

ULTRA-FAST MICRO AND NANO 3D PRINTING

for serial production

Management Summary

THE OPPORTUNITY

Micro & nano products: used across a wide range of industries.

THE PROBLEM

Creating new products is a timely and highly expensive process.

THE SOLUTION & OUR PATENTED TECHNOLOGY

1000x faster 3D printing process and less expensive.

BUSINESS MODEL

3 revenue streams: printers direct sales, maintenance and support.

GO TO MARKET PLAN

We target the academic users first, focus on industrial users

later. COMPETITORS ANALYSIS

Competitive Advantage: 3D printability, speed, cost, feature size.

OUR CORE TEAM

Ensures multidisciplinary Knowledge Sharing.

FINANCIAL PROJECTIONS

Positive Cash Flow starting 2023.

TIMELINE

2021: 3rd prototype; 2022: First sales of MVP.

Our Mission

Revolutionize Microfabrication

Today, prototyping and developing a new micro product is a very slow and expensive process that makes use of tools originally designed for semiconductor industry.

Our Patented Technology

We use our patented technology to create a novel 3D printer for structures on the micro scale. Our method will be 1000x faster and less expensive that the existing micro-printers.

Team

Our interdisciplinary approach to 3D printing helped us break the boundaries and develop a new, cutting-edge manufacturing technology for microstructures.

THE OPPORTUNITY

Micro & nano products: used across a wide range of industries

... with consistent & fast growth expected

Inertial sensors (MEMS) Optical fiber coupling

Micro-lens arrays

4.7% Advanced filters 1 billion 9,05% **Bio-scaffolds**

THE PROBLEM

Current European Union inefficient spending on new products

Existing process: lithography

Existing process: micro-3D printing

1000x faster and less expensive

How it works?

How we do it:

We developed a <u>Volumetric Lithography</u> approach where an object is created in a liquid resin by a <u>million light beams</u> simultaneously.

How others do it: much slower, serial approach using only a single light beam.

OUR PATENTED TECHNOLOGY

First results with wide functionality

STEM-CELL BIO-SCAFFOLDS

Print upstanding walls and channels Used for stem cell research, bio scaffolds

FREE-FORM MICRO-LENSES

Print spheres Used for the micro optics production

MICROFLUIDICS Print spirals Used in microfluidics Our early prints

Next months: State of the art

Structures with features of ~5 microns

< 1 min/micro structure 1 hour/cm2

ONGOING PROJECT

Enabling direct printing of membranes

FUJIFILM

BUSINESS MODEL

Scenarios in 5 years

BEST CASE ★

We become the new manufacturing standard for micro and nano scale objects Globally more than 1000 units sold.

BASE CASE 💼

We deliver what we currently estimate Market share 20% 40 units/year + peripherals

WORST CASE 📕

Sold only to universities 20 units/year + peripherals

> €100M

Yearly Revenues

€12.5M

Yearly Revenues

€5M

Yearly Revenues

PHOTOSYNTHETIC

BUSINESS MODEL

3 Revenue Streams (Base Case)

€200k revenue/unit

~80% margin

PRINTERS DIRECT SALES 🚢

Key revenue source in the beginning years Early stage: include printing service, gather feedback

€2k revenue/unit

~80% margin

MATERIALS SALES 🔒

Sales of the consumables and accessories needed for printing Early stage: consulting services to support the customer's R&D activities in generating new IP

MAINTENANCE 🔀

Subscription fee for hardware maintenance & software updates

~50% margin

FINANCIAL PROJECTIONS & KEY METRICS

GO TO MARKET PLAN

Universities

€10M*

*Total revenue generated 3 years after market introduction Introduction early 2022 1500+ universities active in relevant fields 30+ microfabrication foundries

Chromatography + membranes

€50M+*

* Based on the first product we are currently exploring Introduction 2022 1.000.000 HPLC columns produced per year

...How to reach them

COMPETITORS ANALYSIS

Competitive Advantage

...ensures multidisciplinary Knowledge Sharing

Alexander Kostenko

Aditya Narayanan

Laura Molina Torres

Tim Wanamarta

Optical

Engineering

Engineering

• 8 papers

• Optics, Fluid dynamics,

Chemistry, Mechanical

- PhD. Applied Physics, TU Delft
- Seismic R&D, Shell
- X-ray Imaging for the Rijksmuseum
- 9+ papers

CEO

Chemical Engineering

- PhD. Applied Physics, U. Twente MSc. Chemical Engineering (Cum laude)
 - Process optimization.
 - Chemical production units
 - and products.

Market Research

- BSc. Science Business & Innovation
- Candidate for MSc Strategy track of Business
- Administration at UvA

Mark Laagland

Electronic & Software Engineering

- BSc. Computer Science (Cum laude)
- Technician at the Biophotonics & Medical Imaging group, VU, Amsterdam

TIMELINE

Achievements, Current Status, Next Steps

Production

FINANCIAL PROJECTIONS & KEY METRICS

Thank you!

photosynthetic.nl

Interested parties

Contact initiated with:

