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Foreword to the Edition Published
by Universities Press

Lord Martin Rees

Professor of Cosmology and Astrophysics
Astronomer Royal

Master of Trinity College, Cambridge
Past President, Royal Society

If you chose 10,000 people at random, 9,999 would have something in common—
their business and their interests would lie on or near the Earth’s surface. The other
would be an astronomer. I'm lucky to be one of this strange breed—as is Dr.
G. Srinivasan, the author of this series of monographs entitled The Present Revo-
lution in Astronomy. But astronomy isn’t just for astronomers. Its findings are
fascinating, and it is as important to understand the cosmos as it is to appreciate the
rest of nature. The entire cosmos is part of our environment. Indeed the dark night
sky is one feature that’s been essentially unchanged throughout all human history,
shared by all cultures—though it has been interpreted in many different ways.

Astronomers are the heirs to a long tradition. Astronomy is the oldest science—
except perhaps for medicine. Its origins lie in the need to establish a calendar, to
measure time, and to interpret the patterns and regularities seen in the sky. Our
knowledge is now advancing faster than ever before—thanks to powerful tele-
scopes, and probes that travel to other planets. A wide public has shared the
excitement of this vicarious exploration.

We can’t send actual probes beyond our Solar System, but with our telescopes,
we can study stars in detail. In the last decade we have learnt something that’s
made the night sky far more interesting. Stars aren’t mere twinkling ‘points of
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light’. They’re orbited by retinues of planets, just like the Sun is. Some of these
planets may be like the Earth—but whether there is life on any of them is a
question that challenges future generations of scientists.

We have come to realise the immense scale of the universe—in both space and
time. We live in a galaxy containing more than a hundred billion stars; but this
galaxy is itself just one of a hundred billion visible with modern telescopes. By
looking far away in space, we can penetrate far back in time, because the light
from distant objects took a long time to reach us. Astronomers have an advantage
over geologists and fossil hunters: they can actually observe the past, and trace
cosmic history right back to the formation of the first stars and galaxies. Indeed
there is compelling evidence that our universe is the expanding aftermath of a “big
bang” nearly 14 billion years ago.

We have learnt one crucial thing about the universe: it is governed by physical
laws that we can understand, and these laws seem to be the same everywhere. By
analysing the light from a distant galaxy, we can infer that the atoms it’s made of
behave just like those we study in the laboratory. It’s because of this uniformity
that we can understand the structure of stars and their life cycles, and how, from
simple beginnings, stars, galaxies and planets emerged to form the complex
structured cosmos of which we are a part.

The cosmos is a unity. There are links between the very small—the microworld
of atoms—and the very large—stars and galaxies. Stars form, evolve and die
(sometimes explosively). They are powered by nuclear fusion—a controlled ver-
sion of what happens in a hydrogen bomb. Over their lifetime, this process gen-
erates, from pristine hydrogen, atoms of carbon, oxygen and iron. All the atoms on
Earth, and in our bodies are the ashes from long-dead stars. We are the ‘nuclear
waste’ from the fusion power that makes stars shine. Fully to understand ourselves
and our origins, we must understand not only Darwinian evolution, but also the
atoms all life is made of, and the stars that made those atoms. This wonderful story
should be part of everyone’s education.

But there is another reason for studying astronomy. It allows us to probe the
laws of nature under far more extreme temperatures, pressures and energies than
can be achieved in laboratories here on Earth. It also allows us to study the
fundamental force of gravity, and how it relates to the nature of space and time.

This is undoubtedly the Golden Age of astronomy. With the advent of the space
age, new windows to the Universe have been opened. With giant observatories
orbiting high above the Earth’s atmosphere, one can now explore the Universe at a
wide range of wavelengths: radio waves, millimetre waves, infrared radiation,
visible radiation, ultraviolet radiation, X-rays and gamma rays. This has enabled
astronomers to make unprecedented progress pertaining to a variety of questions:
the nature of the stars and their life history; the formation of planets; the birth and
death of the stars; the graveyard of stars—white dwarfs, neutron stars and black
holes; galaxies; quasars; and the Universe at large.

This series of monographs entitled ‘The Present Revolution in Astronomy’ is
very timely for it aims to survey the contemporary scene at an introductory level.
Dr. G. Srinivasan, the author of this series of books, is an internationally acclaimed
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leader in this enterprise. In particular, he has studied neutron stars, which manifest
an astonishing range of ‘extreme’ physics. Readers of these splendid and acces-
sible books will find Dr. Srinivasan to be a clear and enthusiastic guide to the
wonders and mysteries of the cosmos. We should all be grateful to him.

Cambridge Martin J. Rees
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The year 2009 was celebrated as the International Year of Astronomy. This was to
commemorate the 400th anniversary of Galileo’s pioneering observations with a
telescope, observations that revolutionized man’s perception of the heavenly
bodies.

Four centuries later, we are in the midst of another golden era in astronomy.
The advent of the space age has opened new windows to the Universe, resulting in
spectacular discoveries and unprecedented progress in our understanding of the
nature of celestial objects. At the same time, many new and outstanding questions
have emerged. Indeed, there are clear indications that the resolution of some of
these puzzles may require a major revision of fundamental physics itself. A deep
connection between the microcosm and the macrocosm is becoming apparent.

This series of monographs entitled The Present Revolution in Astronomy is
intended to convey the excitement of contemporary astronomy. The inspiration for
writing these monographs was the enthusiastic response of the students who
attended an intercollegiate course I taught for 5 years at St. Joseph’s College in
Bangalore. This course was not part of the regular academic curriculum, and was
open to interested students and teachers from all the colleges in the city. Inter-
estingly, more than half the students in each batch were students of engineering,
rather than pure science. And yet, they were fascinated by the lure of astronomy.
Although the underlying theme of the course was The Present Revolution in
Astronomy, my idea was to use astronomy as a Trojan horse to get the young
students excited about the challenges that await them in the world of physics/
astronomy, engineering and technology. It was the unanimous view of these stu-
dents that I should develop these lectures into a series of books.

There is a second reason why I thought it would be worthwhile to write these
books. Historically, astronomy has always had a great appeal among the general
public. It is even more so today. The commissioning of new telescopes, and the
discoveries made with them receive wide publicity in the print as well as the
electronic media. Space Agencies like NASA, as well as leading astronomical
observatories, have impressive Public Outreach programmes. And yet, here in
India, hardly any of the universities offer astronomy as one of the subjects in the
undergraduate curriculum. As a result of the lack of familiarity with the subject,

ix
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very few students opt for a career in astronomy even though there are several truly
world class observing facilities in India. This series of books is intended to partly
remedy this lacuna.

Now a few words about the scope of these monographs and the style in which
they are written. My primary objective is to introduce the reader, young and not so
young (!), to the presently unfolding revolution in astronomy. We shall discuss the
recent developments concerning a wide variety of topics: the nature of the stars
and their life history; the birth and death of the stars; the graveyard of stars—
white dwarfs, neutron stars and black holes; galaxies; quasars; and the Universe
at large.

The monographs are not intended to be ‘textbooks’ in astronomy. Textbooks
have to develop the subject in a pedagogical manner, dwell on the experimental
methods and phenomenology, develop the mathematical aspects of the theory in a
systematic manner, include problems and exercises, etc. While all these are needed
to learn a subject seriously, conventional textbooks have a serious handicap.
Introductory books ‘begin at the beginning’ and seldom convey the excitement
surrounding contemporary developments. They tend to focus on questions that
have been resolved, rather than highlight what is not known. In contrast, this series
of books is intended to serve a different purpose. I hope they will give the reader an
introduction to the recent developments, as well as highlight the outstanding and
unsolved questions. I believe that a young reader would be more interested in the
unsolved puzzles, for that is where the challenges lie.

The books have a very different flavour compared to the traditional astronomy
books. For example, they do not discuss topics such as measurement of distances
to celestial objects, determination of their masses, luminosities, etc. Nor do they
dwell on coordinate systems to define their positions in the sky, the classification
of their spectra, etc. While all these are ‘bread and butter’ issues, it is my view that
a reader would learn these topics at a later stage in the normal course if he or she
decides to become a practising astronomer. The emphasis in this series of
monographs will be on physics, and for the following reason.

Among the many great discoveries made by Isaac Newton, perhaps the most
profound was his assertion that the Laws of Nature have universal validity. In other
words, the laws of physics that govern phenomena on Earth apply everywhere in
the Universe. Today, we take this assertion by Newton as an axiom. Indeed, during
the past couple of centuries, several seminal inputs to laboratory physics have
come from astronomical observations. The discovery of the law of gravitation,
emission and absorption lines in the spectrum of the atoms, the discovery of
Helium, the first verification of the predictions of the Special Theory of Relativity
and the General Theory of Relativity are some of the more important examples.
This is not surprising. The range of densities, temperatures and pressure that are
obtained in celestial bodies are staggering compared to what one encounters on
earth. For example, the densities range from 1 atom/cm® to 10°” atoms/cm?>, and
the temperatures range from 3 kelvin to 100 million kelvin—conditions that are
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hard for us to comprehend. Consequently, one encounters many new and exotic
physical phenomena in celestial objects. Indeed, a few decades ago one would
have said that ‘Astronomy is the home of Physics’. Today, however, it would be
more appropriate to say that ‘Physics is the home of astronomy’. We shall see the
reason for this paradigm shift as we progress in this series. Therefore, we shall
concentrate on the physics of the celestial bodies—their nature, their stability, their
central engines, their radiation mechanisms, etc.

Having stated the objective of this series of books, I must add that I do not
assume any astronomical background from the reader. A knowledge of physics at,
say, the Halliday and Resnick level would be quite adequate to get started. We
shall develop the rest of the background as we go along. To meet the stated
objectives, I shall often be required to sacrifice rigour in the arguments in favour of
simple analogies and qualitative arguments. And I shall do so without any apol-
ogies! I shall consider my efforts worthwhile if these books manage to convey the
excitement of contemporary astronomy. As for the younger readers, I do hope that
these books will arouse their interest sufficiently enough for them to want to pursue
the topics further by going to more learned books.

When I was young, I had the pleasure and privilege to read the marvellous
books by great masters like Sir Arthur Eddington, Sir James Jeans and George
Gamow, books in which they explained the developments in physics and astron-
omy in the early part of the last century. There are several recent books, written in
a similar vein, by leading physicists and astrophysicists, of the present epoch. And
then there is the ‘Internet’! This series of monographs represents my very humble
efforts in the same spirit.

This Volume

This book begins with an overview of the present revolution in astronomy. It
should give you a feel for the topics we shall be discussing in this series of
monographs. The rest of this book is devoted to a discussion of the nature of the
stars, their stability and the source of the energy they radiate. This is where the
subject of astrophysics began. The story begins in the early decades of the nine-
teenth century. Although the foundations of the subject were laid by 1870, the
edifice was built only in the 1920s. Much of our understanding of the nature of the
stars dates back to that period. As I have mentioned above, this series of books is
not just about what has been well understood—it is about the current excitement in
astrophysics as well. Interestingly, the definitive proof of many of the prescient
conjectures made in the 1920s and 1930s came less than ten years ago. The last
two chapters of this book are devoted to these recent developments.
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The Present Revolution in Astronomy:
An Overview

The year 2009 was celebrated as the International Year of Astronomy. This was to
commemorate the four-hundredth anniversary of Galileo’s pioneering observations
with a telescope, observations that revolutionized man’s perception of the
heavenly bodies.

Four centuries later, we are in the midst of another golden era in astronomy.
The advent of the space age has opened new windows to the Universe, resulting in
spectacular discoveries and unprecedented progress in our understanding of the
nature of celestial objects. At the same time, many new and outstanding questions
have emerged. Indeed, there are clear indications that the resolution of some of
these puzzles may require a major revision of fundamental physics itself.

This series of monographs is intended to convey the excitement of contemporary
astronomy, and serve as an introduction to the present revolution in astronomy. The
purpose of this overview is to the set the scene, so to speak. It is not my intention to
explain anything systematically in this broad-brush outline. It is intended to be more
like a trailer of a soon-to-be released movie. It is my hope that this introduction will
whet your appetite sufficiently to make you look forward to the other volumes of this
series to learn more about the revolution that is currently unfolding.

The Dawn of the Twentieth Century

What does one mean by a revolution in science? Every now and then, questions
which have remained meaningless, or considered frivolous, suddenly acquire
meaning within the premise of science. When this happens, a scientific revolution
begins. Let us recall a couple of examples. When Isaac Newton stated that natural
phenomena should be understood in terms of underlying physical laws, it was a
revolutionary statement; no one had asserted this before. Far more profound was
Newton’s assertion that the laws of nature are of Universal validity; that is, the
same laws apply everywhere in the Universe.

The revolution that was unfolding at the dawn of the twentieth century
concerned the nature of stars. According to the positivist philosophers who greatly

xvii



Xviii The Present Revolution in Astronomy: An Overview

Fig. 1 The great spiral galaxy M31 in the constellation Andromeda (from the Wikimedia
commons, with the kind permission of the author, John Lanoue). Countless number of such spiral
nebulae were thought to be part of own Galaxy till Edwin Hubble established that this nebula was
at a distance of nearly three million light years. Since our Galaxy is only a hundred thousand light
years across, M31 could not be in our Galaxy. It had to be a galaxy in its own right!

influenced European thinking in the eighteenth and nineteenth century, it was in
the nature of things that we shall never know what the stars are. The discovery of
the dark lines in the spectrum of the Sun and the stars by Fraunhofer in 1817, and
their subsequent explanation by Kirchoff, Bunsen and others, proved the
philosophers wrong. It was clear that at least the outer layers of the Sun was
gaseous and made of the same atoms that we find on earth. The subject of
astrophysics was born. By the 1930s one had understood a great deal about what
are the stars, and why are they as they are.

The great new question that arose at the beginning of the twentieth century
concerned the size and the nature of the astronomical Universe. A much debated
question at that time was whether the Universe was synonymous with our own
Milky Way galaxy. The perception at that time was that our galaxy was rather
small—roughly 20,000 light years across—and the Sun was at the centre of the
Galaxy. In 1923 the astronomer Edwin Hubble was able to estimate the distance to
the great Spiral nebula in the constellation Andromeda (Fig. 1).

It became clear that the Andromeda nebula was at a distance of approximately
three million light years. This established beyond all doubt that it was a galaxy in
its own right. Today, we know that there are more than 350 billion giant galaxies
in the Universe, each containing about a 100 billion stars. Soon, Hubble went on to
demonstrate that these countless galaxies were not the building blocks of the
Universe. The building blocks of the Universe were clusters of galaxies, with each
cluster containing several-hundred to several-thousand galaxies. The number of
clusters of galaxies is now estimated to be more than 25 billion. These clusters of
galaxies are the building blocks of the Universe, just as molecules are the building
blocks of a gas. Thanks to these two remarkable discoveries by Hubble, the
Universe became much bigger than what one had envisaged at the beginning of the
twentieth century (Fig. 2).
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Fig. 2 The building blocks of the Universe: Clusters of galaxies with several-hundred to
thousand of galaxies are the building blocks of the Universe. This photograph was taken with the
Hubble Space Telescope. [Courtesy of NASA]

In 1929, Hubble made an even more astonishing discovery. He discovered that
the clusters of galaxies were systematically receding from us; this was true no
matter which cluster one looked at. In fact, the velocity of recession of the cluster
was linearly dependent on its distance from us. That is, a cluster which is twice as
far away is receding from us twice as fast. What is one to make of this? If taken
literally, this would imply that in the distant past the clusters of galaxies must have
been closer together (Fig. 3).

The Belgian physicist Georges Lemaitre went one giant step further. He
suggested that the recession of the clusters discovered by Hubble might actually be
the local signature of the expansion of the Universe as a whole. Indeed, Lemaitre
proposed that the Universe must have once been a primeval atom! In the 1940s, the
brilliant Russian physicist George Gamow took the bold step of taking all this
seriously and making far reaching predictions. One of these was that if the early
Universe was dense and hot, it would be an excellent laboratory to synthesize the
elements by fusing hydrogen nuclei. Such a suggestion had been made earlier by
Sir Arthur Eddington in the context of the stars. The other important prediction
was that the Universe today must contain the relic of the primeval radiation and
that the temperature of this all pervading radiation must be a few degrees kelvin.

Not many took all this seriously, although this was the only scenario that could
explain the abundance of the light elements in the Universe such as deuterium,
helium and lithium. The reason for this scepticism was that Gamow’s conjecture
represented an extrapolation into the unknown. For one thing, he (like Lemaitre)
generalized the fairly local phenomenon of the recession of the clusters of galaxies
that Hubble had detected to imply a Universal expansion. He then extrapolated
backwards in time into a domain where one didn’t know the laws of physics. The
question of the origin of the Universe could not yet be posed rigorously within the
premise of the existing theories.
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Fig. 3 The recession of the clusters of galaxies and Hubble’s Law. The fop panel shows Hub-
ble’s original data, while the lower panel shows more recent data. Plotted on the y-axis is the
recession velocity in kilometres per second. The distance to the clusters, in millions of light years,
is plotted on the x-axis. Notice the different scales on the x-axis in the two plots. The solid line
indicates the linear relationship between the two. This is Hubble’s law

The Giant Strides of the Twentieth Century

By the time the twentieth century drew to a close, great progress had been made in
our understanding of the nature of celestial objects. Let us briefly review some of it
before coming to where the action is today.

What are the Stars?

As already mentioned, Fraunhofer’s discovery of dark lines in the spectrum of the
Sun enabled the physicists to conclude that the Sun’s outer layers were gaseous.
By 1870, the Sun and the stars had been modelled as gaseous spheres, held
together by their own gravity. The outstanding question at the turn of the
nineteenth century was the following: what is the source of energy that makes the
stars shine? In 1920, Sir Arthur Eddington at Cambridge University in England
made the extraordinary suggestion that the source of energy was the transmutation
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of hydrogen into helium at the centre of the stars. He went on to construct a
detailed theory of the stars based upon the simple principle that the inward-
directed force due to self gravity was balanced by the combined pressure of the gas
and radiation, both of which are directed outwards. Despite its simplicity, many
predictions of this theory were in remarkable agreement with observations; yet, a
detailed understanding of the source of energy radiated by the stars had to wait till
the emerging discipline of Nuclear Physics had come of age.

In 1938, Hans Bethe worked out all the details of the fusion reactions. His
results for the energy released per second by the Sun by fusing hydrogen into
helium agreed extremely well with the energy radiated by the Sun per unit time,
but there was no direct evidence of such fusion reactions taking place in the centre
of the Sun. Such evidence could only be provided by the other by products of the
reactions. It was therefore imperative to detect the neutrinos produced when
hydrogen is transmuted into helium. If Eddington and Bethe were correct, then the
Sun should be emitting approximately 10°® neutrinos every second. Since a fair
number of these neutrinos would reach the earth, it would appear to be a simple
task to detect them. Unfortunately, neutrinos interact incredibly weakly with
matter. But physicists were undeterred. The neutrinos from the Sun were finally
detected in 1968. However, there was an irritating problem. The number of
neutrinos detected was only one-third of what the theory had predicted. This
puzzle challenged the physicists for three decades and was solved only in 2001. So
the mystery of the source of energy radiated by the stars was finally solved.

Can Stars Find Peace?

A major problem arose in 1925 when an extraordinary star was discovered.
Although it was as massive as the Sun, it was only as big as the Earth! This meant
that the average density of the star was about 10° g cm ™ (the mean density of the
Sun is only a little more than that of water). The difficulty posed by such a dense
star was the following. What will happen to such a star when nuclear energy
generation at its centre stops? Since the star will no longer produce heat, there will
be no force to oppose gravity, and the star will have no option but to collapse
under its own gravity. What will be the end state of such a star?

Surprisingly, the resolution of this problem came from the newly emerging
Quantum Physics. In 1926, R. H. Fowler at Cambridge University argued that the
star will collapse and collapse till it reaches a density where a new quantum
mechanical force provides support against gravity, and the star will at last find
peace. This quantum pressure is due to the electrons, and arises due to the
combined effect of Heisenberg’s Principle of Uncertainty and Pauli’s Exclusion
Principle. Soon, Subrahmanyan Chandrasekhar, a student at Presidency College in
Madras developed Fowler’s idea into a proper theory of such quantum stars, which
had come to be known as white dwarfs. And thus it appeared to be established that
all stars will ultimately find ultimate peace as white dwarfs.
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This sense of security was shattered in 1930, when Chandrasekhar discovered
that such white dwarfs cannot be more massive than 1.4 times the mass of the Sun.
This raised an embarrassing question. What will happen to stars that are more
massive than 1.4M&? Chandrasekhar’s discovery implied that all such stars will
collapse indefinitely and become singularities—regions of spacetime of zero
volume and infinite density.

The Discovery of Radio Astronomy

The year 1928 was a momentous one in the history of astronomy. Karl Jansky,
working at the Bell Telephone Laboratory in New Jersey, USA, discovered radio
waves emitted by celestial objects. The pursuit of this monumental discovery was
impeded by the outbreak of World War II. After the war ended, scientists who
were involved in the development of the Radar turned their attention to the pursuit
of astronomy at radio wavelengths. Large telescopes were built in a quest for
higher angular resolution and higher sensitivity. This led to many major
discoveries that revolutionized astronomy. These included the discovery of
quasars and neutron stars. Another discovery in the realm of radio astronomy that
had a great impact was the discovery of the 21-cm radiation from neutral hydrogen
atoms.

By the turn of the twentieth century, giant radio telescopes had been built in
many countries, operating at a wide range of wavelengths, ranging from 10 m to a
few millimetres. One of them, the Giant Metrewave Radio Telescope (GMRT), the
largest radio telescope in the world operating at a wavelength of approximately 1
metre, is located near Pune in India. Using these telescopes, astronomers have
been able to probe the distant corners of the Universe, and study its structure and
dynamics (Fig. 4).

New Windows to the Universe

More windows to the Universe were opened with the advent of the space age. By
the mid 1960s, astrophysics had become a jig-saw puzzle. To understand the
nature of a celestial object one had to understand its structure and stability, its
composition, the physical conditions, the radiation mechanism, etc. This required
observations over a broad spectrum, ranging from radio waves to gamma rays,
with each wavelength region providing one piece of the jig-saw puzzle.
Unfortunately, Earth’s atmosphere absorbs most of this radiation. Just to give
you an idea, sub-millimetre-wave radiation is absorbed by the rotational levels of
molecules in the air. Infrared radiation is absorbed by the vibrational levels of
molecules. Ultraviolet radiation has the right energy to break up molecules, and



The Present Revolution in Astronomy: An Overview Xxiii

Fig. 4 One of the thirty telescopes of the GMRT (Giant Metrewave Radio Telescope) near Pune
in India. This giant radio telescope was conceived and built by Govind Swarup and his colleagues
at the Tata Institute of Fundamental Research in Mumbai

hence they disappear. X-ray photons lose their energy by ionizing atoms in the
atmosphere. High-energy gamma rays disappear in the atmosphere by creating a
shower of particle—antiparticle pairs. Therefore, to detect radiation at these
wavelengths, one has to go above the Earth’s atmosphere. The advent of the space
age enabled one to do this. The first breakthroughs came from experiments on
rockets. By mid 1970s, astronomers were able to launch giant telescopes orbiting
the earth. The Einstein X-ray Observatory, the Infrared Astronomy Satellite
(IRAS), the International Ultraviolet Explorer (IUE), the Compton Gamma Ray
Observatory, the Hubble Space Telescope, the Cosmic Background Explorer are
some early examples. In recent times, much more sensitive telescopes have been
launched, and many more are in the pipeline. This is undoubtedly the era of
exploring the Universe from outer space.

Exploding Stars

During the first millennium, the oriental astronomers, notably the Chinese,
meticulously recorded the appearance and disappearance of new stars in the Sky.
Sometimes, they could even be seen in daylight for many months! They called
them guest stars. Astronomers in the Middle East and Europe also recorded many
such guest stars during the second millennium; they called them Novae (new
stars). In 1572 AD, the great Danish astronomer Tycho Brahe observed one such
Nova. Being a great astronomer, he carefully recorded the rise and fall in the
brightness of the new star by comparing it with the brightness of known stars in the
sky. Johannes Kepler, too, had the privilege of observing a Nova in 1604.

One such guest star was seen in the great Andromeda nebula in 1885. The
nature of these guest stars began to unravel itself soon after Hubble’s discovery
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Fig. 5 An optical image of the Crab Nebula, the expanding debris of the supernova explosion of
1054 AD. At the centre of this nebula is a rapidly spinning, strongly magnetized neutron star.
[This remarkable image was taken with the Hubble Space Telescope. Courtesy of NASA]

that the Andromeda nebula was an external galaxy, nearly three million light years
away. This enabled Fritz Zwicky, an incredibly creative Swiss theoretical physicist
at the California Institute of Technology, to estimate for the first time the energy
released by the guest star of 1885 in Andromeda; it was truly fantastic. Zwicky
estimated that approximately 10°2 erg of energy was released in a very short time.
This is the total amount of energy that our Sun would radiate in its entire life time
of several billion years. To put it differently, this is the total energy radiated in one
second by all the stars in our galaxy, and there are approximately 10'' stars in a
typical galaxy! Therefore, whatever they might be, these gust stars deserved a
more appropriate name, and Zwicky called them Supernovae (Fig. 5).

What could be the central engine that supplied about 103 erg in a short time?
Zwicky and his illustrious colleague Walter Baade, also at CALTECH, were
convinced that nuclear fusion, conjectured by Eddington as the source of energy in
the stars, could not be the origin of the energy released in a supernova. In one of
the most prescient papers published in the entire history of astronomy, Baade and
Zwicky proposed in 1934 that the source of energy must be related to the
formation of a neutron star. They hypothesized that if a star suddenly collapsed to
a radius of the order of 10 kilometres, then the gravitational potential energy
released would be of the order of 10°% erg! They went on to conjecture that such a
collapsed star would consist essentially of neutrons, and they called them neutron
stars! This was an extremely ingenious idea, coming so soon after Chandrase-
khar’s discovery in 1930, and the discovery of the neutron in 1932!
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In the 1940s, it was pointed out that the position in the sky of the Crab Nebula
coincided with the guest star of 1054 AD. It had already been established that the
Crab Nebula was expanding very rapidly with a velocity of nearly 1500 km per
second. An extrapolation of this expansion backwards in time confirmed that the
nebula was the expanding debris of the supernova explosion of 1054. Soon after
the discovery of the first neutron star in 1968, observations revealed the presence
of a neutron star right near the centre of the Crab nebula. This was a spectacular
confirmation of the conjecture by Baade and Zwicky that the birth of a neutron star
is responsible for the supernova explosion. There was only one missing link.
Remember that the original star consisted of an equal number of protons and
electrons. In the mid 1930s, Lev Landau pointed out that when a star collapsed to a
density of the order of 10'" g cm™, electrons will combine with protons to form
neutrons. In the process, very weakly interacting particles known as neutrinos
would be emitted. Since there are roughly 10°7 protons in the Sun, when the star
collapses to become a neutron star, roughly 10°” neutrinos would be emitted as a
burst, but all this was mere theoretical conjecture in the mid 1930s, since the
neutrinos were discovered only in 1956.

In February 1987, a massive star exploded in the neighbouring galaxy known as
the Large Magellanic Cloud. The explosion was first seen as a guest star with the
naked eye, and then studied with powerful telescopes. Miraculously, a giant
underground neutrino detector in Japan detected a burst of neutrinos at the same
time! One could trace the direction from which the neutrinos came, and that
pointed to the position of the exploding star. That, plus the coincidence in time,
confirmed that the burst of neutrinos was associated with the supernova, thus
confirming the last missing link in the story!

The investigation of supernovae—both theoretical and observational—was one
of the exciting areas of research in the closing decades of the last century. This was
important not just for understanding why and how a star explodes. There was
another reason. While the lighter elements like deuterium, helium and lithium were
synthesized when the Universe was very young (roughly three minutes after the
beginning), the heavier elements are not of cosmological origin. It is widely
believed that they are synthesized in stars. To verify these predictions in detail, one
will have to study the spectrum of radiation from the ejecta of the explosion. Since
the ejecta expanding with a velocity of the order of several thousands of kilometres
per second will be at a temperature of nearly hundreds of million degrees, the
radiation emitted by it will be at X-ray wavelengths. To derive the chemical
composition of matter synthesized in the star, one will need to study the spectrum
of the X-rays emitted by the ejecta (The principle is the same as the one used by
Kirchoff and Bunsen to unravel the chemical composition of the Sun. In that case,
they used the spectrum obtained by Fraunhofer at visible wavelength). Several
sophisticated X-ray telescopes were launched in order to study the X-ray spectrum
very accurately. The most impressive amongst them was the giant X-ray
observatory CHANDRA (named after the famous astrophysicist Subrahmanyan
Chandrasekhar) launched by NASA. Thanks to its unprecedented sensitivity,
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Fig. 6 On the left is an X-ray image of the supernova remnant known as Cassiopeia A, taken
with the imaging telescope onboard the Chandra X-ray Observatory launched by NASA. On the
right is the spectrum of the X-rays. X-ray emission lines from various atoms present in the ejecta
are clearly seen. [Courtesy of the Chandra X-ray Observatory and NASA]

angular resolution, as well as spectral resolution, this observatory has been able to
produce spectacular images of supernova debris in the various X-ray emission
lines. These images enabled one to analyze both the composition, as well as the
spatial distribution of the elements with unprecedented accuracy (Fig. 6).

Neutron Stars

In 1932, the neutron was discovered. As mentioned above, two years later, Walter
Baade and Fritz Zwicky at the California Institute of Technology hypothesized
stars consisting essentially of neutrons. The idea was that if one compresses a star
to a density of 10'* g cm>—the density of the nuclei of atoms we are familiar
with—then the repulsive force between the neutrons, practically touching one
another, would prevent any further compression, and the star will be stable. It is
just like packing a football with ball bearings; when the ball is jam-packed, it will
be quite incompressible. This hypothesis led physicists to the conclusion that even
stars more massive than 1.4 Mg could find ultimate peace, not as white dwarfs but
as neutron stars. A density of 10'* g cm™ implies that such stars would be
incredibly small, with a radius of mere 10 kilometres!

So it appeared that all stars will find peace after all, either as white dwarfs or
neutron stars, but this turned out to be not true. Chandrasekhar’s discovery implied
that there must be a maximum mass for neutron stars also. The maximum mass of
neutron stars was discovered by Oppenheimer and Volkoff in 1938. We shall turn
to the consequence of this discovery in the next section.



The Present Revolution in Astronomy: An Overview XXvii

Neutron stars were eventually discovered in 1968 by a young student by name
Jocelyn Bell at Cambridge University. Today, their population is nearly a
thousand. In the intervening years between their prediction in 1934, and their
discovery in 1968, many of their properties had been theoretically predicted. All of
these have now been verified by actual observations. Their masses are remarkably
close to 1.4 M@, which, you will recall, is the Chandrasekhar limit for white
dwarfs. They are endowed with incredibly strong magnetic fields of the order of
5 x 10" gauss. They are very rapid rotators, the fastest among them spinning
640 times a second! Their period of rotation can be measured with remarkable
precision. To give an example, the rotation period of the neutron star known as
PSR 1937421 has been measured to be P = 0.001557806472448830(3) seconds.
Indeed, the accuracy with which the rotation period can be determined is limited
only by the precision to which the unit of time itself is presently defined!

You will recall that a magnetized rotating sphere is a dynamo. A dynamo, such
as the one you may have in your cycle, generates a few volts—enough to light a
bulb. Given the strong magnetic field and rapid rotation, neutron stars function as
incredibly powerful dynamos; the voltage drop between the poles and the equator
can be as large as 10" volts! Not surprisingly, many exotic phenomena can occur
near the surface of neutron stars. As a result, rapidly rotating neutron stars emit
electromagnetic radiation over a broad spectrum—radio, infrared, visible,
ultraviolet, X-rays and gamma rays—due to a variety of processes.

Many neutron stars are in binary systems with a gaseous star like the Sun as a
companion. When matter from the gaseous companion is sucked by the neutron
star’s strong gravity and falls on its surface, the neutron star will turn into a
powerful X-ray source. The reason for this is quite simple. Since the radius of a
neutron star is a mere ten kilometres, the surface gravity is incredibly strong. The
gravitational potential energy of a mass m at the surface of the star is
approximately equal to 10 percent of its rest mass energy mc*! This means that
if we drop a mass m onto a neutron star, the potential energy released is a
staggering 0.1 mc?. This energy comes out mainly as X-rays. This is why neutron
stars in binary systems, accreting from their gaseous companion, are powerful
X-ray sources. Many hundreds of such X-ray-emitting neutron stars in binary
systems are now known, a large number of them in external galaxies.

Black Holes

Albert Einstein published his General Theory of Relativity in 1915. Within a year
after that Karl Schwarzschild, the great German physicist and astronomer, found
an exact solution to Einstein’s equations describing the geometry of spacetime
inside and outside of a spherical nonrotating star (Einstein had thought that it was
highly unlikely that anyone would be able to find an exact solution to his theory!).
This was an incredible intellectual feat by Schwarzschild. One of the remarkable
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features of this solution was the following. When a star shrinks to a critical radius
given by R, = 2 GM/c?, where M is the mass of the star and c is the velocity of
light, no signal can escape from the surface of the star. The wavelength of the
radiation is stretched to infinity and the frequency goes to zero; in other words,
time comes to a standstill. Hence the star will appear to be black. These are the
famous Black Holes of General Relativity. This result was so extraordinary that
most people did not believe it. Certainly not Einstein! As late as 1938, Einstein
published a paper arguing that such objects could not exist in reality. Einstein’s
paper was mathematically exact, but his physical reasoning was flawed.

As mentioned in the previous section, Oppenheimer and his student Volkoff had
established the existence of a maximum mass for neutron stars, the analogue of the
Chandrasekhar limiting mass for white dwarfs. The existence of a maximum mass
for neutron stars raised the awkward question once again ‘what is the fate of stars
more massive than the maximum mass of white dwarfs and neutron stars?’
Chandrasekhar had already provided a definitive answer to this question way back
in 1932. He had established in a mathematically rigorous fashion that sufficiently
massive stars are doomed. They cannot be stabilized by quantum mechanical
pressure, no matter how high the density becomes. Such stars have no option but to
collapse till they become singularities; an appeal cannot be made to quantum
physics to save them. But, as we shall discuss in the next volume, this conclusion
was rejected by Eddington, the High Priest of astronomy. In 1939, Oppenheimer
and his student Snyder re-examined Schwarzschild’s result and came to the same
conclusion. But no one took all this seriously. The general opinion was that this
extraordinary result must be an artefact of certain simplifying assumptions made
along the way.

In 1963, all this changed when astronomers discovered objects which have
come to be known as Quasars. The remarkable thing about these objects was that
the amount of energy they radiate per unit time was staggering. Quasars radiate
approximately 10%° erg/sec, which is 10'® times the energy the Sun radiates per
second. To put it differently, the energy radiated by quasars in one second is equal
to what the Sun would radiate in a million years! This implied that quasars must be
at least a billion times more massive than the Sun (We shall discuss the underlying
reason in Chap. 3, ‘Eddington’s theory of the stars’, in this volume). Further
observations led one to the conclusion that this enormous mass must be concen-
trated into such a small radius that it must be a black hole! Soon a new paradigm
emerged. The central engines of the countless number of quasars that populate the
Universe must be supermassive black holes.

The first concrete evidence of stellar mass black holes came in 1973. A
powerful binary X-ray source was discovered in the constellation Cygnus, with a
compact object and a gaseous star going around a common centre of mass. This
was christened as Cygnus X-1. Unlike in so many other cases of binary X-ray
sources, the compact object in this case could not be a neutron star. Using Kepler’s
laws, one could estimate the mass of the compact object, and it came out to be
about six solar mass—much larger than the maximum mass a neutron star could
have. After the pioneering effort in 1938 by Oppenheimer and Volkoff to estimate
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the maximum mass of neutron stars, the question was revisited by a number of
researchers. By the mid-1970s there was a consensus that the maximum mass of
neutron stars must be around 2M; in any case, there were compelling reasons to
assert that it could not be more than about 3.2M . Therefore, the compact member
of Cygnus X-1 could not be a neutron star, and it goes without saying that it cannot
be a white dwarf. It had to be a black hole. Admittedly, this was circumstantial
evidence. Nevertheless, it was a compelling argument.

The discovery of quasars and Cygnus X-1 triggered a revival of interest in
General Theory of Relativity. A number of exceedingly bright young people were
attracted to the study of black holes. Roger Penrose and Stephen Hawking were
among them. During this period of intense research, a number of exact theorems
were proved concerning the properties of black holes. The culmination of all this
was the spectacular discovery made by Stephen Hawking in 1974. He discovered
that particles and radiation could get out of black holes, after all! According to
him, a black hole will emit particles and radiation, just as a black body emits
radiation. This was not a violation of General Relativity. Particles and radiation
tunnel out of black holes due to quantum mechanical processes, just as alpha
particles escape from the atomic nuclei. This discovery by Hawking was
universally hailed.

These theoretical efforts, in turn, led to more intense search for black hole
candidates. The list of stellar mass black holes in binary systems has grown to a
substantial number. Highly sensitive X-ray telescopes, such as the Chandra X-ray
Observatory, have been able to detect such sources in other galaxies, as well. As
the last century ended, there is mounting evidence for supermassive black holes at
the centres of most galaxies. Although the evidence is somewhat circumstantial at
the moment, most astronomers believe that this is the most conservative
hypothesis to explain the observational results. From an observational point of
view, the evidence for a black hole can only be considered as conclusive if one is
able to detect effects which are manifestly General Relativistic in nature, for after
all black holes are predictions of General Relativity, but one may have to wait for
some more time for this.

Between the Stars: The Interstellar Medium

When you look at the night sky, the space between the stars appears empty, but
this is not the case. In a galaxy like ours, there is as much matter between the stars
as locked up in the stars! This is known as the interstellar medium, and the
discovery of its structure and constituents was one of the major achievements of
the last century. Interestingly, one had to wait for the advent of the quantum theory
of matter, as well as new windows to the Universe opening up, to unravel the
mysteries of this medium.

The interstellar medium is like a raisin pudding (Fig. 7). There is a diffuse
medium, consisting mainly of atomic hydrogen. The density of this tenuous gas is
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Fig. 7 The raisin-pudding model of the interstellar medium (ISM). The ISM consists of diffuse
hydrogen gas. Embedded in this gas are gigantic atomic and molecular clouds. The expanding
blast waves from Supernovae excavate gigantic cavities in the ISM. These cavities are filled with
gas at millions of degrees

approximately 0.1 atoms per cm® and its temperature is about 10,000 kelvin. This
density may seem absurdly small to you. If you want to have some fun, compare
this with the number of molecules per cubic centimetre of water, air, and the best
manmade vacuum, respectively. Yes, the density of the interstellar medium is
unimaginably small. But given the enormous volume of the galaxy, it amounts to a
great deal of gas!

Embedded in this diffuse medium are giant clouds of gas (these are the raisins
and dried fruits in the pudding). There are two kinds of clouds. The more diffuse
clouds consist essentially of atomic hydrogen. The denser clouds are almost
entirely molecular in nature, with hydrogen molecule being the most abundant.
These dense clouds also have a lot of dust particles. Consequently, these molecular
clouds are opaque to visible light. And they are really giant clouds. They are many
tens of light years in size, and contain as much as 10 million solar mass of
molecular gas and dust.

The interstellar medium is not a peaceful place. Indeed, it is a very violent
arena! What destroys its serenity are the supernova explosions of stars, which
happen once every 40 to 50 years. The ejecta of the exploding star initially expand
at incredible speeds, which could be as great as 15,000 kilometres per second! This
creates a powerful shock wave which propagates in the interstellar medium. The
interstellar matter that is swept up by the expanding spherical shock wave is heated
to a temperature of several million degrees. Such a hot supernova bubble will
continue to expand till its motion is eventually arrested by the external pressure
exerted by the undisturbed interstellar medium. Such bubbles, filled with highly
tenuous million degree gas, will last for many millions of years. Indeed, these
super-hot bubbles may connect up with one another to form tunnels in the
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interstellar medium. Thus, our nice raisin pudding will look more like Swiss
cheese! As the expanding hot super bubbles engulf the diffuse clouds, they will
slowly evaporate them. When the expanding supernova blast waves impact on the
giant molecular clouds, they will trigger the formation of young stars. As the hot
gas in the bubble eats away the molecular gas, the newly formed stars will be
slowly revealed. Thus, the interstellar medium is a very dynamic place, witnessing
the birth and death of stars, as well as the birth and destruction of interstellar
clouds.

The Birth of New Stars

If stars are dying so frequently, is the stellar population being constantly
replenished by newly born stars? I am sure that this question seems perfectly
reasonable to you, and yet, the birth of new stars was not considered a meaningful
question till the 1950s. The first evidence of very young stars, barely a few million
years old, came with the discovery of certain runaway massive stars moving with
great speeds. This news was received with great consternation. The Galaxy is
many billions of years old. How could there be stars with ages of the order of a few
millions of years? This clearly pointed to the fact that stars are still being born.
The extrapolation of the velocity vectors of these runaway stars backwards in
time, led one to their birth place! Another question that was considered frivolous
not so long ago had suddenly acquired meaning. Indeed, a detailed understanding
of the birth of stars is one of the very active areas of research in astronomy today.

Soon there was ample evidence to show that new stars are born when giant
molecular clouds of gas collapse. As mentioned above, these giant molecular
clouds are opaque to visible radiation. To probe their interior, one will have to use
either millimetre waves or infrared radiation. Since their wavelength is larger than
the size of the dust particles, these waves can escape from these clouds rather
easily (Fig. 8).

Although millimetre wave astronomy came of age in the 1970s, it proved to be
useful mainly to study the radiation emitted by the molecular material out of which
stars are born. To study the emission from the newly forming star itself, one had to
wait for the advent of infrared astronomy.

Although we are now able to see stars being born, many of them with gaseous
discs around them, from a theoretical point of view there is much to be understood.
For example, one still does not understand in detail how the collapsing cloud
manages to shed its angular momentum. You know from the example of the ice
skater that she spins up dramatically as she pulls in her hands. This is a
consequence of the conservation of angular momentum. In a similar fashion, a
slowly rotating cloud will spin up as its radius decreases. At some stage the
rotation becomes a hindrance to the collapse itself due to the centrifugal force.
Therefore, the collapsing cloud has to find an effective mechanism to shed its
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Fig. 8 These gigantic pillars of molecular gas and dust are part of a nearby star-forming region
about 6,500 light years away. Buried inside such opaque clouds are newly forming stars. To view
them, one has to look in the infrared. Courtesy of NASA, ESA, STScI, J. Hester and P. Scowen
(Arizona State University)

angular momentum. Otherwise the collapse cannot proceed all the way to form
stars. The fact that stars are forming tells us that nature is ingenious enough to find
ways. But we do not yet know in detail what the mechanism is (Fig. 9).

Even if we set aside these difficulties, there are other fundamental questions to
be answered. Stars have a range of masses, with the majority of them having
masses between half the mass of the Sun to about ten times its mass. Within this
range, the number of stars decreases with increasing mass, as a power law. A
major fraction of the more massive stars are in binary systems. Young stars of the
same age are seen to belong to clusters. Therefore, we need to know what
determines the spectrum of the masses of the stars formed by the collapse of a
giant cloud of gas, why some stars belong to multiple systems and not others, and
other such details.

Was There a Beginning to Spacetime?

We mentioned earlier that George Gamow was one of the very few persons who
realized the importance of Hubble’s discovery of the recession of the clusters of
galaxies. Extrapolating backwards, he estimated that when the Universe was about
one second old, its temperature would have been of the order of 15 billion degrees.
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Fig. 9 NASA images of Trapezium cluster in Orion Nebula taken with the Hubble Space
Telescope. The visible image is on the left and infrared image on the right. The visible image
shows the brilliant massive stars which are part of the Trapezium cluster; they are so bright that
they saturate the photograph. On the right is an infrared image of the same region. The numerous
tiny bright spots are newly formed stars buried deep in the opaque cloud. [These images were
created for NASA by Space Telescope Science Institute and for ESA by the Hubble European
Space Agency Information Centre. Courtesy of NASA, ESA and STScI]

Gamow realized that a hot expanding Universe was the ideal laboratory for
synthesizing the light elements such as deuterium, helium, lithium etc. He also
appreciated that since matter and radiation would have been in true thermody-
namic equilibrium, the primeval radiation would have had the characteristics of
black body radiation; its spectrum would be as predicted by Planck’s Law. By
1948, Gamow and his student Ralph Alpher had worked out an elaborate theory of
nucleosynthesis. This was followed by a more careful analysis by Ralph Alpher
and Robert Herman (1948). An important prediction of these papers was the
following. As the Universe continued to expand, the primeval radiation would
have cooled due to adiabatic losses, but would have retained its black body nature.
They predicted that the present Universe must, therefore, be filled with the relic of
this primeval fireball, and that its temperature would be roughly a few degrees
kelvin.

In 1964, Arno Penzias and Robert Wilson, working at the Bell Labs in Homdel,
NIJ, USA, accidentally discovered this relic radiation. But they measured the
intensity of the all pervading radiation at only one frequency. Since this radiation
was present everywhere, and since its intensity was the same in all directions, it
was suggestive of black body radiation. Assuming it to be true black body
radiation, they estimated a temperature of 3 kelvin. In 1978, Penzias and Wilson
were jointly awarded the Nobel Prize for Physics for this monumental discovery.
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Fig. 10 Penzias and Wilson standing next to the famous ‘Horn’ radio telescope at the Homdel
Bell Labs, with which they made the historic discovery of the Cosmic Background Radiation

Although most people were convinced that Gamow had got the story right, it
was still extremely important to establish that the cosmic background radiation
was really black body radiation, and to do that, one had to measure its spectrum
over a wide range of frequencies and demonstrate that it obeyed Planck’s Law. But
this could not be achieved from ground-based observations because of atmospheric
absorption in crucial wavelength bands. Some observations were attempted from
high altitude balloons, but they were not very accurate. Towards the end of the last
century a satellite called COBE—Cosmic Background Explorer—was launched to
clinch this issue (Fig. 10). And it did! Precise measurements showed that the
cosmic microwave background radiation has a perfect planckian spectrum. The
temperature of this radiation was measured to be 2.725 kelvin. The background
radiation was definitely of cosmological origin. But did it prove that the Universe
had a beginning? Not quite.

Most physicists were still very sceptical. The discovery of this radiation did not
prove that the Universe had a beginning. It is important to understand the reason
for this scepticism. If one extrapolated backwards the recession of the galaxies,
one will naturally encounter a smaller, denser and hotter Universe. But how far is
this extrapolation believable? And what is the framework for such an extrapo-
lation? We shall not digress now to discuss this, but return to it in the last volume
of this series. I request you to accept the following statement for the moment.
Einstein’s General Theory of Relativity admits the possibility of an expanding or
contracting Universe. The equations of the General Theory of Relativity tell us
how the temperature and the density of the Universe will change with the
characteristic size of the Universe. Using these equations, one can extrapolate
backwards, and infer the temperature and density at an earlier epoch. For example,
the discovery of the Cosmic background radiation with a temperature of 3 kelvin
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Fig. 11 The cosmic microwave background spectrum measured by the FIRAS instrument on the
COBE satellite is the most-precisely measured black body spectrum in nature. The data points
and error bars on this graph are smaller than the thickness of the theoretical curve! [Courtesy of
NASA and the COBE science team which produced this incredible spectrum]

tells us that when the characteristic size of the Universe was a thousand times less
than what it is now, the temperature of the Universe was 3,000 kelvin; the black
body nature of the radiation tells us that matter and radiation were in equilibrium at
this temperature. The age of the Universe at that epoch would have been roughly
300,000 years. At such a temperature, and the density that would have obtained
then, there is no reason to doubt the laws of physics as we know them. To
synthesize the elements, however, Gamow had to extrapolate the equations of
general relativity much further back in time. The synthesis of elements, according
to him, occurred when the Universe was merely 3 minutes old, and the temperature
was roughly a billion degrees (Fig. 11).

Indeed, a further extrapolation leads to zero radius and infinite density at a finite
time in the past; in other words a singularity! Can we then take it that according to
General Relativity there was a beginning to the Universe? No, because the above
conclusion was based on an extrapolation. Therefore, whether the Universe had a
beginning continued to remain a speculative question since there was no way to
pose this rigorously within the premise of General Theory of Relativity.

This changed dramatically in 1965, when Roger Penrose and Stephen Hawking
proved an exact theorem, which has come to be known as the Singularity Theorem.
They showed in a mathematically exact manner that if some reasonable conditions
are assumed, Einstein’s Theory of General Relativity predicts that the Universe
could have either begun in a singularity, or end in a singularity, or both began and
will end in a singularity. It is important to stress that this was an exact theorem.
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The possibilities of singular beginning, or end, were not arrived at through an
extrapolation.

The Singularity Theorem of Penrose and Hawking was hailed as one of the most
significant developments since FEinstein published The General Theory of
Relativity in 1915. This was the first time a singularity in a theory had emerged
in an exact manner. Please remember that in the past, every time a physical theory
predicted a singularity it signalled the breakdown of the approximate theory. Let
us recall a couple of examples. J.J. Thompson’s classical theory of the hydrogen
atom, in which an electron was orbiting around a proton, predicted a catastrophe.
Since the orbiting electron will radiate, it will lose energy. Since this energy can
only come at the expense of the orbital energy, the electron will spiral in and
eventually crash into the nucleus. Bohr’s theory eliminated this singularity. Let us
consider another example from magnetism. According to the so-called mean-field
theory, the magnetic susceptibility of a paramagnet becomes infinity at the Curie
temperature. Again, this represents the breakdown of the theory; while the
susceptibility does become large, it does not diverge to infinity. What really
happens at the Curie temperature is a phase transition from a paramagnet to a
ferromagnet. In the present case, however, the singularity was not an artefact of
any approximation made to The General Theory of Relativity. It is an exact result.
Its acceptance or rejection can only be made on philosophical grounds!

At any rate, the theorem of Penrose and Hawking made the grandest of all
questions, namely, Was there a beginning to spacetime? a meaningful scientific
question, one which could now be posed rigorously within the premise of General
Relativity.

Astronomy at the Dawn of the Millennium

As we enter the new millennium, we are confronted by many new outstanding
questions. The exciting thing is that despite the enormous progress made in the last
century, there are more unanswered questions now than ever before. Interestingly,
these questions cover the entire range of objects in the Universe ranging from the
smallest to the largest: planets, stars, galaxies, clusters of galaxies, and the
Universe at large. Before concluding this overview, let me briefly mention a few
examples, just to whet your appetite.

Extrasolar Planets

One of the most exciting areas in astronomy today is the search for planets around
other stars. Finding extra solar planets is important to understand the formation of
the planets in the solar system and, indeed, the solar system itself. Ideally, one
would like to find planetary systems around young stars. Curiously, the first
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exoplanet was discovered in 1992 orbiting a neutron star—the remnant of a dead
star! Since the birth of a neutron star is accompanied by a supernova explosion, it
is not at all clear how this planetary system survived the violent explosion!

The first definitive detection of an extrasolar planet was in 1995 orbiting a star
known as 51 Pegasi. As of January 2010, forty-five multiple-planet systems are
known and the number of extrasolar planets has grown to 429! The vast majority
of exoplanets detected so far are gas giants (presumably like Jupiter). As of
January 2010, all but twenty-five of them have more than ten times the mass of
Earth. Many are considerably more massive than Jupiter, the most massive planet
in the Solar System. It is most likely that this is due an observational selection
effect: massive planets are easier to find. Planets with a mass smaller than about
0.75 times the mass of Jupiter orbit very close to the parent star. These findings are
presumably telling us something about the migration of planets. Another exciting
recent discovery is that invariably the host stars are quite metal rich. The frequency
of planets increases with the iron content of the stars. It is not clear why this is so.

There is another reason why this search for extrasolar planets, particularly
Earth-like planets, is being pursued so vigorously. Mankind has always been
intrigued by the question, Is there any life out there? There are several major
programmes to detect ‘messages’ from alien life. There have also been attempts to
transmit radio signals, coded to contain information about us and the world we live
in. The hope is that these signals may some day be detected by extraterrestrial life.
A more meaningful approach might be to look for small planets like the earth,
orbiting the parent stars at the right sort of distance where conditions favourable
for life might exist. At the moment, planets that have been found in the so-called
habitable zone, where Earth-like conditions may prevail, are gas giants like
Jupiter. Life cannot exist in these gas giants! But if some of these planets have
moons, life could perhaps exist in one of the moons.

In March 2009, NASA launched a spacecraft named KEPLER (named after
Johannes Kepler). This spacecraft has the sensitivity to detect both small and large
planets. By January 2010, the Kepler science team had announced the discovery of
five new planets, ranging in size from four times the size of the Earth to larger than
Jupiter. They have orbits ranging from 3.3 to 4.9 days. Estimated temperatures of
the planets range from 2,200 to 3,000 degrees, hotter than molten lava and much
too hot for life as we know it. In the next couple of years, this mission is bound to
find many more planets. Hopefully, some of them will be Earth-like planets
orbiting their parent stars in the habitable zone. These are early days still. With
many more missions planned we are in for many surprises.

The Origin of Galaxies

This question is at the base of the present revolution in astronomy. And yet, just a
few decades ago, this would have been considered as a meaningless question. The
possibility that galaxies always existed must surely be rejected if one accepts that
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the Universe had a very hot beginning. At the temperatures that existed in the early
Universe the only sensible thing to expect is a primordial soup of a variety of
elementary particles and radiation, in true thermodynamic equilibrium.

Gravitationally bound objects like galaxies must have formed from the
primeval homogeneous matter as the Universe expanded and cooled. Although this
was pointed out by Lemaitre soon after Hubble’s discovery of the recession of the
clusters of galaxies, one began to take this seriously only after the discovery of the
comic background radiation.

If galaxies formed at some epoch as the Universe expanded and cooled, then
there must have been precursors in the form of density fluctuations in the early
Universe. Analogy with the behaviour of a gas as it is cooled towards the
liquefaction temperature might make this plausible. A gas in thermodynamic
equilibrium will be of uniform density. As the gas is cooled towards the transition
temperature, density fluctuations appear, and they grow in amplitude. Soon the
regions of enhanced density can be identified with droplets of water. There will be
a spectrum of droplet sizes, and they will appear and disappear. As the phase
transition is approached, the fluctuations will slow down and the characteristic size
of the droplets will increase. One may expect the formation of galaxies to mimic
this. While this analogy might be used to guide intuition, one must bear in mind
that in the present case the physics is very different. Coming back to how galaxies
might have formed, the idea was that density fluctuations might have spontane-
ously appeared as the Universe expanded. Indeed, there were predictions of
manifestly quantum fluctuations when the Universe was about 10~ seconds old.
These fluctuations could grow, initially linearly and then nonlinearly. Galaxies
might have been born out of these primordial density fluctuations.

If one accepts this general premise then one must ask if these density
fluctuations might have left imprints in the Universe. Unfortunately, the Universe
was opaque till the age of about 300,000 years. Therefore, that is the earliest epoch
we can see. Indeed, when we look at the cosmic background radiation, we are
looking at the epoch when the Universe was roughly 300,000 years old. Is there
any evidence of the primordial density fluctuations when we look at this epoch? If
the density fluctuations grew adiabatically, then one would expect regions of
density enhancement to be hotter, and regions of density deficit to be cooler than
the average. This leads to a clear prediction if one accepts this broad scenario:
since matter and radiation were in equilibrium, the temperature of the cosmic
background radiation must show fluctuations over the sky. The theoretical
scenarios predicted a fluctuation in the temperature of the radiation at the level of
tens of micro kelvin. After sustained effort, the COBE satellite finally found the
temperature fluctuations, and these were at the level of a few tens of micro kelvin.
A few years later, another spacecraft called WMAP was launched to detect finer
details in the anisotropy. This is shown in Fig. 12.

While the discovery of the anisotropy in the temperature of the cosmic
background radiation lends credibility to the idea that galaxies could have grown
from the primordial density fluctuations, one is a long way from understanding the
process of galaxy formation in detail. Matters have been made more difficult by the
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Fig. 12 The Cosmic Microwave Background temperature fluctuations from the 5 year Wilkinson
Microwave Anisotropy Probe data seen over the full sky. The average temperature is 2.725
Kelvin, and the light grey and black patches represent the tiny temperature fluctuations, as in a
weather map. The hotter and colder regions differ in temperature by about 0.0002 degrees.
[Courtesy of NASA/WMAP Science Team]

recent discoveries of more and more distant galaxies. The most distant galaxy
discovered so far is at a redshift of about 7. The characteristic size of the Universe
at that epoch would have been one-seventh of the present size, and the age of the
Universe not more than about 750 million years. For galaxies to form and become
tightly bound, a deep gravitational potential well has to form and gas has to fall
into it. The embarrassing thing is the following. When the first galaxies formed,
the Universe was less than about a billion years old. That is not a long enough time
for matter to free fall to form a compact galaxy. So the early galaxies might not
have been as compact as the present galaxies which are typically about 100,000
light years across. The early galaxies may not have had flattened and rotationally
stabilized disks like our Galaxy. The interstellar medium in the sense we see in
nearby galaxies, may not have formed. A related question is ‘when did the first
stars form? The spectrum of the most distant quasars suggests that some stars
should have formed even before galaxies formed (Fig. 13).

In the nearby Universe, galaxies have several distinct shapes. Some are
flattened spirals, some with bars at the centre; some are spheroidal and so on. The
observed shapes were classified into a sequence nearly a hundred years ago. And
yet, when we look deep into the Universe with the Hubble Space Telescope, we
see galaxies with highly irregular shapes. Collisions and mergers of galaxies seem
to be a common phenomenon. So both the origin of galaxies and their evolution
remain very challenging questions.



x1 The Present Revolution in Astronomy: An Overview

Fig. 13 This pair of galaxies, known as the Mice for their tails of stars and gas, have collided and
will eventually merge into a single galaxy. Streams of material have been tugged out of the
galaxies by the force of gravity, triggering new star formation. [Credit: NASA, H. Ford (JHU),
G. Illingworth (UCSC/LO), M.Clampin (STScl), G. Hartig (STScl), the ACS Science Team, and
ESA]

Dark Matter in the Universe

The first clue that not all of the mass in the Universe is ‘luminous’ came nearly
seventy years ago from a study of the clusters of galaxies. It is believed that such
clusters are gravitationally bound. The individual galaxies in a cluster are moving
around the centre of the self-consistent gravitational potential. In other words,
every galaxy is moving in the potential well due to all other galaxies. The velocity
of an individual galaxy, and therefore its kinetic energy, can be measured
spectroscopically using the Doppler shift of known spectral lines. By adding these
up, one can estimate the total kinetic energy of the galaxies. Given this estimate,
one can deduce what the gravitational potential energy of the cluster of galaxies
ought to be for the system to be bound. This can be done by invoking the well-
known virial theorem which says that the kinetic energy must be equal to one half
the gravitational potential energy. Given the size of the system, the gravitational
potential energy is determined by the total mass enclosed (P.E.~ GM*/R).

It is an extraordinary fact that in all the clusters studied so far the total amount
of luminous mass is only ~ 10 % of the mass required to gravitationally bind the
clusters. This was pointed out more than 70 years ago by Fritz Zwicky. One had
hoped that the ticklish problem will go away, but it has not! This is the famous
dark matter problem. The mass of the cluster is really ten times more than what we
can deduce from the radiation they emit.
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Fig. 14 One of the great surprises of contemporary astronomy is that only about 10 % of matter
in the Universe is baryonic matter that we are familiar with. The remaining roughly 90 % is of
unknown nature. All we can say is that the constituents of the dark matter must be extremely
weakly interacting massive particles. But this unseen matter which pervades the Universe makes
its presence felt through its gravitational interaction with the baryonic matter

There is a similar problem in individual galaxies themselves. It is now well
established that the major fraction of the gravitational mass of galaxies is dark.
The unseen mass in galaxies is again of the order of 90 % of the total mass. The
observational evidence that led astronomers to this inescapable conclusion is
different from the one mentioned above. But we shall not pause to discuss it here.

The bottom line is the following. Based on a variety of observations,
astronomers have established beyond reasonable doubt that galaxies must have a
huge and extended halo of dark matter. This halo of dark matter accounts for
nearly 90 % of the total mass of the galaxy.

One of the most outstanding questions of contemporary physics is the nature of
this unseen matter which makes its presence felt only through its gravitational
influence, and which pervades the Universe. While some of the dark matter may be
accounted for by invoking planets, black holes and the like, most of it must be
nonbaryonic in nature. Baryonic matter is matter that we are familiar with—made
of neutrons and protons. If more than a few percent of the dark matter was
baryonic, then there will be a serious contradiction with the observed abundance of
light elements such as deuterium and the lighter isotope of helium. These elements
are believed to have been synthesized when the Universe was just a few minutes
old, and the observed abundance seriously constrains the amount of baryonic
matter present in the Universe at that time (Fig. 14).

Although the constituents of this nonbaryonic matter is not known, some of the
Grand Unified Theories of Physics predict a class of Weakly Interacting Massive
Particles (WIMPS) which might have been produced in large numbers in the early
Universe, and which dominate the present day mass content of the Universe. An
example of such a particle predicted by theory, but not yet detected, is the
Neutralino. This is supposed to have a mass about 100 times the mass of the
proton. But, like the neutrino, it will interact extremely weakly with normal matter.
The important thing is that such particles will satisfy the requirement of the
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astronomers that the dark matter should be cold, in the sense that its velocity must
be small compared to the speed of light. Only then will such particles aggregate (or
condense) and assist in the formation of galaxies.

A variety of very sophisticated experiments are underway to detect such
particles. One of them is in the Gran Sasso Tunnel in the Alps Mountains in
Europe. This has already yielded a significant lower limit in that the mass of the
WIMP must be more than 50 GeV. In other words, the particle one is looking for
must be at least fifty times the mass of the proton. There are several other
experiments in progress around the world. At the moment the sensitivity of most of
these experiments is far below what is required. But given the profound
significance of the detection of these particles—both for fundamental physics and
astronomy—new technological initiatives are being explored to greatly improve
the sensitivity.

The Dark Energy and the Accelerating Universe

Two questions concerning our evolving Universe were at the centre stage during
the last century:

1. Will the Universe expand for ever, or will it start contracting at some stage due
to its own gravity?
2. What is the geometry of the Universe?

According to the General Theory of Relativity, these two questions are related.
Why is the Universe expanding in the first place? Frankly, we do not know. All
one can say is that Einstein’s General Theory of Relativity, which provides a
framework to describe the Universe, admits this possibility. And what will be the
eventual fate of the Universe? This is a question that concerns the geometry of the
Universe, and General Relativity has a precise answer for this. According to
General Relativity, the curvature of space can be zero or positive or negative.
Which of these three possibilities describes our Universe depends on how much
matter there is in the Universe. If the density is greater than a certain critical
density (whose value is roughly the mass of 5 protons per cubic metre), then the
gravity of the Universe will eventually pull back the matter, and the Universe will
be finite. The curvature of space would be positive. If, on the other hand, the
density is less than the critical value then the curvature of space would be negative.
If the density of the Universe is precisely equal to the critical density then the
curvature of space would be zero, and the geometry of space would be Euclidean.
This is like a stone being thrown up with a velocity precisely equal to the escape
velocity. The stone will escape to infinity, but it will have zero velocity at infinity.

Well, which of these three possibilities describes our Universe? The only way
to settle this is by actually measuring the density. Astronomers have spent several
decades trying to measure the density of our Universe. The principle is simple
enough. Measure the mass inside a sufficiently large volume, and divide by the
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Fig. 15 Three possible geometries of the Universe. Whether the curvature of space will be
positive (left), zero (centre) or negative (right) will depend upon whether the density of the
Universe is greater than, equal to or less than the critical density

volume! The result of this very elaborate exercise is the following. The density of
the Universe is only about 25 % of the critical density. This implies that the
Universe will not contract at some stage due to its own gravity. The Universe will
go on expanding for ever. According to General Relativity, the curvature of space
must be negative (Fig. 15).

But there was shocking news from another set of astronomers. Earlier we
referred to the measurement of the anisotropy in the microwave background
radiation. The first successful measurement of this by the COBE satellite did not
have sufficient angular resolution to go beyond discovering the anisotropy. This
was followed up by balloon-borne telescopes with extremely sophisticated
receivers. These measurements had sufficient angular resolution to draw more
quantitative conclusions. This was followed by the launch of a dedicated satellite
called WMAP. A detailed analysis of the anisotropy at various angular scales has
led one to the amazing conclusion that the curvature of space is zero. To put it
differently, the geometry of the Universe is Euclidean. We shall return to this
exciting story in the last volume of this series. For now, we shall merely state the
following. To measure the geometry of space what we need is a standard rod at a
standard distance. The angle subtended by this standard rod will tell us what the
geometry of the intervening space is. The point is that the anisotropy of the
microwave background provides us with a standard rod at a precisely known
distance. And the angle subtended by this standard rod, at a known distance, was
precisely equal to what Euclidean geometry would have predicted.

What is absolutely amazing is that this result was predicted by theoretical
physicists nearly twenty years before the observations!

But we now have a very strange dilemma. A direct measurement of the matter
density of the Universe told us that the density of the Universe is roughly 25 % of
the critical density. And yet, a Euclidean geometry—again, a direct measure-
ment—requires that the density of the Universe must be precisely equal to the
critical density. How can we reconcile these two statements? We can only do so by
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Fig. 16 Even more intriguing than the nature of the dark matter is the mystery of the dark
energy. It now appears reasonably certain that roughly 73 % of the energy density of the Universe
may not be associated with baryonic or dark matter. This inference is forced upon us by the
spectacular discovery that the geometry of the Universe is Euclidean. Since this dark energy is
not associated with matter, it can only be associated with vacuum or empty space. The
remarkable thing is that although the energy density of vacuum is positive, the pressure exerted
by it is negative! It is this negative pressure of the dark energy that is responsible for the observed
acceleration of the Universe

attributing 75 % of the energy density of the Universe to empty space or vacuum
(Fig. 16).

This may seem like an innocent way to resolve a major paradox. But it has far
reaching implications. Vacuum (or empty space, if you like) is quite an
uninteresting arena in classical physics. In quantum physics, however, there is
rich physics associated with vacuum. Some of it has measurable consequences in
the material world of the atoms. One of the curious things about vacuum is that
while its energy density is positive—like in the case of matter—it has negative
pressure. This means that the energy density due to the vacuum acts like repulsive
gravity. This cosmic repulsion due to the vacuum would not have any significant
dynamical consequence for the Universe at large if its contribution to the energy
density budget had been small. But this is not the case. As we saw, vacuum
contributes roughly 75 percent of the energy density in the present epoch. This, in
turn, means that the cosmic repulsion dominates over the cosmic attraction due to
the gravitation force acting on matter. We are thus led to the extraordinary
conclusion that the expansion of the Universe, instead of slowing down due to
gravity, should be accelerating. In the analogy of the stone being thrown up from
the earth, the stone is not only escaping to infinity, but its velocity, instead of
decreasing, is increasing! The Universe is getting curiouser and curiouser.

Yes, our Universe is indeed accelerating! Recently, observation of distant
supernovae has shown that the expansion of the Universe is, in fact, speeding up.
We shall not digress to discuss this exciting discovery.

This is an extraordinary state of affairs. It was hard enough to reconcile to the
fact that matter, of which we are made of, is only a small fraction of the mass in
the Universe. Now it is turning out that the Universe is dominated by a strange
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form of energy which, contrary to everything we know, gives rise to a cosmic
repulsion. This mysterious energy has been termed the dark energy! As of now,
none of the physical theories have an explanation for this dark energy. This is
undoubtedly one of the most fundamental questions of today. The origin of the
Universe remained outside the premise of science till quite recently. A scientific
pursuit of this question during the past 40 years has astonishingly led us into the
realm of the unknown!

It is time to conclude this overview. To repeat what I said in the beginning, the
main purpose was to give you an overall feeling for the present revolution in
astronomy. We shall, in due course, discuss all the topics mentioned above.

But let us now begin. And what better place to begin than the beginning itself.
The rest of this volume is devoted to a discussion of the nature of stars, for this is
where the subject of astrophysics began.



Chapter 1
What are the Stars?

Historical Introduction

What are the stars?

The splendour of the night sky has fascinated mankind since time immemorial. To
the ancient Greeks, the sky was a dark shield pierced with numerous holes through
which an outer fire shone. These shining holes were the stars to them. The true
nature of the stars remained a mystery for two millennia. Obviously influenced
by the ancient Greeks, the great astronomer Johannes Kepler thought that all the
stars were roughly at the same distance from Earth and were packed into a thin
spherical shell. An important philosophical question at the time of Isaac Newton was
the following: ‘Is the Sun a star?’ In a characteristic fashion, Newton summarily
dismissed this question and asserted that our Sun was indeed a star. And from the
pointlike appearance of the stars, he went on to conclude that the stars must be very
far away from the Earth, in comparison with the Sun.

But the nature of the stars remained a great mystery. The philosophers took a dif-
ferent point of view. For example, the positivist philosophers, who greatly influenced
European thinking in the eighteenth and nineteenth centuries, asserted that it was in
the nature of things that one could never know what the stars are.

All that changed dramatically with the discovery made by young Fraunhofer
in 1817 (see Fig.1.1). You will recall that Newton had demonstrated that ‘white
light’ contained light of many wavelengths by sending sunlight through a prism and
dispersing it into a spectrum of rainbow colours. In 1802, William Wollaston noticed
several dark lines in the solar spectrum, and mistakenly concluded that these lines
represented boundaries between the colours. By observing the solar spectrum more
carefully and with better-quality prisms, Fraunhofer discovered that there were more
than 600 dark lines. He went on to determine their ‘positions’ in the spectrum and
thus deduced the wavelengths at which the dark lines appeared. Fraunhofer went on
to discover that the spectrum of the light from bright stars also had these dark lines.
These have come to be known as the Fraunhofer lines.

G. Srinivasan, What are the Stars? Undergraduate Lecture Notes in Physics, 1
DOI: 10.1007/978-3-642-45302-1_1, © Springer-Verlag Berlin Heidelberg 2014
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Fig. 1.1 A German postage stamp to commemorate the two-hundredth birth anniversary of
Fraunhofer. The dark lines in the solar spectrum, carefully sketched by Fraunhofer, have been
reproduced. Notice that Fraunhofer has singled out some lines and labelled them. This notation
continues to be used

Subsequently, Gustav Kirchoff and Robert Bunsen independently demonstrated
in laboratory experiments that such dark lines could be produced in the spectrum
of light sources by passing the light through transparent substances. A proper and
complete explanation of this phenomenon had to wait till the advent of the quantum
theory of matter in the early decades of the last century. Nevertheless, great progress
was made in the middle of the nineteenth century in understanding these spectral
lines. An example of how such a spectrum looks is shown in Fig. 1.2.

The breakthrough came when the great German physicist Gustav Kirchoff for-
mulated his comprehensive Theory of Radiation in 1859. It is customary to state this
theory as three laws of radiation, given below:

Firstlaw A luminous opaque body emits radiation of all wavelengths, thus producing
a continuous spectrum.

Second law A rarefied luminous gas emits radiation whose spectrum consists of a
series of bright lines, sometimes superimposed on a faint continuous spectrum.

Third law If white light from a luminous source is passed through a gas, the gas
may absorb certain wavelengths from the incident continuous spectrum so that the
intensity at those wavelengths will be missing or diminished, thus producing dark
lines.
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Fig. 1.2 A recent very-high-resolution solar spectrum with many hundreds of absorption lines
within a very narrow wavelength interval of just 100 Angstroms

Thus, according to Kirchoff, three kinds of spectra are possible.

1. A continuous spectrum.
2. An emission line spectrum consisting of a series of bright lines.
3. An absorption line spectrum consisting of a series of dark lines.

The profound significance of these laws due to Kirchoff is that each element (or com-
pound) emits or absorbs radiation at specific wavelengths, which are characteristic
of that particular element. A schematic is shown in Fig. 1.3.

Consequently, the presence in the spectrum of a particular pattern of bright (or
dark) lines characteristic of an element is clear evidence of the presence of that
particular element in the source (in the case of bright lines) or between the source and
the observer (in the case of dark lines). Figures 1.4 and 1.5 show some spectral lines
of hydrogen and iron, respectively. By the end of the nineteenth century, thanks to
painstaking laboratory experiments on the elements known at that time, the thousands
of Fraunhofer lines in the spectrum of the Sun and the stars were identified with the
forty or so elements which had been studied.

A great scientific revolution had started! A question which was considered mean-
ingless, or even frivolous, suddenly acquired a meaning. Contrary to what the
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Fig. 1.3 This schematic diagram attempts to explain the three laws of radiation due to Kirchoff.
Top right-hand corner: continuous spectrum of radiation from an opaque body. This is known
as the black body spectrum and is uniquely characterized by the temperature of the body. The
spectrum peaks sharply at a frequency which depends upon the temperature of the body. Below
that is shown the spectrum of radiation from a transparent body (such as a blob of gas) at a finite
temperature. The spectrum consists of a weak continuum, with emission lines superimposed on it.
Atoms of each element in the gas produce a unique set of emission lines at specific frequencies that
are characteristic of that element. If the radiation from an opaque body passes through a tenuous
medium, then dark lines appear in the continuous spectrum. These are caused by atoms in the gas
absorbing radiation from the background continuum, partly or wholly, at frequencies at which they
are capable of radiating. Thus, the absorption lines caused by atoms of an element will occur at the
same frequencies as the emission lines produced by that element. This is shown at the bottom left

Fig. 1.4 Four emission lines from hydrogen in the Balmer Series

Fig. 1.5 Some emission lines from iron
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Fig. 1.6 Although the Sun appears like a disc, it does not have a sharp boundary. What appears
like a sharp surface is called the photosphere (see the text for the meaning of this concept). Above
that there is a thin layer which is called the chromosphere. This schematic diagram tells what we
expect to see when we look at the Sun from the Earth. If we could look at the chromosphere in the
direction of the limb, then we expect to see emission lines from the atoms present there; we expect
to see this layer in emission because in that direction there is no background radiation. If, on the
other hand, we look at the disc of the Sun we are looking at this layer against a strong background
radiation from the photosphere. Therefore, we expect to see a strong blackbody continuum from
the photosphere, with absorption lines produced by the atoms in the overlying layer. Unfortunately,
we cannot see the chromosphere under normal circumstances since the light from it is very faint
compared to that from the photosphere—except during a total solar eclipse when the photosphere
is blocked by the Moon

philosophers had maintained, we now knew what the stars were. Fraunhofer’s dis-
covery and the explanation by Kirchoff had shown us that at least the outer layers
of the Sun, and the stars, were gaseous and made of the same elements which are
found on the Earth. Moreover, the inner regions of the Sun must be opaque. We know
this because the Sun emits a continuous spectrum of radiation (Kirchoff’s first law).
A deeper understanding of this had to wait until the development of the thermody-
namics of radiation, which eventually happened in the final decade of the nineteenth
century. We shall return to this a little later.

If the above explanation for the dark lines in the spectrum of the Sun is correct,
then there is a clear prediction one could make, which is, if one could detect the
radiation emanating solely from the outer layer of the Sun—without any background
radiation—then its spectrum should consist of a series of bright lines. Also, that the
wavelengths of these bright lines should precisely correspond to those of the dark.
Fraunhofer lines (see Fig.1.6). The question is how to view the outer layers by
themselves. When we look at the Sun, we see much of the outer layers in projection
in the foreground against the deeper opaque layers. This is the case everywhere in
the disc of the Sun, except in the limb of the Sun; there we see only the outer layers.
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Fig. 1.7 During a total solar eclipse the photosphere is blocked by the Moon, and the chromosphere
can be seen shining. If, during this short period, the light from the chromosphere is sent through a
spectrograph, then we expect to see bright emission lines. This is exactly what was observed during
the eclipse of 18 August, 1868 in Guntur, India. Since this spectacle lasts only for a very short time,
such a spectrum is known as the flash spectrum. As explained in the text, it is the analysis of the
emission lines in the flash spectrum that led to the discovery of helium

Unfortunately, the disc of the Sun is so bright that the light from it dominates over
the light from the limb. Therefore, it is practically difficult to separate the light from
the outer layers in the limb of the Sun. So the prediction that the spectrum of light
from the limb should consist of emission lines rather than absorption lines, cannot
be verified easily. A total solar eclipse, during which the Moon temporarily covers
the disc of the Sun, offers a unique opportunity to study the spectrum of the radiation
from the luminous, presumably tenuous, atmosphere of the Sun.

Precisely such an observation was made during the total solar eclipse of 18 August
1868 in Guntur in the state of Andhra Pradesh in India. There were several interna-
tional teams that had set up camp there. The leader of one camp was the well-known
French astronomer Pierre Jules Janssen. Janssen and his colleagues found that during
the brief moment of totality the spectrum of light from the chromosphere showed a
series of discrete emission lines. They termed it the flash spectrum, since it lasted only
for a few seconds. As the Moon moved across the disc of the Sun, the light from the
disc once again dominated over that from the limb; the emission lines disappeared
and the Fraunhofer absorption lines were seen once again. What was remarkable
was that the emission lines in the flash spectrum corresponded to the elements whose
presence in the outer layers had been inferred earlier in a study of the Fraunhofer
absorption lines. This was a spectacular confirmation of the validity of the laws of
radiation enunciated by Kirchoff (see Fig. 1.7).

But there was a surprise! Janssen noticed that the flash spectrum contained a
very bright yellow emission line (with a wavelength of 5874.9 A) which could not be
identified with any known element on Earth. This line was so bright that Janssen could
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see it even after the eclipse was over by carefully placing the slit of his spectrograph
at the same location in the limb from where he had seen the yellow line. Two months
later, the famous English astronomer Sir Norman Lockyer independently discovered
the same bright-yellow emission line. Lockyer was convinced that this line was
caused by a new element in the Sun. He was so confident that he named this new
element helium (deriving from helios, the Greek name for the Sun). It turned out
that this element, too, is present on the Earth. In 1895, nearly thirty years after
this momentous discovery by Janssen and Lockyer, the famous British chemist Sir
William Ramsay identified helium trapped in mineral samples on Earth.

The discovery of helium was very important from another perspective. When
Dmitri Mendeleyev prepared the famous Periodic Table of Elements in 1869, there
was a missing element of atomic number 2. The discovery of helium filled this gap!
Astronomy had made yet another very important contribution to physics. Sir William
Ramsay went on to discover other rare gases and was awarded the Nobel Prize for
Chemistry, in 1904. It may interest you to know that in the same year the Nobel Prize
for Physics was awarded to Lord Rayleigh for his discovery of argon, a rare gas, and
determining its properties. This may seem quite extraordinary because Lord Rayleigh
is generally known for his immensely mathematical and definitive treatment of many
complex problems in theoretical physics, but like James Clerk Maxwell, and Enrico
Fermi in the twentieth century, Rayleigh was not only a theorist of the highest order
but also a great experimentalist!

Let us now return to the implication of all this for understanding the structure of
the Sun and the stars. We have argued that the dark lines observed by Fraunhofer in
the spectrum of the Sun could be understood if there is a gaseous outer layer. The
idea is that the atoms of the elements present in this gaseous layer selectively absorb
the continuous spectrum emanating from the interior. According to a fundamental
principle of physics, this selective absorption can only happen if the inner region,
from which the continuous spectrum originates, is hotter than the outer layers, but
this is precisely what one would expect on very general grounds. For example, we
know that energy is flowing out of the Sun. The laws of thermodynamics tell us that
heat flows from a hotter to a cooler body. One may, therefore, expect a gradient of
temperature, with the temperature rising as we go into the Sun. There is another
observational fact that confirms this. This is known as limb darkening of the Sun.

If you look at a good-quality image of the Sun taken with white light, you will
notice that the visible disc of the Sun does not appear uniformly bright. The edge of
the disc is less intense than the centre of the disc. This is the phenomenon of limb
darkening (Fig. 1.8).

The Photosphere

Before we try to understand limb darkening of the Sun, there is an embarrassing
question we have to address. Planets have sharp boundaries because they are solid.
Since the Sun has a gaseous atmosphere, why do we see a sharp boundary? Why does
the contour of the Sun appear like a disc? This is not difficult to understand. As we
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Fig. 1.8 An image of the Sun taken in white light. Notice that the central portion of the disc is
brighter than the outer region, known as the limb. This is known as limb darkening. Some prominent
sun-spots are also seen. Notice that the Sun-spots occur in clusters

will soon argue, the energy radiated by the Sun originates near its very centre. When
it is given out as a byproduct of nuclear reactions, the radiation is mostly in the form
of X-rays and gamma rays. On their way out, these photons (or quantized bundles
of energy) get kicked around quite a bit by electrons and ionized heavy atoms; they
are scattered, absorbed and reemitted. Because of this, they cannot stream out to
the surface and fly to infinity at the speed of light. Their journey to the surface is a
painstaking random walk (very much like a drunken man).

It turn out that inside a star like the Sun, the mean free path of the photons is only
about 0.5 cm (we shall formally define this concept in Chap. 3, Eddington’s Theory
of the Stars, but for now, think of the mean free path as the mean distance travelled
by a photon between two successive collisions with matter). With each collision,
the direction of the photon is changed. To appreciate how random this walk of the
photons is, consider this (see Fig. 1.9). Imagine you embark on a journey to the centre
of the Sun. The scenery would be most uninteresting. First of all, you and I would find
the interior very dark (!) since there would hardly be any photons whose wavelengths
lie in the visible region of the electromagnetic spectrum. As we shall soon argue,
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Fig. 1.9 This sketch depicts the laborious journey of a photon from the centre of the Sun, where
it is created, to the photosphere. In the absence of any scattering, it would take the photon only
about two seconds to reach the surface. Instead, it takes about 30,000 years; for more massive stars,
which are bigger, this escape time could be several million years! This is because the mean free path
of the photons is only about half a centimetre. This means that after travelling a mere 0.5 cm the
direction of the photon has changed quite randomly. As the photon diffuses outwards ever so slowly,
its energy also has been degraded. This is why the Sun appears brightest at visible wavelengths,
even though deep in its interior most of the radiant energy is in the form of X-rays

the average temperature of the interior of the Sun is about ten million degrees. As a
consequence, the radiation in the interior mainly consists of X-rays.

You may think that Superman—who has X-ray vision—could hope to enjoy the
scenery. But even he would be disappointed. He would find that it is like walking
in a very thick fog; he would not be able to see even the tip of his nose (photons
scattered off the tip of his nose are unlikely to reach his eye since the mean free path
is about 0.5 cm)! During this random walk, the energy of the photons also gradually
gets degraded until by the time the photon is ready to escape to infinity, the majority
of photons will have energy corresponding to the visible wavelengths (this is why
the Sun, as seen from the outside, is brightest in visible wavelengths). By this time,
more than thirty thousand years would have elapsed since the photons began their
journey from the centre of the Sun. In the case of stars more massive than the Sun
(which would also be larger in size) this escape time could be several million years!

As the photons reach the outermost region, the ambient density would have
decreased, and the matter would be very tenuous. Consequently the mean distance
travelled by the photons between two successive collisions would increase; this is a
direct result of the mean distance between the scattering particles increasing. Even-
tually, the photons would reach a layer from which there is approximately 50 percent
chance that they will escape to infinity without further scattering. In technical jargon,
one says that the optical depth above that surface is unity. One may call this layer the
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surface of last scattering. To put it differently, to a distant observer, the photons that
reach his eyes would appear to originate predominantly from this imaginary surface
of an opaque body.

If you find this confusing, let us look at it differently. Imagine that the Sun is
switched off. Now shine a powerful torchlight towards the Sun. Our messenger pho-
tons will not encounter any obstacle during the first 150-million kilometres (which is
the distance from the Earth to the Sun). Finally, as they enter the Sun’s atmosphere,
they will be occasionally scattered, but will bravely continue their journey toward
its centre. Pretty soon, they will encounter matter which is essentially opaque, and
their journey will come to an end. And what is it that we will see? We will see the
torch beam lighting up this imaginary layer—the opaque wall it has encountered.
The point to appreciate is that this is the same layer from which we said the photons
from the interior will eventually escape to infinity (with 50 percent chance).

Astronomers call this layer the photosphere. One may call the radius of this
imaginary surface the radius of the Sun. Thus, for practical purposes the Sun is
an opaque body, with a radius equal to the radius of the photosphere. It should be
remembered that in reality even the photosphere is not a sharp boundary (unlike the
surface of the Earth). It is a layer from which the photons have a 50 percent chance
of escaping to infinity. Clearly, the layer from which the photons have a 50 percent
chance of escaping depends also on the direction of the photon with respect to the
local normal (or vertical). The important thing is that the thickness of this layer—
which we call the photosphere—is very small compared to the size of the Sun. It
is also important to remember that the radius of the Sun (or more correctly, the
radius of the photosphere) depends on the wavelength at which you are observing
the Sun. Shorter wavelengths would be able to escape from deeper down, while
longer wavelengths would have to wait till they diffuse out a little further before they
can escape. This is because what matters is a comparison between the wavelength of
the radiation and the interparticle distance. For example, if you look at the image of
the Sun produced by a radio telescope operating at a wavelength of, say, ten metres,
you will find that the Sun is roughly twice as big as it appears in the visible!

Let us now return to the phenomenon of limb darkening. Figure 1.10 gives a
schematic illustration of this. Remember what I said before: the photons that reach
us interacted last with matter at a depth such that the photons have approximately
50 percent chance of escaping without further scattering. The figure shows two lines
of sight: one looking towards the centre of the disc and the other towards the limb.
Because the line of sight from the limb is at an angle to the vertical, it passes through
more solar material.

Therefore, for the photons emerging from the limb at an angle to the local vertical,
the surface of last scattering is higher in the atmosphere than for the photons in the
line of sight from the centre of the disc. The phenomenon of limb darkening can now
be understood if the higher layers are cooler than the lower layers. This follows
from one of the fundamental laws discovered by Kirchoff (see Fig. 1.10). According
to this law, the intensity of radiation from an opaque body is described by a universal
function of the temperature of the body: a hotter body emits more radiation at every
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Fig. 1.10 The limb darkening of the Sun tells us immediately that there is a temperature gradient,
with the temperature increasing as we go deeper into the Sun. The radiation we receive from any
part of the Sun essentially comes from a layer from which there is roughly 50 percent chance for the
photon to escape to infinity; we called this layer the photosphere. The radius of this photosphere is
determined by how much matter lies above it; the effective thickness of the column of matter above
it should be low enough so that there is a 50 percent chance for the photon to escape in a particular
direction. Let A be the point from which the radiation from the centre of the disc reaches us. It is
clear from the geometry that the radiation from the limb will only be able to escape from a point
B at a larger radius; since there is more matter in the oblique direction, the photons will be able to
escape only from further out. The darkened limb tells us that the intensity of radiation from B is less
than that from A. This, in turn, tells us that the larger photosphere is at a lower temperature than the
smaller photosphere; this follows from Kirchoff’s law. Thus, limb darkening is a clear signature of
the temperature gradient

wavelength. So the simple fact that the limb of the Sun is darker immediately tells
us that the temperature increases as we go into the Sun.

The Interior of the Sun

So far we have been discussing the atmosphere and the outer layers of the Sun. Let us
not linger over this any longer. This is not because this region is devoid of interesting
features. On the contrary, many exciting phenomena occur here, and the Sun is close
enough that we can study these in detail. Curiously, some of these phenomena tell us
in detail about what is happening deep within the interior! We shall return to these
recent developments in Chap. 6, Sounds of the Sun. But for now, our interest is in the
interior. Let us plunge into it.
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The diffusion of photons

Let us try to make a rough estimate of the time taken by photons to diffuse from
the centre to the surface of the star. It is reasonable to assume that the main mech-
anism that hinders the outward streaming of the photons is their scattering by free
electrons. The electrons are set into oscillation by the incident electromagnetic
wave, and these oscillating electrons, in turn, will radiate in a different direction.
This is why this process is referred to as scattering. There are, of course, other
physical processes in which the photons lose energy, get absorbed, and reemit-
ted by atoms and ions. We shall discuss the various processes that contribute to
the opacity of the stellar material in Chap. 3, ‘Eddington’s Theory of the Stars’.
For the present discussion, we shall accept the following statement. Under the
conditions that prevail in the interior of the Sun, namely, a mean density of
approximately 1.4 g/cm? and a mean temperature of a few million degrees, the
mean free path of the photons is about 0.5 cm. This means that a photon will ran-
domly change its direction after travelling for about 0.5 cm. Given this random
walk of the photons, with each step of length being approximately 0.5 cm, we
wish to know how long it will take for the photon to reach the surface. Remem-
ber that between any two successive collisions the photon will be travelling at
the speed of light, denoted by the symbol, c. Therefore, the question boils down
to the following: after how many collisions will our photon which originated at
the centre travel an effective distance equal to the radius of the star and reach
the surface?

This is the famous random walk problem. Albert Einstein discussed this
problem in his epochmaking paper on Brownian motion published in 1905.
As you may know, the same year, he published two more incredible papers
that changed the course of physics. One of them was on the Special Theory of
Relativity, and the other on the Photoelectric Effect in which he introduced the
revolutionary idea that energy of light is quantized.

R
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Consider the random walk of a particle in three dimensions. Let the particle
commence its walk at the origin and let the step length be denoted by /. The
particle changes its direction after every step. Although the particle goes back
and forth in a random fashion, it nevertheless slowly wanders further and further
from where it started (the famous analogy of a drunken man trying to reach home
is often cited). After a certain number of steps, N, it reaches a distance R from
the origin. The distance it wanders, R, and the average distance per step, /, are
related by the following famous relation:

1
R? = —NI?
3

This relation was first obtained by Einstein. Clearly, the number of steps needed
to reach a given distance will depend upon the number of dimensions available
for the walk. Think about this.

Let us now return to our photon which is struggling to find its way to the
surface of the Sun. The effective distance it has to travel is the radius of the Sun,
Rg. It follows from Einstein’s formula that the number of steps it has to take
isN = 3R2® /1%, where [ is the mean free path of the photons. During these N
steps, the actual linear distance travelled by the photon is NI (the number of
steps multiplied by the length of the step). Remember that between collisions
the photon travels at the speed of light. Therefore, the time taken by the photon
to diffuse out to a distance R is

NI 3R}
Ldiffusion ™~ — ™~ — .
c lc

We can now substitute the value for the radius of the star and the velocity
of light. Recall that the mean free path of the photon in the stellar interior is
approximately 0.5 cm. For the Sun, this diffusion time is approximately 30,000
years. A star Which is ten times as massive as the Sun will be approximately
ten times bigger. Therefore the photon diffusion time will be a hundred times
larger, approximately, several million years! (You may verify these time scales
by substituting the given numerical values).

Let us first recall some of the basic facts. The mass of the Sun (in grams) is
Mg = 2 x 1033 g Its radius is approximately a million kilometres (6.96 x 10'° cm).
Dividing the mass by its volume, we get a mean density of 1.4 g/cm?>. This is just a
little more than the density of water. The mean density of some of the stars is much
less than this. For example, the mean density of the giant star Capella is nearly the
same as the density of air. Is the interior of the Sun solid, liquid or gaseous? The
famous eighteenth-century astronomer William Herschel thought that the Sun was a
cold solid body, surrounded by glowing clouds of gas (from which the radiation we
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Fig. 1.11 A star is stable because the inward directed force due to self gravity is opposed, and
balanced, by the pressure of the gas. The weight of the column of gas above any point in the star
must be countered by the pressure of the gas. This condition must be satisfied at every point in the
star. Otherwise the star will not be in mechanical or hydrostatic equilibrium. A precise mathematical
statement of this condition will be set up in Chap. 3, Eddington’s Theory of the Stars

Gravitational
force

receive emanates), but as we shall argue below, because of the enormous pressure
and temperature that obtains inside the Sun, the matter in the interior must also be
in a gaseous form.

Using standard mathematical methods, it is possible to calculate how fast the
pressure increases as we go into the Sun, and how fast the temperature must increase.
The two are related; indeed, they must be. If the Sun is a hot blob of gas, then it should
expand in all directions and disperse. The Sun is stable because it is held together by
its own gravity; every part of the star attracting every other part according to Newton’s
law. But there is a problem; if gravity was not opposed by some other force, then the
star will collapse due to the attractive nature of the gravitational force. What saves it
is the pressure exerted by the gas. Imagine yourself at some point inside the star. As
may be seen in Fig. 1.11, the weight of all the layers above you will try to push you
down. This is opposed by the tendency of the gas below you to expand and push you
up. To put it differently, gravity is opposed by the pressure of the gas. In a steady
state, these two tendencies must be precisely balanced, and this must be so at every
point in the star.

Let us try to understand this differently. In classical physics, a gas exerts pres-
sure because at any finite temperature the constituent particles of the gas are in a
perpetual state of motion. Not all of them have the same velocity. While it is not
possible to define the velocity of any particular particle, one can make a statistical
statement about the probability of the number of particles having a velocity in any
narrow interval. This probability distribution of velocities was discovered by James
Clerk Maxwell, and was one of the great intellectual achievements in physics in
the nineteenth century. We shall not digress to discuss this achievement here, but
return to it a little later. For the purpose of the present discussion we shall merely
note the following. Although the individual particles have different velocities, and
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Fig. 1.12 Imagine an infinitesimal slab of the stellar material at some radial distance from the
centre of the star. Left to itself, this slab will sink due the gravitational attraction of matter which
is interior to the slab in question. For it to be stable, it must be supported by a net outward force
arising from the collision of particles on the two sides of the slab; each collision results in a transfer
of momentum to the slab. Remember that both the temperature and the density increase as one goes
deeper into the star. The higher temperature implies that the average energy of the particles colliding
on the lower side will be more. The higher density implies that there will be more collisions per
unit time on the lower surface. Consequently, the pressure on the lower side will be more than on
the upper side. The star will have to adjust its temperature gradient, as well as the density gradient,
such that the pressure differential precisely balances the gravitational force (per unit area). This
condition has to be satisfied at every point in the star

therefore different energies, it is possible to calculate the most probable speed and
the most probable energy of the particles. For a gas confined in a three-dimensional
box, the most probable or average energy of the particles is 3/2 kpT, where T is the
temperature of the gas and kp is Boltzman’s constant. As you will notice, the hotter
the gas is, greater is the average energy of the particles. As these particle collide
against the walls of the container they will be reflected back, and in the process, they
will transfer momentum to the walls. In other words, they will exert a force on the
walls. Pressure is just this force per unit area. Naturally, this force (or pressure) will
depend not only on how hot the gas is, but also on the number of particles per unit
volume.

Let us return to our star, and focus attention on a small piece of the stellar material
at some distance from the centre of the star. Our concern is how the matter above it
is supported against gravity. As shown in Fig. 1.12, in the microscopic picture, the
support is provided by incessant collisions by particles underneath. This is the same
way a car is supported by its tyres. I leave it to you to understand this delicate balance
between the inward directed force of gravity and the pressure exerted by the gas. At
any point in the star, if we could estimate the weight per unit area of the material above
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Fig. 1.13 The gravitational pressure at the centre of the star will be equal to the weight of a
cylinder of unit cross-sectional area. A simple estimate may be obtained by slicing the star into two
hemispheres. The force of attraction between the two hemispheres will be approximately GM? /R?,
and the force per unit area would be ~GM?/R*. Apart from a numerical coefficient this yields a
good estimate of the gravitational pressure at the centre

it (the gravitational pressure, if you like) then we would know the pressure the gas
must exert to support this weight, but this will not rightaway tell us the temperature
at that point. This is because the pressure exerted by a gas depends on both the
temperature and the density. This combination cannot be arbitrarily assigned, but
has to be solved for, in a self-consistent manner.

