxy, the total kinetic energy is

(K) = % Zma <v§x + viy + viz> (8.16)

What we can measure with the Doppler effect is the dispersion in the component
of velocity along the line of sight (which we take to be the z-axis). The dispersion
among all stars is

1
o? = ~ Za:vgz (8.17)

Stars may not contribute equally to our measurements, though. Brighter stars will
contribute more of the light we receive, and fainter stars less. Therefore it may be
better to think of a luminosity-weighted dispersion,

2
02 — Za Lavaz

S L (8.18)
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where L, is the luminosity of star «. If the stars are identical, this reduces to
Eq.(8.17). As defined, o is instantaneous. We do not actually see o change (on
human time scales) because we are summing over so many stars, so we take o> and
(0?) to be equivalent.

In order to relate (K') to what we can measure, we need to make two assumptions.
First, we need to assume something about how the components of velocity
in the x and y directions relate to what we measure in the z direction. The

simplest possibility is that the orbits are arranged so the motion is isotropic and
(v2) = (v§y> = (v2.). Second, we need to assume something about the distribution
of star masses and luminosities. The simplest possibility is that the stars are
identical. If we assume identical stars undergoing isotropic motion, we can combine

Egs. (8.16) and (8.17) to write

3 3 3
(K) = Eng:(vgz) = EmNUZ = 51‘40'2

Relaxing the two assumptions, we write the general case as

(K) = %,BMUZ (8.19)

where § is a dimensionless factor that depends on the arrangement of orbits and
population of stars.

8.2.3 Mass Estimate

Plugging Eqs. (8.15) and (8.19) into the virial theorem yields

GM?
— =

0

3BMo? — 1

Rearranging, we obtain the virial mass estimate

_3,3R(72
=7 G

M (8.20)

The factor Ro?/G is what we would derive from dimensional analysis. Now we
identify the dimensionless factors (8 and 7) that encode the internal properties of the
system. For an isothermal sphere composed of identical stars with isotropic motion,
B = n = 1. For other scenarios, 8 and 7 can take on different values.

Equation (8.20) gives the motion/mass connection for elliptical galaxies. Once
we measure the size (R) and motion (o), we can use the formula to estimate the
mass. When astronomers discuss elliptical galaxies, they usually quote the velocity
dispersion because it is directly measurable, and—as we now know—it is a good
indicator of the mass.
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Here are some typical numbers for elliptical galaxies:

o =200kms™!
R = 10kpc
10 % 3.09 x 10" m) x (200 x 10> ms™")?2
M =3 069.67 xOIO—l)l mgli)go_l s‘g :
=6x10* kg
=3 x 10" Mg

(This mass estimate is derived with 8 = n = 1.)

8.3 Galaxy Interactions

Now let’s shift attention from a single, isolated galaxy to a pair of galaxies
that interact with one another. This is a natural step for two reasons. First,
elliptical galaxies are thought to be formed by collisions between spiral galaxies.
Second, studying galaxy interactions illustrates how the virial theorem can teach us
something interesting and perhaps unexpected.

8.3.1 Fly-By

First consider an interaction in which two galaxies fly past one another but do
not collide.> The encounter has two effects: the gravitational attraction gives each
galaxy a global impulse in the direction of the other galaxy, and the tidal force
squeezes each galaxy. What happens to the internal properties of each galaxy?

Suppose the encounter is fast enough that the stars within a given galaxy do
not move very much during the event. Then the potential energy is the same just
before and just after the encounter. The kinetic energy changes, though, because
each star gets a little velocity “kick.” Part of this is collective motion (the whole
galaxy moves), but part of it is internal motion (from tidal squeezing). The key
implication is that the encounter increases the internal kinetic energy.*

3This analysis follows Binney and Tremaine [2].

“Note that the internal energy of each galaxy is not conserved during the encounter. The total
energy of the system is conserved, though; the “new” internal energy comes at the expense of the
translational kinetic energy of the two galaxies moving past each other.
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Before the encounter, a galaxy is in equilibrium with

state #1 kinetic energy (K) = K;
potential energy (U) = U;
equilibrium = 2K; +U; =0 (8.21)

Immediately after the encounter, the galaxy has

state #2 kinetic energy K; + AK
potential energy U,
The system no longer satisfies the virial theorem, so it is not in equilibrium. It must
redistribute the energy to achieve a new equilibrium. It will settle into a final
state with
state #3 kinetic energy (K) = Ky
potential energy (U) = Uy
equilibrium = 2K, 4+ Uy =0 (8.22)

We can combine the virial theorem with conservation of energy’ to obtain two
equations that allow us to find the final state:

0

virial theorem : 2Ky + Uy
conservation of energy : Ky +Uy = K; + AK + U;

Subtract these two equations:

K;=—-K —AK—-U,
= —K;, — AK — (<2K;)
K; — AK

In the second step we use Eq. (8.21) to replace U; = —2K;. Once we know K r we
can use Eq. (8.22) to find Uy:

Ur=U; +2AK

3Once the encounter is complete, energy must again be conserved. Thus, energy is conserved
between states #2 and #3 even if it is not conserved between states #1 and #2.
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Long after the encounter, the galaxy settles into a state with lower kinetic energy and
higher potential energy. Since U = —nGM /R?, the system must increase R and/or
redistribute mass (thereby changing 7) in order to increase the potential energy.
Either way, we realize that the galaxy has been “puffed up” by the encounter. This
is a conclusion that is interesting and not at all obvious, and it comes from very
general reasoning. Such is the power of the virial theorem.

8.3.2 Collision

What happens when two galaxies meet each other head-on? Galaxies are mostly
empty space, so they pass right through one another; it is very unlikely that
one star will actually hit another (see Problem 8.4). But stars can pass close
enough to change each other’s motions. The stellar orbits are dramatically dis-
rupted, creating a final state that can be very different from either of the initial
galaxies.

There are so many stars, and the interactions are so complicated, that it is
difficult to make much progress analytically. Theoretical studies of galaxy collisions
therefore rely on numerical simulations [3,4]. Computers are good at the large-scale
computations needed to track the motions of stars throughout a collision. The benefit
of the numerical approach is that we can make movies and see all the stages of the
merger event. The drawback is that the details depend on many factors, including the
galaxies’ masses, velocities, rotation rates, and orientations. Each simulation takes
a lot of computer time, so the idea is to do a plausible range of examples and then
try to extract some general conclusions. For example, one common aspect is the
formation of long, coherent structures called “tidal tails” that last for a few hundred
million years before settling back into the final galaxy.

Observational studies investigate systems that appear to be collisions in progress
(see Fig.8.1). While we cannot follow a single event from start to finish, we can
find observed systems that look like various stages of the simulated mergers, and
vice versa. By identifying such matches, we can validate the simulations and also
make educated guesses about what happened in the past and what will occur in
the future for each system. The general lessons are that galaxies can collide, the
collision process drastically changes the motions of stars in the galaxies, and the
end product is a system full of stars with seemingly random motions that resembles
conventional elliptical galaxies (e.g., [5]).
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Fig. 8.1 Hubble Space Telescope images of 12 ongoing galaxy collisions. The top and bottom
panels in the third column show particularly clear examples of tidal tails (Credit: NASA, ESA, the
Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration, and A. Evans)

8.4 Other N-Body Problems

Gravitational N-body problems also occur in many other astrophysical settings,
ranging from star clusters within galaxies, to the formation and evolution of galaxies
themselves, to clusters and superclusters of galaxies, and finally to the large-scale
distribution of matter in the universe. Computer simulations, coupled with analytic
tools like the virial theorem, allow us to understand astrophysical processes over a
huge range of scales. You can explore a few examples in the problems below.

Problems

8.1. You should be able to answer these questions using the virial theorem, without
doing any detailed calculations.

(a) For a system in virial equilibrium, is the total energy positive, negative, or zero?
(b) Suppose a system is in equilibrium. In order for the system to shrink in size,
how must the total energy change?
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8.2. The Plummer model for a spherical star cluster has density

M a?

pir) = 4 (r2 + a?)5/?

where M is the total mass, and a is a core radius.

(a) Compute the enclosed mass profile M(r). Hint: by changing variables, you can
express the integral in a form that can be evaluated using Sect. A.7.

(b) Now compute the total potential energy in terms of G, M, and a. Hint: again
change variables and use Sect. A.7.

(c) If the mass distribution is in equilibrium, what is the total kinetic energy? What
is the total energy? Give your answers in terms of G, M, and a.

(d) The globular cluster @ Centauri can be described by a Plummer model with a
total mass M = 5 x 10° M and core radius @ = 4.5 pc. Assuming identical
stars in isotropic orbits, find the cluster’s radial velocity dispersion o in kms™!.

8.3. Some time in the future, the Milky Way and Andromeda galaxies will collide.
While we need computer simulations to study the process in detail, we can get an
idea of what the end product will be like.

(a) For an isothermal sphere with a radius R and circular velocity v, express the
potential and total energies in terms of M and v.

(b) Consider two identical finite isothermal spheres, each with initial mass M;
and initial circular velocity v;, that are at rest a distance d apart. What is the
total energy of this system? Hint: consider the total energy for each object in
isolation, and then the potential energy between the two.

(c) Suppose the two spheres fall toward each other and merge, and after some time
they equilibrate into a single isothermal sphere. Use conservation of mass and
energy along with the virial theorem to derive the following quantities, and
explain your results in words:

* The final mass My (in terms of the initial mass M;)
* The final circular velocity v s (in terms of v;, R;, and d)
* The final radius R s (in terms of R; and d)

(d) Apply your results to a system like the Milky Way and Andromeda, approximat-
ing the galaxies as isothermal spheres with circular velocities of 250 kms~" and
radii of 150kpc, which fall from rest at an initial separation of 780 kpc. What
are the mass (in M), radius (in kpc), and circular velocity (in kms™") of the
final galaxy? (This is not a perfect model of the Milky Way/Andromeda system,
because the two galaxies are not identical and they are already heading toward
each other. Nevertheless, it gives a reasonable idea of how things will go.)

8.4. I mentioned that when two galaxies come together they do not physically
hit each other, but gravitational interactions change the star motions. Let’s make
some estimates to understand what would happen if an interloper passed through
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the Milky Way’s disk in the vicinity of the Sun.® The mass density in stars near the
Sun is about 0.05 Mg pc—3 [7]. For simple estimates you may assume the disk has
a uniform density and is 1 kpc thick, and all stars are like the Sun.

(a) As seen from above, what fraction of the area of the disk is covered by stars?
This can be interpreted as the probability that a star passing through the disk
would hit a disk star.

(b) Even if the interloper does not hit a disk star, it may pass close enough to
change the disk star’s motion. Let’s suppose this happens if the gravity from
the interloper ever exceeds the gravity from the galaxy. Show that this occurs if
the interloper comes within a distance

~ (Gngal)l/z

Ve

d

of the disk star, where m is the mass of the disk star, R,y is the distance of the
disk star from the center of the galaxy, and v, is its circular rotation speed.

(c) Now estimate the probability that the interloper perturbs a disk star while it
passes through the disk.

The key result here is that bona fide collisions between stars are rare, but interactions
that change stars’ motions are common.

8.5. The Coma cluster of galaxies has a velocity dispersion of about 1,000 kms™!
and a radius of about 3 Mpc. Estimate its total mass assuming an isothermal sphere
with isotropic orbits of identical galaxies. Would your estimate increase, decrease,
or stay the same if you used a constant density model?

References

1. Wolfram Research, Inc., Mathematica, 8th edn. (Wolfram Research, Champaign, 2010)

2. J. Binney, S. Tremaine, Galactic Dynamics, 2nd edn. (Princeton University Press, Princeton,
2008)

3. J.E. Barnes, L. Hernquist, Annu. Rev. Astron. Astrophys. 30, 705 (1992)

4. J.E. Barnes, J.E. Hibbard, Astronom. J. 137, 3071 (2009)

5. R.S. Remus, A. Burkert, K. Dolag, P.H. Johansson, T. Naab, L. Oser, J. Thomas, Astrophys. J.
766, 71 (2013)

6. B.W. Carroll, D.A. Ostlie, An Introduction to Modern Astrophysics, 2nd edn. (Addison-Wesley,
San Francisco, 2007)

7. J. Holmberg, C. Flynn, Mon. Not. R. Astron. Soc. 313, 209 (2000)

SThis problem is an extension of Problem 26.1 in the book by Carroll and Ostlie [6].



Chapter 9
Bending of Light by Gravity

To this point we have examined how massive objects move under the influence of
gravity. Einstein taught us that light’s motion is affected by gravity as well. Despite
being relativistic, gravitational light bending can be studied with a quasi-Newtonian
framework to obtain a new way to probe mass in the universe.

9.1 Principles of Gravitational Lensing

The gravitational deflection of light can be treated as a variant of the Newtonian
one-body problem. A full relativistic analysis gives a deflection angle that is twice as
large (see Sect. 10.6.5), but for most astrophysical purposes we can insert the factor
of 2 by hand and proceed in the Newtonian framework. In this section we identify
observable effect of light bending including distortion, magnification, and multiple
imaging.

9.1.1 Gravitational Deflection

Consider a particle of mass m passing near a massive body M > m. The particle’s
trajectory is curved, but asymptotically (i.e., far from M) it is a straight line. We
can quantify the bending in terms of the angle & between the asymptotic segments,
as shown in Fig. 9.1. To compute &, strictly speaking we need to solve a differential
equation characterizing the motion.! If the bending is small, however, we can obtain
a good approximation much more simply, by computing the change in velocity
perpendicular to the original motion.

I'This is related to the analysis in Sect. 3.1, but now applied to an unbound orbit.

C. Keeton, Principles of Astrophysics: Using Gravity and Stellar Physics to Explore 143
the Cosmos, Undergraduate Lecture Notes in Physics, DOI 10.1007/978-1-4614-9236-8_9,
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Fig. 9.1 Setup for calculating the deflection when a particle of mass m passes near a massive
body M. The particle moves from left to right, and we define # = 0 to be the time at the point of
closest approach on the original trajectory. The position shown has t < 0

Let the particle’s speed be v. Consider the point of closest approach on the
original trajectory: let the distance of this point from M, known as the impact
parameter, be b; and let the time at this point be ¢ = 0. The component of the
force equation perpendicular to the (original) direction of motion is then

dVJ_ _ GMm b
dt b2+ (b2 +v42)1/2

The first factor is the strength of the gravitational force, while the second factor gives
(by trigonometry) the component in the perpendicular direction. The net change in
the component of velocity perpendicular to the original motion can be found by
integrating:

©d o0 GMb
Avl=/ £d1=/ L -
oo dt —oo (B2 +1212)3/2
_GM [® 4 2GM
Covbh Joe (14 X232 b

In the third step we change variables x = v¢/b to make the integral dimensionless.
The integral can then be evaluated by changing variables again to x = tan 6. Using
Av] , we can write the deflection angle as

. and Avy 2GM
4@ ~ tan@ = =
v )

where we use the small-angle approximation. Notice that the deflection angle is
independent of the mass of the moving particle. It must apply to arbitrarily low
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masses, and even to the limit m — 0 as appropriate if we think of light as a photon.
Therefore, we expect light to be bent by gravity.?

