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ABSTRACT  

This works gives an account of evaluation of white blood cell differential counts via computer aided diagnosis (CAD) 

system and hematology rules. Leukocytes, also called white blood cells (WBCs) play main role of the immune system. 

Leukocyte is responsible for phagocytosis and immunity and therefore in defense against infection involving the fatal 

diseases incidence and mortality related issues. Admittedly, microscopic examination of blood samples is a time 

consuming, expensive and error-prone task. A manual diagnosis would search for specific Leukocytes and number 

abnormalities in the blood slides while complete blood count (CBC) examination is performed. Complications may arise 

from the large number of varying samples including different types of Leukocytes, related sub-types and concentration in 

blood, which makes the analysis prone to human error. This process can be automated by computerized techniques 

which are more reliable and economical. In essence, we seek to determine a fast, accurate mechanism for classification 

and gather information about distribution of white blood evidences which may help to diagnose the degree of any 

abnormalities during CBC test. In this work, we consider the problem of pre-processing and supervised classification of 

white blood cells into their four primary types including Neutrophils, Eosinophils, Lymphocytes, and Monocytes using a 

consecutive proposed deep learning framework. For first step, this research proposes three consecutive pre-processing 

calculations namely are color distortion; bounding box distortion (crop) and image flipping mirroring. In second phase, 

white blood cell recognition performed with hierarchy topological feature extraction using Inception and ResNet 

architectures. Finally, the results obtained from the preliminary analysis of cell classification with (11200) training 

samples and 1244 white blood cells evaluation data set are presented in confusion matrices and interpreted using 

accuracy rate, and false positive with the classification framework being validated with experiments conducted on poor 

quality blood images sized 320 × 240 pixels. The deferential outcomes in the challenging cell detection task, as shown in 

result section, indicate that there is a significant achievement in using Inception and ResNet architecture with proposed 

settings. Our framework detects on average 100% of the four main white blood cell types using ResNet V1 50 while also 

alternative promising result with 99.84% and 99.46% accuracy rate obtained with ResNet V1 152 and ResNet 101, 

respectively with 3000 epochs and fine-tuning all layers. Further statistical confusion matrix tests revealed that this work 

achieved 1, 0.9979, 0.9989 sensitivity values when area under the curve (AUC) scores above 1, 0.9992, 0.9833 on three 

proposed techniques. In addition, current work shows negligible and small false negative 0, 2, 1 and substantial false 

positive with 0, 0, 5 values in Leukocytes detection. 

Keywords: Deep learning, Inception, ResNet, transfer learning, fine-tuning, white blood cell classification. 

1. MEDICAL BACKGROUND AND INTRODUCTION

The examination of peripheral thin blood smears plays the main role of hematologic diagnosis. Blood cells are 

categorized as Red Blood Cells (Erythrocytes), White Blood Cells (Leukocytes), and platelets. The main responsibility 

of leukocytes is to defend of the body organs using phagocytic activity mechanism to remove cell debris and damage in 

biological structures. There are five normal WBCs mature types (with typical percentage of occurrence in normal blood): 

Basophil (≤ 1%); Eosinophil (≤ 5%); Monocyte (3−9%); Lymphocyte (25−35%); and Neutrophil (40−75%) [1]. In this 

context, complete blood count (CBC) analysis is first action in diagnosis all blood-related diseases such as anemia (alpha 
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and beta thalassemia) and infections. Due to these difficulties, an automated, and reproducible methodology for detection 

of WBCs could dramatically reduce required time for microscopic observation, and reduce rate of variability in diagnosis 

and interpretation of thin blood slides [2]. We developed a computerized method which may allow medical physicians 

and patients to track cell structure to count white blood cells. Several previous reported techniques require extensive pre-

processing, and extraction of specific visual features before classification. Thus, in this study, we train an Inception and 

ResNet techniques using a data-sets consist of imbalanced 12,444 samples with 3,120 Eosinophil, 3,103 Lymphocyte, 

3,098 Monocyte, and 3,123 Neutrophil where augmentation techniques including rotations, flips, and shearing are 

applied (see section 3.1). 

2. BACKGROUND AND LITERATURE SURVEY

This section reviews the literature concerning the usefulness of conventional laboratory medical procedures, image 

processing and machine learning techniques in white blood cell detection.  

2.1 Literature Survey in Conventional Medical Procedures 

Current hematology analyzers used in most medical laboratories are such as Siemens  ADVIA 2120i [3], Sysmex 

XE-series [4] and also Abbott CELL-DYN [5] with the manual ground truth white blood cell deferential count. Poor 

resolution and leukocytes adversely affect differential count precision in manual inspection. On the other hand, the 

erythrocytes and leukocyte types that the current equipment are able to manage are restricted to some classes where 

always update of these systems are based on expensive chemicals and mechanical process [3–5]. 