We shall set up the necessary equations presently, but let us first make a crude
estimate of the gravitational pressure near the centre of the Sun. An accurate calcula-
tion is laborious, but one can make a simple-minded estimate. We will proceed along
lines similar to how one will estimate the Earth’s atmospheric pressure at sea level.
The pressure of the atmosphere is the weight of the air mass per unit area above the
sea level. In a similar way, the gravitational pressure (or the gravitational force per
unit area) at the centre of the Sun is the weight per unit area of the stellar material
on top of it.

P, = pug,

where  is the mass per unit area, and g is the average acceleration due to gravity felt
by the column of material. The mass per unit area must be of the order of Mg, /R(zD
(Imagine slicing a sphere into two halves, as shown in Fig. 1.13. Place one of the
hemispheres on the table. The mass per unit area at base of the hemisphere will, of
course, depend on the location of the unit area at the base of the hemisphere, but
it has to be of the order of M/R?. There will be numerical coefficient multiplying
this, which can be determined if one is willing to do an honest calculation using
calculus!). In a similar way, the average acceleration due to gravity must be some
fraction of the acceleration at the surface, viz., GM /RZ. Therefore, the gravitational
pressure at the centre must be roughly
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P, ~G—2, (1.1)

If you are not happy with this estimate, try thinking of it this way. Again, imag-
ine slicing a sphere into two hemispheres and separate them slightly. Apart from
a numerical coefficient, the force of attraction between the two hemispheres must
be of the order GM?/R?. Therefore, the force per unit area must be approximately
~GM?/R*. A more proper calculation gives a numerical coefficient of about 20,
but we have not done too badly, given how simple minded our estimate was! What
is of interest is the numerical value of this pressure. Substituting for the mass and
radius of the Sun we obtain a value approximately equal to 2 x 10'7gcm™!'s2. The
pressure at the centre of the Sun is truly enormous; it is nearly a million million times
the atmospheric pressure at sea level on Earth!

What can we say about the central temperature? You will recall from our earlier
discussion that gas pressure at the centre must equal the gravitational pressure. To
estimate the central temperature we must know the central density. A detailed mathe-
matical calculation gives a central density which is approximately 150 g cm ™3 (about
110 times the average density of 1.4 gcm™3). This yields a central temperature of
15 million degrees kelvin!

It is perhaps more useful to have a feel for the average temperature of the Sun.
This can be estimated in a much more elegant and satisfactory manner. To do this,
we shall use a very powerful theorem known as the Virial Theorem.

The Virial Theorem

This theorem is of very general validity, and is applicable as long as the system under
consideration is statistically stable. This applies, for example, to a planet orbiting
the Sun. The theorem states that in the steady state the fotal energy of the system is
equal to one-half the potential energy. For a system like the Earth orbiting the Sun,
the total energy is the sum of the kinetic energy of the Earth (due to its motion in the
orbit) and the gravitational potential energy of the Earth (due to it being attracted by
the Sun). The theorem states that

L (o) 1 (G .

r 2 r

The first term on the left-hand side is the kinetic energy of the Earth as it revolves
around the Sun. The second term is the gravitational potential energy of the Earth at
a distance from the centre of the Sun. According to the virial theorem, the sum of
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the kinetic energy and the potential energy of the Earth must be equal to one-half the
potential energy. This relation can be proved rather simply. You will remember that
for the Earth to be in a stable orbit around the Sun, the centrifugal force acting on it
must be balanced by the gravitational force.

mv? _ GMom

r - }"2 '

Using this relation, Eq. (1.2) is easily verified.

This powerful virial theorem can be invoked to estimate the average temperature
of the Sun. In this case, the total energy is the sum of the stored thermal energy
in the Sun and the gravitational potential energy of the Sun due to self-attraction.
According to the virial theorem,

1
Thermal energy + Grav. potential energy = 3 Grav. potential energy.

Therefore,

1
Thermal energy = —3 Grav. potential energy.

(Notice the minus sign on the right-hand side. Since the gravitational force is attrac-
tive, gravitational potential energy will be negative. So the minus sign is needed to
make the right-hand side positive). The gravitational potential energy of a sphere of
mass M and radius R is ~ —GM? /R (if you know some calculus, try deriving this).
The thermal energy of the Sun is just the sum of the kinetic energy of the constituent
particles. Let T be the average temperature of the Sun. We remarked above that the
average energy of the particles is 3/2 kgT. If N is the total number of independent
particles then the total thermal energy is 3/2 NkpT. Thus, according to the virial
theorem,

3 NkpT = 1GM2 (1.3)
2 BT TR '

Since we know the mass of the Sun, we can estimate the number of particles by
assuming certain chemical composition. The above equation can then be solved for
the average temperature. This yields a value of 10 million degrees kelvin. (Take a
few minutes to verify this. Since you know the mass of the Sun, you can estimate
the number of atoms in the Sun. Assume for simplicity that the Sun is made solely
of hydrogen.) I hope you are astonished at the power of the virial theorem, which
enabled us to make this estimate. Sitting here on Earth, we can say with considerable
confidence that the average temperature of the Sun must be ten million degrees! We
only needed to know the mass and radius of the Sun. But you may be puzzled by
this result. When we look at the Sun, it appears as an opaque body whose surface
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temperature is about 5,800 kelvin. Is this consistent with an average temperature of
10 million kelvin?

There is no problem. What do we mean by saying that the surface temperature
of the sun is 5,800 K? What we mean is that the radiation leaving this surface has
a temperature of 5,800 K. If we plot the spectrum of this radiation (intensity versus
wavelength) it is, to a good approximation, the spectrum of radiation from a black
body whose temperature is 5,800 K. Let us recall what Kirchoff taught us.

e In an opaque body, matter and radiation come to true thermodynamic equilibrium.

e The radiation from the surface of the opaque body has lost all memory of the
quantum mechanical processes that produced the radiation in the interior, and its
original characteristics, such as frequency, direction, polarization, etc.

e The spectrum of this radiation is characterized uniquely by a universal function
of temperature, and does not depend upon any of the other properties of the body.

e Because matter and radiation were in true thermodynamic equilibrium in the inte-
rior, the temperature characterizing the spectrum of the radiation is the same as
the temperature of the matter with which it last interacted.

So, what we infer from direct observation of the Sun is that the temperature of the
photosphere is approximately 5,800 K. But this is not in conflict with our estimate for
the temperature of the interior. Detailed numerical calculations show that the average
temperature of the interior is, indeed, nearly 10 million kelvin. The temperature drops
rather rapidly as one approaches the photosphere, to approximately 6,000 kelvin.

Let us now summarize.

Our discussion so far has led us to the following conclusions: The Sun is a gaseous
body, held together by its own gravity. The inward-directed gravitation force is bal-
anced by the pressure of the gas. The fact that the Sun is stable tells us that a star settles
down at that radius where the temperature of the gas is adequate for gas pressure to
support the star against gravitational collapse. The central temperature of the Sun is
approximately 15 million kelvin, and the average temperature is approximately 10
million kelvin.



Chapter 2
Stars as Globes of Gas

A Theory of the Stars

J. Homer Lane was the first person to investigate the details of the temperature
distribution within a star. In 1870, he published a seminal paper in the American
Journal of Science and Arts, entitled, ‘On the theoretical temperature of the Sun,
under the hypothesis of a gaseous mass maintaining its volume by its internal heat,
and depending on the laws of gases as known to terrestrial experiment’. Put simply,
in this work Lane assumed that stellar matter behaved as an ideal gas and obeyed
Boyle’s law, as terrestrial gases do. It is a different matter altogether whether this is
areasonable assumption or not, and we shall have occasion to return to this in a later
chapter. But at the time, this was a significant piece of work, and this pioneering paper
was followed by investigations by A. Ritter, in Germany, Lord Kelvin, in Britain,
and others. The culmination of this line of investigation was the publication of the
monumental book, Gaskugeln, by R. Emden, in 1907.

Hydrostatic Equilibrium

Before understanding Lane’s results, let us set up the equation for the mechanical
stability of the star. Consider an imaginary concentric spherical surface of radius
inside the star as shown in Fig.2.1. Let us place on this surface a small cylinder,
whose axis points along the outward radius at that point. The cross-section of this
cylinder is of unit area of the base and length dr, and it contains stellar material.
The density of this stellar material is p(r), the value that obtains at that radius. The
gravitational force on that cylinder would be due to the mass interior to the imaginary
surface. Let us call this mass, M (r).

As the area of cross-section of the cylinder is unity, and its length is dr, the mass
of the infinitesimal cylinder is given by p ()dr. The force of attraction between M (r)
and p(r)dr is

GM((r)p(r)dr
—_— 2.1
r
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Fig. 2.1 Consider an infinitesimal cylinder at a distance r from the centre of unit cross-sectional
area and of height dr. The gravitational force acting on it will arise from the mass M (r) of material
interior to the spherical shell on which it lies. This has to be balanced by the difference in pressure
d P, which represents a force —d P in the direction of increasing r (pointing outward from the
centre). This is the condition for hydrostatic equilibrium of the star, and must be satisfied at every
point in the star

As you know, in Newton’s law the contribution to the force from the mass exterior
to the surface cancels out. This is illuminating and quite simple to prove. If you
know some calculus, I urge you try to prove this. The gravitational force on this
infinitesimal cylinder has to be balanced by the pressure differential on it. This is just
the difference in pressure at the two surfaces of the cylinder at a distance from the
centre equal to the radius r and r 4 dr, respectively. Let us denote this by d P. This
difference in pressure d P represents the force, —d P, acting on the cylinder in the
direction of increasing r. Thus the equation for the equilibrium of the unit cylinder
is

_ GM((r)p(r)dr

dP =
72

One can rearrange this as

dP __ GM()p(r)

dr r2 (22)

The above equation is known as the Equation of Hydrostatic Equilibrium. For a star
to be mechanically stable, this equation has to be satisfied at every point in the star.
Otherwise, as a distinguished astronomer said, ‘the punishment would be swift’. Any
violation of this condition of hydrostatic equilibrium would result in motion within
the star. For example, the material within our sample unit cylinder would either sink,
or float up due to buoyancy.
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Now, to go back to Lane, the pressure of the gas is to be calculated according to
Boyle’s law, namely,

o3

Here n is the number density of particles (number of constituent particles per unit
volume).

The ultimate objective of any theory of the stars is to derive the radial profile of
the density and temperature. This is not as simple as it sounds. While the right-hand
side of Eq. (2.2) involves only the density, the left-hand side involves both the density
and temperature; this is because gas pressure is determined by density, as well as
temperature (see Eq.2.3). Therefore, to derive how the stellar density varies as a
function of r one has to know how the temperature varies with r. It should be clear
from Eq.(2.3) that d P /dr involves both dp/dr and dT /dr. As we shall see in the
next chapter, one had to wait till the 1920s to be able to derive the radial profile of
the density and temperature.

Why Does the Sun Shine?

Now that one has a mathematical framework to understand why the Sun is sta-
ble, the next question to answer is, ‘what is the source of energy that makes the
Sun shine?’ Lane did not attempt to address this question. But his theory did make
the following curious assertion. As the star radiates energy, its internal temperature
must decrease (since the internal energy is decreasing). This will disturb the deli-
cate balance between the gravitational force and the pressure force (According to
thermodynamics, the pressure of a gas is just two-thirds of its energy density). Con-
sequently, gravity will gain an upper hand. The star will therefore have no option but
to contract. But this works to compress the gas even more, and the gas will get hotter
and hotter. So we have the paradox that as the star radiates energy, it will get hotter!
This is surely a violation of the laws of thermodynamics. As you know, any body that
is capable of coming to thermal equilibrium with its surroundings must get cooler as
it radiates heat to the surrounding. But the above mentioned paradoxical behaviour
is what Lane’s model predicts, and there is no escaping from this as long as the gas
behaves as a perfect gas, and if the energy radiated is coming at the expense of the
stored thermal energy. To put it differently, Lane’s model star has negative specific
heat. This discussion naturally leads us to ask the following questions.



24 2 Stars as Globes of Gas

The Pressure of an Ideal Gas

Consider an enclosure of volume V containing an ideal gas at a temperature 7.
Let N be the number of particles in the box. We want to calculate the pressure
of the gas. First, what does one mean by an ideal gas? What Maxwell taught us
is that the particles are in random motion, so that they collide with one another
frequently.

Apart from these collisions, the particles can also interact with one another
through interatomic forces; they may attract or repel one another according to
some law. Thus the particles not only have kinetic energy but also potential
energy. If the potential energy is negligible compared with the kinetic energy,
one says that a gas is ideal.

Kinetic energy > potential energy

A normal gas, such as air, is very nearly ideal because the mean distance between
the particles is large compared to the size of the molecules, and this condition
is easily satisfied.

According to thermodynamics, the pressure of a gas is equal to two-thirds
its energy density ( i.e., its internal energy U per unit volume). We have already
remarked that the average energy of the particles is %k T . Therefore, the total

energy of the gasis N x %kg T. Thus the pressure of the gas is

P_2U_N@T
T3V vy

= nkpT, (2.4)

where n is the number density of particles. This is Boyle’s law.

Source of Energy

Why does the Sun shine? And what keeps it shining?

One of the first persons to ponder about this was the English astronomer John
Herschel (1792—-1871). He was the son of William Herschel, whose name we have
already encountered. In 1837, John Herschel exposed a bowl of water to sunshine
for a fixed period of time and measured the rise in temperature. This enabled him
to estimate the amount of energy radiated by the Sun per unit time. And it was
staggering! At first he entertained the idea that the source of energy was some sort of
combustion in which chemical energy is converted to heat. But he soon abandoned
this idea when he realized that the Sun would not be able to sustain its energy
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generation for a long time by consuming chemical fuels. He went on to a guess ‘If a
conjecture might be hazarded, we should look rather to the known possibility of an
indefinite generation of heat by friction, or to its excitement by the electric discharge,
than to any actual combustion of ponderable fuel, whether solid or gaseous, for the
origin of solar radiation’.

A few years later, in 1846, Julius Mayer (1814-1878), a German physicist, pro-
posed that a continuous bombardment of the Sun by meteorites leftover from the time
of formation of the solar system, could heat up the Sun. There were grave difficulties
with this idea, although initially this idea met with the approval of Lord Kelvin, the
high priest of physics at the time.

An alternative explanation was advanced by a Scottish engineer John Waterston.
He proposed that gravitational contraction of the Sun at the rate of a hundred metres a
year would provide an adequate supply of heat. This idea was picked up by the great
German physicist Hermann von Helmbholtz since this seemed natural to him. Prior
to this, the German philosopher Immanuel Kant had proposed that the solar system
formed due to the contraction of a giant cloud of gas (It is incredible that this is, in
fact, the modern scenario for the formation of stars and their planets!). Helmholtz
felt that this contraction must be continuing still. Lord Kelvin also became convinced
of this and abandoned the meteorites hypothesis.

Let us make sure that we are clear about this idea. When a star contracts, matter
moves towards the centre of the star; the difference in the gravitational potential
energy between the old configuration and the new configuration is converted into
heat. But there is curious twist to this. Remember what we said earlier. As long as
the gas behaves as a perfect gas the star must get hotter as it radiates and contracts. So
the heat generated as the star contracts must be sufficient not only to replace the heat
lost as radiation but also to heat the star to a higher temperature. This is essential,
for otherwise the star has no option but to collapse.

Helmholtz and Kelvin estimated that the Sun had been shining for about twenty
million years, and will continue to shine for another twenty million years or so.
Let us see how one may estimate this timescale. Recall our discussion of the Virial
Theorem in the previous chapter. According to this theorem, when a star contracts,
only one-half of the gravitational potential energy released is available for radiation.
The other half is stored as thermal energy. The gravitational potential energy of the
Sunis ~ —ZGMé / Ro. If we divide one-half of this by the rate at which the Sun has
been radiating, then we can get an estimate for how long the Sun has been shining.

1 gravitational potential energy GM(%/ Ré

— (2.5)
2 luminosity Lo

This is just like estimating how long the money in your bank account will last; you
have to divide the balance in your account by the rate at which you are spending the
money. The present rate at which the Sun is losing energy is the luminosity of the Sun
[Lo = 4 x 103 erg s7!]. Inserting the values for the mass and radius of the Sun, we
come to the conclusion that if the Sun had been radiating at the present luminosity,
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then it could have done so only for about 20 million years [Convince yourself of this
by substituting the values]. This seemed a comfortably long time for Lord Kelvin.
Even though the geologists were convinced (even at that time) that the Earth was
older than 20 million years, Lord Kelvin was not bothered. He used his status to tell
the geologists to confine themselves to this timescale!

But he should have been bothered. Most of the stars we see in the sky with the
naked eye are far more luminous than the Sun; they radiate a hundred or a thousand
times more than the Sun. If he had used the same argument, he would have come
to the conclusion that these luminous stars were born only 100,000 years ago. He
would then have had to wonder whether, ‘the antiquity of man is greater than that of
the stars shining’, as Eddington put it.

The discovery of radioactivity was the last nail in the coffin for the contraction
hypothesis. Using modern techniques, geologists were able to determine the age of
the older rocks, and this turned out to be more than a billion years. This is how
they did it. Uranium is seen to disintegrate into lead and helium at a known rate.
Chemically, uranium and lead are very dissimilar; therefore they are unlikely to be
deposited together. So if you find both uranium and lead in rocks, you can assume
that the lead was formed due to the radioactive disintegration of uranium. Since one
knows the rate at which this disintegration takes place, from the ratio of lead-to-
uranium one can estimate how long ago the rock formed. Now, if the earth itself is
several billion years old, the Sun must be even older than this. So we are back to
square one as far as the source of energy in the Sun and the stars. But one can say this.
If external source of energy (such as meteorite), as well as gravitational contraction,
are ruled out then the star must contain some hidden source of energy which enables
it to shine for billions of years.

Sir Arthur S. Eddington provided the breakthrough. Addressing the British Asso-
ciation in Cardiff on 24 August 1920, Eddington argued that only subatomic energy
is available in unlimited quantity. To quote Subrahmanyan Chandrasekhar, ‘This
address contains some of the most prescient statements in all of astronomical liter-
ature’. Eddington’s remarks are so bold and incredibly brilliant that I shall quote in
full the relevant part of his address.

Only the inertia of tradition keeps the contraction hypothesis alive—or rather, not alive, but
an unburied corpse. But if we decide to inter the corpse, let us frankly recognize the position
in which we are left. A star is drawing on a vast reservoir of energy by means unknown to
us. This reservoir can scarcely be other than the subatomic energy which, it is known, exists
abundantly in all matter; we sometime dream that man will one day learn how to release it
and use it for his service. The store is well-nigh inexhaustible, if only it could be tapped.
There is sufficient in the Sun to maintain its output of heat for 15 billion years. . ..

Aston has further shown conclusively that the mass of the helium atom is even less than the
sum of the masses of the four hydrogen atoms which enter into it—and in this, at any rate, the
chemists agree with him. There is a loss of mass in the synthesis amounting to 1 part in 120,
the atomic weight of hydrogen being 1.008 and that of helium just 4. I will not dwell on his
beautiful proof of this, as you will no doubt be able to hear it from himself. Now mass cannot
be annihilated, and the deficit can only represent the mass of the electrical energy set free in
the transmutation. We can therefore at once calculate the quantity of energy liberated when
helium is made out of hydrogen. If 5 per cent of a star’s mass consists initially of hydrogen
atoms, which are gradually being combined to form more complex elements, the total heat
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liberated will more than suffice for our demands, and we need look no further for the source
of star’s energy.

If, indeed, the subatomic energy in the stars is being freely used to maintain their great
furnaces, it seems to bring a little nearer to fulfilment our dream of controlling this latent
power for the well being of the human race—or for its suicide.

Reproduced from Observatory, 43, 353-5, 1920.

To appreciate how extraordinarily prescient these predictions were we have to trans-
form ourselves to the year 1920. At the time, our knowledge of the atom and its
nucleus was very rudimentary. Electrons and protons were the only known elementary
particles at that time. Ernest Rutherford had demonstrated that radioactive substances
emitted three types of radiation, which he called alpha, beta and gamma radiation.
Beta radiation turned out to be streams of electrons, while gamma radiation showed
all the characteristics of electromagnetic radiation. By a series of careful experi-
ments, Rutherford was able to demonstrate that the alpha radiation was nothing but
the ions of helium atom; they were positively charged with a charge equal to twice
the charge of the electron. After this came the brilliant experiments of Rutherford
and Soddy. Soon they could draw definite conclusions regarding the atomic mass,
or atomic weight, of the alpha particles. The helium atom or alpha particle had four
units of atomic weight.

Rutherford then embarked on the now famous scattering experiments, in which
he bombarded matter with alpha particles. Based on the results of these experiments,
Rutherford was able to give a general picture of an atom—a nuclear atom. The atom
consisted of a minute nucleus, containing practically all the mass of the atom, and
a positive charge equal to the atomic number times the magnitude of the electronic
charge. For electrical neutrality, the nucleus would have to be surrounded by a number
of electrons equal to the atomic number. This deduction of the nuclear nature of the
atom was one of the most important discoveries in the entire history of physics.
Barely two years later, in 1913, Niels Bohr published his theory of the hydrogen
atom.

By the year 1920, Rutherford and his brilliant students at the Cavendish Laboratory
in Cambridge had succeeded in the artificial disintegration of the atoms. Around the
same time, one of his students, Aston, invented the mass spectrograph. Using this
Aston was able to measure the masses of the atoms. If we take the mass of the
hydrogen atom (1.008 units) to be the unit with which to measure the masses of
other nuclei, the mass of the helium atom would be exactly 4, and that of oxygen, 16.

This suggested to Eddington that the helium atom must have formed by the com-
bination of four hydrogen atoms. But how could this happen? Although the mass of
the helium atom made this hypothesis plausible, the question remained, ‘is it possi-
ble’? How does one account for the fact that the atomic number (or charge) of the
helium nucleus is only two? No one knew the answers to these questions, not even
Eddington. He simply packed four protons and two electrons into the helium nucleus;
this would fix the problem with the charge! Despite all this confusion, he attached
supreme significance to Aston’s discovery that the mass of the helium nucleus is
less than four times the mass of the hydrogen nucleus. The energy equivalent of this
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deficit mass, which we now call the binding energy, is presumably radiated away.
According to Eddington, this is the source of the energy that makes the stars shine.

Neither the physicists nor the chemists, leave alone the astronomers, thought much
of all this. To them, Eddington replied as follows.

To my mind the existence of helium is the best evidence we could desire of the possibility of
the formation of helium. The four protons and two electrons constituting its nucleus must
have been assembled at some time and place; and why not in the stars? When they were
assembled the surplus energy must have been released, providing a prolific supply of heat.
Prima facie this suggests the interior of a star as a likely locality, since undoubtedly a prolific
source of heat is there in operation. I am aware that many critics consider the conditions
in the stars not sufficiently extreme to bring about the transmutation—the stars are not hot
enough. The critics lay themselves open to an obvious retort; we tell them to go and find a
hotter place.

Well, once upon a time there was a hotter place! That was the very-early universe.
But that is a different story, and we shall discus that much later in our series of
monographs. As to how the story of the energy production in the stars unfolded, we
shall return to this in Chap.5. In the meantime, let us go back to Lane’s idea and
continue with our discussion of the equilibrium and stability of the stars.

We have already discussed the condition for hydrostatic or mechanical equilib-
rium: JP oM

— = —ﬂ. (2.6)

dr r2
To proceed further, we have to supplement this with an equation describing the
thermal equilibrium of the star. Thermal equilibrium requires that the temperature
distribution is capable of maintaining itself automatically even though there is a
continuous transfer of heat from one part of the star to another. How does energy in
the form of radiant heat flow from the interior to the surface from where it escapes
into space? In principle, there are three modes of transfer of heat, viz. conduction,
convection, and radiation. Lane considered convective transport in which heat is
transported from one region to another by actual movement of material. This is what
happens in our atmosphere. If convective transport is operative, then the star cannot
possibly be in mechanical equilibrium.

If we discard this mechanism, we are left with conduction and radiation. It turns
out that thermal conductivity of stellar matter is too small to be effective in transport-
ing the radiant energy from the interior to the surface. That leaves us with radiation
as the only mode of transfer of heat. The idea of radiative equilibrium, in which heat
is transferred by radiation itself and the temperature distribution is controlled by the
flow of radiation, was first invoked by R. A. Sampson in 1894. But a full theory
had to wait till the subject of radiative transfer was developed by the great German
physicist and astronomer, Karl Schwarzschild, in a fundamental paper published in
1906. We shall discuss this in Chap. 3.
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Sir Arthur Stanley Eddington
(28 December 1882—-22 November 1944)

Eddington was born in Kendal, England, the son of Quaker parents. While at
school, he proved to be a brilliant scholar particularly in mathematics and Eng-
lish literature. His performance earned him a scholarship to Owens College,
Manchester in 1898. Eddington was greatly influenced by his physics and math-
ematics teachers, Arthur Schuster and Horace Lamb. His progress was rapid,
winning him several scholarships and he graduated with a B.Sc. in physics with
First Class Honours in 1902.

Based on his performance at Owens College, he was awarded a scholarship at
Trinity College in the University of Cambridge 1902. Two years later, Eddington
became the first ever second-year student to be placed as Senior Wrangler—
the highest academic distinction for undergraduates. After receiving his B.A.
in 1905, he began research on Thermionic Emission in the Cavendish Labora-
tory. This did not go well for him, and he spent time teaching mathematics to
first year engineering students, without much satisfaction. But fortunately, this
unsatisfactory period was brief!

In 1907, he won the prestigious Fellowship of Trinity College, Cambridge.
In December 1912, George Darwin, son of Charles Darwin, died suddenly and
Eddington was promoted to his chair as the Plumian Professor of Astronomy and
Experimental Philosophy in early 1913. Later that year Eddington was named
Director of the Cambridge Observatory. He was elected a Fellow of the Royal
Society shortly after.

During World War I, Eddington became embroiled in controversy within
the British astronomical and scientific communities. Being a Quaker, Edding-
ton was a pacifist. He struggled to keep wartime bitterness out of astronomy.
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He repeatedly called for British scientists to preserve their pre-war friendships
with German scientists. Eddington’s pacifism caused severe difficulties during
the war, especially when he was called up for military service in 1918. He
claimed conscientious objector status, a position recognized by the law, but
despised by the public. In 1918 the government sought to revoke this deferment,
and only the timely intervention of the Astronomer Royal and other high-profile
figures kept Eddington out of prison.

Relativity

Eddington was famous for his work in General Theory of Relativity which
was published by Einstein in 1916. During World War I, Eddington was the
Secretary of the Royal Astronomical Society, which meant he was the first to
receive a series of letters and papers from Willem de Sitter regarding Einstein’s
General Theory of Relativity. Eddington was fortunate in being not only one of
the few astronomers with the mathematical skills to understand this theory, but
(owing to his international and pacifist views) one of the few at the time who
was still interested in pursuing a theory developed by a German physicist! World
War I severed many lines of scientific communication and new developments in
German science were not well known in England. He quickly became the chief
supporter and expositor of Theory of Relativity in Britain. Eddington wrote
a number of articles which announced and explained Einstein’s theory to the
English-speaking world. He also became known for his popular expositions and
interpretations of the theory.

He and Astronomer Royal Frank Dyson organized two expeditions to make
observations on a solar eclipse in 1919 to conduct the first empirical test of
Einstein’s theory: the measurement of the deflection of light by the Sun’s grav-
itational field. Dyson argued that Eddington’s expertise was indispensable for
this most important expedition. It was this argument, and the powerful con-
nections that Dyson had, that allowed Eddington to escape prison during the
war!

After the war, Eddington travelled to the island of Principe near Africa to
observe the solar eclipse of 29 May 1919. During the eclipse, he took pho-
tographs of the stars in the region around the Sun. According to the theory of
General Relativity, stars near the Sun would appear to have been slightly shifted
because their light had been curved by Sun’s gravitational field. This effect is
noticeable only during an eclipse, since otherwise the Sun’s brightness obscures
the stars.

Eddington’s observations, published the next year, confirmed Einstein’s the-
ory, and were hailed at the time as a conclusive proof of General Relativ-
ity. The news was reported all over the world as a major story. Afterwards,
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Eddington embarked on a campaign to popularize relativity and the expe-
dition as landmarks both in scientific development and international scientific
relations.

Throughout this period Eddington lectured on relativity, and was particu-
larly well known for his ability to explain the concepts in lay terms as well
as scientific. He collected many of these into the publication, Mathematical
Theory of Relativity, in 1923, which Albert Einstein suggested was ‘the finest
presentation of the subject in any language’.

Fundamental Theory

During the 1920s, until his death, he increasingly concentrated on what he called
the Fundamental Theory, which was intended to be a unification of quantum
theory, relativity, and gravitation. At first, he progressed along ‘traditional’ lines,
but turned increasingly to an almost numerological analysis of the dimensionless
ratios of fundamental constants.

His basic approach was to combine several fundamental constants in order
to produce a dimensionless number. In many cases, these would result in
numbers close to 1040, its square, or its square root. He was convinced that
the mass of the proton and the charge of the electron were a natural and
complete specifications for constructing a Universe and that their values were
not accidental. One of the discoverers of quantum mechanics, Paul Dirac,
also pursued this line of investigation, which has come to be known as the
Dirac large numbers hypothesis, and some scientists even today believe it has
something to it.

Theory of the Stars

Eddington’s most important contributions were, however, concerning the nature
of the stars. As we shall see in this volume, his insights were deep and his con-
jectures extraordinarily prescient. But he also made several serious errors of
judgment. One of them concerned the fate of massive stars. He rejected the
spectacular discovery made by young Chandrasekhar, resulting in a major con-
troversy. We shall discuss this at great length in the next volume of this series.
But this most unfortunate controversy did not affect Chandrasekhar’s opinion
of Eddington. In a lecture delivered at Cambridge University to commemorate
Eddington’s birth centenary, Subrahmanyan Chandrasekhar described Edding-
ton as the ‘most distinguished astronomer of his time’.
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Cycling

Eddington was very fond of cycling. He devised a measure of a cyclist’s long-
distance riding achievements. The Eddington Number in this context is defined
as, n, the number of days a cyclist has cycled more than an equal number in
distance, namely, n miles. For example an Eddington Number of 30 would
imply that a cyclist has cycled more than 30 miles in a day on 30 occasions!
Eddington must have been a very good cyclist, and very fond of it. To quote
from one of the letters written to S. Chandrasekhar in the evening of his life:

My n is now 77. It made the last jump a few days ago when I took an 80-mile ride in the
fen country. I have not been able to go on a cycling tour since 1940, because it is impos-
sible to rely on obtaining accommodations for the night; so my records advance slowly.

Popular and Philosophical Writings

During the 1920s and 1930s, Eddington gave innumerable lectures, interviews,
and radio broadcasts on astronomy, relativity, and later, quantum mechanics.
Many of these were gathered into books, such as Stars and Atoms, Nature of
the Physical World, and New Pathways in Science. His skillful use of liter-
ary allusions and humour helped make these famously difficult subjects quite
accessible.

Eddington’s books and lectures were immensely popular with the public,
not only because of Eddington’s clear and entertaining exposition, but also his
willingness to discuss the philosophical and religious implications of the new
physics. His popular writings made him, quite literally, a household name in
Great Britain between the two world wars.




Chapter 3
Eddington’s Theory of the Stars

The credit for developing a comprehensive theory of the stars goes to Eddington. He
distilled the most significant idea from Lane’s work, and built upon it. Although there
were very few takers for Lane’s idea that the Sun was a globe of ideal gas, Eddington
was convinced that the matter within all the stars obeyed the perfect gas equation
of state, namely, Boyle’s law (we shall discuss the validity of this hypothesis in the
next chapter). But he rejected Lane’s notion that the outward transport of heat is due
to convection. Instead, he introduced two basic elements into the theory of the stars.
These are:

1. Radiation pressure must play an increasingly important role in maintaining the
equilibrium of stars of increasing mass.

2. Stars must be in radiative equilibrium. The outward flow of radiation is the main
mode of heat transport.

These two insights had important bearing on the structure of stars. Before examining
some of the predictions of the theory, let us be clear about the two notions mentioned
above.

Radiation Pressure

You will recall that radiation has momentum E /c, where E is the energy and c is the
velocity of light (in the quantum picture, the momentum of a photon is ~v/c, where h
stands for Planck’s constant and v is the frequency of the photon). Since momentum
is associated with radiation, it must exert pressure just as gas particles do. Let us
consider a special kind of radiation, popularly known as black body radiation. This
is just radiation in an enclosure with absorbing walls maintained at a temperature 7.
We have already encountered the very special properties of this radiation while
discussing Kirchoff’s laws. Given enough time, the radiation in the cavity will come
to thermal equilibrium with the walls. It will be isotropic as regards the direction of
flow and will be characterized uniquely by the temperature of the walls of the cavity.

G. Srinivasan, What are the Stars? Undergraduate Lecture Notes in Physics, 33
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An important result from the nineteenth century is that the energy density of radiation
in the cavity is proportional to the fourth power of the absolute temperature,

E =aT* (3.1)

where a is a universal constant known as Stefan’s constant. The above relation is
known as Stefan’s law. The pressure exerted by this radiation is

L
Dr = §aT (3.2)

You may be puzzled by why the pressure of radiation is one-third of the energy density
and not two-thirds, as we had remarked earlier while deriving Boyle’s law. There are
many ways of understanding this, but I shall not digress into that now. Briefly, this
is the reason for the difference. As you know, in 1905, Einstein taught us that light
behaves both as waves, as well as particles. We now call these corpuscles of light
photons. The important thing is that these photons have zero rest mass. Whenever
we are dealing with an enclosure containing particles with zero rest mass (such as
photons, neutrinos, and the like), the pressure in the enclosure is one-third of the
energy density. If one is dealing with a gas of massive particles then the pressure is
two-thirds of the energy density.

Returning to radiation inside a star, we can assume that the radiation has come to
thermal equilibrium with matter and, therefore, the above two relations apply to it.
The star may not be covered with opaque walls, but the interior of the star is opaque
to the kind of radiation existing there. Therefore one may safely assume that the
radiation inside will have all the characteristics of true thermal radiation.

Clearly, the main thrust of this chapter is going to be the interaction of radiation
with matter; how the radiation generated near the centre diffuses out. Therefore,
before proceeding further with Eddington’s ideas let us pause to define some impor-
tant concepts.

Scattering cross-section, opacity and mean free path

Before proceeding further, let us familiarise ourselves with these three important
concepts.

Imagine a flux of particles, or radiation, attempting to pass through a target.
And let there be n obstacles per unit volume in the target. These could be atoms,
molecules, dust particles, and so on, which could absorb or scatter the particles
in the incident beam. Let o be the effective cross-sectional area for collision
of each one of these scattering centres (usually referred to simply as scattering
cross-section). The unit of o is cm?. It is important to appreciate that this is not
necessarily the actual projected physical area of the atom,
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Scattering centres

LAY

Flux of radition

Y

dx

molecule and so on; it could be much larger than that. Imagine, for example,
an electron incident on an ion. The electron will be deflected by the electric
field associated with the charge on the ion. Therefore, the radius of the effective
sphere of influence of the ion would be much larger than the size of the ion.

The mean free path / and the scattering cross-section o

Using the characteristics of the target, namely, there are n scatterers per unit
volume, each with an effective area equal to o, let us construct a quantity with
the dimension of a length:

l=—

no

This length [ is defined as the mean free path.

To see the significance of this, let us consider a slab of the target of area L x L
and thickness dx Its volume would be L2dx. The typical number of absorbers in
this slab would be the number of absorbers per unit volume, n, multiplied by the
volume, that is, nL2dx. The probability that a beam particle will be stopped in
that slab is the net area of the stopping atoms divided by the total area of the slab.

P (absorption within dx) =

Total Area of the Absorbers onL%dx
= =nodx.
Area of the Slab L?

The decrease in beam intensity as it goes through the slab of thickness dx equals
the incoming beam intensity multiplied by the probability of being stopped
within the slab




36 3 Eddington’s Theory of the Stars

dl = —1(nodx).

The minus sign signifies a decrease in the intensity. This is an ordinary differ-
ential equation
dl

dx

=—Inoc=—-.
[

Here we have used the definition of / given above. The solution of this simple
equation has the familiar form:

where x is the distance travelled by the beam through the target and Iy is the
beam intensity before it entered the target. In other words, the incident intensity
decreases exponentially with a characteristic length equal to /. We shall not
pause to prove it here, but it is a simple matter to show that this length, /, is also
the mean distance travelled by the photon/particle before it is stopped.

Mass absorption coefficient

Sometimes, instead of the scattering cross-section, o, one introduces the absorp-
tion coefficient per unit mass, k. Astronomers refer to it as the opacity of the
material. The units of x are cm”> g~!. Earlier we had written the decrease in the
beam intensity as d/ = —I (nodx). In terms of the opacity this can be written as

dl = —I1(kpdx).

Remember that the mass of the target slab of unit area and thickness dx is
simply the volume multiplied by the density, pdx. Therefore the absorption
coefficient of the slab is kpdx. Clearly, no = kp. Therefore, the mean free path
can be defined either in terms of the cross-section o or the mass absorption
coefficient, x:

As we shall soon see, the opacity of matter will be a function of frequency. Therefore,
whenever we simply write &, it must represent an average over the frequency of some
sort.
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Radiative Equilibrium

Let us now derive the condition for radiative equilibrium to be established. Pick any
radial direction in the star, and call it the x-axis, and let the positive direction of
this axis be along the temperature gradient. Consider a slab of stellar material of
thickness dx and area equal to one square centimetre held normal to the x-axis (see
Fig.3.1).

Let the temperature of the two faces of the slab be 7" and T + dT, respectively.
Since pressure is force per unit area, the force exerted by radiation on the two faces
is +p, and —(p, + dpg). The resultant force in the direction of the temperature
gradient is —dp,. We have adopted the convention that the force is positive if it is
in the direction of gravity and negative if directed outwards.

This resultant force imparts momentum to the slab. For the slab to be in equilib-
rium, it must utilize this momentum in some fashion; otherwise, the slab will be set
in motion. What the material of the slab does is to absorb this momentum and use it
to supplement the gas pressure in its attempt to support itself against gravity.

Next we have to calculate the x-component of the momentum absorbed by the
material in the slab. Let us first introduce the mass absorption coefficient . This is the
coefficient of absorption per gram of matter. Let F be the flux of radiation incident
on the slab (measured in ergs per square centimetre per second). The fraction of the
flux absorbed by the slab will be F xpdx, where p is the density of matter in the slab.
Since the area of the slab is unity, and its thickness is dx, the mass of the slab is just
pdx (see Fig.3.2). The x-component of the momentum absorbed by the material per
unit time is

Frpdx/c (3.3)

where c is the velocity of light. (Interestingly, the above result holds even if the
radiant flux is incident obliquely. If the angle of incidence is € then the distance
travelled through the slab is increased to dx sec 6. So the energy absorbed in the slab
increases by sec f. But the x-component of the momentum absorbed remains the
same as above because we have to multiply by cos € to obtain the x-component.)

Finally, we want to calculate the net momentum absorbed by the slab per unit
time. Remember that radiation is incident on the slab from both sides. Let us denote
the flux from the left (outward flowing) by F and the flux from the right by F_.
The net outward flux is given by

F=F, —F_, (3.4)
and the net positive momentum gained by the slab is Fxpdx /c. Earlier we said that
for the slab to be in radiative equilibrium, the momentum gained per second by the

slab must be fully absorbed by the matter contained in it. Hence,

—dp, = Frpdx/c (3.5)
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Radiation flux Radiation flux

T+dT/T

dx

X

Fig.3.1 Consider a slab of stellar material of unit area and thickness dx along some radial direction
which we shall call x. Radiation passes through this slab from both sides. Let the temperature on
the two faces be T + dT and T, respectively. Consequently, the flux of radiation and the pressure
of radiation on one side will be more than on the other. The resultant pressure (or force, since the
slab has unit cross-sectional area) in the direction of the temperature gradient would be —dp . By
convention, we take the force to be positive in the direction of gravity, and hence the resultant force
due to radiation has a negative sign. This resultant force due to radiation will impart momentum to
the slab, which it must utilize in some way so that it can be in radiative equilibrium. Otherwise the
slab will start moving in the x direction

Flux of radiation
Foommmmm e - ————— Fkpdx/c
se"e
2 Frpdx /¢
Ed
0_--
R x-component of the
F 7 momentum acquired by the slab
dx

Fig. 3.2 The fraction of the radiation flux F absorbed by the slab will be equal to the flux multiplied
by the mass absorption coefficient per unit mass multiplied by the mass of the slab, thatis, Frpdx.
Therefore the x-component of the momentum acquired by the slab per unit time will be Frpdx/c.
Incidentally, this remains the same regardless of whether the radiation is incident normally or at
an angle. For the slab to be in equilibrium,this x-component of the momentum absorbed from the
radiation must be equal to —dp,. The slab uses this momentum absorbed from the radiation to
supplement the gas pressure in supporting itself against gravity. This is the principle of radiative
equilibrium
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or

¢ dpg

F=— .
Kkp dr

(We have replaced x by the radial co-ordinate r). Substituting for the radiation pres-
sure from Stefan’s law, p, = %aT“, we get for the net outward flux:

dr*
F=_2c9 (3.6)
3kp dr

This is the famous result obtained first by Eddington. It says that net flux of radiation is
directly proportional to the pressure gradient and inversely proportional to the opacity
of the stellar matter (Eddington called xp the obstructive power of the material screen
through which the radiation is forced).

Basic Equations of Stellar Structure

Let us now gather together the various equations that constitute a theory of the stars.
1. Hydrostatic equilibrium

As we have derived in Chap.2, Stars as Globes of Gas, for a nonrotating star the
assumption of hydrostatic equilibrium gives:

dP GM(r)p
=" 3.7
dr r2 S
where P is the sum of gas pressure and radiation pressure,
P = pg+ pp. (3.8)
kpT
Pg = nkpT = il s
Hmy
1 4
=—aT".
Pe = 34

In the above equations,
n = number density of particles
p = mass density
1 = mean molecular weight
mpy = mass of the hydrogen atom (= 1.67 x 107%* g)
kp = Boltzman’s constant
a = Stefan’s constant.
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You will notice that in the equation for hydrostatic equilibrium the pressure that
balances gravity is the fotal pressure. This is as it should be if the star is in radia-
tive equilibrium. We said that the outward-directed momentum of the radiation is
absorbed by the stellar material. The star is now using this to supplement gas pressure
in its attempt to support itself against gravity.

Since the mass contained in any spherical shell of radius r and thickness dr is
dM(r) = 47rr2drp, the rate of change of M (r) with r is

dM(r)
dr

= 47rp. (3.9)

This is known as the mass equation.
2. Thermal equilibrium

In a similar manner, we need an equation describing how the energy radiated by
the surface is compensated by the energy generated in the interior. Let ¢ be the
rate of energy generation per gram per second. This will clearly depend upon the
temperature, density and chemical composition. The total luminosity, L(r), crossing
an imaginary surface of radius r is given by

L(r)= / epAnridr (3.10)
0

Therefore the change of L(r) with r is given by

dL(r) _
dr

epdnr?. (3.11)

3. Radiative equilibrium

While discussing the idea of radiative equilibrium, we had earlier derived the expres-
sion for the net radiative flux crossing a unit area at a distance r from the centre of the
star (erg per square centimetre per second). To get the expression for the luminosity
crossing an imaginary surface of radius, r, we merely have to multiply this by 472,
which is the surface area of this sphere. Therefore,

(3.12)

Let us gather together all the four equations of stellar structure:
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dP B GM(r)p

P
dM
(r) _ 47rr2p,
dr
dL
dir) = 5p47rr2,
dr*
L) = - 289 4n?
3kp dr

These four equations constitute Eddington’s theory of the stars.

Solution of the Equations of Stellar Structure

To derive the expressions for temperature and the density distribution which is capa-
ble of maintaining itself automatically, notwithstanding the continual transfer of heat
from one part to the other, we have to solve the above equations self-consistently.
The four basic inputs needed to solve these are:

1. Equation of state

2. The chemical composition

3. Opacity

4. The rate of energy production

1. Equation of state

This gives the pressure as a function of density and temperature P = P(p, T). In
Eddington’s theory, this is the sum of gas pressure and radiation pressure. Following
Lane, Eddington assumed that the gas can be well described by the perfect gaslaw
pg = nkpT = pkgT/umpy, and that the radiation is black body radiation, whose

1
pressure is given by Stefan’s law, p, = gaT“.

2. Chemical composition

So far we have remained silent on the chemical composition of the stars, but we need
to address this now. After all, as Eddington put it: ‘An architect before pronouncing
an opinion on the plans of a building will want to know whether the material shown
in the plans is to be wood or steel or tin or paper’. It is true that we can find out a
great deal about the chemical composition of the Sun’s atmosphere by studying the
solar spectrum, but we know very little of the interior. In any case, when Eddington
was developing his theory there was no way of estimating the relative abundance
of the elements. The prevailing opinion at the time was that the Sun’s composition
must be similar to the Earth’s, with the predominance of heavy elements like iron.
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Table 3.1 The most

abundant elements in the Sun Element Relative mass (%)

Hydrogen 70

Helium 28

Carbon 0.41
Nitrogen 0.10
Oxygen 0.91
Neon 0.14
Magnesium 0.06
Silicon 0.06
Sulphur 0.04

A proper theoretical framework to estimate the abundance of elements had to wait
for the theory of ionization of atoms due to M. N. Saha.

Soon after Saha published his theory, Cecelia Payne, one of the very few women
astronomers, carefully analysed stellar spectra and came to the remarkable conclu-
sion that the Sun and stars are composed almost entirely of gaseous hydrogen. This
radical conclusion by a young student was not readily accepted by the high priests
of astronomy, notably Henry Norris Russell of Princeton University, one of the most
distinguished astronomers of that era. But some instinct must have told Russell that
they had all got it wrong, for he reanalysed the data, using Saha’s theory, and con-
cluded that Cecelia Payne was right after all!

The modern picture is that hydrogen accounts for 70 % of the mass of the Sun.
The element helium, which you will recall was first discovered in the Sun, accounts
for 28 %. The rest of the elements taken together contribute only about 2 % to the
mass of the Sun (see Table 3.1).

Let us return to Eddington. He did not wait for the above story to unfold. He
proceeded with his theory by assuming that the Sun was mainly composed of heavy
elements, like iron. But he did not care for the detailed abundance of the heavy
elements. And the reason was the following. As we have already discussed, Eddington
was convinced the pressure inside the Sun was enormous and that the temperature was
approximately 10 million K. Under these circumstances the atoms would be severely
mutilated. Remember that by this time Bohr has elucidated the structure of the atoms.
In his picture, an atom resembled the solar system; it consisted of tiny positively
charged nuclei (of size approximately 10~!3 cm) around which negatively charged
electrons revolved in discrete orbits whose radii were approximately 1078 cm. In
neutral atoms, the number of satellite electrons is equal to the atomic number Z
of the element. At high pressure and high temperature a phenomenon known as
ionization occurs by which the satellite electrons are successively knocked off the
atom. This happens for two reasons.

Atatemperature of 10 million K, the heat radiation will be mainly soft X-rays with
wavelengths between 3 and 9 A. Let us see why this is so. You may remember that the
spectrum of radiation from a black body is sharply peaked at a certain wavelength,
which depends upon the temperature of the black body (see Fig. 3.3). The wavelength
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Fig. 3.3 The spectrum of radiation from a black body is quite sharply peaked at a wavelength which
is inversely proportional to the temperature of the body. This is known as Wien’s displacement law.
For a body at 10 million k, most of the radiated energy is in the soft X-ray region of the spectrum.
The present temperature of our universe is approximately 3k. Hence the thermal radiation that fills
the universe peaks at a wavelength of 1 mm

Amax at which the intensity is maximum is related to the temperature by the relation

Amax (cm) = % (3.13)

This is known as Wien’s Displacement Law.

