

FINAL REPORT

Hydrogeological Assessment, Level 1 / 2 Water Resources Study

Proposed Port Colborne Quarries Pit #3 Extension

Submitted to:

Mr. Shawn Tylee

Manager of Procurement and Corporate Affairs Rankin Construction Inc. 222 Martindale Road St. Catharines, ON L2R 7A3

Submitted by:

Golder Associates Ltd. 110 Hannover Drive, Building A, Suite 203, St. Catharines, Ontario, L2W 1A4, Canada +1 905 688 8217 1771656-1000-Rev2 October 2020

Distribution List

1 PDF Copy - Rankin Construction Inc.

1 PDF Copy - Golder Associates Ltd.

i

Table of Contents

1.0	INTR	ODUCTION	1
	1.1	Required Land Use Approvals	1
	1.1.1	Region of Niagara Official Plan (ROP) 2014	1
	1.1.2	City of Port Colborne Official Plan (OP) 2017	2
	1.1.3	City of Port Colborne Zoning By-Law No. 6575/30/18:	2
	1.1.4	Aggregate Resources Act	2
	1.2	Permit to Take Water (PTTW) Monitoring Program	2
2.0	REGI	ONAL SETTING	3
	2.1	Physiography	3
	2.2	Surficial Geology	4
	2.3	Bedrock Geology	4
	2.4	Aquifer Vulnerability Index	5
	2.5	Potential for Karst	5
3.0	FIELD	DINVESTIGATION METHODOLOGY	6
	3.1	Borehole Drilling and Well Installation	6
	3.2	Hydraulic Conductivity Testing	7
	3.3	Groundwater Level Monitoring	7
	3.4	Groundwater Quality Sampling	8
	3.5	Quarry Sump Quality Sampling	8
4.0	RESU	JLTS OF INVESTIGATION	8
	4.1	Borehole Investigation Results	8
	4.1.1	Stratigraphy	9
	4.1.2	Hydrostratigraphy	10
	4.2	Bedrock Surface Contours	10
	4.3	Hydraulic Conductivity Results	10
	4.4	Groundwater Level Monitoring Results	11

	4.4.1	Overburden Groundwater Elevations	11
	4.4.2	Shallow Bedrock Groundwater Elevations	12
	4.4.3	Deep Bedrock Groundwater Elevations	12
	4.4.4	Water Table	13
	4.4.5	Hydrogeological Cross-Sections	13
	4.5	Groundwater Quality Sampling Results	13
	4.5.1	Overburden Groundwater Quality Results	13
	4.5.2	Shallow Bedrock Groundwater Quality Results	14
	4.5.3	Deep Bedrock Groundwater Quality Results	15
	4.5.4	Groundwater Quality Summary	15
	4.6	Quarry Sump Quality Sampling Results	16
5.0	GRO	UNDWATER SEEPAGE ESTIMATE	16
6.0	PRIV	ATE WATER WELLS	17
	6.1	Water Well Cross Sections	17
	6.2	Zone of Influence for the Proposed Extension	19
	6.3	Well Impact Assessment	20
	6.4	Water Well Survey	20
7.0	GRO	UNDWATER MONITORING AND RESPONSE PROGRAM	21
	7.1	Private Well Complaint Response Program	21
	7.2	Potential Mitigation Options	22
8.0	CON	CLUSIONS AND RECOMMENDATIONS	23
	8.1	Conclusions	23
	8.2	Recommendations	24
9 N	і іміт	ATIONS	25

TABLES AFTER TEXT

- Table 1 Monitoring Well Construction Details
- Table 2 Hydraulic Conductivity Results
- Table 3 Groundwater Elevations
- Table 4 Groundwater Chemistry Results

- Table 5 Quarry Sump Chemistry Results
- Table 6 Water Well Survey Responses
- Table 7 MECP Wells Within 1 km of Extraction Area
- Table 8 Proposed Extension Monitoring Locations

FIGURES AFTER TEXT

- Figure 1 Site Location Plan
- Figure 2 Regional Surficial Geology
- Figure 3 Regional Bedrock Geology
- Figure 4 Borehole Location Plan
- Figure 5 Ground Surface Elevation
- Figure 6 Overburden Thickness
- Figure 7 Bedrock Surface Topography
- Figure 8 Base of the Williamsville Unit
- Figure 9 Base of the Falkirk Unit
- Figure 10 Hydraulic Conductivity Results
- Figure 11A Groundwater Elevations Overburden May 2017
- Figure 11B Groundwater Elevations Overburden May 2018
- Figure 11C Groundwater Elevations Overburden May 2019
- Figure 11D Groundwater Elevations Overburden May 2020
- Figure 12A Groundwater Flow Map Shallow Bedrock May 2017
- Figure 12B Groundwater Flow Map Shallow Bedrock May 2018
- Figure 12C Groundwater Elevations Shallow Bedrock May 2019
- Figure 12D Groundwater Elevations Shallow Bedrock May 2020
- Figure 13A Groundwater Flow Map Deep Bedrock May 2017
- Figure 13B Groundwater Flow Map Deep Bedrock May 2018
- Figure 13C Groundwater Flow Map Deep Bedrock May 2019
- Figure 13D Groundwater Flow Map Deep Bedrock May 2020
- Figure 14 Hydrogeological Cross Section A A'
- Figure 15– Hydrogeological Cross Section B B'
- Figure 16 Water Well Locations and Zone of Influence
- Figure 17 MECP Recorded Wells and Section Key
- Figure 18 Water Well Cross Section C C'
- Figure 19 Water Well Cross Section D D'
- Figure 20 Water Well Cross Section E E'
- Figure 21 Water Well Cross Section F F'
- Figure 22 Monitoring Well Locations for Proposed Extension

APPENDICES

APPENDIX A

Borehole Logs

APPENDIX B

Hydraulic Conductivity Testing Results

APPENDIX C

Groundwater Quality Analytical Results

APPENDIX D

Hydrographs

APPENDIX E

Zone of Influence Analysis Groundwater Seepage Calculation

APPENDIX F

MECP Water Well Records Water Well Survey Responses

APPENDIX G

Curricula Vitae

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) was retained by the Port Colborne Quarries (PCQ) to complete a hydrogeological study for a proposed expansion of the Port Colborne Quarry in Port Colborne, Ontario. PCQ, a division of Rankin Construction Inc. (Rankin) is proposing an extension to Pit 3 of their existing Port Colborne Quarry in order to continue mining of the aggregate resources.

In order to satisfy the requirements of the Ontario Aggregate Resources Act (ARA) with regard to a Category 2, Class "A" Quarry Below Water license application certain plans and studies are required to identify the effects of the proposed quarry and studies are required to identify land use impacts of the proposed quarry and to mitigate such effects so that established Ministry of the Environment, Conservation and Parks (MECP) thresholds are met. This includes the requirement for a Level 1/2 Water Resources Assessment. This report provides the hydrogeological component of the water resources assessment along with the hydrological assessment which is provided under separate cover.

The existing Port Colborne Quarry is located in the City of Port Colborne within the Regional Municipality of Niagara. The existing quarry is bounded by Second Concession Road to the north, Highway 140 to the west, Main Street East (Highway 3) to the south, and 200 metres (m) west of Carl Road to the east.

The proposed extension (Site) is situated directly east of the existing quarry and remains between Second Concession Road to the north and Highway 3 to the south and extends approximately 410 - 790 m east of Carl Road (see Figure 1). The Port Colborne Quarry Extension is located in Part of Lots 18 and 19 Concession 2, and Plan 59R-16702, Humberstone Township, Regional Municipality of Niagara and comprises 108.25 hectares (267.49 acres). The property is bordered by Second Concession Road to the north, Main Street East to the south, the existing Port Colborne quarry to the west and agricultural fields and Miller Road to the west. There is an estimated 40 to 50 million tonnes of limestone resources within the proposed extension, at the Site.

1.1 Required Land Use Approvals

In order for extraction to occur on the subject lands, the following approvals are required:

- Amendment to the Region of Niagara Official Plan 2014, to designate the lands as Licensed Pits and Quarries;
- Amendment to the City of Port Colborne Official Plan 2017, to re-designate the lands from Agricultural to Mineral Aggregate Operation;
- Amendment to the City of Port Colborne Zoning By-Law 6575/30/18, to rezone the lands from Agricultural
 (A) to Mineral Aggregate Operation (MAO); and,
- Application to the Ministry of Natural Resources and Forestry, under the Aggregate Resources Act for a Class A Category 2 Licence (Quarry Below Water).

1.1.1 Region of Niagara Official Plan (ROP) 2014

Policy 6.C.13 of the Region of Niagara ROP states: "Where a new pit or quarry or an extension to an existing licensed pit or quarry are to be located outside a Possible Aggregate Area, an amendment to this Plan is required." As the subject lands are not within a Possible Aggregate Area, a Regional Official Plan Amendment through the Region of Niagara is required to identify the subject lands on Schedule D4 - Mineral Resources.

1.1.2 City of Port Colborne Official Plan (OP) 2017

Policy 10.2 of the City of Port Colborne OP states: "The establishment of a new or an expansion to an existing mineral aggregate operation shall require an amendment to this Plan..." Therefore, an Official Plan Amendment through the City of Port Colborne is required.

1.1.3 City of Port Colborne Zoning By-Law No. 6575/30/18:

The lands are currently zoned (A) Agricultural within the City's Comprehensive Zoning By-Law. Extraction and related uses are not a permitted use. Therefore, the lands must be rezoned to (MAO) Mineral Aggregate Operations in order to permit extraction and all the permitted accessory uses. This requires an amendment to the City's Zoning By-Law No. 6575/30/18.

1.1.4 Aggregate Resources Act

In addition to the above Planning Approvals, PCQ also requires approval for a Class A Category 2 (Quarry Below Water) License under the Aggregate Resources Act as processed through the Ministry of Natural Resources and Forestry.

The proposed quarry will be excavated to the same stratigraphic horizon, corresponding to the top of bluish-grey shale on the base of the adjacent pit. This corresponds to a range of elevations from approximately 165 to 168 metres above sea level (masl). The proposed quarry consists of approximately 43,730,850 tonnes of limestone resource within the extraction limits. Golder completed the installation of 20 monitoring wells on the original proposed expansion property (Site) in order to determine the bedrock geology and the hydrogeological conditions prior to purchase of the property. PCQ purchased additional property in 2017 and 2018 which has been included in this license application.

1.2 Permit to Take Water (PTTW) Monitoring Program

A monitoring program is being completed for the existing Port Colborne Quarry Site. The existing quarry is being monitored as part of the conditions of Permit to Take Water (PTTW) No. 7675-8MBQBB, which allows for a total maximum daily withdrawal volume of 8,640,000 litres.

The existing PTTW report includes the following:

- Preparation of a water budget;
- Groundwater level monitoring;
- Measurement of sump water levels; and,
- A summary of well interference complaints.

The ECA monitoring includes the following:

- Collection of water discharge samples and analysis for hydrogen sulphite, total suspended solids (TSS), total oil and grease;
- Assessment of the effectiveness of TSS control measures; and,
- A summary of operational problems, maintenance, and corrective actions.

This PTTW includes monitoring of groundwater levels and evaluation of the potential water well interference as well as a summary of response to any well interference complaints. The PTTW documents that were reviewed as part of the hydrogeological work program for the proposed extension include:

- WSP, 2013, 2012 Annual Compliance Report, Port Colborne Quarries, March 2013;
- WSP, 2014, Port Colborne Quarries 2013 Annual Compliance Report, March 2014;
- WSP, 2015, Port Colborne Quarries 2014 Annual Compliance Report, March 2015;
- WSP, 2016, Port Colborne Quarries 2015 Annual Compliance Report, March 2016;
- WSP, 2017, Port Colborne Quarries 2016 Annual Compliance Report, March 2017;
- WSP, 2018, Port Colborne Quarries 2017 Annual Compliance Report, March 2018; and,
- WSP, 2019, Port Colborne Quarries 2018 Annual Compliance Report, March 2019.

This information in these monitoring reports was considered as part of the preparation of the work program.

2.0 REGIONAL SETTING

The existing Port Colborne Quarry is located in the City of Port Colborne within the Regional Municipality of Niagara. The existing quarry is bounded by Second Concession Road to the north, Highway 140 to the west, Main Street East (Highway 3) to the south, and 200 m west of Carl Road to the east. The Site is situated directly east of the existing quarry and remains between Second Concession Road to the north and Highway 3 to the south and extends approximately 400 m east of Carl Road (see Figure 1) along Second Concession. The southern edge of the Site extends 200 m east of Carl Road. The Port Colborne Quarry and Site are located in the vicinity of the buried Onondaga Escarpment.

2.1 Physiography

The areas surrounding the existing quarry and the Site are predominately flat to slightly undulating agricultural lands and woodlots with rural residential development along the various concession roads in the vicinity of the Site. Quarrying was focused within this specific area due to the presence of flat lying dolostone bedrock at or very near ground surface that is of high quality for the production of construction aggregates.

The general terrain associated with the existing quarry and the Site comprises a flat landscape of limited topographical relief characterised by gently undulating agricultural lands and woodlots. Local intervening areas with low, poorly drained conditions also occur within the drainage courses. Overall, the topographic relief in the quarry vicinity varies between approximately 180 to 185 masl gradually sloping southward towards Lake Erie.

2.2 Surficial Geology

The regional distribution of surficial deposits in the vicinity of the Site, based on Ontario Geological Survey (OGS) mapping, is shown on Figure 2. The regional surficial geology of the Port Colborne Quarry area is known as the Haldimand Clay Plain and is comprised of shallow overburden overlying the dolostone bedrock of the buried Onondaga Escarpment. The surficial deposits that are found around the Port Colborne Quarry area are comprised of predominantly massive, well-laminated clays. In some areas, coarse-textured glaciolacustrine deposits are also found. The thickness of the surficial deposits encountered across the Site during the drilling program ranged from approximately 0.5 m to 10.5 m.

