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KEY POINTS

� Ultrasound systems must be handheld, battery operated, durable, and able to withstand
extremes of temperature and altitude, while additional equipment may be necessary to
help prevent battery degradation and equipment damage.

� Point-of-care ultrasound is portable and lightweight, and can be used to screen for a wide
variety of pathology and injury common to austere environments, disaster situations, and
resource-limited settings.

� Common point-of-care ultrasound applications used in austere environments include the
Extended Focused Assessment with Sonography in Trauma, musculoskeletal and soft tis-
sue injury, high-altitude pulmonary edema, high-altitude cerebral edema, pneumonia, vol-
ume status, and various procedural guidance applications.

� The various point-of-care applications used in austere environments for procedural guid-
ance include peripheral vascular access, nerve blocks for pain control, foreign body
removal, and abscess drainage.

� Point-of-care ultrasound is a reliable tool to assist in triage, resource allocation decisions,
and screening for conditions common in austere environments.
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Video content accompanies this article at http://www.emed.theclinics.com.
INTRODUCTION: POINT-OF-CARE ULTRASOUND AND HANDHELD SYSTEMS

Ultrasound technology continues to advance and has come a longway from large wall-
mounted systems with poor image quality to small handheld devices with good image
quality. Ultrasound systemswereoptimized formedicalmilitary use in the1980s.Due to
its successful utilization at the point-of-care, its lack of ionizing radiation, and the
expansion of computer technology, point-of-care ultrasound (POCUS) rapidly spread
to trauma, emergency department, and “out-of-hospital” settings, including in austere
environments where other imaging modalities cannot be carried.1,2

There are various handheld systems that can fit into a large coat pocket, and the po-
wer supply and case can fit into any backpack. Their power timing and image quality is
less than that of laptop-based systems, but their portability and ability to transfer im-
ages wirelessly to electronic mailing or via text messaging make these systems
unique. The GE (Chicago, IL) VScan was one of the first handheld devices to come
to market with a “flip-open” and touch-sensor style, now with a dual probe for both
high-frequency and low-frequency imaging. The SonoSite (Bothell, WA) iViz is one
of the newest devices on the market with a larger screen, good image quality, and
touch-screen capability. The Philips (Andover, MA) Lumify is another new system
that currently requires a subscription. Other devices, including handheld devices by
Clarius (Burnaby, Canada) and Signostics (Bothell, WA) provide a probe and require
a smart phone for scanning.

POINT-OF-CARE ULTRASOUND IN AUSTERE ENVIRONMENTS: UTILITY AND
PITFALLS

The first portable ultrasound machine weighed just over 5 pounds, was the first
battery-operated ultrasound machine, and was durable enough to withstand unpre-
dictable battlefield environments.3 Austere environments continue to pose special
challenges to ultrasound equipment, including battery degradation, hard-drive failure,
and physical abuse. Advances in equipment design and environment-specific care
have allowed successful use of ultrasound in these extreme situations.

MILITARY AND COMBAT ENVIRONMENTS
Ultrasound on the Battlefield

The battlefield is an unforgiving environment for ultrasound machines. In Iraq and
Afghanistan, ambient temperatures fluctuate greatly, resulting in battery degrada-
tion.4,5 The environment is also sandy and dusty, contributing to overheating. Ultra-
sound machines are often treated roughly out of necessity. There are space
limitations in medical treatment facilities, so equipment may inadvertently be jostled
or knocked to the ground during a mass casualty incident (MCI). Medics may
carry small portable ultrasound machines in their packs to the point of injury. There-
fore, machines must be handheld, use cooling fans, and have extra batteries available.
Because most battlefield deaths are caused by hemorrhage, the most common role

for ultrasound in this environment is the focusedassessmentwith sonography in trauma
(FAST) examination, which parallels the civilianMCI experience in which triage of casu-
alties is the priority.6 Computed tomography (CT) may not be available, and physicians
in war zones found ultrasound to be invaluable during triage.7 The FAST examination
can identify occult blood loss in young, highly conditioned patients whose physiologic
reserve undermines the reliability of vital signs until late stages of shock.8

http://www.emed.theclinics.com
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Pneumothorax assessment of the extended FAST (eFAST) is also useful, especially
when planning medical evacuations, because even small pneumothoraces, which
might otherwise be considered insignificant, can benefit from thoracostomy to prevent
in-flight decompensation.
A variety of other emergency-related ultrasound applications, including fracture

assessment and its reduction, inferior vena cava (IVC) collapsibility for resuscitative de-
cision in nontraumatic shock states, optic nerve sheathdiameter (ONSD) for intracranial
pressure assessmentwhenCT or neurosurgical consultation is unavailable, and proce-
dural guidance for venousaccess, regional anesthesia, pericardiocentesis, cricothyrot-
omy, and foreign body detection and removal, have all been found useful.2,9–13

Ultrasound in Flight

Because of noise and space limitations in the field with limited physical examination
performance ability, POCUS in flight is highly valuable to care for patients in transit
to higher levels of care, as they may deteriorate due to their tenuous physiology and
stressors of flight (hypoxia, hypobaria, constant movement, noise, and hypothermia
or hyperthermia). Ultrasound equipment in flight must be lightweight, take up little
space, and be able to tolerate vibrations and large fluctuations in temperature and
elevation. Ultrasound has not been found interfere with aircraft avionics and can be
used on multiple rotary and fixed-wing airframes.9,14–16

Helicopters are often used to transport trauma patients from the field or from a
smaller hospital to a larger trauma center. Both small and large fixed-wing aircraft
have been used to transport medical patients over longer distances or to areas outside
disaster zones. These aircraft are often staffed by medical personnel who can use ul-
trasound to determine the etiology of undifferentiated hypotension or hypoxia (eFAST,
cardiac echo, IVC) and perform ultrasound-guided procedures.16–20

DISASTER AND MASS CASUALTY INCIDENTS

During MCIs the volume and severity of casualties overwhelms the capabilities
and resources of the response effort. POCUS is ideally suited for MCI conditions
when other imaging is often not available due to the remoteness of the
mission, destruction of previously available equipment, or interruption of the re-
gion’s ability to produce electricity. Early in disaster missions, ultrasound is
often used as a triage tool. Later, it is more frequently used to diagnose
common conditions like pneumothoraces, long bone fractures, and dehydration.
Portability becomes an even greater priority when the disaster-relief team has to
hand-carry their equipment over a long distance.