Verify that for a temperature of 10 million K, the maximum occurs at a wavelength
of approximately 3 A. These soft X-ray photons have enough energy to knock out
the electrons from their orbits; this is just the photoelectric effect that Einstein had
explained. In lighter elements, the energy needed to eject the electrons is sufficiently
small, so that almost all the electrons will be knocked out. In heavy elements, the
innermost electrons are so tightly bound to the nucleus that they will survive.

The second channel for ionization is this. The electrons knocked out the atoms
by the X-ray photons wander around as free particles. They will have kinetic energy
equal to the difference between the energy of the ionizing photon and the energy it
has spent in knocking out the electron from the atom. These wandering energetic
electrons can also, provided they have enough energy, dislodge the bound electrons
from their orbits; this is known as collisional ionization.

Deep in the interior of a star, one can expect complete ionization of the atoms and
a great simplification occurs—the atoms will be stripped off all their electrons. An
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atom of an element with atomic number Z will contribute Z electrons to the sea of
free electrons. Thus the atom is broken up into (Z + 1) particles—Z electrons plus
the nucleus.

The interesting thing is that in an ideal gas, all these particles—the nuclei and
electrons—will contribute equally to the pressure of the gas. It is true that electrons
are much lighter than the nuclei, but they will move proportionately faster so that
they will have the same kinetic energy as the heavy nuclei. This is known as the
principle of equipartition of energy, one of the most profound results to emerge
from the kinetic theory of gases developed by James Clerk Maxwell and Ludwig
Boltzmann in the nineteenth century.

The essence of this fundamental principle is the following. A system of particles
may have many different degrees of freedom. For example, a monatomic gas particle
has three degrees of freedom, corresponding to motion in the three dimensions x, y
and z. A system of more complex particles will have more degrees of freedom; in
addition to kinetic degrees of freedom, they may have internal degrees of freedom.
A molecule, for example, can vibrate and rotate in addition to moving around. When
the system is in true thermodynamic equilibrium, the frequent collisions between the
particles ensure that the energy associated with every degree of freedom is the same.

The principle of equipartition says that for a system in thermodynamic equilibrium
at a temperature T, the energy per degree of freedom is %kB T. If there are three
translational degrees of freedom then the kinetic energy per particle is %k T . The
following point must, however, be borne in mind. The energy of any given particle,
of course, constantly changes because of collisions. Therefore, the equipartition of
energy refers to the average energy of any particle, with the average being taken
over a long enough period of time. Clearly, the statement that the average energy
of the particles is %kBT is irrespective of the mass of the particle. The speed of the

particles will adjust such that

3 1
EkBT = Emvz. (3.14)

This is why in an ideal gas all the particles—nuclei and electrons—will contribute
equally to the pressure of the gas. And that is the reason why in Boyle’s law the
pressure is expressed in terms of the number density of particles. In the present
context, however, it is more appropriate to express the pressure in terms of the mass
density p. If our gas consisted of particles of only one type then

. mass densit
number density = Y

mass of the particle

The stellar plasma, however, consists of electrons and nuclei of different elements.
Therefore the correct things to do would be to divide the mass density by the average
mass of the independent particles:

. mass densit
number density = Y

average mass of the particles



Solution of the Equations of Stellar Structure 45

It is to define this average mass that one needs to know the chemical composition of
the plasma. It is customary to introduce the notion of the mean molecular weight, .,
in defining the relation between the number density of independent particles, n, and
the mass density, p,

n=—, (3.15)
Hmy

where m g is the mass of the proton. The terminology molecular weight is borrowed
from chemistry and is a misnomer here. In the present context, the term molecule
really refers to the independent particles of our gas, nuclei of different species and
the electrons. It should be clear from the above equation that umpg is defined as
the average mass of the independent particles of the gas. Remember that our gas
consists of electrons and nuclei of different species. Therefore, the average mass
per particle will depend upon the chemical composition or the relative abundance
of the elements. But these are matters of detail. Eddington argued that the detailed
composition really did not matter as long as the heavy elements predominate; like
most astronomers at that time, he believed that the composition of the stars must be
similar to what we find on Earth. He argued that in that case p will be approximately
equal to 2. His line of reasoning may be understood as follows.

In general, an atom of an element with atomic mass number A and atomic number
Z will contribute (Z + 1) particles; Z electrons and 1 nucleus. Therefore the average
mass per particle would be

A

pwmp

If the atomic number Z is much greater than 1, which is the case for heavy elements,
then (Z + 1) in the denominator can be replaced by Z. It is a well known fact
that, barring hydrogen, A/Z for most elements is approximately 2, so that p is
approximately equal to 2, as long as hydrogen is not the predominant constituent
(as was believed at that time). This is why Eddington did not bother to ascertain the
detailed chemical composition of the star and simply assumed that ;o = 2. If the
star consists essentially of hydrogen then p» = 1/2; in the above formula, substitute
A=land Z =1.

To summarize this section, Eddington assumed that the composition was dom-
inated by the heavy elements and, therefore, the mean molecular weight, u, was
approximately equal to 2. He was wrong, of course! We now know that hydrogen
and helium account for 98 % of the composition.

3. Opacity of stellar matter

Let us now turn to the opacity, or the obstructive power, of stellar matter. Before
discussing the physical mechanism that hinders the outflowing radiation, let us try to
understand the nature of the matter inside a star. We know that hydrogen and helium
atoms will be fully ionized, but the heavier atoms will still retain their innermost
electrons since these are very tightly bound to the nucleus; the more loosely bound
outer electrons will be knocked out without any difficulty. The electrons liberated
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from the atoms will be rushing around at fantastic speeds. So we have a plasma con-
sisting of electrons, bare nuclei, and heavy ions. This plasma coexists with radiation,
which is mostly in the form of X-rays. There is no better way to visualize what goes
on inside a star than listening to Eddington’s marvellous description:
We can now form some kind of a picture of the inside of a star—a hurly burly of atoms,
electrons and ether-waves. Dishevelled atoms tear along at 100 miles a second, their normal
array of electrons being torn from them in the scrimmage. The lost electrons are speeding a
hundred times faster to find new resting places. Let us follow the progress of one of them.
There is almost a collision as an electron approaches an atomic nucleus, but putting on speed
it sweeps round in a sharp curve.
Sometimes there is a side-slip at the curve, but the electron goes on with increased or
reduced energy. After a thousand narrow shaves, all happening within a thousand millionth
of a second, the hectic career is ended by a worse side-slip than usual. The electron is fairly
caught, and attached to an atom. But scarcely has it taken up its place when an X-ray bursts
into the atom. Sucking up the energy of the ray, the electron darts off again on its next
adventure.
‘And what is the result of all this bustle? Very little. The atoms and the electrons for all their
hurry never get anywhere; they only change places. The ether-waves are the only part of
the population which accomplish anything permanent. Although apparently darting in all
directions indiscriminately, they do on the average make a slow progress outwards ... But
slowly the encaged ether-waves leak outwards as through a sieve ... ..

Let us recall that one of the main objectives of any theory of the stars is to calculate
the luminosity of the star. Therefore, it is this leakage of radiation that concerns us.
The radiation would like to flow out, urged by the temperature gradient, but it is
hindered by the process of absorption and emission during its encounter with the
ionized atoms and electrons. It is this process that couples matter and radiation. If
it were not for this the radiation will stream out. It is this repeated absorption and
emission that forces the radiation to do a random walk and diffuse out very slowly
(in tens of thousands to millions of years, depending on the mass of the star). We
have already seen that for a star in radiative equilibrium the luminosity depends not
only on the temperature gradient, but also inversely on the opacity.

We now turn to a discussion of the opacity of stellar matter, which consists
of fully or partially ionized atoms and electrons. And the radiation is mainly soft
X-rays (remember that for a black body at a temperature of approximately 107 K,
the spectrum peaks in the soft X-ray region). This is a complicated subject, and we
shall not get into the details. Instead we shall make some general remarks that should
enable you to get a feeling for the underlying physics. The absorption of X-rays by
atoms has been well studied in the laboratory. The main process is the ionization of
atoms; X-rays of sufficient energy can be absorbed by the atom to eject one or more
of its orbiting electrons. Although the same mechanism will be operative in the stars,
on very general grounds one can anticipate that the opacity of stellar matter would
be less than that of terrestrial matter. There are two reasons for this.

First, stellar atoms are badly mutilated. We expect hydrogen and helium to be fully
ionized, and the heavy elements stripped of all but the ten innermost electrons (two
in the K shell and eight in the L shell). This reduces the absorbing power of stellar
atoms compared to terrestrial atoms which are essentially neutral and, therefore, have
their full complement of electrons.
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There is another reason and let us try to understand this. The point to bear in mind
that the very act of absorption makes the atom ineffective until the atom is repaired.
To repair the absorbing mechanism the atom must capture one of the wandering
electrons, in order to replace the lost electron. This is true in the laboratory also. But
the laboratory X-ray source is quite weak and there is plenty of time for the atom
to repair itself before the next X-ray photon invades it, but in a star, the intensity
of X-rays is enormous. As Eddington put it, ‘It is like an army of mice marching
through your larder springing the mouse traps as fast as you can set them. Here it is
the time wasted in resetting the traps—by capturing electrons—which counts, and
the amount of the catch depends almost entirely on this’.

This is the reason stellar opacity depends on the density, whereas terrestrial opacity
does not. Inside a star, as the density increases, the chance of an atom capturing a
free electron increases, thus decreasing the time needed to repair the traps.

After this qualitative discussion of opacity, let us be a little more systematic and
list the various mechanisms that contribute to the absorption coefficient. You may
skip this discussion if you have not studied some atomic physics.

There are four processes that contribute to the opacity.

. Photoionization or photoelectric effect
. Bound-bound transitions

. Free—free transitions

. Electron scattering

BN =

The relative importance of these depends upon the prevailing condition. Let us now
briefly discuss each one of these.

A. Photoionization

The theory of photoionization or photoelectric absorption was worked out by the
great Dutch physicist H. A. Kramers, in 1923 (in astronomical literature, this is
referred to as bound—free transition). Characteristically, Eddington was quick to
realize that this will be the principal physical process contributing to stellar opacity.
The incident photon knocks out one or more electrons from a neutral atom or an ion
(see Fig. 3.4). Neutral atoms are unlikely to exist in the million degree stellar plasma.
The light elements like hydrogen and helium would be fully ionized. But the heavy
elements would only be partially ionized. Eddington realized that the ionization of
the innermost electronic shells (K and L shells) would contribute to opacity. Although
the process is rather simple, to calculate the net absorption coefficient per gram of
matter is a rather complicated matter.

Consider this. For simplicity, let us first concentrate on atoms of one particular
element. Nevertheless, it will be a mixture of atoms with varying degree of ionization
(that is, different number of electrons knocked out of them). In a particular ion of
that element, the X-ray photon may be absorbed by an electron in any one of the
various energy levels (or orbits). To add to this, the absorption depends upon the
frequency of radiation. Consider an electron whose principal quantum number is 7.
The absorption coefficient for one electron in one atom is approximately given by:
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Bound-free transitions

Fig. 3.4 Photoionization is a very important process contributing to the absorption of energy from
radiation. While the atoms of light elements like hydrogen and helium will be fully stripped of
their electrons, the atoms of heavy elements will still retain the more tightly bound electrons in the
inner orbits. The incident X-rays can knock out one or more of these electrons from the occupied
levels, provided they have energy which is greater than the binding energy of that particular level.
Therefore, the absorption coefficient from any given level will be zero for energy less than the
binding energy. Beyond this threshold, the absorption decreases as the cube of the frequency of the
photon (this is sketched in Fig. 3.5). The electrons liberated from the atoms may collide with other
atoms and can, in principle, cause ionization provided they have sufficient kinetic energy

( )1 1
a = (..)—=—x
bf s 3

(3.17)

where v is the frequency of the radiation. In the above formula, we have suppressed
the details for the sake of bringing out just the salient features. Consider the cross-
section for knocking out an electron from level n. The important feature to notice
is that the absorption coefficient decreases inversely as the cube of the frequency.
Obviously, this formula can only hold for frequencies for which the corresponding
photon energies exceed the ionization energy Y, of this orbit, for only then can it
knock out an electron from this orbit. In other words, the cross-section is finite only
for frequencies greater than a critical value, which, in turn, depends on n.

1
hv > x, = (....); (3.18)

You will remember from your introductory course on atomic physics that this is just
the expression for the binding energy of the various levels of a hydrogen atom. We can
get away with using this because even the heavy elements will be almost completely
ionized, and the ion will look very much like a hydrogen atom, but with an effective
charge which is different; this is known as the hydrogenic approximation. Hence, for
a specific bound—free transition, the absorption coefficient is zero at low frequencies,
Jjumps to its maximum value at the critical frequency, and decreases inversely as the
cube of the frequency. For a specific ion, as a function of frequency the absorption
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Fig. 3.5 The absorption coefficient due to photoionization plotted as a function of the frequency
of the radiation. Shown on the left is the absorption coefficient due to one electron in an energy
level with binding energy equal to i1/ . The absorption sharply sets in at the threshold frequency vy
and then decreases as 3. Notice that this is a log—log plot. That is why it looks like a sawrooth. If
there are many occupied levels, then the absorption coefficient will have one sawtooth feature for
every level. This is shown on the right-hand-side graph

coefficient will have several such sawtooth features, each corresponding to absorption
by electrons in different energy levels of the ion (see Fig.3.5).

In Fig. 3.6 we have shown the experimental data for lead. Please note that in this
particular figure, the absorption coefficient is plotted as a function of wavelength,
and not frequency. Also, it is a linear plot and not a log—log plot; this is why it looks
different from what is sketched in Fig.3.5.

Now let us return to the element in question. The story is far from complete.
So far we have considered only one species of ion. There will be other species of
ions with different degrees of ionization, depending on the density and temperature
(that is, different number of electrons knocked out). Corresponding to every stage
of ionization there will be a series of sawtooth continuum (like those shown in
Fig.3.5). If you think this is a mess, remember that all this is just for one element!
The absorption coefficient of a mixture of heavy elements will naturally be quite
complicated as a function of frequency, as well as with temperature and density.

B. Bound-bound transitions

There is another absorption mechanism involving ions. Here, an electron in one of
the occupied levels absorbs the photon and jumps to one of the higher empty levels
(see Fig.3.7). You might object to this being a genuine absorption mechanism. After
all, the electron can, and will, jump back to the lower level emitting a photon. So
the photon is not lost. The point is that the re-emitted photon will not necessarily be
moving in the same direction as the incident beam. In that sense, there is a decrease
in the beam intensity; there has been absorption. But please remember that this
mechanism is important only at certain frequencies; the frequency of the photon
must match the energy level difference between the final state of the electron and
its initial state. If the energy levels of the atom are sharp, then this is a serious
restriction. However, because of collisions between the atoms, the energy levels will
be significantly broadened. Because of this, this mechanism can be important at
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Fig. 3.6 This experimental data on the X-ray absorption edges in lead was obtained by F. K.

Richtmyer in 1925,

and is reproduced from his classic book, Introduction to Modern Physics,

published by McGraw—Hill Book Company in 1928. Two differences compared to Fig.3.5 should
be noted. On the y-axis, the absorption coefficient is plotted on a linear scale. Further, plotted on the
x-axis is the wavelength and not the frequency. The absorption edges due to ionisation of electrons
in the K and L shells are clearly seen. The K shell corresponds to n = 1, and there are no subshells.
The L shell corresponds to n = 2, and there are three subshells associated with this

times. For example, in the outer layers of the star where the temperature can be less
than 10° K, this mechanism can make a significant contribution to the total opacity.
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Fig. 3.7 In partially ionized atoms, there is another mechanism that contributes to absorption. The
X-ray photon can kick an electron from an occupied to an unoccupied level. Clearly, the absorption
coefficient will be finite only at some discrete frequencies which correspond to the difference in
energy between the final state of the electron and its initial state. This makes this a less-important
mechanism than photoionization, discussed in Fig.3.6. But this process can be important in the
outer regions of the star where there is significant ultraviolet flux (at temperatures less than a
million degrees, the black body spectrum will peak in the ultraviolet). While the UV photons will
not have enough energy to knock an electron from the ion, it can cause the bound—bound transitions
shown here

Electron
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Fig. 3.8 Although a free electron can neither emit nor absorb a photon, an electron in the vicinity
of an atomic nucleus can do so. This sketch depicts the emission of a photon when the electron
experiences acceleration while it sweeps past the nucleus. This process is usually referred to as
Bremsstrahlung or brake radiation. This is the mechanism by which the X-ray continuum in the
star, for example, is produced. The inverse of this would be the absorption of a photon

C. Free—free transitions

In addition to the above two mechanisms, we have to consider what are known
as free—free transitions. Here, while sweeping past a nucleus, an electron absorbs
a photon and changes its kinetic energy. In quantum mechanical jargon, it goes
from one free state to another state, with a different energy and momentum (this
is schematically shown in Fig.3.8). This mechanism is not very important for the
heavy elements, for which photoionization is much more important. But free—free
absorption is important for hydrogen and helium. Remember that since these are fully
ionized, they do not contribute to photoionization; the atoms have been completely
stripped of the electrons.

H. A. Kramers was the first to calculate the coefficient of absorption for such a
free—free scattering.



52 3 Eddington’s Theory of the Stars

1 1

- 3.19
3 velocity (3.19)

agr=(..)

He showed that the absorption coefficient is, once again, inversely proportional to
the cube of the frequency. Notice that in Eq. (3.19) the velocity of the electron comes
in the denominator. This is as it should be. The faster the electron, the less it would
be scattered by the nucleus. The above absorption coefficient varies smoothly with
frequency, and there is no restriction on the frequency as there was for photoioniza-
tion.

D. Scattering by electrons

You will notice that in the above absorption process, we were careful to state that an
electron absorbed (or emitted) a photon while in the vicinity of an atomic nucleus
(in other words, as it sweeps past it). You may have wondered why a lone electron
cannot absorb energy from a photon. This has to do with Einstein’s Special Theory
of Relativity.

Let us try to understand this. Assume for a moment that a free electron absorbs
energy from a photon. As a consequence, its kinetic energy and therefore its speed
must increase. But different observers (in different states of motion) would not nec-
essarily agree that this has happened. Indeed, to some observers it might appear that
the speed of the electron has decreased! Surely, if the electron has really absorbed
a photon, then all observers, regardless of their frame of reference, would have to
agree that the kinetic energy of the electron has increased. Another way of stating
this inconsistency is to say that a solitary electron cannot absorb a photon. If you
like, the atomic nucleus in whose proximity the absorption of radiation takes place
provides a frame of reference with respect to which all observers will agree that the
kinetic energy of the electron has increased.

So what can a solitary electron do? What it can do is to scatter the radiation. In
this process, an incident photon of frequency v is replaced by an outgoing photon of
frequency v, and the kinetic energy of the electron changes by i (v —1»). The kinetic
energy can increase or decrease depending upon whether vy > 1, or otherwise. This
is known as Compton Scattering. There is no problem with this as long as the photon
is scattered in a direction different from the incident direction. In most situations
this change in direction is more pronounced than the change in the frequency, and
hence this process is called scattering. It must be borne in mind, however, that if the
electron itself is moving with a speed close to that of light then the gain in the energy
of photon can be spectacular. There are many astrophysical situations where radio
waves are scattered by relativistic electrons. In these situations, the scattered photon
can gain an enormous amount of energy from the electron. For example, radio waves
can be boosted in energy to such an extent that they will manifest as X-rays or even
gamma rays!

Let us return to the case of a stationary electron scattering a photon. It is easy
to visualize this scattering process in classical physics. Let electromagnetic radia-
tion be incident on a stationary electron (see Fig.3.9). Recall that an electromag-
netic wave is a transverse wave, characterized by oscillating electric and magnetic
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Fig.3.9 The scattering of a photon by a stationary electron can be described using classical physics.
The oscillating electric field associated with the incident electromagnetic wave sets the electron
into oscillation. The electron will oscillate with a frequency which is equal to the frequency of the
wave. According to electrodynamics, an oscillating electron will radiate at a frequency equal to the
frequency of oscillation, but not necessarily in the direction of propagation of the incident wave.
This is why this process is referred to as scattering

fields in a plane perpendicular to the direction of propagation. Let us concentrate
on the electric field associated with the radiation. The electron will begin to oscil-
late under the influence of the oscillating transverse electric field of the radiation.
Maxwell’s theory of electrodynamics tells us that such an oscillating electron will
radiate. The frequency of the radiation emitted by the electron will be same as the
frequency of its oscillation which, in turn, will be same as the frequency of the
incident radiation. This scattering process is known as Thompson scattering. Con-
servation of energy tells us that the scattered radiation is produced at the expense of
the incident radiation. Classical physics tells us that the cross-section for this process
per electron is:

87 et

OTh = —~

—_— 3.20
3 m2ct (3-20)

This is known as the Thompson scattering cross-section. It is interesting to note that
this is independent of frequency and is solely determined by fundamental constants!
Imagine that radiation incident on a screen. The fraction of radiation absorbed due to
this process per square centimetre will be equal to oy, times the number of electrons
in the screen per unit volume (refer to the discussion of the mean free path, etc. at
the beginning of this chapter). Since in this section we are using the terminology of
opacity, rather than cross-section, let us have a feel for the opacity due to Thompson
scattering. Recall that x and o are related through the simple relation:

Kp = on, (3.21

where p is the density and n is the number of electrons per cubic centimetre.

Since the cross-section is given in terms of fundamental constants, we can estimate
the opacity. The mass absorption coefficient or opacity due to electron scattering is
roughly equal to 0.4 (per square centimetre per gram of matter). At high temperature
and pressure, when matter is likely to be fully ionised, electron scattering is the most
important mechanism contributing to the opacity. Recall that the mean free path



54 3 Eddington’s Theory of the Stars

I = 1/kp. Since the mean density of the Sun is 1.4 g cm™, using the above value
for the opacity, we conclude that the mean free path of the photon is approximately
2cm.

4. Mean opacity

Let us now return to the general discussion of the opacity of stellar matter. We
have discussed four mechanisms: photoionization; bound—bound transitions; free—
free transitions; and electron scattering. The net absorption coefficient will be the
sum of these opacities:

k() = kpr (V) + kpp (V) + K pr (V) + K. (3.22)

We are not done yet. The absorption coefficient defined above is a function of the
frequency of radiation; only the contribution to the opacity due to Thompson scat-
tering is independent of frequency. But in our discussion of radiative equilibrium
we have assumed a single value for the absorption coefficient throughout the star.
Clearly, such a constant must represent some sort of mean over all the frequencies. In
the 1920s, an astronomer named Rosseland gave a prescription for how such a mean
is to be calculated, and that is still used. One must also bear in mind that the relative
importance of the four mechanisms depends on the density and temperature. There-
fore, calculating stellar opacity as a function of frequency, density and temperature
is a big industry. But let us not get into those details!

5. The rate of energy production

The last thing one needs to know to construct a detailed model of the stars is the rate
at which energy is produced. No one had a clue about this in the 1920s. Astronomers
were still arguing about the mechanism of energy production. Eddington, of course,
was convinced that the source of energy was the transmutation of hydrogen into
helium. As we shall discuss in Chap.5, Energy Generation in the Stars, a detailed
theory of such fusion reactions was worked out only in 1938. Nevertheless, Eddington
was able to make spectacular predictions based on his theory.

Let us now summarize what we have reviewed so far in this chapter. Having
introduced the concept of radiative equilibrium, we set up the four equations of
stellar structure (Eqgs. 3.7-3.12). To solve for various properties of the stars one has
to solve these equations self-consistently. The main inputs needed to solve these are:

1. An equation of state

2. The chemical composition

3. Opacity of the stellar material
4. The rate of energy production

For the equation of state, Eddington assumed that the gas can be described by Boyle’s
law. As for the chemical composition, he took the point of view that it really does
not matter(!) as long as the composition was predominantly the heavy elements.
He was so convinced that the interior temperature would be of the order of ten
million degrees, and consequently most of the elements would be fully ionized, that
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he assumed that the dominant source of opacity would be electron scattering. The
absorption coefficient due to this process does not involve any detailed calculation;
it is determined by a combination of fundamental constants.

As we shall presently see, Eddington was able to make some remarkable predic-
tions although he did not know the details of the energy production. It was as though
Nature was in a conspiracy with him!

Eddington’s Mass—Luminosity Relation

One of the remarkable predictions of Eddington’s theory is regarding the luminosities
of stars. Let us return to Eq.(3.12). You will recall that the condition of radiative
equilibrium demands that the luminosity crossing an imaginary surface inside the
star is given by:

L(r) = (net outward flux through this surface) x area

ac dT* 5
L(r)y=————4nur-. (3.23)
3kp dr

This is an astonishing result. It says that if we know the temperature gradient and
the opacity we can predict the luminosity of a star.

Lets us try to estimate the luminosity of the Sun using this formula. Consider a
point somewhere midway between the centre and the surface. In this case, r is equal
to half the radius of the star. For the temperature that obtains there, let us assume ten
million degrees (as per our earlier estimate). Let us replace the temperature gradient
by

d_T —~ (T (r) — Tsurface)
dr R

]

where Tyyrface 1S the temperature at the surface and R is the radius of the Sun. For the
opacity x we shall assume that electron scattering is the dominant mechanism. As
mentioned earlier, the opacity arising from Thompson scattering is approximately
0.4cm? per gram of matter. If we now substitute for the average density of the Sun
(1.4 g/lem®) we obtain for the reciprocal of xp approximately 2cm (this is just the
mean free path for the photons). Making these series of oversimplified assumptions
we obtain from Eq. (3.12):
L~3x10% erg s7L.

You may be disappointed because this is about a hundred times larger than the
luminosity of the Sun. But wait! Just think of the series of simplifying assumptions
we have made. Besides, we know nothing about the chemical composition of the star,
its internal temperature, the internal source of energy, the temperature gradient etc.
And yet, we have obtained a value for the luminosity which is well within the range
of stellar luminosities! We have constructed a hypothetical body in which gravity is
balanced by the combined pressure of the gas and radiation. The luminosity of such
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a hypothetical object could be anything. But extraordinarily, it turns out to be of
the order of stellar luminosity! This is the magic I was referring to earlier. We shall
examine this more closely in the next chapter. But for now, let us proceed.

In making the above estimate, we made no reference to the mass of the star. Since
in the ultimate analysis we expect gravity to be the source of all forms of energy,
the mass of the star must surely be one of the factors that determine the luminosity
generated. Let us now see what prediction Eddington’s theory makes regarding this.
Let us start with the condition of hydrostatic equilibrium given by Eq. (3.7):

dpP — GM(r)p

dr r2

Like we did while estimating the luminosity, we shall replace all differentials by
differences. Thus,

dpP P (3.24)
— X —. .
dr R
For the characteristic density, we shall take
M

Using relations (3.24) and (3.25), the equation of hydrostatic equilibrium gives the
following scaling relation:

M2

You will recall that in Eddington’s theory the pressure (the left-hand side of the above
relation) that supports gravity is the sum of gas pressure and radiation pressure:

P:pg+pR

We shall now make the assumption that gas pressure dominates over radiation pres-
sure and that the gas can be assumed to be a perfect (or ideal) gas, i.e.

_ pkpT

P pe Hwmp

(3.27)
It will turn out that this is a very good approximation for stars in the lower mass
range (like the Sun, for example). Given this assumption we may write:

MT

P%pg’\/?

Introducing this into Eq. (3.26) we obtain the following interesting relation:



Eddington’s Mass—Luminosity Relation 57

(3.28)

We are now all set to find the relation between the luminosity and the mass. Let us go
back to our basic condition (3.23) for a star to be in radiative equilibrium, namely:

dr*
L(r)= —£—47rr2
3kp dr

Let us consider our imaginary surface to be the surface of the star. Therefore, r = R,
the radius of the star. Making the usual approximation for the derivative on the
right-hand side (dT*/dr ~ T*/R) we obtain:

RT)*
Loc( ).
M

Since RT o M, as may be seen in Eq. (3.28), we find the desired result.

(3.29)

This is the famous mass—luminosity relation derived by Eddington in 1924. And it
is a remarkable result. It says that the luminosity of a star will be proportional to the
cube of its mass. Notice that the radius of the star has dropped out of the equation.
One would think that given a star of a certain mass, the luminosity it generates should
depend on its radius. After all, the internal temperature should be determined by the
radius—common sense tells us that smaller the star, the hotter it would be—and that,
in turn, should determine the rate of energy generation.

It is almost as though the star knows the radius it must attain. Well, the principle
of radiative equilibrium dictates to the star the luminosity it is allowed to generate.
And that luminosity is determined only by its mass and the opacity [notice that the
opacity enters the expression for the luminosity in Eq. (3.23)]. Given the opacity of
stellar material, the star will adjust itself to that combination of RT such that the
energy generated per unit time precisely compensates for the heat energy lost from
the surface per unit time. If it were to generate more luminosity, given that the rate
at which the energy can diffuse outwards is determined by the opacity, there will be
a build up of energy in the interior and the condition of radiative equilibrium will be
violated.

Comparison with Observations

Having obtained this relation between the mass and luminosity in 1924, Eddington
went on to compare this prediction with observations. This is not as straightforward
as it sounds. There are two practical difficulties. First, we should be able to estimate
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Fig. 3.10 The mass—luminosity relation reproduced from Eddington’s Internal Constitution of the
Stars, published by Cambridge University Press (1926). The logarithm of the masses of the stars
is plotted on the x-axis. Plotted on the y-axis is the absolute bolometric magnitude of the stars.
This is a measure of the luminosity of the stars. The luminosity increases vertically along the
y-axis; the smaller the absolute magnitude, larger is the luminosity. The curve is the theoretical
mass—luminosity relation derived by Eddington: equation (3.29)

the luminosity or intrinsic brightness of the star from its apparent brightness. This is
like trying to determine whether a distant street light has a 100 W bulb or a 500 W
bulb. We can deduce this from the apparent brightness provided we know the distance
to the lamp. And so it is with the stars. Unfortunately, until very recently, one could
accurately estimate the distance of only a handful of stars.

Next, we have to know the mass of the star. This is also a tricky business. There
are special classes of stars whose mass can be determined with reasonable accuracy.
Binary stars belong to this class. Such systems consist of two stars going around a
common centre of mass. As the stars go around in their orbits, the observed wave-
length of known spectral lines from the stars will undergo periodic changes due to
the well known Doppler Effect. The observed wavelength will be shorter when the
star is approaching us (blue shift), and will be longer when the star is receding from
us (red shift) during its revolution in its orbit. By studying this periodic modulation
in the received wavelength of spectral lines one can determine the orbital period and
the semi-major axis of the orbits. One can then use Kepler’s laws to estimate the
masses.

Figure3.10 shows the comparison Eddington made in 1924 between his the-
ory and the observationally deduced luminosities of stars of known mass (repro-
duced from Eddington’s classic book The Internal Constitution of the Stars). A few
words of explanation are in order. The y-axis is the luminosity of the stars in units
which astronomers prefer to use (Absolute Bolometric Magnitude).We shall not go
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into it here, except to say that the luminosity increases vertically; as the numbers
decrease the luminosity increases. Conversely, as the numbers increase the luminos-
ity decreases.

As Eddington put it, the magnitude scale is like golfer’s handicap—the bigger the
number the worse the performance! The brightest star, at the top right-hand corner
of Fig.3.10, is more than two million times more luminous than the faintest star, at
the left bottom. The x-axis is the logarithm of the mass of the star in units of the
mass of the Sun, i.e., M/ M. At the extreme left is a star with a mass approximately
one-sixth the mass of the sun, and the mass of the star on the extreme right is about 30
M; extraordinarily, there are very few stars outside this range of masses. The curve
is the theoretical mass—luminosity relation given by Eq. (3.29), and the observational
data are the various symbols marked.

It is important to note that in any theoretical formula there will be a number
of parameters that one cannot accurately specify. In the present case, for example,
even though one may know the mass of a star it is difficult to accurately predict
its luminosity because one or more numerical constants appearing in the formula
cannot be determined with any confidence from pure theory. In such circumstances
the usual practice is to make the curve fit one data point; this would then serve to
determine the unknowns in the formula. While attempting to compare his theory
with observations, Eddington made his curve pass through one data point. He chose
the bright star Capella. The theoretical curve has thus been normalized, and it cannot
be raised or lowered to force it to go through other data points. You will agree that
the agreement between observations and the theory is nothing less than spectacular.

More recent observational data are shown in Fig. 3.11. As will be seen, L o« M 3.5
gives an excellent fit to this data set. This slope is very nearly what Eddington’s
theory predicts. The agreement of the observations with the theoretical curve came
as a complete surprise to everyone, including Eddington. It was a surprise because
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this was not at all the result they were looking for, and we shall discuss this in Chap. 4,
Why Are the Stars As They Are.

The Eddington Luminosity Limit

Another important result obtained by Eddington concerns the maximum luminosity
of a star of a given mass. This limiting luminosity has come to be known as the
Eddington limit and is of great contemporary interest. Let us derive this important
result.

Let us go back to Figs.3.1 and 3.2 at the beginning of this chapter and consider
the slab of stellar material of unit area and thickness, dr. We argued that the resultant
force due to radiation on the slab in the direction of the temperature gradientis —dp,.
This force imparts momentum to the slab in the radial direction equal to Frpdr/c.
We said that when the slab is in radiative equilibrium, it absorbs this momentum flux
and uses it to supplement the gas pressure in supporting itself against the inward
directed force of gravity.

Let us now assume that gas pressure is negligible compared to radiation pressure.
Under the circumstances when a star is generating the maximum possible luminosity,
it is quite reasonable to assume that radiation pressure dominates over gas pressure.
In this case, the condition of equilibrium requires that the outward-directed resultant
force due to radiation precisely balances the inward-directed force on the slab due
to gravity. In other words,

GM d
—~dp, = % (3.30)

In Eq. (3.30), M () is the mass interior to the slab and p(r)dr is the mass of the slab
(remember it has unit cross sectional area and thickness dr). Using the relation
_ Frpdr

—dp, = c

the condition for equilibrium can be recast as

Frpdr — GMpdr

= (3.31)

C r

Let us rewrite this in terms of the luminosity L, which is simply the net outward flux
F crossing a unit area multiplied by the area of the sphere (L = 4r? F). Therefore,

Lkpdr — GMpdr
-

= 3.32
47r2c r ( )

Simplifying we get
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. drcGM
= —

L (3.33)

Remember that the expression we have just derived represents the limiting luminosity
the star can generate. If the luminosity exceeded this then the outward directed force
due to the radiation would be greater than the force due to gravity, and the star will be
blown apart. Notice that this limiting luminosity is uniquely determined by the mass
of the star and the opacity (or the mass absorption coefficient). Let us now assume
that hydrogen is the predominant element and that the stellar matter is completely
ionized. Under these conditions, electron scattering will be the ultimate source of
opacity. So « in the above formula would be the Thompson absorption coefficient.
kTh- It is customary to recast the formula for the limiting luminosity in terms of the
Thompson scattering cross-section oty,. Remember that £ and o are related by the
relation kp = on, where p is the mass density and n is the number of free electron
per unit volume. Since we are dealing with hydrogen, p = nmpg, where mpg is the
mass of the hydrogen atom.
Let us now rewrite the expression for the limiting luminosity as

drcGMmpy

OTh

LEddington = (3.34)

This limiting value of the luminosity has come to be known as the Eddington Lumi-
nosity Limit. It is a truly remarkable result. No matter how efficient the process of
energy generation might be, a self gravitating body of mass M cannot generate lumi-
nosity greater than this, for if it did, radiation pressure will overwhelm gravity and
the object would become unstable. It is also a beautiful result. Apart from funda-
mental constants, the critical luminosity is uniquely determined by the mass of the
body (remember that the Thompson cross-section only involves e, m, and c).

It is useful to have an idea of the numerical value of the Eddington limit. Substi-
tuting for the constants and the mass of the Sun, we obtain

Lgga(Sun) = 3.3 x 10*Lo ~ 10%8ergs™". (3.35)

Since this result is of great significance is many situations, it is useful to write it as
follows

(M 38 -1
Lgga = —) x 10°%ergs™". (3.36)
Mg

As we shall see in the later volumes in this series, this result is of significance in
the context of X-ray astronomy, accretion discs around black holes, etc. Just to get
a feeling for the importance of this concept, I shall mention one example without
attempting to really explain it in detail. When the so called quasars were discovered
in the 1960s, astronomers were astonished. Although there was direct observational
evidence to suggest that these objects—whatever they might be—were very compact
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(just a few light days across), their luminosities were of the order of 10*® erg s~!

(truly staggering). The Eddington limit was invoked to argue that an object radiating
approximately 10% erg s~ must be more massive than 108 M; otherwise, radiation
pressure would disrupt it. Such alarge mass, packed into a small volume, immediately
suggested that the central engines of quasars must be supermassive black holes!

On that note, we shall wind up this chapter. This chapter has been devoted to
Eddington’s pioneering efforts to construct a comprehensive theory of the stars. We
have only touched upon the essence of his theory. By choosing to highlight the mass—
luminosity relation and the critical luminosity, we have attempted to bring out the
magical elements of his theory. But there is much more than that in his classic book
The Internal Constitution of the Stars published by Cambridge University Press in
1926. It is important to appreciate that this book was not a survey of the published
literature. Much of it is pioneering and original contribution by Eddington. The
number of insights and prescient conjectures that are to be found in this book are
truly impressive:

1. The idea that radiation pressure must play an increasingly important role in the
stability of the stars as one goes to more massive stars.

2. The concept of radiative equilibrium, which we have repeatedly stressed.

3. The idea that the source of energy in the stars must be the transmutation of
hydrogen into helium.

4. The realisation that photoionization must be a very important source of opacity.

5. The mass—luminosity relation.

6. The concept of a limiting luminosity.

To really appreciate his monumental efforts one has to study—and admire—his book.
To me, two things stand out. First, the remarkably lucid style in which it is written.
His examples and analogies put one at ease. This should be apparent from the number
of extended quotations I have included from Eddington’s book. Second, the rapidity
with which he absorbed the latest developments in physics and used them in an
astronomical context is simply unparalleled.

Soon after it was published, the famous Princeton astrophysicist Henry Norris
Russell wrote, ‘(the book) has every claim to be regarded as a masterpiece of the first
rank’. Few books have had as much influence in the development of a subject as this
book has had. More than 80 years after it was published, it continues to be regarded
a masterpiece of the first rank.



Chapter 4
Why are the Stars as they are?

Are Stars Really Globes of Perfect Gas?

As we saw in the previous chapter, Eddington’s theory of stars, based on the principle
of radiative equilibrium, was spectacularly successful in predicting their mass—
luminosity relation.

Recall that Eddington’s theory was predicated on two assumptions. First, the star
is in radiative equilibrium. Second, the material constituting the interior of a star
can be described as a perfect gas. When Lane proposed his theory of the stars on
the assumption that they were blobs of perfect gas, there was no evidence that any
such star existed. In 1870, the only star whose average density one knew was the
Sun (1.4 g/cm?). In our experience on the Earth, gases cease to behave as a perfect
gas long before they reach a density ~1 g/cm?. Water vapour, for example, becomes
liguid water when compressed to a density of 1 g/cm>. Therefore, Lane’s assumption
seemed quite unreasonable. By 1924, it was well established that some stars at least
were quite diffuse. By then, the diameters of some giant stars had been measured,
allowing one to deduce their mean density. For example, the mean density of Capella
(at the extreme right of the mass—luminosity diagram shown in Fig. 3.10) is less than
the density of air. In fact, this is true for all the stars in the right-hand-side half of
that figure. For these diffuse stars, perfect-gas behaviour can safely be assumed. But
the stars on the left-hand side of the diagram are much denser than water. The star
Krueger 60, for example, is denser than iron!

You will therefore appreciate that there was total surprise when the data on the
luminosities of real stars agreed so well with the predictions of a theory which
assumed that stars are blobs of perfect gas. To Eddington, this agreement was most
annoying! He exclaimed, ‘“What business have they on a curve reserved for a per-
fect gas?” Eddington had hoped for something different. The luminosities of the
dense stars were expected to be well below the theoretical curve for diffuse stars.
Astronomers had hoped to learn something about the stars by observing ‘how far
the dense stars fell below the theoretical curve’. This is how science progresses. The
‘deviations’ from the predictions of a successful theory are the stepping stones for
further progress.

G. Srinivasan, What are the Stars? Undergraduate Lecture Notes in Physics, 63
DOI: 10.1007/978-3-642-45302-1_4, © Springer-Verlag Berlin Heidelberg 2014
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Fig. 4.1 A gasis considered to be ideal or perfect if the kinetic energy of the atoms is much greater
than the potential energy of interaction between two atoms. In a classical gas made of atoms or
molecules, this condition will be satisfied if the mean distance between the atoms is much larger
than the characteristic size of the atoms

What should we make of this agreement between the prediction for stars made of
perfect gas and the data pertaining to real stars? Is it possible that the stellar material
of even the dense stars is perfect gas? But this would require that gas of density far in
excess of the density of iron would behave as a perfect gas. As we shall now argue,
this is certainly possible. To quote Eddington, ‘the reason why it should not is earthly
and does not extend to the stars!’

Let us try to understand this remarkable statement. The feature of a perfect gas
obeying Boyle’s law is that the distance between the atoms is very large compared
with the size of the atom (see Fig.4.1).

This is why the potential energy of interaction between the atoms is small com-
pared with their kinetic energy; recall that this is the condition for a gas to be regarded
as perfect or ideal. As Eddington would put it, a gas contains very little substance and
a lot of emptiness. As the gas is compressed, some of the empty space is squeezed
out and the atoms come closer. At some stage the force between the atoms becomes
significant to affect the compressibility of the gas. When this happens, the gas ceases
to be a perfect gas; Boyle’s law breaks down (see Fig.4.2).

As we compress the gas further the atoms will be practically touching one another.
When the density reaches a few grams per cubic centimetre the gas will become a
liquid. Let us recall that the characteristic size of a neutral atom is approximately
10~8 cm. Strictly speaking, this is the size of the hydrogen atom, with only one
electron. In heavier atoms, the cloud of electrons will be a little bigger than this;
but 1078 cm is the typical size of most atoms. Since the atoms are very close to
their neighbours, the interaction between the atoms is very strong in a liquid. If we
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Fig.4.2 A classical gas ceases to be ideal when the distance between the atoms/molecules becomes
comparable to their sizes, and consequently the interaction energy between the particles becomes
important. At a density of a few grams per centimetre cube, most gases will undergo a phase
transformation to a liquid. In a liquid the atoms will be practically touching one another, but they
would still be in a state of motion like in a gas. At higher densities, these motions will cease, and
the liquid solidifies. The atoms in a solid can vibrate about their mean positions, but they cannot
wander around

Liquid

squeeze the atoms even closer to one another, the liquid becomes a solid. The reason
for this is simple. The repulsion between the atoms will be very strong when they
are practically touching each other. The best way for the atoms to minimize this
interaction energy is to stay put in one place, and that is what a solid is.

The point to note is that neutral atoms of size > 10~8 cm do not exist in the stars (see
Fig.4.3). As we have already discussed, at the conditions of enormous temperature
and pressure that prevail in the interior of stars, stellar atoms will be stripped of their
electrons. The lighter atoms will be stripped right down to the nucleus. Recall that the
size of the nucleus (approximately 10~!3 cm) is approximately a hundred thousand
times smaller than the size of the neutral hydrogen atom. The heavier atoms will
retain a few electrons in the innermost orbits, but the ion will still be a thousand
times smaller than the neutral atom with its full compliment of electrons. The upshot
of all this is the following. Even at densities much greater than that of iron, the
mean distance between the bare nuclei of the stellar atoms would still be enormous
compared to their size. With their electronic shells stripped off, the stellar atoms are
incredibly small compared to their terrestrial counterpart. It is therefore not a surprise
that the stellar material remains a perfect gas even at very high densities. The key
to this is, of course, the very high temperature and pressure that obtain in the stars.
Clearly, such extreme conditions are not earthly.
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Fig. 4.3 Neutral atoms do not exist at the conditions of high temperature and pressure that prevail
in the stars. The light elements will be completely ionized and the atoms of the heavy elements
will retain only the electrons in the innermost shells. Since the atomic nuclei are roughly a hundred
thousand times smaller than the neutral atoms, even at a density of a few grams per centimetre cube
the distance between the bare nuclei would be enormous compared to their sizes. Therefore, the
stellar plasma can be regarded as ideal even at the density of iron!

Fig. 4.4 When crinolines were fashionable, a ballroom with just a handful of dancers would be as
congested as a jam-packed modern day disco! Even though the number of dancers would be very

few, their effective sizes would be large
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We should have expected this. Eddington put it in his characteristic fashion: ‘Our
mistake was that in estimating the congestion in the stellar ball-room we had forgot-
ten that crinolines are no longer in fashion’. Since ballroom dancing, with women
wearing crinolines, belongs to a bygone era, let us consider a more familiar situation
(Fig.4.4). Imagine a very crowded street on a rainy day with every pedestrian carry-
ing a gigantic open umbrella. The umbrellas will be rubbing against each other. The
people with these umbrellas are our terrestrial atoms; the pedestrians are the nuclei
and the umbrellas the electron shells. Imagine the rain stops, and everyone folds their
umbrellas. Suddenly there will be a lot of space between the people, and they can
move with relative ease. But the density of people has not changed!

Returning to the mass-luminosity relation derived by Eddington, we need not be
concerned. We have not compared the theory with the wrong stars after all. The
stellar material in all the stars, diffuse as well as dense, can be safely regarded as

perfect gas.

The Happening of the Stars

We turn next to the happening of the stars. We can do no better than quote Eddington
himself. ‘It is remarkable that the units into which the matter of the universe has
aggregated primarily are so nearly alike in mass. The stars differ widely in brightness,
density and physical conditions, but they mostly contain the same amount of material.
Itis as though nature had a standard model before her in forming the stars, and (except
for occasional lapses of vigilance) would not tolerate much deviation. The extreme
range (about one-sixth to a hundred times the Sun’s mass) does not give a fair idea
of the general uniformity of mass. ... A mass range of 5:1 would, I believe, include
more than 90 % of the stars’. (Source: The Internal Constitution of the Stars).

Eddington went on to explain the reason for this in his famous parable of a physicist
in a cloud-bound planet. It is such an extraordinary explanation that this book would
not be complete without narrating it. We quote Eddington:

The outward-flowing radiation may thus be compared to a wind blowing through the star
and helping to distend it against gravity. The formulae to be developed later enable us to
calculate what proportion of the weight of this material is borne by this wind, the remainder
being supported by the gas pressure. To a first approximation, the proportion is the same in
all parts of the star. It does not depend on the density or on the opacity of the star. It depends
only on the mass and molecular weight. Moreover, the physical constants employed in the
calculation have all been measured in the laboratory, and no astronomical data are required.
We can imagine a physicist on a cloud-bound planet who has never heard tell of the stars
calculating the ratio of radiation pressure to gas pressure for a series of globes of gas of
various sizes, starting, say, a globe of mass 10 gm, then 100 gm, 1000 gm, and so on, so that
the nth globe contains 10" gm. Table 4.1 shows the more interesting part of his results.

The rest of the table would consist mainly of long strings of nines and zeros. Just for the
particular range of mass about the thirty-third and the thirty-fifth globes the table becomes
interesting, and then lapses back to the nines and zeros again. Regarded as a tussle between
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Table 4.1 Radiation pressure

No. of globe Radiation pressure Gas pressure
and gas pressure
C()rresponding to globe size 30 0.00000016 0.99999984

31 0.00016 0.999984

32 0.0016 0.9984

33 0.106 0.894

34 0.570 0.430

35 0.850 0.150

36 0.951 0.049

37 0.984 0.016

38 0.9951 0.0049

39 0.9984 0.0016

40 0.99951 0.00049

matter and ether (gas pressure and radiation pressure) the contest is overwhelmingly one-
sided except between No. 33-35, where we may expect something interesting to happen.