2.2 Image Processing Background 

Authors illustrated a large number of series including pre-processing, morphological operations, feature extraction 

and conventional classifications [2, 6–11] to WBC differntial count. However, so far, there has been little attempt to use 

very deep learning techniques for white blood cell recognition in given blood smear slides [12–14]. Authors evaluated 

certain types of well-known convolutional neural networks, including the LeNet5, AlexNet and GoogLeNet. The results 

of these and other studies support the idea that deep learning is ongoing in medical issues [15–20]. Following earlier 

work, this study examined Inception and ResNet deep learning approaches to distinguish four main dominant WBC 

types in blood smear slides. The empirical findings in this study provide a new understanding of feature extraction and 

make noteworthy contributions to computerized CBC test. 

3. PROPOSED COMPUTER-AIDED DIAGNOSIS FRAMEWORK

Our framework comprises four steps: 1) Image acquisition and conversion to JPEG / RGB channel. 2) Appropriate 

deep learning data augmentation and pre-processing steps (see section 3.1). Next, white blood cell recognition is 

accomplished with very deep learning approaches: 3) Transfer learning and pre-trained models (see section 3.2). 4) 

Hierarchical feature extraction and classification with Inception and ResNet networks (see sections 3.3). 



Figure 1.  Framework in pipeline. 

3.1 Preparing, Data Augmentation and Pre-Processing 

The current study addresses date-set gathered from a given personal github [21]. Initial data-set includes of 352 

images with size 320 × 240 of four main WBC types (Neutrophils, Eosinophils, Lymphocytes, and Monocytes). Data is 
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composed of 21 Monocyte, 33 Lymphocyte, 207 Neutrophil, 88 Eosinophil, 3 Basophil. Since the number of Basophil is 

very limited in current available data-set [21] and also occurrence of it is normally negligible (less than 1%), this study 

ignores it to generalize proposed solution. This work profits JPEG file decoder and proposes a modified image 

augmenter [21] that remedies drawbacks of limited data set with 352 actual samples. Overall, augmented data consists of 

imbalanced 12, 444 white blood cells with 3,120 Eosinophil, 3,103 Lymphocyte, 3,098 Monocyte, and 3,123 Neutrophil. 

Afterwards, it goes with TFrecord format conversion highly recommended at data transfer and serialization [22]. This 

work resizes the image to 299 × 299 × 3 and 224 × 224 × 3 based on model image size recommendations for Inception 

and ResNet architectures, respectively [23–25]. Following that, it randomly flips an input image left to right horizontally. 

Distorting images are also addressed with four color operations using hue, brightness, saturation and contrast adjustment. 

As a result, it provides an efficient mechanics for training data preparation step. On the other hand, in evaluation step, all 

images are normalized, cropped and resized to specific height and width based on aforementioned models input size. 

3.2 Transfer Learning 

Data were gathered from multiple sources proved that pre-trained ConvNets along with fine-tuning policies is better 

or, at least, equal as well as a deep networks trained from scratch [26, 27]. In addition, fine-tuning also leads faster 

convergence than training from the scratch. Authors have examined transfer learning in a variety of ways [28–31].  

When the target data-set is significantly smaller (12,444 for white blood cell) than the base data-set (ImageNet; with 

1.2M training data [32]) transfer learning can be an efficient solution to enable Inception network training without 

overfitting and convergence problems [27].  This work initializes the Inception and ResNet convolutional and fully 

connected layers weights  from ImageNet pre-trained models [32]. Admittedly, to do a comparative and comprehensive 

study, this work investigates full layers and last layer fine-tuning in the context of white blood cell image analysis. 

Indeed, current research in last layer fine-tuning uses frozen all layers ImageNet pre-trained weights before layers in 

logits section (see Fig. 2). 

3.3 Deep Neural Networks in White Blood Cell Recognition 

In recent years, there has been an increasing amount of literature on Inception [23, 33]. Inception moved from fully 

connected to sparsely connected architectures, even inside the convolution calculations [24]. This proposed Inception 

module technically leads to network dimension reduction derived from sparse connectivity among structure with 

factorized convolutional neural networks (see Fig. 2). It considers for example the case of a 1 × 1 convolutional which is 

followed with the rectified linear unit (ReLU) to add more non-linearity. Next, a 3 × 3 convolutional layer is employed. 