2.3 Bedrock Geology

The regional distribution of bedrock formations is shown on Figure 3, which shows that the site area is underlain by the Onandaga Formation. Aggregate Resource and Inventory Paper 117 for the area shows on the regional bedrock map (Map 3) that the Bois Blanc Formation is the uppermost bedrock unit in the area of the existing quarry and there is a transition to the Onondaga Formation on the southeastern portion of proposed extension. Based on the work programs conducted at the site, the Port Colborne Quarry Site area is underlain by a well-defined stratigraphic sequence of limestone, dolostone, and shale bedrock including the Bois Blanc Formation and the Bertie Formation which are being excavated by the existing quarry, and the Salina Formation which underlies the quarry. The uppermost bedrock in the site area consists of the Bois Blanc Formation.

The Salina Formation consists of Upper Silurian aged rocks which are composed of alternating carbonates, evaporates, and shales. The uppermost layers of the Salina Formation can also contain anhydrite or gypsum nodules which can dissolve leaving voids and collapse structures.

The Bertie Formation overlies the Salina Formation conformably and consists of alternating carbonate and carbonate-shale units. The Bertie Formation is generally subdivided into five members known as (in ascending order):

- The Oatka Member– dolomitic shales;
- The Falkirk Member– dark brown dolostones:
- The Scajaquada Member– dark grey to black shales and argillaceous dolostones;
- Williamsville Member

 grey micritic dolostones and dolomitic shales; and,
- The Akron Member– grey, wavy bedded, mottled dolostones.

Immediately above the Bertie Formation lies the Bois Blanc Formation where the contact between the two units represents the Silurian-Devonian disconformity. This disconformity represents the period of time where the Silurian-age bedrock units of the Niagara Peninsula were subjected to an extended period of subaerial weathering. The Bois Blanc consists of cherty fossiliferous bioclastic or argillaceous limestones.

The Onondaga Formation overlies the Bois Blanc formation in the area surrounding the Port Colborne Quarry and consists of variably cherty, fossiliferous limestone with some minor shale partings.

2.4 Aquifer Vulnerability Index

The aquifer vulnerability index (AVI) for the regional surficial geology in the vicinity of the Port Colborne Quarry is considered "high" for the Niagara Peninsula source zone protection area due to the potential for coarse-textured glaciolacustrine deposits or for relatively thin overburden areas to be present within the Haldimand Clay Plain¹. The AVI rating assesses the potential for vertical infiltration of contaminants through the shallow overburden into the underlying the bedrock formations. The overburden deposits in the area of the proposed Pit #3 extension are thin within the southern area of the Site corresponding to a moderate to high AVI, since there are not thick low permeability overburden deposits that would retard the downward migration of contaminants from surface. The overburden deposits thicken northwards and in the area of the wetlands/woodlands there are relatively thick (approximately 6 m) clayey deposits. It is interpreted that this area has a moderate to low AVI.

It should be noted that the AVI is relevant to sources of surface contamination. The AVI is not directly applicable to the proposed extension since potential sources of surface contamination will not be placed on the ground surface and as such the protection of the aquifer is not reliant on the character of overburden deposits reflected in the AVI. The AVI is not directly applicable in a below water table quarry setting since this involves excavation through the surface cover. Therefore, there is no reliance on the presence of the overburden at surface soil to protect the aquifer.

There is inward groundwater flow which prevents the outward flow of groundwater under existing conditions, and this is planned to be continued in the long term to maintain the quarry in a dry state by pumping. Further, the quarry is underlain by shale deposits that prevent the seepage downward seepage of contaminants through the base of the quarry. The AVI rating in the vicinity of the proposed extension at the Port Colborne Quarry is not considered to be a significant concern for potential infiltration of contaminants to affect water supply wells in nearby bedrock formations since the groundwater will continue to flow inward during active quarry dewatering.

2.5 Potential for Karst

There is potential for chemical weathering to create small-scale karstic features within dolostone units along the sidewalls of the Port Colborne Quarry. Potential karst features may include solution-widened bedding planes or conjugate fracture systems that are related to the dissolution effects of water flowing through the fractured dolostone of stratigraphic units of the Bertie formation.

During the summer months the quarry is maintained in a dry state with minimal to low pumping and if significant transmissive karst features were present they would be apparent on the quarry walls. No significant larger scale karstic features have been observed on the sidewalls of the Port Colborne Quarry and the observed relatively low rates of groundwater flow into the Port Colborne Quarry are not consistent with significant karstic features on the quarry sidewalls.

As noted previously, by maintaining the dewatering sump at a groundwater elevation for the foreseeable future, the local groundwater flow directions adjacent to the quarry are expected to be radially inward over the long term. This zone of depression in the water table would be expected to capture any groundwater that is flowing through potential karstic features along the quarry sidewalls. As a result of the radially inward groundwater flow, the potential for water quality impacts to occur in nearby supply wells as a result of karstic features on the sidewalls of the Port Colborne Quarry is considered to be very low.

¹ Groundwater Vulnerability Analysis Niagara Peninsula Source Protection Area", Niagara Peninsula Conservation Authority (NPCA), 2011. Prepared for Niagara Peninsula Source Protection Authority, November 30, 2009, numerical amendments made in June 2011.

5

3.0 FIELD INVESTIGATION METHODOLOGY

The hydrogeological characterization of the Site involved groundwater investigations initiated in early 2017 followed by groundwater monitoring through July 2017. The hydrogeological work program included:

- Borehole drilling and monitoring well installations;
- Hydraulic conductivity testing;
- Groundwater level monitoring;
- Groundwater quality sampling;
- Estimation of groundwater inflow;
- Water well impact assessment;
- Private water well survey;
- Development of a groundwater monitoring program and a well response complaint program for private wells;
 and,
- Report preparation.

Groundwater monitoring was completed monthly throughout 2018 and 2019 and is being continued on a quarterly frequency during 2020. The investigations have built upon the information available from previous site investigations and ongoing monitoring of the existing PCQ operations and adjoining lands. As part of the Site investigation, boreholes were drilled at ten on-site locations. The following sections provide an overview of the investigation while more detailed discussion of each aspect of the investigation along with the results including borehole logs and monitoring data are provided in the appendices attached to this report.

3.1 Borehole Drilling and Well Installation

The hydrogeological investigation involved the drilling and installation of monitoring wells at ten locations at the Site. A shallow and deep well were installed at each location for a total of 20 monitoring wells. These monitoring wells which were completed in February through March 2017 and are labelled as MW17-1S and MW17-1D through to MW17-10S and MW17-10D, where "S" represents the shallow well and "D" represents the deep monitoring well at each location. The location of the completed wells at the Site is shown on Figure 4. A shallow and deep 100 mm diameter borehole was cored using HQ coring equipment with water flush and completed to depths varying from 6.0 to 21.4 metres below ground surface (mbgs) in order to target pre-determined stratigraphic horizons. The bedrock core was logged to determine the rock conditions and stratigraphy of the formations encountered. Upon completion of drilling, hydraulic conductivity packer testing was carried out in the deep boreholes at each location.

Following the completion of the hydraulic conductivity testing, monitoring wells were installed in the shallow and deep boreholes using 32 mm diameter flush threaded PVC pipe and slotted well screen. At monitoring well locations MW17-1S, MW17-2S, MW17-3S, and MW17-10S where the targeted stratigraphic horizons were not encountered, shallow overburden monitoring wells were installed at depths varying from 5.18 to 6.05 mbgs. Shallow overburden wells were installed via hollow stem augers using 51 mm flush threaded PVC pipe and slotted well screen. The bedrock monitoring wells were completed using 32 mm flush threaded PVC pipe and slotted well screen. Both shallow and deep bedrock and overburden monitoring wells were set in silica sand to the target depths and sealed with bentonite to surface.

Following installation of all of the monitoring wells, Golder returned to the site to complete GPS and elevation surveying of each of the locations. Details of the monitoring well locations and elevations are provided in Table 1 and can be found on the borehole records in Appendix A.

3.2 Hydraulic Conductivity Testing

A total of 30 packer tests were completed in order to assess the horizontal hydraulic conductivity of the bedrock at the Site. The packer tests were conducted in the open boreholes (MW17-1D through MW17-10D) prior to the installation of the monitoring wells. Prior to the start of packer testing, the open boreholes were developed by flushing with water and over-pumping until clear water was produced. Drill rod seal tests were also performed prior to the initiation of all the packer tests to determine the competency of the drill rods.

The majority of the packer tests (20 of the 30 tests) were conducted over 3.2 m vertical intervals. Testing was conducted using a double packer assembly between the bottom of the hole and the water table or the casing, whichever was lower. The overlap between test intervals was generally 0.3 m, in some cases larger overlaps were used in order to test all available bedrock. The remainder of the packer tests were completed on the bottom of each hole using a single packer assembly with vertical intervals ranging from 2.9 to 3.8 m.

All packer tests were performed using the falling head test method, where the column of water representing the static water level within the packer interval is raised by adding water from an external source. Subsequently, the water column falls while the water level and elapsed time are recorded. The packers were inflated with nitrogen gas to pressures around 200 pounds per square inch (psi) to ensure an adequate seal between the packer glands and the wall of the borehole. Following the inflation of the packers, the water column in the test interval was monitored within the drill rods until static or near static conditions were observed over periods of 5 to 30 minutes. The drill rods were then filled with water and the falling head test was initiated. The water level and elapsed time was then measured using Solinst level loggers until the water level reached static or at least 60% of the initial static level. In some cases, 60% of initial static was not achievable due to very slow hydraulic conductivity. Manual recordings of time and water column depth were also recorded during each test where applicable.

The packer test data for all falling head tests were analyzed by the Bouwer and Rice method using the Aqtesolv software program. The use of the Bouwer and Rice analytical solution for the determination of hydraulic conductivity of fracture rocks is deemed appropriate in this situation based on the scale of the proposed quarry, which makes it impractical to consider the individual flow paths within the bedrock. Rather, the net effect of the fractures, in terms of their ability to conduct water under the influence of a hydraulic gradient, must be considered as a bulk hydraulic conductivity. In this study, the geometric mean is applied to measure hydraulic conductivities for this purpose. During this process, minor analytical errors in the analysis of the data are not significant.

Results of the packer test data are summarized in Table 2.

3.3 Groundwater Level Monitoring

Following the installation of each monitoring well, Golder completed monitoring well development as per Golder's Standard Operating Procedure No. 5: Monitoring Well Development. Each monitoring well was developed to remove fine particles from the filter pack and to remove any fluids introduced to the monitoring well during drilling and to ensure fresh formation water has entered the well prior to groundwater sample collection.

Starting April 10, 2017, Golder initiated a weekly groundwater monitoring program which involved the groundwater level collection in each of the newly installed monitoring wells for a period of 12 weeks which was completed on July 31, 2017. Water levels in each well were measured using an electronic water level meter. The water level meter was appropriately cleaned using a liquid AlcanoxTM and distilled water rinse to prevent cross contamination between monitored locations. The results of the groundwater monitoring program are presented in Table 3.

From January 2018 through December 2019, Golder collected monthly groundwater levels at all of the accessible groundwater monitoring wells that were installed as part of the 2017 drilling program. The results of this groundwater monitoring program are also included in Table 3. Golder continues to collect groundwater levels quarterly at these wells throughout 2020.

The 2017 through 2020 groundwater elevations have been included in the hydrographs provided in Appendix D.

3.4 Groundwater Quality Sampling

Prior to sampling, water levels in each well were measured using an electronic water level meter. The water level meter was appropriately cleaned using a liquid AlcanoxTM and distilled water rinse to prevent cross contamination between monitored locations. Prior to sampling, the monitoring wells were purged of either a volume of water equivalent to three standing well volumes or until dry using the dedicated inertial lift pumps installed in each well.

Groundwater sampling involved purging prior to sample collection to ensure that the samples are representative of true aquifer conditions. Field parameters (pH, electrical conductivity, and temperature) were measured after the removal of each well volume and prior to sample collection. The samples collected for metals analyses were field filtered using a disposable in-line 0.45 micron filter attached directly to the inertial lift pump assemblage. Samples were stored on ice and shipped to the laboratory within 24 hours of collection under chain of custody. Samples were compared to Ontario Drinking Water Standards (ODWS) (MECP 2006) and any applicable site specific limits or criteria.

3.5 Quarry Sump Quality Sampling

Quarry sump sampling involved the collection of one quality sample from the main quarry sump located within the existing Port Colborne Quarry. Prior to sampling, field parameters (pH, electrical conductivity, temperature, and dissolved oxygen) were measured from directly within the quarry sump. The samples were then collected directly from the quarry sump into laboratory provided bottles. Samples were compared to the Provincial Water Quality Objectives (PWQO).

4.0 RESULTS OF INVESTIGATION

The results of the investigation conducted by Golder at the Site are presented below.

4.1 Borehole Investigation Results

The stratigraphic sequence of bedrock encountered during the drilling program included the Bois Blanc Formation, the Bertie Formation, and the Salina Formation. The details of each stratigraphic unit are described below.

The Salina Formation was only encountered at borehole location MW17-1D where drilling progressed deeper in order to confirm the location of the targeted stratigraphic horizons. The bottom of the Salina Formation was not encountered so the formation thickness is not reported.

The Bertie Formation was encountered at all deep borehole locations and in six of the shallow borehole locations. Unit 1 of the Bertie Formation was the target horizon for the deep borehole locations. The thickness of the Oatka Shale was 5.2 m and was only encountered in its entirety at borehole location MW17-1D. The thickness of the Bertie Formation in the southern portion of the site that will be extracted ranged from 13.9 m to 14.9 m (not including the Oatka shale). The thickness of the Bertie Formation in the northern portion of the site ranged from 5.1 to 6.2 m where it was truncated and overlain by overburden.