What happens is the stars.

We draw aside the veil of cloud beneath which our physicist has been working and let
him look up at the sky. There he will find a thousand million globes of gas nearly all of
mass between his thirty-third and thirty-fifth globes: that is to say, between one-half the
Sun’s mass and fifty times. The lightest known star is about 3 x 1032 g. and the heaviest
about 2 x 103° g. The majority are between 1033 and 103* g. where the serious challenge of
radiation pressure to compete with gas pressure is beginning.

What Eddington meant was this. The masses of the stars are as they are because only
then radiation pressure will be comparable to gas pressure (see the Table4.1). This
is so only in a very narrow range of mass. And this tussle between gas pressure and
radiation pressure is necessary for their happening. Why this should be so is not at
all clear. We shall now try to understand this mysterious statement.

Why are the Stars as they are?

In the earlier chapters, we discussed the question, What are the stars? We turn next
to an even more interesting question, namely, Why are the stars as they are? It is a
remarkable fact that most of the stars have masses in an incredibly narrow range of
mass. As we just saw, Eddington offered a plausible explanation for this, although
his explanation is obscure. There are two distinct things that need to be explained:

1. Why do the stars have nearly the same mass?
2. Why is the tussle between gas pressure and radiation pressure important for the
happening of the stars?

Eddington is silent on both these questions. A much more satisfactory explanation
was provided by Subrahmanyan Chandrasekhar. Before presenting his explanation,
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let us digress a little. Let us remind ourselves of what we are attempting to do. What
we are really trying to do is to understand why Eddington’s theory of the stars is so
enormously successful.

Natural phenomena are often circumscribed by well-defined scales. These are
scales of length, time, mass etc. Theories concerning natural phenomena are suc-
cessful only to the extent that these scales naturally emerge in the theories. Let us
consider the example of the theory of hydrodynamics and its description of waves
in a liquid. Hydrodynamics is not concerned with the constituent atoms and mole-
cules of the liquid. Its starting point is in defining the macroscopic properties of
the liquid, such as its average density, average pressure, etc. The motions of the
atoms/molecules, their collisions and so on are averaged out in defining the macro-
scopic properties mentioned above. Therefore, the subject of hydrodynamics cannot
deal with phenomena whose length scale is comparable to the distance between the
atoms, or whose time scale is comparable to the mean time between the collisions
of the atoms. It can only hope to describe waves whose wavelengths are much larger
than the distance between the microscopic particles and whose time periods are much
longer than the time between collisions of the particles. Hydrodynamics will pre-
dict some characteristic scales of length and time, which in turn are determined by
properties such as the mean density, pressure, gravity, and so on. The theory will be
most successful in describing those waves whose wavelengths and periods are close
to these naturally emerging length and time scales within the theory.

Let us consider another example from the realm of atomic physics. In analogy to
the question we are addressing concerning the stars, let us ask, why are the atoms as
they are?

What do we mean by such a question?

Atoms of the various elements of the periodic table, although they contain vastly
different number of particles, are roughly the same size: a few times 10~8 cm. The
important thing to appreciate is that while their sizes may vary by a factor of fifty or
even a hundred, we do not see occurring in nature atoms as big as a ball bearing, let
alone a ping pong ball. Why is this so? Let us try to understand this in a simple way.

As you know, atoms cannot be described by classical mechanics; the theory that is
so successful in describing the planetary system. In 1913, Neils Bohr formulated his
celebrated theory of the atoms. At first sight, this theory may appear no different from
classical mechanics: he equated the electrostatic force experienced by the electron
(due to the positive charge of the central nucleus) to the centrifugal force experienced
by the electron due to its motion around the nucleus. This is exactly what one does
in the case of planetary motion around the sun; the attractive force between the sun
and the planets is due, of course, to gravity.

In addition to balancing the forces, like we do in classical physics, Bohr introduced
another rule; a rule that was not there in classical mechanics but which has to be
obeyed in the world of the atoms. He said that the angular momentum of the electron
must be an integral multiple of Planck’s constant h. (Angular momentum is the
momentum related to the electron’s circular motion around the nucleus.) When one
introduces this new and essential principle, a length scale naturally emerges in the
theory; a length scale which is defined by a specific combination of fundamental
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constants that appear in the theory of the atoms (Planck’s constant 4, the mass of the
electron m, and the charge of the electron e). This combination of the fundamental
constants, which has come to be known as the Bohr radius, has the dimension of a
length, and is given by the expression:

h2
1o 05 % 1078 cm (4.1)
T Mee

The point to appreciate is this. There is no a priori reason why Neils Bohr’s rule
should apply in nature. There is no reason why such objects as atoms should exist
obeying the rules stated by Bohr. But if they do exist, then their sizes would be
comparable to the Bohr radius. To put it differently:

Atoms are as they are because they obey the rules of atomic physics. And atomic physics
provides a length scale with which to measure them, namely the Bohr radius.

Let us now return to the question, why are the stars as they are? In analogy with
the above discussion, we have to ask whether Eddington’s theory naturally isolates
a combination of fundamental constants occurring in it with the dimension of mass;
if so, what is its numerical magnitude? Interestingly, Eddington did not do this. This
is particularly surprising because in the later part of his career Eddington was very
preoccupied with natural constants. The discussion below is due to Chandrasekhar
(1937).

After his monumental discovery concerning the ultimate fate of the stars (which
will be the theme of the second volume in this series), Chandrasekhar turned to
a detailed investigation of the internal constitution of the stars. He extended and
developed the basic methods introduced earlier by the masters of the subject such as
Eddington, Milne, and others. Along the way, he proved a number of mathematical
theorems (which was to become characteristic of his work for the next sixty five
years) concerning the equilibrium or mechanical stability of the stars. One of those
theorems holds the key to our question.

A Characteristic Mass for the Stars

We shall now outline how Chandrasekhar’s theorem isolates a mass scale for the stars.
Let p(r) be the density profile of a star of radius R (central panel of Fig. 4.5). Construct
two other stars of uniform density. On the left is a star with a constant density equal
to the average density, p, and on the right is another star with a constant density
equal to the central density, p.. The radii of these configurations will be R and R,
respectively. According to one of the theorems of Chandrasekhar, for a star to be
stable the total pressure, P, at the centre of the actual star must satisfy the following
inequality:
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Fig. 4.5 The central panel shows the density distribution of the actual star. At the left and right are
two model stars. On the left is a star of uniform density which is equal to the average density of our
star. The radius of this model star will, of course, be equal to the radius of our star. On the right is
another model star of uniform density equal to the central density of our star
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Let us try to understand this theorem. At the centre of this inequality is the total
pressure at the centre of a star, P., namely the sum of gas pressure and radiation
pressure. On the left is the gravitational pressure at the centre of the model star

with uniform density equal to the average density p. On the right is the gravitational
pressure at the centre of the star with uniform density equal to the central density, p,:

Wl
Wl

M
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1 [4n\'? 2+
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Central Gravitational Pressure (p)
< (pg +pr)c = Central Gravitational Pressure (p.).

You may be puzzled by the expression used above for the gravitational pressure
because in Chap.2, Stars as Globes of Gas, the expression GM? /R* has been used
for gravitational pressure. This can easily be recast as follows:

GM2 GM2/3M4/3 M 4/3
= = GM*3 (F) = GM?3p*3.

R* R*

This is the way Chandrasekhar has expressed the gravitational pressure in his inequal-
ity theorem. You will see the reason for it presently.

Let us now return to the stability theorem. If this inequality is violated then there
must be regions in the star where adverse density gradients prevail, and this will lead
to instabilities. Thus, satisfying this inequality is a necessary condition for the stable
existence of the star.
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As we shall presently see, this inequality will give us a combination of fundamental
constants with the dimension of a mass, just as the theory of the atom gave us the
Bohr radius. But before isolating this combination, we must do a little algebra and a
bit of jugglery. The reason is this. You will recall that the total pressure P is the sum
of gas pressure and radiation pressure.

P = Pgas + Prad 4.3)
where
pkT
Pgas = ——
Hny
1
Prad = §QT4.

Note that while radiation pressure is determined by the temperature alone, gas pres-
sure involves both the temperature and density. Therefore the total pressure is a
function of both density and temperature. Since the left and the right sides of the
inequality (4.2) involve only the density it is difficult to extract any meaningful
conclusions from the inequality. We must therefore employ a little trick so that the
temperature is eliminated from the expression for the total pressure. Only then we
can meaningfully compare the two sides of the inequality.
Following Eddington, let us introduce a fraction, 3, which is defined below:

1 kT 1 1
P=- (p—) - (—aT4) : “4)
B8 \ umy 1-06 \3
The meaning of (3 is clear. It is the fraction of the total pressure contributed by gas

pressure, (1 — () is the fraction due to radiation pressure. We can equate the second
and the third terms in the equation above and express 7T in terms of 3 and p:

1 pkT 1 1
S art
Bum, 1-733

Solving for T we get:

T — [ELﬂT 3. (4.5)
apm, B

We can now use this expression to recast the total pressure in terms of p and 3, instead
of p and T. Let us consider the following equation expressing the gas pressure as a
fraction of the total pressure:

P 1 pkT

- Bﬂmp.
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Let us substitute for 7" in terms of p and [ using the expression given in Eq. (4.5).
A little rearrangement gives:

p_|3 k41—/6’%% »
[aG) 5] o

This gives us an alternate expression for the total pressure in terms of p and 5. We
have not got rid of the temperature dependence; it is now implicit, rather than explicit.

Let us now return to Chandrasekhar’s stability theorem (4.2) and use this expres-
sion for the total pressure expressed in terms of p and (:

1
1 47 5 4 2 3/ k \'1- Be |’ 4
-G — pIM3 < |- — p3
2 3 a \ umy, Jin ¢

< Llo (¥ : M3 4.7)
_2 3 pé e .

Now both the total pressure (the central term in the above inequality) and the gravita-
tional pressure (the left and right sides of the inequality) have been expressed in terms
of the density alone; the explicit dependence of the total pressure on the temperature
has been replaced by an implicit dependence, through the use of the dimensionless
fraction /3. Notice that since it is the central value of the total pressure that enters
the inequality, we have added a subscript to the dimensionless fraction, (3. Since the
density appears as p*/3 on both sides of the inequality, it can be cancelled. That is
the trick of introducing the fraction, (.
The right-hand part of the inequality now reads as follows:

k 431—@% ™ .o
(o) 5] =)' Y

Remember that Stefan’s constant, @, and Boltzman’s constant, kg, that enter the above
equation are not fundamental constants. Stefan’s constant is defined as:

8o k*
a=——=-.
15¢3h3

Substituting this in the above equation and simplifying one gets:

2M( g )£>019 (}f);i (4.9)
FY\1Zs) = G) m| '
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In the above inequality, 4 is the molecular weight of the stellar material (¢ ~ 1 if itis
predominantly hydrogen and o ~ 2 if there is very little hydrogen. In the latter case
it really does not matter which of the elements heavier than hydrogen is dominant)
and (3. is the value of the dimensionless fraction at the centre of the star. We have
now achieved our goal!

‘We observe that the above inequality (4.9) has isolated the following combination
of fundamental constants that has the dimension of mass:

(M] = (@)2 L (4.10)

5
G m;

Insert the dimensions of all the constants on the right-hand side and convince yourself
that the combination does, indeed, have the dimension of mass. This is a famous
combination of fundamental constants, and will play a very prominent role in the
subsequent volumes. But for now, let us savour this remarkable result.

First, what is the significance of this result? Recall that in Bohr’s theory of the
atom, a combination of fundamental constants having dimensions of length naturally
emerged, namely, the Bohr radius. This length defined the characteristic size of the
atoms. Now we know that the actual sizes of the atoms are indeed comparable to the
Bohr radius, thus confirming that Bohr’s ideas are at the base of quantum physics. In
a similar fashion, a characteristic mass emerges in Eddington’s theory of the stars, a
theory in which gravity is balanced by the combined pressure of the gas and radiation.
What is the numerical value of this characteristic mass?

Inserting the values of the fundamental constants, we find that Eddington’s theory
of the stars gives the following characteristic scale for the mass:

he\? 1
) 2 = 090m,,. 4.11)

2
G m;

Note that the numerical value of this mass scale is 29.2 times the mass of the Sun. It is
of stellar magnitude! Objects in which gravity is balanced by the combined pressure
of the gas and radiation must have a mass which is a few times the mass of the Sun.

A Limit on the Radiation Pressure

The inequality (4.9) also provides an upper limit to (1 — [3.) for a star of a given
mass M. Remember that (1 — ;) is just the ratio of the radiation pressure to the
total pressure at the centre of the star. It follows from Eq. (4.9) that this upper limit
is given by:

1 =0 <1-p (4.12)



Why are the Stars as they are? 75

where (1 — ;) is uniquely determined by the mass M of the star and the mean
molecular weight, i, by the quartic equation:

1
548[1-3,72
M=7[ ﬁf] Mo. (4.13)

This quartic equation is simply obtained by rearranging Eq. (4.9) and using Eq. (4.11).
Given a star of a certain mass, the above equation due to Chandrasekhar provides an
upper limit to the radiation pressure at the centre of the star. In the case of the Sun,
for example, the radiation pressure at the centre cannot exceed 3 percent of the total
pressure.

Let us now summarize our discussion. We posed two questions at the beginning
of this chapter concerning the happening of the stars:

(1) Why do the stars have nearly equal masses?
(2) Why is a tussle between gas pressure and radiation pressure important for the
happening of the stars?

Eddington did not have a satisfactory answer to either of these questions. But
Chandrasekhar answered both these questions in an authoritative and elegant manner.

1. Why do the stars have nearly the same mass?

Let us go back to Eddington’s parable of the physicist in the cloud-bound planet.
Recall that the physicist had never seen the sky. All he knew was laboratory physics,
and natural constants measured in the laboratory. Based on his knowledge of physics,
he constructs hypothetical objects in which the inward pull due to gravity was bal-
anced by the combined effect of gas pressure and radiation pressure. His theory
provides him with a scale of mass with which to measure such objects. And that
mass scale, defined by a combination of fundamental constants occurring in the
theory, is 29.2Mg:

His theory thus tells him that the characteristic mass of such objects would be a

few times 1033 g (recall that the mass of the Sun is 2 x 1033 g). They will not be of

planetary mass, nor would they be thousands of times more massive than 1033 g.
This is the answer to the first question. Is it not extraordinary?

2. Why is a tussle between gas pressure and radiation pressure important for
the happening of the stars?

Our physicist’s theory also tells him that the stability of his objects requires that the
ratio of radiation pressure to the total pressure at the centre must be less than a critical
fraction dependent only on the mass of the star, as described in Eq. (4.13).
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1

5.48 1—5*]2

M=222 M.
12 [ B

This is the answer to the second question. One can now appreciate why a tussle
between gas pressure and radiation pressure is important for the happening of the
stars.

It turns out that nature has made objects similar to what our physicist friend had
constructed in the laboratory. Not surprisingly, when Eddington draws aside the veil
of clouds, our physicist finds that there are, indeed, thousands of millions of shining
globes of gas in the sky, the majority having masses between 103> and 103* g.

What do we conclude from the foregoing discussion of what are the stars and
why are they as they are? There is no better way to wind up this chapter than by
quoting Chandrasekhar from his Nobel Prize Lecture (1984):

We conclude that to the extent (4.13) is at the base of the equilibrium of actual stars, to

3
o \ 2 -

that extent the combination of natural constants, (%‘) #, providing a mass of proper

P

magnitude for the measurement of stellar masses, is at the base of a physical theory of stellar
structure.



Chapter 5
Energy Generation in the Stars

The Hypothesis of Nuclear Fusion in the Stars

In Chap. 2, we discussed the extraordinary conjecture by Eddington that the source
of energy in the Sun and the stars must be the transmutation of the elements, more
specifically, the conversion of hydrogen into helium. You will recall that he was
led to this conclusion by the experimental findings of F. W. Aston, working in
Rutherford’s laboratory in Cambridge. Aston’s interest was to measure the masses of
atoms accurately. One of the discoveries he made was that the mass of four hydrogen
nuclei was greater than the mass of one helium nucleus. Eddington’s idea was that
if four protons fuse to produce a helium nucleus, then this mass deficit would be
converted into energy according to Einstein’s formula:

E = AMc>.

Let us examine this closely. The mass of four protons is 4 x 1.0081m,, (atomic mass
units), while the measured mass of the 4He nucleus is 4.0039m,,. This means that
a mass of 2.85 x 10~2m,, has disappeared for every helium nucleus produced if,
indeed, the helium nucleus is produced by fusing four protons. This is roughly 0.7
percent of the original mass of hydrogen and corresponds to energy measuring about
26.5MeV (Million electron-Volt, which is the unit usually used to measure energy in
nuclear physics). Another way to say this is the following. If mass, M, of hydrogen is
converted into helium, then the energy released is 0.007 M ¢>. (Think of James Bond
to remember this formula!) The mass of the Sun is 2 x 1033 g, most of it hydrogen.
By converting most of it to helium, it can generate ~10°2 erg of energy. The rate at
which it radiates this energy (its luminosity) is 4 x 1033 erg s~!. Therefore, the Sun
can easily shine for 10!! years by tapping this source of subatomic energy.

G. Srinivasan, What are the Stars? Undergraduate Lecture Notes in Physics, 77
DOI: 10.1007/978-3-642-45302-1_5, © Springer-Verlag Berlin Heidelberg 2014
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0.007 Mg c?
Lo
0.007 x 2 x 1033 x 10*'erg
4 x 1033erg s~!

Tnuclear ™

Tnuclear ™

~ 10" years. (5.1)

This was Eddington’s wonderful idea. In other words, the Sun generates energy
by setting off hydrogen bombs—recall that in such a bomb hydrogen is fused into
helium. The difference is in the scale! The energy released in a manmade bomb is
roughly equivalent to converting a couple of kilograms of hydrogen into helium.
The observed luminosity of the Sun implies that 600 x 10'? g of hydrogen is being
converted into helium every second—that is, more than 600 million metric tons per
second! A natural question that comes to mind is, “‘Why does the Sun not blow itself
apart?’ We shall return to this interesting question a little later.

The Basic Difficulty

While Eddington may have hit upon a brilliant idea, it is not at all obvious that
four hydrogen nuclei can be fused to form a helium nucleus. The hydrogen nuclei
(namely, the protons) are positively charged particles. Consequently, they will repel
each other due to the electrostatic force

62
Fcoulomb(r) = r_2

Given this repulsion, how can one bring two protons so close to one another that
they practically touch? For only then will they bind together under the influence of
the strongly attractive nuclear force. We need to answer to this question before we
can understand how the transmutation of elements occurs. Let us, therefore, digress
a little.

Interestingly, the basic clue regarding how nuclei might fuse together, despite
their strong mutual repulsion, came from the phenomenon of natural radioactivity,
namely, the spontaneous disintegration of heavy nuclei. Let us, therefore, discuss
the problem of how alpha particles (*He nuclei) are emitted by the uranium nucleus
during its radioactive decay.

To understand why there is a problem in understanding this phenomenon, let
us discuss the inverse of this, namely, the scattering of alpha particles by uranium
nucleus (the famous scattering experiment by Rutherford). Since the alpha particle
is positively charged, it will experience repulsion given by Coulomb’s law:

2762
V) = p— 5.2)
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Fig.5.1 A schematic diagram
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where Ze is the charge of the nucleus, and the alpha particle has two units of positive
charge. The scattering experiments show that this repulsive force persists to a distance
less than about 3 x 10~'2cm (see Fig.5.1). But we know that at much smaller
distances there must be a deviation from Coulomb’s law since the stability of the
uranium nucleus requires that there must be a hole in the potential energy at the
centre of the nucleus. This hole arises due to the strong attractive nuclear force that
dominates at very short distance ~10~'%cm. So the potential energy curve looks
like a high volcano with a very deep caldera. Yet the uranium nucleus emits alpha
particles which have energy of 6.6 x 107° erg. It is very difficult to understand how
the alpha particles trapped in the potential hole can escape. Since their kinetic energy
is much smaller than the depth of the potential hole, surely, they cannot climb over
the top of the well?

This great puzzle was solved in 1928 independently by the brilliant Russian physi-
cist George Gamow, and by Condon and Gurney in the United States. The resolution
of the problem invoked the newly emerging quantum physics. The underlying prin-
ciple of quantum physics is the duality between particles and waves. It is this wave
nature of particles that allows an alpha particle to escape from the nucleus. An anal-
ogy from optics (originally given by Gamow) will give us a feeling for how one may
view this.

Imagine a beam of light incident on the boundary between two media at an angle
greater than the critical angle. According to the laws of geometrical optics, we will
have a total reflection of the incident beam—the light will be reflected at the interface
between the two media and no disturbance occurs in the second medium. However,
if the same problem is treated within the wave theory of light, it is found that there is,
in fact, some disturbance in the second medium as well. This is the phenomenon of
evanescent waves—a phenomenon which is appreciable for a distance of the order of
a few wavelengths of light. The evanescent wave decays exponentially as we go into
the second medium. There is no interpretation of this disturbance which occurs in the
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second medium (which is predicted and measured by experiment) in the geometrical
theory of light. In the same manner, when we go from classical physics to quantum
physics, there is a possibility of particles penetrating potential barriers, or funnelling
through potential barriers. This arises due to the wave nature of particles in quantum
physics. Soon after the discovery of the theory of alpha decay by Gamow and by
Condon and Gurney, the transmutation of elements by proton capture was considered
by Atkinson and Houtermans (1929).

After this digression, let us return to the problem on hand, namely to fuse protons to
form helium. As a general case, let us consider a particle of charge, Z; e, approaching a
nucleus of charge, Z,e. At a fair distance outside the nucleus radius, ro(~ 10~ 13cm),
the repulsive energy between the two approaching particles due to Coulomb force is
given by:

Z1Z5€?

Ecoulomb = ’ . (5'3)

Within the nucleus there is strong attraction between the particles. The depth of the
potential hole is approximately 30 MeV. The superposition of the attractive nuclear
force and the repulsive Coulomb force leads to a sharp potential jump. This is com-
monly referred to as the Coulomb barrier, and is typically of the order of:

Ecoulomb(ro) & Z1Z, MeV, 54

where Z; and Z are the atomic number of the two colliding nuclei. For the case of
two protons colliding against each other, the height of the Coulomb potential barrier
is ~1 MeV.

How does this energy compare with the typical energy of the colliding particles at
the centre of the Sun? You will recall that the average temperature inside the Sun is
~10million kelvin, while the central temperature is ~15 million kelvin. The average
energy of the particles is approximately kp T, where kp is Boltzman’s constant. It is
often useful to express the energy in electron volts. For example, if the temperature
is 10* K, then the average energy is 1 eV (kz x 10* kelvin & 1eV).

10* kelvin & 1eV.

So at the central temperature of 107 K, the average energy is 1000 eV. This means
that the typical energy of the protons is a thousand times less than the height of the
potential barrier, which is ~1MeV. A proton with energy ~1000 eV at infinity can
never hope to climb the potential hill and fall into the hole at the centre. According
to classical physics, it can only roll up the hill to a point where all its kinetic energy
has been converted into potential energy (the point r in Fig. 5.2); it is forbidden for
the particle to temporarily borrow energy, climb up the hill and fall into the hole.
At this point we are tempted to feel that there is a way out. After all, kpT is
only the average energy of the particles. Surely there must be particles with much
greater energy than this; after all this is guaranteed to us by Maxwell’s distribution of
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Fig. 5.2 The potential energy of a particle of charge, Ze, approaching a nucleus of charge, Z;e:
Coulomb repulsion dominates outside the nuclear radius, ro. The height of the Coulomb barrier
and the nuclear potential hole are indicated. In classical physics, the incident particle with energy
E will be reflected at the point ry

velocities of particles. Let us recall what Maxwell taught us. Consider an enclosure
of volume, V, containing gas at a temperature, 7. By virtue of the heat energy, the
particles of the gas will be in state of perpetual motion; some moving with greater
velocity than others. An instant later, our particle will collide with another, changing
its direction and moving with a different velocity. Such collisions—and they will be
very frequent—will erase the memory of the particles. Therefore, one cannot make
definitive statements about the velocity of any particular particle. One can only give
a statistical or probabilistic description. In what must surely be one of the greatest
discoveries in physics, James Clerk Maxwell discovered the statistical distribution
of velocities of the particles in a box. He showed that the number of particles with
velocities in the range v and v + d7v is given by

mv2

N@)dv oce 2k5T g3 |, (5.5)

where the velocities range from —oo to +o00. This is Maxwell’s distribution of veloc-
ities. Let us look at the important features of this distribution. First, the distribution is
symmetric in velocities about zero velocity. This is as it should be. If the number of
particles moving with a certain velocity (speed and direction) is not precisely equal
to the number moving in the opposite direction, then there will be a net velocity, and
the box would start moving in that direction! Therefore the distribution of velocities
has to be symmetric. The constant of proportionality in the above distribution is to
be fixed by the condition:

N@)dv = N, (5.6)

—00
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Fig. 5.3 The Maxwell—
Boltzmann distribution. The
energy distribution increases
as +/ E at low energy and then
decreases exponentially (5.7).
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where N is the total number of particles. Maxwell’s distribution of velocities implies
a law for the distribution of the energies of the particles. This is often referred to as
the Boltzmann distribution. Using the fact that E = 1/2muv?, it is a simple matter to
verify that Maxwell’s law yields the following distribution for the number of particles
having energy values in the interval E and E + dE:

N(E)dE x e E/*T\/EJE. (5.7)

The important thing to notice is that as one goes to larger energies, the fraction of
particles decreases exponentially (Fig.5.3).

Let us now return to our attempt to fuse two protons together by making them
collide against each other. We concluded that since the average energy of protons
(~1000eV) is a thousand times less than the height of the Coulomb barrier (~MeV),
the two protons can never come close enough to form a bound state. For this to happen,
they have to come within the range of the attractive nuclear force. Our hopes had been
raised by the recollection that even in a gas at a temperature of ten million kelvin,
there will be particles with energy equal to or greater than the height of the potential
barrier; perhaps these particles in the high-energy tail will do the job. Unfortunately,
our hopes are misplaced. A look at the above distribution tells us that the fraction of
particles with energy ~MeV will be less by a factor e ~!%% compared to the number
of particles with the average energy ~1keV. This is an incredibly small number
[e71000 ~ 10=434]. 1t is such a small fraction that even the fact that there are ~10%7
protons in the Sun is not going to rescue us! The only possibility for fusion is due to
the quantum tunnel effect discovered by Gamow.

Tunnelling Through a Potential Barrier

Lets us briefly discuss the penetration of particles through a potential barrier in
quantum physics. We have already mentioned that the basic physics that underlies
this possibility is the wave—particle duality in quantum physics. It is the wave nature
of particles that makes the tunnelling probability nonzero.
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Fig. 5.4 Tunnelling through a constant potential barrier of height V. In classical physics, an
incident particle with energy £ < V will be reflected by the barrier. In quantum physics, however,
there is a finite probability for the particle to be transmitted through the barrier. This possibility
arises because of the wave nature of particles in quantum physics. The tunnelling probability is,
however, exponentially small

Let us first consider the example of a one-dimensional rectangular potential bar-
rier, shown in Fig.5.4. Consider a particle coming from the left with energy less
than the height of the potential barrier. Classically, this particle cannot penetrate into
region II and would be totally reflected. However, in quantum mechanics, since
the incident particle is a wave, it will be partially reflected and partially transmit-
ted (remember Gamow’s analogy with evanescent wave in wave optics). The trans-
parency or transmission probability can be calculated using wave mechanics (you
will find the derivation in any introductory textbook). We shall merely state the
result and highlight its main feature. Let us define the transparency or the tunnelling
probability as

Transmitted intensity

Transparency =
P y Incident intensity.

For a rectangular barrier of height V and width a,

2m
~2a\/—(V — E)
Transparency ~ e h . (5.8)

Let us next consider a barrier of arbitrary shape as shown in Fig.5.5.
In this case the transparency is given by

b
—2/ V3% (V(x) — E)dx
~e a .

Transparency (5.9)
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Fig. 5.5 An arbitrary poten-
tial barrier. Note that in this V(x)
case the tunnelling probability
involves an integral in the
exponential
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Look at the two expressions, (5.8) and (5.9), for the transmission probability. It
is worth summarizing their most important features.

1. The tunnelling probability is an exponential function.

2. Given a barrier of a certain height V, the tunnelling probability increases expo-
nentially with increasing energy of the incident particle.

3. The tunnelling probability decreases exponentially with increasing thickness of
the barrier.

4. The probability is greater for particles of smaller mass.

After this brief review of quantum mechanical tunnelling, let us return to our problem.
We are, of course, interested in a barrier arising because of the repulsive Coulomb
potential. The solution of this problem can also be found in most of the standard
books on quantum mechanics. The expression for the tunnelling probability through
a Coulomb barrier is given below:

P~ e 270, (5.10)

The factor G is known as the Gamow exponent and is given by the expression

2
G~ ﬁ Z122¢7 (5.11)
2 REL
Here m is the reduced mass of the nucleus and the colliding particle. We see that
once again the tunnelling probability depends exponentially on the exponent G. That
is, as G increases, the probability of tunnelling decreases exponentially. It will be
seen from the approximate expression in (5.11) that G increases with nuclear charge
and decreasing energy of the particle. This should be intuitively obvious because
increasing Z; means that the particle will have to penetrate a higher potential barrier,

and decreasing E implies that the particle has to tunnel through a broader potential
barrier.
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A

Fig. 5.6 The number of fusion reactions per unit volume per unit time is basically determined by
the integral given in (5.12). The integrand is a product of two exponential functions. One of them
is the tail of the Maxwell-Boltzmann distribution and it decreases exponentially (dashed curve).
The other factor is the quantum mechanical tunnelling probability through a Coulomb barrier, and
this rises exponentially with increasing energy (dashed-dot curve). Their product is a bell-shaped
curve known as the Gamow peak. The hatched area under the Gamow peak determines the nuclear
reaction rate. This is a schematic diagram, with each curve on a different scale

Let us now apply the above result for the collision of two protons (Z; = Z, =
1) with kinetic energy ~1000eV (which is the average energy of the protons at a
temperature of 7 = 107 K). If you plug in the values for the various constants that
appear in the formula, you will find that the tunnelling probability, P, is of the order
of 10720 for particles with the average energy. You might feel a bit disappointed
that the probability is still only ~1072. But this is a substantial probability, given
that we have 1037 protons colliding against each other. It is like scoring a goal in a
football match—even if the probability of the ball going into the net is very small, if
you kick towards the goal sufficient number of times, you will score goals!

We are now in business, so to speak. Assisted by quantum mechanical tunnelling,
we can hope to fuse protons together to form helium, thereby releasing vast amount
of energy. Although the majority of protons will have energy equal to the average
value, one should not forget the small number of particles with much larger energy.
They play an important role in quantum tunnelling. It is true that the fraction of
particles decreases exponentially with increasing energy (recall our discussion of
the Maxwell-Boltzman distribution). But we just saw that the tunnelling probabil-
ity increases exponentially with increasing energy of the particles. So our success
rate in fusing two protons together (the reaction rate, in the technical jargon) will
depend upon an interplay between two opposite trends: an exponentially increasing
tunnelling probability with increasing energy and an exponentially decreasing frac-
tion of particles with increasing energy. A more careful analysis will show that the
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number of fusion reaction per unit volume and per unit time will involve an integral
of the type:

o0
J=/ e E/T=IVE 4| (5.12)
0

The first exponential factor is the Maxwellian tail of the energy distribution and the
second factor is the exponentially increasing tunnelling probability. The product of
these two exponentials will give a peak, known as the Gamow peak. The area under
this peak will determine the reaction rate (Fig.5.6).

Enter the Neutron

The bottomline of the above discussion is that thanks to quantum tunnelling, protons
can be fused together despite their strong Coulomb repulsion. But we are a long way
from filling in the details of how to form a helium nucleus starting with four protons.
There is another fundamental problem to be overcome. While the mass of the helium
nucleus is roughly equal to the combined mass of four protons—suggesting that
somehow the fusion of four protons might have resulted in a helium nucleus—the
helium nucleus has only two units of positive charge and not four. Although this
particular difficulty was not bothering physicists—since they were not preoccupied
with energy production in stars—they were concerned with a related problem.

Lord Rutherford was very concerned with the general difficulty in reconciling
Bohr’s theory of electrons rotating around the proton-filled nucleus and the isotopes of
elements. According to Bohr’s model of the atoms, the number of positively charged
particles inside the nucleus must be equal to the number of orbiting electrons. This
means that once we specify the atomic charge, the atomic mass (which is essentially
the mass of the nucleus) should be uniquely determined. But Rutherford and his
colleagues had discovered that many elements had isotopes. All the isotopes of a
given element had the same atomic charge but different atomic mass. This meant
that while the charge of the nucleus of all the isotopes of an element was determined
by the number of electrons, the mass of the nucleus varied. This is only possible if the
nucleus contained neutral particles in addition to the protons. If the number of these
neutral particles was different in the different isotopes, then that would explain why
their nuclear masses were different. Since no neutral particle was known in 1930,
Rutherford was forced to postulate the existence of a neutral doublet—a bound pair
made up of an electron and a proton—although there was no experimental proof of
this. This is exactly what Eddington did to produce a helium nucleus out of four
protons. He packed two electrons into the nucleus to make the net positive charge of
the helium nucleus equal to two!

James Chadwick was to unlock the door to this basic problem in 1932. Chadwick
was Rutherford’s student at the University of Manchester and moved with his master
to the Cavendish Laboratory in Cambridge in 1919. He became Rutherford’s trusted
assistant during the period of intense creativity at the Cavendish Laboratory. In 1932,
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Joliot and Curie published the observation that alpha particles incident on beryllium
produced evidence of carbon and an intense, 55-MeV gamma ray. Chadwick and
Rutherford immediately realized that this result must be wrong; the energy of the
gamma ray was too high and they suspected that a neutral particle must be involved.
Within weeks, Chadwick established the reaction:

‘Be + ‘He — "2C + 'n

The particle on the right-hand side was a neutral particle, and was christened the
neutron. Chadwick determined the ratio of the mass of the neutron to that of the
proton to be 1.0090 (the current. This neutral particle could penetrate even lead.
Chadwick received the Nobel Prize for this discovery in 1935. With this discovery,
the list of elementary particles had grown to three: the electron, proton and the
neutron. One was now in a position to explain the isotopes of the elements. Isofopes
of an element have the same number of protons but differ in the number of neutrons
in the nucleus.

The Neutrino

Even as this mystery was unfolding, there was another major puzzle. This concerned
the radioactive decay of some of the elements. The key player in this drama is so
central to the rest of our discussion that we shall narrate this story.

You will remember that in 1896 the French scientist, Becquerel, discovered the
phenomenon of B decay in which some elements spontaneously emitted electrons,
which were known as f§ rays at that time. Soon it was discovered that the § rays
could be positively charged as well. Today we know that these are the positrons.
The most remarkable aspect of this phenomenon was the apparent failure of energy
conservation. In o decay, for example, energy was clearly conserved. If a nucleus A
with energy E 4 decays to nucleus B with energy, E p, emitting an « particle, then

Ef=Ep+ Eq,

where E is the energy of the o particle. In the case of B8 decay, such an equation
could not be written. The reason is that in the decay of any given nucleus the energy
of the emitted electrons is a continuous spectrum, as shown in Fig.5.7.

This means that one cannot write an equation like £4 = Ep + Eg since the
energy of the electron can have any value less than the maximum. This is why many
physicists, including the great Neils Bohr, were willing to entertain the notion that
energy conservation may be violated in 8 decay. But Wolfgang Pauli would have none
of this. He tried to rescue energy conservation by postulating that another particle
was emitted in 8 decay. His idea was that this additional particle would carry away
the missing energy. Pauli was very clever. He made sure that this mysterious particle
is very difficult to detect! He did this by saying that it must not only be electrically
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Energy distribution of electrons in 8 decay
A
N(E)

Fig.5.7 The mostintriguing thing about 8 decay was that the electrons emitted in radioactive decay
had a continuous spectrum, with a high-energy cut off. This seemed to defy the sacred principle of
energy conservation because one could not write an equation of the type £4 — Eg = Eg, where
E 4 and Ep are the energies of the parent and daughter nuclei, respectively. This great puzzle led
Wolfgang Pauli to postulate the existence of a neutral particle emitted along with the electron, which
Enrico Fermi named the neutrino

neutral, but its mass must be very nearly zero. Pauli did not advance this radical
suggestion in a scientific publication. He merely mentioned it in a letter which he
wrote in 1930:

I have come upon a desperate way out regarding the - - - continuous B-spectrum - - - . There
could exist in the nucleus elementary neutral particles, which I shall call neutrons - - -

I admit that my way out may not seem very probable a priori since one would probably
have seen this neutron a long time ago if they exist. But only one who dares wins- - - . One
must therefore discuss seriously every road to salvation- - - .

As we discussed in the “Enter the Neutron”, a neutral particle was discovered by
Chadwick in 1932. But that could not possibly be the particle postulated by Pauli
because it was a heavy particle with a mass almost equal to the mass of the proton.
Nevertheless, Chadwick had christened it the neutron.

The next major development in 8 decay took place in 1933 when the great Italian
physicist Enrico Fermi advanced a major hypothesis that radioactivity arises due to
a new kind of force, which has come to be known as the weak force. The list of
fundamental forces in nature had grown to four: electromagnetic force, gravitational
force, strong force (which held the constituents of the nucleus together) and weak
force. He went on to construct a theory of this weak force in analogy with the
electromagnetic force. Fermi’s identification of a new kind of force, and constructing
a theory of weak interaction mediated by this force, was undoubtedly one of the great
intellectual achievements of the twentieth century. If you are interested in learning
more about this, and how the exciting story of elementary particles unfolded in the
twentieth century, I would recommend that you look at The Big and the Small by
G. Venkataraman.

According to Fermi, radioactivity should be understood in terms of the following
two basic processes that occur inside the nucleus:
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Table 5.1 Members of the lepton family

Name Symbol Lepton number
Electron e~ +1
Electron neutrino Ve +1
Electron antineutrino Ve —1
Muon "w +1
Muon neutrino vy +1
Muon antineutrino Uy —1
Tau T +1
Tau neutrino Vr +1
Tau antineutrino Vo —1

neutron — proton + electron + neutrino (n — p+e~ +v)
(5.13)

proton — neutron -+ positron + neutrino (p — n 4 et 4 v)

You will notice that Fermi had invoked the neutral particle postulated by Pauli and
christened it the neutrino—the little neutron (in Italian).

Some years later, physicists introduced the concept of the antiparticle of the
neutrino, namely the antineutrino, usually denoted by v. This was in analogy with
the antiparticle of the electron, namely the positron, predicted by Dirac’s relativistic
theory of the electrons.

Meanwhile, the family of leptons (the light particles) grew, with the mu meson (1)
and the tau meson (t) added to the list. It then turned out that there was a neutrino and
an antineutrino associated with each of these new arrivals to the lepton family. Thus,
there are six members of the neutrino family (Pauli would have been amused!). The
symbols and the associated quantum number, namely the lepton number, are given
in Table5.1.

With this modern perspective, let us go back to the original suggestion made by
Fermi and write the 8 decay Eq. (5.13) properly:

neutron — proton + electron + antineutrino (n — p + e~ + V)
(5.14)

proton — neutron + positron + neutrino (p — n +e* + v,)

In rewriting Fermi’s equations, we have been careful to indicate that it is the
electron neutrino and its antiparticle that enter the two decays described by Eq. (5.14).
Written in this form, the above two decays satisfy several conservation laws:

1. Conservation of energy

2. Conservation of charge

3. Conservation of baryon number [both the proton and neutron have a baryon
number of +1]
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4. Conservation of lepton number [+1 for the electron and —1 for the positron or
antielectron; +1 for the neutrino and —1 for the antineutrino]

Where did the electron and neutrino come from? Were they inside the nucleus? Fermi
said that they were both spontaneously created at the time of the decay. Remember
that it is the same in the case of photons emitted by atoms. Photons do not exist inside
the atom. They are created spontaneously.

Well, this is how the elusive neutrino entered the scene. Pauli was right in saying
that it must interact very weakly with matter. Indeed, it took more than twenty years
to find the neutrino. Reines and Cowan designed a careful experiment to detect
the antineutrinos emitted by neutrons (refer to Eq.5.14) in a nuclear reactor and
struggled for many years. Their patience and perseverance was finally rewarded
in 1956, twenty-six years after Pauli had postulated the existence of the neutrino.
Astonishingly, it took forty more years for the Nobel Committee to recognize this
extremely important discovery! This is particularly surprising since in the intervening
decades several Nobel Prizes were awarded for the discovery of new fundamental
particles. Unfortunately, by the time the Nobel Prize was awarded in 1995, Cowan
was no more.

Why did it take more than twenty years to discover the neutrino? The reason is
very simple—they interact very weakly with matter. Way back in 1938, Hans Bethe
and Rudolf Peierls estimated the scattering cross-section for neutrinos and concluded
that neutrinos would travel many light years before they interacted with an atom.
The scattering cross-section o, for interaction with matter increases with increasing
energy. A rough estimate gives:

oy X (Ey/mec?)* 10~ cm?. (5.15)

In the above formula, the energy of the neutrino is expressed in units of the rest
mass energy of the electron; the moral is that low-energy neutrinos have a smaller
cross-section and would therefore be more difficult to detect. Neutrinos with energy
in the MeV range would have a cross-section ~10~*cm?, which is smaller than the
typical cross-section for photons in matter by a factor 10~'8. Sometimes it is easier
to think in terms of the mean free path rather than the cross-section. Recall that this
is the mean distance travelled by the particle between two successive collisions (we
encountered this concept while discussing the opacity of stellar matter). The mean
free path of the neutrinos is given by the approximate expression

2 x 10¥cm
L~ — (5.16)
0

where p is the density of matter in cgs units. At the stellar density of 1 g cm™ the
mean free path of the neutrinos is more than 100 light years!
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The Synthesis of Helium in the Stars

Now we are all set to discuss some details of the energy generation in the stars. The
first breakthrough in solving the problem of how stars liberate energy came in 1938
when C. F. von Weizsicker discovered a nuclear cycle, now known as the carbon—
nitrogen—oxygen (CNO) cycle, in which hydrogen nuclei could be fused using carbon
as a catalyst. However, von Weizsacker did not work out the rate at which energy
could be produced in the stars using this CNO cycle or how this rate would depend
on the temperature that obtains in the stars.

The credit for this must go to Hans Bethe, the acknowledged master of nuclear
physics. In 1938, Bethe had just completed a set of three monumental review articles
in nuclear physics. These were known as Bethe’s Bible. The first textbooks in nuclear
physics were published only several years after the end of World War II. Until then,
physicists all over the world learnt their nuclear physics from these pedagogical and
authoritative articles by Bethe. We have already remarked that in the 1930s physicists
were not concerned with problems in astronomy. They were more interested in atomic
and molecular spectra and nuclear physics. It was George Gamow who sensitized
physicists about the unsolved problems concerning stellar physics by convening a
small conference in Washington, D. C. Hans Bethe and many of the leading physicists
were at that conference. Within a few months of this, Hans Bethe had worked out, in
great detail, the synthesis of helium in stars and published his results in a landmark
paper entitled, ‘Energy Production in Stars’ (1939). Bethe considered two processes.
One of them has come to be known as the p—p chain in which one builds helium
out of hydrogen. This is the process that is important for stars like the Sun, and stars
of even lower mass. The other process is the CNO cycle discovered earlier by von
Weizsicker, and is the dominant process for stars more massive than the Sun.

The p—p Chain Reaction

Let us first discuss the p—p chain reaction. This reaction derives its name from the
first reaction between two protons forming a deuterium nucleus.

'H+'H > 2H et + 0. (5.17)

The deuterium nucleus (*H) has one proton and one neutron. Since the right-hand
side also must have two positive charges, a positron or antielectron (e™) is also
produced. The last particle on the right-hand side is the neutrino. Clearly, for this
reaction to occur a proton must have transformed itself into a neutron:

p—>n+e++v.

But a free proton cannot spontaneously decay into a neutron. You may say, ‘But Fermi
said so!” Fermi was careful to consider the decay of the neutron and a proton inside
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the nucleus. In 1933, there was no evidence for the decay of even a free neutron. The
reason why a free proton cannot decay into a neutron is that a proton is lighter than a
neutron, and so it would violate the conservation of energy. However, a proton in close
proximity of another proton can decay; it can borrow energy and momentum from
the passerby. But this reaction is governed by weak interaction, and the rate is too
slow to be measured in the laboratory. However, the rate can be calculated accurately
using the theory of low-energy weak interaction, and the calculated lifetime for the
reaction (5.17) to occur under the conditions that obtain in the solar interior is about
1010 years! Given this, it would seem ridiculous to entertain the reaction indicated
in (5.17). But we must remember that we are dealing with 1057 protons colliding
with each other. So the formation of deuterium is not so improbable. It happens in
the stars. And if it did not happen, the Sun would not be shining!

Once a deuterium nucleus forms, the next reaction proceeds very fast (in a fraction
of a second).

’H+ 'H— He + ¢ (5.18)

The formation of *He now proceeds via one of three alternate branches. (See
Figs. 5.8 and 5.9 for illustrations of the synthesis and decay of *He.)

Branch 1 (85 percent)

3He +3He — *He + 'H+'H (5.19)

Branch 2 (15 percent)

3He + “He — "Be + y

"Be+e” — "Li+v (5.20)
"Li+ '"H — “He + “He
Branch 3 (0.01 percent)
3He + “He — "Be + y
"Be+'H— 5B +y (521)

8B — 8Be + et + v

8Be — 4He + “He
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Fig. 5.8 The synthesis of
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The percentages given in parentheses refer to the relative importance of the three
branches. The end result of all these reactions is to fuse four protons together to
form a helium nucleus, with the release of two positrons (e*), two neutrinos (v) and
about 26.7 MeV of energy in the form of gamma rays and kinetic energy of created
particles.

The CNO Cycle

The other route for the synthesis of helium is the carbon—nitrogen—oxygen cycle,
first discovered by C. F. von Weizsiacker. The details of this were worked out by
Hans Bethe in 1939. The CNO cycle requires the presence of some carbon, nitrogen
or oxygen which act as catalysts in chemical reactions. Here also, four protons are
fused into one helium nucleus, releasing roughly the same amount of energy as before
(25MeV per “He nucleus produced).
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Fig. 5.10 A pictorial representation of the CNO Cycle. The bigger circles represent the nuclei
indicated. The small hatched circles are the protons and the small circles with dots are the neutrons

12C+1H—>13N+y
BN - BCtet +v
13 1 14

C+ H= "Nty (5.22)
UN+'H- Bo+y
150—>15N+e++v

15N+1H—> 12C+4He

Notice that initial '>C nucleus is recovered after a cycle of reactions. In this cycle
also two positrons and two neutrinos are emitted. The CNO cycle is the dominant
mechanism for the synthesis of helium in stars more massive than the sun. As already
mentioned, the p—p chain reaction is more important for the Sun, with the CNO cycle
contributing only about 1.5 percent to the energy generation (Fig.5.10).

The remarkable thing is that Hans Bethe was not just content with outlining these
ideas in his monumental paper. He authoritatively analysed the different possibilities
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and selected as the most important among these the two processes we have outlined
above. The hallmark of Bethe’s scientific papers was the thoroughness with which
every detail is attended to, and this paper was no exception. Hans Bethe was undoubt-
edly one of the greatest physicists of the twentieth century. The brief biographical
sketch given on the following page will give you some idea about this great man.

Why Does the Sun Not Blow Itself Up?

Before proceeding, let us discuss the interesting question we had raised earlier. The
proton—proton chain reaction we have just discussed is the same as the reaction which
takes place in hydrogen bombs. We mentioned at the beginning of this chapter that
the observed luminosity of the Sun implies four million metric tons of hydrogen being
converted to helium every second. So why does the Sun not blow itself up? The fact
that the Sun has been shining steadily for billions of years implies that a safety valve
must be in operation. How does this safety valve work?