Auxiliary logits is also to solve instinct convergence problem in large deep learning layers. Several studies [24] have 

revealed that vanishing gradient problem is critical issue in last layers; near the end of training in which training 

progression identifies data details. Auxiliary logits with combination of average pool, convolutional 1×1, fully connected, 

and softmax activation is an efficient integrated solution to preserve the low-level detailed features most likely gone. In 

fact, auxiliary logits add slight weighted loss to compensate vanishing gradient problem that may exist in networks [34]. 

ResNet controls degradation problem via shortcut connections that bypass shallower sections to deeper networks [26]. 

It adjusts training error rate and identifies mappings. These shortcuts represent the residual mapping to be learned [26]. 

There are several possible explanations for this architecture. In this study ResNet with three variations namely; V1 50, 

101 and 152 are applied [26]. 

 

Figure 2. Inception V3 and factorized Inception module used in Inception V1 [23]. 
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Adaptive learning rates techniques such as AdaGrad, RMSProp (Root Mean Square Propagation), and Adam in deep 

learning concept [36–40] are addressed. In this research adaptive learning rate between 0.001 and 0.0001 and 0.9 decay 

term for RMSProp optimizer is addressed [39]. Also, since the available data-set (12,444, see section 3.1) is limited 

compared with the number of model parameters (up to 5 millions) that need to be learned, regularization dropout and 

batch normalization with 32 batch size in training and 100 in evaluation process are applied. Indeed, this study goes with 

Inception (V1, V2, V3, V4), ResNet (V1 50, V1 101, V1 152) frameworks [23–26]. 

 

4. EXPERIMENTAL RESULTS  

In this section, a set of 8-bits color scale RGB images in WBC imbalanced data-set is used. We have randomly 

chosen the 90% data  (11200) to construct the training set  after removing almost 10% of the data (1244) to be used for 

testing the proposed deep learning classifier. Training a deep learning model with intensive computing tasks, extreme 

number of parameters and on large data-sets significantly be accelerated with GPU’s massively parallel architecture. In 

this study, single server with below specifications for computing platform is used: model: HP DL380 G9, CPU: 2x E5-

2690v4 (35 MB L3 Cache, 2.6 GHz, 14C), RAM: 64 GB (8 × 8 GB) RAM DDR4 2133 MHz, HDD: 146 GB HDD 7.2k, 

GPU: ASUS GeForce GTX 1080, 1733 MHz, 2560 CUDA Cores, 8GB GDDR5 with CentOS 7.2 operating system. The 

model settings referred to official TensorFlow and TFslim documentations with NVIDIA GPUs support [22]. The GPU-

enabled version of TensorFlow requires 64-bit Linux and Python 3.5. It should be noted that essential step before having 

TensorFlow library is to install the CUDA 8.0 Toolkit followed by cuDNN v5.1 [22, 41]. 

 

 

Figure 3. Prediction by inception V1, from top to bottom, left to right: Eosinophil, Monocyte, Lymphocyte, Neutrophil. 

A 4 × 4 confusion matrix is used to represent the different possibilities of the set of WBC instances. The matrices are 

built on four rows and four columns: Neutrophils, Eosinophils, Lymphocytes, and Monocytes representing the known 

WBC classes whereas for each matrix, each row the values are normalized to sum to 1. Statistical performance measures 

[41] for each named WBC type & different deep learning frameworks (see section 3.3) summarized in tables [1, 2]. The 

result, as shown, indicates that for WBC samples using ResNet V1 50 & fine-tuning all layers 100% of known WBC 

types were classified as such, with this rate decreasing to 99.84% for ResNet V1 152 & all layers fine-tuning (see table 2) 

where the efficiency of ResNet V1 101 is also 99.46% with 3000 epochs and fine-tuning all layers. ResNet V1 50 with 
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2000 epochs and fine-tuning all layers reports 99.46% accuracy rate. As can be seen from the resultant tables the ResNet 

groups reported significantly more accuracy than the other Inception structures where in best scenario, Inception V2 with 

3000 epochs and fine-tuning all layer revealed 96.76% which is less accurate in tests of white blood cell types. On the 

other hand, here is an obvious difference  between false positive values associated with Inception structures and ResNets. 

It can be seen from the data in tables [1, 2] that the Inception models are with more false positive  than the other ResNet 

groups with average 43.91, 9.66, respectively. Admittedly, the current study found that ResNets with aforementioned 

settings are more sensitive than Inception and lead more reliability in presence of fatal diseases. 

The Cohens unweighted kappa coefficient of the Inception V1, V2, V3 and V4 with 3000 epochs fine-tuning all 

layers are 0.94, 0.94, 0.82 and 0.84, respectively where ResNet groups are above 0.97 and almost perfect in this WBCs 

classification.  As shown in tables [1, 2] the findings would have been much more persuasive and convincing if ResNet 

will be run with higher epoch.  