This analysis used Newtonian gravity. The analysis with general relativity
(see Sect. 10.6.5) gives a bending angle that is the same for a massive particle, but a
factor of 2 larger for a massless particle (like light). Therefore we can say:

2GM . . .
—— massive, non-relativistic particle
n )
o = 9.1)
4GM .
5 massless particle
c%b

Itis possible to develop the theory of gravitational lensing in a relativistic framework
(e.g., [1]), but for lensing by stars and galaxies it is adequate (and much simpler) to
work in the Newtonian framework and insert the factor of 2 for light.?

Example: Deflection of Light by the Sun

The nearest object that creates measurable light bending is the Sun. Light from a
distant star that passes just outside the surface of the Sun is deflected by the angle

. 4GMy 4% (6.67x 107" m kg™ s72) x (1.99 x 10*kg)
=0k (3.0 x 10 ms—1)2 x (6.96 x 105 m)

180 deg o 3,600 arcsec
7 rad 1deg

= 8.5x 107 %rad x = 1.75 arcsec

Such starlight is normally swamped by light from the Sun, but it becomes visible
during a solar eclipse. Frank Dyson and Arthur Eddington led expeditions to
measure the positions of stars during an eclipse in 1919 [3]. They found that the
positions were shifted (relative to the standard positions when the Sun is not present)
by amounts that were consistent with Einstein’s predictions (see Fig.9.2). This
measurement and a similar one by Campbell et al. during a 1922 eclipse [4] are
considered to be among the classic tests of general relativity (see Sect. 10.4).

2You might wonder whether it makes sense to take the limit of the gravitational force as m — 0,
but in general relativity we learn that energy gravitates.

3Gravitational lensing by black holes does require a full relativistic treatment (see [2] for a review).



146 9 Bending of Light by Gravity

RADIAL DISPLACEMENT
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Fig. 9.2 The left panel shows a photographic negative from the solar eclipse of 1919. Although
they are hard to see, star positions are marked. Comparing the positions in this picture with those
measured when the Sun is not in the way yielded the deflections plotted in the right panel. (Note
that the horizontal axis is inverted so stars closer to the Sun are plotted toward the right) (Credit:
Dyson, Eddington and Davidson [3])

9.1.2 Lens Equation

If the impact parameter is small enough, light can go around both sides of the lensing
mass and still reach Earth. In such strong lensing,* we see what appears to be the
same light coming from two different directions, so we detect two images of the
background source.

To quantify this effect, let D; and D; be the distances from the observer to the
lens and source, respectively, and D;; be the distance from the lens to the source.
Using the small-angle approximation, we can define various distances perpendicular
to the line of sight as shown on the left-hand side of Fig. 9.3. If we assume Euclidean
geometry, we can write down the relation

Dslg = D0 — Dls&(e)

where we write @(6) to remind ourselves that the deflection angle depends on the
impact parameter, which in turn depends on 6. Rewriting this very slightly, we have

B =06—a) 9.2)

4«Strong” is a relative term; the bending angle is still in the small-angle regime.
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Fig. 9.3 The geometry of strong gravitational lensing. In this example, light can take two paths
from the source (on the left) to the observer (on the right). The angle from the lens to the source
is B, the angle from the lens to an observed image is 6, and the deflection angle is @. The distance
from the observer to the lens is D;, from the observer to the source is D;, and from the lens to
the source is Dj,. The lengths shown on the left assume the small-angle approximation

where we define the scaled deflection angle

Dy
a ) = D’ a(6) 9.3)

S

For lensing by galaxies, we cannot use Euclidean geometry to describe the expand-
ing universe through which the light rays move. However, the bending happens
only in close proximity to the galaxy, over a distance that is a small fraction of
the total distance traveled. We can therefore view the trajectory as two “straight”
lines (as generalized to an expanding universe) that are connected by a sharp bend.
This is known as the thin lens approximation. It allows us to interpret Eq. (9.2)
in a cosmological context provided that we take the distances D;, Dy, and D, to
be cosmological angular diameter distances (see Sect. 11.3.2 for details). The key
point for now is that angular diameter distances do not add in a simple way, so
D5 # Dy — D; for cosmological lensing

In Fig. 9.3 all the light rays lie in a plane, which is true if the gravitational field
is spherically symmetric and the force is purely radial. In general that may not be
the case, but we can keep the same form of the lens equation if we interpret all the
angles (B, 0, and «) as 2-dimensional vectors in the plane of the sky. In other words,
0 has two components (0;, 6,) that measure angles in the east/west and north/south
directions, respectively (and similar for f and «). This general form of the lens
equation serves as the foundation for the theory of gravitational lensing. The vector
form of « acts as a 2-d analog of the gravitational force, so in the same way that we
define a potential via F = —VU in 3-d, we can define a lens potential in 2-d via

a=Vy 9.4)
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(Note that we do not include a minus sign when defining the lens potential ,
because we explicitly incorporate the sign into the lens equation.) Then we can
write the lens equation as

B=0-Vy 9.5)

9.1.3 Lensing by a Point Mass

To see some detail, let’s consider lensing by a point mass. This is the application of
the gravitational one-body problem to light bending. The scaled deflection angle is

_ D;; 4GM  AGM Dy 1 96)
T D, ¢2b ¢ DD, 8 '

where we write the impact parameter as b = D; 6 in the small-angle approximation.
It is convenient to define

4GM Dy, \'?
O = : 7
£ ( c? DZDS) ©7)

We will interpret this quantity momentarily. For now, it lets us write the lens
equation as

0%
p=t-7%

Rearranging gives
62 —pO — 67 =0

which is a quadratic equation with two solutions,

1
b =5 [/3 + (B2 +402)" 2] 9.8)

Consider the case 8 = 0, so the solutions are 6+ = +60. In this case the observer,
lens, and source all lie on a line, so we can rotate the system around that line and
have perfect symmetry. In other words, there are images that appear all the way
around the lens, forming a perfect Einstein ring image. Since 0 gives the angular
size of the ring, we call it the angular Einstein radius.



9.1 Principles of Gravitational Lensing 149

In the general case B # 0, notice that
9+29E and —0p <6_<0
The + image is always outside the Einstein ring, while the — image is always inside

the Einstein ring and on the other side of the lens (as indicated by the minus sign).
Now consider:

0. 6_

SIB+ (B + 463 ] x S [~ (8 + 461)"")

= % (8> — (8 + 467)]

_9125

Substituting for 0 from Eq. (9.7), we can solve for mass:

. 6'2 D[DS
4G Dy

|0+ 6| 9.9)

If we observe two lensed images, and we know the distances involved, we can
compute the mass of the lens. This is the motion — mass principle for gravitational
lensing. What is different now is that we are using the motion of light to measure
mass.

In Fig. 9.4, the left and middle columns show examples of lensing by a point
mass. Each source produces two images, one on the same side of the lens as the
source and outside 6, the other on the opposite side and inside 6. The exception
is a source directly behind the lens, which produces a complete Einstein ring. The
right column shows an example in which the gravitational field is not spherically
symmetric, which we will examine below. In that case lensing can produce four
images for certain source positions. Figure 9.5 shows an example of an observed
4-image lens system.

9.1.4 Distortion and Magnification

In Fig. 9.4 we see that lensed images can be stretched, and in Fig.9.5 we see that
images of a single source can have different brightnesses. Thus, the observable
effects of lensing include distortion and magnification. To illustrate how these occur,
Fig. 9.6 shows the images of a straight arrow source behind a point mass lens. The
outer image is created when each piece of the source arrow is pushed radially
outward until it lies beyond the Einstein radius. The image subtends the same
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Fig. 9.4 Examples of strong gravitational lensing. The fop row shows arrays of sources, while
the bottom row shows the resulting lensed images (colored the same as the sources). In the left
and middle columns, the lens is a point mass; the dashed circle indicates the Einstein radius.
The difference is whether the sources are offset from or aligned with the middle of the lens.
A source directly behind a circular lens produces an Einstein ring (bottom middle). In the right
column, the lens is an ellipsoidal galaxy model; the dashed curves indicate the “critical curves” (in
the image plane) and “caustics” (in the source plane). A source within the inner caustic produces
four images

azimuthal angle as the source,’ but since it lies at a larger radius it winds up being
longer. The inner image is created when each piece of the source is pushed radially
“through” the center of the lens. Again the image subtends the same azimuthal angle
as the source, but it can lie close to the center and thus be short, or it can lie near
(but inside) the Einstein radius and thus be relatively long (as in the example).
Notice that the outer image gets distorted but retains the same orientation as the
source. By contrast, the inner image gets flipped upside down while keeping the
same left/right orientation as the source. There is no way to obtain this image by
distorting and rotating the source, so we say the parity (or handedness) of the inner
image has been reversed.

SHaving the image subtend exactly the same azimuthal angle as the source requires a radial
deflection and thus is limited to circular lenses. The concept of tangential stretching is general,
though.
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Fig. 9.5 Hubble Space Telescope image of the four-image gravitational lens SDSS J0924—0219.
The red-orange object in the middle is the lens galaxy, while the four blue-white objects are lensed
images of a background quasar (Credit: Keeton et al. [S]. Reproduced by permission of the AAS)

Fig. 9.6 Example of lensing distortion and magnification. The straight red arrow shows the
source; the curved blue arrows show the two lensed images. The outer image has the same parity
as the source, but the inner image has the opposite parity. The dashed circle indicates the Einstein
radius. The dotted lines show that, for a spherical lens, each part of the source yields two images
on radial lines

To quantify these effects, consider a small displacement A in the source plane.
It will map to a small displacement in the image plane given by

a0

AB (9.10)
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Since A@ and AB are 2-d vectors, the quantity A = 060 /df is a 2 x 2 tensor.
It specifies how the shape of a (small) source is changed by lensing, so we call it
the amplification tensor. It is actually easier to compute the inverse using the lens
equation:

Py Py
9 9 2y _
A—l _ % _ _BLGII _319; _ 1 3912 36106,
=55 = | _a | = Py |y (9.11)
06, 36, 90,00, - @

Here subscripts indicate components of a 2-d vector on the sky (see Sect.9.1.2).
In the last step we use Eq. (9.4) and see explicitly that A is symmetric.

To characterize the distortion and magnification of a small source, we introduce
three quantities (k, Y+, yx) defined by

A—l — l—x— Y+ —Vx 9 12)
—rx  l—Kk+ys '

Comparing this with Eq. (9.11) lets us write

1 (Y Py
S L A 4 9.13
2 (aef + ae;) ©.132)
1 (%Y Py
- (&Y 9.13b
*=3 (aef 3922) (9.13b)
Py
O ERET (9.13¢)

In Problem 9.1 you can learn that k > 0 makes a source look bigger; it is related to
focusing of light, so it is known as convergence. By contrast, y;+ and yx cause
a source to look distorted, so they are known as shear. Strictly speaking, the
convergence and shear describe what happens to a source that is small enough for
(k, y+, Yx) to be constant across the source, but they offer an intuitive sense of what
happens to larger sources as well.

Lensing conserves surface brightness (it merely redirects photons, without
creating or destroying any), so if a small source has surface brightness / and area
dAg and it leads to an image with area d Ajn,, then the ratio of fluxes is

fimg _ 1 dAimg dAimg

Jimg = = | detA|
f‘SI‘C I dA SIC dAsrc

Thus we define

i = detA (9.14)
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to be the lensing magnification such that the ratio of fluxes is fimg/foc = |1l-
We could make the absolute value part of the definition of w, but it is convenient
to let u be a signed quantity because the sign reveals the parity of the image. If
the source is large enough that we can resolve the images, then we observe the
shapes directly and so we work with A itself. By contrast, if the source is small
and we cannot resolve the images, then we only measure fluxes and so we work
with . Using Eq. (9.12) we can write the magnification in terms of the convergence
and shear:

p=[0-0—yi -y (9.15)

Circular Symmetry

If the lens has circular symmetry, the potential and deflection are functions of
6 = (67 + 62)"/2. Then working out the derivatives and using some trigonometry
(see Problem 9.2) gives

o= (1 _ %)_l (1 _ 3—3)_1 (9.16)

Recall that the Einstein radius satisfies g —a(6g) = 0, so at the Einstein radius the
first factor vanishes and hence the magnification diverges. For an image near but not
precisely at 6z, the magnification will be finite but it can be large. This is reflected in
the size and shape of images near the Einstein radius in Fig. 9.4. In multiply-imaged
quasars it is not uncommon for the brightest images to have magnifications of 10
or 20, and in some cases of microlensing (Sect. 9.2) magnifications of hundreds or
even thousands have been recorded [6, 7].

Point Mass

For a point mass, using & = 6% /6 in Eq. (9.16) leads to a magnification

62\~ 62\~ 0*
= _ZE 1+ -£ - -
s ( 02) (*92) 64— 03

Recall that the + image has 04 > 6, so the denominator is positive, and indeed
the entire quantity is larger than 1; this image is always brighter than the source.
By contrast, the — image has |6—| < 6g, so the denominator and hence the
magnification is negative. The sign reflects the parity reversal. There is no lower
bound on || for the — image, so this image can be bright or faint. For both images,
when 6 approaches 0 the magnification gets arbitrarily large.
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9.1.5 Time Delay

Looking back at Fig. 9.3, notice that each light ray is longer than it would have been
if it went straight from the source to the observer. Also, each light ray experiences a
relativistic phenomenon called gravitational time dilation (see Sect. 10.2.3). The two
effects cause the light to take longer to reach us along the lensed path than it would
have along the direct route (without lensing). The excess light travel time, which is
called the lens time delay, is

.- 14z DD
C Dls

3108 —veo)] ©.17)

where z; is the cosmological redshift of the lens (see Sect. 11.3.1). The first term in
square brackets quantifies the extra distance the light has to travel, while the second
term encodes gravitational time dilation.

Usually we cannot measure the time delay itself, because we cannot know how
long it would have taken the light to reach us without lensing, but we can measure
the differential time delay between two images. Time delays are thus another
observable aspect of lensing, although we will not say much more about them here.
One conceptual point is that time delays provide a new way to think about where
the lens equation comes from. By Fermat’s principle, light will “‘choose” trajectories
that correspond to stationary points of the travel time function.® The condition
Vt = 0 immediately yields # — B — Vi = 0, which is the lens equation (9.5).
In other words, images form at stationary points of the time delay surface.

9.2 Microlensing

In the remainder of this chapter we examine several ways in which gravitational
lensing can be used to investigate matter that is difficult or impossible to observe
directly. Let’s begin in our own Milky Way galaxy. Once galaxy rotation curves
gave evidence for dark matter, people begin to wonder what the extra mass is made
of. Two competing hypotheses emerged’:

* MACHGOESs, or Massive Astrophysical Compact Halo Objects. According to this
hypothesis, dark matter is composed of astrophysical objects that are faint but
otherwise familiar. Possibilities include: brown dwarf stars, which are balls of

%You may be familiar with the principle of least time, but local minima are not the only stationary
points. As a function of two dimensions, T can also have local maxima and saddle points.

"Don’t blame me—I didn’t invent the names! For the record, “WIMP” was introduced first, and
“MACHO” was chosen deliberately (see [8]).
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gas that are too small to support nuclear fusion, so they do not shine (see
Problem 16.5); white dwarf stars, which are dim stellar corpses (see Sect. 17.2);
planets; or black holes.