Hans Albrecht Bethe
1906-2005

Hans Albrecht Bethe was born in Strasbourg, Alsace-Lorraine, on 2 July 1906.
After finishing his high school and early years in college, he went to do his Ph.D.
with Professor Arnold Sommerfeld in Munich. At that time, Sommerfeld’s group
consisted of an impressive number of truly outstanding young persons such as
Wolfgang Pauli, Werner Heisenberg, Gregor Wenzel and many others. These
young men went on to create the new quantum physics under the watchful eyes
of their mentor.

Bethe emigrated to England in 1933 after the rise of Adolf Hitler and the
Nazis in Germany. After a year at the University of Manchester, and another
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year at the University of Bristol, he moved to Cornell University, USA in 1935.
He remained there until his death in 2005!

Bethe was a true pupil of Sommerfeld. He was a master of theoretical physics
and had a great understanding of experimental physics. He was influenced by
Fermi’s simplicity and Sommerfeld’s rigor in approaching problems, and these
qualities influenced his own later research. Thoroughness and scholarship char-
acterized his work throughout a remarkably long career lasting nearly eighty
years (Fig.5.10).

Like many of the great physicists of that era, his research spanned all branches
of physics. At some stage or the other, he made seminal contributions to atomic
physics, solid state physics, statistical physics, nuclear physics and astrophysics.

Bethe’s major contributions were in the theory of atomic nuclei. During the
period he spent in England, he developed a theory of the deuteron together with
Rudolf Peierls (another brilliant German physicist who had taken shelter in
England). At Cornell he concentrated on the theory of nuclear reactions, pre-
dicting many reaction cross-sections. In connection with this work, he developed
Bohr’s theory of the compound nucleus in a more quantitative fashion.

This work, and also the existing knowledge on nuclear theory and experimen-
tal results, was summarized in three classic articles in the Reviews of Modern
Physics which he wrote together with Livingston and Bacher, two of his young
colleagues at Cornell. For many years these three articles served as a textbook
for nuclear physicists and came to be known as ‘Bethe’s Bible.” It was during
this period that he made his monumental contributions to stellar nucleosynthesis
and energy production in the stars. Although this work earned him the Nobel
Prize for Physics, it came only in 1967—nearly thirty years after his papers
were published.

In 1947, Bethe was the first to explain the Lamb shift in the hydrogen spec-
trum, and he thus laid the foundation for the modern development of quantum
electrodynamics. This work provided the impetus for the later work done by
Richard Feynman, Julian Schwinger and Tomanaga which marked the begin-
ning of modern quantum electrodynamics and for which they were awarded the
Nobel Prize in 1965.

The Manhattan Project and the atom bomb

Bethe was a key player in the design and building of the first atom bomb. During
the summer of 1942 he participated in a special session at the invitation of Robert
Oppenheimer, which outlined the first designs for the atomic bomb. Initially,
Bethe was skeptical of the possibility of making a nuclear weapon from uranium.
In the late 1930s, he wrote a theoretical paper arguing against fission, but was
convinced by Edward Teller to join the Manhattan Project. When Oppenheimer
was put in charge of forming a secret weapons design laboratory at Los Alamos,
he appointed Bethe the Director of the Theoretical Division, a move that irked
Teller, who had coveted the job for himself.
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Bethe’s work at Los Alamos included calculating the critical mass of
uranium-235 and the multiplication of nuclear fission in an exploding atomic
bomb. Along with Richard Feynman, he developed a formula for calculating
the explosive yield of the bomb. After November 1943, when the laboratory had
been reoriented to solve the implosion problem of the plutonium bomb, Bethe
spent much of his time studying the hydrodynamic aspects of implosion, a job
which he continued into 1944. In 1945, he worked on the neutron initiator, and
later on radiation propagation from an exploding atomic bomb.

After the end of World War II, Bethe played a key role in the development
of the hydrogen bomb. Although initially he was very much against the devel-
opment of this weapon, and hoped that it would never work, he decided to join
the effort after the outbreak of the Korean War.

As we shall see in Chap. 7 of this monograph, when he was about eighty years
old, he wrote an important article about the solar neutrino problem in which he
dealt with the conversion of electron neutrinos into muon neutrinos. This idea
was proposed to explain the discrepancy between theory and experiment. Bethe
continued to do research on supernovae, neutron stars, black holes and other
problems in theoretical astrophysics into his late nineties!

Hans Bethe died on 6 March 2005.

Let us recall our earlier discussion of the hydrostatic equilibrium of the stars.
Our basic premise was that the inwardly directed force of gravity is balanced by the
pressure of the gas. Let us pose our question once again. The synthesis of helium
releases ~27MeV of energy per nucleus. This energy will soon be converted into
heat. What this really means is that the energy released goes into increasing the
energy in the random motions of the particles; this is what one means by heat. This
heat energy diffuses out, being carried by the radiation.

Let us say that there is some fluctuation and that some extra energy is liberated
by the nuclear reactions. The central temperature and consequently the energy of the
protons will increase. Now refer to Egs. (5.10) and (5.11). The tunnelling probability
increases exponentially with increasing energy. Hence, the rate of fusion reaction
and therefore the rate of energy production depends very sensitively on the central
temperature; the reaction rate will increase dramatically with an increase in the central
temperature. This, in turn, will result in the heat energy increasing even more. We
shall therefore have a positive feedback. At some stage, the heat energy will become
so large that it will overwhelm the gravitational binding energy and the star will
explode.

That this does not happen is due to the fact that the stellar material behaves as
an ideal gas. An important property of an ideal gas is that its pressure is determined
by its temperature. So, if the central temperature goes up in response to increased
energy generation, then the gas pressure will increase (recall that for an ideal gas
P = nkpT). This increase in pressure will upset the hydrostatic equilibrium of the
core of the star, and the core will consequently expand, lifting the overlying layers.
The energy for this lifting will come at the expense of the internal energy of the
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Fig.5.11 The safety valve that prevents the Sun from blowing up. An increase in energy production
would lead to the core getting hotter. Because the stellar material is an ideal gas, an increase in the
central temperature will lead to an increase in the pressure. This, in turn, will lead to the expansion
of the core, with a consequent decrease in the temperature and pressure. This will result in the core
contracting to its original radius, temperature and pressure. This is how the safety valve works

gas. (Recall that according to the First Law of Thermodynamics, the energy spent
in doing work comes at the expense of the internal energy). The core will cool as a
result of this expansion and the rate of energy production will decrease, leading to
an equilibrium situation. This is how the safety valve works (see Fig.5.11).

But it is important to appreciate that such a safety valve is not guaranteed for
all stars (see Fig.5.12). There are situations when the pressure of a gas does not
respond to a change in the temperature. For example, it could be that the pressure is
independent of temperature. Then we shall certainly have a positive feedback, and a
stellar explosion! We shall have occasion to discuss this in the next volume.

Where is the Evidence?

Eddington must have been overjoyed to read Bethe’s paper. Bethe had not only
worked out the details, he had got the answer that Eddington had predicted nearly
twenty years earlier. Just to convince himself, Bethe used his results to work back-
wards to estimate the central temperature of the sun. Astonishingly, he got a value
very close to what Eddington had earlier estimated (about 15 million degrees kelvin).
This was a truly great triumph for theoretical physics. But can all this be just a coinci-
dence? Is there any way to directly test the hypothesis that the Sun and the stars shine
because deep in their interior they are converting hydrogen to helium. Unfortunately,
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Runaway nuclear reaction rate leading to an explosion

Fig.5.12 The safety valve described in Fig. 5.11 is not guaranteed to work under all circumstances.
As we shall discuss in the next volume, if the stellar material obeys the rules of quantum physics,
rather than classical physics, then gas pressure is independent of temperature. If such a situation
prevails, then an increase in the central temperature will result in a positive feedback and thereby a
runaway nuclear reaction. Sometimes, this could result in an explosion of the star

we cannot see the interior. The light that we receive originates as high-energy radi-
ation near the centre. This radiation takes several million years to diffuse out to the
surface, being degraded in energy in the process. Finally, when this radiation emerges
as visible radiation, it tells us only about the conditions that prevail near the surface.
So the radiation that finally escapes does not tell us anything about what is happening
near the centre; it merely tells us about the conditions near the surface.

That leaves us with two other potential witnesses, the positrons and the neutrinos
which are released in the fusion reactions. The positron (which is the antiparticle
of the electron) will not get very far from its birthplace since it will soon encounter
a free electron, and the electron—positron pair will get annihilated. Remember that
when a particle and its antiparticle collide, their rest mass energy is converted to
two or more photons [It cannot be just a single photon. Think about why this is
so!]. That leaves us with the neutrinos as the only other witnesses to have been
at the scene of the crime. But the neutrinos are hostile witnesses for they do not
like to be questioned. They quickly leave the scene of the crime. We have already
mentioned that neutrinos interact so weakly with matter that their mean free path is
many light years at terrestrial densities, let alone the density that obtain inside the
Sun. Consequently, the neutrinos produced in the fusion reactions will escape from
the Sun. Unfortunately, they will pass through the Earth also. The hope is that since
the Sun emits more than 10°® neutrinos per second there is a finite probability that
a few of them will interact with terrestrial matter—if we wait long enough. Despite
this great difficulty, if we could detect the neutrinos from the Sun and if their flux
and energy agree with theoretical predictions, then it would be a direct confirmation
of Eddington’s conjecture that the Sun is, in fact, converting hydrogen to helium at
its centre.

In 1964, a well-known experimentalist Raymond Davis Jr. and an equally well-
known young theoretical physicist John Bahcall (shown in Fig.5.13) proposed an
experiment to detect the neutrinos from the Sun. Four years later, Davis succeeded
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Fig. 5.13 Raymond Davis I5e:
Jr. (left) and John Bahcall T
standing beside the chlorine
detector

in detecting the solar neutrinos. And on that note, I could end this book. Instead,
I shall devote two more chapters(!) to a discussion of the results of this and other
experiments, as well as some related developments, for this will exemplify how
science progresses. We have read, and have been taught, about the great discoveries
by Tycho Brahe, Johannes Kepler and others. But we are seldom told how painstaking
the process of making great discoveries tends to be. Often, there is a tendency to
romanticize science. The story of the solar neutrinos provides an excellent illustration
of what a real grind science is. And the story of the solar neutrinos I am about to
narrate beats any detective story!

Let us begin with a few details of the experiment itself. The basic idea was to use
37l to detect the neutrinos. The reaction that was used is:

v+37Cl= e + 37Ar,

which has a threshold energy of 0.8 MeV (meaning that this reaction will not take
place if the energy of the neutrino is less than 0.8 MeV). The detector was a steel tank
of the size of an Olympic swimming pool, containing about 400,000 litres of C,Cly
(a cleaning liquid used by your dry cleaner) more than a kilometre below the ground
in the Homestake Gold Mine in South Dakota, USA (Fig.5.14). The tank had to be
buried deep under ground to minimize background events from cosmic rays. The
aim of the experiment was to detect and count the number of Argon atoms produced
in the tank. But this is easier said than done. Bahcall and his colleagues calculated
the number of neutrinos of different energy that the Sun produces using a detailed
computer model of the Sun. They also calculated the number of radioactive argon
atoms (37 Ar) that these solar neutrinos would produce in the tank containing chlorine-
based cleaning fluid. These calculations suggested just a few atoms of 3’ Ar would be
produced in this huge tank containing 100,000 gallons of chlorine. Although many
ridiculed the idea of detecting just a few atoms, Davis and his experimental colleagues
were very confident. Every few months, Davis and his collaborators extracted a small
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Fig. 5.14 The chlorine exper-
iment one kilometre below
the ground in the Homestake
Gold Mine in South Dakota,
USA. The steel tank contains
400,000 litres of C,Cls. When
a neutrino interacts with a
chlorine nucleus, a radioactive
nucleus of argon is produced.
The name of the game was to
extract the few argon atoms
out of a total of 1030 chlorine
atoms in the tank!

sample of radioactive argon (>’ Ar) from the tank; typically the number of argon atoms
was of the order of 15. Yes, 15 argon atoms out of a total of more than 1030 atoms
in the tank! Controlled experiments were performed to show that the radioactive
argon produced by the neutrinos is extracted with more than 90 percent efficiency.
As John Bahcall remarked, Davis ‘had to be spectacularly clever’ to be able to do
this. And he was! The argon produced in the tank was separated chemically, purified
and counted in low background counters. The results are expressed in terms of the
Solar Neutrino Units, SNU, which is the product of a characteristic calculated solar-
neutrino flux (cm=2 s~V) times a theoretical cross-section for neutrino absorption
(cm?). An SNU has, therefore, the units of events per target atom per second and is
chosen for convenience equal to 10736 s~

The first results were announced by Davis in 1968. The chlorine detector had
detected the solar neutrinos! But the number of radioactive argon atoms produced
by the neutrinos was only about one-third as many as were predicted. While there
was considerable jubilation about the detection, some were irritated and concerned
at the lack of agreement between the observations and the predictions.
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Fig.5.15 The experimental data from the chlorine detector obtained over a period of nearly twenty
years. From the average rate at which 37 Ar is produced, one calculates the average capture rate of
the solar neutrinos. This capture rate is (2.05 £ 0.03) SNU. The line at 7.9 SNU across the top of the
figure represents the prediction of the Standard Model of the Sun. This figure has been reproduced
from Neutrino Astrophysics by John Bahcall, published by Cambridge University Press (1989)

What was Wrong?

Well, there were three possibilities, and all of them were suggested.

1. Perhaps the theoretical calculations were wrong. This might either be due to the
predicted number of neutrinos being wrong or the calculated production rate of
argon atoms in the detector being wrong.

2. Perhaps the experiment was wrong.

3. May be something is wrong with fundamental physics?

These reactions were surprising. As Bahcall himself said, given the complexity
of the experiment, as well as the various uncertainties in the theoretical predictions,
one should have been thrilled with the agreement within a factor of three. As it
turned out, great progress was eventually made because neither the theorists nor the
experimentalists were willing to concede that they had made a mistake.

Over the next two decades, Bahcall and his colleagues all over the world refined
the theoretical calculations. The data used in these calculations were improved so
that predictions became more precise. The computer model of the Sun was checked
again and again, and no error was found. Similarly, the probability of detection of
the neutrinos by Davis’ tank was repeatedly checked, and no error was found.

On the experimental front, Davis and his colleagues continued to improve
the sensitivity of the experiment. Great effort was made to understand the errors
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in the experiment better. But the discrepancy between the theoretical prediction and
the experimental result did not go away. Figure5.15 shows the observed rate over
two decades. While the discrepancy appeared to be statistically significant, one might
feel that by astronomical standards the agreement is quite satisfactory. The question
is how seriously should one take the theoretical predictions? The production rate of
neutrinos depends on a large power of the central temperature. An agreement within
a factor of three tells us that we have, in a sense, measured the central temperature of
the Sun to within a few percent. Eddington would have been thrilled with this. So why
were the astronomers getting worked up over the discrepancy? Physicists continue
to have an old-fashioned (and slightly contemptuous) attitude about the accuracy of
astronomical results. They tend to feel that astronomical results are only accurate
to within an order of magnitude (that is, a factor of ten). But this stereotype view
can often be wrong. In this case, for example, astronomers felt that they knew the
conditions inside the Sun to better accuracy than 99.9 percent. Extraordinarily, the
astronomer’s standard model of the Sun is consistent with observations to an accu-
racy of better than 99.9 percent, but one had to wait for thirty years to establish this.
But way back in 1968 both Davis and Bahcall were convinced that the discrepancy
between the experimental result and the theoretical prediction was real, and that it
should be accounted for. As we shall see in Chap. 7, this insistence led to several new
experiments.

But we are jumping the story! The first results were announced by Davis in 1968.
And it took twenty years to be really sure about the results of the experiment, as
well as the theoretical modelling of the Sun. If one rules out a significant error in
the theoretical modelling of the Sun, as well as the experiment, then we are left with
only the third alternative mentioned above. As Sherlock Holmes would have said,
‘My dear Watson, if all other alternatives have been ruled out, then the remaining
one, however implausible, must be true’. The third alternative is that fundamental
physics of elementary particles needs a revision.

Something Happened on the Way to the Earth!

One person did not wait for twenty years to come to this conclusion. Soon after the
discrepancy surfaced, Bruno Pontecorvo (an Italian physicist working in Moscow,
see Fig.5.16.) and his colleague Vladimir Gribov proposed in 1969 that the results
obtained by Davis pointed to the need for a drastic revision of elementary particle
physics. Specifically, they made the radical suggestion that the discrepancy is due
to the fact that neutrinos suffered from personality disorder (as Bahcall put it); they
oscillated between three possible incarnations—electron neutrino, muon neutrino
and tau neutrino. As the original electron neutrinos journey to the Earth, they change
their identity back and forth. Finally, when they arrive at Earth only a fraction of them
would be wearing the same hat as when they started. Since the experiment by Davis
recognized only electron neutrinos, the observed discrepancy could be reconciled.
Imagine that Dr Jekyll clones himself, and a hundred of these clones set out from the
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Fig. 5.16 Bruno Pontecorvo

Sun. While travelling to the Earth for a party, they change their identity periodically
between that of Dr Jekyll and Mr Hyde. So when they arrive at the party, there are
likely to be fifty Doctor Jekylls and fifty Mister Hydes. Unfortunately, only Dr Jekyll
will be allowed into the party. So their number at the party will be half of the number
that set out from the Sun.

The suggestion made by Pontecorvo was as simple as that! As we shall discuss
in Chap.7, Pontecorvo had suggested way back in 1957 that neutrinos may oscil-
late between the three flavours, as they are referred to. But if this was the correct
explanation for the discrepancy observed by Davis then it calls for a major revision
of fundamental physics. Thirty-two years later, on 18 June 2001, a group of experi-
menters made a dramatic announcement: they had solved the solar neutrino mystery.
Pontecorvo was right! Neutrinos do oscillate in flavour. Fundamental physics does
need a revision!

But before I tell you that story, I must first tell you how astronomers convinced
themselves that their computer model of the Sun was remarkably good; so good that
its predictions agreed with the conditions in the interior to better than 99 percent
accuracy. That is another interesting story and that will be the theme of the Chap. 6.
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Chapter 6
Sounds of the Sun

At first sight it would seem that the deep interior of the Sun and
stars is less accessible to scientific investigation than any other
region of the universe. Our telescopes may probe farther and
farther into the depths of space; but how can we ever obtain
certain knowledge of that which is being hidden behind
substantial barriers? What appliance can pierce through the
outer layers of a star and test the conditions within?
Sir Arthur Eddington
The Internal Constitution of the Stars

This chapter is devoted to the discussion of some recent developments that allow us
to ‘pierce through the outer layers of a star and test the conditions within.” However,
before we embark on this let us briefly recall what is known as the Standard Model
of the Sun.

The Standard Model of the Sun

In Chap. 5, we discussed the pioneering experiment by Davis and his colleagues to
detect the neutrinos from the Sun. We saw that they succeeded in this endeavour
against all odds; however, rather than jumping with joy at having finally detected the
elusive neutrinos from the Sun, Davis and Bahcall were bothered by the discrepancy
between the predicted and the observed flux of solar neutrinos. In 1968, when the
first result from the chlorine detector was announced, many felt that Bahcall was
reading too much into this apparent discrepancy. The relevant question was this:
Is the Standard Model of the Sun accurate enough for this apparent discrepancy to
be taken seriously? After all, the predicted flux of solar neutrinos depends on the
details of the Standard Model in a sensitive manner. Initially, only Bahcall and a few
others thought that the Standard Model was accurate enough to warrant taking the
discrepancy seriously. But by 1990, there was direct experimental evidence to show

G. Srinivasan, What are the Stars? Undergraduate Lecture Notes in Physics, 105
DOI: 10.1007/978-3-642-45302-1_6, © Springer-Verlag Berlin Heidelberg 2014
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that the Standard Model of the Sun was, indeed, accurate to about 0.1 percent. This
suggested that one should take the predicted neutrino flux seriously. If one could also
be equally confident about the theoretical predictions regarding the interaction of the
neutrinos with the detector, and if one could be sure about the errors in the experiment,
then one had to take seriously the discrepancy between the results obtained by Davis
and Bahcall. This chapter is devoted to the recent developments that enabled one to
conclude that the Standard Model of the Sun was remarkably accurate. But before
we tell that story, let us digress briefly to discuss what the Standard Model is all
about.

We shall not pause to dwell on the intricacies of the Standard Model, nor on
the details of the calculational method, but it is good to have an idea of the kind
of results churned out by this model. The final objective of the model is to predict,
with as much precision as possible, the radial profiles of various quantities such as
(i) energy production, (ii) temperature, (iii) density, (iv) electron density, etc. This is
easier said than done! Scores of astrophysicists all over the world have been engaged
in this effort for several decades. The calculation of the Standard Model involves a
number of approximations concerning, for instance, the following:

1. Hydrostatic equilibrium

2. Energy transport

3. Energy generation by nuclear reactions

4. Abundance changes caused by nuclear reactions

A detailed model of the internal structure of the Sun requires many input parameters.
The key ones are given below.

1. The chemical abundance of the Sun
2. The opacity of the solar material to the outward flow of radiation
3. The equation of state: the relation between the pressure, density and temperature

The Standard Solar Model is calculated using the best physics and input parameters
available. During the last twenty-five years or so, many hundreds of improvements
in the input parameters have been incorporated.

A landmark paper in this field is the monumental article by Bahcall and Ulrich,
published in Reviews of Modern Physics (1988). Figure 6.1a—d, given below, are
reproduced from this article. Notice that the energy-production peaks at a radius of
0.09R, where the symbol, R, stands for the Sun’s radius. Notice also that the values of
the central temperature and density are, respectively, 15.6 x 10° K and 148 g cm™3,
remarkably close to what Eddington had estimated way back!

Recall that one of the primary objectives of such a model is to predict the flux of
solar neutrinos. Accordingly, the model provides fables giving a detailed numerical
description of the solar interior. Starting from the centre, it gives, as a function of the
radius, temperature, density, luminosity generated, chemical abundances and the flux
of neutrinos produced in the various reactions (mentioned in Chap.5). Therefore,
the prediction of the total neutrino flux is quantitatively reliable only to the extent
the standard model accurately describes the density and temperature profile.
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Fig. 6.1 Radial profiles of physical parameters. Figure a shows the fraction of the energy that is
produced at each position in the standard solar model. Figure b shows the temperature profile. Figure
¢ shows the density distribution. The solid line in d is the distribution of the electron density, n,,
divided by Avogadro’s number, Ny, as a function of the solar radius. The dotted line is a theoretical
fit to the electron density distribution. (This figure has been reprinted with permission from Bahcall,
J.N. and Ulrich, R.K., Reviews of Modern Physics, volume 60, 297 (1988). Copyright (1988) by
the American Physical Society)

The Phenomenon of Convection

Before proceeding, let us first discuss a major departure of the structure of the Sun
from what was envisaged by Eddington. In the discussion we have had so far, we have
assumed that our Sun is in perfect hydrostatic equilibrium. Remember that Eddington
had discarded the earlier suggestion of Lane that heat energy is transported outward
by convection. Instead, he introduced the notion that heat is transported by radiation
itself, and that the star would be in hydrostatic equilibrium. But what is the real
situation in the Sun? Let us embark on a journey from the centre of the Sun towards
its surface to get an overall picture of its internal structure.

As we proceed outwards from the core, we will find that the stellar material is
chemically homogeneous and the temperature gradually decreases. We shall also
find that the star is in radiative equilibrium, as desired by Eddington. In other words,
the temperature gradient will be such that all the heat generated near the centre is
transported outwards by radiation and there is no piling up of heat energy. The stellar
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material will be in perfect mechanical equilibrium. By the time we have travelled
a distance of 500,000km from the centre (roughly 0.7R) the temperature would
have dropped from fifteen million degrees to approximately two million degrees. As
we proceed outwards, we will find a dramatic change in the state of the star, and
this change will occur rather abruptly. Above this boundary layer (roughly at 0.7R,
from the centre), we will find the stellar plasma boiling. Gigantic bubbles of hot
stellar material will be rising at a speed of a few centimetres per second. At adjacent
locations, we will find cooler material sinking downwards. In other words, we will
discover a slow circulation of material. This is, of course, the familiar phenomenon
of convection. Contrary to the state of affairs that obtained in the inner region, in the
final 200,000km of our journey towards the surface we will find that heat is being
transported by convection, rather than radiation. Bundles of stellar matter rise due to
buoyancy, deposit the heat a few thousand kilometres beneath the surface, and having
done so, sink again. Why does this happen? Why are the outer layers mechanically
unstable? Let us pause to understand this.

The phenomenon of convection is familiar to us from the example of water being
heated in a vessel. Initially, the water will be quiescent, with the heat deposited into
the bottom layer being transported upwards by conduction. Now, let us turn up the
gas burner. At some stage, quite suddenly, the water will start boiling, and we will
see convective circulation, hot bubbles rising and cooler ones sinking to the bottom.
If you drop a few tea leaves in the water, you can see the convective motion very
clearly! Why does this instability arise?

Instead of discussing a liquid being heated (where heat is transported by con-
duction, under normal circumstances), let us go back to the discussion of stellar
material where heat is transported by radiation. (Heat transport by conduction is not
very effective in a stellar plasma.) Let us simplify it to a one-dimensional problem
depicted in Fig.6.2. The force of gravity acts downwards. Consequently, the pres-
sure, density and temperature of the gas decrease as we go outwards in the radial
direction. Imagine that an element of the plasma at a radial distance, r, is heated
to a higher temperature than the surroundings due to some fluctuation. We want to
know how this element will respond. A higher temperature implies the prevalence of
higher pressure inside the element as compared to the surrounding; this follows from
Boyle’s law. This excess pressure inside the element will cause the plasma bubble
to expand until the pressure inside the element is, once again, equal to the pressure
outside. Thus, pressure equilibrium is established with respect to the surroundings.
But since the plasma bubble we are discussing is hotter than the surroundings, it will
have to be at a lower density than the surrounding for pressure equilibrium to be
achieved. (Recall, in the case of an ideal gas, the pressure is o pT. Therefore, for a
given pressure, higher the temperature lower will be the density.)

Pelement = Psurrounding = ((p — Ap)(T' + AT)) = pT.

Consequently, the element we are discussing will rise due to buoyancy force to a new
height, r + Ar. The question is whether it will continue to rise or sink back to the
original depth after rising for a while. If it continues to rise, we have a convective
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Fig. 6.2 Condition for convection to set in. a Consider a sample element of stellar plasma, labelled
1, at a certain radial distance from the centre where the local ambient density and temperature
are p(r) and T'(r), respectively. Imagine that due to some fluctuation this element is heated to a
slightly higher temperature 7'(r) + AT (labelled 2). Since this will result in the pressure inside the
element to be greater than the surrounding pressure, it will expand till the pressure inside, once
again, becomes equal to the ambient pressure. As a consequence of this expansion, the density
inside the sample element will be less than the ambient density (labelled 3). b Since the density of
our sample element (stage 3) is less than the ambient density, it will rise due to buoyancy. Since
the ambient density, temperature and pressure are all decreasing as we go upwards, it will continue
to expand as it rises. As our bubble rises and expands, it will cool. If there is no heat exchanged
with the surrounding during the expansion, then the amount of cooling will be determined by the
law of adiabatic expansion. If our bubble (stage 4) continues to be hotter than the local surrounding
despite it cooling due to expansion, then it will continue to rise and we shall have convection

instability. The French physicist Henri Bénard investigated this important problem
around 1900 in a series of very beautiful experiments. The great British physicist
Lord Rayleigh derived the condition for stability against convection and provided
a detailed theory of the phenomenon. The German physicist and astronomer Karl
Schwarzschild studied this problem in the context of gaseous stars. We shall now
briefly discuss the condition derived by him for stability against convection. And let
us permit ourselves to look at the problem in rather simplified terms.
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Let us return to our rising element of gas which now finds itself at a new location,
r+4Ar. Since the ambient pressure decreases as we go up, the bubble we are discussing
will expand further to attain pressure equilibrium with its new surroundings. Two
things will happen as the bubble expands: it will cool, and its density will decrease.
If the density of the element is greater than the local density outside, then it will
sink back to its original height. But if the density of the element is /ess than the local
density, then it would rise again due to buoyancy and we would have an instability
signalling convection.

Often, it is more practical to deal with the ambient femperature gradient
rather than density gradient since the former appears explicitly in our equation of
radiative equilibrium whereas the latter does not, as we can see from (3.12). Let us
therefore repeat our thought experiment, but this time paying attention to the tem-
perature inside the bubble in relation to the ambient temperature outside the bubble.
We said that as the rising element expands, its density as well as its temperature will
decrease. There will be two factors contributing to this cooling: expansion of the
element and exchange of heat with the surroundings. Let us now assume that the ele-
ment expands adiabatically. You will recall that in an adiabatic process the entropy
remains constant. This, in turn, means that the bubble does not exchange heat with
the surroundings as it is transported up or down. This is a very good assumption in
gaseous stars. In such an adiabatic expansion, the following well-known relations
hold:

PV7 = constant. (6.1)

—1
TVW = constant. (6.2)

Here T is the temperature; P, the pressure; V, the volume, and v = ¢, /cy, the ratio of
the specific heat at constant pressure, ¢p, to the specific heat at constant volume, cy.
Equation (6.1) tells us how the pressure will change in an adiabatic expansion, while
Eq. (6.2) tells us the amount by which the gas will cool if it expands adiabatically.
Let us return to our plasma bubble which is expanding adiabatically as it rises
due to buoyancy and cools in the process. If our element finds itself again hotter
than the surrounding then it will continue to rise and we have an instability. There-
fore, whether our element would continue to rise or not depends on the comparison
between two temperature gradients. One is, of course, the actual temperature gradi-
ent that obtains in the star; the rate at which the temperature of the different mass
shells decreases as one moves outwards from the centre. For a star in radiative equi-
librium, we derived this temperature gradient in Chap. 3, Eq.(3.12). According to
this equation given the rate at which energy flows outward through an imaginary
shell of the star (the left-hand side of this equation), the temperature gradient or
the rate at which the temperature decreases as a function of the radial distance, is
determined by the opacity of the stellar material. This equation must be satisfied at
every radius. Therefore, given the rate of energy production at the centre and the
opacity of the stellar material, the temperature gradient adjusts itself to the required
value everywhere in the star. This is the principle of radiative equilibrium. The other
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gradient, known as the adiabatic temperature gradient, is not really a spatial gra-
dient of temperature. Rather, it is the rate at which the temperature of an element
changes as it is transported adiabatically in a radial direction. Thus, the condition for
convection to set in may be stated as follows:

Radiative temperature gradient > Adiabatic temperature gradient

Remember that if the gradient is more, then the temperature decreases more rapidly
as we go outwards. The expression for the so-called adiabatic temperature gradient
will be found in any standard book on fluid dynamics. We shall not attempt to derive
it here. Instead, we shall merely state the final result, which was first obtained by Karl
Schwarzschild. Stated in terms of the temperature gradient, convection can occur if
the temperature falls with increasing height, and if the magnitude of the temperature
gradient exceeds a critical value:

dTr
dr

- & (6.3)
Cp

rad

In Eq. (6.3), g stands for the acceleration due to gravity and ¢, stands for the specific
heat at constant pressure. Equation (6.3) is the famous criterion first derived by Karl
Schwarzschild. The meaning of this inequality is as follows. The left-hand side is the
rate at which the ambient temperature decreases as a function of the radial distance.
The right-hand side is the rate at which the temperature of our sample element
decreases as it moves up and expands adiabatically. The condition that our sample
element is hotter than the ambient matter is given by the above inequality.

Why does Convection Occur in the Sun?

Let us now continue with the description of our journey from the centre of the Sun.
‘We had reached a distance of 500,000 km from the centre. There we found a boundary
layer above which convection was taking place. We conclude from the above discus-
sion that this must be so because above this layer the radiative temperature gradient
is steeper than the adiabatic value, which is the condition stated in Eq.(6.3). The
question is why did the temperature gradient suddenly steepen and, at some level,
become larger than the adiabatic value? After all, up to that point, the star was in
hydrostatic equilibrium. The answer is to be found in (3.12) for radiative equilibrium
we derived in Chap. 3, and which is reproduced below for convenience:

(6.4)
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Here L(r) is the luminosity crossing an imaginary sphere of radius . In other words,
it is the amount of outward flowing energy crossing this imaginary surface per unit
time. Let us recall the meaning of this equation. The basic assumption is that all
the energy generated near the centre (per unit time) is transported outwards and
eventually radiated away from the surface. There can be no piling up of the generated
energy. Under the condition of radiative equilibrium, the net outward flux of radiation
is determined by the temperature gradient and the opacity x of the stellar material.
Therefore, given the energy generation rate at the centre, the above equation says that
if the opacity of stellar material increases, then the temperature gradient would also
have to increase proportionately (because the opacity is in the denominator and the
temperature gradient is in the numerator). Therefore, the onset of convection must
be related to an increase in the opacity of the outer layers of the star, and it is to a
discussion of this we now turn to.

Increased Opacity in the Outer Layers

At the very high temperature that obtains in the inner regions, hydrogen is completely
ionized and the heavier elements are stripped of all but their innermost electrons. As
we discussed in Chap.3, the main mechanisms contributing to opacity are photo-
electric absorption by the innermost electrons still bound to the nuclei of the heavy
elements, and electron scattering. We had remarked that bound—bound transitions
are not a significant source of opacity in the inner regions of the star. Recall that
these are transitions in which an electron bound to a heavy ion absorbs a photon
and jumps from an occupied level to an unoccupied level (see Fig.3.7). However,
we had pointed out that these transitions could become important when the temper-
ature drops to approximately one million degrees. As we journey from the centre to
the surface, we find ourselves in a region where the temperature has dropped to a
mere two million kelvin. At this temperature, one will encounter ions of C, N, O, Ca,
Fe and so on, with a few more bound electrons than they had near the centre (species
of ions that we did not find near the centre). These ions will provide new channels
for absorption of the ambient soft x-ray and far-ultraviolet photons which, in turn,
will significantly increase the opacity. Such an increase in opacity will result in an
increase in the temperature gradient.

The Negative Ion of Hydrogen

As we go out even further, one ion plays a central role in the dramatic increase in the
opacity of the outer layers, particularly in the cooler stars like the Sun, and that is the
negative ion of hydrogen—H™ (a hydrogen atom with two electrons!) The ions you
would be familiar with are positively charged; the number of electrons orbiting the
nucleus is less than the number of protons in the nucleus. Here we are talking about
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a negative ion, with the number of electrons being more than the number of protons.
It is likely that you may not have heard of this before. Let us, therefore, digress a
little since the story of is fascinating.

Soon after the advent of the quantum theory of atoms, it was pointed out by some
perceptive physicists that a hydrogen atom with two electrons could be a bound state.
But the proof came only in 1929, when Hans Bethe published a seminal paper (the
same Bethe who worked out the details of the energy production in the Sun). is a
weakly bound ion with a binding energy of 0.75eV (recall that the binding energy of
the neutral hydrogen atom is 13.6eV). What this means is that a photon with energy
of 0.75eV can knock out the second electron. And that is precisely why it is of such
importance in astrophysics. Around 1940, an astronomer by name Wildt realized
that ions could contribute significantly to the opacity of stellar atmospheres. For one
thing, neutral hydrogen is abundant in the outer layers. And there are plenty of free
electrons. Thus it is the ideal environment for the formation of bound ions—a neutral
hydrogen atom capturing a second electron. At the same time, there are plenty of
photons of the right energy to destroy these ions by detaching the second electron.
As we approach the surface (or, more correctly, the photosphere), the temperature
would have dropped to around ten thousand degrees. Accordingly, the energy of
most of the photons would also have decreased. Remember that at a temperature of
ten thousand degrees, the peak of the black body spectrum would shift to photon
energy of the order of one electron volt. Most neutral atoms and positive ions are
transparent to photons of such energy and, therefore, do not contribute to the opacity.
This is because their first photoelectric absorption occurs at 4 or SeV, if not larger,
energy; our tired photons do not have enough energy to kick an electron to a higher
energy level. This is where the H™ ion comes into play. In the infrared and visible
wavelengths (which are roughly in the energy range 0.75—-4¢eV), the H™ ion is not
transparent. Even our tired photons will have enough energy to knock off an electron
from the H™ ions (recall that the binding energy is only 0.75eV). Thus, the negative
ion of hydrogen is a dominant contributor to the opacity in the outer layers of stars
like the Sun. Subrahmanyan Chandrasekhar was quick to appreciate this, and went
on to contribute significantly to the story of the H™ ion, both in terms of the quantum
mechanics of this ion and its implication for the stellar atmospheres of cool stars.
But we have digressed too far. Let us return to our discussion of convection in the
outer regions of the Sun.

Until we reached a distance ~0.7R, we saw that the star was in hydrostatic
and radiative equilibrium. Beyond this point, the opacity of stellar matter increased
significantly. This, in turn, resulted in an increase of the temperature gradient. At
some stage, the temperature gradient will exceed the adiabatic value, and convection
sets in. Radiation is no longer able to transport the heat in a diffusive manner, as it
had done all the way from the centre. Instead, from here on heat is transported by
convection. Bubbles of solar plasma carry the heat as they buoyantly move up and
deposit it just below the surface. Having done so, the cooler bubbles sink back to
the lower boundary of the convection layer. Figure 6.3 shows the internal structure
of the Sun, taking into account convection in the outer regions. Some years ago, it
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was believed that the convective layer is only about 60,000 km thick. But according
to current thinking, it is much thicker, and extends to a depth of nearly 200,000 km.

Evidence of Convection: Granules and Supergranules

So far we have discussed convection as an orderly phenomenon with blobs of hot
stellar plasma rising due to buoyancy, depositing the excess heat in the outer layers
and sinking due to gravity. These blobs, in a sense, played the role of the molecules in
a microscopic picture. But this is a highly oversimplified picture. The highly ordered
picture of convection is messed up by chaotic motion or turbulence. The physics
of fully developed turbulence is still in its infancy. The mathematical description
of turbulence is very complicated and not amenable to convenient approximations.
Although experimental investigations of turbulence are now very mature and sophisti-
cated, it is rather hard to simulate the conditions that obtain in astrophysical contexts;
one has to resort to computer simulations to gain insights. A fair amount of progress
has been made in this direction, but we shall not pause now to summarize that. For
our purpose, it will suffice to describe the effect of turbulence on convective motions
in the following terms.

At the base of the convection zone, we would be right in describing the convective
motions in terms of fat columns of hot plasma rising, interspersed with columns of
cooler plasma sinking. But this picture breaks down as we approach the top of
the zone. Here, the rising columns break up into giant eddies, roughly 30,000 km
wide. The hot plasma rises near the centres of these eddies, flows horizontally to the
periphery and sinks there. Imagine a swimmer diving from a high board. He will
pierce the water, go down for a while and then start to rise. Just before he surfaces,
you will see a swell of water just over his head. This swell will disperse horizontally.
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Fig. 6.4 Granulation of the
surface of the Sun. The dark
features seen in this resolution
are known as supergran-
ules (Courtesy of SOHO
MDI/SOI). They are roughly
30,000km in size and last for
about a day. So the pattern will
be changing on the timescale
of a day

This is exactly what we find happens in the giant eddies, known as supergranules,
that are seen on the surface of the Sun. Figure 6.4 shows the surface of the Sun
peppered with these supergranules. These eddies are not permanent. Typically, they
last for about a day. Thus the pattern of convective cells keeps on changing.

The story does not end there. If we look closely we will find that these giant cells
consist of smaller eddies, which, in turn, consist of even smaller eddies. Figure 6.5
shows the pattern of cells with a characteristic size of about 1,000km. These are
known as granules, and last for only a few minutes. We shall not pause to discuss the
many interesting phenomena associated with granules and supergranules. Our inten-
tion was merely to draw attention to these and point out that these are manifestations
of the large-scale convective motions in the outer layers.

Sounds of the Sun

Let us now return to the main objective of this chapter. We began by asking whether
the Standard Model of the Sun was accurate enough for us to take seriously the dis-
crepancy between the observed and predicted flux of solar neutrinos. We mentioned
that although initially only Bahcall and a few others thought so, by 1990, there was
direct experimental evidence to show that that the Standard Model was accurate to
about 0.1 percent. Astronomers had been able to pierce through the outer layers of
a star and test the conditions within. Eddington would have been thrilled.
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This came about by listening to the sounds of the Sun. And the technique has
come to be known as Helioseismology. It is very similar to terrestrial seismology
where information about the interior of the Earth is inferred by a systematic study
of the slight motions of the surface of the Earth. It is like striking a bell and using
the frequencies of the sound waves produced to infer the properties of the material of
the bell. Actually speaking, one does not have to its strike the Sun to make it oscillate
because its surface is oscillating spontaneously. This important discovery was made
by Robert Leighton and his students at the California Institute of Technology in 1962.
I am sure that many of you will recognize his name. It was Robert Leighton who
persuaded the legendary Richard Feynman to give a course of Lectures on Physics
to the undergraduate students and published them in three volumes. If you have not
encountered these volumes, get them, and read them! There is simply no better way
to get excited about how Nature works.

The Five-Minute Oscillations

The story of Helioseismology began in 1962, soon after Leighton and his students had
discovered the supergranules we mentioned above. Leighton had built a sophisticated
instrument to measure small velocities in these supergranules. The idea was to pick
one of the absorption lines in the spectrum of light from a particular spot in the Sun
and determine its wavelength very accurately. Depending on whether the absorbing
material is moving towards us or away from us, the wavelength of the absorption
feature will be shifted to a shorter wavelength (blue shift) or longer wavelength (red
shift), respectively, in comparison with what one would expect in the absence of any
motion. This is just the familiar Doppler effect. You will remember that the fractional
shift in the wavelength is given by

ALY (6.5)
C

where v is the component of the velocity of the source in the line of sight to the
observer and c is the velocity of light. The patch of Sun that Leighton was looking
at was large enough to include many granules, each behaving independent of the
other—some rising and some sinking (see Fig. 6.5). Therefore, he should have found
purely chaotic motion, with any systematic velocities at the granular scale cancelling
out at a larger scale. Instead, he found that the large parch he was looking at was
oscillating intermittently with a period of the order of 5 min and velocity of the order
0.5kms™!.

Let us pause to appreciate the accuracy of the measurements. Since the velocity
of light is 300,000 km/s, a velocity of a mere 0.5km s~! will result in an incredibly
small wavelength shift, as implied by the relation (6.5). It would be quite a challenge
to detect this even if the spectral line being tracked was extremely narrow (in wave-
length). Unfortunately, absorption features in astronomical sources tend to be very
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Fig. 6.5 If one looks carefully
one will discover that super-
granules themselves have a
granular structure, as may
be seen in this photograph.
These granules have a char-
acteristic size of the order of
1,000km, and last only for a
few minutes. (Courtesy of the
Swedish Vacuum Telescope)

Photospheric granulation, Distance in units of
G. Scharmer 1000 kilometers
Swedish Vacuum Solar Telescope

10 July 1997

broad. Therefore, detecting small velocities, resulting in small shifts of broad lines,
is always a Herculean task. But Leighton was well known for his clever experiments.

The Ringing Sun

Is the Sun’s surface really oscillating? Why?

The correct explanation took quite some time in coming, and was advanced many
years after Leighton’s discovery, by Roger Ulrich (1970) and independently by
Robert Stein and John Leibacher (1971). They argued that the surface oscillations
of the Sun were caused by sound waves in the convection zone. According to them,
the Sun acts as a resonant cavity, with sound waves known as p-modes (or pres-
sure oscillations) trapped between the solar surface and the lower boundary of the
convection zone. Sound waves represent the propagation of pressure oscillations, or
in more familiar language, the propagation of periodic local compression and rar-
efaction of the gas. In sound waves, there is no net motion of the gas itself; sound
waves represent the propagation of pressure oscillations. Ulrich and the duo, Stein
and Leibacher, argued that sound waves in the Sun are trapped in the convective
zone for the following reason. As these waves move outwards, they are reflected
back near the solar surface due to the sharp density gradient. And as they move
inwards, they are bent back or refracted due to the increasing speed of sound. The
increase of sound speed is a direct consequence of the increase in the temperature
of the stellar plasma as one goes deeper. Let us try to understand this. As mentioned
above, sound waves are propagation of pressure oscillations. One normally assumes
that the compression and rarefaction of the gas occurs adiabatically. This means that
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Fig. 6.6 A schematic representation of sound waves trapped inside the Sun. As these waves try
to escape from the Sun, they are reflected inwards due to the sharp density gradient near the solar
surface (mirror effect). Then, as they propagate inwards, they are bent back or refracted. This happens
because the speed of sound inside the Sun increases as one goes deeper, a direct consequence of the
increase in temperature as one goes deeper. The Sun thus acts as a resonant cavity of standing waves
of various wavelengths. Notice that waves with longer horizontal wavelength penetrate deeper into
the Sun

the entropy remains constant during the compression of a local element of gas, that
is, no heat is exchanged with the surroundings. Under these conditions, the speed of

sound is given by:
1
OP\ 2
={—) , 6.6
Cs (ap )S (6.6)

where the subscript on the right-hand side signifies that the derivative is taken with
the entropy s remaining constant. As we know, in an adiabatic process, the pressure
and density are related by P = Kp7, where K is a constant and v = % for an ideal
gas. (This is just another way of writing Eq. (6.1). The volume term has been brought
to the right-hand side and its reciprocal written in terms of the mass density p.)
Differentiating, we get 9P /0p = 5/3 (P/p). Recall, for an ideal gas P = pkT /ump.
Therefore, (OP/dp) o T. It follows from that the speed of sound is oc +/T'. Since the
temperature increases as we go inwards, the sound speed also increases. This is the
reason why sound waves are bent back as they try to propagate inwards; it is just the
familiar phenomenon of refraction. The net result of the sound waves being reflected
near the surface due to the mirror effect, and bent back in the convection zone due to
refraction, is that they bounce back and forth in this spherical shell. This is depicted
in Fig.6.6.
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Fig. 6.7 Standing waves in (a)l

a stretched string: locations B
where the string is stationary
are called nodes

(b)

Clearly, for this phenomenon to be long-lived, the waves trapped in this region
must form a standing wave pattern. Therefore, the idea was that the observed motions
of the Sun’s surface, such as discovered by Leighton, result from a superposition of
several resonant modes with different periods and horizontal wavelengths. As we
shall presently see, it is a superposition of not just a few modes but of millions of
resonant modes!

Nodes, Nodal Lines and Nodal Surfaces

Before proceeding further, let us review some relevant aspects of resonant or normal
modes of vibrations. Let us first discuss a one-dimensional problem, namely the
vibration of a string.

Consider a string of length L-that is fixed at both ends, and excite it by plucking.
It is clear that for a standing pattern to occur, the wavelength of the excitation, A,
must satisfy the condition L = n\/2, where n = 1,2,3..., as shown in Fig.6.7.
The mode with n = 1, is known as the fundamental mode, while modes with
n = 2,3,... are known as overtones or harmonics. You will see Fig.6.7 that in
all the overtones there are points in the string where the amplitude of vibration is
zero. These points are known as nodes. These are special points in the standing-wave
pattern where the string is stationary. At all other points you will find the string
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Fig. 6.8 Nodal lines in a
circular glass plate sprinkled
with sulphur powder. Chladni
clamped the glass plate at one
point and stroked it with the
bow of a violin. Each pattern
of nodal lines corresponds to
the plate being stroked at a
particular point. Reproduced
from Discoveries Concerning
the Theory of Sound, by Ernst
Chladni (1787)

© 1996 Smithsonian Institution

going up and down, with different amplitudes. The locations where the amplitude is
a maximum are called antinodes. But at the nodes the string will be motionless.