The Bois Blanc Formation was only encountered at borehole locations MW17-4, MW17-5, MW17-7, MW17-8, and MW17-9. The Bois Blanc was overlain by overburden at all of these locations and the thickness of the overburden ranged from 0.4 m to 5.1 m.

4.1.1 Stratigraphy

The stratigraphic units are described below:

Bois Blanc Formation

The Bois Blanc Formation consists of medium to light grey, medium bedded, medium grained cherty limestone with light to medium grey calcareous sandstone and siltstone beds and green glauconitic layers, and green glauconitic coatings on fracture surfaces, with a sharp lower contact.

Akron Member

The Akron Member consists of mottled light to medium grey, thin to medium bedded and medium grained dolostone with occasional thin argillaceous partings with green glauconitic coatings on fracture surfaces and brecciated intervals, with a sharp contact and a gradational transitional lower contact.

Williamsville Member

This member consists of a grey, medium grained, thin to medium bedded laminar textured dolostone with numerous thin to argillaceous to shaly laminate and thin shale beds. The upper contact with the Akron Member is transitional and distinguished by the transitional from its matted to laminate textured appearance.

Scajaquada Member

The Scajaquada Member consists of medium to dark bluish grey argillaceous to shaly dolostone with thin shale interbeds. The upper contact with the Williamsville Member is transitional identified at the transitional first appearance of dark grey shaly bedding.

Falkirk Member

The Falkirk member is comprised of brown medium to thickly bedded to missive, medium crystalline dolostone with occasional argillaceous laminate. The upper contact is sharp and identified at the base of the argillaceous to shaly bedding, and appearance of brown to crystalline rock.

Oatka Member

The Oatka Member is a fine grained, thinly bedded, bluish-grey argillaceous dolostone and shale. The upper contact is sharp and demarcated by the transition from crystalline brown rock to fine grain bluish grey rock.

Salina Formation

The Salina Formation consists of dark grey to black argillaceous dolostone, and black shale with thin gypsum beds and nodules. The upper contact drawn at the transition from bluish grey rock to dark grey to black shale.

4.1.2 Hydrostratigraphy

The upper aquifer units are interpreted to consist of the limestone of the Bois Blanc Formation and the dolostones of Akron Member and Williamsville Member of the Bertie Formation. These aquifer units are underlain by the shaly dolostone of the Scajaquada Member of the Bertie Formation which is interpreted to act as weak aquitard. This unit is underlain by the lower aquifer which is comprised of the Falkirk Member of the Bertie Formation. This sequence is underlain by the shaly Oatka member which acts as an aquitard and is forms the floor of the existing quarry.

4.2 Bedrock Surface Contours

Overburden thickness contours were derived using the ground surface elevation (shown on Figure 5) and digitally subtracting a contour plan of the bedrock surface elevation. The overburden thickness contours are shown on Figure 6. The overburden is thin in the southern portion of the site and thickness northward where is reaches its maximum thickness beneath the wetland/woodland area. At Borehole 17-1D a thickness of 10.2 m of silty clay overlain by topsoil was encountered. At Borehole 17-2D topsoil underlain by silty clay with a thickness of 8.7 m was encountered while at 17-3D a thickness of 5.4 m was encountered. The silty clay overburden deposits beneath the wetland form a low permeability clayey base to the wetland.

Bedrock surface contour maps were created based on the data from the borehole locations and are presented on Figures 7, 8, and 9. The inferred bedrock surface at the Site is presented on Figure 7. The bedrock surface depth varied across the Site from 0.51 mbgs at location MW17-5D to 10.21 mbgs at location MW17-1D. On the south side of the Site the bedrock surface gradually slopes to the east away from the existing quarry. On the north side of the Site the bedrock surface slopes towards the north with a decrease in elevation of 9 m between locations MW17-4D and MW17-1D. This subsurface topographic feature may be the result of a localized depression, a buried channel or possibly the presence of the buried Onondaga Escarpment.

Figure 8 shows the inferred surface of the base of the Williamsville Member (Unit 5) of the Bertie Formation. The base of Unit 5 was encountered at every deep borehole location except for MW17-1D and at shallow borehole location MW17-6S. The base of Unit 4 slopes gently towards the southwest with a decrease in elevation of approximately 6.5 m between locations MW17-3D and MW17-8D.

Figure 9 shows the inferred surface of the base of the Falkirk Member (Unit 2) of the Bertie Formation. The base of Unit 2 was encountered at every deep borehole location. The base of the Falkirk Member also slopes gently towards the southwest with a decrease in elevation of approximately 8 m between locations MW17-3D and MW17-8D.

4.3 Hydraulic Conductivity Results

A total of 30 packer tests were completed within the deep borehole locations MW17-1D through MW17-10D located at the Site. The results of all the tests are presented in Table 2 and the summary of each test including a plot is compiled in Appendix B. The results of the tests are also presented on the borehole logs in Appendix A.

The individual packer test results are plotted on Figure 10 which indicates the overall range of hydraulic conductivity with depth. The test intervals are shown with respect to the formation stratigraphy and relative to the base of Unit 2 of the Bertie Formation which will act as the base of the proposed quarry. Figure 10 indicates that the hydraulic conductivity of the rock sequence varies over a wide range between 8.7 x 10⁻¹⁰ metres per second (m/s) and 1.2 x 10⁻⁵ m/s. The test results characterize the hydraulic conductivity of the individual formations including the wide variation both spatially and with depth.

Examination of the exposed quarry faces, core logging, and packer testing results indicate that the hydraulic conductivity of the bedrock is primarily related to open, near-horizontal bedding partings within the rock. Therefore, the hydraulic conductivity values determined during packer testing are considered to primarily reflect horizontal permeability along the open bedding partings. The vertical permeability of the intact beds of rock separating the open bedding partings is anticipated to be much lower, with the possible exception of the Falkirk Member of the Bertie Formation based on the interconnectivity of the vugs.

Due to the observed static water levels within the open boreholes during packer testing, the majority of the packer test intervals (25 tests) were completed within the lowermost portion of the Bertie Formation, Unit 1 through to Unit 3. One packer test interval was completed within the Salina Formation at MW17-1D. While four packer test intervals were completed in Unit 4. No packer tests were completed within the Bois Blanc Formation. The results of the packer test interval within the Salina Formation returned the lowest hydraulic conductivity recorded at the Site of 8.7×10^{-10} m/s.

The results of the 25 packer test intervals that fall within Units 1 through 3 of the Bertie Formation returned a wide range of results from 1.2 x 10⁻⁵ m/s to 4.6 x 10⁻⁹ m/s. Due to the length of the packer interval, the majority of the tests would straddle two of the stratigraphic units. As Unit 1 was the targeted stratigraphic horizon, the exposure of this Unit was between 0.2 m to 1.5 m in all of the deep boreholes except for MW17-1D where its entirety was encountered. The only packer test completed completely within Unit 1 returned the result of 7.6 x 10⁻⁶ m/s.

Six packer tests were completed entirely within Unit 2 of the Bertie Formation. The results from these tests ranged from 8.8×10^{-6} m/s to 9.5×10^{-8} m/s.

One packer test was completed entirely within Unit 3 of the Bertie Formation at MW17-9D and one completed almost entirely within at MW17-8D. The results from these two tests were 2.8×10^{-8} m/s and 4.6×10^{-9} m/s, respectively.

One packer test was completed entirely within Unit 4 of the Bertie Formation at MW17-8D and three packer tests were completed partially within Unit 4. The result from the packer test that was entirely within Unit 4 was 5.1×10^{-5} m/s. The other three test results ranged from 2.6×10^{-7} m/s to 4.6×10^{-9} m/s.

4.4 Groundwater Level Monitoring Results

The results of the 12 week groundwater level monitoring program and the monthly and quarterly groundwater level monitoring program are presented in Table 3. Using the results of the groundwater level monitoring program in May 2017, May 2018, May 2019, and May 2020 and based on the stratigraphy encountered at the Site, groundwater potentiometric surfaces were produced for overburden (Figures 11A, 11B, 11C, 11D), shallow bedrock (12A, 12B, 12C, 12D) and deep bedrock (Figures 13A, 13B, 13C, and 13D).

4.4.1 Overburden Groundwater Elevations

The overburden groundwater potentiometric surfaces are presented on Figures 11A to 11D based on the groundwater levels collected during May 2017 to May 2020. Based on Figures 11A to 11D, overburden groundwater appears to flow to the east away from the active quarry, however, there is limited data available, therefore, overburden contours have not been included on this figure.

The 2017 to 2020 groundwater elevations have been included on hydrographs presented in Appendix D. The hydrographs indicate that the groundwater elevations in the overburden monitoring wells, MW17-1S, MW17-2S, and MW17-3S, increased since the development and sampling of the wells until August 2017 when they appeared to reach static. The groundwater elevations at MW17-1S and MW17-3S fluctuated seasonally in 2018 with higher

elevations observed in late spring/early summer. The groundwater elevation at MW17-2S has remained relatively stable since August 2017 and the groundwater elevation at MW17-10S has remained near the base of the well screen since well development.

The wetland areas in the north of the site were not observed to be in a flooded condition during much of the year which is interpreted to reflect the underlying low permeability clayey deposits which reduce seepage through the base of the wetland

4.4.2 Shallow Bedrock Groundwater Elevations

The shallow bedrock groundwater monitoring wells are either completely installed within the Akron and Williamsville Members of the Bertie Formation or partially within these members and partially within the Bois Blanc Formation. The shallow bedrock groundwater potentiometric surfaces are presented on Figures 12A to 12 D based on the groundwater levels collected during May 2017 to May 2020.

Groundwater levels within the shallow bedrock remained relatively stable. Subtle fluctuations in the groundwater elevations were observed across each of the monitoring well locations indicating that the shallow bedrock groundwater surface is well connected across the Site, with the exception of MW17-4S which exhibited very limited fluctuations. Higher groundwater elevations were typically observed during the spring and late fall in the shallow bedrock monitoring wells.

Based on Figures 12A to 12D, the shallow bedrock groundwater flows from south to north toward MW17-7S. From this location it flows northwest towards MW17-5S and the existing quarry. There is also southward groundwater flow from MW17-4S. This may be due to the overburden groundwater influence from the north which may act as a recharge area for the shallow bedrock groundwater as it is truncated and overlain by overburden between MW17-4 to MW17-2. Monitoring well MW17-6S has not been included in the contouring as the groundwater elevation at this location appears to be anomalously low.

4.4.3 Deep Bedrock Groundwater Elevations

The deep bedrock groundwater monitoring wells are either completely installed within the Falkirk Member of the Bertie Formations or mostly within the Falkirk Member and partially within the Oatka Member of the Bertie Formation. The deep bedrock groundwater potentiometric surfaces are presented on Figures 13A to 13D based on the groundwater levels collected during May 2017 to May 2020.

Groundwater elevations within the deep bedrock remained relatively stable. Subtle fluctuations in the groundwater elevations were observed across each of the monitoring well locations indicating that the deep bedrock groundwater surface is well connected across the Site. The overall groundwater elevations appear to be decreasing over time with muted seasonal fluctuations observed. A noticeable decrease in groundwater elevations is observed at MW17-5D, MW17-7D, MW17-8D, and MW17-9D which are all located on the southern portion of the Site.

Based on Figures 13A to 13D, the deep bedrock groundwater flows from the south, west, and northern property boundaries towards the eastern property boundary and MW17-5D. The potentiometric surface represents a slight draw down cone with MW17-5D as the lowest point. This may indicate that MW17-5D is more strongly connected to the exposed quarry to the northwest.

4.4.4 Water Table

The approximate water table corresponds to the shallow monitoring wells installed in the bedrock and overburden. The overburden water table is shown on Figures 11A and 11B and ranges from 176.19 to 179.51 masl in May 2017. The shallow bedrock water table is shown on Figures 12A and 12B and ranges from 176.0 to 177.88 masl in May 2017. Therefore, a generalized value for the water table is approximately 178 masl. No overburden wells were installed on the southern portion of the Site as the bedrock is near surface.

4.4.5 Hydrogeological Cross-Sections

Two hydrogeological cross-sections were developed across the site area at the locations shown on Figures 11 to 13. Cross-Section A-A' on Figure 14 is oriented west-east and extends through the wetland/woodland in the northern portion of the site (and is oriented along the direction of groundwater flow toward the quarry). Cross section B-B' on Figure 15 is oriented north-south and extends along the western edge of the proposed extension (and is oriented across the direction of inward groundwater flow to quarry).

Cross-section A-A' shows the relatively thick clayey overburden deposits beneath the wetland. The section shows the groundwater levels in the monitoring wells installed and are below ground surface with downward hydraulic gradients from the overburden to the bedrock wells. The wetland/woodland is noted to have standing water during the fall and spring which is considered to reflect the low permeability of the clayey materials beneath the wetland. It is interpreted that other areas of the wetland will continue to have standing water during spring and summer during the quarry expansion since this is occurring under existing conditions in areas directly adjacent to the existing quarry.

Cross-section B-B' indicates the increase in elevation of the bedrock units from north to south, while the bedrock surface is decreasing to the north. This result in the truncation of the upper bedrock units northward. The relatively thick overburden deposits are a result of the northward decline in bedrock surface. The relatively consistent groundwater elevations along the section reflect the orientation of the section along the general trend of groundwater flow contours.

4.5 Groundwater Quality Sampling Results

On April 10, 2017 Golder collected 12 groundwater samples from MW17-1S, MW17-1D, MW17-2S, MW17-3D, MW17-4S, MW17-6S, MW17-6D, MW17-8S, MW17-8D, MW17-9S, MW17-9D, and MW17-10D. A summary of the groundwater results has been provided in Table 4. The groundwater samples were analyzed for the Rapid Chemical Analysis Package (RCAP) Comprehensive list of parameters which includes general parameters, nutrients and organic indicators, major and minor ions, and dissolved metals. The groundwater results were compared to the ODWS as shown on Table 4. The laboratory certificates of analysis are provided in Appendix D.