Natural Disasters

Several reports from various earthquakes, including the 1988 magnitude 6.9 earth-
quake in Armenia (one of the first studies to quantify POCUS use during a natural
disaster), concluded that POCUS is invaluable since medical care often takes place
outdoors for safety reasons, CT scanners may be reserved for head trauma cases, ul-
trasound provides procedural guidance, and ultrasound has been used to decipher
which patients needed dialysis and their likelihood of recovery from crush-related
acute renal failure. Furthermore, there were low false-negative rates of the FAST ex-
amination for traumatic injuries requiring surgical intervention, with most being due
to retroperitoneal or solid organ injuries, a known limitation of the FAST scan.21–26

After several more studies from mudslides, cyclones, and earthquakes, a wider
range of ultrasound applications was found to be useful, including pelvic, right upper
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quadrant, renal, orthopedic, cardiac, deep venous thrombosis, and lung scans.27,28

Decisions regarding patient management and transport were made, and clinical man-
agement was changed in a large percentage of patients following POCUS.9,28

Man-Made Disasters

The utility of the FAST examination after the bombings inMadrid, London, Lebanon, and
Boston have been reported.29–34 The report from the Boston Marathon bombing de-
scribes how the volume of critically wounded and unregistered patients overwhelmed
standard radiography processes, causing an emergency physician to go “bed to bed,”
performing eFAST exams on each patient and leaving the hand-written results taped
to the gurneys; 24% of these ultrasound-triaged patients received immediate operative
intervention. This report also noted that an older ultrasound machine was
limited in utility due to a lack of battery backup and longboot time. This report concluded
there should be a battery-operated ultrasound machine in each clinical area, and
alternative image documentation protocols should be used during MCIs.

Tropical Environments

Portable ultrasound has been carried on multiple humanitarian missions to remote
tropical locations (Fig. 1). Portability and battery power are needed, and solar
electrical chargers are ideal while attempting to prevent battery degradation.
Tropical environments pose the added challenge of prolonged humidity and/or frank
wetting, which can destroy batteries and other electrical equipment. A report from
the Amazon jungle noted that 7 of the 25 examinations performed (1 FAST, 6 hepato-
biliary, 5 transabdominal, and 7 endovaginal pelvic, 3 renal, 3 aorta) changed manage-
ment; 4 patients avoided a potentially dangerous 2-day evacuation, and 3 were
referred for rapid surgical intervention.27
Fig. 1. A battery-operated portable ultrasound device was used to locate and remove the
foreign body from a nonambulatory patient in a facility without electricity in the Suriname
jungle. (Courtesy of K.L. Anderson, MD.)
THE INTERNATIONAL SPACE STATION AND REMOTE TELEMONITORED
ULTRASOUND

Ultrasound has been used in some remote areas where it is not feasible to have a clini-
cian or even a technician with specialized training present. The International Space
Station (ISS) is probably the epitome of remote locations, and the National Aeronautics
and Space Administration pioneered remote telemonitored ultrasound (RTUS), which
uses live video streaming of ultrasound examinations performed by nonmedical
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personnel and reviewed by clinicians in real-time on Earth.35 This technology has sub-
sequently proven feasible in other remote locations, including high-elevation moun-
tains and inside flying aircraft.36–39 The number of ultrasound applications possible
is limited only by the expert’s ability to verbally instruct the operator.

HIGH ALTITUDE

Ultrasound has been most commonly used as a research tool in 2 environments at
high altitude (above 1500 m): ski resort health clinics, and base camp clinics for
climbers. At ski resort clinics, other radiologic options such as radiograph, CT, or
Fig. 2. Electronic devices used on a solar-powered, high-altitude ultrasound research expedi-
tion to Mt Kilimanjaro. (A) These rigid solar arrays weigh less than 5 kg and provide more than
50 W of power under equatorial sun on Mt Kilimanjaro. This power is controlled by an elec-
tronic voltage regulator using a lead-acid battery storage system, housed in the waterproof
case in the foreground. (B) From left to right: (1) the ultrasound unit (Sonosite 180-plus; So-
nosite, Bothell, WA), (2) laptop data storage (Dell Inspiron 910; Dell, Round Rock, TX), (3)
300 W DC-to-AC converter (box in foreground, Go Power!; Carmanah, Victoria, British
Columbia, Canada), and (4) electronic voltage regulator with lead-acid battery storage (CT So-
lar LLC, Palm City, FL). Total weight of all electronic and power storage equipment is less than
18 kg. (Reprinted from Fagenholz PJ, Murray AF, Noble VE, et al. Ultrasound for high altitude
research. Ultrasound Med Biol 2012;38:5; with permission from Elsevier.)
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MRI also may be available. However, at very high altitude (3500 m to 5500 m) or
extreme altitude (above 5500 m) the clinics are usually remote, with the only
imaging modality being ultrasound that was carried there by foot. Spinning
hard drives may cause machine failure, likely due to the cold and decreased
barometric pressures; solid state memory devices are recommended, as they
do not have any moving parts. Sleeping with cold batteries or soaking transducers
in warm water to keep them functioning reliably have been described.
Light, portable solar arrays can be used to recharge batteries40 (Fig. 2). Ultrasound
applications can be performed within minutes, limiting patient exposure
to the cold environment. Additionally, RTUS techniques can be used, demonstrating
that an experienced sonographer does not need to be physically present (Fig. 3).
Fig. 3. A nonexpert operator is performing a thoracic ultrasound examination on a fellow
climber in a tent at Advanced Base Camp on Mount Everest. The remote expert is seen on
the computer screen in the background directing the examination. (From Otto C, Hamilton
DR, Levine BD, et al. Into thin air: extreme ultrasound at Mt Everest. Wilderness Environ-
mental Med 2009;20:285; with permission from Elsevier.)
COMMON CLINICAL APPLICATIONS OF POINT-OF-CARE ULTRASOUND IN AUSTERE
ENVIRONMENTS: TECHNIQUE AND PATHOLOGY
Trauma and Injury Assessment: Extended Focused Assessment with Sonography in
Trauma Scan and Musculoskeletal Ultrasound