* WIMPs, or Weakly Interacting Massive Particles. According to this hypothesis,
dark matter is a fundamental particle that is unfamiliar to us. There are many
hypothetical particles that could have the right properties to act as dark matter,
including neutralinos, axions, gravitinos, and much more (see [9]).

If dark matter is made of MACHOs, the Milky Way should be rife with objects the
mass of planets or stars that can cause a form of lensing known as microlensing.
If dark matter is instead made of WIMPs, it should be spread more diffusely, which
would limit microlensing to events produced by stars. Measuring the rate of lensing
in our own galaxy can therefore help us distinguish between MACHO and WIMPy
dark matter.

9.2.1 Theory

Consider using a star in the Milky Way as the source of light, and either another star
or a MACHO in the foreground as the lens. In a typical scenario the source is a star
in the bulge of our galaxy, which is about 8 kpc away, and the lens is a star roughly
halfway in between. The Einstein radius for a solar mass star is then

1/2
0 — 4% (6.67x 107" mPkg™!s72) x (1.99 x 10¥kg) y 1 /

E= (3.0 x 108 ms 1) 8x3.09x 101°m
180deg 3600 arcsec

= 4.9 x 10 rad x x
7 rad 1 deg

= 0.001 arcsec

Since the Einstein radius is so small, the images are too close together to be resolved
(even with the Hubble Space Telescope). As the source and lens move through
the galaxy, though, the positions and brightnesses of the images change with time.
We can detect microlensing through variations in the apparent brightness of the
source star.

Problem 9.4 you can practice solving the lens equation to predict the changes in
brightness as the source moves relative to the lens. For now let us focus on the time
scale for variability. The natural scale is the time it takes for the source and lens to
move (relative to the each other) by the diameter of the Einstein ring. Since 0 is the
angular Einstein radius, the corresponding length is D; 0. The speed that matters is
the relative velocity of the lens and source perpendicular to the line of sight, which
we write as v, . The typical Einstein crossing time is therefore
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2D,6 2 (4GM D;D;,\'"?
1 = 27E ( #) (9.18)

Vi Z c? D,
For the typical values quoted above and v, = 200kms™', the time scale is 1z =
70 days. This is quite convenient: short enough that impatient astronomers do not
have to wait too long, but long enough that they can make many measurements
during the course of an event even if some nights are lost to bad weather.

9.2.2 Observations

The biggest observational challenge is the low probability for any given star to be
microlensed (which you can estimate in Problem 9.5). If you watch enough stars
over a long enough period of time, however, you are bound to see some events. The
prospect of testing the MACHO hypothesis was tantalizing enough to lead several
groups to make a concerted effort to look for microlensing. Three of the main teams
were the MACHO Project, the Optical Gravitational Lensing Experiment (OGLE),
and Expérience pour la Recherche d’Objets Sombres (EROS). To give a sense of
scale: the MACHO Project monitored about 17 million stars toward the center of the
Milky Way for 3 years and observed 99 events, and also monitored almost 12 million
stars in the Large Magellanic Cloud (LMC, a small galaxy orbiting the Milky Way)
for almost 6 years and observed 13—17 events (depending on the selection criteria)
[10,11]. Looking toward the Galactic Center raised the odds that the team would see
at least a few events and thus validate their observational methods, while looking
toward the LMC let them look through the Milky Way’s halo to search for MACHO
dark matter.

Two sample microlensing events are shown in Fig. 9.7. Each star was observed
in both red and blue light to distinguish lensing from other effects. Light bending
is independent of wavelength, so a microlensing event ought to look the same in
both red and blue light.> Most of the time the light curve is constant (revealing the
star’s natural flux). But during a period of a few months the star brightens, reaches
a peak, and then fades back to its original flux. The measured data points nicely
follow the predicted microlensing light curve. For each event, we can measure the
peak magnification, which depends on how close the source star came to the lens,
and the duration of the event, which depends on a combination of the mass of the
lens, the distances, and the relative velocity (see Eq.9.18). While this information
does not uniquely determine the mass of the lens star, it does at least confirm that
we saw microlensing.

As we said, the idea is to see whether the number of microlensing events is
comparable to or higher than the number expected from known populations of stars
in the Milky Way. The analysis is necessarily detailed; suffice it to say that the

8By contrast, variable stars tend to change color as they change brightness.
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Fig. 9.7 Microlensing light curves for two stars from the MACHO project. Each pair of panels
shows the same star in red and blue light. The horizontal time axis is measured in days. The points
with errorbars show the measured brightness, while the curves show microlensing models (Credit:
Alcock et al. [12]. Reproduced by permission of the AAS)

microlensing event rate is much lower than expected if all the dark matter were
MACHGO:s [11]. There may be some but not very many MACHOs in the Milky Way.
Dark matter, it seems, is mostly WIMPy.

9.2.3 Binary Lenses

Observed light curves do not always match standard predictions as well as the
ones in Fig.9.7. Many of them have features that arise when the lens star has
a companion: either another star or a planet. The gravitational field for a binary
lens is sufficiently complicated that we cannot predict the light curve analytically.
Nevertheless, we can understand some of the distinctive phenomena that occur in
binary lensing.

Consider the case of two equal mass stars, and a source star directly behind the
center of mass. The resulting image configuration is shown in Fig.9.8. Image #1
appears right in the middle because the gravity from the star on the right cancels the
gravity from the star on the left. Image #2 appears where it does because both stars
pull the light to the right; and vice versa for image #3. For image #4, both stars pull
down, while the leftward and rightward forces cancel; and vice versa for image #5.

The key concept is that there can be five images. This is true not only for a source
right between the stars, but also for some other positions. As shown in Fig. 9.9, there
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Fig. 9.8 Images produced when a source is directly behind the center of a lens consisting of two
equal-mass stars
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Fig. 9.9 Illustration of binary lensing. In each panel, the green curve shows the caustic, the black
curve shows the corresponding critical curve, the red circle shows the source, and the blue curves
show the lensed images

is aregion in the source plane that leads to five images, and another region that leads
to three. The boundary between them is called a caustic curve in the source plane.
Caustics map to critical curves in the image plane, which are like the Einstein ring
but generalized to scenarios without circular symmetry. Caustics mark where the
number of images changes. A source just inside a caustic produces two images near
a critical curve that are highly magnified and distorted. (If the source straddles the
caustic, the two images merge into one that crosses the critical curve.) Consequently,
the lensing magnification can change dramatically from one side of the caustic to
the other.
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Fig. 9.10 Light curve for a binary microlensing event. The vertical axis is labeled magnification
but is actually 2.5log |u], so the highest points correspond to magnifications of around 40.
The colored points show data from different telescopes. The curve shows a binary lens model.
In the inset, the two upper panels show results for different filters, while the bottom panel shows
the residuals between the data and model (Credit: Kubas et al. [13]. Reproduced with permission

© ESO)

We can see this as a sharp change in the magnification when a source moves
across a caustic during a microlensing event, as shown in Fig.9.10. The main
plot shows the full light curve. The inset shows a close-up of the caustic crossing
event; the colored points show the data, while the black curve shows a theoretical
prediction. Remarkably, the light curve depends not only on the properties of the
lens (the masses and positions of the two stars), but also on the structure of the
source. At any given time the part of the source that is right on the caustic is
dramatically magnified. As the source moves across the caustic, different portions
of its surface are magnified in turn, and the light curve essentially maps the surface
of the star (in the direction of motion, at least). In this way microlensing effectively
boosts the resolving power of our telescopes to help us study structures that would
otherwise be too small to see.

9.2.4 Planets

If we reduce the companion mass to the scale a planet, the caustics shrink to the point
that the gravity from the planet just produces a “blip” on the light curve. The time
scale for the planetary feature, compared to the full stellar event, is
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Fig. 9.11 Microlensing light curve revealing a planet estimated to be about 5.5 Earth masses
(Reprinted by permission from Macmillan Publishers Ltd: Beaulieu et al. [15], (© 2006)
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For the Sun and Jupiter, the mass ratio translates into a duration ratio of #yianet/ fstar =
0.031. With the typical numbers from Sect.9.2.1, the planetary event would last
about fpiane; ~ 2 days. For the Sun and Earth, the numbers are fpianet/ fstar = 0.0017
and Zplaner ~ 3 h.

Planetary microlensing events are short enough that they require continuous
monitoring by telescopes around the world. To do this efficiently, microlensing
observers developed a strategy in which the main teams would observe their large
samples of stars once a week or so. When they spotted a star in the early stages
of a microlensing event, they would broadcast an alert so that other teams could
begin using other telescopes to monitor the event very closely. This strategy has
paid off with the discovery of more than a dozen microlensing planets so far [14].
Figure 9.11 shows a planetary event discovered in August 2005 after an alert from
the OGLE team.

Beyond merely detecting a planet, what did they learn from this event? The
most well-constrained quantity is the mass ratio between the planet and star, which
basically comes from the ratio of time scales [15]:

M planet

=(7.6+0.7) x 107>
Mstar

To estimate the actual masses of the star and planet, the team had to make a detailed
model of the population of stars in the galaxy and figure out which ones are most
likely to produce an event like the one seen. This yielded

Miar = 0.2 t(())lzll Mo and  Mpjanet = 551_253 Mg
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The uncertainties are significant: the planet could be only a few times more massive
than Earth, or more than 10 times more massive. This is the best that can be done
without direct knowledge of the distance to the lens or the relative velocity between
the lens and source. Still, it allows the important conclusion that this planet is in the
same league as Neptune.

While microlensing has revealed fewer exoplanets than the Doppler and transit
techniques (see Sect. 4.3), it serves as a valuable complement. Microlensing involves
completely different physical processes and observational methods, so it provides
independent confirmation that other stars have planets. Also, microlensing is more
sensitive to small planets far from their stars. Finally, microlensing is better able
to examine stars that are far from Earth. The main drawback is that we only see a
microlensing event once, when the star and planet cross in front of a background
source; after the event concludes, it cannot be repeated. Therefore microlensing will
probably contribute more to a statistical census of planets rather than to detailed
knowledge of individual systems. Nevertheless, microlensing is expected to play an
increasingly important role in planet searches in the coming decade.

9.3 Strong Lensing

With stars and planets it is reasonable to use the point mass approximation, but
when we turn to galaxies and clusters of galaxies we must consider extended mass
distributions.

9.3.1 Extended Mass Distribution

We can still work in the thin lens approximation, so what matters is the projected
surface mass density of the galaxy, X. A small patch of the lens at position @’ has
mass X' (0') d@’, so the amount of bending it creates at  is

4G Dy 0—0

———3(0")— db’
6’2 D[DS ( )

(This is the 2-d vector form of Eq.9.6.) We can therefore write the total scaled

deflection as

1 @) 6 -6
0)=— [ ———7db’ 9.19
“O)=2) T Te=ep ©-19)
where we have collected multiplicative factors and defined

_ 6'2 D[DS
crit — azG Dls

(9.20)
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We call this the critical surface density for lensing, for reasons that will become
clear shortly. If we take the divergence V - & and recall that the deflection is related
to the lens potential by &« = Vi, we obtain

X
X crit

Vi =2 9.21)
This has the form of the Poisson equation for the gravitational potential, but in two
dimensions. It provides the general framework for lensing by arbitrary 2-d mass
distributions. By comparing Eqgs. (9.13a) and (9.21), we see that the convergence is
the surface mass density scaled by the critical density:

(9.22)

9.3.2 Circular Mass Distribution

For a mass distribution with circular symmetry, we can evaluate Eq. (9.19) using
an analog of Newton’s theorem about gravity from a spherical mass distribution.
Recall from Sect. 2.3 that Newton found F(r) oc M(r)/r*> where M(r) is the mass
enclosed within r. The radial dependence is 1/r? because a certain “amount of
gravity” is spread over a spherical shell whose area scales as r2. By analogy, in 2-d
the dependence should be 1/R, or in terms of the angular impact parameter 1/6.
Indeed, the scaled deflection from a circular mass distribution is

4G D;; M(0)

Recalling that the Einstein radius is defined by «(6g) = 6, we can write

6'2 D[DS 92

M) = ;= . UE

(9.24)

If we see an Einstein ring, we can infer the mass enclosed by the ring even if we
do not know the density profile. If we do not see a complete ring, the principle still
holds that the quantity we measure best is the mass within 6. This is how we can
use gravitational lensing as a tool to weigh distant galaxies and clusters of galaxies.

Consider the average surface mass density enclosed by the Einstein ring (in angu-
lar units, e.g., solar masses per square arcsecond):

M) _ ¢* DD,
02 4xG Dy

(X) =

crit
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All Einstein rings enclose an average density that is given by X, from Eq. (9.20).
Put another way, an object must have X~ > X, in order to have an Einstein ring
at all. This is the sense in which X is the critical density for lensing.

9.3.3 Singular Isothermal Sphere

A specific example of an extended, circular mass distribution is the Singular
Isothermal Sphere (SIS), which we first encountered when studying spiral galaxies
(Sect. 7.3.2). With spiral galaxy rotation curves we used the (softened) isothermal
model as one part of a multi-component model that also included contributions from
a disk and bulge. With lensing we can often get away with even simpler models,
because we mostly deal with elliptical galaxies where the stellar distribution is
roundish like the dark matter halo, we focus on the fotal mass distribution (light
bending depends only on the total amount of matter, not whether it is luminous
or dark), and we only need to know the projected surface mass density. For all of
these reasons, the singular isothermal sphere (and its generalization to an ellipsoid;
Sect. 9.3.4) turns out to be a valuable model for lensing. An isothermal sphere with
circular velocity v, has a 3-d density profile’

V2 V2
p= 47Gr2 4w G(R? + 72)

where r is the spherical radius and (R, z) are cylindrical coordinates. The mass
enclosed by the angle 6 is obtained by integrating over R out to D, 6 and integrating
over all z:

D6 2 7 v2D,0
M@® d dR27R — e T
© = /1 Z/ oG R T2 2 G

The scaled deflection angle is then

_ 4G Dy NV?D[ — oy (K)Z Dy

2 DD,2 G ¢) D,

The deflection is independent of position. The constant deflection angle is directly
related to the constant circular velocity that we encountered when studying spiral
galaxy dynamics (see Sect. 7.3). Clearly the Einstein radius is g = «. To be more
precise, we should take into account the direction of the deflection:

+0r 6>0

a(f) =
() —95 6 <0

9The SIS model can also be expressed in terms of the velocity dispersion, which is o = v,/ V2.
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We can then write the lens equation as:

0>0: B=60-06g (9.252)
0 <0: B=0+06g (9.25b)

Without loss of generality we can take 8 > 0. Then we can solve Eq. (9.25a) to find
one of the images:

0 =B+ 0k
We can also solve Eq. (9.25b):
0_ =B —06g only if 8 < 6

(If B > O this equation would imply 6— > 0, which would violate the condition in
Eq.9.25b.) A singular isothermal sphere, in other words, can produce three types of
configurations:

B = 0: Einstein ring at 0g
0< B <0p: twoimagesat 0y = B + Og

B > 0 : oneimageat 0y = f + O

Whereas a point mass lens always produces two images, an SIS lens creates two
images only for sources in a finite region behind the lens.