Now let us go to vibrations in two dimensions, like waves in a pond or vibrations of
the membrane of a drum. One of the most famous investigations of this phenomenon
was carried out by Ernst Chladni in 1787. He clamped a glass plate in one corner,
sprinkled sulphur powder on its surface and stroked one of the free edges at some
particular point with the bow of a violin. What he saw was remarkable. The vibrations
of the plate caused the sulphur particles to dance around, until they eventually settled
at points on the plate that were stationary. These are the nodal lines. These are the
two-dimensional analogues of nodes in a vibrating string. Everywhere else, the glass
plate is moving up or down. But along the nodal lines, the vibrations due to criss-
crossing waves that have been reflected repeatedly off the edges, cancel out. You will
see in Fig. 6.8, the remarkable regular patterns formed by the nodal lines in a circular
glass plate. The different patterns correspond to different tones of the vibrating plate.
Such figures have now come to known as Chladni figures.
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Fig. 6.9 Nodal lines and nodal surfaces in three dimensions. This figure shows a computer sim-
ulation of a three-dimensional gas sphere vibrating in one of its normal modes. Concentrate first
on the patterns on its surface. The light-grey patches represent areas that are rising, while the
very dark patches represent sinking areas. The sphere is stationary between these two areas; these
are the nodal lines. Clearly, the nodal lines are latitudes and longitudes on the sphere. But the
surface pattern does not reflect what is happening inside the sphere. Consider a light grey patch
on the surface, representing a rising area. This does not mean that all points on a line joining
this patch to the centre are also rising. This may be seen in the cut-out of the sphere. As one
moves inwards, one will alternately encounter rising and sinking regions, separated by a thin layer
which is stationary. Thus, there are nodal surfaces, in addition to nodal lines. As may be seen,
these nodal surfaces are concentric spheres. In this particular normal mode, there are 16 nodes
along the equator; 20 nodes along a longitude and 14 nodes in the radial direction! [Courtesy of
Wikipedia, The Free Encyclopedia. Helioseismology: http://en.wikipedia.org/w/index.php?title=
Helioseismology\&oldid=299610276

Vibrating Spheres

Now, let us go to three dimensions and consider the vibrations of a gas sphere. It
is easy to anticipate that the spectrum of vibrations will be much richer in three
dimensions. It is so rich that we can only study it with the help of computers.
Figure 6.9 shows a cut-out of a gas sphere pulsating in a particular mode. In this
computer-generated picture, the light grey areas are rising and the dark grey areas
are sinking. At the boundary between these two areas, the sphere is stationary. These
are the nodal lines. As may be seen in Fig. 6.9, the nodal lines are the latitudes and
longitudes on the sphere. Therefore, to characterize a mode, we have to specify the
number of nodes, m, as we go around the equator (azimuthal angle ¢ in the usual
spherical polar coordinate system), as well as the number of nodes, /, as we go along


http://en.wikipedia.org/w/index.php?title=Helioseismology&oldid=299610276
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any of the great circles defining the longitudes (angle, 6, in the spherical polar coor-
dinate system). The / = 0 mode is a breathing mode, where the whole sphere moves
in and out at the same time; it is a radial oscillation. Higher values of / correspond
to non-radial oscillations that deform the sphere into non-spherical shapes. Higher
the degree, smaller will be the scale of the spatial distortion. Interestingly, modes
with different m but the same degree of oscillation / have the same frequency; in
the technical jargon, these modes with different m are said to be degenerate. For a
given value of /, there are (2/ + 1) modes with different values of m, ranging from
—I < m < [. If the sphere is perfectly symmetric and non-rotating, all these (2/ + 1)
modes will have the same frequency.

This is not all. Consider a light grey patch on the surface which is rising. Can
we take it for granted that all points on a line joining that patch to the centre are
also rising? While that is certainly one of the possible modes, there can be other
modes. As we move towards the centre, we may encounter some regions that are
rising and others that are sinking. These regions are separated by surfaces known as
nodal surfaces(two-dimensional analogues of the nodal lines). Some nodal surfaces
will intersect the surface. Such intersections define the nodal lines we mentioned
above. Other nodal surfaces will not intersect the surface. They will be concentric
spheres. The number of concentric nodal surfaces defines the number of nodes, 7, in
the radial direction. Therefore, to characterize a mode in three dimensions, we have
to specify three numbers:

1. The radial order n, specifying the number of radial nodes.
2. The degree, I, the number of nodes along the meridian.
3. The azimuthal order, m, the number of nodes along the latitude.

This may sound very familiar to those of you who have studied some quantum
mechanics. You will recall that three quantum numbers (n, [, m) are needed to define
the wave function of the various levels of, for instance, a hydrogen atom. Not surpris-
ingly, the three quantum numbers have the same meaning as in the present problem.
They specify the number of nodes in the wave function in the radial, polar and
azimuthal directions, respectively (Fig.6.10).

The Frequency Spectrum

Let us first consider modes that differ in the number of nodes / along a longitude, but
which have the same number of radial nodes, n. Modes whose degree of oscillation,
1, is greater, will have higher frequencies. This is not difficult to understand. Recall
that a larger value for / means a greater number of nodes. As the number of nodes
increases, the wavelength of the excitations decreases and consequently the frequency
increases. You will recall that this is the same with vibrating strings; the frequency of
vibration of the string increases as the number of nodes increases. Therefore, a plot
of frequency (on the Y-axis) versus degree of oscillation of modes (on the X-axis)
will look like a string of pearls, sloping upwards as we go to a higher degree of
oscillation (see Fig.6.11). Remember, all this holds for a fixed n.
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Fig. 6.10 Computer simulation of non-radial oscillation of a sphere
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Fig.6.11 The theoretically predicted frequency spectrum of an oscillating gas sphere. Plotted on the
X- axis is the degree of oscillation, / (also known as the Spherical Harmonic Degree). The reciprocal
of this is the horizontal wavelength of the sound waves. The various dotted curves correspond to
the various radial orders (the number of nodes in the radial direction). For a given n and /, there are
(21 4+ 1) modes with different azimuthal number m. But for a symmetric and nonrotating sphere,
all these (21 + 1) modes will have the same frequency



124 6 Sounds of the Sun

Let us now fix /, and go to modes with greater number of radial modes. It should
not be difficult to convince yourself that, again, the frequency of the modes will
increase as n increases. Hence, the frequency spectrum of a vibrating sphere will
look like a series of strings of pearls, stacked on top of each other (Fig.6.11).

Let us now return to our discussion of the oscillation of the Sun’s surface. We
mentioned that Ulrich and Leibacher and Stein suggested that the surface oscillations
observed by Leighton might be caused by sound waves trapped in the convection
zone. They argued that the Sun acts as a resonant cavity, with sound waves known
as p modes (or pressure oscillations) being trapped between the solar surface and
the lower boundary of the convection zone. Ulrich went further: he argued that if
the above suggestion was correct then the strongest solar oscillations will fall into
a series of narrow bands when the amplitude of the oscillations are displayed in a
two-dimensional diagram displaying the period (or frequency) versus the horizontal
wavelength (or degree of oscillation). In other words, Ulrich argued that it would
look like Fig.6.11. Such a two-dimensional plot is known as the power spectrum.

Helioseismology

In 1975, Franz-Ludwig Deubner, a German astronomer who was observing the Sun
from the Mediterranean island of Capri, was the first to find observational proof
for this prescient prediction by Ulrich. This was soon confirmed by other groups,
and the subject of Helioseismology was born. Instead of showing the early results,
we have shown in Fig. 6.12 a power spectrum obtained recently from a space-borne
observatory. The observed power spectrum is remarkably like the one predicted by
Ulrich, vindicating the theoretical conjecture that the rising and falling of the surface
of the Sun is, indeed, due to the superposition of countless regular oscillations of
the Sun.

In the above discussion, we considered the normal modes of oscillation of a gas
sphere. It would be a gross oversimplification to say that the oscillatory motion of a
patch of the solar surface is due to any particular mode. For example, in the power
spectrum shown in Fig.6.12, n goes up to 40; [ up to 400 and m up to 1,000. Thus,
during this observation, the Sun was simultaneously oscillating in more than 10
million modes (40 x 400 x 1, 000)! As a result, there are no nodal lines or nodal
surfaces in the sun. It is like stroking the glass plate in Chladni’s experiment not at
a particular point but simultaneously at every point! A point on the surface of the
Sun may move up or down by as much as a metre or two, with a velocity of only
a few centimetres per second due to any particular mode. Not all the modes will be
in phase. As a result of the superposition of various modes, the resultant velocity
amplitude of a patch on the surface could be as large as a few hundred metres
per second.
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Fig. 6.12 The measured fre-
quency spectrum of the Sun,
obtained using the Michelson
Doppler Imager on the SOHO
spacecraft. This particular
spectrum was derived from
uninterrupted data recorded
over 340 days! [Courtesy

of SOHO/MDI consortium.
SOHO is a project of inter-
national cooperation between
ESA and NASA]
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Let us remind ourselves of the primary objective of Helioseismology. By studying
the slight motions of the surface, we wish to infer the conditions that obtain inside
the Sun. There are two steps in this. First, we must decompose the observed motion
into the normal modes of oscillations. Next, we must predict the expected amplitudes
of the various modes and compare them with the observations. It is this second step
that uses the temperature and density profiles from the standard model of the Sun.

The task of decomposing the observed motions into millions of normal modes
might, at first sight, appear quite hopeless. But there is a well-developed branch of
mathematics, known as Fourier analysis, to cope with precisely such a problem. This
technique allows one to describe an arbitrary waveform as a superposition of sine and
cosine waves. Fourier analysis could be used, for example, to describe the ripples on
the surface of a swimming pool in terms of a superposition of sine and cosine waves.
To take another example, when a signal generator produces a square wave, it is really
adding up sine and cosine waves of different frequencies and different amplitudes.
Fourier analysis is a bread-and-butter technique in a vast variety of problems in
physics and engineering.
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Observational Techniques

Coming back to the problem on hand, if one has data in the form of a time series, one
can look for periodic components in it by using the well-known technique known as
Fourier transform. Such a time series could be the intensity of light as a function of
time, or wavelength of a particular spectral line as a function of time. The key thing
is the accuracy with which one can determine the frequencies of the various modes
using the technique of Fourier transform. If one wants to use Helioseismology to
help us to constrain the Standard Model of the Sun then one has to determine the
frequencies to better than one part in ten thousand. Herein lies the difficulty.

To illustrate this, imagine that you are trying to measure the frequency of oscilla-
tion of a pendulum. The most straightforward method is to count the number oscil-
lations of the pendulum in a given time and divide the number of cycles by the time
duration. The accuracy of the frequency so determined will depend upon the duration
of the observation. To put it in mathematical terms, if we observe the pendulum for
a time interval, At, then the precision with which we can determine the frequency
will be proportional to (A7)~ !. Let us consider the five-minute oscillation discussed
earlier. If we want to determine the frequency of this mode to an accuracy of one
part in ten thousand then we have to observe the Sun for 35 days (in other words,
ten thousand cycles of five minutes each)! We have made this point mainly to draw
attention to an important concept in the measurement of frequencies. Our problem is
more complicated. For one thing, a priori we do not know if our data contain period-
icities. We have a hunch that the seemingly chaotic phenomenon we are observing
may be a result of a superposition of many periodic oscillations. We would first like
to establish this, and, in addition, determine the frequencies as accurately as possible.
As mentioned above, the Fourier transform of the data in the form of a time series
will yield the power spectrum. If the data contain periodicities then they will show
up as peaks in the power spectrum. The question is how well we can determine the
frequencies of these peaks. The frequency resolution of the observation is directly
determined by the reciprocal of the duration of the observation. Unfortunately, the
Sun can be observed continuously only for a few hours. This severely limits the pre-
cision with which we can determine the frequencies in the power spectrum. There
is a further complication. Breaks in the data (such as arising from the Sun setting at
the observatory!) will introduce spurious frequencies in the power spectrum. These
artificial frequencies (known in the trade as alias frequencies) will be the harmonics
of the reciprocal of the duration of the observation.

The moral to be drawn from the above discussion is that for Helioseismology to
provide useful constraints on the predictions of the Standard Model one must observe
the oscillations of the solar surface for as long as possible.

The Antarctic

The Antarctic provides excellent opportunities to the solar astronomer since, weather
permitting, one can observe the Sun continuously for six months. During the last three
decades, many countries have set up ambitious scientific stations there. The first to



The Antarctic 127

exploit this were two French astronomers, Gerard Grec and Eric Fossat. For five
continuous days in January 1980, they observed the Doppler shift of a spectral line
from the sodium atom in the integrated light from the disc of the sun. This enabled
them to detect, for the first time, meridional oscillation of very low degree (I =
0,1,2,3). This was a major breakthrough for two reasons. Since the light from the
entire disc was used in this observation (as opposed to the light from a small patch of
the Sun), it provided the first evidence that the oscillations were globally coherent. In
other words, the entire Sun was participating in these coherent oscillations. Secondly,
since these oscillations with large horizontal wavelengths penetrate deep into the
solar interior (see Fig. 6.3) they provide the most crucial information.

Global Networks

Encouraged by the success of the Antarctic observations, astronomers rediscovered
another way of ensuring that the Sun never sets in the astronomer’s empire (a take-off
by an astronomer on the famous Victorian saying, ‘the Sun never sets over the British
empire!’). They set up identical instruments at observatories located at different
longitudes and combined the data from these instruments. One such network is
known as GONG (Global Oscillation Network Group), managed by an international
consortium of astronomers. This network consists of six stations located in California,
Hawaii, Chile, Australia, India and the Canary islands, and sees the Sun 90 percent
of the time (the GONG instrument in India is located in Udaipur in Rajasthan). The
data from this network have yielded many exciting results, but we shall not npause
to elaborate on this.

Solar Observatories in Space

The next step towards uninterrupted observation of the Sun was, of course, to set up
solar observatories in outer space. This is, after all, the era of exploring the Universe
from outer space. Of the many space-borne solar observatories, we shall single out
one, shown in Fig.6.13, named the Solar and Heliospheric Observatory (SOHO).
This was launched in December 1995 by the ESA (European Space Agency) and
NASA. This observatory houses twelve different instruments for a variety of obser-
vations of the Sun, with three of them being specific to Helioseismology. The most
remarkable aspect of this observatory is that it has a truly uninterrupted view of the
Sun. Being in space does not guarantee this since the Earth can eclipse the Sun as
the satellite revolves around the Earth. To avoid this, SOHO has been placed in a
special orbit at a point known as the inner Lagrangian point 1. This point is in the
line joining the Sun and the earth, at a distance of 1.5 million kilometres from the
earth. Figure 6.14 explains the significance of this point.
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Fig. 6.13 The Solar and Heliospheric Observatory (SOHO). This was launched in December
1995 by ESA (European Space Agency) and NASA of USA. It weighs roughly 2,000 kg, and its
dimensions are roughly 4 x 3 x 4 m. There are twelve separate instruments onboard this spacecraft.
One of the unique features of this observatory is that it has an uninterrupted view of the Sun. SOHO
moves around the Sun in step with the Earth, at a location known as the Lagrangian Point L1, where
the combined gravity of the Earth and Sun keep SOHO in an orbit locked to the Earth—Sun line. The
L1 point is approximately 1.5 million kilometres away from Earth (about four times the distance of
the Moon from the Earth), in the direction of the Sun. There, SOHO enjoys an uninterrupted view
of the Sun. All previous solar observatories have orbited the Earth, from where their observations
were periodically interrupted whenever the Earth eclipsed the Sun

Letus first go to a frame of reference co-rotating with the Sun—Earth binary system.
In this frame, let us draw the gravitational equipotential contours. The significance
of these contours is that the normal to it gives the direction of the gravitational force.
Clearly, close to the two bodies, these equipotential surfaces will be spheres centred
on the two bodies; their projection on a plane would be circles. As we go farther and
farther from the Earth, the gravitational force on a test particle due to the Sun will
become more and more significant until, at the point L1, the equipotential contours
intersect to form a horizontal figure-of-eight. This point of neutral equilibrium is
known as the inner Lagrangian point. As we shall see in the third volume of this
series, this point assumes special significance in the life history of binary stars. The
point of interest to us here is that because SOHO has been placed at this point, it has
an uninterrupted view of the Sun. Thanks, mainly to this vantage point, SOHO has
made several monumental discoveries.
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Fig. 6.14 At the top, is a three-dimensional representation of the gravitational potential in a binary
system, such as the Sun—Earth system. In this particular figure, the ratio of the two masses has
been assumed to be two. This surface, projected on to the plane below gives the gravitational
equipotential contours; contours on which the potential is a constant. This representation is made
in a frame co-rotating with the two stars. The figure-eight-shaped contour in the equipotential plot
at the bottom are called the Roche lobes of each star. The points L1, L2 and L3 are known as the
Lagrangian points, where the gravitational forces due to the two stars cancel out. If one of the stars
becomes as large as its Roche lobe then mass can flow through the saddle point L1 from that star to
its companion. Imagine that you are filling the three-dimensional potential hole with water. When
one of the holes fills up, water will overflow to the adjacent hole. The SOHO spacecraft is placed
at the point L1, from where it has an uninterrupted view of the Sun. [From Wikipedia, the Free
Encyclopedia. Author: Marc van der Sluys, 2006. Source http://hemel.waarnemen.com/Informatie/

Sterren/hoofdstuk6.html#h6.2]

The quality of data from this observatory is quite unprecedented. We have already
seen an example of this in Fig. 6.12. That particular power spectrum was obtained
from uninterrupted data obtained over a period of 340 days using an instrument
known as MDI (Michelson Doppler Imager, named after the great experimentalist
Albert Michelson whose measurements of the velocity of light laid the foundations

for the Special Theory of Relativity proposed by Einstein in 1905).

In the top panel of Fig. 6.15, we have shown the Fourier transform of a time series
stretching to 690 days (!) obtained with an instrument onboard SOHO known as
GOLF (Global Oscillations at Low Frequency). The bottom panel shows an enlarged
version of the power spectrum over a very narrow frequency range. With continuous

data from 690 days, the frequency resolution is an impressive 17 nanohertz.

The Standard Model Put to Test

In 1926 Eddington asked the following question: “What appliance can pierce through
the outer layers of a star and test the conditions within?” Well, we now have the tools
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Fig. 6.15 The top panel
shows the remarkable Power
Spectrum derived from 690
days of uninterrupted data
obtained by an instrument
called GOLF onboard the
SOHO spacecraft. Such a
power spectrum is obtained by
Fourier transforming the data
in the form of a time series,
and reveals the periodicities
(or frequencies) present. An
enlarged version of the spec-
trum over a very narrow range
of frequencies is shown in
the lower panel (note the
scales in the two panels).
Thanks to continuous data
over 690 days, the frequency
resolution (or the accuracy
with which the frequencies
can be determined) is sev-
enteen nanohertz! [Courtesy
of SOHO/GOLF consortium.
SOHO is a project of inter-
national cooperation between
ESA and NASA]
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6 Sounds of the Sun

that Eddington would have loved to have—the frequencies of sound waves trapped
inside the Sun. And we know them to an accuracy of better than one part in ten
thousand. A detailed knowledge of these frequencies can be put to use in two ways.

We can use the temperature and density profiles given by the Standard Model,
in conjunction with a theory of how the sound waves are trapped, to predict the
oscillation frequencies of the normal modes and their amplitudes, and compare them
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with observations. If there is a discrepancy then we can tune the Standard Model till
an agreement is obtained. This is known as the forward method.

Alternately, one can deduce one of the internal properties, say, the speed of sound
as a function of depth, purely from the observations, and compare it with the sound
speed profile predicted by the Standard Model. This is known as the inverse method.
Such an inversion technique is employed in many fields like geophysics, atmospheric
science, radiative transfer and so on. In all these problems, the basic idea underlying
the inverse method is more or less the same. Unfortunately, it is rather technical and
beyond the scope of this book. But for those of you who have studied some advanced
mathematics, the principle of the inverse method may be described as follows. The
observed quantity is related to the internal properties of the medium by an integral
equation. That is, an integral over the path length involving an operator known as
the kernel and some important internal property. In the present case, for example,
the observed frequencies are integral measures of the sound speed along the path
of the sound wave. To solve for the sound speed as a function of depth, one has to
invert this nonlinear integral equation. This is a tough problem to crack. Therefore
one resorts to some approximations that would enable one to simplify the problem.
Traditionally, what one does is to linearize the integral equation: that is approximate
the exact nonlinear equation by retaining only those terms that are linear. Such an
approximation scheme is used very widely in physics.

In the problem on our hands, this simplification is introduced thus. As already
remarked, the path of the wave and the depth to which it penetrates depends upon
the radial order n and the degree /; the smaller the value of n or /, the deeper the
wave penetrates before being refracted upwards once again. Since the frequencies
of two waves moving along two different trajectories are different, the sound speeds
along the two paths will also be slightly different. Therefore, the difference in fre-
quency between two modes with slightly different degree or radial order can be used
as a probe of the internal properties such as the local temperature, local chemical
composition, local motions etc. that determine the local sound speed. Imagine mod-
elling the Sun as consisting of thin concentric shells like an onion. By using the
technique mentioned above, one can systematically derive the sound speed in each
shell. T realize that all this is probably too technical for some of you. But do not
worry if you could not make head or tail out of it. The above discussion was merely
to convince you that there are well defined prescriptions for ‘inverting’ the problem
and deriving the internal properties. This is, in principle, very similar to the way a
CT-scan machine is used to generate a three-dimensional image of the human body.

Many groups around the world have succeeded in inverting such data, often com-
bining data from several instruments. In Fig.6.16 we have shown a comparison of
the sound speed predicted by the Standard Model and the values inferred by inverting
the observed frequencies obtained from the space borne observatory SOHO. Plotted
along the x-axis is the radial distance from the centre to the surface measured in
units of the radius of the Sun. Plotted along the y-axis is the normalized difference
between the square of the predicted and derived sound speeds. Since the square of the
sound speed is proportional to the temperature (remember Newton’s formula for the
speed of sound), this plot may be viewed as a comparison between the temperature
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Fig. 6.16 This figure shows a comparison between the derived speed of sound inside the Sun and
that predicted by the Standard Model of the Sun. What is plotted on the y-axis is the difference
between the square of the derived sound speed and the square of the sound speed predicted by
the Standard Model. As is customary, this difference has been made dimensionless by dividing by
the square of the predicted sound speed. If there is perfect agreement between the two, then the
value should be zero. The x-axis is the radial distance from the centre in units of the stellar radius.
Notice that the maximum deviation from the predicted value is only 0.4 percent. And that occurs
around 0.7Rg which is roughly where the base of the convection zone is. If we ignore this region—
where special things may be happening—the maximum deviation is only 0.2 percent. Please note
that the vertical error bars are much less than 0.2 percent. It is therefore safe to conclude that
Helioseismology has proved that the predictions of the Standard Model of the Sun are accurate
to within 0.2 percent. [Courtesy of SOHO/MDI consortium. SOHO is a project of international
cooperation between ESA and NASA]

profile predicted by the Standard Model and that derived from observations. It will
be seen from the figure that the maximum discrepancy is only about 0.4 percent.
And this occurs just below the base of the convection zone at about 0.7 Ry . In the
region where the energy generation takes place, namely, the core of the Sun (<0.2
Rp), the discrepancy is less than 0.2 percent. This is truly remarkable. But before we
get too excited, we should be convinced that the errors involved deriving this plot
are sufficiently small to warrant the above conclusion. Fortunately, they are. If you
look at the dots in the figure, you will notice a vertical bar, as well as a horizontal
bar, attached to them. The vertical bars indicate the errors in the results based on
the errors in the determination of the oscillation frequencies. The horizontal bars
provide a measure of the resolution in the inversion process. Clearly, the errors are
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small enough to warrant the conclusion that the temperature profile predicted using
the Standard Model is accurate to better than 0.2 percent.

Let us recall the main objective of this chapter. In the Chap.5 we discussed the
pioneering experiment by Davis and his colleagues to detect the neutrino flux from the
Sun. We saw that rather than jumping with joy at having finally detected the elusive
neutrinos from the Sun, Davis and Bahcall were bothered (indeed, obsessed!) by
the discrepancy—a factor of three between the predicted and observed flux of solar
neutrinos. In 1968, when the first result from the chlorine detector was announced,
it appeared that Bahcall was reading too much into this apparent discrepancy. Is the
Standard Model of the Sun accurate enough for us to take the discrepancy seriously?

The solar neutrino flux is extremely sensitive to the temperature where the energy
generation occurs. As we discussed in the Chap. 5, the probability of the fusion reac-
tions (that produce the neutrinos) is very sensitive to the temperature. The quantum
mechanical tunnelling probability which determines the reaction rate, and, therefore,
the rate of neutrino production, is proportional to 7%3. An error of 1 percent in the
temperature corresponds to approximately 30 percent error in the predicted neutrino
flux. An error of 3 percent in the temperature will lead to an error of factor of two
in the number of neutrinos. So, the question of whether the discrepancy in Davis’s
experiment is significant or not boils down to how accurate are the predictions of the
Standard Model, in particular the temperature near the centre of the Sun. Listening
to the sounds of the Sun has provided us with the answer to this question. Given this
spectacular agreement between the predictions of the Standard Model and astro-
nomical observations, we conclude that the disagreement by a factor of two or three
between the predicted neutrino flux in Davis’s experiment and the observed flux must
be real. The reason for the discrepancy must lie in fundamental physics. We shall
discuss this at length in the Chap. 7.

Rotation of the Sun

Before winding up this chapter, let us briefly discuss one of the most exciting byprod-
ucts of Helioseismology, namely the rotation of the interior of the Sun.

A Bit of History

The fact that the Sun rotates has been known for nearly four hundred years. Soon after
the telescope was invented, a number of persons used it to look at the heavenly bodies.
We are all familiar with Galileo Galilei discovering the moons of the planet Jupiter
using his telescope. Equally important was the discovery of small dark spots on the
disc of the Sun, which have come to be known as Sun spots. This discovery was made
around the year 1611, independently by a number of astronomers: Galileo Galilei in
Rome, and Johannes Fabricius and Christoph Scheiner in Germany. Interestingly,
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this was an unwelcome discovery at that time. A spot on the Sun was regarded as a
blemish, and this was unacceptable philosophically. Nature must surely be perfect!
To give you an idea of how strong such a prejudice was, Scheiner’s religious superior,
instead of applauding him, admonished him for making such a claim. He is supposed
to have said:

...such a thing has never been mentioned by any ancient philosopher. I have read my Aristotle
through from beginning to end more than once, and found nothing at all like this. So keep
quiet about this absurd idea, and don’t make a fool of yourself in public. Instead, you should
convince yourself that it is simply some fault in your eye or your telescope that makes you
think that you saw spots on the Sun.

Interestingly, sunspots must have been known for a very long time before this because
they can be seen with the naked eye—at least, the spots which are bigger than about
50,000 kilometres across (Think about why only spots bigger than this size can be
resolved with the naked eye). Such giant spots are quite common when the Sun is
active. If you want to try and see them with the naked eye, then the best time (and a
safe time!) to do this would be just before the Sun sets (preferably over the sea); the
black spots will stand out against the deep red disc of the Sun.

Despite these prejudices, Scheiner, in Germany, and Galileo, in Italy, continued
to systematically observe the sunspots. One of the things they noticed was that over
a period of a few days, the dark spots slowly moved across the face of the Sun. In
Fig.6.17, adrawing made by Scheiner in 1627 has been reproduced. In this sketch, he
has depicted the location, and the shape, of two spots observed over 13 consecutive
days. The two spots appear to move from the eastern limb to the western limb of
the Sun. Both Scheiner and Galileo noted that the shape of the spots appeared to
be distorted near the limb: while they were nearly circular on most days, they were
more oval in shape when near the two limbs. From this they drew two remarkable
conclusions. First, the spots must be on the surface of the Sun. They could not be, for
example, tiny planets orbiting the Sun! Second, the spots appear to move across the
disc of the Sun because the Sun was rotating about its axis! This interpretation also
explained the fact that the speed with which the spots moved across the disc was not
constant; the motion was fastest when the spots were near the centre of the disc, and
the apparent motion was slower when the spots were at the limb.

And thus it was established that Sun rotated about its axis once in about twenty-
seven days.

The next important discovery concerning the rotation of the Sun was made by
the English amateur astronomer Richard Christopher Carrington in the 1850s.
Although his father, a very rich brewer, wanted him to study theology at Cambridge
University, young Carrington was drawn to astronomy. When he inherited his father’s
wealth, he built himself an astronomical observatory! From his sustained observa-
tions of the Sun during the period 1853—-1861, he came to the remarkable conclusion
that the Sun does not rotate as a rigid body. Carrington discovered that near the solar
equator the rotation period is about 25 days, whereas it is about 27 days near 30°
latitude. Later observations have confirmed this early finding, and have found that
near the poles the rotation period is nearly 30 days. This is most intriguing. Ever
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Fig. 6.17 This is a repro-
duction of a drawing made by
Scheinerin 1627. Scheiner has
carefully followed the posi-
tion of two spots on a daily
basis. They move from left to
right in this drawing. From
this he concluded that the Sun
must be rotating about its own
axis. [Drawings of sunspots
from German mathematician ]
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since Carrington astronomers have been eager to find out how the interior of the Sun
rotates.

Helioseismology Revisited

Helioseismology has provided a comprehensive answer to this question. Let us briefly
recall our earlier discussion regarding the modes of oscillation of a sphere. We had
argued that the various modes of oscillation can be characterized by three quantum
numbers:

1. The radial order, n, specifying the number of radial nodes.
2. The degree, I, the number of nodes along the meridian.
3. The azimuthal order, m, the number of nodes along the latitude.

Further, we had remarked that if the Sun were spherically symmetric and non-rotating
then all modes of a given n and /, but different m, will have the same frequency;
recall that for a given [, m takes on (2/ 4 1) values ranging from —/ to + /. In the
technical jargon, one says that these (2/ + 1) modes are degenerate. We had argued
that the frequency spectrum of a vibrating sphere will look like a series of strings
of pearls, stacked on top of each other (see Figs.6.11 and 6.12), with each string
corresponding to a particular value of the radial order n but varying /. For any given
[, modes with different m will have the same frequency. But if the star is rotating then
this degeneracy of the (2/ + 1) modes is lifted, and the original frequency splits into
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Fig. 6.18 The panel on the left is a reproduction of Fig.6.12. It shows the measured frequencies
as a function of [ for various values of v. As remarked earlier, for fixed values of n and /, there
are (2/ 4+ 1) modes corresponding to different azimuthal number m. If the star is non-rotating, all
these (2/ + 1)modes will have the same frequency. The central panel shows an enlargement of a
small section of the frequency spectrum. You will notice that the frequency is, in fact, split into
many frequencies for a given n and /. The narrow rectangular region is further enlarged in the panel
on the right. We see clearly that for a given n and /, there are many frequencies. This splitting
occurs because the Sun is rotating. [Courtesy of SOHO/MDI consortium. SOHO is a project of
international cooperation between ESA and NASA]

(21 + 1) frequencies. This may be seen in Fig. 6.18 in which the measured frequency
for a given n and / has been magnified to show the splitting due to rotation. The
magnitude of this splitting or, in other words, the difference in frequency between
the (21 + 1) modes, tells us about the rate of rotation of the stellar material in a
shell in which the particular modes are trapped. Before discussing this further, let us
digress to understand why such a splitting occurs. We shall first refresh our memory
about a similar phenomenon in atomic physics.

Effect of a Magnetic Field on an Atom: Zeeman Effect

This splitting of a frequency into multiplets due to the rotation of the star should ring
a familiar bell. It should remind you of Zeeman Effect, the splitting of the spectral
lines emitted by atoms when a magnetic field is applied. Let us briefly recall this
phenomenon. In 1896, Zeeman discovered that spectral lines in the light emitted
by atoms are split up into components when the source emitting the lines is placed
in a very strong magnetic field (Fig.6.19). It might interest you to know that in
1862 Michael Faraday tried to investigate the effect of a magnetic field on the light
emitted by a source. Unfortunately, he could not discover the effect that Zeeman
discovered because his equipment did not have adequate resolution!
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Fig. 6.19 Zeeman Effect:
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Although a proper and satisfactory explanation of this had to wait for the advent
of quantum mechanics, Zeeman was able to provide a simple explanation based
upon the classical theory of matter that had just been developed by the great Dutch
physicist Lorentz. According to this theory, radiation of a fixed frequency is emitted
by electric charges when they execute simple harmonic motion; the frequency of
radiation will be equal to the frequency of oscillation. Let us now discuss the effect
of the applied magnetic field. It is useful to decompose the motion of the particle into
a component parallel to the field and one perpendicular to the field. As you know,
the magnetic field has no effect on the motion of charged particles moving parallel
to it and hence the frequency of vibration of this component is unaffected. Let us
call this frequency 1. The component of the motion perpendicular to the field will
be affected. These particles will be deflected by the field (due to the V x B force)
and will be forced to precess around the field with a frequency known as the Larmor
frequency (v, = eB/4mmc).

Now we are ready to answer the question we had posed earlier. The effect of
an applied magnetic field on the radiation can easily be seen if it is first noted that
a linear simple harmonic motion can be resolved into two superimposed circular
motions, with the two motions being executed with the same frequency but in opposite
directions. The magnetic field causes the frequency of these two circular motions to
be different. It is a simple matter to show that to a very good approximation, these two
frequencies will be (1 + v )and (vo — vr). To summarize, the effect of the magnetic
field will be to split the original spectral line into three lines, with frequencies:

7
vl =vy+ VL

V) =1y — VL
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Fig. 6.20 Simple harmonic motion being executed by an electron can be represented as a super-
position of two circular motions of the same frequency, but in opposite directions

This simple explanation by Zeeman was adequate to explain his original observations.
Later and more-refined observations showed that there are many more components
produced by the magnetic field. A proper explanation of these had to wait, of course,
for the discovery of quantum mechanics. Nevertheless, the above explanation due to
Zeeman captures the essence of the underlying physics.

Rotational Splitting of the Sound Wave Spectrum

Let us now attempt to understand along similar lines why the splitting of sound-wave
frequencies occurs due to the rotation of the star. At first, recall that we are studying
the spectrum of a three-dimensional standing wave pattern of sound waves. This
pattern arises due to a constructive interference between a wave and its twin moving
in the opposite direction. The important thing to appreciate is that sound waves are
carried with the medium; a phenomenon known as advection (Fig. 6.20).

To an outside observer, the prograde wave (moving in the same direction as the
sense of rotation of the local medium) will appear to complete one round a little
faster than the retrograde wave (moving against the direction of rotation). Another
way of saying this is that frequency of a wave, and its twin, are no longer the same;
the frequency of one is slightly increased, while for the other member of the twin it is
decreased (recall the discussion above of Zeeman splitting). It should be intuitively
obvious that the frequency shift (or splitting) will depend upon the rate of rotation
of the medium in the shell in which the wave under discussion is trapped, just as the
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Fig. 6.21 When a magnetic field is applied along the z direction, the two circular motions are
affected differently. If the original frequency is 1/, then the frequencies of the two circular motions
will now be vy + v, and vy — v, respectively

frequency splitting in Zeeman effect depended on the strength of the magnetic field
(Fig.6.21).

If you are more comfortable with a mathematical description, look at it this way.
For a non-rotating star, modes with angular dependence ¢/(“/*"?)are degenerate
(that is, they have the same frequency). Let us assume that in the rotating frame
slow rotation changes w only slightly. Then in the inertial frame (in other words,
for an observer outside the star), the prograde mode (e~™¥)will be sped up and
the retrograde mode (e*¥) slowed down. Let us state this mathematically. Let us
denote the azimuthal coordinate ¢ in the inertial and rotating frame by ¢; and g,
respectively. We have 7 = g + Qt, where 2 is the angular velocity of rotation and
t is the time coordinate. The phase of the mode has the form shown below:

ot = mp; = ot £ myg,

where the frequency o measured in the inertial frame is given, in terms of the fre-
quency og measured by an observer in the star, by the equation:

o =ogp xmS.
This is the result we were looking for. For an observer outside the star, the original

frequency is seen to split into a multiplet. The number of frequencies in the multiplet
will depend upon the degree of the mode since mtakes on (2] 4 1) values, ranging
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from —/ to + [. For example, if / = 2 then the original frequency will be split into 5
frequencies, two higher than the original frequency and two lower than the original
frequency. The frequency spacing between the multiplets will be a direct measure of
the rotation frequency of the layer in which the mode is trapped.

Internal Rotation of the Sun from Helioseismology

After this detour to understand how one extracts information about the internal rota-
tion of the Sun from observations, let us discuss the results obtained.

Figure 6.22 shows the internal rotation derived from the data obtained by the
SOHO satellite. What is plotted is the derived radial profile of the rotation rate at
three latitudes: the solar equator, 30 and 60 degrees. The most striking thing is the
very different behaviour of the radiative zone (less than ~0.7 R) and the convection
zone above it. The radiative zone rotates like a rigid body down to 0.4R. The results
pertaining to the very central region are somewhat controversial at present and we
shall not dwell on it. But there is no controversy about the outer layers. The convec-
tion zone behaves very differently from the radiative zone, and Richard Carrington
would have been absolutely thrilled to see this! We see that the pattern of rotation at
the surface, first deduced by Carrington, persists all the way down to the base of the
convection zone. The equatorial layer rotates fastest, and the rotation rate decreases
as we go to higher latitudes. To put it differently, the interior of the Sun rotates dif-
ferentially. And in the convection zone, different layers slide over each other. Why
this is so is one of the outstanding questions facing theorists. The observed behav-
iour does suggest that some mechanism exists for transporting angular momentum
from high latitudes towards the equatorial plane (since the high-latitude zones rotate
slower). The most popular candidate today for the mysterious agent responsible for
the transport of angular momentum is furbulence. To transport angular momentum,
there must be friction between adjacent layers. The familiar molecular viscosity is
too small in gases to be effective. The only other viable alternative that physicists
have been able to think of is turbulence which is known to introduce stresses in fluids.
These stresses may mimic frictional forces. At least, that is the great hope in this and
many other contemporary problems in astrophysics!

Although one may not understand the reason for this bizarre pattern of internal
rotation in the Sun, there is something to cheer about. One of the great mysteries
has been the origin of the magnetic field of the Sun. Quite clearly, there is a dynamo
at work. The nature and the location of this dynamo have been the subject of much
study. When the deep convection zone was discovered, many had conjectured that
this dynamo may be located at the base of this zone. Now this seems more plausible.
Refer to Fig.6.22 showing the internal rotation profile. It seems very likely that
there will be a great deal of shear at the interface between the radiative zone and
the convective zone, since the adjacent layers are rotating differentially. And such
a strong shear is just what the doctor ordered for producing large scale magnetic
fields. Although the last words have not been said, one can say with some confidence
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Fig. 6.22 The splitting of the frequencies in the solar acoustic spectrum has been used to derive
the internal rotation rate of the Sun shown in this figure. The rotation rate at three different latitudes
is shown. In the inner radiative zone, which is in hydrostatic equilibrium, the rotation rate is the
same at all latitudes. This signifies rigid rotation of this region of the star. But in the convective
zone, the Sun is rotating differentially, with the lower latitudes rotating faster. This is precisely what
Richard Carrington had discovered in 1850 by looking at the sunspots. [Courtesy of SOHO/MDI
consortium. SOHO is a project of international cooperation between ESA and NASA]

that unravelling the nature of the internal rotation represents a major breakthrough
in solar physics.

It is time to wrap up this chapter. Let us recall the quotation from Eddington with
which we began this chapter:

At first sight it would seem that the deep interior of the Sun and stars is less accessible
to scientific investigation than any other region of the universe. Our telescopes may probe
farther and farther into the depths of space; but how can we ever obtain certain knowledge of
that which is being hidden behind substantial barriers? What appliance can pierce through
the outer layers of a star and test the conditions within?

Is it not remarkable that by listening to the sounds of the Sun we have been able to
unravel so many secrets which were hidden inside its opaque interior! We have been
able to deduce the internal temperature and density to an impressive precision.

So, we now know how the interior of the Sun rotates!



Chapter 7
The Smoking Gun is Finally Found

The Hunt for the Smoking Gun

In Chap. 5, ‘Energy Generation in the Stars’, we discussed the pioneering experiment
by Raymond Davis and his colleagues to detect the neutrinos produced in the nuclear
reactions that generate the energy radiated by the Sun. Indeed, the detection of these
neutrinos was to be the ultimate test of the prescient conjecture by Eddington in
1920, and the detailed calculations by Hans Bethe in 1938. We saw that while Davis
and his colleagues were ingenious enough to detect the neutrinos from the Sun, there
was an apparent discrepancy between the predicted flux and the observed flux; the
observed flux was roughly one-third of the predicted flux.
As you will recall, three classes of explanation were suggested to explain this.

1. The theoretical calculations were wrong. The prediction of the Standard Model
of the Sun regarding the number of neutrinos produced per second was wrong,
and/or the modelling of the interaction of the neutrinos in the detector and the
consequent production rate of argon atoms in the detector was wrong.

2. Perhaps Davis’ experiment was wrong.

3. Perhaps something happened to the original neutrinos as they travelled to the
Earth.

All these possibilities were vigorously pursued in the decades that followed Davis’
first results in 1968. As we saw in Chap. 6, a parallel development, namely, Helio-
seismology, gave us the tools to verify the Standard Model of the Sun. By 1997,
astronomers were able to conclude that the temperature and density profile inside the
Sun predicted by the Standard Model was accurate to about 0.1 precent. This left us
with no choice but to accept that there is a discrepancy between the predicted neu-
trino flux and the observed flux provided, of course, the theoretical modelling of the
neutrinos in the detector was correct and the efficiency of the chlorine detector was
as good as Davis believed it to be. To be convinced of this, Bahcall and his colleagues
put in an enormous amount of work to improve the modelling of the interaction of

G. Srinivasan, What are the Stars? Undergraduate Lecture Notes in Physics, 143
DOI: 10.1007/978-3-642-45302-1_7, © Springer-Verlag Berlin Heidelberg 2014


http://dx.doi.org/10.1007/978-3-642-45302-1_5
http://dx.doi.org/10.1007/978-3-642-45302-1_6

144 7 The Smoking Gun is Finally Found

the neutrino with the detector. As we have already mentioned in Chap. 5, Davis and
his colleagues spared no effort to improve their experiment.

But there was a nagging feeling that it would be good to have some more
experiments—different kinds of experiments, perhaps—before one jumped to any
conclusions. And so there were! The mystery was finally solved just a few years ago.
As Bahcall would have put it, first the smoking gun was found, then the fingerprints
on the gun and finally the culprits—the missing neutrinos.

This chapter is devoted to this remarkable detective story. But before we narrate
it, let us refresh ourselves with some basic things concerning solar neutrinos.

Solar Neutrinos Revisited

In our discussion of the proton—proton chain reaction in Chap. 5, we saw that neu-
trinos were emitted in all the three branches of the chain. In essence, regardless of
the branch, four protons are fused together to ultimately form a “He nucleus. The
conservation of electric charge requires two positrons (e*) to be created and the
conservation of what is known as the lepton number requires two neutrinos to be
created. The same is true of the CNO cycle also. Since these neutrinos are associated
with electrons, they are called electron neutrinos. From now on, we shall be careful
to attach a subscript to indicate the flavour of the neutrinos, namely the lepton with
which they are associated.

Let us first recall the various reactions that produce these electron neutrinos and
also the energy of the neutrinos produced in the various reactions.

'H+'H — H+et +v, (p-p) E, < 0.420 MeV

"Be+e™ — 'Litv, (p-p) (90 precent) 0.861 MeV
(10 precent) 0.383 MeV

8B — 8Be+et + 1, (p-p) < 15MeV

BN— BC+et +v,  (CNO) < 1.2 MeV

50— BN+et +1,  (CNO) < 1.7 MeV

According to an ancient Chinese saying, one picture is worth ten thousand words.
We have therefore reproduced in Fig. 7.1 the energy spectrum of the solar neutrinos
predicted by the Standard Model of the Sun. This figure has been adapted from the
spectrum given in the famous and definitive article by Bahcall et al. in Reviews of
Modern Physics (1982).

The 37Cl Experiment

Before describing some of the major experiments that followed the pioneering exper-
iment by Davis, let us recall the salient features of that original experiment. The
reaction that was used is the inverse of the laboratory decay of radioactive 37Ar:
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Fig. 7.1 Solar Neutrino Spectrum. The figure shows the energy spectrum of neutrinos predicted by
the Standard Model of the Sun. The neutrino fluxes are given in units of number per m? per second
per MeV at one Astronomical Unit (AU) from the Sun (1 AU is the average distance between the
Sun and the Earth). This image has been taken from http://www.sno.phy.queensu.ca/sno/neutrino.
html. Courtesy SNO

ve +37Cl - ¢~ + VAr. (7.1)

The threshold for this neutrino absorption is 0.814 MeV. This means that the
neutrinos produced by the p—p reaction cannot be detected by this experiment. But
the experiment will be sensitive to the neutrinos produced by the decay of Be and
the high-energy neutrinos produced by the decay of 8B (Refer to the spectrum of the
neutrinos shown in Fig.7.1). Please also note that this experiment can detect only
electron neutrinos. The event rate predicted by the Standard Model of the Sun was
(7.9 £ 2.6) SNU; the uncertainty is indicated within parentheses. The observed rate
in the experiment of Davis and his colleagues was (2.1 &£ 0.9) SNU. As mentioned
earlier, the results are expressed in terms of Solar Neutrino Units (SNU), which
is the product of a characteristic calculated solar neutrino flux (cm_2 s™1) times a
theoretical cross-section for neutrino absorption (cm?). Therefore, a SNU has the
unit of events per target atom per second and is chosen for convenience to be equal
to 10736 s~ 1,
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The Kamiokande II Experiment

Next, we shall discuss a major experiment set up in Japan. Historically, this was
the second neutrino experiment to yield definitive results. The laboratory is located
1000 m underground in the Kamioka metal mine in Japan. It uses ordinary water
(H>0) as the detector. A cylindrical tank with a diameter of about 16 m and height
16 m contains 3000 metric tons of water. The Cerenkov light produced by the recoiling
electrons is detected by approximately thousand 20-inch-long photomultiplier tubes
uniformly placed on the inner surface of the tank facing inward.

Neutrino—-Electron Scattering Experiments

Let us now discuss the physical process involved in such a water detector. Basically,
it involves the scattering of electrons in water by the incoming neutrinos:

v+e—> v +¢ (7.2)

The incident neutrino scatters off an electron (see Fig.7.2). The recoil electrons will
mostly be in the forward direction. These electrons emit a cone of bluish light in the
forward direction.

This radiation is known as Cerenkov radiation and is the electromagnetic analogue
of shock waves created by a projectile moving faster than the speed of sound in the
medium. Cerenkov radiation is emitted by particles moving with speeds greater than
the phase velocity of light in the medium. (If you look down a nuclear reactor in
which the uranium pile is immersed in water, you will see a bluish light; this is
Cerenkov radiation).

1. An important feature of this water detector is that one will be able to reconstruct
the direction from which the incident neutrino came. Since the electron is scattered
in the forward direction, reconstruction of the electron tracks will give us a vector
that points back in the direction from which the neutrino came.

2. Another very important feature is that neutrino—electron scattering will occur
for neutrinos of any flavour, although it is much more sensitive to the electron
neutrino. The scattering cross-section for the electron neutrinos (v,) is roughly
6.5 times more than for the muon neutrinos (v,,) and the tau neutrinos (v;) put
together.