Extended focused assessment with sonography in trauma
The eFAST examination is a screening tool for intraperitoneal, intrathoracic, and peri-
cardial fluid plus an assessment for pneumothorax. It includes 6 views and does not
evaluate the retroperitoneal space. Supine patient positioning is required.41,42

� Right upper quadrant (RUQ) (Figs. 4 and 5, Videos 1 and 2)

� Pathology: This is the most sensitive view for free fluid (FF) detection, best
seen in the paracolic gutter and Morison pouch. FF is black (anechoic), but
can be gray (echogenic) if there are clots (Fig. 6, Video 3). Pleural fluid is
seen as an anechoic area above the diaphragm causing the spine to be visible,
as opposed to normal mirror image of the liver seen above the diaphragm
(Fig. 7).

� Left upper quadrant (LUQ) (Fig. 8, Videos 4 and 5)
� Pathology: Fluid is best seen in the subdiaphragmatic region. A left pleural
effusion can be seen as described previously (Figs. 9 and 10, Video 6).

� Suprapubic (SP) (Figs. 11 and 12, Videos 7–9)



Fig. 4. Normal RUQ view showing above and below the diaphragm, and Morison’s pouch.

Fig. 5. Normal RUQ view showing Morison’s pouch and the caudal tip of the liver.

Fig. 6. Positive RUQ view showing black (anechoic) free fluid (asterisk) in Morison pouch
and around caudal tip of liver.
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Fig. 7. Positive right thoracic view showing pleural effusion.

Fig. 8. Normal LUQ anatomy above and below diaphragm and splenorenal space.

Fig. 9. Positive LUQ black (anechoic) FF in the subdiaphragm region.
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Fig. 10. Positive left thoracic view showing pleural effusion.

Fig. 11. Normal female sagittal suprapubic anatomy with full bladder.

Fig. 12. Normal male suprapubic transverse anatomy showing appropriate depth and
prostate.
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Fig. 13. Positive suprapubic sagittal view of female pelvis.

Fig
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� Pathology: FF is most likely to be present posterior to the bladder (male indi-
viduals) and in the cul-de-sac (Pouch of Douglas in female individuals) (Figs.
13 and 14; Videos 10 and 11).

� Subxiphoid (Fig. 15, Videos 12 and 13):
� Pathology: Pericardial effusion (PCE) appears as an anechoic band inferior to
the right ventricle (RV, Fig. 16). If a suboptimal view, a parasternal long view is
used in which PCE is visualized posterior to the heart above the hyperechoic
pericardium, which can help differentiate PCE from epicardial fat that will be
seen only anteriorly (Fig. 17; Video 14). An assessment of left ventricular (LV)
contractility and RV strain can be added if the eFAST is used for patients
with unexplained shock. Normal is 40% to 50% contraction and an RV:LV ratio
of 0.7:1.0.

� Thoracic view for pneumothorax (Fig. 18, Videos 15 and 16):
� Pathology: With 2 ribs in view, each a hyperechoic curve with posterior shad-
owing, the pleural line is a bright horizontal line between and below the ribs.
With normal lung sliding, it “shimmers” as the parietal and visceral pleura
move against each other. With pneumothorax, air disrupts ultrasound waves:
no movement is seen at the pleural line (Video 17). In motion (M)-mode, lung
sliding shows up as a “seashore sign” (Fig. 19), whereas pneumothorax has
a “barcode sign”: only straight horizontal lines demonstrating the lack of
. 14. Positive suprapubic transverse view of male pelvis.



Fig. 15. Normal subxiphoid anatomy showing the 4-chamber heart with liver as an acoustic
window.

Fig. 16. Positive subxiphoidviewshowingpericardial effusion inferior to the right ventricle (RV).

Fig. 17. Positive parasternal long view showing pericardial fluid (asterisks) anterior and pos-
terior to the left ventricle (LV).
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Fig. 18. Normal chest showing comet tail artifact of pleural line from lung sliding between 2
rib shadows.

Fig. 19. Normal M-mode pattern appearing like a seashore.

Fig. 20. Abnormal M-mode pattern of pneumothorax appearing like a barcode.
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movement (Fig. 20). The “lung point” is the junction in which the
pneumothorax ends and sliding is again seen, pathognomonic for pneumo-
thorax (Video 18).
The eFAST scan can change differential diagnoses and patient management in a
significant number of patients in remote settings.43 Deciding on evacuations, patients
saved from thoracostomy, and identification of emergent conditions masked by
normal vital signs have all proved eFAST to be invaluable.43–45
Musculoskeletal injury
Austere environments can have treacherous terrain, placing people at risk for muscu-
loskeletal injury. The high-frequency linear probe is often used because most injuries
do not require increased depth.