4.5.1 Overburden Groundwater Quality Results

A review of the groundwater chemistry from the two samples collected from overburden monitoring wells MW17-1S and MW17-2S is provided below:

Concentrations of general parameters were generally similar at each of the wells with the exception of TSS and TDS which were elevated at MW17-1S and hardness which was elevated at MW17-2S. The groundwater quality typically complied with the applicable ODWS with the exception of TDS at both sampled locations.

Concentrations of nutrients and organic indicator parameters were generally similar at MW17-1S and MW17-2S. The concentrations of orthophosphate, nitrate, and nitrite were below detection limits at MW17-2S, while they were marginally above detection limits at MW17-1S. The groundwater quality typically complied with the applicable ODWS with the exception of DOC at MW17-2S.

- Concentrations of major and minor ions were variable at MW17-1S and MW17-2S. The concentrations of alkalinity, calcium, and magnesium were marginally elevated at MW17-2S, while the concentrations of sodium and sulphate were significantly elevated at MW17-1S. There were no ODWS exceedances for the major and minor ion parameters.
- Concentrations of dissolved metal parameters were generally similar at MW17-1S and MW17-2S. The concentration of aluminum, barium, molybdenum, uranium, and vanadium were elevated at MW17-1S, while boron, silicon, and strontium were elevated at MW17-2S. The groundwater quality typically complied with the applicable ODWS with the exception Manganese at MW17-2S.

4.5.2 Shallow Bedrock Groundwater Quality Results

A review of the groundwater chemistry from the four samples collected from the shallow bedrock monitoring wells MW17-4S, MW17-6S, MW17-8S, and MW17-9S is provided below:

- Concentrations of general parameters were generally similar at each of the bedrock wells with the exception of TDS and hardness which were elevated at MW17-9S and TSS which was elevated at MW17-4S, MW17-6S and MW17-8S. The groundwater quality typically complied with the applicable ODWS with the exception of TDS and hardness at all sampled locations.
- Concentrations of nutrients and organic indicator parameters were generally similar at all sampled shallow bedrock locations. There were no ODWS exceedances for the nutrients and organic indicator parameters in shallow bedrock.
- Concentrations of major and minor ions were variable at the sampled shallow bedrock monitoring wells. The following observations were noted:
 - Alkalinity and magnesium were elevated at MW17-4S and MW17-9S;
 - Sodium and chloride were significantly elevated at MW17-9S; and,
 - Sulphate was notably lower at MW17-8S.

There were no ODWS exceedances for the major and minor ion parameters.

- Concentrations of dissolved metal parameters were generally consistent between the four shallow bedrock monitoring wells with the exception of:
 - Barium, manganese, molybdenum, and uranium were elevated at MW17-4S; and,
 - Silicon and strontium were elevated at MW17-6S.

The groundwater quality typically complied with the applicable ODWS with the exception of manganese and uranium at MW17-4S.

4.5.3 Deep Bedrock Groundwater Quality Results

A review of the groundwater chemistry from the six samples collected from the deep bedrock monitoring wells MW17-1D, MW17-3D, MW17-6D, MW17-8D, MW17-9D, and MW17-10D are provided below:

- Concentrations of general parameters were generally similar at each of the deep bedrock wells with the following exceptions:
 - Conductivity was notably lower at MW17-6D;
 - TSS was elevated at MW17-3D and MW17-6D; and,
 - TDS and hardness were notably lower at MW17-3D and MW17-6D.

The groundwater quality typically complied with the applicable ODWS with the exception of TDS and hardness at all sampled locations.

- Concentrations of nutrients and organic indicator parameters were generally similar at all sampled deep bedrock locations with the exception of total ammonia which was elevated at MW17-8D and MW17-9D. There were no ODWS exceedances for the nutrients and organic indicator parameters in shallow bedrock.
- Concentrations of major and minor ions were variable at the sampled deep bedrock monitoring wells. The following observations were noted:
 - Chloride was elevated at MW17-9D;
 - Sodium was elevated at MW17-8D and MW17-9D; and,
 - Calcium, magnesium, and sulphate were notably lower at MW17-3D and MW17-6D.

There were no ODWS exceedances for the major and minor ion parameters.

- Concentrations of dissolved metal parameters were generally consistent between the deep bedrock monitoring wells with the exception of:
 - Aluminum was elevated at MW17-9D;
 - Boron was elevated at MW17-8D and MW17-9D and,
 - Manganese was elevated at MW17-1D and MW17-8D.

There were no ODWS exceedances for the dissolved metals parameters.

4.5.4 Groundwater Quality Summary

The groundwater quality in the overburden and bedrock at the Site was generally similar based on the groundwater quality results. Overburden groundwater quality was typically elevated in pH and TSS concentrations in comparison with the bedrock groundwater quality. The shallow bedrock was typically elevated in hardness and TDS, calcium, chloride, and magnesium in comparison with the overburden groundwater quality. The deep bedrock groundwater quality was typically more mineralized than the shallow bedrock groundwater quality as expected. In comparison to the shallow bedrock groundwater quality, TDS, hardness, calcium, potassium, sodium, sulphate, boron, and strontium were elevated.

4.6 Quarry Sump Quality Sampling Results

On April 11, 2017, Golder collected one surface water sample from the main quarry sump located within the existing Port Colborne Quarry. A summary of the quarry sump results is provided in Table 5. The quarry sump sample was analyzed for the RCAP surface water list of parameters which included general parameters, nutrients and organic indicators, major and minor ions, and total metals. The quarry sump results were compared to the PWQO. The concentrations of all analyzed parameters from the quarry sump sample were below the PWQO with the exception of total boron.

5.0 GROUNDWATER SEEPAGE ESTIMATE

A groundwater seepage estimate has been developed for the proposed quarry extension. This estimate involves calculation of the seepage along the east, north, and south faces. This seepage estimate does not include upward seepage from the floor of the quarry as this is comprised of low permeability dolomitic shales that will be the floor of the proposed extension. The seepage estimate was calculated using Darcy's Law Q=KIA, where:

Q = seepage in m³/sec

K = hydraulic conductivity corresponding to the geomean of packer test results (m/sec)

I = hydraulic gradient, assuming a 500 m radius of influence and a drawdown of 15 m

A = cross-sectional area of quarry faces (m²)

The results of the seepage estimate using the Darcy Calculation are provided in Table E.2 in Appendix E. The parameters and results of calculation are summarized below:

Seepage Calculation Values										
К	7 x 10 ⁻⁷ m/s									
I	0.03 (15 m/500 m)									
А	56850 m ² (15 m x 3790 m)									
Q	0.00119385 m ³ /sec or 71.63 L/min									

Based on this calculation using the geomean of the packer test results, the estimated seepage from the east, north, and south walls of the proposed extension is 72 L/min. If the hydraulic conductivity were increased by one order of magnitude, to produce a conservative estimate the resultant seepage would be 720 L/min.

6.0 PRIVATE WATER WELLS

An evaluation of the MECP water well database was completed to provide additional information with respect to the bedrock surface and groundwater elevations at the water wells surrounding the proposed extension. The location of water wells relative to the calculated dewatering zone of influence is shown on Figure 16. The location of water well cross sections is shown on Figure 17. The MECP water well records in the area of the sections are included in Appendix F. The sections are discussed below.

6.1 Water Well Cross Sections

Four water well cross sections were completed based on the MECP water well records.

- Section C-C' was completed in an east-west direction along Second Concession and is presented on Figure 18;
- Section D-D' was completed in an east-west direction along Killaly Road and is presented on Figure 19;
- Section E-E' was completed in a north-south direction along Miller Road and is presented on Figure 20; and,
- Section F-F' was completed in a northwest-southeast direction along Highway 3 and is presented on Figure 21.

The ground surface and bedrock surface have been included on these cross sections. The recorded depth that water was found during drilling and the static water levels following drilling have also been included on these cross sections for reference, however these water levels have a low degree of accuracy since the depth that water is found is typically estimated and the static water levels may not have fully reached static conditions. In addition, the ground surface elevation, that is used to calculate the ground surface elevation from the measured depth, at the well location is usually not surveyed but instead estimated from mapping based on the location indicated on the drillers log.

Water Well Cross Section C-C'

Cross section C-C' was completed along Second Concession which is located at the northern property boundary of the current quarry operation and the expansion property. The ground surface elevation is approximately 185 masl and increases to approximately 190 masl east of the expansion property. According to the MECP well records this topographic high consists of sand and gravel material whereas the overburden material in the vicinity of the expansion property is typically clay. The bedrock surface is approximately 180 masl in the vicinity of the expansion property and continues to decrease in elevation towards the east. Immediately to the east of the expansion property the bedrock surface decreases to approximately 175 masl as shown on Figure 18. In this area of lower bedrock elevation, the overburden deposits were noted to be sand and gravels rather than clayey materials, which were noted in the western portion of the section. The wells are typically less than 10 m in depth except for two very deep wells and one deeper well. The water was found in bedrock and various depths with no consistent producing horizon. The static water levels are generally above the bedrock surface in the overburden deposits. The water was noted to vary from fresh to sulphur taste.

Water Well Cross Section D-D'

Cross section D-D' was completed along Killaly Road which is located south of the current quarry operation and the expansion property. The overburden deposits consist of clayey that overlie limestone bedrock. The ground surface elevation along Killaly Road is approximately 178 masl to 180 masl. There is a topographic low located south of the expansion property as shown on this cross section. The bedrock surface is approximately 177 masl

south of the current quarry operations. The bedrock surface is very close to the ground surface in this location. South of the expansion property, the bedrock surface decreases in elevation to approximately 173 masl. The decrease in bedrock elevation in this area coincides with the decrease in ground surface elevation that is also observed in this area. Further east of the expansion property the bedrock surface increases to approximately 177 masl as shown on Figure 19. The wells are generally completed less than 20 m into bedrock. The water was found a variable depth with no apparent consistent elevation. The water was noted to vary from fresh or sulphur in taste.

Water Well Cross Section E-E'

Cross section E-E' was completed along Miller Road which is located to the east of the expansion property. The ground surface elevation decreases from north to south along Miller Road. The ground surface at the northern end of Miller Road is approximately 185 masl and decreases to approximately 178 masl at the southern end of Miller Road. In general, the overburden deposits are clayey materials overlying bedrock. The bedrock surface elevation typically is similar to the ground surface topography as the bedrock surface also decreases from north to south along Miller Road. At the north end of Miller Road, the bedrock surface is located at approximately 183 masl and decreases to approximately 170 masl at the south end of Miller Road. A bedrock surface elevation increase is noted at some locations along Miller Road based on MECP well records which indicate that the bedrock surface is close to the ground surface as shown on Figure 20. The wells are generally completed less than 20 m into bedrock. The water was found at variable depths with no apparent consistent producing horizon, with the static water levels in the overburden or near bedrock surface. The water was noted to vary from fresh to sulphur in taste.

Water Well Cross Section F-F'.

Cross section F-F' was completed along Highway 3 which is located at the southern property boundary of the current quarry operation and the extension property. The ground surface elevation in the vicinity of the current site and the expansion property is approximately 180 masl and is relatively flat. The clayey overburden deposits overlie bedrock along the section. The bedrock is located at ground surface in the vicinity of the current operation, to the west of the expansion property. South of the expansion property the bedrock surface begins to decrease to approximately 177 masl. To the east of the expansion property, the bedrock surface continues to decrease to approximately 173 masl. Further to the east the bedrock surface begins to increase as shown on Figure 21.

The cross sections indicate that the bedrock surface in the vicinity of the current quarry operation and the proposed extension property is variable. This is likely attributed to the close proximity of the Onondaga Escarpment which appears to be located at the northern end of the expansion property. The bedrock surface appears to slope from the north to the south towards Lake Erie as shown on cross section D-D' on Figure 19. The bedrock surface appears to decrease in elevation moving from west to east along the northern and southern property boundary of the current operations and expansion property as shown on Figures 18 and 21.

6.2 Zone of Influence for the Proposed Extension

The dewatering Zone of Influence (ZOI) represents the lateral extent of groundwater drawdown in response to dewatering which could potentially affect the supply of surrounding water wells (see Appendix E). The dewatering ZOI is governed by the transmissivity of the fractured bedrock and the depth of dewatering required. In the vicinity of the dewatering area a transmissivity ranging from 0.6 m²/day to 1.0 m²/day has been assumed, based on the observed geomean hydraulic conductivity from the packer testing in the Bertie Formation (7 x 10⁻⁷ m/s) and a saturated aquifer thickness ranging from 10.4 m to 16.8 m. The Theis equation was used to estimate the ZOI. The Theis equation is considered to provide a conservative estimate of the groundwater level drawdown since it does not incorporate groundwater recharge which would limit the expansion of the drawdown curve. Applying the Theis analytical solution, the lateral extend of groundwater level drawdown can be estimated as follows:

$$s(r,t) = \frac{Q}{4\pi T} W\left(\frac{r^2 S}{4Tt}\right)$$

where:

s(r,t) = drawdown at distance (r) and time (t) after the start of pumping

Q = pumping rate required to achieve maximum drawdown (m³/day)

T = aguifer transmissivity (0.6 m^2/day to 1.0 m^2/day)

S = aguifer storativity (10⁻⁴ – assumed for specific yield of fractured bedrock)

W = Theis well function

Based on the Theis analytical approach discussed above and assuming 14 days for the dewatering system to reach steady-state, the dewatering ZOI for the proposed extension is interpreted to range from 700 m to 1,000 m at which distance the groundwater level drawdown will be less than 10 cm and considered minimal. The results of the Theis drawdown analysis are provided in Table E.1 in Appendix E. The distance-drawdown relationship is expressed on a curve on Figure E.1 in Appendix E. The maximum drawdown case corresponds to a distance of 1,000 m. The intermediate drawdown case corresponds to a distance of approximately 900 m, while the minimum drawdown case corresponds to a distance of approximately 700 m.