9.3.4 Singular Isothermal Ellipsoid

Few galaxies are perfectly spherical, and new lensing phenomena appear when
spherical symmetry is broken (see Figs. 9.4 and 9.9), so it worthwhile to consider the
case of ellipsoidal symmetry. With circular symmetry the surface mass density X' is
a function of the polar radius 6 = (912 + 922)1/ 2. To make the symmetry elliptical
instead, we can write X in terms of the ellipse coordinate § = (62 + 02/¢%)'/?
where 0 < ¢ < 1is a dimensionless parameter that measures the ratio of the short
and long axes: for ¢ = 1 the model is again spherical, but for ¢ < 1 it is flattened.

With elliptical symmetry it can be difficult to evaluate the integral in Eq. (9.19).
The singular isothermal ellipsoid (SIE) is one case that can be treated analytically,
leading to the lens equation [16]

B =16

_\1)2
Oeq _1[ (1—4¢°)""6, } (9.26a)

— ———— tan
(1—¢g?)1/2 (nglz + 922)1/2
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B2 = 0, —

12
OLd  apn [m} (9.26b)

(1 _ q2)1/2 (q2912 + 922)1/2

Consider a source at the origin (8; = B, = 0). If we put 6; = 0 then Eq. (9.26a) is
trivially satisfied and Eq. (9.26b) becomes

0Eq —1 24172
0= 92 — m tanh [(1 —q ) sgn(@z)]
which can be solved by
6, = :b—eEq tanh™' (1 — ¢*)'/?
(1—¢)'7?

Alternatively, if we go back to the equations and put 6, = 0, then Eq. (9.26b) is
trivially satisfied and Eq. (9.26a) becomes

Orq L[ =g2)'?
0=0— TEOLE tan~! [ sgn(6))
which can be solved by
0, = Orq tan~! (1—g»)'?
1 (1—¢»)'2 q

While these expressions are admittedly non-intuitive, the main conceptual point is
straightforward: a source at the origin yields four images, with two on the horizontal
axis and two on the vertical axis. Figure 9.4 shows that other source positions can
also yield four images.

9.3.5 Spherical Galaxy with External Shear

We can capture a lot of the same phenomenology using simpler algebra if we revert
to a spherical model but account for the gravitational influence of other galaxies that
happen to lie near the main lens galaxy. If the neighboring galaxies lie more than a
few Einstein radii away, their effects can be characterized using a tensor of the form
given in Eq. (9.12) where «, ., and yx are constant across the main lens galaxy.'?
If we choose coordinates such that y, = 0, the lens equation has the form

10The shear is basically a tidal effect analogous to what we studied in Chap. 5.
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Ok 6,
OF +65)'2
Ok 0>

B1 =0, — — (kK + )6 (9.27a)

Br =0, (k —y)6r (9.27b)

We can now examine how the “external” shear!! influences the number of images.
Typical values of external shear are y ~ 0.01-0.1. In what follows we set k = 0 for
simplicity, because it does not actually affect the image multiplicity.

For a source at the origin, an analysis similar to what we did in Sect. 9.3.4 yields
four images:

6
(61,6,) = (o, i—E) and (6,,6,) = (j: O ,o)
1—vy 1+vy

A source on the horizontal axis can be treated analytically as well. In Problem 9.6
you can find the following results:

e For0 < B, < 2y0g/(1 — y) there are four images. Two are on the 6,-axis and
two are off the axis.
e For2y0r/(1 —y) < B1 < O there are two images, both on the 6;-axis.

This helps you understand the different configurations seen in Fig.9.4, as well
as the transition between two and four images. There is one additional type of
4-image configuration that is produced by an off-axis source, but it is usually found
numerically.

We have considered ellipticity or shear, but real lenses may have both. Quantita-
tively, both ellipticity and shear are often required to fit observed 4-image lenses in
detail. Qualitatively, though, the two models we have considered capture the main
phenomenology of 4-image lensing.

9.3.6 Science with Galaxy Strong Lensing

Several hundred cases of strong lensing by galaxies have now been observed; in
some the source is a quasar or other compact source that is lensed into multiple
distinct images, while in others the source is a galaxy that is lensed into a partial
or complete Einstein ring. The majority of lens galaxies are ellipticals because such
galaxies tend to be more massive, and hence better lenses, than spirals.

So far in this chapter we have assumed a mass distribution and solved for the
image positions. When we study observed lenses, we invert the problem: we take

“External” because it comes from outside the main lens galaxy (i.e., from the neighbors). Note
that we drop the subscript on y to simplify the notation.
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the images as given and try to solve for the mass distribution that produced
them. It impossible to uniquely determine the mass distribution, though; there
are just too many unknowns. To make progress, we often adopt assumptions that
limit the unknowns.'> For example, if we assume the lens is a point mass or
singular isothermal sphere then we only need to solve for the mass or velocity
dispersion (respectively). We can make the model more complicated by adding more
parameters: for example, moving from an isothermal profile to a general power
law adds one parameter; allowing the mass distribution to be elongated adds two
(ellipticity and orientation angle); accounting for external shear adds another two
(shear strength and direction); and so forth. A lot of the art and science of strong
lens modeling lies in choosing assumptions whose restrictions are useful but not
oversimplified, incorporating observational and/or theoretical knowledge from other
realms of astrophysics.

Strong lens modeling has taught us a number of lessons about galaxy mass
distributions (see the review by Treu [18]; you can explore some aspects of
lens modeling in Problem 9.7). The most robust quantity we can measure is the mass
within the Einstein radius, M (6g). By comparing the mass inferred from lensing
with the mass associated with the starlight, we can find evidence that lens galaxies
contain dark matter. The next step is to learn how the dark matter is distributed. One
approach is to recognize that 6 varies from one lens to another (it depends not only
on the lens mass but also on the distances between the observer, lens, and source);
if we assume lenses follow certain scaling relations, we can use the various M (6g)
measurements to infer the average mass profile. Another approach is to combine
lensing with an analysis of stellar dynamics, which tends to be sensitive to the mass
closer to the center of a galaxy (see Sect. 8.2.3). Having mass measurements at small
radii from dynamics and somewhat larger radii from lensing provides important
information about the mass profile in individual systems. All told, models suggest
that lens mass distributions are nearly isothermal, so the dark matter halos are more
extended than the visible galaxies.

We noted above that many lens models require both ellipticity and external shear.
Constraints on shear let us investigate the distribution of matter in the vicinity of a
lens, which is interesting because lens galaxies often lie in gravitationally bound
“groups” containing a few dozen galaxies [19]. Lensing therefore helps us study
how galaxies form and evolve in environments that play an important role in galaxy
evolution.

12An alternative approach is to make as few assumptions as possible (although assumptions can
never be avoided altogether), and then deal with the large range of mass models that are consistent
with the observed images [17].
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9.4 Weak Lensing

To this point we have considered situations in which the impact parameter is small
and light bending is strong enough to create multiple images. At larger impact
parameters, lensing still acts but the effects are more subtle. Consider an array of
source galaxies as shown in the left panel of Fig. 9.12. Putting a lens in front yields
the picture shown on the right. Only sources near the center are multiply imaged,
but sources farther out are still distorted. This is the regime known as weak lensing.

There is not much we can learn from individual sources that are weakly lensed.
The observed shape of an image depends not only on the lensing distortion but
also on the intrinsic shape of the source, and it is difficult or impossible to
distinguish the two effects on a galaxy-by-galaxy basis (see Fig. 9.13). We can make
progress, though, by examining collections of galaxies. Weak lensing distortion
is predominantly tangential (perfectly so in the case of a spherical lens), whereas
intrinsic shapes and orientations are random.'? Therefore if we measure the shapes
of galaxies in polar coordinates centered on a lens, the intrinsic shapes should
average out while the lensing distortions will not.

One way to study weak lensing is to collect galaxies into annuli centered on the
lens, compute the average shape in each annulus, and relate that to the lensing shear.
As you can show in Problem 9.2, the shear is related to the density for a circular
lens by
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Fig. 9.12 The left panel shows an array of source galaxies. The right panel shows what we would
see if there were a gravitational lens in front. One source produces an Einstein ring, a few are
multiply imaged, but most are only slightly distorted (“weak lensing”)

13We hope. Correlations among the intrinsic shapes of galaxies could present a challenge for weak
lensing [20,21], but they are generally expected to be small and there are ways to deal with them
in a weak lensing analysis [22].
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Fig. 9.13 Similar to Fig.9.12, but the source galaxies have random positions, shapes, and
orientations. The images are no longer perfectly tangential, but the overall pattern of distortion
is still apparent

y(r) = w (9.28)

where X (r) is the average surface mass density within radius 7. Measuring the shear
profile clearly provides information about the density profile of the lens.

A more sophisticated approach is to observe a large sample of galaxies, collect
them in bunches on the sky, and measure the full shear map (at a spatial resolution
that is limited by the sample size). If we know both y4 and yx as a function of
position, we can view Eqgs. (9.13b) and (9.13c) as a pair of differential equations that
can be solved for the lens potential, . We can then use Eq. (9.21) to uncover the
underlying mass distribution, X'. This general analysis cannot be done analytically,
but it is well suited to computational methods (e.g., [23]).

The challenge of weak lensing is that its statistical nature provides less detailed
information about lens mass distributions, compared with strong lensing. The ben-
efit is that there are many, many more objects in the universe that are weakly
lensed than objects that are strongly lensed. As a result, weak lensing has become a
widespread and important tool for studying dark matter. This is especially true for
clusters of galaxies, which are the most massive bound objects in the universe and
thus good targets for weak lensing (see the review by Kneib and Natarajan [24]).

Figure 9.14 shows a famous weak lensing system known as the “bullet cluster,”
which provides arguably the clearest evidence that dark matter is real. The system
contains two clusters of galaxies that passed through each other some 100 million
years ago; the cluster on the left is moving to the left, and the one on the right is
moving to the right. Each cluster contained hot gas that can be mapped because it
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Fig. 9.14 Composite image of the “bullet cluster” system. Superposed on an image of the galaxies
is a map of the hot X-ray gas (colored red) and the dark matter inferred from weak lensing (colored
blue) (Credit: X-ray: NASA/CXC/M. Markevitch et al. Optical: NASA/STScl; Magellan/U. Ari-
zona/D. Clowe et al. Lensing Map: NASA/STScl; ESO WFI; Magellan/U.Arizona/D. Clowe et al.)

emits X-rays (colored red in the image). During the “collision” the two gas clouds
slammed into one another, but the galaxies and dark matter did not feel gas pressure
so they kept on going. As a result, the X-ray gas got separated from the galaxies and
dark matter.

How does lensing apply? There are lots and lots of small background galaxies in
the field (although they are too small and faint to be apparent in Fig.9.14). A weak
lensing analysis yields the mass distributions indicated in blue in the image [25].
There is a significant offset between the hot gas, which represents the bulk of the
normal matter in the clusters, and the source of gravity. This is exactly what we
would expect if there is a significant amount of dark matter that exerts gravity but is
otherwise inactive. Most astrophysicists conclude that it would be very difficult to
explain the weak lensing result in the bullet cluster and similar systems [26] without
exotic dark matter (but see [27] for a dissenting view).

Strong and weak lensing are most apparent near massive objects like galaxies
and clusters, but gravitational deflection actually affects all light rays in the universe
at some level. Inhomogeneities in the large-scale distribution of matter create
distortions that are quite small but detectable with a careful statistical analysis of
galaxy shapes [28]. This cosmic shear is sensitive to the relative abundances of
dark matter and dark energy in the universe, so it plays a prominent role in existing
and planned probes of cosmology [29]. The analysis methods are more detailed than
we want to get into here, but the fundamental principle is just what we have used
throughout this chapter: mass creates gravity that bends light, so if we can detect the
light bending we can use it to map the matter and weigh the universe.
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Problems

9.1. This problem will help you understand the interpretation of k, Y4, and yx in
Eq. (9.12). Let the source be a unit circle and write its boundary as

AB = (cos¢,sing)

where ¢ is an azimuthal angle running from O to 25r. Use Eq. (9.10) to find and plot
the boundary of the image for the following cases:

(@) k=02andyy =yx =0
(b) y4+ = +02andk =y« =0
(c) yx =x02andk =y+ =0

9.2. In this problem we consider the lensing properties of a circular mass distribu-
tion. In the text we refer to the two components of position on the sky as (61, 6,), but
for the sake of familiarity let’s revert to (x, y) and the associated polar coordinates
(r, ¢). With circular symmetry, the lens potential is a function of r only: ¥ (r).

(a) Work out the first and second derivatives of the potential with respect to x
and y, but expressed in polar coordinates. For example, the chain rule for
derivatives gives

= )+ )
X

where ¥/(r) = dy/dr.
(b) Use Eq. (9.13) to show that the convergence and shear can be written as

K = % (I// + W’/) (9.29a)
1 (1/f //)
Y+ ==|——¢" Jcos2¢ (9.29b)
2\ r
y_ = % (K - w”) sin 2¢ (9.29¢)

where " = d*>y/dr?.

(c) In circular symmetry, the deflection is @ = v’. Use this with Eq. (9.29) to show
that the magnification has the form given in Eq. (9.16)

(d) From Eqgs. (9.29b) and (9.29¢) it is clear that the shear strength is

_ly
V—z(r 1//)

Now derive Eq. (9.28). You will need to use Egs. (9.20), (9.22), and (9.23).



172 9 Bending of Light by Gravity

9.3. Consider a star orbiting 10 pc from the black hole at the center of the Milky
Way (see Sect. 3.2.1). Suppose we view the star’s orbit perfectly edge-on.

(a) What is the Einstein radius for this scenario (in arcsec)?

(b) When the star is at a source angle of 8 = 0.1”, where are the two gravitationally
lensed images?

(c) When the star passes behind the black hole we see a “microlensing” event. How
long does it last?

(d) If the star’s orbit were larger, how would the answers change? Explain using
equations or drawings.

9.4. Let’s see how to calculate points on a microlensing light curve. In the figure
below, the line denotes the trajectory of a source passing behind a point mass lens.
The circle indicates the Einstein radius. All lengths are in units of the Einstein
radius. For each of the three marked source positions, find the two images, compute
their individual magnifications, and then find the total magnification is i =
[+ + |—| (with absolute values because in this problem we do not worry about
parities).
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N ]
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9.5. As discussed in Sect. 9.2, microlensing is used to test the hypothesis that the
Milky Way’s dark matter is made of MACHO:s. In this problem you will estimate
the microlensing probability. (This is analogous to Problem 8.4, with the interloper
star replaced by a light ray.)

(a) Suppose there is a uniform mass density p in MACHOs between us and a source
a distance D; away. Consider a thin slab that is located a distance D; away and
has thickness dD;. Find the fraction of the area of the slab that is covered by
the Einstein rings of MACHOs. This is the probability that the light ray passes
within one Einstein radius of one of the MACHOs in the slab, i.e., close enough
to be strongly lensed. Hints: 0 is the angular Einstein radius, but here you need
to convert it to a length; the result does not depend on the mass of the MACHO:s.
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(b) Now sum up all the slabs between us and the source, i.e., integrate over D;. The
resulting quantity is called the “optical depth” for microlensing, often written
as 7, and it represents the probability that a light ray passes close enough to a
MACHO to be lensed.