� Subcutaneous or deep tissue hematoma

� Pathology: Normal skin is echogenic with varying levels of brightness with
linear arrays separating various fascial planes (Video 19). Hematomas tend
to be initially hypoechoic with mixed echogenicity as the clotting process pro-
gresses46,47 (Video 20). Use color Doppler to differentiate it from a solid mass,
as hematomas will lack vascularity. Compression cause the internal echoes of
a hematoma to move.

� Fractures/Effusions: POCUS is useful for occult fractures and more sensitive
than radiograph for scaphoid, hip, long bone, and sternal fractures, as well as
joint effusions.48–52

� Pathology: Fractures are seen as a cortical discontinuity. Another suggestive
sign is an adjacent hematoma (Fig. 21). The nearby joint space can be as-
sessed for associated joint effusions, seen as a larger anechoic joint space
fluid compared with the contralateral side7 (Video 21).

� Fracture reduction and hematoma blocks: Ultrasound can be used to identify
the location for hematoma blocks for pain control, as well as assess alignment
of the bone after reduction attempts.53

� Dislocation: POCUS has been studied in shoulder and hip dislocations with high
sensitivities.54,55

� Technique and pathology: By placing the probe in longitudinal orientation to
the humerus or femur at the joint space, a dislocation can be seen as a
1. Fracture seen as a cortical disruption.



Fig. 22. Anterior shoulder dislocation showing humeral head lateral and inferior to
glenoid.

Fig
ed
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separation of bones. Ultrasound can provide confirmation after dislocation
reduction (Fig. 22).

� Tendon tear: Tendon tears, especially those of large muscle groups, such as
the triceps, quadriceps/patella, and biceps, is accurately diagnosed with
POCUS.56 Tendons appear differently depending on the angle and tilt of the
ultrasound transducer relative to the tendon. When oblique against tendon
fibers, a hypoechoic artifact is observed, leading to a false-positive
interpretation.56

� Pathology: Normal tendon has a linear striped fibrillar appearance and is more
echogenic than muscle. Findings suggestive of a tendon tear include local
swelling around the tendon fibers, fiber discontinuation, irregularity of the
tendon, and hypoechogenicities within the tendon bed itself56 (Fig. 23). Accu-
rate diagnosis is reached by comparing to the contralateral side.57 Ranging the
patient’s joints throughout the examination will show the 2 severed ends in a
tendon tear separating from one another58 (Fig. 24).
. 23. Normal tendon showing linear fibrous tendon without adjacent fluid of soft tissue
ema.



Fig. 24. Partial patella tendon tear seen as disruption of normal tendon linearity with adja-
cent fluid.
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High-Altitude Pulmonary Edema

Lung and cardiac ultrasound can identify individuals with high-altitude pulmonary
edema (HAPE) susceptibility and distinguish HAPE from other causes of dyspnea.
Cardiac ultrasound has replaced pulmonary artery catheterization for assessing the
increased pulmonary artery pressures, allows detection of a patent foramen ovale,
and allows assessment of LV and RV myocardial performance to hypoxia because
they may contribute to or are associated with HAPE.59–62 Sonographic B-lines, diag-
nostic of interstitial fluid, are linear vertical rays arising from the pleural line and extend-
ing to the end of the screen, with the number of B-lines correlating with degree of
hypoxia and symptom severity in patients with known HAPE.63 The number increases
with each ascend and improves with either the descend or treatment for HAPE.64 Also,
B-lines can appear in all lung zones within minutes of arrival at high altitude, suggest-
ing hypobaria alone could lead to interstitial fluid accumulation before symptoms (sub-
clinical HAPE).65 Additionally, findings on ultrasound that suggest etiologies of
dyspnea, such as pneumothorax, pneumonia, heart failure, pulmonary embolus, or
Fig. 25. 8-zone technique of assessment for B-Lines.
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myocardial infarction, require immediate evacuation, whereas patients with HAPE
may descend until symptoms resolve.

� An 8-zone technique is used, avoiding the need for patients to undress in the cold
(Fig. 25). The anterior chest wall is delineated from the sternum to the anterior
axillary line and subdivided into upper and lower halves (the clavicle to the third
intercostal space, and from the third intercostal space to the diaphragm). The
lateral zone is delineated from the anterior to the posterior axillary line and sub-
divided into upper and lower halves. One scan is obtained from each area.

� Pathology: Normal lung will show linear horizontal reverberation artifact, called
A-lines (Fig. 26). B-lines are defined as discrete laser-like vertical hyperechoic
reverberation artifacts that arise from the pleural line, extend to the bottom of the
screen without fading, and move synchronously with lung sliding (Fig. 27). They
Fig. 26. Sonographic A-lines of normal chest.

Fig. 27. Sonographic B-lines showing pulmonary edema.