 

Table 1. Results of Fine-Tuning Last Layer for Different Models 

Model name Epochs ACC TP TN FP FN P AUC S 

Inception V1 2000 0.4769 987 16 293 4 0.7710 0.4833 0.9959 

Inception V1 3000 0.5707 894 119 190 97 0.8247 0.5334 0.9021 

Inception V2 2000 0.4092 987 8 301 4 0.7663 0.4804 0.9959 

Inception V2 3000 0.4484 443 251 59 557 0.8800 0.6073 0.4470 

Inception V3 2000 0.4123 861 96 214 129 0.8009 0.3874 0.8688 

Inception V3 3000 0.4476 625 197 112 366 0.8480 0.6281 0.6306 

Inception V4 2000 0.38 849 76 233 142 0.7846 0.5025 0.8567 

Inception V4 3000 0.4223 972 22 287 19 0.7720 0.2757 0.9808 

ResNet V1 50 2000 0.8146 860 266 43 131 0.9523 0.8109 0.8678 

ResNet V1 50 3000 0.8669 892 274 35 99 0.9622 0.8448 0.9001 

ResNet V1 101 2000 0.8692 951 235 74 40 0.9278 0.7959 0.9596 

ResNet V1 101 3000 0.8723 897 276 33 94 0.9645 0.8580 0.9051 

ResNet V1 152 2000 0.8430 975 203 106 16 0.9019 0.7059 0.9838 

ResNet V1 152 3000 0.8746 956 239 70 35 0.9317 0.7924 0.9646 

 

Table 2. Results of Fine-Tuning All Layers for Different Models 

Model name Epochs ACC TP TN FP FN P AUC S 

Inception V1 1000 0.7276 969 217 92 22 0.9132 0.8060 0.9778 

Inception V1 2000 0.8730 976 276 33 24 0.9670 0.8900 0.9757 

Inception V1 3000 0.9507 986 270 39 5 0.9619 0.8980 0.9949 

Inception V2 1000 0.7684 764 309 1 226 0.9986 0.8848 0.7717 

Inception V2 2000 0.9023 904 307 2 87 0.9977 0.9499 0.9122 

Inception V2 3000 0.9676 976 307 3 15 0.9969 0.9828 0.9848 

Inception V3 1000 0.7 965 188 121 26 0.8885 0.6004 0.9737 

Inception V3 2000 0.65 941 186 123 50 0.8843 0.7464 0.9969 

Inception V3 3000 0.8915 961 284 25 30 0.9834 0.9746 0.9330 

Inception V4 1000 0.8 895 260 49 96 0.9480 0.8453 0.9031 

Inception V4 2000 0.9184 946 280 29 45 0.9702 0.8830 0.9545 

Inception V4 3000 0.9192 947 299 10 44 0.9895 0.9486 0.9556 

ResNet V1 50 1000 0.9369 939 298 11 52 0.9884 0.9390 0.9475 
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ResNet V1 50 2000 0.9946 985 309 0 6 1 0.9969 0.9939 

ResNet V1 50 3000 1 991 309 0 0 1 1 1 

ResNet V101 1000 0.9692 990 273 36 1 0.9649 0.8830 0.9989 

ResNet V101 2000 0.9923 991 304 0 5 0.9949 0.9923 1 

ResNet V101 3000 0.9946 990 304 5 1 0.9949 0.9833 0.9989 

ResNet V1 152 1000 0.8976 887 304 5 104 0.9943 0.9321 0.8950 

ResNet V1 152 2000 0.8346 853 278 31 138 0.9649 0.8437 0.8607 

ResNet V1 152 3000 0.9984 989 309 0 2 1 0.9992 0.9979 

 

5. CONCLUSION 

A very deep learning approach for WBC type detection is effective and reliable, while working under different and 

even unfavorable and adverse conditions. This work concentrates on the usefulness of proposed frameworks in 

connection with leukocytes recognition. In this research, various Inception and ResNet deep learning classification are 

presented and the use of these theories is outlined. The best results achieved where fine tunning all layers and ResNet 

groups settings are addressed (see table 2). The findings are expected to be persuasively supported by future work 

considering different deep learning segmentation algorithm, i.e., U-net: convolutional networks for biomedical image 

segmentation [43]. Also, in future work ResNet and Inception combination [25] with powerful distributed TensorFlow 

[44] to train a huge number of parameters will be addressed. Briefly, the empirical findings in this study provide a better 

understanding of hierarchical deep feature extraction process. One of the more significant findings to emerge from this 

study is that the possibility of extending the use of this framework to entire field of pathological analysis or other similar 

medical research. 
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