(c) To compute a numerical value of t you need to specify the mass density in
MACHOs. To make a simple estimate, assume that dark matter is distributed
uniformly between the Sun and the center of the Milky Way, and compute the
mean density. Also assume that all of the mass is in MACHOs (i.e., don’t worry
about the disk). With these assumptions, calculate p.

(d) Now compute the probability that a star at the center of the Milky Way is
microlensed by a MACHO.

9.6. In this problem you will see why some lenses have two images and others
have four. The simplest lens that can produce four images is an isothermal sphere
with an external shear, whose lens equation is given by (9.27). Recall that y is
dimensionless, and we can take it to be positive.

(a) Consider a source placed on the horizontal axis in the source plane (i.e.,
B> = 0). Solve the lens equation (working with symbols) to show that:

e For0 < B; < 2y0g/(1 — y) there are four images. Two are on the 6;-axis
and two are off the axis.
e For2y0r/(1 —y) < B1 < O there are two images, both on the 0;-axis.

Give the positions of all images in both cases.
(b) Now assume 0 = 1” and y = 0.1, which are typical values for galaxy lenses.
Sketch the image configurations for the following source positions:

c fi=p=0
e f1=0.15and B, =0
e B1=035and B, =0

9.7. This problem will give you a taste of how we model gravitational lens systems
to measure galaxy masses. Imagine you observe a galaxy lens system with distances
D; = 940Mpc, D;; = 1,293 Mpc, and D; = 1,745 Mpc. One image appears at an
angular position of 4 = 1.05” from the lens galaxy, while the other appears at an
angular position 6_ = —0.35” on the opposite side of the galaxy. You may assume
the lens is circularly symmetric.

(a) Assume the galaxy can be modeled as a point mass. Find the Einstein radius
and mass of the lens galaxy.

(b) Now assume the galaxy can be modeled as an isothermal sphere. Again find the
Einstein radius and the mass enclosed by the Einstein radius.

(c) Both models can fit the image positions, but they make different predictions for
the brightnesses. Suppose the “+4” image is observed to be three times brighter
than the “—" image. Compute the relative magnifications of the images for your
point mass and isothermal models. Which model is correct?

Hint: remember to convert between arcseconds and radians as necessary.
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9.8. We know that black holes come in stellar-mass and supermassive varieties, but
we do not know whether there is anything in between. In this problem we consider
whether gravitational lensing could be used to look for intermediate mass black
holes (IMBH) in globular clusters.

(a) Consider a globular cluster with mass M,y and velocity dispersion o. Assuming
a uniform density of stars with mass m, use the virial theorem to estimate the
size of the cluster and the number density of stars.

(b) Suppose there is an IMBH at the center of the cluster, and the mass is M, such
that m < Mo < M. The black hole can lens background stars that are in
its “Finstein cone”—the region behind the black hole whose projected radius
equals the Einstein radius.'* Find an approximate expression for the size of
the Einstein cone as a function of Dj,. Hints: you may assume D; ~ D, and
Dy < Dy; recall that Eq. (9.7) gives the Einstein radius in angular units.

(c) Estimate the total number of stars in the Einstein cone. This is the expected
number of lens systems within the globular cluster. Hint: the answer can be
expressed in terms of M,, m, and 0.

(d) Obtain a quantitative estimate for the number of lenses by assuming that the M -
o relation for supermassive black holes (Sect. 3.2.2) can be applied to globular
clusters:

o )4.02

8
Mo = 1.35 % 10° Mo x (55—
Use 0 ~ 10kms™! for a globular cluster.
(e) The same analysis can be applied to an SMBH in an elliptical galaxy. Repeat
part (d) for a galaxy with o ~ 200 kms™".
(f) Comment on our ability to detect and identify lensing of stars in a globular
cluster or galaxy by a massive black hole within the stellar system.

9.9. Suppose you observe a binary star system consisting of a white dwarf with a
radius of 6,100km and a neutron star with a radius of 10 km. The system is 2 kpc
from us and viewed edge-on. The radial velocity curves are shown below, where
WD labels the white dwarf and NS labels the neutron star.

(a) What are the masses of the two stars, and the distance between them?

(b) Sketch the light curve when the neutron star passes behind the white dwarf.
Hint: since the problem appears in this chapter, you can assume it involves
gravitational lensing, but that is not the only phenomenon at work.

14This is not strictly a cone because the edge is not straight, but the terminology is helpful because
the region does grow with distance behind the black hole.
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Chapter 10
Relativity

With his special and general theories of relativity, Einstein revolutionized our
understanding of space, time, gravity, and hence motion. Why, then, have we
spent so much time with Newton? Newtonian physics is a good approximation
when motion is slow compared with the speed of light and gravity is “weak” in
a sense to be defined. A lot of astrophysics research is still carried out under these
assumptions. That said, discussing our modern conception of gravity and motion
opens fascinating topics such as the weirdness of spacetime around black holes and
(in Chap. 11) the expanding universe.'

10.1 Space and Time: Classical View

All of our discussion of motion so far has relied on an implicit understanding of
“space” and “time.” Intuitively, we think everyone agrees on what space and time
are; we imagine there are universal rods and clocks we can use to define them.
Although physicists knew that only relative motion matters for inertial observers,
they assumed that a universal, absolute reference frame does exist.

To glimpse some consequences of this assumption, let’s examine the relation
between two inertial reference frames that are moving relative to each other.
Consider one frame (x, y,z,¢), and a second frame (x’, y’,7/,¢") moving relative
to the first with a constant speed u in the x-direction. If time and space are the
same in both frames, the coordinates must be the same except for a translation in
the x-direction:

IParts of this presentation draw from books by Carroll and Ostlie [1] and Schutz [2].

C. Keeton, Principles of Astrophysics: Using Gravity and Stellar Physics to Explore 177
the Cosmos, Undergraduate Lecture Notes in Physics, DOI 10.1007/978-1-4614-9236-8__10,
© Springer Science+Business Media New York 2014
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This is referred to as the Galilean transformation between reference frames.
A direct corollary is

dx dx’

@ ar

The velocity with respect to the unprimed frame is the simple sum of the velocity
with respect to the primed frame, plus the velocity of the primed frame with respect
to the unprimed frame. This certainly makes sense intuitively.
If we take a second derivative, we find
d>x  d%/

dr2  de”?

so the accelerations are the same in both frames. Then by Newton’s second law the
net force must likewise be the same, and the laws of physics are equally valid in
either frame.

This all made sense until physicists studied electricity, magnetism, and light in
the late nineteenth century. On the theoretical side, James Clerk Maxwell’s theory of
electrodynamics indicated that light is an electromagnetic wave traveling at speed
¢ = 3.0 x 108ms™! in all inertial reference frames. On the experimental side,
Albert Michelson and Edward Morley tried to measure differences in the speed of
light emitted by sources moving at different speeds—and found that there were
no differences. Physicists were stunned. Some suggested there must be a problem
in Maxwell’s theory. Others supposed there was some substance known as @ther
pervading the universe whose properties caused all inertial observers to measure the
same speed of light.

10.2 Special Theory of Relativity

Albert Einstein took a different approach: he wondered whether the problem lay in
misconceptions about space and time. Instead of assuming absolute space and time,
he took an operational view: he described how to use a system of rigid rods and
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synchronized clocks to construct a coordinate system in any reference frame.> To
Einstein, space and time could be real only to the extent that they could be measured.

That only served to define coordinates within a given reference frame. To relate
different reference frames, Einstein proposed two postulates [4]:

1. The equations of motion of any (mechanical) system are the same in all inertial
reference frames.
2. The speed of light is constant and universal.

The first postulate is called the principle of relativity, and it predated Einstein.
What Einstein did was introduce the second postulate as an extension of the theory
of electrodynamics, and show that together the two postulates are inconsistent with
the Galilean transformation.

10.2.1 Lorentz Transformation

Einstein worked out what different observers would have to say about space and
time in order for them to agree on the speed of light. He found the relations:

ct=yct' +ypx (10.1a)
x=yx' +yBect’ (10.1b)
y=1y (10.1¢)
z=17 (10.1d)

where

iz (10.2)

u 2

'BZZ and y = (1-p7)

Note that we use ¢t and ct’ because working with a quantity that has dimensions

of length clarifies the interplay between time and space coordinates. The inverse
relations are:

ct! =yct—yBx (10.3a)
X' =yx—yBect (10.3b)
y =y (10.3¢)
7=z (10.3d)

ZPeter Galison [3] notes that, as a clerk in the Swiss Patent Office, Einstein probably saw many
patent applications for schemes to synchronize clocks. The spread of the railroad and telegraph had
prompted a need for long-distance synchronization.
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The relations (10.1) and (10.3) were already known as the Lorentz transformation
after Hendrik Lorentz. They had been derived in electrodynamics as the transforma-
tion that preserves Maxwell’s equations in both reference frames.> What Einstein
offered was a sweeping new interpretation: time and space are no longer separate,
absolute quantities. Rather, they are linked in a 4-dimensional structure we now call
spacetime. Points in spacetime are referred to as events. (We will say more about
the structure of spacetime beginning in Sect. 10.5.)

We can use the Lorentz transformation to relate velocities measured in the primed
and unprimed frames. The differential version of Eq. (10.1) is

cdt =ycdt' +ypBdx
dx = ydx' +yBcdl
dy = dy’
dz =d7

Let’s rewrite these relations using the components of velocity measured in the
primed frame: v}, = dx'/dt’,v), = dy’/dt’,and v, = d7'/dt’. We also use B = u/c.

These substitutions yield
uv', ,
dr =14+ — ) ydr
c

dx = (Vi 4+ u) y dr’

dy =, dt’
dz = v, dr’

Now we can find the velocity components in the unprimed frame:

dx Vi +u
= = __* = 10.4
T 1+, /c? (10.42)
dy vy
- 2 = 10.4b
AP y(1 4w, /c?) ( )
d /
T i (10.4¢)

a y(1 4w, /c?)

Under the Lorentz transformation, velocity in the unprimed frame is no longer a
simple sum of the velocity in the primed frame and the velocity of the frame itself.
In Problem 10.2 you can see how the modified transformation explains why the
speed of light does not depend on the speed of the source.

3Maxwell’s equations are not invariant under the Galilean transformation.
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Non-relativistic Limit

Our experience and intuition are more closely aligned with the Galilean transforma-
tion than the Lorentz transformation, but of course they are associated with motion
that is slow compared with the speed of light. Let’s see if we can confirm our
intuition by examining the Lorentz transformation when u/c < 1. A Taylor series
expansion of Eq. (10.1) yields

/ 2 2
tmt’—i—%—}—ﬁ(u—z) and x%x/—i—ut/—}—ﬁ(u—z)
c c c
Since the speed of light is so large, ux’/c? is small and to a very good approximation
we can write
t~t and x=~x +uw
A similar analysis applied to Eq. (10.4) yields

/ /
Vy RVt U Vy RV V. RV,

/
y
Thus, the Lorentz transformation does not actually invalidate the Galilean trans-
formation (which is reassuring since the latter was the basis of all physics prior to
the twentieth century). Rather, it clarifies that the Galilean transformation should be
used only when motion is slow compared with the speed of light.

10.2.2 Loss of Simultaneity

When speeds are not small, however, we must use the full Lorentz transformation.
Following Einstein, we can use some gedanken (German for “thought”) experiments
to uncover some consequences of the interplay between space and time. First,
consider two lights that are set up to flash at the same time in the primed coordinate
system (which we can take to be ¢’ = 0). What are the times of the flashes in the
unprimed coordinate system? Let the first event be the flash of light #1:

eventl: (t',x")=(0,x)) = cty =ypBx
Let the second event be the flash of light #2:
event2: (t',x")=(0,x5)) = ch=yBx)

The time between the two flashes is A’ = 0 in the primed frame, but the time
between the two flashes in the unprimed frame is

cAt=yp(xy—x)#0
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In other words, events that are simultaneous in one reference frame are not
simultaneous in other reference frames. This is the first indication that there is
something decidedly non-intuitive in the new way of thinking about the universe.

10.2.3 Time Dilation

Now focus on a single flashing light and consider the time between flashes. For
simplicity, let’s put the light at the origin of the primed frame. If we again consider
two flashes as two spacetime events, we have:

event1: (¢',x) = (0,0) = =0

event2: (t',x")=(A1',0) = n=yAl
In other words, the time between flashes as measured in the unprimed frame is
At =y Al (10.5)

Since y > 1, more time passes between flashes in the unprimed frame than in the
primed frame. This effect is known as time dilation. If we think of a flashing light
as a kind of clock, we can distill this into the maxim “moving clocks run slowly.”

If the measurement of time between events depends on the reference frame, how
can we single out a frame to focus on when we study physical laws? The most
natural quantity is the time interval measured by a clock at rest with respect to the
events, which has the advantage of being the smallest time interval that any clock
will measure. We call this the proper time.

Time dilation is a definite and weird prediction of relativity, so it deserves to
be tested experimentally. One of the classic tests was performed in 1963, when
David Frisch and James Smith [5] studied elementary particles called muons coming
from space. Frisch and Smith compared the number of muons detected at the top
of Mt. Washington in New Hampshire (1,907 m above sea level) with the number
detected at sea level. It takes a certain amount of time A¢ for muons to travel the
intervening distance, but the measurements indicated that the muons “experienced”
a much shorter interval Az” < At. The experiment confirmed predictions of time
dilation, as you can see in more detail in Problem 10.3. In 1971, Joseph Hafele and
Richard Keating [6,7] flew atomic clocks on airplanes to do a more controlled test
of time dilation. That experiment involved gravity as well as motion, so we will
consider it among tests of general relativity (Sect. 10.4.5). Today, relativistic time
dilation is built into the Global Positioning System (Sect. 10.4.6).



10.2  Special Theory of Relativity 183
10.2.4 Doppler Effect

In a final use of the flashing light, let’s consider the times when flashes reach an
observer who is stationary at the origin of the unprimed frame. This is what the
observer (whether a person or an instrument) would actually measure. The first flash
occurs at coordinates (¢{,x]) = (t,0) in the primed frame, which correspond to
coordinates (f1,x1) = (y t{ , y ut{) in the unprimed frame. In order for this flash to
be observed, it must travel to the observer at the origin. The distance it must travel
is y ut{, and the time it takes is y u t{/c. The time at which the flash is observed is
therefore

ut] u
l‘l,obs:)/tl/'i‘L =)/(1+—)t{
¢ ¢
By similar reasoning, we find the time at which the second flash is observed to be
u /
Z‘2,0bs =Y (1 + Z) 12

Thus, the time that elapses between observations of the two flashes is

1 1/2
At = 120bs —tiobs = Y (1 + E) At = + M/C AL
' ¢ 1—ujc

where At" = t] —t] is the time interval between flashes in the frame in which they
are emitted, and in the last step we substitute for y using Eq. (10.2).