Fig
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arise from the pleural line, move with lung sliding, spread to the edge of the screen
without fading, and erase A-lines. Interstitial syndrome (including pulmonary
edema) has been defined as more than 2 B-lines in more than 2 zones, bilaterally.
Also, the total sum of all B-lines yields a B-line score which is another indicator of
the extent of extravascular lung water.40,66–68 It is currently unclear if the number
of B-lines is able to predict or assess the extent of pulmonary edema at altitude.
Acute Mountain Sickness and High-Altitude Cerebral Edema

Increasing ONSD measurements have been associated with severity of acute moun-
tain sickness (AMS).69,70 This finding supports the theory that AMS is due to increased
intracranial pressure (ICP); however, significant individual variations, at baseline and at
altitude, as well as interobserver variation exists with this technique.71,72 ONSD in-
creases with altitude alone in subjects both with and without AMS, but to a higher de-
gree in the former.69,70,73 In those who do have AMS, ONSD has a positive correlation
with the severity of symptoms, including the Lake Louise score, oxygen saturation,
and resting heart rate.70 However, more recent research failed to demonstrate any as-
sociation between ONSD and headache, which is often considered the most signifi-
cant AMS symptom.74 Other pathologies can be seen with ocular ultrasound,
including retinal detachment, vitreous hemorrhage, retrobulbar hematoma, and orbital
rupture. The high-frequency linear probe is used (Video 22).

� Pathology: The optic nerve will be visualized in the axial plane as a linear hypo-
echoic structure extending posteriorly from the anechoic circular globe, sur-
rounded by echogenic retrobulbar fat. ONSD measurement is taken 3 mm
behind the papilla, the location with the highest distensibility with increased
ICP (Fig. 28). Each eye is scanned both sagittally and transversely, and the
ONSD is compared with the unaffected eye. The normal cutoff for adults is
5 mm, whereas younger children can be higher.75,76
. 28. Abnormal ONSD measured 3 mm from posterior orbit.
Pneumonia

Lung ultrasound is shown to be superior to radiography, and comparable to CT for
the diagnosis of pneumonia.77–79 Compared with traditional imaging used to identify
pneumonia, sonography is the preferred method in children.80–82 Researchers
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regard POCUS as the reference standard for lung consolidation and concluded that
the World Health Organization case management algorithm is inferior in compari-
son.81 Considering that pulmonary infection is quite common in patients infected
with the human immunodeficiency virus (HIV), ultrasound is especially valuable in
countries with high HIV prevalence.82 The low-frequency phased array or curvilinear
probe is used.

� Pathology: Consolidation is seen as a hypoechoic area with tissuelike hetero-
geneous texture, oftentimes described as “hepatization.” It usually has irreg-
ular or blurred borders and hyperechoic dendritic or punctate structures
representing air bronchograms (Figs. 29 and 30). B-lines also can be seen ex-
tending from the consolidation (Fig. 31). If the consolidation reaches the
pleura, the pleural line will have decreased or absent lung sliding. There also
may be a parapneumonic pleural effusion in the dependent thorax. It can
appear anechoic, or echogenic in the case of empyema, hemorrhage, or
clots77–83 (Fig. 32).
Fig. 29. Right lower lobe pneumonia seen as a hypoechoic triangular region (asterisk) with
hepatization and hyperechoic borders.

Fig. 30. Air bronchograms (arrows) seen within consolidation consistent with pneumonia.



Fig. 31. Small area of pneumonia with resultant B-line extending from the consolidation.

Fig. 32. Loculated parapneumonic pleural effusion (asterisk) adjacent to consolidation.
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Volume/Hydration Status

Intravascular volume and fluid tolerance is assessed by ultrasound by an evaluation of
either the internal jugular (IJ) vein or IVC. Extremes of volume status are correlated to
IVC respiratory variation.28,84–86 Patients with undifferentiated hypotension will benefit
from POCUS to assess hydration status, as intravenous fluids may not be widely avail-
able.28 The aorta-to-IVC ratio is associated with volume status in children, even
though reports diverge on whether ultrasound alone accurately identifies dehydration
in resource-limited settings.84,85

� IJ assessment

� Probe and technique: a high-frequency linear probe is placed on the mid to
lower anterior neck, perpendicular to the skin in transverse plane of the vein
with the patient supine or semi-upright to 30�. Only gentle pressure should
be applied. Under M-mode, the maximum (Dmax) and minimum (Dmin) diam-
eter of the vein can be measured to obtain the collapsibility index (CI)87–89:
CI 5 [(Dmax � Dmin)/Dmax] � 100%.

� IVC assessment
� The IVC will be seen entering the right atrium, with measurements of respira-
tory variation taken 2 cm caudal to the right atrial inlet. Similar to the IJ,



Fig. 33. IVC evaluation using M-mode.
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M-mode is used for the recording and determination of the CI (Fig. 33). If the
maximum diameter of the IVC is less than 2 cm with greater than 50% respi-
ratory variation, the patient may be hypovolemic; if the maximum diameter
of the IVC is greater than 2 cm with less than 50% respiratory variation, the pa-
tient may be hypervolemic90,91 (Videos 23 and 24).
COMMON PROCEDURAL ULTRASOUND IN AUSTERE ENVIRONMENTS
Nerve Blocks/Regional Anesthesia

In the wilderness, traumatic injuries to the upper or lower extremities account
for approximately 65% of all musculoskeletal/soft tissue injuries, with most of
these being lacerations, traumatic pain, sprains or strains, abrasions, fractures,
or dislocations. Pain medications are frequently unavailable and can pose medical
problems, making nerve blocks an excellent choice for pain control.92,93 These
blocks have demonstrated effectiveness in the combat setting, because patients
with significant injuries can be treated in the field while awaiting evacuation.94

Complications from inadequate pain control include impaired sleep, impaired im-
mune function, increased risk of developing chronic pain, and increased time to re-
covery.94,95 The primary challenges include an inability to clearly identify the nerve,
intraneural penetration, and intravascular injection. In the wilderness environment,
additional challenges include nonsterility and inability to monitor for signs of local
anesthetics systemic toxicity, a rare condition causing neurologic and/or cardio-
vascular excitation (agitation, seizure, tachycardia, and hypertension) then depres-
sion (respiratory depression, coma, bradycardia, asystole).93,96

� Probe: High-frequency linear probe for superficial nerves; low-frequency curvi-
linear probe for deeper nerves.