3. Scattering experiments also provide the exact arrival times of the neutrinos. The
moment when the photomultiplier tube detects a flash of Cerenkov light is essen-
tially the moment when the neutrino interacts with the detector. It is this fea-
ture, together with being able to reconstruct the arrival direction that enabled the
Japanese physicists to make a historic detection in 1987.
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Fig. 7.2 The basic interaction in the water detector. The incoming neutrino scatters off an electron.
As a consequence, the electron is accelerated in the forward direction, and emits a narrow cone of
bluish light in the forward direction. This radiation is known as Cerenkov radiation. The direction
from which the Cerenkov light comes tells us the direction from which the neutrino arrived. This
process can occur for neutrinos of any of the three flavours

As we shall discuss in the next monograph in this series, in the standard scenario
for the explosions of massive stars, known as supernovae, the core of the star
collapses to form a very highly condensed quantum star known as a neutron star,
which consists essentially of neutrons. During the collapse, almost all the protons
are converted to neutrons through the following reaction: p+e— n+v,. Since there
are roughly 10°7 protons in the collapsing core with a mass of about 1 solar mass,
107 neutrinos would be produced during the birth of a neutron star. And since
the collapse of the core of the star occurs in a few milliseconds, there should
be an enormous burst of neutrinos accompanying the supernova explosion. This
is the theoretical scenario for the most common type of supernovae. Although
very plausible, this had remained a theoretical conjecture since the 1930s. The
Kamiokande experiment was able to detect for the first time the burst of neutrinos
from the supernova of 23 February 1987 in the Large Magellanic Cloud. The
arrival time of the neutrinos, and their directionality, enabled one to associate
this neutrino burst with the supernova in the Large Magellanic Cloud! In 2002,
Masatoshi Koshiba was awarded the Nobel Prize for this discovery.

This water detector is very sensitive to the high-energy neutrinos. As was men-
tioned above, high-energy neutrinos are produced in the Sun only in the rare decay
of the boron nucleus (see Fig.7.1, showing the energy spectrum of the neutrinos).
The original Davis experiment was also sensitive to these high-energy neutrinos.

In 1989, more than two decades after the first results from Davis’ experiment,
the Kamiokande II experimenters announced their finding. Just as in Davis’ exper-
iment with the chlorine detector, the number of solar neutrino events detected by
Kamiokande II was less than predicted by the Standard Model of the Sun and the
Standard Model of elementary particle physics. But the discrepancy was less severe
than observed with the chlorine detector. The observed flux was ~45 precent of the
theoretically predicted flux; recall that Davis detected ~33 precent of the predicted
flux. This caused many eyebrows to be raised. It also provided the motivation for an
even bigger water detector which would settle the issue once and for all! (Fig.7.3).
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Fig. 7.3 The Super—Kamiokande Detector, University of Tokyo. The detector contains an inner
volume filled with 32,000 tons of pure water, and an outer volume filled with 18,000 tons of
pure water. The outer volume shields the inner volume from particles other than neutrinos. The
inner volume is surrounded by 11,000 photomultiplier tubes that detect the Cerenkov light emitted
by electrons accelerated by the neutrinos. (Drawing: Courtesy of Kamioka Observatory, ICRR,
University of Tokyo)

The Super-Kamiokande Detector

Soon, a much larger version of the water detector was installed. This detector con-
sisted of an inner volume containing 32,000 tons of pure water, and an outer volume
containing 18,000 tons of water. The outer volume was intended to shield the inner
volume from other kinds of background events. This inner volume of water was sur-
rounded by 11,000 photomultiplier tubes which detected the Cerenkov light emitted
by the recoiling electrons. This was a truly impressive experiment.

Within a few years after the Super—Kamiokande detector was commissioned,
precise measurements of higher energy neutrinos by this new detector confirmed the
magnitude of the deficit of the high-energy neutrinos found earlier by the Kamiokande
II experiments. There was a deficit of neutrinos, but this deficit was less severe than
in the Davis experiment (Fig.7.4).
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Fig.7.4 A view of the inner volume partially filled with water. Two scientists may be seen in a boat,
inspecting the photomultiplier tubes. (Photo: Courtesy of Kamioka Observatory, ICRR, University
of Tokyo)

The Gallium Experiments

Independent of this, two other experiments were done in the 1990s, one in Italy and
the other in Russia, using gallium as the detector. The GALLEX experiment used 30
tons of gallium in aqueous solution and was located in the Gran Sasso underground
laboratory in Italy. The SAGE experiment (Soviet—American Gallium Experiment)
used 60 tons of gallium metal as the detector underground in the high mountains in
the Baskan Valley in the Caucasus Mountains. You should be impressed with the
scale of these experiments because the total world production of gallium is only
10 tons per year! These experiments were particularly sensitive to the low-energy
neutrinos from the p—p reaction which the chlorine experiment, as well as the water
detector, could not detect (refer to Fig.7.1). The gallium experiments were critical
because theorists believed that they could calculate more accurately the expected
flux of low-energy neutrinos (E, < 0.42MeV). The reaction that was used in these
experiments is given below.

ve+'Ga—e” +'Ge,  Etpreshold = 0.2332 MeV (7.3)

The radioactive germanium produced in reaction decays by capturing an electron (the
inverse of the above reaction with a lifetime of 11.43 days). As explicitly indicated in
the reaction given above, these experiments, like the Davis experiment with chlorine,
could only detect electron neutrinos.
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Table 7.1 Conclusions of the four solar neutrino experiments

Davis High energy v Only v, Deficiency observed Detected ~ 33%
GALEX Low energy v Only v, Deficiency observed Detected ~ 33%
SAGE Low energy v Only v, Deficiency observed Detected ~ 33%
Kamiokande High energy v Ve, Vg and vy Deficiency observed Detected ~ 45%

The surprising result of these much-awaited gallium experiments was that a sub-
stantial number of the lower-energy neutrinos were also missing.

This deepened the mystery. It was now clear that both low-energy, as well as
high-energy neutrinos were missing, although not in the same proportion.

Like a good detective does, it is useful to gather together the evidence obtained
from all four experiments. This has been done in Table 7.1.

The most outstanding thing revealed by Table 7.1 is the following. The deficiency
of solar neutrinos in the Kamiokande experiments is substantially less than in the
other three experiments; it detected 45 precent of the predicted neutrino flux, while
the other three experiments detected only 33 precent. Could it be that the deficiency
in the Kamiokande water detector is less than in other experiments because not
all the neutrinos from the Sun were electron neutrinos? Could it be that a fraction
of them were, in fact, muon neutrinos and tau neutrinos? Kamiokande would have
been able to detect the neutrinos of other flavours as well, whereas the other three
experiments were capable of detecting only the electron neutrinos. But wait! The
nuclear reactions in the Sun produce only electron neutrinos!

All this strengthened the suspicion that something must be happening to the neu-
trinos as they travel to the Earth from the centre of the Sun. In Chap. 5, we have
already referred to the remarkable conjecture by Bruno Pontecorvo that neutrinos
may change their identity back and forth between various flavours (the electron neu-
trino, v, the muon neutrino, v,, and the tau neutrino, v;). If this happens, then,
although only electron neutrinos are produced in the Sun, there will be an admixture
of neutrinos of different flavours when they arrive at the Earth after travelling a long
distance. Neither Davis’ experiment nor the two Gallium experiments will be able to
detect all the flavours, but Kamiokande would be! Strong and independent evidence
that this might, indeed, be happening came in 1998 from entirely different quarters;
from another beautiful experiment done with the Super-Kamiokande detector.

The Atmospheric Neutrinos

This experiment was designed to observe muon neutrinos produced in the Earth’s
upper atmosphere by cosmic rays; these are known as atmospheric neutrinos. Cosmic
rays are extremely energetic particles that constantly bombard the Earth. A fraction of
these originate from discrete sources within our own Milky Way Galaxy, while others
come from distant galaxies. When these extremely energetic particles, travelling very
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Fig.7.5 The Kamiokande atmospheric neutrino experiment. Muon neutrinos produced in the upper
atmosphere reach the detector from two different directions shown in the figure. The experiment
found a statistically significant difference in the number of muon neutrinos arriving from the two
directions. Since the path lengths are different, this result was consistent with the hypothesis of
neutrino oscillations. Indeed, the observed difference in the muon neutrino flux agreed well with
the theoretical predictions based on the hypothesis of neutrino oscillations

nearly at the speed of light, collide with atomic nuclei in our atmosphere a shower of
secondary particles are produced. In some collisions, muon neutrinos are produced,
and the objective of this experiment was to detect them. The first ever detection
of atmospheric neutrinos was made in 1964 by a group of scientists from the Tata
Institute of Fundamental Research, Mumbai. The experiment was located 2.3km
below the surface in the Kolar Gold Mines, near Bangalore. This was followed by
another detection in South Africa.

Let us now return to the Kamiokande experiment which was designed to detect
muon neutrinos produced in the Earth’s upper atmosphere. Remember that the
Kamiokande water detector was sensitive to neutrinos of all flavour. It was also
vastly more sensitive than earlier experiments. What the experiment observed was
this: The number of muon neutrinos that were detected depended upon the direc-
tion from which they came. Some of the neutrinos could have been produced in
atmospheric events directly overhead of the detector. These neutrinos had to travel
only 10-100 km of the atmosphere to reach the detector. On the other hand, the muon
neutrinos could have also been produced on the other side of the Earth. Since the
Earth is essentially transparent to the neutrinos they will have no difficulty in passing
through the Earth. Some of these neutrinos will also be detected by the experiment.
But these neutrinos would have travelled a larger distance (see Fig.7.5).

What was observed in the experiments was this. The number of neutrinos arriving
from the overhead direction was significantly different from the number that came
from the other side of the Earth. Remember that the water detector gives us infor-
mation about the direction from which the neutrino came (refer to Fig.7.2). This is
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extraordinary! This difference could be reconciled if the muon neutrinos oscillated
in flavour, as Pontecorvo had suggested. The neutrinos from the other side of the
Earth would have to travel much greater path length compared with the neutrinos
produced overhead. Therefore, if neutrinos did, indeed, oscillate between different
flavours, then it is not surprising that the number of neutrinos arriving at the detector
as muon neutrinos depended on the path length travelled.

Back to Solar Neutrino Experiments

Let us now return to the results of the solar neutrino experiments summarized
in Table 7.1. Earlier, we had posed the following question: Could it be that the
Kamiokande water detector detected more neutrinos than the other experiments
because not all the neutrinos from the Sun were electron neutrinos, but a fraction of
them were, in fact, muon neutrinos and tau neutrinos? Could a fraction of the original
electron neutrinos have changed their identity to muon and tau neutrinos while in
transit to the Earth from the Sun? The result of the atmospheric neutrino experiment,
described above, lends very strong support to the idea that neutrino oscillation is the
culprit responsible for the observed deficit.

Is there a way to clinch this argument? In the atmospheric neutrino experiment,
the path lengths of the neutrinos coming from the two opposite directions were
significantly different to enable us to draw a definite conclusion about the reality
of neutrino oscillations. In the case of solar neutrinos, it is difficult to perform two
experiments where the distance between the Sun and the detector is significantly
different. To test the neutrino oscillation hypothesis, one must build a detector that
can operate in several modes. In one of the modes, it must be able to accurately
measure the flux of electron neutrinos alone. In an additional mode, it should be
able to measure the combined flux of neutrinos of all flavours. This would settle the
controversy once and for all. This is precisely what the Sudbury Neutrino Observatory
was designed to do.

The Sudbury Neutrino Observatory

The SNO used the same basic principle as the Kamiokande experiments, namely,
looking for Cerenkov light produced by the interaction of neutrinos with water. It is
located 2000 m beneath the surface in a nickel mine in Sudbury, Ontario in Canada.
This is the deepest underground experiment so far. Because it is located 2000 m
below the surface, the cosmic ray background—which can also trigger the detector—
is rather low. Only about three cosmic ray particles pass through the detector every
hour. Like the Super—Kamiokande, this detector also has two volumes. The inner
volume is a sphere 12m in diameter, made of thick transparent acrylic, and holds
1000 metric tons of heavy water (D,0O). In heavy water, the molecules have two
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deuterium atoms instead of two hydrogen atoms. Recall that the deuterium nucleus
consists of one proton and one neutron. As we shall presently discuss, this is the
novel feature of this definitive experiment.

Surrounding this acrylic sphere is a stainless steel geodesic sphere of 18m
diameter on which are mounted 9500 sensitive photomultiplier tubes, each capa-
ble of registering single photons of the Cerenkov light. This sensitivity is needed
because each neutrino event produces only 300-500 photons. This whole assembly
is suspended in a cavern 22 m wide and 34 m high, carved out of solid rock and filled
with 7000 tons of ordinary water.

Before narrating how this experiment finally solved the mystery of the missing
solar neutrinos let us pause to appreciate the painstaking efforts made to discern the
real neutrino events from various types of background events. In all great experiments
in physics, it was the detailed understanding of the errors in the experiment that finally
led to their success. It was the same in this experiment. We have already remarked that
going two kilometres below the surface helped to drastically reduce the background
events due to cosmic rays. But cosmic rays are not the only headache. Almost any
material on Earth—steel, dust, even water—has a tiny amount of radioactive material.

These radioactive contaminants emit charged particles that can generate the same
kind of Cerenkov light as neutrino interactions are expected to do. So every com-
ponent of the experiment was designer-made; they were made out of material low
in radioactivity. That was not all. The nickel mine chosen for the experiment was
a functioning mine. Naturally, this made the logistics of running a laboratory a lot
easier; all the access facilities were already there. But there was a heavy price to
pay. Mine dust usually has high level of radioactivity. As one of the principal inves-
tigators of this experiment remarked, ‘even a tablespoon of this dust dropped into
the 275,000 gallons of heavy water would have enough radioactivity in it to mask
the neutrino signals’. So the entire underground laboratory was operated as a clean
room, with the air continuously filtered. Every person entering the laboratory had to
follow strict cleanliness procedures. This is the kind of clean environment demanded
of a semiconductor laboratory in which computer chips are made. But those are tiny
rooms. Imagine demanding a comparable level of cleanliness in an underground lab,
2 km beneath the surface! But that is the kind of precaution that had to be taken. As
for the radioactive decay from the rocks, the 7000 tons of ordinary water in the outer
cavern shielded the heavy water detector inside the acrylic sphere (Fig.7.6).

Finally, where did they get 1000 metric tons of heavy water? One cannot go to
a supermarket and buy heavy water! It so happens that heavy water is used as a
moderator in some nuclear reactors; the moderator slows down the neutrons emitted
when the uranium nuclei break up, thus making it possible for other nuclei to absorb
them. For the Sudbury Neutrino Observatory, 1000 tons of heavy water was borrowed
from the Canadian Nuclear Reactor Programme (Fig.7.7).
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Fig. 7.6 Artist’s drawing
showing a cutaway of the
Sudbury Neutrino Observa-
tory detector. The inner sphere
contains 1,000 tons of heavy
water and is surrounded by
a stainless-steel structure on
which approximately 10,000
photomultiplier tubes are
mounted. The outer barrel-
shaped cavity is filled with
purified ordinary water. This
provides support and acts

as a shield against particles
other than neutrinos reaching
the inner detector. Copyright
Garth Tietien, 1991. Courtesy
of SNO

Fig. 7.7 A view of the
SNO detector. Approximately
10,000 photomultiplier tubes
are mounted on this stainless-
steel structure. Inside this
structure is a sphere 12m

in diameter, made of thick
transparent acrylic, containing
1,000 metric tons of heavy
water (D>0). Photo courtesy
of Ernest Orlando Lawrence,
Berkeley National Laboratory.
Courtesy of SNO

7 The Smoking Gun is Finally Found
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Neutrino Interactions in Heavy Water

Like the ordinary water detector which we discussed in the context of the Kamiokande
experiment, this heavy water detector also is sensitive to the high-energy neutrinos.
Estimates show that at this depth about five million solar neutrinos pass through every
square centimetre of the detector per second. Of these, only about five neutrinos are
expected to produce any signal in any given day! There are three possible channels
through which these neutrinos can interact with heavy water.

Channel 1: Absorption of the neutrino by a deuterium nucleus (only v,)

An electron neutrino can be absorbed by the neutron inside a deuterium nucleus,
transforming it into a proton. An electron is emitted in the process.

Ve+n—p+e”

The electron emits Cerenkov radiation. Such absorption can only occur for an electron
neutrino. Such absorption cannot occur in ordinary water because a proton cannot
absorb an electron neutrino; it can only absorb an electron anti-neutrino. Recall that
all the reactions in the Sun produce only electron neutrinos but not their antiparticle.

Channel 2:  Neutrino—electron scattering (ve, vy, Vr)

The solar neutrino knocks off an electron from one of the D,O molecules.
v+e —v+e

This is the same interaction as in the Kamiokande detector, discussed earlier. The
important thing to appreciate is that one can distinguish these electrons from those
produced when a neutrino is absorbed by a deuteron. In the present case, the electron
will be scattered in the forward direction and will emit a cone of Cerenkov light
in the forward direction. Since the electron is scattered in the forward direction,
reconstruction of the electron tracks will give us a vector that points back in the
direction from which the neutrino came. This vector should point to the Sun. But
there is no such restriction in the neutrino absorption process described in Fig. 7.8.

This scattering process can be triggered by any type of neutrino (ve, v, or vy),
but not with equal probability. It happens approximately 6.5 times more often for
electron neutrinos.

Channel 3:  Break-up of a deuteron by the neutrino (v,, vy, v¢)
This third reaction is also sensitive to all flavours of neutrino (v,, v, or vz). The

neutrino breaks up the deuteron into a neutron and a proton.

v+d—n+p+v
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Fig. 7.8 Channel 1: The incident electron neutrino is absorbed by the neutron inside a deuterium
nucleus, transforming it to a proton. An electron is created in the process. The Cerenkov radiation
emitted by this fast-moving electron is detected. Note that the electron is not necessarily emitted in
the same direction as the velocity vector of the incoming neutrino. Also, such absorption is possible
only for an electron neutrino

The neutron thus released is soon captured by another deuteron, producing a gamma
ray. This gamma ray scatters an electron in the heavy water, and it is this secondary
electron that produces the Cerenkov light.

Not only can such break-up of the deuteron occur with any of the three flavours
of neutrino, they occur with the same probability. That is, the electron neutrino, the
muon neutrino and the tau neutrino all have the same footing as far as this reaction
goes.

To summarize, with the heavy water detector one can make three independent
measurements. Of these, neutrino absorption alone is sensitive only to electron neu-
trinos. The other two reactions (deuteron break-up and electron scattering) can be
triggered by all the three types of neutrinos.

Now it is possible to directly test the hypothesis of neutrino oscillations. If the
number of neutrino events measured with either electron scattering (channel 2) or
deuteron break-up (channel 3) is greater than the number measured with the neutrino
absorption reaction (channel 1), then it implies that neutrinos of flavour other than
electron neutrinos (muon and/or tau neutrinos) must also be present in the flux from
the Sun. But since the Sun produces only electron neutrinos, the transformation
to other flavours must have happened on the way. Neutrinos must have oscillated
between the three flavours during the transit (Fig.7.10).

There already was an indication of this from the Kamiokande experiments, which
we highlighted in Table 7.1. Recall that although these experiments (using electron
scattering) recorded a deficit in the number of neutrinos, the deficit was less than in
the chlorine experiment. The chlorine experiment had detected only about 33 percent
of the predicted number. But the number of neutrinos detected in the Kamiokande
experiments was about 45 percent of what had been predicted by theory. This could
easily be reconciled if one postulated that the Kamiokande electron-scattering detec-
tor may have detected some muon and tau neutrinos, in addition to electron neutrinos.
But this was a conjecture, since the Kamiokande detector could not separately detect
only the electron neutrinos. The Sudbury experiment had the potential to settle this.
That is why it was built.
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Fig. 7.9 Channel 2: This is the same as the reaction depicted in Fig.7.2. The incoming neutrino
scatters off an electron. As a consequence, the electron is accelerated in the forward direction, and
emits a narrow cone of bluish light in the forward direction. This radiation is known as Cerenkov
radiation. The direction from which the Cerenkov light comes tells us the direction from which the
neutrino arrived. This process can occur for neutrinos of any of the three flavours
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Fig. 7.10 Channel 3: Break-up of the deuteron. The incident neutrino can break up a deuteron
into a free proton and a free neutron. The wandering neutron can be captured by another deuterium
nucleus. A gamma ray will be emitted in the process. This gamma ray can scatter off an electron.
The recoiling electron will emit Cerenkov radiation. All three flavours of neutrino can trigger this
process

The Smoking Gun was Finally Found

To shed light on this, the Sudbury Neutrino Observatory first performed an experi-
ment with the neutrino absorption reaction which is sensitive exclusively to electron
neutrinos (Channel 1, shown in Fig.7.8). After recording data for 241 days, SNO
detected 950 neutrino absorption reactions. The Standard Model of the Sun had pre-
dicted that there should have been more than 2,700 neutrinos detected during this
time. In other words, SNO observed only 35 percent of the expected number.
Suddenly the Kamiokande results made sense! Recall that Kamiokande had
detected 45 percent of the expected number of neutrinos. The Kamiokande water
detector was based on the neutrino—electron scattering reaction (Channel 2, shown
in Fig.7.9) which is sensitive to other types of neutrino also, although at a reduced
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level. Its sensitivity to muon plus tau neutrinos is about 6.5 times less than to elec-
tron neutrinos. Therefore, the fact that Kamiokande detected 10 percent extra flux
compared to the SNO result really meant that 65 percent of the neutrinos arriving
from the Sun must be muon or tau neutrinos (10 percent extra flux really implied 65
percent extra neutrinos, since the probability of detecting v, and v; is 6.5 times less
than for detecting the electron neutrinos). If we add to this 35 percent of electron
neutrinos, directly detected by SNO, then we have accounted for all the neutrinos
expected from the Sun!

What followed was a historic announcement on 18 June 2001. The SNO collab-
oration announced that they had solved the solar neutrino puzzle. An ecstatic John
Bahcall declared, ‘the smoking gun has been found!’

The Fingerprints on the Gun

The next step was to directly confirm this by using the other two modes of detection
that were available at the SNO. Having found the smoking gun, one had to find the
fingerprints on the gun, as Bahcall put it. The Sudbury Neutrino Observatory repeated
the experiment, but this time using the other two channels of detection which were
capable of detecting neutrinos of all the three flavours. The final data set assigned
2806 events as solar neutrino events. The break-up was as follows:

Channel 1: 1967 neutrino absorption events (only v,).

Channel 2: 263 electron scattering events (all types of neutrino events with
unequal probability).

Channel 3: 576 deuteron break-up events (all types of neutrinos with equal prob-
ability).

To translate these events to number of neutrinos arriving at the detector (per unit
area per unit time) one has to take into account the probability of detection in each
of the three channels (or reactions). When this was taken into account, the number
of events mentioned above translated to number of solar neutrinos given below.

Channel 1:  1.75 million electron neutrinos pass through the detector per cm? per
second. This was only 35 percent of the flux of neutrinos predicted. Importantly, this
confirmed the earlier finding in the first run of the experiment.

Channel3: Incomparison, the 576 events assigned to deuteron break-up translated
to a total flux of 5.09 million neutrinos per cm* per second. Recall that deuteron
break-up can be triggered by neutrinos of all three types with equal probability. This
was direct proof of the fact that the majority of neutrinos arriving from the Sun are
either muon or tau neutrinos. It is important to stress that the difference between the
total number of neutrinos detected (through Channel 3) and the number of electron
neutrinos detected (through Channel 1) was determined with great accuracy. The
difference was more than five times the experimental uncertainty,thus making it a
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highly statistically significant discovery. One could therefore say with considerable
confidence that Sudbury Neutrino Observatory had actually detected neutrinos of all
types. What is more, a total flux of 5.09 million neutrinos per cm? per second was
in remarkable agreement with the predictions of the Standard Model of the Sun.

Neutrinos do Oscillate in Flavour!

So the hostile witnesses to the transmutation of hydrogen into helium at the centre
of the Sun had at last been found. All was well with astronomers’ model of the Sun,
and why it shines. But in confirming this, physicists have shot themselves in the
foot. There is now compelling evidence that neutrinos do oscillate between various
flavours. This, in turn, calls for a major revision of fundamental physics. Although
this has nothing to do with the story of the stars, we must digress a little and try to
understand the phenomenon of neutrino oscillations, at least qualitatively. After all,
astronomy has, once again, provided a major input for basic physics.

As mentioned earlier in Chap. 3, neutrinos first entered the scene of the elementary
particles in 1933. At that time, the list of elementary particles consisted of the proton,
neutron and the electron; the neutrino was just a postulate. By the time the neutrinos
were eventually discovered in 1956, the number of elementary particles had grown
to more than fifty. In an attempt to bring some order, the known elementary particles
were classified according to their mass: leptons (light particles), mesons (medium
mass) and baryons (heavy particles). Now days, one uses the term hadrons to include
the mesons and baryons.

When the terminology was first introduced, leptons were meant to be much lighter
than the proton. Therefore, to include the electron, and the associated neutrino,
in this family of leptons was appropriate. Today, the family of leptons includes
some particles which are not so light—the muon and the tau. It also includes the
associated neutrinos—the muon neutrino and the tau neutrino. It is these neu-
trinos that concern us. According to the Standard Model of elementary particles
(known as the Electro-Weak Unified Theory), the leptons obey Fermi—Dirac statis-
tics, and all the neutrinos have zero mass.

However, the evidence that we have been discussing of neutrinos changing their
flavour requires that at least some of the neutrinos must have non-zero mass. Other-
wise, as we shall now discuss, the phenomenon of neutrino oscillation cannot occur.
Since neutrinos cannot have a mass in the Standard Model of elementary particles,
the observed phenomenon of neutrino oscillations calls for a major revision of the
Standard Model. But that is for the future.

The idea of neutrino oscillation was first put forward by Bruno Pontecorvo in
1957. At that time, Pontecorvo was not concerned with solar neutrinos. His idea was
inspired by a similar phenomenon concerning the K Mesons. (I recommend that you
look at The Big and the Small by G. Venkataraman for an excellent account of the
fascinating story of elementary particles). Pontecorvo hypothesized that neutrinos
might also oscillate between the various states,just as K mesons did. He was aware
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that for this to happen at least some of the neutrinos must have a nonzero mass, but
this did not deter him. After all, nobody had proved that neutrinos had zero mass.
One only knew that if at all they had a mass, it must be extremely small. Needless
to say, no one took note of this radical suggestion by Pontecorvo. There was no
compelling theoretical reason for entertaining this idea. Some ten years later, when
Davis announced his famous solar neutrino deficit result in 1968, it was natural for
Pontecorvo to point out that neutrino oscillations may explain this puzzle. More than
forty years later, we have direct experimental evidence to confirm this remarkable
conjecture.

The following discussion of neutrino oscillations is rather simple minded, but I
believe it captures the essence of the underlying physics. If you have studied some
elementary quantum mechanics, you will find it very straightforward to comprehend.
If you are not familiar with the principles of quantum mechanics, two classical
analogies should give you a feel for the phenomenon of quantum oscillations.

Mass States and Flavour States: Quantum Oscillations

The underlying principle of quantum physics is the duality between particles and
waves. In quantum mechanics, the states of a system are described by what are
known as wave functions. The basic thing to appreciate is the following. The neutri-
nos, or more correctly, the neutrino states |v,), vﬂ), |vy) that are produced in weak
interaction decays in association with the charged leptons e™, u™, T, respectively,
are called flavour states. The point is that these flavour states are not states of definite
mass (like the electron or proton, which have definite mass), but linear combinations
of the more fundamental mass states (or mass eigenstates). The mass states are usu-
ally denoted by vy, v and v3. To put it differently, the flavour states are not normal
modes of the system; the mass eigenstates are. The mass eigenstates are the states
in which the neutrinos propagate in vacuum. And there are three mass states.
According to the rules of quantum mechanics, the wave function of, say, the
electron neutrino is really a linear superposition of the wave functions of the three
mass eigenstates. For the sake of illustration, let us assume for a moment that there
are only two mass eigenstates and two flavour states (and not three.) In this case,
the electron neutrino would be expressed as a linear superposition of the two mass
eigenstates as follows: v, = cos6@ v; + sin6 vo. Here 6 is known as the mixing
angle. Similarly, the muon neutrino can be expressed as a superposition of the mass
eigenstates. When waves are added, one has to, of course, prescribe what the phase
relationship between the waves should be. Therefore, what we call as the electron
neutrino state is a linear superposition of the three mass states with a particular
phase relationship between the three waves that represent the mass states. Similarly,
the muon and tau neutrino states are obtained by adding the three mass states with
different but specified phase relationships between them. Now, if the relative phase
between the three mass states does not change with time, then the result of the three
linear superpositions, defining the three flavour states, also does not change with time.
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Fig. 7.11 Neutrino flavour states as superposition of mass eigenstates. The top panel shows the
mass states that have to be added to obtain the flavour states. The amplitudes, and the relative
phases, of the mass states have been adjusted such that when the mass states shown on the left side
are added then one obtains the amplitude of the flavour 1 state. As may be seen from the bottom
panel, the amplitude of the flavour 1 state thus obtained oscillates between +1 to —1. On the other
hand, when the mass states shown on the right are added to obtain the flavour state 2, they cancel
out precisely. Therefore, if the relative phases of the mass states do not change with time, then we
will have a pure flavour 1 state at all times
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However, the important thing to appreciate is that different mass eigenstates move
with slightly different velocities, precisely because they have different masses. As a
consequence of this, the relative phases between the three mass states will change
with time. Therefore, a linear superposition of the mass states which initially corre-
sponded to our prescription for, say, an electron neutrino, will no longer be so at all
times. This is just an interference phenomenon (see Figs.7.11 and 7.12).

In optics, when we talk of constructive and destructive interference of two
waves, what we have in mind are two different path lengths which differ by
an integral multiple of A/2. As the path length changes we get an alternating
band of bright and dark fringes. In the present context, we are talking about
the relative phases between the mass states changing with time because one is
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Fig. 7.12 But the mass states do not travel with the same velocity. Therefore, over a period of time
they will lag behind one another. The relative phases of the mass states at a later time are shown in
the fop panel of this figure. (Compare with Fig.7.11). Now if the mass states are added together,
the flavour states one obtains are shown in the lower panel. Notice that we no longer have just the
flavour 1 state. What one has is an admixture of the two flavour states. At a still later time, flavour
1 will be completely absent, and one will have a pure flavour 2 state. This is the phenomenon of
neutrino oscillations

lagging behind the other. We shall make these remarks more comprehensible by
writing a few simple equations. But before that, let us look at a couple of phe-
nomena which are classical analogues of the quantum oscillation phenomenon
we are discussing.

Coupled Pendulums

Before proceeding further, let us look at couple of classical analogies. I am sure you
are familiar with coupled pendulums. Try to set up the simple experiment shown in
Fig.7.13. Erect two rigid stands or something equivalent. Tie a string between them.
Now suspend two pendulums from this commons string as shown in the figure.
Stand right in front of pendulum 1 (P1) and pull it towards you by holding the bob
of the pendulum between your thumb and the index finger. Carefully release it. The
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Fig. 7.13 Since the two
pendulums are ‘coupled’ by Coupled pendulums
the string from which they
are suspended, the oscillation
of one of them will induce
oscillation in the other. If the
two pendulums are of identical
length and tension, then the
first one will completely stop,
while the second one will
oscillate with the maximum
amplitude

String

Stand

=

pendulum will start oscillating. After a while, its amplitude will decrease but the
second pendulum (P2) will now start oscillating. Soon P; will stop and P, will be
oscillating with maximum amplitude. And the whole thing will repeat again. Try it!
Increase the number of pendulums. Make them of different lengths and tension. You
are guaranteed great fun!

Let us now say that the oscillation of the pendulum P; corresponds to the prop-
agation of the electron neutrino, and the oscillation of the second pendulum P,
corresponds to the propagation of, say, the muon neutrino. The common string from
which the two are suspended represents a coupling or mixing between the two states.
The quantum analogue of this classical system would be the following. Initially, as
the neutrino starts propagating, it can be identified as a pure electron neutrino. Some
time later—when both the pendulums are excited—what we have is an admixture of
an electron neutrino and a muon neutrino. After some time, the propagating neutrino
would be identified as a pure muon neutrino. And this oscillation between the two
flavours will continue.

Is this not a marvellous example? This classical analogy was first pointed out
by independently by Mikheyev and Smirnov (1986) in Russia and Steven Weinberg
(1987)in U.S.A. By the way, Steven Weinberg, along with Abdus Salam and Shendon
Glashow, formulated the famous Electro-Weak Unified Theory for which they were
jointly awarded the Nobel Prize for Physics.

Circular Polarization of Light

Another analogy, this time from optics, might make neutrino flavour oscillations
easier to visualize. The state of polarization of light can be described either in terms
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Circularly polarized light

Fig. 7.14 This figure depicts how two linear polarizations, H and V, can be combined to give
left or right circular polarizations. Think of H and V as two linear harmonic oscillators oscillating
perpendicular to one another as shown. This description is equivalent to a circular motion. The
motion on the circle would be clockwise or anticlockwise depending on the relative phase between
the two linear harmonic oscillators. Now imagine that the relative phase between the two linear
oscillators changes with time periodically. Then the resultant circular motion will also change
periodically between right circular and left circular

of linear polarization or circular polarization. The term polarization refers to the
direction of electric field vector. Since the electromagnetic wave is transverse, the
electric vector must be confined to a plane perpendicular to the direction of prop-
agation. If the electric field oscillates along a particular direction in this plane then
one says that the wave is linearly polarized in that direction. In a circularly polar-
ized beam of light, the electric field vector rotates in a periodic manner in a plane
perpendicular to the direction of propagation. The tip of the electric field vector
moves on the circumference of a circle. This rotation, with respect to the direction of
propagation, can either be clockwise (right circular) or anti clockwise (left circular)
(Fig.7.14).

These two descriptions of the state of polarization in terms of linear and circular
polarization are equivalent. You will recall from our discussion of Zeeman effect
in Chap. 6 that linear harmonic motion can be represented as a superposition of two
circular motions in opposite directions. Similarly, circular motion can be represented
as a superposition of two linear harmonic motions, perpendicular to each other.
The resultant circular motion will be either clockwise or anticlockwise depending
upon the phase difference between the two perpendicular linear harmonic motions.
Therefore, a linear superposition of two orthogonal linear polarizations with a suitable
phase relation between the two can produce either a right circular polarization or a left
circular. Now imagine that the relative phases of the two linear oscillations changes
periodically. Then, given enough time, what was initially right circularly polarized
light will become left circular. Indeed, it will oscillate periodically between right
circular and left circular. This transformation will not occur if the relative phase of
the two linear oscillators does not change with time.


http://dx.doi.org/10.1007/978-3-642-45302-1_6

Quantum Oscillations 165

Quantum Oscillations

Fortified with these two familiar examples, let us outline a slightly more formal
description of neutrino oscillations. Let us denote the mass eigenstates by |vy), |v2)
etc. and the flavour eigenstates (ve, vy, v7) as vy ), Vﬂ), etc. The relationship between
these eigenstates is given by:

IVa>=Zi U;i|vi> (7.4)

[vi) = Za Ugilve)
where U is a unitary matrix. The first equation states that the flavour states (left-
hand side) can be expressed as a superposition of the mass states, with a specific
phase relationship between the mass states. The second equation says that the mass
eigenstates can be similarly expressed as a superposition of the flavour states. For
simplicity of illustration of the phenomenon of oscillation, let us restrict ourselves
to just rwo types of neutrinos. In this case U is a very simple and well known 2 x 2
matrix,

—siné cos6

U=( cos@ sin@). 75)

Here 6 is known as the mixing angle.

Since the mass eigenstates are the normal modes of the system, their propagation
can be described by plane wave solutions of the form

Wi (1)) = e~ REPD | 0)) (7.6)

where E; is the energy, p; the momentum and x the position of the particle at time
t. This equation describes the time evolution of the mass eigenstate. You may be
more familiar with the phase factor of a plane wave written as ¢ ~%9 Tt is the
same thing. Instead of w we have used the energy E, related by E = hw. Similarly,
the momentum p and wave vector k are related by p = hk. The time evolution
of a flavour state, for example, the electron neutrino state, can now be explicitly
written down. Using Egs. (7.4) and (7.5) we can write the electron neutrino state as
a superposition of the two mass states as follows:

[ve (1)) = cos 0 |vi (1)) + sin6 [v2(7)) (7.7)

Using the time evolution given in Eq. (7.6) this can be written as:

[ve (1)) = cos O e*%El’m (0)) + sin @ o T Ext10,(0)) (7.8)
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This tells us how the electron neutrino state, expressed as a linear superposition of
the mass states|vy), [v2), changes with time. We can now ask what is the amplitude
of an electron neutrino remaining an electron neutrino after travelling for a time ¢.
According to the prescription of quantum mechanics, this is given by:

i i
(We(®) | ve(t)) = cos? e REV 4 gin2ge  REY (7.9)

If you are not familiar with quantum mechanics, just accept the above equation.

We can now ask the following. What is the probability that a flavour state, which
was an electron neutrino at time ¢+ = 0, remains an electron neutrino at a later time?
In quantum mechanics, the probability is given by the square of the modulus of the
amplitude. Hence, the desired probability is given by:

[(ve(®) | ve())]* = 1 — sin® 26 sin? [ 35 (E, — E1)t]. (7.10)

It is quite simple to derive this from Eq. (7.9), but we shall not attempt to do
it here. (If you would like to convince yourself of this, work it out. Recall that
e'? = cos@ +isind, |x + iyl2 =2+ yz) and 2 cos 0 sin 6 = sin 20. Using these
formulae, you should easily be able to derive Eq. (7.10) from Eq. (7.9).)

The expression for the probability given in equation (7.10) is the result we wished
to establish. We see that the probability is an oscillatory function of time. The fre-
quency of oscillation is (E2 — E1)/2h. The important thing to note is that the prob-
ability is not unity at all times. What does it mean to say that the probability of the
electron neutrino flavour state is less than unity at some later time? After all, this
probability was unity at t = 0; we started out with an electron neutrino flavour state.
Clearly, what this means is that we no longer have the original pure flavour state,
but a linear superposition of the two flavour states. The probability of observing the
other flavour state is obviously given by unity minus the above probability, namely:

[(ve(®) | ve()]* = sin* 20 sin® [ (E2 — Ept]. (7.11)

At an even later time, the probability of the original electron neutrino flavour state
will be a minimum, while the probability of the second flavour state |v, (¢)) will be
the maximum. The maximum probability of conversion is equal to sin> 20 where 6 is
the mixing angle (see Egs. (7.5) and (7.10)). When sin? 26 = 1, then the probability
oscillates from 100 percent for the first flavour to 100 percent for the second flavour.
This phenomenon of oscillation between two flavour states is shown in Fig.7.15.
Instead of expressing the probability as an oscillatory function of time, we can also
express it as an oscillatory function of the distance travelled. The distance travelled
in a given time is R = velocity x time. Let us rewrite Eq. (7.10) in terms of the
distance travelled. Let us assume that our neutrinos are ultrarelativistic with speed
very close to the speed of light. In this limit, we can approximate the expression
relating the energy and momentum given by the Special Theory of Relativity:
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Fig. 7.15 The probability of observing the two flavours as a function of time, ¢, or the distance
travelled, R. Notice that the probability oscillates between a maximum value and a minimum value.
If the mixing angle is such that sin> 20 = 1, then the conversion from one flavour to another is 100
percent. As may be seen from Eqgs. (7.10) and (7.12), each flavour will oscillate between 41 and
—1if sin? 20 = 1. In the above discussion, we have assumed for simplicity that there are only two
flavour states and two mass states. In reality, there are three flavour states and three mass states. The
frequency of oscillation is determined by Am? and the energy of the neutrino E (see Eq. 7.14)

E; =/ pic® +mict

1/2
4 mizc4 / 4 lml-zc4 n (7.12)
= picC = picC = .
pic? 2 pie?
2C4 m264

i€ ~ i

2pic + 2E

;pic-{—

The approximation we have made above is the following. In Special Theory of
Relativity, the energy of a particle is the sum of its kinetic energy and rest mass energy.
In the extreme relativistic regime, the rest mass energy is negligible as compared to
the kinetic energy, which is approximately the momentum multiplied by the velocity
of light. We can therefore expand the expression for the energy in powers of the ratio
(mc?/pc) < 1 and keep only the lowest-order term.

Let us use the approximation given in Eq. (7.13) in the expression for the proba-
bility given in Eq. (7.10). The energy difference E> — E can now be approximated

as follows: 5 - )4
- A
(my —mpe” _  Amc (7.13)

Ey— E; =
2T 2E 2E

where,
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Am? = |m3 —m3|. (7.14)

The probability of an electron neutrino remaining an electron neutrino after a time
t, see Eq. (7.10), can now be written in terms of the distance travelled in time ¢:

[{(ve (1) | ve())|*> = 1 — sin® 20 sin? (%) (7.15)

where R = ct is the distance travelled in a time, ¢. In the above expression, we have
defined a characteristic length L:

4w hE
L J—

= —— 7.16
Am?2c3 (7.16)

We infer from Eq. (7.16) that L should be interpreted as the oscillation length. The
probability of observing a neutrino of the other flavour |v,) is:

(e (£) | ve(1))|? = sin® 20 sin® (%) (7.17)

This is the phenomenon of neutrino oscillation. Since we have assumed that our
neutrinos are propagating in vacuum, L, should properly be called the vacuum oscil-
lation length. Note that this length is determined by two things: E, the energy of the
neutrino and Am?, the difference between the square of the masses of the eigenstates.
Clearly, if all the neutrino states have zero mass, or if their masses are the same, then
there cannot be any oscillation; the oscillation length is infinizy.

Neutrino Oscillations in Matter

How does the presence of matter change all this? After all, our solar neutrinos have
to travel the first million kilometres inside the Sun. The effect of matter on the oscil-
lations was investigated by two physicists in Russia, namely Mikheyev and Smirnov
in a series of very important papers in 1986 (these are the same two persons who
suggested the classical analogy of coupled pendulums to understand the oscillation
phenomenon). They built upon some fundamental results obtained by Wolfenstein
in 1978. Hence the effect of matter on the oscillation is known as the MSW effect,
named after the three discoverers Mikheyev, Smirnov and Wolfenstein. We shall not
pause to discuss this fascinating phenomenon here, but merely make the following
remark in passing. It turns out that if the neutrino is travelling in a medium in which
the density is varying, then the effect of the matter on the oscillation can be dramatic.
There can be a resonant conversion of one flavour state into another. Recall that
inside the Sun the density decreases from approximately 150 g/cm? near the centre
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Fig. 7.16 This figure illustrates how the flavour state oscillates between an electron neutrino and a
muon (or tau neutrino). Initially, the mass states 1 and 2 are in phase. Let us define their superposition
as the electron neutrino. After propagating for a certain distance, the two mass states are precisely
out of phase. Let us define this as the muon neutrino. Clearly, the flavour state will oscillate between
electron and muon neutrino states

to less than the density of air in the outer region. The relevance of the MSW effect
to understand the solar neutrino puzzle was first pointed out by Hans Bethe in 1986.
He pointed out that by the time an electron neutrino leaves the Sun its flavour could
have changed completely due to the MSW effect.

Let us conclude the discussion of neutrino oscillations by reiterating that the oscil-
lation between different flavours is a simple consequence of the mass eigenstates
propagating with slightly different speeds. This causes the relative phase between
them to vary with time as they propagate. Therefore the states which are superposi-
tions of these mass states will naturally oscillate with time (Recall our discussion of
circular polarization of light). It is as simple as that. For this to happen, at least some
of the neutrinos must have rest masses which are different from each other. It is the
mass that makes the neutrino eigenstate of a definite momentum travel with different
speeds.

Neutrino oscillation during propagation is graphically represented in Fig. 7.16. For
simplicity, we have considered just two flavours, say, electron neutrino and muon
neutrino. Let the two mass eigenstates be represented by the solid and dashed sine
waves. The changing phase relationship between them is indicated by the two sine
waves having different wavelengths. Let us define the electron neutrino as a linear
combination of the two sine waves added in phase. After travelling some distance,
they will no longer be in phase. So the linear superposition will no longer be a pure
electron neutrino. At some stage, the two waves will be 180° out of phase, making
it a pure muon neutrino. So the probability of the electron neutrino retaining its
original identity will oscillate. We see from (7.16) that the maximum probability
of conversion is equal to sin>26, where 6 is the mixing angle. The frequency of
oscillation is determined by the energy of the neutrino and Am?.



Epilogue

It took 80 years, but in the end Eddington was proved right. Let us listen to Eddington
once again:

To my mind the “existence” of helium is the best evidence we could desire of the possibility
of the “formation” of helium. The four protons and two electrons constituting its nucleus
must have been assembled at some time and place; and why not in the stars?

... [ am aware that many critics consider the conditions in the stars not sufficiently extreme
to bring about the transmutations—the stars are not hot enough. The critics lay themselves
open to an obvious retort; we tell them to go and find “a hotter place”.

It is sobering to note that these words were uttered in 1926. The helium nucleus does
not contain four protons and two electrons, as Eddington had said. But the neutron
had not yet been discovered when Eddington made that comment. We now know
that the helium nucleus consists of two protons and two neutrons. Two neutrinos
must be emitted in the process of transforming two protons into two neutrons. The
observed luminosity of the Sun implies that roughly six hundred million metric tons
of hydrogen is being converted to helium every second. If so, the Sun must emit
2 x 1038 electron neutrinos every second. Detecting these neutrinos would vindicate
Eddington’s prescient assertion. But, alas, the neutrinos are elusive! More than that,
they masquerade as neutrinos of different types—to avoid detection. But physicists
are very clever, and persistent. They found ways of detecting all the solar neutrinos,
despite their attempt to conceal themselves. In the process, physicists have proved
that the astronomer’s model of the Sun, and why it shines, is spectacularly correct.
But this has come at a price. The Standard Model of elementary particles needs to
be modified.

Can Stars Find Peace? A Sneak Preview
This first volume of this series was devoted to the question ‘What Are the Stars and

why Are They As They Are?” We discussed the stability of the stars and why they
shine. Along the way, we discussed many other things, some of them quite recent
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developments. For, example, we discussed at length how the spontaneous oscillations
of the surface of the Sun was used to infer the internal conditions with unprecedented
accuracy. The last chapter was devoted to how clinching evidence was finally found
to prove Eddington’s conjecture that the Sun shines because it is converting hydrogen
to helium at its centre.

This is only the first act of the drama. Having created a substantial amount of
helium in its core, the Sun will go on to fuse helium into carbon, carbon into oxygen,
and so on. Each stage of transmutation of elements is another ‘Act’ of the story. We
shall discuss the various acts in the life history of stars in the next volume of the
series.

But a more interesting question is this: how will the story end? What will happen
to a star when the nuclear reactions cease? This can happen for two reasons. Either
the star runs out of fuel, or the nuclear reactor at the centre switches off because the
core is not hot enough. What will then happen to the star depends on how massive
it is. Low mass stars like the Sun will collapse and end their lives peacefully when
they reach a density of the order of 10® g cm™3. Such end states of stars are known as
white dwarfs. When they cool sufficiently, they will crystallize, and become gigantic
diamonds in the sky and they will live for ever! Their ultimate peace is guaranteed
by quantum physics. A discussion of these ideas will be one of the main themes of
the next volume entitled Can Stars Find Peace?'

While quantum physics guarantees that white dwarfs will be stable forever, there
is afine print. In 1930, Subrahmanyan Chandrasekhar made the sensational discovery
that white dwarfs cannot be stable if their mass exceeded 1.4 M. This has come
to be known as the Chandrasekhar limit. This raises the following question. Can
massive stars find peace? Or, are they doomed? The answer to this question became
clear in the 1980s. Stars with mass roughly in the range 10-25 Mg, will find ultimate
peace as neutron stars. Such stars will have radii of about 10 km and density of
about 10'4 g cm™3. When the cores of massive stars collapse to form neutron stars,
the gravitational potential energy released will be so enormous that the envelope
of the star will be blown up in a spectacular explosion. Such stellar explosions are
known as supernovae. Even more massive stars cannot find peace as neutron stars.
An appeal to quantum physics cannot be made to save them. They are doomed. They
will collapse to become black holes.

To know more about white dwarfs, the Chandrasekhar limit and supernovae, you
have to wait for the next volume!

! The Life and Death of Stars (in the Springer edition)
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