Now if we replace the flashes with peaks of a wave, the time between peaks is the
inverse of the frequency of the wave: so vops = 1/Af in the frame of observations,
and vep, = 1/A¢’ in the frame of emission. Then we have

Vobs _ (1 — Lt/c)l/2 (10.6)
Vem 14+ u/c
Equivalently, in terms of wavelength we can use A o< v™! to write
A.O s 1 1/2
b _ (LHu/e (10.7)
Aem 1—u/c

This is the relativistic Doppler effect. It says that if a light source is moving away
from the observer (1 > 0), the observed frequency of light is lower than the emitted
frequency; this corresponds to a longer wavelength and hence a redder color, so
we call this a redshift. Conversely, if a light source is moving toward the observer
(u < 0), the Doppler effect produces a blueshift.
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In the non-relativistic limit, we can use a Taylor series expansion to write

Aobs u u?
rl+-4+0|—=
Ao c o2
We often express the shift in terms of the change in wavelength, AA = Agps — Aem:

AL u
~ — 10.8
o e (10.8)

This is the Doppler shift of light when the source of light is moving at non-
relativistic speeds. It is what we use, for example, to measure the motions of stars
and discover that they are orbited by planets (Sect. 4.3.1).

10.2.5 Length Contraction

Let’s change gedanken tools and consider a ruler oriented along the x-axis that is at
rest in the primed frame. Place one end of the ruler at x| = 0 and the other end at
xy = L', so the ruler’s length in the primed frame is L’. What is the length of the
ruler in the unprimed frame? It may seem backward at first, but let’s use the Lorentz
transformation x; = y x; — y ut; (and likewise for the other end). Then we have
Xy=xp = (yxa—yut)—(yxi—yuty) = y(x2—x1)—yu(—1)
It is important to measure the ends of the ruler at the same time in the unprimed
frame. Then we can put #, — #; = 0 and obtain

L/
Xi=yx-x) = L =yL = L:7

i
Xy —

In other words, the moving ruler appears to have a length L = L’/y that is shorter
than its length at rest. This is known as length contraction: moving objects appear
shorter in the direction of motion. As with proper time, if we want to single out a
particular length then we usually use the proper length measured when the object
is at rest.

10.3 General Theory of Relativity

In order to deal with gravity, Einstein had to generalize his theory from inertial to
accelerated reference frames. This led him to sophisticated mathematical structures
including non-Euclidean geometry, manifolds, tensors, and more. We will glimpse
some of the mathematical framework in Sect. 10.5, but first let’s examine the
physical principles that underlie general relativity.
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10.3.1 Concepts of General Relativity

General relativity is a geometric theory of gravity: acceleration is a consequence
of the curvature of spacetime. There are two key concepts governing the interaction
between curvature and mass (as stated by Misner, Thorne and Wheeler [8]):

1. “Space acts on matter, telling it how to move.”
2. “In turn, matter reacts back on space, telling it how to curve.”

People often think of these in terms of a rubber sheet analogy. Imagine stretching a
rubber sheet so it lies flat. This is a model of a 2-dimensional universe described by
special relativity. Now place a bowling ball on the sheet. The bowling ball deforms
the sheet; this is point #2 above. Then roll a ping-pong ball near the bowling ball.
The curvature induced by the bowling ball controls how the ping-pong ball moves;
this is point #1.

It is important to understand that this is an analogy. It is imperfect because it
describes the 2-d rubber sheet as being curved into the third dimension. For the
3-d spatial universe, we would have to think of the curvature as extending into a
fourth spatial dimension. I cannot picture such a thing! Also, the analogy works
only if there is external gravity pulling on the bowling ball to distort the rubber
sheet. In general relativity, everything needs to happen within the theory. So the
rubber sheet is useful as a pictorial analogy, but please do not take it too literally.
We will be more precise about describing curvature soon.

10.3.2 Principle of Equivalence

When Einstein was trying to figure out how to describe gravity and acceleration, he
had an important thought: “If a person falls freely he will not feel his own weight.”
[9] To be more precise, let’s go back to Newton for a moment. We have often used
the equation

GMm
2

and cancelled the m’s from both sides. But it is not obvious that they have to be the
same. The m on the left describes how an object feels the force of gravity; we might
call it the “gravitational mass,” m,. The m on the right describes an object’s inertia
and how it responds to a force; we might call it the “inertial mass,” m;. We really
ought to rewrite Eq. (10.9) as

GMmg,
2

= Fg = m;a
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which yields the acceleration

It is an experimental fact that the ratio mg /m; is 1. Galileo is said to have shown this
by dropping balls off the Leaning Tower of Pisa. Modern versions of the experiment
reveal that the difference between gravitational and inertial masses is less than 1 part
in 10'2 (e.g., [10]). Therefore we can say to high precision that the acceleration due
to gravity is independent of mass—all objects fall at the same rate.*

If that is true, then no experiment can reveal the acceleration because the
equipment will fall at the same rate as the sample. By extension, no experiment
can reveal that gravity is at work! Another way to say this is that a freely falling
laboratory is equivalent to a lab floating in empty space. Within such a freely
falling lab, we can apply the principles of special relativity. This simplifies things
quite a lot.

Strictly speaking, this reasoning holds only in a region of space in which the
acceleration due to gravity is uniform. Since objects on the surface of Earth fall
towards the center of the planet, objects at different positions fall in different
directions; that is enough to reveal the gravity. But if we pick a region that is small
enough, these effects are negligible.

Einstein turned this idea into the foundation of his theory of gravity, calling it the
principle of equivalence:

e All local, freely falling, non-rotating frames of reference are equivalent for
performing physical experiments.

This is the fundamental principle that allows us to identify some physical aspects of
general relativity.

10.3.3 Curvature of Spacetime

Let’s apply the principle of equivalence to some thought experiments to understand
how gravity affects spacetime. Consider a lab in freefall in a gravitational field where
the acceleration due to gravity is g, as depicted in Fig. 10.1. Suppose a light source
on the left-hand wall is pointed toward the right. By the principle of equivalence,
the lab acts as a local inertial reference frame, so an observer in the lab would see
the light travel in a straight line from one side to the other.

“This is not true of other forces. Consider the acceleration created by the electric force acting on
an object with mass m and charge g near another charge Q: a = Qq/mr? does depend on mass.
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Fig. 10.1 Setup for gedanken experiment #1. A light ray travels horizontally in a lab that is in
freefall with uniform acceleration. To an observer in the lab, the light ray travels straight across the
room (dotted lines). But to an outside observer, the light ray follows a curved trajectory

What would be seen by an observer on the ground (who is stationary in the
gravitational field)? As the light moves to the right in the lab, the lab accelerates
downward, so the trajectory of the light looks like a parabola. Gravity has caused
light to curve!

To be specific, let’s write the equation of the trajectory. If the light starts at
(x,y) = (0,0), its position as a function of time is

L
x =ct and y=—§gt

Eliminating ¢ yields
2
V=0
We know this trajectory is curved, but by how much? To quantify curvature, think
about a circle:

2
¥+yP=R = y= (R?—xz)l/
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If we know y(x), we can extract the radius R, as follows:

dy X
dx  (R2—x2)1/2
d?y R?
A2 T (RZ—x2)
d’y 1

tx=0: -2 =——

ax &2~ "R

(The minus sign means the circle is curved downward.) As a general rule, then, we
can define the radius of curvature for a trajectory y(x) as

1
Ro=——
© T |d?y/dx?|

Heuristically, R, is the distance over which the trajectory deviates significantly
from a straight line, so a smaller value corresponds to a greater curvature. For our
gedanken experiment, the radius of curvature is found as follows:

dy  gx dy g N R_C2

dx ¢ dx2  ¢? ‘g
If we assume Newtonian gravity for simplicity, the gravitational acceleration at a
distance r from an object of mass M is

GM
g§= 2
so the radius of curvature for light is
2,2
P
GM

Example: Earth

Near the surface of Earth, the acceleration due to gravity is g = 9.80ms™2 so the
radius of curvature for light is

2
Re = & = 917%x10%m = 0.971y
g

The radius of curvature is huge—far, far bigger than the size of Earth—which means
the curvature is quite small. Nevertheless, it is significant enough to produce all the
familiar effects of gravity.
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Example: Black Hole

Near the event horizon,

2GM 2R?2
r=Rg= R.=°-3

c? = GM 2Rs

The radius of curvature is comparable to the size of the event horizon, which means
gravity is strong.

Bottom line: we have found that gravity causes light to move on a curved
trajectory. A similar analysis could be done for material particles. Operationally,
then, what we mean when we say spacetime is curved is that objects follow curved
trajectories. To summarize:

objects follow curved trajectories < space is curved

10.3.4 Gravitational Redshift and Time Dilation

Consider the same freely falling lab, only now put the light source on the floor and
have it shine upward. By the time the light reaches a detector in the ceiling, the lab
will be moving faster because of the acceleration. If the light moves a distance #, the
time elapsed is ¢ = /1/c and the lab’s new speed is u = —gt = —gh/c (where the
minus sign means downward). By Eq. (10.6), there should be a Doppler blueshift of
the form

A 1—u/c 172 ! u gh
Vv = V) —V =V — ~ —V - XV —
Doppler obs em em 1 +u /C em em C2

o

(assuming u < c). Here is the crux of this experiment: if there were a Doppler
shift, we would know the lab is accelerating, and that would violate the equivalence
principle. The only way out is to say that gravity causes the frequency of light to
shift by just the right amount to cancel the Doppler shift. In other words, there must
be a gravitational redshift

gh

AVgrav ~X —Vem 6_2 (1010)

This actually makes sense physically: light loses energy as it moves against gravity,
and since £ o v the frequency must decrease.

The preceding analysis assumed a constant gravitational acceleration. To deal

with the general case, we can use the gravitational acceleration g = GM/r? and

change the height to dr and the frequency shift to dv, obtaining

GM

v ——dr
22

dv ~ —
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We can then integrate:

/”f dv /rf GM d

— - —— dr

Y no cir?

l)f N GM 1 1

V; 2 \ry

vy |:GM ( 1 1)i| G ( 1 1)

— ~exp|l—|—-—— ~1+—[——-—
2 2

Vi C rf ri C rf ri

where in the last step we use the Taylor series expansione* ~ 1 + x forx < 1. It
is convenient to take the “final” point to be at infinity, corresponding to an observer
far from the object. This yields

5
|
X

Voo | GM

v(r) c?r
The oscillations of the light act as a kind of clock, where the elapsed time is  oc v™!,
We can therefore change the frequency equation into time,

t(r) ! GM

loo c?r
This is gravitational time dilation: a clock in a gravitational field runs more slowly
than a clock that is far away in empty space.

In this analysis we have made Taylor series approximations and computed the
leading order relativistic effect. An exact analysis gives (see Sect. 10.6.1)

() _ (1 ~ 2GM)1/2

c?r

(10.11)

loo

Gravitational time dilation becomes strong only when r gets close to 2GM/c?. We
will see more about this when we study black holes.

Example: Surface of Earth

Clocks on the surface of Earth should run slower than clocks far away in empty
space. How much slower? The difference in elapsed time is
At 1(r) — oo GMg
loo - foo - CZR@
(6.67 x 107" m? kg™ s72) x (5.97 x 10**kg)
(3.0 x 103 ms—1)2 x (6.38 x 106 m)

~—7x 10710
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To put this number in context: if your life expectancy is 100 years, you would get
to live about 2 s longer on Earth than if you were in space with no gravity. Please
note, though, that your experience of time is unaffected by acceleration or gravity;
you would not actually have more “time” to enjoy life. You would just appear to age
slowly as seen by those living in weaker gravity, while to you they would seem to
age quickly.

10.4 Applications of General Relativity

In the previous section we used gedanken experiments to discover the curvature of
spacetime, gravitational redshift, and gravitational time dilation. Now let’s consider
several real experiments that have confirmed these predictions of general relativity.

10.4.1 Mercury’s Perihelion Shift (1916)

When we studied planetary motion (Chaps.3 and 4), we said a planet follows a
perfectly elliptical orbit and traces it over and over again. Strictly speaking that
is true only in an ideal two-body problem. When a planet’s orbit is dominated by
the Sun but perturbed by another planet, the situation is only approximately two-
body. The resulting orbit can be thought of as an ellipse that precesses, or rotates a
little each time the planet goes around (see Fig. 10.2). We can quantify the effect by
measuring the shift in the perihelion position.’

Fig. 10.2 An illustration of perihelion shift. Roughly speaking, the orbit is approximately
elliptical but the ellipse rotates with time, which causes the location of perihelion to vary. The
effect shown here is greatly exaggerated, with ¢ = 0.05 (compared with ¢ = 8 x 1078 for
Mercury)

SWe could use any part of the orbit, but perihelion is distinctive.
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In our Solar System, the largest perihelion shift is 560 arcsec/century for
Mercury. Most of the shift can be attributed to perturbations from other planets, but
after all the known planets are taken into account a shift of 43 arcsec/century remains
unexplained. Historically, some people speculated that there might be another planet
closer to the Sun than Mercury that caused the additional perihelion shift. The
hypothetical planet was called Vulcan [11].

When Einstein considered Mercury’s orbit in the context of general relativity, he
discovered that it would be described by the equation of motion (see Sect. 10.6.4)

d?r GM 2 3GM{?

= + - -
dl-2 r2 r3 6’21'4

where ¢ = r2d¢/dr is the specific angular momentum, which is conserved. The
first term is standard Newtonian gravity, and the second term is the usual centrifugal
term. The third term is new in general relativity, and it perturbs the orbit away from
a pure ellipse. To see this, let’s go all the way back to our analysis of Newtonian
gravity in Chap. 3. Recall that we changed independent variables from time to angle,
and we put r = 1/u. Repeating the analysis yields

2 2
dr_ ) o d%u

a2~ Mag

so the equation of motion becomes

d2u n GM n 3GM ,
— tu=— u
dg? {2 c?
Let’s define
3(GM)?
= LZ—ZZ) (10.12)

and then rewrite the equation of motion as

With € = 0 this would be Newtonian gravity and the solution would be an ellipse.
For Mercury, € is very small and so we can look for a solution that is perturbed away
from an ellipse. The solution has the form [12]

u(p) ~ Gg—];/[ 1 +ecos[p(l —e)] + € [1 + é? (% - écosz¢):| + ﬁ(ez)}
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Notice the second term. In order for cos[¢ (1 — €)] to complete a full cycle, ¢ has
to range from O to 27/(1 — €) ~ 27 (1 + €). Therefore it takes an extra azimuthal
angle A¢ ~ 2me for the planet to return to perihelion.

How strong is the effect? Using Eq. (3.11) we can rewrite £ in terms of orbital
elements and obtain

3GM
= 10.13
cta(l —e?) ( )
Mercury has a = 0.387 AU and e = 0.206, yielding
3x6.67x 107 m3kg™" s7% x 1.99 x 103k
X X m’ kg™ 877 X X g 8 % 10-8

€T BOx10°ms )2 x (0.387 x 1.50 x 101 m) x (1 — 0.2062)

The precession is an angle of about 27e per orbit, so given Mercury’s orbital period
of P = 87.97 day the precession rate is

2 2 8 x 1078
e AmXOX 6.6 x 107 rads™! = 43 arcsec/century
P 87.97 x 86,400 s

This was the first good explanation for Mercury’s perihelion shift, and it convinced
Einstein that he was on the right track with his new theory of gravity.