This results of this calculation are comparable with the 1 kilometre (km) area that is currently used for the PTTW monitoring for the existing quarry. The estimated ZOI is shown on Figure 16.

The upper range of the ZOI calculation of 1 km is used as the area of groundwater level drawdown and area for potential impact on surrounding water wells. A water well survey was conducted within a 1 km radius of the site (see Figure 16). The MECP water well numbers within the 1 km offset from the extraction boundary of the proposed extension is provided in Table 7.

6.3 Well Impact Assessment

The potential for impacts on the groundwater supply of surrounding wells was determined based on the calculated ZOI which was assumed to be 10 cm. It is assumed that wells within this zone could potentially be affected would occur within the ZOI. The wells with the closest proximity would have a higher likelihood of experiencing a decline in groundwater levels that may affect their supply, although this would be dependant upon the specifics of each well, actual drawdown in groundwater levels. Based on the operating history of the quarry there are wells within a comparable distance from the quarry that have historically not complained to the quarry about their water supply, based on the monitoring reports by WSP.

A water well survey was conducted to establish an initial baseline on wells situated within the potential ZOI (see Section 6.4).

The closest water wells to the proposed extension are at five houses situated south of Highway No. 3 ranging from approximately 75 m to 110 m from the proposed extension (Figure 16). The predicted drawdown for the distances of 100 m and 150 m from the quarry are approximately 2.6 m and 2.8 m respectively. The potential for drawdown will be assessed based on the groundwater monitoring program, including monthly groundwater level monitoring of monitoring wells MW17-8 and MW17-9. Any complaints will be addressed by the complaint response program. The water wells along Miller Road are situated from approximately 365 m to 385 m from the proposed extension (Figure 16). A groundwater monitoring program and complaint response program have also been developed for the operating lifespan of the quarry (see Section 7.0). The predicted drawdowns from the Theis analysis at 350 m, 375 m, and 400 m are 1.52 m, 1.38 m, and 1.27 m respectively.

The potential drawdown of these will be evaluated based on the new monitoring wells to be installed along the eastern perimeter at the proposed extension. There are also wells situated to the east of Miller Road along the 2nd Concession Road within the ZOI. To the southeast there are wells within the ZOI along Killaly Street, Miller Road, and Highway No. 3 (Figure 16). The wells more distant from the quarry monitoring well network will be included in the complaint response program. In addition, these wells could be fitted with pressure transducers to measure groundwater levels if this is agreed to between Rankin and the property owner.

6.4 Water Well Survey

Golder conducted a water well survey for all properties located within 1 km of the expansion property at the addresses indicated in Table 6. A total of 74 private wells were identified within a 1,000 m distance from the perimeter of the Site (Figure 16 and Table 7). Properties that were included in the water well survey completed by WSP were not included in this survey. Golder completed this well survey on September 5, 19, 20, and 26, 2017. A notification letter was delivered to all of the residents on August 23, 2017 indicating that Golder staff would be attempting two visits at each location between August 23 and September 29, 2017. These visits were completed on September 5 and 19, 2017. An additional visit was completed at the remaining residents on September 20, 2017.

Additional properties were included in the well survey based on the revised expansion property boundary provided by PCQ. These additional properties were included in the September 19 and 20, 2017 site visits. On September 25, 2017 the resident of 1580 Miller Road requested that the well survey be completed which required an additional visit on September 26, 2017. On September 22, 2017 Golder delivered a revised letter and the well survey form to the remaining properties where no response was previously received. Golder requested that the residents fill out the survey form and send it back to the St. Catharines office. No completed survey forms were received by the deadline, September 29, 2017 as indicated on the cover letter provided with the survey form.

A summary of the completed survey forms is provided on Table 6, and a copy of all the completed survey forms is provided in Appendix F. All available information from the residents is included in the survey form. Golder attempted to contact a total of 49 residences as part of the water well survey. A total of 30 residences were successfully surveyed. A total of six residences were not interested in participating in this survey. At the remaining 13 residences, no resident was home during the visits and no response to the letters was received. A summary of these responses is provided in Table 6.

7.0 GROUNDWATER MONITORING AND RESPONSE PROGRAM

This section provides a recommended monitoring program that will be implemented at the onset of extraction in the proposed extension.

Currently, manual monitoring of groundwater levels is being carried out on a quarterly basis at all of the on-site monitoring wells within the proposed extension. The monitoring well network will be augmented by three additional monitoring wells along the eastern perimeter. The groundwater monitoring locations are shown on Figure 22 and summarized in Table 8. This on-site water level monitoring program will be conducted during quarry operations on a monthly basis. Groundwater quality sampling and analysis will be continued every five years during extraction of the proposed extension. It should be noted that the monitoring wells within the extraction area will progressively be mined out as the quarry expands and three new wells will be added along the eastern property boundary. The monitoring program will be discontinued once the quarrying is completed and the quarry will be allowed to flood through natural surface water and groundwater inflows, and the groundwater levels will recover to static conditions.

A monitoring and response program is in place for the existing quarry to detect groundwater level drawdown at the monitoring well locations. A response program would be initiated, if required, to evaluate potential impacts and implement operational measures, or contingency measures, to prevent an interruption of the water supply or to restore the supply. This monitoring and response program will include all residences within 1,000 m of the proposed extension.

In order to implement appropriate response actions in a timely manner, PCQ will retain qualified personnel in the areas of hydrogeology and will have water well contractors and a plumbing contractor on retainer in the event that the need for these services arises. The Complaint Response Program (CRP) is described below.

7.1 Private Well Complaint Response Program

The following description provides the decision process to be followed when a well interference complaint is received.

- The well will be inspected by a Hydrogeologist and/or a Licenced Well Contractor to initially evaluate the complaint. An analysis and impact assessment will then be conducted by a Hydrogeologist to evaluate potential impacts for groundwater level drawdown to affect the water supply of the well. An assessment of the well system performance will then be carried out by the Hydrogeologist and Contractor.
- If it is determined by a Hydrogeologist that there is a significant potential for interruption of the water supply of the well or the water supply of the well has been interrupted, then the water supply restoration program will be initiated. If the initial measures are not successful, then mitigation measures will be implemented in the interim until a successful response is achieved. This could involve the implementation of additional contingency measures until a successful result is achieved.

If there is no significant potential for the interruption of water supply, then no restoration action will be undertaken, and the temporary water supply will be discontinued. The actions and responses undertaken, as determined by a Hydrogeologist, will be documented for the annual report, and reported to the agencies as required.

7.2 Potential Mitigation Options

There are several mitigation strategies that could be implemented to affect the supply of surrounding water wells, to counteract the effect of quarry-related groundwater level drawdown, if required, based on the results of the monitoring and complaint response program.

Well Deepening

This would be effective, for example, for shallow bedrock wells that no longer have a sufficient water column due to quarry-related groundwater level drawdown. The results of the hydrogeological program indicate that well deepening for shallow wells is feasible, since water supply is obtained from the lower bedrock above the Salina shales.

Well Replacement

This measure could be introduced for wells where well deepening was not sufficient and could also be positioned further from the quarry, or where the facilities are not directly connected to the quarry wall.

Additional Wells

Additional wells could be installed and connected by plumbing into the residence by piping as such that there is a common feed of water from multiple wells.

Trickle Wells

This would involve the pumping low yield wells into a storage system such as a subsurface cistern.

Grouting

The bedrock along the quarry wall could be grouted to seal the fractures and remove the hydraulic connection to adjacent wells.

Low Permeability Side Slopes

The quarry walls could be sloped with low permeability clayey materials to line the fractures on the quarry wall.

Recharge Wells

Recharge wells could be installed to maintain groundwater levels in areas affected by groundwater level drawdown.

The requirement for any of these mitigation measures would be determined based on the results of the groundwater monitoring program.

The results of the monitoring and response program will be incorporated into a report that will be submitted to the MECP on an annual basis as part of the future requirements for a Site-wide PTTW.

8.0 CONCLUSIONS AND RECOMMENDATIONS

The following conclusions and recommendations are provided for the proposed quarry extension.

8.1 Conclusions

1) The topography in the area of the proposed extension is generally flat lying ranging from approximately 180 masl to 185 masl.

- 2) The regional surficial geology in the site area consists of deposits of the Haldimand Clay Plain.
- 3) The overburden thickness at the drill hole locations ranged from approximately 0.5 to 10.5 m. The decrease in bedrock surface results in an increase in overburden thickness from south to north across the site with the thickest overburden deposits occurring in the area of the wetland/woodland which are underlain by low permeability silty clay deposits.
- 4) The bedrock surface elevation in the area of the proposed extension decreases from south to north across the area. The highest bedrock surface elevations occur in the southwestern area of the site, near Main Street East, with the lowest elevations occurring in the northern area of the site, in the wooded area near 2nd Concession Road.
- 5) The bedrock geology is comprised of the uppermost Bois Blanc Formation which is underlain by the Bertie Formation, and the Salina Formation. The proposed quarry will extract the same formations (the Bois Blanc and Bertie Formations) as the existing quarry. The bedrock units slope westward to southwestward toward the quarry. The base of The Falkirk Member of the Bertie Formation will be the floor of the proposed quarry at the top of the Oatka shale, which ranges in elevation from 169 masl in the northern area of the site to 162 masl in the southern area of the site.
- 6) The results of the packer testing in the Bertie Formation range from 1.8 X 10⁻⁹ m/sec to 1.2 X 10⁻⁵ m/sec. The hydraulic conductivity test result for the Salina Formation was 8.7 X 10⁻¹⁰ m/sec.
- 7) Contouring of groundwater levels in the bedrock indicates a westward direction of groundwater flow reflecting inward groundwater flow to the existing quarry excavation. The direction of groundwater flow will be inward toward the proposed extension from the areas to the west, north and site of excavation.
- 8) The wetland/woodland has surface water during the fall and spring which is considered to reflect the low permeability of the clayey materials beneath the wetland. The wetland will continue to have standing water during spring and summer during the quarry expansion since this is occurring under existing conditions in areas directly adjacent to the existing quarry.
- 9) The results of the groundwater quality sampling have indicated that the shallow bedrock was typically elevated in hardness, TDS, calcium chloride, and manganese in comparison to overburden quality. The overburden groundwater quality was typically elevated in pH concentrations in comparison to the shallow bedrock quality. The deep bedrock groundwater quality was more mineralized than the overburden or shallow bedrock, with elevated TDS, hardness, calcium potassium, sodium, sulphate, boron, and strontium. The results reflect natural groundwater quality and generally meets applicable ODWS with the exception of TDS in overburden samples at two locations, and uranium and manganese in the shallow bedrock at one location.
- 10) The results of the analysis of the surface water sample obtained from the quarry sump indicates that all of the analyzed parameters were below the PWQO, with the exception of boron.

11) The estimated additional seepage from the north, south, and west walls of the proposed extension is 72 L/min.

- 12) An estimate of the radius of groundwater level drawdown associated with the dewatering of the proposed extension was developed to be utilized for the hydrogeological impact assessment on surrounding water wells. The ZOI of the dewatering is 700 m to 1,000 m from the proposed extension.
- 13) A baseline water well survey has been carried out within 1 km of the boundary of the proposed extension in advance of quarrying activities. A total of 74 private wells were identified within a 1,000 m distance from the perimeter of the Site. Detailed cross-sections have been developed for the area along the road surrounding the proposal extension.
- 14) A groundwater monitoring program has been developed for the proposed extension involving both groundwater quality sampling and analysis and groundwater level monitoring at existing monitoring wells in the area of the proposed extension. The results of the groundwater quality monitoring will be used to evaluate potential changes in water quality as the proposed quarry extension expands. The groundwater level monitoring results will be used to assess the groundwater level drawdown associated with quarry dewatering as the quarry expands. The monitoring program will be used to evaluate potential impacts on surrounding water wells. The results will also be utilized as part of the hydrogeological and ecological disciplines to confirm that there are no unanticipated effects on the natural environment.
- 15) A monitoring and response program will be in place to detect groundwater level drawdown at the proposed quarry extension quarry monitoring wells as part of the PTTW.
- 16) A Complain Response Program (CRP) will be in place to respond to well interference complaints from surrounding residents.
- 17) There will be no impacts on the surrounding water wells with the operation of the monitoring and CRP since the quarry operator will ensure that there are no impacts on the quantity or quality of the supply of surrounding water wells.

8.2 Recommendations

Golder recommends the following actions be taken:

- 1) The quarry should adopt the groundwater monitoring and response program during the excavation of the proposed extension.
- 2) The quarry should utilize the proposed CRP for complaints associated with supply of residents within 1 km of the quarry for the Pit #3 extension.
- The quarry should incorporate the monitoring program for the proposed extension into a PTTW for the site operations.

9.0 LIMITATIONS

This report has been prepared by Golder Associates Ltd. (Golder) for use by Rankin Construction and Port Colborne Quarries and its authorized agents. The factual information, descriptions, interpretations, comments, results, conclusions, and electronic files contained herein are specific to the project described in this report. Information used in this report should be restricted to that specified in the scope of work unless otherwise mutually agreed upon by Golder and Rankin and Port Colborne Quarries. This report should be read in its entirety as some sections could be falsely interpreted when taken individually or out-of-context. Golder is not responsible for any use of this report and its content by a third party, and/or for its use for purposes other than those intended.

Golder is not responsible for any damages that may result from unpredictable or unknown underground conditions, from erroneous information provided by and/or obtained from sources other than Golder, and from ulterior changes in the site conditions unless Golder has been notified of any occurrence, activity, information, or discovery, past or future, susceptible of modifying the underground conditions described herein, and have had the opportunity of revising its interpretations.

The professional groundwater services described in this report are conducted in a manner consistent with that level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions. The results of previous or simultaneous work provided by sources other than Golder and quoted and/or used herein are considered as having been obtained according to recognized and accepted professional rules and practices, and therefore deemed valid.

Signature Page

Golder Associates Ltd.