� Technique: Nerves have a “honeycomb” appearance on ultrasound due to hy-
poechoic (dark) areas embedded within the hyperechoic (bright) nerve sec-
tions (Fig. 34). Place the probe in transverse orientation to the nerve, at a
safe distance from the vascular bundle to avoid inadvertent vascular injection.
Using a longitudinal approach in relation to the needle, penetrate the skin,
visualizing the needle on the screen at all times as it gets closer to the nerve,
being careful to never penetrate the nerve (Fig. 35). Draw back on the syringe
to avoid injecting within a vascular structure, then slowly inject the anesthetic,
creating a “halo” appearance of fluid surrounding nerve (Fig. 36).



Fig. 34. (A) Femoral nerve with its “honeycomb” appearance next to the femoral vessels. (B)
Ulnar nerve with its characteristic honeycomb appearance next to the ulnar artery.

Fig. 35. The length of the needle is seen due to the probe oriented in-plane to the needle.
Its tip is seen approaching the median nerve.

Fig. 36. A “halo” of black fluid is seen surrounding the median nerve.
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Approximately 5 to 20 mL of anesthetic is used depending on the anesthetic
and nerve size (smaller nerves need only 5 mL, whereas larger nerves require
up to 20 mL). Retract if patient notes significant pain with injection, as intra-
neural penetration may have occurred. Intralipids can be used if toxicity oc-
curs. Contraindications to nerve blocks include coagulopathy or allergy to
anesthetic.

� Nerve function: The nerve’s motor and sensory functions must be assessed
before and after the procedure (Table 1).
able 1
ommonly used ultrasound-guided nerve blocks

erve Motor Sensory Injuries Treated

adial Wrist extension Dorsal aspect of hand
from thumb to
radial half of ring
finger

Hand injuries to
affected area

edian Wrist and finger
flexion

Volar aspect of hand
from thumb to
radial half of ring
finger

Hand injuries to
affected area

lnar Intrinsic muscles of
hand

Sensation to 5th digit,
and ulnar half of
ring finger

Hand injuries to
affected area

nterscalene
brachial
plexus

Superior and middle
trunks of the
brachial plexus
(C5–C7), shoulder
and upper arm

Superior and middle
trunks of the
brachial plexus (C5–
C7), shoulder and
upper arm

Shoulder, humerus,
and elbow injuries;
does not reliably
block forearm or
hand injuries

ciatic
(popliteal)

All movements of foot
and toes (via tibial
and peroneal
nerves)

Foot and most of leg,
excludes most
medial aspect
(innervated by
saphenous)

Injuries to lower leg,
ankle, and foot

emoral Flexion at hip and
extension at knee

Medial aspect of distal
thigh and leg

Hip fractures,
proximal femur, and
knee injuries
Peripheral Vascular Access

Vascular access in the hypovolemic patient can be difficult to achieve. Using ultra-
sound to guide peripheral vascular access has provided success rates from 91% to
97% after prior failed attempts, and initially perceived difficult peripheral access cases
are often deemed easier when ultrasound is used.97–100 In the austere environment,
when transfer to the nearest medical facility may be delayed, beginning resuscitative
efforts in the field is important. Ultrasound-guided vascular access is easy to learn,
with novice users trained to proficiency after minimal training.101 Complications are
the same as those associated with traditional methods: local infiltration, cellulitis,
thrombophlebitis, and hematoma formation.102

� Technique: The most common area for ultrasound-guided vascular access is
the antecubital fossa, although any visible vein can be used. A tourniquet is



Fig
the

Fig
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placed proximally. A longer 1.5-inch catheter may be needed for deeper veins.
After cleaning the skin with an alcohol swab, the nondominant hand holds the
probe with its indicator toward the sonographer’s left in transverse orientation
to the vein, a short-axis technique.101 Then, centering the vein on the screen
by sliding the probe and adjusting the screen depth, compressing it
with the probe to distinguish it from an artery, and noting the vein’s depth
from the skin, all will optimize successful cannulation. The dominant hand
holds the catheter and places it at the center of the probe and penetrates
the skin (Fig. 37, Video 25). The needle tip must be seen as it advances toward
the vein. This requires the probe to also slide in the direction of needle
advancement. You may notice a tenting of the anterior wall of the vein.
Once the needle punctures the vessel wall, blood return will be seen, and
you can place the probe down, advance the catheter over the needle, and
secure the line using standard methods (Fig. 38).
. 37. Short-axis single-operator technique. The nondominant hand holds the probe while
dominant hand holds the catheter.

. 38. Needle tip seen tenting the anterior wall of the vein.
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Foreign Body (Identification and Removal)

In the wilderness, foreign objects are estimated to account for 2% of all soft tissue in-
juries.92 Delay in identification or removal of foreign bodies has been shown to in-
crease associated pain, infection, and inflammation. Ultrasonography is a reliable
diagnostic mode for foreign bodies assessment, as well as for guiding their
removal.103,104 It has proven to be superior to plain film radiography, detecting both
radiopaque and radiolucent objects with sensitivities of 94% to 98%.105,106 Unsus-
pecting fragments and adjacent musculoskeletal and neurovascular structures also
can be seen, and once detected, ultrasound can be used to guide the removal of
the foreign body with reliability and less complication.106 During foreign body removal,
you are able to accurately identify the location and its measurements, as it may not be
in the area of the puncture site, so you are able to make your incision length more
precise.107

� Technique: The probe is placed over the injury, or the assumed entrance site if
visible, and a wide margin is evaluated. Once the hyperechoic foreign body is
identified, evaluate it in both its longitudinal and transverse axis, and measure
its length and width respectively, which allows the assessment of its position,
orientation, and any potential fragments alongside it (Figs. 39 and 40). After
appreciating the regional structures, identify the closest distance of the object
in longitudinal axis from the skin’s surface and mark the skin; this will be your en-
try point for removal. After wiping the area with an alcohol wipe, and injecting
local anesthetic if available or performing a nerve block, use a number 11 scalpel
and make a small incision as wide as the width of the foreign body. Applying gel
and the probe over the skin adjacent to the incision site allows for direct visual-
ization while blunt dissection is done by forceps through the incision and
advancing toward the foreign body for its capture and removal. Irrigate the
wound again, and allow it to heal by secondary intention.