10.4.2 Bending of Light (1919)

We have already discussed Einstein’s prediction for the bending of light by the Sun,
and the measurements in 1919 and 1922 that confirmed the prediction. This was the
second significant test of general relativity, and the first true prediction. (Einstein’s
explanation of Mercury’s perihelion shift was “merely” an explanation of existing
data.)

10.4.3 Gravitational Redshift on Earth (1960)

In Sect. 10.3.4 we discussed gravitational time dilation on the surface of Earth.
While the effect is small, it turns out that we can measure the corresponding
gravitational redshift. Atomic nuclei have energy levels just like atomic electrons,
so they can produce emission or absorption lines in energy spectra. The difference
is that nuclear lines generally involve much higher energies and are very narrow.
For example, iron-57 has a spectral line with energy £ = 14.4keV and line
width §E ~ 10~ keV. Because the line is so narrow, we can measure energies or
frequencies very precisely. In 1959 and 1960, Pound and Rebka [13, 14] realized
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they could use this to measure gravitational redshift. They wanted of course to
have light traverse as much vertical distance as possible; in the physics department
at Harvard, the best option was a height of # = 22.6m in the stairwell. From
Eq.(10.10) with g = GM/ r?, the fractional change in frequency as the light travels
upward is

(Av) _ GMgh
v i 2R
(6.67 x 107" m>kg™' s72) x (5.97 x 10**kg) x (22.6 m)

(3.0 x 108 ms~—1)2 x (6.38 x 106 m)?
=-25x10""

As the light descends there would be a shift that has the same amplitude but the
opposite sign. Pound and Rebka measured the combination of the upward and
downward shifts as a way to remove any non-gravitational effects, finding

A A
(—”) — (—”) = (51405 x 1071
v down v up

It seems astounding that we can measure relativistic effects to a few parts in 10'°.
More recent experiments are even more precise.

10.4.4 Gravitational Redshift from a White Dwarf (1971)

The gravitational redshift on Earth is small because Earth’s gravity is weak. Even
on the Sun the effect is small: Av/v = —2x 107° between the surface and a point at
infinity. To get a larger shift we need an object that is massive but compact. A white
dwarf star is typically about as massive as the Sun but only as large as Earth (see
Sect. 17.2). The nearest white dwarf is Sirius B, so named because it is in a binary
with the bright star Sirius. In 1971, Greenstein et al. [15] managed to measure the
gravitational redshift of light from Sirius B. (See Hetherington [16] for more about
the history.) Greenstein et al. analyzed the spectrum of Sirius B to infer that the star
has a radius of

R = 0.0078 Rp = 5.42x10°m = 0.85 Rg

and a surface gravity of

g =4.47%x10°ms™2
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Together, these imply a mass of

M === = 1.97 x 10*°kg = 0.99 Mg

The gravitational redshift of a photon leaving the surface and traveling to infinity,
expressed in terms of wavelength, is

Alco)  v(r) ~ 1 GM

Ar)  v(o) c2r

What we measure is the shift in wavelength,

Moo) | GM R
A(r) e c?

Given the properties of Sirius B, we predict a redshift of

(4.47 x 106 ms~2) x (5.42 x 106m)

~ 27x 1074
(B0 x 10°ms-1)2 x

Zpredicted ~

The measured shifts in the spectral lines were

Zmeasured = (30 + 05) X 10_4

10.4.5 Flying Clocks (1971)

In October 1971, Joseph Hafele and Richard Keating [6, 7] flew atomic clocks on
airplanes around the Earth. Airborne clocks experience time dilation (relative to
surface clocks) for two reasons: motion, because airplanes move at different speeds
than the surface of Earth; and gravity, because gravity is a little weaker at the
altitudes where planes fly.

Let’s consider the motion first. Both the airplane and the surface of Earth follow
curved trajectories, so strictly speaking they are not inertial reference frames, but we
will still use the special relativistic expression (10.5) to estimate the time dilation
due to motion. We will, however, reference our measurements to the center of Earth
so we can treat the surface and airplane on equal footing. Earth’s rotation causes a
clock at the equator to have a speed relative to the center of Earth of

2R 2 . 6
by = TRe _ 7 % (6.38 x 10° m) — A6dms~!
Prot 86,400 s
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Suppose the airplane is flying east/west with speed v 4 relative to Earth’s center; then
write

Va=Vs +u

so u is the speed of the airplane relative to Earth’s surface. Relative to Earth’s center,
the surface and airplane have relativistic factors

)\ —1/2 2N /2
_ Vs _ Va
o= (i-8) o= (-3)

Let #c be the duration of the airplane flight measured in the reference frame of
Earth’s center. Then the durations in the surface and airplane frames are

Ic Ic
tg=— and 1) =—

Vs YA

The difference between the time elapsed on the airplane and the time elapsed on the

surface is
1
=ty = <t = (ﬁ—l)tg
)2\ YA

The fractional change induced by the motion is
1, — 1% (1= /c? 12 .
Z./S' motion a 1— VZS/C2

Since the speeds are small compared with the speed of light, we can do a Taylor
series expansion in vg/c and v4/c:

th— 1§ (i S o YsTVa
_ (1A ) (1425 ) -1~ B
ZS motion 2c 2c 2c

Now we write v4 = vg + u« and simplify:

ty — 1§ - vi — (Vi + 2vsu + u?) _ (Qvs+uu
t_/S' motion 2C2 2C2

To get some specific numbers, let’s suppose the clocks flew on the Concorde, which
used to reach a groundspeed of about 650 ms™'. Then we find:

1 —tg
i
Ig

eastbound, u = +650ms~! : |: :| A~ —5.7x 10712 &~ —490 ns/day
motion

! I
Iy — I
/

Iy

westbound, u = —650ms™! : [ :| ~ 1.0 x 10712 ~ 490 ns/day
motion
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Note that the time dilation due to motion depends on the direction in which the
airborne clock flies. This is an important part of the relativistic prediction.

Now let’s consider the effect of gravity. Using Eq. (10.11) but making a Taylor
series expansion, we can write the gravitational time dilation as

tr+h) 1t +h)/tw  1=GM/(r +h)
(ry  t(N/iee  1—-GMJ/c%r
1 GM n GM ~ 14 GMh
cA(r+h)  *r c2r(r +h)

To this point we have only assumed that  and r +# are large compared with GM /2.
For this experiment we can do an additional Taylor series expansion with 7 < r:

t(r+h) N GMh
ry c?r?

Then we identify (r) = t¢ with the surface and 7 (r + k) = t/; with the airplane, so
we can write the time dilation induced by gravity as

[t; 1 } GMh
7 ~ 22
ZS gravity cr

The Concorde flew at an altitude of about 20 km, so the gravitational time shift is

I !
I:ZA ; t5:| ~ 22x 10712 ~ 4190 ns/day
tS gravity
This is the same for airplanes moving both east and west.

We have considered an idealized experiment (daylong Concorde flights over the
equator) that captures the main ideas, but Hafele and Keating analyzed the actual
flight paths. They found the following time shifts (measured in nanoseconds):

Motion Gravity Net prediction Measurement
Eastbound —184 £ 18 144 + 14 —40 £ 23 =59+ 10
Westbound 9 + 10 179+ 18 275+ 21 273 +£7

(The uncertainties in the predictions include uncertainties in the flight parameters.)
Notice that the east- and westbound flights have motion shifts with different signs, as
we discussed. Also, they have different gravity shifts, presumably because the flights
had different altitudes and/or durations. The key result is that the measurements
confirm the predictions; relativistic time dilation can be measured in a controlled
experiment.
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10.4.6 Global Positioning System (1989)

Since 1989 we have had a widespread example of flying clocks: the Global
Positioning System. GPS receivers take the time received from a satellite, compare
it with the time on Earth, and use the difference (along with the known speed of
light) to determine the distance to the satellite. Measuring distances to multiple
satellites makes it possible to triangulate a position on Earth to high precision. The
entire system rests on careful coordination between satellite and surface clocks, but
relativity says they tick at different rates. Relativistic effects must therefore be taken
into account for GPS to work. Let’s estimate the size of those effects (see [17] for a
more detailed discussion).

Each GPS satellite orbits about # = 20,000km = 2 x 107 m above the surface
of Earth. Its orbital speed is therefore

GM \'/?
v = ( ) = 39x10°ms~!
r+h

Each GPS satellite is moving faster than the surface of the Earth, so there is time
dilation due to motion®:

2

t— 2
[A - S:| ~ BT g3x 107! & 72 ws/day
tS motion 2¢?

where we again use vg = 464 m/s as the velocity of the surface of Earth. There is
also time dilation due to gravity (note that we no longer have 7 < r):

th — 1 GMh
[A—,S} N s & 53x 107" & 45.6 us/day
gravity ¢ r(r + h)

Ls
The net effect is that GPS satellites gain about 38 ps per day relative to clocks on
the ground. If this difference were not taken into account, the time it takes the signal
to travel from the satellite would be calculated incorrectly, so the distance to the
satellite would be wrong, and the triangulation would be thrown off. How badly?
After 1 day the time error would be At = 38 s, which would translate into an error
in the distance to each satellite of A{ = ¢ At = 11km. This is not precisely the
same as the error that a GPS receiver would make when triangulating from multiple
satellites, but it does give a sense of the magnitude of the effect.

GPS is successful because the engineers who designed the system used the antici-
pated orbits to build clocks that would compensate for most of the relativistic effects.
Also, each GPS receiver has a computer that performs relativistic calculations to
determine additional corrections. Impressive, eh? General relativity at work!

SFor comparison with Sect. 10.4.5, we retain the subscripts “A” for airplane and “S” for surface,
respectively, even though the airplane is now a satellite.
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10.5 Mathematics of Relativity

Now we turn to the mathematical framework of relativity. While we will not delve
into all of the details, we want to get to the point where we can analyze motion
around a black hole.”

10.5.1 Spacetime Interval

Fundamentally, relativity is about the geometry of spacetime. How do we quantify
geometry? The first step is to measure the distance between points. In familiar
Euclidean geometry, if we have two points

(x,y,2) and (x +dx,y +dy,z+dz)
then we define
de? = dx? + dy? + d2?

and say that d{ is the distance between the two points. If we have a curve, we
imagine breaking it into a series of small segments, computing d¢ for each segment,
and adding them up (by integrating).

The distance d{ is the same in all coordinate systems—it is invariant. We can
rotate or translate the coordinate system any way we like and still get the same
distance between the points.

In the spacetime of special relativity, we add time to the mix by defining

ds? = c?dr®> — (dx? + dy?* + d2?) (10.14)

This is the “distance” between two points in spacetime, which we call the spacetime
interval. The expression for ds? is known as the metric because it specifies how
we “measure” intervals. Notice that space and time both enter the metric but with
different signs. A key property of the spacetime interval is that it is invariant under
the Lorentz transformation, so it is a good tool for characterizing the geometry of
spacetime in special relativity.

In Euclidean geometry d¢? is non-negative. In special relativity, by contrast, ds>
can be positive, negative, or zero.® As we will see below, a light ray has ds? = 0;

"Many books do give more details; A First Course in General Relativity by Bernard Schutz [2] is
a good example.

81t is tempting to think that ds is a real-valued quantity such that ds?> must be non-negative. In
relativity, ds? is the quantity we work with, and it can be positive, zero, or negative. We may write
«/@ (see below), but we do not write ds by itself.
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we call this a lightlike interval. For a clock sitting at a fixed position, the spacetime
interval between any two ticks has ds®> = c¢?dc? where 7 is the proper time;
therefore we say that any positive spacetime interval is timelike. Conversely, for a
ruler the spacetime interval between the two ends at any given time has ds? = —dL?
where L is the proper length; therefore we say that any negative spacetime interval
is spacelike. To summarize:

c?dr?> > 0 timelike
ds? = {0 lightlike (10.15)
—dL? <0 spacelike

So far we have worked in Cartesian coordinates. Since many astrophysical
objects are (approximately) spherical, it is good to be able to work in spherical
coordinates (7, 0, ¢) as well. In Euclidean geometry, the distance between nearby
points in spherical coordinates can be written as

de? = dr* + r?d6? + r?sin® 0 d¢?
The extension to the spacetime interval of special relativity just adds time:

ds? = ¢*de? — (dr* + r? d6? + r?sin® 0 d¢?) (10.16)

We will see variants of the spatial piece several times in this chapter and the next.

Example: Straight Line
To help understand the spacetime interval, consider a light ray moving in a straight
line. Suppose it moves along a line parallel to the x-axis but offset in the z-direction
by an amount b. The Cartesian spacetime coordinates can be written
(t,x,y,2) = (t,ct,0,b)

The spacetime interval for the light ray is the

ds? = *dr* —c?d? = 0
This is a lightlike interval, as it should be.

Now consider spherical coordinates. Converting from (z, x, y,z) to (¢,r,0,¢)
yields

r= (b2 + 6212)1/2 6 = tan”! (Cb—t) ¢=0
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which implies

ct b

= B2+ 222 ¢ W= mran

cdt dp =0

The spacetime interval in spherical coordinates is then

ds? = ¢?dt* —dr? — r* do?
2.2 2
242 ¢t 24,2 2, 2,2 b 24,2
= C dr —mc dl —(b +Ct)mc dr

2,2 2

24,2 ¢t b 24,2

=c°dt” — + codt
(b2 +c2t2 b2+ c2t2)

=0

While spherical coordinates are less natural for this problem than Cartesian
coordinates, they yield the same result. They will be more natural when we study
black holes.

10.5.2 4-Vectors

We need to introduce vectors describing motion in four-dimensional spacetime. Let

X = (ct,x) (10.17)

be a 4-d position vector that includes the time coordinate (with a factor of ¢ so
all components have dimensions of length). To compute the spacetime interval, we
need to introduce a tensor that characterizes the metric. In special relativity, the
tensor has the form

1 0 0 O
0-1 0 O

= 10.18

9=10 0 -1 0 (10.18)
00 0 -1

Then we can write the spacetime interval as

4

ds’ = ) gy dX, dX,
nov=1

More generally, we use the tensor to define the dot product of any two 4-vectors:

U-V=> g.U.V, (10.19)
J7RY
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Given X, we can define the associated 4-velocity to be

_dX

V=_—=
dr

(10.20)

Since this is defined using proper time, the spatial part of V is not the same as the
measured velocity v = dx/d¢. In a frame where the particle moves with measured
velocity v, time dilation says the measured time is’

IVIZ —1/2
t =yt where vy, = (1 - —2) (10.21)
c

Therefore the 4-velocity can be written in terms of the measured velocity as
V = (yuc, »V) (10.22)

Why do we define 4-velocity in this way? We know that X transforms by the
Lorentz transformation; then since t is invariant, we realize that V must follow
the Lorentz transformation as well. This clarifies the relation between reference

frames'?:

Vi=vu V) +vuBu Vi (10.23a)
Vi =vuVit+vuBuV/ (10.23b)
vy =V, (10.23¢)
V.=V, (10.23d)

Our definition does mean that it takes a few extra steps to relate the measured
velocities in different frames. In the primed frame, we can use Eq. (10.22) to write
the 4-velocity in terms of the components of the measured velocity:

{e. V., v’y, v}

V= =

We can then use Eq. (10.23) to find the 4-velocity in the unprimed frame:

y o e Buv) vu(Vi + Buc). vy Vi)
- 11— (v/)z/cz]l/z

“We put a subscript v on this y to indicate that it is defined in terms of the particle’s velocity and is
not necessarily the same as the y factor between arbitrary inertial frames (defined in Eq. 10.2).