Byron Zwiep, BSc(Hons), PGeo

Environmental Scientist

Dr. Sean McFarland, PGeo

De with

Principal, Senior Hydrogeologist (PhD, LLM, MBA, MSc, Hons BSc)

BZ/SM/sy/II/wlm

Golder and the G logo are trademarks of Golder Associates Corporation

https://golderassociates.sharepoint.com/sites/32998g/deliverables/phase 1000 hydrogeology/task 1004 - data analysis and reporting/1771656 (1000-1004)-r-rev2-01oct2020-rankin hydrogeo.docx

TABLES

TABLES

Location	Top of Pipe (masl)	Ground Surface (masl)	Depth to Bedrock (mbgs)	Depth to Bedrock (masl)	Bottom Depth (mbtop)	Bottom of Screen (mbtop)	Bottom of Screen (masl)	Top of Screen (mbgs)	Top of Screen (masl)	Top of Sand (mbgs)	Screened In	Stick Up (m) field measured	Stick Up (from survey data)	Easting (UTM Zone 17)	Northing (UTM Zone 17)	Notes
MW17-1D	182.92	181.99	10.21	171.77	14.39	14.39	168.53	11.89	170.10	10.98	lower dolostone	0.95	0.94	646595.40	4752362.64	hole back filled to 13.41
MW17-2D	182.64	181.70	8.69	173.01	15.15	15.15	167.49	10.98	170.72	9.45	lower dolostone	0.99	0.94	646602.90	4752109.43	hole back filled to 14.02
MW17-3D	183.00	181.99	5.36	176.63	13.45	13.45	169.49	9.45	172.54	7.62	lower dolostone	0.94	1.01	646823.07	4751983.70	hole back filled to 12.50
MW17-4D	183.40	182.51	2.44	180.07	19.40	19.40	164.00	15.29	167.22	13.72	lower dolostone/lower shale	0.91	0.89	646626.89	4751621.30	
MW17-5D	183.64	182.56	0.51	182.05	20.80	20.80	162.84	16.64	165.92	15.24	lower dolostone/lower shale	1.00	1.08	646415.54	4751485.26	
MW17-6D	182.84	181.83	3.35	178.47	19.11	19.11	163.73	14.94	166.89	13.41	lower dolostone/lower shale	1.04	1.01	646833.18	4751418.07	
MW17-7D	182.43	181.39	1.55	179.84	19.93	19.93	162.50	15.70	165.69	14.02	lower dolostone/lower shale	1.04	1.04	646634.77	4751237.03	
MW17-8D	182.49	181.39	0.84	180.56	20.76	20.76	161.65	16.69	164.70	15.24	lower dolostone	1.00	1.09	646422.35	4751094.88	hole backfilled to 19.74
MW17-9D	181.73	180.75	2.13	178.61	19.08	19.08	162.65	14.94	165.81	13.41	lower dolostone	0.96	0.98	646834.09	4750972.13	hole backfilled to 17.99
MW17-10D	183.04	181.96	6.30	175.66	13.18	13.18	169.77	9.15	172.82	7.62	lower dolostone	1.05	1.07	646721.25	4752127.19	hole backfilled to 12.20
MW17-4S	183.47	182.53	2.44	180.09	8.50	8.50	174.88	4.60	177.93	3.35	upper dolostone	0.92	0.94	646627.13	4751619.19	
MW17-5S	183.63	182.58	0.64	181.94	10.05	10.05	173.56	5.97	176.61	5.49	upper dolostone	0.98	1.06	646415.35	4751486.30	
MW17-6S	182.77	181.79	3.35	178.43	10.17	10.17	172.60	6.12	175.66	4.88	upper dolostone/middle shale	0.92	0.98	646833.02	4751420.19	well screen goes 0.3 m into middle shale layer
MW17-7S	182.36	181.37	1.50	179.87	8.60	8.60	173.75	4.57	176.80	2.74	upper dolostone/upper limestone	0.98	0.99	646634.86	4751234.36	
MW17-8S	182.59	181.46	0.66	180.80	8.56	8.56	173.94	4.47	176.99	3.05	*upper limestone/upper dolostone	1.11	1.13	646422.56	4751097.20	*well screen within only 1.52 m of upper dolostone, rest of screen within upper limestone
MW17-9S	181.71	180.71	2.13	178.58	6.92	6.92	174.69	2.97	177.74	2.74	upper dolostone*	0.94	0.99	646834.03	4750974.29	*well screen crosses a unique 0.3 m shale layer and sand goes 0.3 m into upper limestone
MW17-1S	182.86	182.07	NA	NA	7.13	7.13	175.73	3.00	179.07	2.24	overburden	0.95	0.79	646597.97	4752362.66	
MW17-2S	182.85	181.70	NA	NA	7.17	7.17	175.65	3.00	178.70	2.44	overburden	0.98	1.15	646604.84	4752108.56	
MW17-3S	183.05	182.06	NA	NA	6.22	6.22	176.83	2.13	179.93	1.83	overburden	1.00	0.99	646822.97	4751985.67	
MW17-10S	182.86	181.94	NA	NA	6.92	6.92	175.94	2.87	179.07	2.13	overburden	0.96	0.92	646718.75	4752127.45	

Notes:

masl - metres above sea level mbgs - metres below ground surface

Well	Test Interval (mbgs)	Interval Length (m)	Formation Screened	Test Completed	Hydraulic Conductivity (m/s)
	17.68 - 21.42	3.74	Salina Formation	Single Packer Falling Head Test	8.5E-10
MW17-1D	15.09 - 18.29	3.20	Bertie Formation	Double Packer Falling Head Test	7.5E-06
IVIVV 17-1D	12.50 - 15.70	3.20	Bertie Formation	Double Packer Falling Head Test	3.3E-05
	10.98 - 14.18	3.20	Bertie Formation	Double Packer Falling Head Test	3.1E-05
MW17-2D	11.59 - 15.27	3.68	Bertie Formation	Single Packer Falling Head Test	7.4E-07
IVI VV 17-2D	9.45 - 12.65	3.20	Bertie Formation	Double Packer Falling Head Test	4.2E-08
MW47 2D	10.67 - 13.72	3.05	Bertie Formation	Single Packer Falling Head Test	1.1E-06
MW17-3D	7.78 - 10.98	3.20	Bertie Formation	Double Packer Falling Head Test	1.9E-07
MW47.4D	14.63 - 18.34	3.71	Bertie Formation	Single Packer Falling Head Test	1.1E-06
MW17-4D	11.74 - 14.94	3.20	Bertie Formation	Double Packer Falling Head Test	3.1E-06
	15.85 - 19.69	3.84	Bertie Formation	Single Packer Falling Head Test	3.8E-08
MW17-5D	12.96 - 16.16	3.20	Bertie Formation	Double Packer Falling Head Test	9.1E-08
	10.06 - 13.26	3.20	Bertie Formation	Double Packer Falling Head Test	2.5E-07
	14.33 - 17.99	3.66	Bertie Formation	Single Packer Falling Head Test	2.4E-06
MW17-6D	11.43 - 14.63	3.20	Bertie Formation	Double Packer Falling Head Test	2.4E-07
	9.88 - 13.08	3.20	Bertie Formation	Double Packer Falling Head Test	1.8E-06
	15.85 - 18.75	2.90	Bertie Formation	Single Packer Falling Head Test	3.8E-06
MW17-7D	12.96 - 16.17	3.20	Bertie Formation	Double Packer Falling Head Test	6.5E-07
	10.06 - 13.26	3.20	Bertie Formation	Double Packer Falling Head Test	3.2E-05
	17.68 - 21.29	3.61	Bertie Formation	Single Packer Falling Head Test	1.1E-06
	14.79 - 17.99	3.20	Bertie Formation	Double Packer Falling Head Test	9.3E-08
MW17-8D	11.89 - 15.09	3.20	Bertie Formation	Double Packer Falling Head Test	1.2E-08
	8.99 - 12.19	3.20	Bertie Formation	Double Packer Falling Head Test	4.5E-09
	6.10 - 9.30	3.20	Bertie Formation	Double Packer Falling Head Test	5.0E-05
	14.63 - 18.29	3.66	Bertie Formation	Single Packer Falling Head Test	1.9E-08
MW47 OF	13.11 - 16.31	3.20	Bertie Formation	Double Packer Falling Head Test	1.2E-05
MW17-9D	10.21 - 13.41	3.20	Bertie Formation	Double Packer Falling Head Test	2.7E-08
	7.16 - 10.36	3.20	Bertie Formation	Double Packer Falling Head Test	1.7E-09
MM47 400	10.06 - 13.72	3.66	Bertie Formation	Single Packer Falling Head Test	1.8E-05
MW17-10D	7.01 - 10.21	3.20	Bertie Formation	Double Packer Falling Head Test	8.6E-06