� Water bath technique: If a foreign body is suspected in the hand or foot, placing
the region in a bucket of water and inserting the probe in the water without
applying pressure on the region can prevent further pain elicitation and improved
foreign body removal technique108 (Fig. 41, Video 26).
Fig. 39. Ultrasound of foreign body in longitudinal axis.



Fig. 41. Ultrasound of foreign body using water bath.

Fig. 40. Ultrasound of foreign body in transverse axis.
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Abscess (Diagnosis)

Differentiating abscess versus cellulitis can be difficult with physical examination
alone. Using POCUS will improve accuracy of diagnosis from 86% for physical exam-
ination alone to 98%with POCUS.109 This improvement will save certain patients from
unnecessary invasive procedures if cellulitis or an abscess smaller than 1 cm is seen,
and reserve an incision and drainage for those who really need it.110 In addition, ab-
scesses may be deeper than previously anticipated, or may be communicating with
deeper infective pockets that require surgical drainage,111 allowing appropriate man-
agement decisions on evacuation need in austere environments.

� Pathology: Normal soft tissue will have well-delineated tissue planes (Fig. 42).
Cellulitis is seen as anechoic layers of fluid within the soft tissue causing a char-
acteristic “cobblestone” appearance, or in some cases you may only see a loss
of well-demarcated tissue planes caused by tissue thickening and inflammation
(Figs. 43 and 44). Abscesses are seen as anechoic or hypoechoic irregularly
bordered structures, often with echogenic purulent material (Fig. 45). When the



Fig. 42. Normal soft tissue with well-delineated tissue planes.

Fig. 43. “Cobblestone” effect suggestive of cellulitis.

Fig. 44. Cellulitis with loss of well-delineated tissue planes.
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Fig. 45. Hypoechoic fluid-filled structure consistent with an abscess.
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probe is directly over the abscess, and gentle pressure is applied, the purulent
material will move within the abscess (Video 27). Take note of any adjacent struc-
tures, such as nerve bundles, vascular structures, muscle, or tendons, and their
relative location to the abscess to assist in incision and drainage.

SUMMARY

Ultrasound systems must be handheld, battery operated, durable, and able to with-
stand extremes of temperature and altitude, and additional equipment may be neces-
sary to help prevent battery degradation and equipment damage. POCUS is portable
and lightweight, and can be used to screen for a wide variety of pathologies common
to austere environments, disaster situations, and resource-limited settings. Common
POCUS applications used in austere environments include the eFAST scan, musculo-
skeletal and soft tissue applications, an assessment for HAPE, high-altitude cerebral
edema, pneumonia, volume status, and various procedural guidance applications.
The various POCUS applications used in austere environments for procedural guid-
ance include peripheral vascular access, nerve blocks for pain control, foreign body
identification and removal, and abscess identification and drainage. POCUS is a reli-
able tool to assist in triage, resource allocation decisions, screening for conditions,
and management of patients with pathology common in austere environments.

SUPPLEMENTARY DATA

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.
emc.2016.12.007.
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62. Pagé M, Sauvé C, Serri K, et al. Echocardiographic assessment of cardiac per-
formance in response to high altitude and development of subclinical pulmo-
nary edema in healthy climbers. Can J Cardiol 2013;29(10):1277–84.

63. Fagenholz PJ, Gutman JA, Murray AF, et al. Chest ultrasonography for the diag-
nosis and monitoring of high-altitude pulmonary edema. Chest 2007;131(4):
1013–8.

64. Pratali L, Cavana M, Sicari R, et al. Frequent subclinical high-altitude pulmonary
edema detected by chest sonography as ultrasound lung comets in recreational
climbers. Crit Care Med 2010;38(9):1818–23.

65. Otto C, Hamilton DR, Levine BD, et al. Into thin air: extreme ultrasound on Mt
Everest. Wilderness Environ Med 2009;20(3):283–9.

http://refhub.elsevier.com/S0733-8627(16)30121-3/sref45
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref45
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref45
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref45
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref46
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref46
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref47
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref47
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref47
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref48
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref48
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref49
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref49
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref49
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref50
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref50
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref51
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref51
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref51
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref51
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref51
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref51
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref52
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref52
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref53
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref53
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref53
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref54
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref54
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref55
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref55
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref56
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref56
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref57
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref57
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref58
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref58
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref59
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref59
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref59
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref60
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref60
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref61
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref61
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref61
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref62
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref62
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref62
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref63
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref63
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref63
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref64
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref64
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref64
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref65
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref65


Point-of-Care Ultrasound in Austere Environments 439
66. Frassi F, Gargani L, Tesorio P, et al. Prognostic value of extravascular lung water
assessed with ultrasound lung comets by chest sonography in patients with
dyspnea and/or chest pain. J Card Fail 2007;13(10):830–5.