10We put a subscript # on y and B here to distinguish these factors, which relate arbitrary inertial
frames, from y, in Eq. (10.21), which relates an arbitrary inertial frame to the particle’s rest frame.
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Inverting the relation between v and the spatial components of V gives

{I/Xa Vy’ ‘/Z}
[14+ (V2 +V2+V2)/cHl/?

e, vy, v} =

Plugging in and simplifying yields

Vi +u
V= ————
4w /c?
/
%
Vy = . )
Yu(l +uv'./c?)
/
%
v, = <

Vu(l +uwv',/c?)

This is the same transformation we found by a different approach in Eq. (10.4).

10.5.3 Relativistic Momentum and Energy

We also need to generalize the concepts of energy and momentum. We define the
4-momentum to be

P = mV = (y,mc,y,mv) (10.24)

We then take the relativistic versions of energy and momentum to be the time and
space parts of P, respectively:

P= (g, p) (10.25)

(The factor of ¢ is included so E has dimensions of energy.) To understand what £
represents, consider the dot product of P with itself. Using Eq. (10.24) along with
the definition of the dot product in Eq. (10.19), we have

2
v

P-P = y2m’c? —y’m*H? = y? (1 — —) m*c?* = m?c?
o2

where we use Eq. (10.21) to simplify. If instead we computed the dot product using
Eq. (10.25), we would find
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In other words, the relativistic energy and momentum are related by

E\2
(—) —p?=m?® = E?>=p’?+4+mi (10.26)
c

In the particle’s rest frame, p = 0 so we recover the famous relation £ = mc? for
the rest mass energy. In the non-relativistic limit, p < mc so we can make a Taylor
series expansion:

2 \1/2 2

14 2 p
E = m* |1+ 2= ~ mc”+ —
( mzcz) 2m

The first term is the rest-mass energy, while the second term is the Newtonian kinetic
energy. The bottom line is that we can interpret E as the total energy in relativity.

There is one more useful relation we can derive. Again combining Eqgs. (10.24)
and (10.25), we can write

| <

L
E ¢
Using Eq. (10.26) to rewrite E yields

[§)

pCZ

V= Rk AT (10.27)

This is the relativistic version of the relation between momentum and velocity. In
the non-relativistic limit, p < mc so Eq.(10.27) reduces to the familiar relation
v p/m.

10.6 Black Holes

To this point we have discussed situations in which gravity is “weak” and we can
make Taylor series expansions. We now move into the regime of “strong” gravity
and examine a surprising and bizarre prediction of general relativity: black holes.
While we are particularly interested in the strange physics near a black hole’s event
horizon, our analysis actually applies outside any spherical object in GR.

10.6.1 Schwarzschild Metric

To begin, we need to specify the spacetime geometry through the metric. To
understand the form of the metric, recall from Eq.(10.11) the expression for
gravitational time dilation,
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At(r) _ (| _2GM\'"?
At(c0) _( 2 )

Presumably this factor appears in the time term of the metric. It also appears in
the space term (basically from the curvature we discussed in Sect. 10.3.3). The full
metric outside any spherical object of mass M is

2GM 26M\ !
ds* = (1 -= )czdtz— (1 - = ) dr? —r?df% —r?sin® 0 d¢? (10.28)
c°r cr

This is called the Schwarzschild metric after the German mathematician Karl
Schwarzschild, who discovered it as a solution of the equations of Einstein’s general
theory of relativity.'!

We think of the coordinates (z, r, 8, ¢) as quantities that would be measured by an
observer far from the object, and we refer to them as “coordinate time,” “coordinate
radius,” etc. They are different from quantities measured by an observer near the
object; understanding the difference is one of our goals.

Notice that something funny happens to the metric when r approaches the
Schwarzschild radius Ry = 2GM/c?: the time term vanishes, while the radial
term diverges. In the early twentieth century, all known astrophysical objects had
sizes R > Rg, so Einstein and other prominent figures such as Arthur Eddington
assumed the weirdness was merely a mathematical curiosity, not a physical reality.
It was only later, after Subramanyan Chandrasekhar and Robert Oppenheimer
showed that stars could collapse to become comparable to or even smaller than the
Schwarzschild radius, that physicists began to take the strange predictions seriously.

The Schwarzschild metric deviates from the flat spacetime from special relativity
(Eq. 10.16) only to the extent that Rg/r is nonzero. This allows us, finally, to specify
what we mean by “weak” or “strong” gravity:

R

r> Ry — &1l - “weak field”
’
R

F~Rg — —S~1 = “strong field”
’

Historical aside (drawn from Black Holes and Time Warps by Kip Thorne [18]): When Einstein’s
general theory of relativity was published on Nov. 25, 1915, Schwarzschild was serving in the
German army on the Russian front in the first World War. He managed to obtain Einstein’s paper,
read it, apply it to stars, discover a solution to the complicated equations Einstein had derived,
write a paper of his own, and send it to Einstein—all in time for Einstein to present the paper on
Schwarzschild’s behalf at a meeting on Jan. 13, 1916. Unfortunately, Schwarzschild died on May
11 of illness contracted during his service.
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To give some examples, let’s quantify the Schwarzschild radius:

2GMy M
Rg = > X ——
C M@
2% (6.67 x 107" m3kg™!s72) x (1.99 x 10¥ kg) M
= X _—
(3.0 x 103 ms1)2 Mg
M
= 3 km x (—) (10.29)
Mo

We retain the mass dependence but express M in solar masses so we can quickly
evaluate the Schwarzschild radius for different astrophysical objects. Here are
typical numbers for some systems we have studied already or will encounter:

M/Mgo Ry R Rs/R
Earth 3x107° 0.009 m 6.4x10°m 1.4x107°
Sun 1 3km 7 x 108 m 4x10°
White dwarf 1 3km 6% 10°m 5x 107
Neutron star 1.4 4km 10 km 0.4

10.6.2 Spacetime Geometry

To begin to see some of the weird properties of a black hole, consider the spacetime
interval between ticks on a stationary clock. If the clock does not move then dr =
df = d¢ = 0, so the spacetime interval is

o < 0 (spacelike) forr < Rg

W - (1 ~ RS) 24— g > 0 (timelike) ~ for r > Ry

The spacetime interval changes sign at the Schwarzschild radius, switching from
spacelike to timelike. This is important because no physical object can experience a
spacelike interval; to do so, it would have to move faster than the speed of light.
We seem to have a paradox: a stationary clock inside the Schwarzschild radius
would have a spacelike interval, which is not allowed. To resolve the paradox, we
conclude that it is impossible to remain stationary inside the Schwarzschild radius.
In fact, objects inside the Schwarzschild radius are inexorably drawn to the central
singularity, just as on Earth we are inexorably drawn forward in time.
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10.6.3 Particle in a Circular Orbit

As we set out to study motion in general relativity, it is good to start with the
simple case of circular orbits. Such an orbit stays in a plane, and we can choose
our coordinates so this is the equatorial plane:

r = constant 0= ¢p=wt

2
where o is the coordinate angular speed. The period of the orbit in coordinate time
is P = 27 /w. The spacetime interval for the orbit is:

R R 2p?
ds? = (1——5)62dt2—r2a)2dl2 = (1——S—r @ )czdt2
r

r c?

With this we can determine the proper time (see Eq. 10.15):

1 R 2,25\ 1/2
Tcirc:_/ Vdszz(l——s—rw) P
C Jone orbit

r c?

This is the time that would be measured on a clock that is executing the circular
orbit. Note that it is not a simple integral over d¢; we must account for the motion
using the spacetime interval.

We have not yet specified the radius. We can find it by applying Fermat’s
principle of least time: for a given angular speed, the particle will “choose” the
radius that minimizes the proper time. Operationally, we want to find the radius that
minimizes T, SO we want to solve

0 — dc 1 | Ry  r2w? -2 Rs 2ro? P
Codr 2 r c? r2 c?
The solution is
CZRS 1/3
r =
(%)

It is more convenient to write the relation as

2Rs\"? GM\'?
w = = —_—
2r3 r3

The coordinate velocity is then
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This is the same expression we had in Newtonian gravity (see Eq.7.7). In other
words, a distant observer would measure the same orbital size and orbital velocity,
and hence the same orbital period, as in Newtonian gravity. But a clock following
the circular orbit would measure the proper time, which is different:

Rs  rlo*\"? 3Rs\ /2
zm:(l——s—rw) P=(1——S) P

r c? 2r

Out of curiosity, what about a clock at rest at the same radius? Such a clock has
dr = d¢ = df = 0 and hence

R 1 Rs\'?
ds? = (1——5) A S ey = —/«/dsz = (1——5) P
:

r r

This is identical to the gravitational time dilation for a clock at rest in a gravitational
field that we examined in Sect. 10.3.4.

We see that time is complicated! The time you measure depends on where you
are and how you are moving. These are both effects that we have seen already
(time dilation in special and general relativity), but it is interesting to see how they
manifest themselves here.

Example: Circular Orbit Around Sgr A*

Imagine we were in a spaceship orbiting the black hole at the center of the Milky
Way at r = 3 Rg. If we take My, = 4 x 10° Mg then from Eq.(10.29) the
Schwarzschild radius is Ry = 1.18 x 10'°m, and so the radius of the orbit is
r = 3Rs = 3.54 x 10'°m. The orbital period as measured by a distant observer
(i.e., in coordinate time) is the same as in Newtonian gravity:

2 3 1/2
p =2 (Gr—M) — 1.800s = 30min
w

However, our clocks on the spaceship show the proper time, and in our frame one
orbital period takes

3Rg\ /2
Teire — (1 _2_) P = 1,2905 = 21 min
r

If we had friends in a space station that is sitting at a fixed spot with r = 3 Rg (i.e.,
not orbiting but stationary), they would measure our orbital period as

Ry 1/2 '
Trest — 1—— P = 1,4905 = 25min
r

Again, time depends on where you are and how you are moving.
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10.6.4 General Motion Around a Black Hole

Now we allow general motion.'? Let’s briefly review the Newtonian case as a point
of reference. As we saw in Sect. 3.1, in spherical symmetry the motion is confined
to a plane, which we can define to be the equatorial plane. The equation of motion
for the one-body problem is then

d2r dp\*|. 1d [ ,do\ - GM |
[@"(a””;a(’a)"’—‘v"

(In general relativity, the natural time coordinate for studying motion is the proper
time, so we write 7 here.) The angular component of the equation of motion implies

d
r? —¢ = constant = ¢ (10.30)
dr

where ¢ is the specific angular momentum. This is conservation of angular
momentum (which we have seen many times now). The radial component of the
equation of motion looks like

d3r 2 _ GM

de2 3 2
We rewrite this as
d?r dDNewt
== 4 (10.31)
where we define the effective potential
Prewt = —g + ;—rzz + ; (10.32)

The first term is the familiar Newtonian gravitational potential. The second term is
the centrifugal term. The last term is just a constant that we add because it will prove
to be convenient in the relativistic case.

The effective potential is useful because we can think of it as a surface and use our
intuition to understand what would happen to a ball on that surface. Some examples
are shown by the dashed curves in Fig. 10.3. For £ = 0 the ball would roll all the
way down to r = 0. For any nonzero value of £, however, the centrifugal term
causes an upturn at small radius. This creates a stationary point that corresponds to
a constant radius and hence a circular orbit. In the Newtonian effective potential, the

12This presentation draws from the book by Schutz [2].
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Fig. 10.3 Examples of effective potentials for a massive particle in Newtonian gravity (dashed)
and GR (solid). The three panels correspond to different values of the specific angular momentum,
£. Note that the bottom panel has a different horizontal scale. Points indicate local minima (squares
for Newtonian gravity and circles for GR)

stationary point is a minimum of @, so the orbit is stable: if you put the ball near the
minimum but give it a little kick, it will oscillate around the minimum but remain
confined.

In general relativity the equation of motion can be written in the form of (10.31)
but with a different effective potential. To find that potential, recall that special
relativity has a relation between energy, momentum, and mass: (E/c)? — p* = m?
(Eq.10.26). With the Schwarzschild metric the analogous relation has factors of
(I=Rg/r):

~N\ 2
R\ (mE Rs\ ' [ dr\? m2e?
1B PEY (=) () SE 2 (1033)
r c r dr r2

where £ is the specific angular momentum and E=E /m is the energy per unit
mass, both of which are well defined only if the moving particle has a nonzero rest
mass. (We consider a massless particle below.) We can divide through by m? and
rearrange to write
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dry’_ £ 1R\ (2 E (10.34)
dr) ¢ r cTR '
Take the derivative d/dz, divide through by 2dr/dt, and use Rs = 2GM/c?:

d’r GM ¢ 3GM?

dz =~ 2 3 c2rd
The first two terms match the Newtonian case, but the third term is new in GR.
We can capture all of the terms in the same form as Eq.(10.31) by introducing the
effective potential

( ive) & GM n 2 n 2 GM?
massive - L= 4
R r 2r2 2 c2r3

1 Rs\(, £
z(“?)(”ﬁ

If the particle is massless (e.g., a photon), the analysis is slightly different because
we cannot define the energy and angular momentum per unit mass. Nevertheless,
light does carry both energy and momentum, and we can keep the same form of
the equations if we define £ and E to be the total angular momentum and energy,
respectively. Also, we need to be careful with the derivative term in Eq. (10.33)
because 7 and m are both zero for photons. We can, however, define a new parameter
A that runs along the photon’s trajectory in spacetime such that the derivative dr/dA
is well defined. The upshot is that Eq. (10.33) is replaced for a massless particle by

~\ 2
Rs\ ™' (E Rs\ 7' (dr\* £
(-5 () 0% (@) Fme s

dr\*> E? Rg\ 12
— ] == —-(1-— )= 10.36
(dk) c? ( r ) r2 ( )
As before, we take the derivative d/dA, divide through by 2dr/dA, and use Ry =
2GM/c*:

or

d?r 02 3GM?

d)2 73 c2ré

In this case we define the effective potential to be

1 Rs\\ 2
(massless) Dgr==-11-— Sy
2 r ) r?
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We can combine the expressions for the massive and massless cases into a single
effective potential if we write

1 R 2
Oor = = (1= =2 ) (mc? + c (10.37)
2 r r2

and put 7n = 1 for a massive particle and /7 = 0 for the massless case.
Sample GR potentials are shown by the solid curves in Fig. 10.3. There are
several important points to make:

* At large radius, the new term GM {?/c*r® from GR is small, so Newtonian
gravity is a good approximation. GR effects are significant only at small radii.

* For £ above some critical value £, there is a minimum in the potential curve,
which corresponds to a stable circular orbit. (You can find £, along with the
location of the stable circular orbit, in Problem 10.7.)

e For £ > {4, there is also a maximum in the GR potential curve. It corresponds
to a second allowed circular orbit for a given angular momentum, but one that is
unstable. This is new in GR.

e For £ < {4, there is