			Crownd	Crownd		10-Apr-17			17-Apr-17				24-Apr-17		1-May-17		
Well ID	Top of Pipe Elevation	Ground Surface Elevation	Well Stick Up (m)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)		
MW17-1S	182.86	182.07	0.95	5.95	5.00	176.91	6.11	5.16	176.75	5.57	4.62	177.29	5.10	4.15	177.76		
MW17-1D	182.92	181.99	0.95	5.97	5.02	176.95	6.25	5.30	176.67	6.17	5.22	176.75	6.26	5.31	176.66		
MW17-2S	182.85	181.70	0.98	2.93	1.95	179.92	5.75	4.77	177.10	5.02	4.04	177.83	4.46	3.48	178.39		
MW17-2D	182.64	181.70	0.99	7.16	6.17	175.48	7.12	6.13	175.52	7.03	6.04	175.61	7.09	6.10	175.55		
MW17-3S	183.05	182.06	1.00	5.83	4.83	177.22	5.95	4.95	177.10	5.95	4.95	177.10	5.93	4.93	177.12		
MW17-3D	183.00	181.99	0.94	7.28	6.34	175.72	7.36	6.42	175.64	7.17	6.23	175.83	7.12	6.18	175.88		
MW17-4S	183.47	182.53	0.92	6.10	5.18	177.37	6.12	5.20	177.35	6.12	5.20	177.35	6.11	5.19	177.36		
MW17-4D	183.40	182.51	0.91	7.45	6.54	175.95	7.67	6.76	175.73	7.62	6.71	175.78	7.66	6.75	175.74		
MW17-5S MW17-5D	183.63 183.64	182.58 182.56	0.98 1.00	7.58 11.40	6.60 10.40	176.05 172.24	7.71 11.60	6.73 10.60	175.92 172.04	7.59 11.59	6.61 10.59	176.04 172.05	7.63 11.59	6.65 10.59	176.00 172.05		
MW17-6S	182.77	181.79	0.92	8.63	7.71	172.24	8.72	7.80	172.04	8.67	7.75	174.10	8.69	7.77	174.08		
MW17-6D	182.84	181.83	1.04	6.46	5.42	174.14	6.67	5.63	174.05	6.62	5.58	174.10	6.67	5.63	176.17		
MW17-7S	182.36	181.37	0.98	5.99	5.42	176.37	6.20	5.22	176.17	6.14	5.16	176.22	6.18	5.20	176.17		
MW17-7D	182.43	181.39	1.04	8.38	7.34	174.05	8.51	7.47	173.92	8.47	7.43	173.96	8.49	7.45	173.94		
MW17-8S	182.59	181.46	1.11	4.81	3.70	177.78	5.11	4.00	177.48	4.92	3.81	177.67	4.98	3.87	177.61		
MW17-8D	182.49	181.39	1.00	8.25	7.25	174.24	8.45	7.45	174.04	8.40	7.40	174.09	8.41	7.41	174.08		
MW17-9S	181.71	180.71	0.94	3.52	2.58	178.19	3.80	2.86	177.91	3.62	2.68	178.09	3.71	2.77	178.00		
MW17-9D	181.73	180.75	0.96	6.61	5.65	175.12	6.78	5.82	174.95	6.69	5.73	175.04	6.73	5.77	175.00		
MW17-10S	182.86	181.94	0.96	4.15	3.19	178.71	6.48	5.52	176.38	6.53	5.57	176.33	6.58	5.62	176.28		
MW17-10D	183.04	181.96	1.05	5.96	4.91	177.08	6.30	5.25	176.74	6.21	5.16	176.83	6.27	5.22	176.77		
				0.00	8-May-17			15-May-17		0	23-May-17			29-May-17			
	Top of Pipe	Ground				o may 11			10 may 11			20-May-17					
Well ID	Elevation	Surface Elevation	Well Stick Up (m)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)		
				(IIIIotop)	(IIIDgo)	Lictation (masi)				(IIIotop)	(IIIDg5)	Lictation (masi)					
MW17-1S							` ',	("3")	Lievation (masi)				(
	182.86	182.07	0.95	4.71	3.76	178.15	4.40	3.45	178.46	4.12	3.17	178.74	3.87	2.92	178.99		
MW17-1D	182.92	181.99	0.95	4.71 5.83	3.76 4.88	177.09	4.40 6.15	3.45 5.20	178.46 176.77	6.34	5.39	176.58	3.87 6.20	2.92 5.25	178.99 176.72		
MW17-2S	182.92 182.85	181.99 181.70	0.95 0.98	4.71 5.83 3.87	3.76 4.88 2.89	177.09 178.98	4.40 6.15 3.34	3.45 5.20 2.36	178.46 176.77 179.51	6.34 3.14	5.39 2.16	176.58 179.71	3.87 6.20 3.05	2.92 5.25 2.07	178.99 176.72 179.80		
MW17-2S MW17-2D	182.92 182.85 182.64	181.99 181.70 181.70	0.95 0.98 0.99	4.71 5.83 3.87 6.73	3.76 4.88 2.89 5.74	177.09 178.98 175.91	4.40 6.15 3.34 7.03	3.45 5.20 2.36 6.04	178.46 176.77 179.51 175.61	6.34 3.14 7.22	5.39 2.16 6.23	176.58 179.71 175.42	3.87 6.20 3.05 7.10	2.92 5.25 2.07 6.11	178.99 176.72 179.80 175.54		
MW17-2S MW17-2D MW17-3S	182.92 182.85 182.64 183.05	181.99 181.70 181.70 182.06	0.95 0.98 0.99 1.00	4.71 5.83 3.87 6.73 5.89	3.76 4.88 2.89 5.74 4.89	177.09 178.98 175.91 177.16	4.40 6.15 3.34 7.03 5.85	3.45 5.20 2.36 6.04 4.85	178.46 176.77 179.51 175.61 177.20	6.34 3.14 7.22 5.80	5.39 2.16 6.23 4.80	176.58 179.71 175.42 177.25	3.87 6.20 3.05 7.10 5.73	2.92 5.25 2.07 6.11 4.73	178.99 176.72 179.80 175.54 177.32		
MW17-2S MW17-2D MW17-3S MW17-3D	182.92 182.85 182.64 183.05 183.00	181.99 181.70 181.70 182.06 181.99	0.95 0.98 0.99 1.00 0.94	4.71 5.83 3.87 6.73 5.89 6.99	3.76 4.88 2.89 5.74 4.89 6.05	177.09 178.98 175.91 177.16 176.01	4.40 6.15 3.34 7.03 5.85 7.17	3.45 5.20 2.36 6.04 4.85 6.23	178.46 176.77 179.51 175.61 177.20 175.83	6.34 3.14 7.22 5.80 7.26	5.39 2.16 6.23 4.80 6.32	176.58 179.71 175.42 177.25 175.74	3.87 6.20 3.05 7.10 5.73 7.20	2.92 5.25 2.07 6.11 4.73 6.26	178.99 176.72 179.80 175.54 177.32 175.80		
MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S	182.92 182.85 182.64 183.05 183.00 183.47	181.99 181.70 181.70 182.06 181.99 182.53	0.95 0.98 0.99 1.00 0.94 0.92	4.71 5.83 3.87 6.73 5.89 6.99 6.11	3.76 4.88 2.89 5.74 4.89 6.05 5.19	177.09 178.98 175.91 177.16 176.01 177.36	4.40 6.15 3.34 7.03 5.85 7.17 6.12	3.45 5.20 2.36 6.04 4.85 6.23 5.20	178.46 176.77 179.51 175.61 177.20 175.83 177.35	6.34 3.14 7.22 5.80 7.26 6.11	5.39 2.16 6.23 4.80 6.32 5.19	176.58 179.71 175.42 177.25 175.74	3.87 6.20 3.05 7.10 5.73 7.20 6.10	2.92 5.25 2.07 6.11 4.73 6.26 5.18	178.99 176.72 179.80 175.54 177.32 175.80 177.37		
MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D	182.92 182.85 182.64 183.05 183.00 183.47 183.40	181.99 181.70 181.70 182.06 181.99 182.53 182.51	0.95 0.98 0.99 1.00 0.94 0.92 0.91	4.71 5.83 3.87 6.73 5.89 6.99 6.11 7.36	3.76 4.88 2.89 5.74 4.89 6.05 5.19 6.45	177.09 178.98 175.91 177.16 176.01 177.36 176.04	4.40 6.15 3.34 7.03 5.85 7.17 6.12 7.57	3.45 5.20 2.36 6.04 4.85 6.23 5.20 6.66	178.46 176.77 179.51 175.61 177.20 175.83 177.35	6.34 3.14 7.22 5.80 7.26 6.11 7.70	5.39 2.16 6.23 4.80 6.32 5.19 6.79	176.58 179.71 175.42 177.25 175.74 177.36	3.87 6.20 3.05 7.10 5.73 7.20 6.10 7.62	2.92 5.25 2.07 6.11 4.73 6.26 5.18 6.71	178.99 176.72 179.80 175.54 177.32 175.80 177.37 175.78		
MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S	182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63	181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58	0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98	4.71 5.83 3.87 6.73 5.89 6.99 6.11 7.36 7.51	3.76 4.88 2.89 5.74 4.89 6.05 5.19 6.45 6.53	177.09 178.98 175.91 177.16 176.01 177.36 176.04 176.12	4.40 6.15 3.34 7.03 5.85 7.17 6.12 7.57 7.63	3.45 5.20 2.36 6.04 4.85 6.23 5.20 6.66 6.65	178.46 176.77 179.51 175.61 177.20 175.83 177.35 175.83 176.00	6.34 3.14 7.22 5.80 7.26 6.11 7.70 7.74	5.39 2.16 6.23 4.80 6.32 5.19 6.79 6.76	176.58 179.71 175.42 177.25 175.74 177.36 175.70	3.87 6.20 3.05 7.10 5.73 7.20 6.10 7.62 7.70	2.92 5.25 2.07 6.11 4.73 6.26 5.18 6.71	178.99 176.72 179.80 175.54 177.32 175.80 177.37 175.78 175.93		
MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D	182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64	181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58	0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00	4.71 5.83 3.87 6.73 5.89 6.99 6.11 7.36 7.51 11.40	3.76 4.88 2.89 5.74 4.89 6.05 5.19 6.45 6.53 10.40	177.09 178.98 175.91 177.16 176.01 177.36 176.04 176.12 172.24	4.40 6.15 3.34 7.03 5.85 7.17 6.12 7.57 7.63 11.52	3.45 5.20 2.36 6.04 4.85 6.23 5.20 6.66 6.65	178.46 176.77 179.51 175.61 177.20 175.83 177.35 175.83 176.00	6.34 3.14 7.22 5.80 7.26 6.11 7.70 7.74 11.63	5.39 2.16 6.23 4.80 6.32 5.19 6.79 6.76	176.58 179.71 175.42 177.25 175.74 177.36 175.70 175.89 172.01	3.87 6.20 3.05 7.10 5.73 7.20 6.10 7.62 7.70	2.92 5.25 2.07 6.11 4.73 6.26 5.18 6.71 6.72	178.99 176.72 179.80 175.54 177.32 175.80 177.37 175.78 175.93 172.07		
MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6S	182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77	181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79	0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92	4.71 5.83 3.87 6.73 5.89 6.99 6.11 7.36 7.51 11.40 8.65	3.76 4.88 2.89 5.74 4.89 6.05 5.19 6.45 6.53 10.40 7.73	177.09 178.98 175.91 177.16 176.01 177.36 176.04 176.12 172.24 174.12	4.40 6.15 3.34 7.03 5.85 7.17 6.12 7.57 7.63 11.52 8.69	3.45 5.20 2.36 6.04 4.85 6.23 5.20 6.66 6.65 10.52 7.77	178.46 176.77 179.51 175.61 177.20 175.83 177.35 175.83 176.00 172.12 174.08	6.34 3.14 7.22 5.80 7.26 6.11 7.70 7.74 11.63 8.72	5.39 2.16 6.23 4.80 6.32 5.19 6.79 6.76 10.63 7.80	176.58 179.71 175.42 177.25 175.74 177.36 175.70 175.89 172.01 174.05	3.87 6.20 3.05 7.10 5.73 7.20 6.10 7.62 7.70 11.57 8.69	2.92 5.25 2.07 6.11 4.73 6.26 5.18 6.71 6.72 10.57 7.77	178.99 176.72 179.80 175.54 177.32 175.80 177.37 175.78 175.93 172.07 174.08		
MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6S MW17-6D	182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84	181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83	0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04	4.71 5.83 3.87 6.73 5.89 6.99 6.11 7.36 7.51 11.40 8.65 6.39	3.76 4.88 2.89 5.74 4.89 6.05 5.19 6.45 6.53 10.40 7.73 5.35	177.09 178.98 175.91 177.16 176.01 177.36 176.04 176.12 172.24 174.12 176.45	4.40 6.15 3.34 7.03 5.85 7.17 6.12 7.57 7.63 11.52 8.69 6.62	3.45 5.20 2.36 6.04 4.85 6.23 5.20 6.66 6.65 10.52 7.77 5.58	178.46 176.77 179.51 175.61 177.20 175.83 177.35 175.83 176.00 172.12 174.08 176.22	6.34 3.14 7.22 5.80 7.26 6.11 7.70 7.74 11.63 8.72 6.73	5.39 2.16 6.23 4.80 6.32 5.19 6.79 6.76 10.63 7.80 5.69	176.58 179.71 175.42 177.25 175.74 177.36 175.70 175.89 172.01 174.05 176.11	3.87 6.20 3.05 7.10 5.73 7.20 6.10 7.62 7.70 11.57 8.69 6.64	2.92 5.25 2.07 6.11 4.73 6.26 5.18 6.71 6.72 10.57 7.77 5.60	178.99 176.72 179.80 175.54 177.32 175.80 177.37 175.78 175.93 172.07 174.08 176.20		
MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6S MW17-6D MW17-7S	182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36	181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37	0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98	4.71 5.83 3.87 6.73 5.89 6.99 6.11 7.36 7.51 11.40 8.65 6.39 6.06	3.76 4.88 2.89 5.74 4.89 6.05 5.19 6.45 6.53 10.40 7.73 5.35 5.08	177.09 178.98 175.91 177.16 176.01 177.36 176.04 176.12 172.24 174.12 176.45 176.30	4.40 6.15 3.34 7.03 5.85 7.17 6.12 7.57 7.63 11.52 8.69 6.62 6.19	3.45 5.20 2.36 6.04 4.85 6.23 5.20 6.66 6.65 10.52 7.77 5.58 5.21	178.46 176.77 179.51 175.61 177.20 175.83 177.35 175.83 176.00 172.12 174.08 176.22 176.17	6.34 3.14 7.22 5.80 7.26 6.11 7.70 7.74 11.63 8.72 6.73 6.32	5.39 2.16 6.23 4.80 6.32 5.19 6.79 6.76 10.63 7.80 5.69 5.34	176.58 179.71 175.42 177.25 175.74 177.36 175.70 175.89 172.01 174.05 176.11 176.04	3.87 6.20 3.05 7.10 5.73 7.20 6.10 7.62 7.70 11.57 8.69 6.64 6.26	2.92 5.25 2.07 6.11 4.73 6.26 5.18 6.71 6.72 10.57 7.77 5.60 5.28	178.99 176.72 179.80 175.54 177.32 175.80 177.37 175.78 175.93 172.07 174.08 176.20 176.10		
MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6S MW17-6S MW17-7D	182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36 182.43	181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39	0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98	4.71 5.83 3.87 6.73 5.89 6.99 6.11 7.36 7.51 11.40 8.65 6.39 6.06 8.42	3.76 4.88 2.89 5.74 4.89 6.05 5.19 6.45 6.53 10.40 7.73 5.35 5.08 7.38	177.09 178.98 175.91 177.16 176.01 177.36 176.04 176.12 172.24 174.12 176.45 176.30 174.01	4.40 6.15 3.34 7.03 5.85 7.17 6.12 7.57 7.63 11.52 8.69 6.62 6.19 8.49	3.45 5.20 2.36 6.04 4.85 6.23 5.20 6.66 6.65 10.52 7.77 5.58 5.21 7.45	178.46 176.77 179.51 175.61 177.20 175.83 177.35 175.83 176.00 172.12 174.08 176.22 176.17 173.94	6.34 3.14 7.22 5.80 7.26 6.11 7.70 7.74 11.63 8.72 6.73 6.32 8.57	5.39 2.16 6.23 4.80 6.32 5.19 6.79 6.76 10.63 7.80 5.69 5.34 7.53	176.58 179.71 175.42 177.25 175.74 177.36 175.70 175.89 172.01 174.05 176.11 176.04 173.86	3.87 6.20 3.05 7.10 5.73 7.20 6.10 7.62 7.70 11.57 8.69 6.64 6.26 8.51	2.92 5.25 2.07 6.11 4.73 6.26 5.18 6.71 6.72 10.57 7.77 5.60 5.28 7.47	178.99 176.72 179.80 175.54 177.32 175.80 177.37 175.78 175.93 172.07 174.08 176.20 176.10 173.92		
MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6S MW17-6D MW17-7S MW17-7D MW17-8S	182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36 182.43 182.59	181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39 181.46	0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04	4.71 5.83 3.87 6.73 5.89 6.99 6.11 7.36 7.51 11.40 8.65 6.39 6.06 8.42 4.85	3.76 4.88 2.89 5.74 4.89 6.05 5.19 6.45 6.53 10.40 7.73 5.35 5.08 7.38 3.74	177.09 178.98 175.91 177.16 176.01 177.36 176.04 176.12 172.24 174.12 176.45 176.30 174.01 177.74	4.40 6.15 3.34 7.03 5.85 7.17 6.12 7.57 7.63 11.52 8.69 6.62 6.19 8.49 5.12	3.45 5.20 2.36 6.04 4.85 6.23 5.20 6.66 6.65 10.52 7.77 5.58 5.21 7.45 4.01	178.46 176.77 179.51 175.61 177.20 175.83 177.35 175.83 176.00 172.12 174.08 176.22 176.17 173.94 177.47	6.34 3.14 7.22 5.80 7.26 6.11 7.70 7.74 11.63 8.72 6.73 6.32 8.57 5.28	5.39 2.16 6.23 4.80 6.32 5.19 6.79 6.76 10.63 7.80 5.69 5.34 7.53 4.17	176.58 179.71 175.42 177.25 175.74 177.36 175.70 175.89 172.01 174.05 176.11 176.04 173.86 177.31	3.87 6.20 3.05 7.10 5.73 7.20 6.10 7.62 7.70 11.57 8.69 6.64 6.26 8.51 5.04	2.92 5.25 2.07 6.11 4.73 6.26 5.18 6.71 6.72 10.57 7.77 5.60 5.28 7.47 3.93	178.99 176.72 179.80 175.54 177.32 175.80 177.37 175.78 175.93 172.07 174.08 176.20 176.10 173.92 177.55		
MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6S MW17-6D MW17-7S MW17-7D MW17-7D MW17-8S	182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36 182.43 182.59 182.49	181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39 181.46 181.39	0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 1.11 1.00	4.71 5.83 3.87 6.73 5.89 6.99 6.11 7.36 7.51 11.40 8.65 6.39 6.06 8.42 4.85 8.27	3.76 4.88 2.89 5.74 4.89 6.05 5.19 6.45 6.53 10.40 7.73 5.35 5.08 7.38 3.74 7.27	177.09 178.98 175.91 177.16 176.01 177.36 176.04 176.12 172.24 174.12 176.45 176.30 174.01 177.74	4.40 6.15 3.34 7.03 5.85 7.17 6.12 7.57 7.63 11.52 8.69 6.62 6.19 8.49 5.12 8.42	3.45 5.20 2.36 6.04 4.85 6.23 5.20 6.66 6.65 10.52 7.77 5.58 5.21 7.45 4.01 7.42	178.46 176.77 179.51 175.61 177.20 175.83 177.35 175.83 176.00 172.12 174.08 176.22 176.17 173.94 177.47	6.34 3.14 7.22 5.80 7.26 6.11 7.70 7.74 11.63 8.72 6.73 6.32 8.57 5.28 8.47	5.39 2.16 6.23 4.80 6.32 5.19 6.79 6.76 10.63 7.80 5.69 5.34 7.53 4.17 7.47	176.58 179.71 175.42 177.25 175.74 177.36 175.70 175.89 172.01 174.05 176.11 176.04 173.86 177.31 174.02	3.87 6.20 3.05 7.10 5.73 7.20 6.10 7.62 7.70 11.57 8.69 6.64 6.26 8.51 5.04	2.92 5.25 2.07 6.11 4.73 6.26 5.18 6.71 6.72 10.57 7.77 5.60 5.28 7.47 3.93 7.40	178.99 176.72 179.80 175.54 177.32 175.80 177.37 175.78 175.93 172.07 174.08 176.20 176.10 173.92 177.55		
MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6S MW17-6D MW17-7S MW17-7D MW17-8S MW17-8D MW17-8D	182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36 182.43 182.59 182.49 181.71	181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39 181.46 181.39 180.71	0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 1.11 1.00 0.94	4.71 5.83 3.87 6.73 5.89 6.99 6.11 7.36 7.51 11.40 8.65 6.39 6.06 8.42 4.85 8.27 3.57	3.76 4.88 2.89 5.74 4.89 6.05 5.19 6.45 6.53 10.40 7.73 5.35 5.08 7.38 3.74 7.27 2.63	177.09 178.98 175.91 177.16 176.01 177.36 176.04 176.12 172.24 174.12 176.45 176.30 174.01 177.74 174.22 178.14	4.40 6.15 3.34 7.03 5.85 7.17 6.12 7.57 7.63 11.52 8.69 6.62 6.19 8.49 5.12 8.42 3.83	3.45 5.20 2.36 6.04 4.85 6.23 5.20 6.66 6.65 10.52 7.77 5.58 5.21 7.45 4.01 7.42 2.89	178.46 176.77 179.51 175.61 177.20 175.83 177.35 175.83 176.00 172.12 174.08 176.22 176.17 173.94 177.47 174.07 177.88	6.34 3.14 7.22 5.80 7.26 6.11 7.70 7.74 11.63 8.72 6.73 6.32 8.57 5.28 8.47 4.03	5.39 2.16 6.23 4.80 6.32 5.19 6.79 6.76 10.63 7.80 5.69 5.34 7.53 4.17 7.47 3.09	176.58 179.71 175.42 177.25 175.74 177.36 175.70 175.89 172.01 174.05 176.11 176.04 173.86 177.31 174.02	3.87 6.20 3.05 7.10 5.73 7.20 6.10 7.62 7.70 11.57 8.69 6.64 6.26 8.51 5.04 8.40 3.77	2.92 5.25 2.07 6.11 4.73 6.26 5.18 6.71 6.72 10.57 7.77 5.60 5.28 7.47 3.93 7.40 2.83	178.99 176.72 179.80 175.54 177.32 175.80 177.37 175.78 175.78 175.93 172.07 174.08 176.20 176.10 173.92 177.55 174.09 177.94		
MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6S MW17-6D MW17-7S MW17-7D MW17-7D MW17-8S	182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36 182.43 182.59 182.49	181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39 181.46 181.39	0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 1.11 1.00	4.71 5.83 3.87 6.73 5.89 6.99 6.11 7.36 7.51 11.40 8.65 6.39 6.06 8.42 4.85 8.27	3.76 4.88 2.89 5.74 4.89 6.05 5.19 6.45 6.53 10.40 7.73 5.35 5.08 7.38 3.74 7.27	177.09 178.98 175.91 177.16 176.01 177.36 176.04 176.12 172.24 174.12 176.45 176.30 174.01 177.74	4.40 6.15 3.34 7.03 5.85 7.17 6.12 7.57 7.63 11.52 8.69 6.62 6.19 8.49 5.12 8.42	3.45 5.20 2.36 6.04 4.85 6.23 5.20 6.66 6.65 10.52 7.77 5.58 5.21 7.45 4.01 7.42	178.46 176.77 179.51 175.61 177.20 175.83 177.35 175.83 176.00 172.12 174.08 176.22 176.17 173.94 177.47	6.34 3.14 7.22 5.80 7.26 6.11 7.70 7.74 11.63 8.72 6.73 6.32 8.57 5.28 8.47	5.39 2.16 6.23 4.80 6.32 5.19 6.79 6.76 10.63 7.80 5.69 5.34 7.53 4.17 7.47	176.58 179.71 175.42 177.25 175.74 177.36 175.70 175.89 172.01 174.05 176.11 176.04 173.86 177.31 174.02	3.87 6.20 3.05 7.10 5.73 7.20 6.10 7.62 7.70 11.57 8.69 6.64 6.26 8.51 5.04	2.92 5.25 2.07 6.11 4.73 6.26 5.18 6.71 6.72 10.57 7.77 5.60 5.28 7.47 3.93 7.40	178.99 176.72 179.80 175.54 177.32 175.80 177.37 175.78 175.93 172.07 174.08 176.20 176.10 173.92 177.55		