67. Lichtenstein DA, Mezière GA. Relevance of lung ultrasound in the diagnosis of
acute respiratory failure: the BLUE protocol. Chest 2008;134(1):117–25.

68. Volpicelli G, Elbarbary M, Blaivas M, et al. International evidence-based recom-
mendations for point-of-care lung ultrasound. Intensive Care Med 2012;38(4):
577–91.

69. Fagenholz PJ, Gutman JA, Murray AF, et al. Optic nerve sheath diameter corre-
lates with the presence and severity of acute mountain sickness: evidence for
increased intracranial pressure. J Appl Physiol (1985) 2009;106(4):1207–11.

70. Sutherland AI, Morris DS, Owen CG, et al. Optic nerve sheath diameter, intracra-
nial pressure and acute mountain sickness on Mount Everest: a longitudinal
cohort study. Br J Sports Med 2008;42(3):183–8.

71. Ballantyne SA, O’Neill G, Hamilton R, et al. Observer variation in the sono-
graphic measurement of optic nerve sheath diameter in normal adults. Eur J Ul-
trasound 2002;15(3):145–9.

72. Lochner P, Falla M, Brigo F, et al. Ultrasonography of the optic nerve sheath
diameter for diagnosis and monitoring of acute mountain sickness: a systematic
review. High Alt Med Biol 2015;16:195–203.

73. Kanaan NC, Lipman GS, Constance BB, et al. Optic nerve sheath diameter in-
crease on ascent to high altitude: correlation with acute mountain sickness.
J Ultrasound Med 2015;34(9):1677–82.

74. Lawley JS, Oliver SJ, Mullins P, et al. Optic nerve sheath diameter is not related
to high altitude headache: a randomized controlled trial. High Alt Med Biol 2012;
13(3):193–9.

75. Rajajee V, Vanaman M, Fletcher JJ, et al. Optic nerve ultrasound for the detec-
tion of raised intracranial pressure. Neurocrit Care 2011;15(3):506–15.

76. Hylkema C. Optic nerve sheath diameter ultrasound and the diagnosis of
increased intracranial pressure. Crit Care Nurs Clin North Am 2016;28(1):95–9.

77. Reissig A, Copetti R, Mathis G, et al. Lung ultrasound in the diagnosis and
follow-up of community-acquired pneumonia: a prospective, multicenter, diag-
nostic accuracy study. Chest 2012;142(4):965–72.

78. Blaivas M. Lung ultrasound in evaluation of pneumonia. J Ultrasound Med 2012;
31(6):823–6.

79. Kurian J, Levin TL, Han BK, et al. Comparison of ultrasound and CT in the eval-
uation of pneumonia complicated by parapneumonic effusion in children. AJR
Am J Roentgenol 2009;193(6):1648–54.

80. Rotte M, Fields JM, Torres S, et al. Use of ultrasound to diagnose and manage a
five-liter empyema in a rural clinic in sierra Leone. Case Rep Emerg Med 2014;
2014:173810.

81. Chavez MA, Naithani N, Gilman RH, et al. Agreement between the World Health
Organization algorithm and lung consolidation identified using point-of-care ul-
trasound for the diagnosis of childhood pneumonia by general practitioners.
Lung 2015;193(4):531–8.

82. Heuvelings CC, Bélard S, Janssen S, et al. Chest ultrasonography in patients
with HIV: a case series and review of the literature. Infection 2016;44(1):1–10.

83. Parlamento S, Copetti R, Di bartolomeo S. Evaluation of lung ultrasound for the
diagnosis of pneumonia in the ED. Am J Emerg Med 2009;27(4):379–84.

http://refhub.elsevier.com/S0733-8627(16)30121-3/sref66
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref66
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref66
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref67
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref67
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref68
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref68
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref68
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref69
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref69
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref69
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref70
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref70
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref70
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref71
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref71
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref71
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref72
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref72
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref72
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref73
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref73
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref73
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref74
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref74
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref74
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref75
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref75
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref76
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref76
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref77
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref77
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref77
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref78
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref78
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref79
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref79
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref79
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref80
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref80
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref80
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref81
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref81
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref81
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref81
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref82
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref82
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref83
http://refhub.elsevier.com/S0733-8627(16)30121-3/sref83


Gharahbaghian et al440
84. Modi P, Glavis-bloom J, Nasrin S, et al. Accuracy of inferior vena cava ultra-
sound for predicting dehydration in children with acute diarrhea in resource-
limited settings. PLoS One 2016;11(1):e0146859.

85. Levine AC, Shah SP, Umulisa I, et al. Ultrasound assessment of severe dehydra-
tion in children with diarrhea and vomiting. Acad Emerg Med 2010;17(10):
1035–41.

86. Pitman JT, Thapa GB, Harris NS. Field ultrasound evaluation of central volume
status and acute mountain sickness. Wilderness Environ Med 2015;26(3):
319–26.

87. Guarracino F, Ferro B, Forfori F, et al. Jugular vein distensibility predicts fluid
responsiveness in septic patients. Crit Care 2014;18(6):647.

88. Broilo F, Meregalli A, Friedman G. Right internal jugular vein distensibility ap-
pears to be a surrogate marker for inferior vena cava vein distensibility for eval-
uating fluid responsiveness. Rev Bras Ter Intensiva 2015;27(3):205–11.

89. Kent A, Patil P, Davila V, et al. Sonographic evaluation of intravascular volume
status: can internal jugular or femoral vein collapsibility be used in the absence
of IVC visualization? Ann Thorac Med 2015;10(1):44–9.
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