Groundwater

Elevation (masl)

179.29

176.18

179.93

175.04

177.60

175.54

177.34

175.10

175.64

171.39

173.58

175.60

175.81

173.34

176.89

173.48

177.24

174.35

176.08

176.28

26-Jun-17

Depth to Water

(mbgs)

2.62

5.79

1.94

6.61

4.45

6.52

5.21

7.39

7.01

11.25

8.27

6.20

5.57

8.05

4.59

8.01

3.53

6.42

5.82

5.71

Depth to Water

(mbtop)

3.57

6.74

2.92

7.60

5.45

7.46

6.13

8.30

7.99

12.25

9.19

7.24

6.55

9.09

5.70

9.01

4.47

7.38

6.78

6.76

Groundwater

Elevation (masl)

179.28

176.24

179.91

175.10

177.54

175.58

177.35

175.18

175.70

171.45

173.64

175.70

175.86

173.41

176.97

173.57

177.35

174.43

176.08

176.34

		0			5-Jun-17		
Well ID	Top of Pipe Elevation	Ground Surface Elevation	Well Stick Up (m)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Dep (
MW17-1S	182.86	182.07	0.95	3.68	2.73	179.18	
MW17-1D	182.92	181.99	0.95	6.45	5.50	176.47	
MW17-2S	182.85	181.70	0.98	2.98	2.00	179.87	
MW17-2D	182.64	181.70	0.99	7.34	6.35	175.30	
MW17-3S	183.05	182.06	1.00	5.67	4.67	177.38	
MW17-3D	183.00	181.99	0.94	7.33	6.39	175.67	
MW17-4S	183.47	182.53	0.92	6.11	5.19	177.36	
MW17-4D	183.40	182.51	0.91	7.94	7.03	175.46	
MW17-5S	183.63	182.58	0.98	7.79	6.81	175.84	
MW17-5D	183.64	182.56	1.00	11.91	10.91	171.73	
MW17-6S	182.77	181.79	0.92	8.83	7.91	173.94	
MW17-6D	182.84	181.83	1.04	6.90	5.86	175.94	
MW17-7S	182.36	181.37	0.98	6.34	5.36	176.02	
MW17-7D	182.43	181.39	1.04	8.71	7.67	173.72	
MW17-8S	182.59	181.46	1.11	5.21	4.10	177.38	
MW17-8D	182.49	181.39	1.00	8.65	7.65	173.84	
MW17-9S	181.71	180.71	0.94	3.97	3.03	177.74	
MW17-9D	181.73	180.75	0.96	6.94	5.98	174.79	
MW17-10S	182.86	181.94	0.96	6.77	5.81	176.09	
MW17-10D	183.04	181.96	1.05	6.47	5.42	176.57	
W. II IB	Top of Pipe	Ground			31-Jul-17		
Well ID		Confess	Mall Official Her (m)				
	Elevation	Surface Elevation	Well Stick Up (m)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	
MW17-1S	Elevation	Elevation		(mbtop)		Elevation (masl)	
			0.95 0.95		(mbgs)		
MW17-1S MW17-1D	182.86 182.92	182.07 181.99	0.95 0.95	(mbtop) 3.53 6.93	(mbgs)	Elevation (masl) 179.33 175.99	
MW17-1S	Elevation 182.86	Elevation 182.07	0.95	(mbtop) 3.53	(mbgs) 2.58 5.98	Elevation (masl)	
MW17-1S MW17-1D MW17-2S	182.86 182.92 182.85	182.07 181.99 181.70	0.95 0.95 0.98	(mbtop) 3.53 6.93 2.80	(mbgs) 2.58 5.98 1.82	179.33 175.99 180.05	
MW17-1S MW17-1D MW17-2S MW17-2D	182.86 182.92 182.85 182.64	182.07 181.99 181.70 181.70	0.95 0.95 0.98 0.99	(mbtop) 3.53 6.93 2.80 7.76	2.58 5.98 1.82 6.77	179.33 175.99 180.05 174.88	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S	182.86 182.92 182.85 182.64 183.05	182.07 181.99 181.70 181.70 182.06	0.95 0.95 0.98 0.99 1.00	(mbtop) 3.53 6.93 2.80 7.76 5.16	(mbgs) 2.58 5.98 1.82 6.77 4.16	179.33 175.99 180.05 174.88 177.89	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D	182.86 182.92 182.85 182.64 183.05 183.00	182.07 181.99 181.70 181.70 182.06 181.99	0.95 0.95 0.98 0.99 1.00 0.94	(mbtop) 3.53 6.93 2.80 7.76 5.16 7.59	2.58 5.98 1.82 6.77 4.16 6.65	179.33 175.99 180.05 174.88 177.89	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S	182.86 182.92 182.85 182.64 183.05 183.00 183.47	182.07 181.99 181.70 181.70 182.06 181.99 182.53	0.95 0.95 0.98 0.99 1.00 0.94 0.92	(mbtop) 3.53 6.93 2.80 7.76 5.16 7.59 6.12	2.58 5.98 1.82 6.77 4.16 6.65 5.20	179.33 175.99 180.05 174.88 177.89 175.41	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40	182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91	(mbtop) 3.53 6.93 2.80 7.76 5.16 7.59 6.12 8.42	2.58 5.98 1.82 6.77 4.16 6.65 5.20 7.51	179.33 175.99 180.05 174.88 177.89 175.41 177.35 174.98	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63	182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98	(mbtop) 3.53 6.93 2.80 7.76 5.16 7.59 6.12 8.42 8.14	(mbgs) 2.58 5.98 1.82 6.77 4.16 6.65 5.20 7.51 7.16	179.33 175.99 180.05 174.88 177.89 175.41 177.35 174.98	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64	182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00	(mbtop) 3.53 6.93 2.80 7.76 5.16 7.59 6.12 8.42 8.14 12.43	(mbgs) 2.58 5.98 1.82 6.77 4.16 6.65 5.20 7.51 7.16 11.43	179.33 175.99 180.05 174.88 177.89 175.41 177.35 174.98 175.49	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6S	182.86 182.92 182.85 182.64 183.05 183.47 183.40 183.63 183.64 182.77	182.07 181.99 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92	(mbtop) 3.53 6.93 2.80 7.76 5.16 7.59 6.12 8.42 8.14 12.43 9.29	(mbgs) 2.58 5.98 1.82 6.77 4.16 6.65 5.20 7.51 7.16 11.43 8.37	179.33 175.99 180.05 174.88 177.89 175.41 177.35 174.98 175.49 171.21	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-6S MW17-6S	182.86 182.92 182.85 182.64 183.05 183.40 183.40 183.63 183.64 182.77 182.84	182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04	(mbtop) 3.53 6.93 2.80 7.76 5.16 7.59 6.12 8.42 8.14 12.43 9.29 7.33	(mbgs) 2.58 5.98 1.82 6.77 4.16 6.65 5.20 7.51 7.16 11.43 8.37 6.29	179.33 175.99 180.05 174.88 177.89 175.41 177.35 174.98 175.49 171.21 173.48 175.51	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-6S MW17-6S MW17-6D MW17-7S	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36	182.07 181.99 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98	(mbtop) 3.53 6.93 2.80 7.76 5.16 7.59 6.12 8.42 8.14 12.43 9.29 7.33 6.61	(mbgs) 2.58 5.98 1.82 6.77 4.16 6.65 5.20 7.51 7.16 11.43 8.37 6.29 5.63	179.33 175.99 180.05 174.88 177.89 175.41 177.35 174.98 175.49 171.21 173.48 175.51	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6S MW17-6D MW17-7S MW17-7D	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36 182.43	182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04	(mbtop) 3.53 6.93 2.80 7.76 5.16 7.59 6.12 8.42 8.14 12.43 9.29 7.33 6.61 9.20	(mbgs) 2.58 5.98 1.82 6.77 4.16 6.65 5.20 7.51 7.16 11.43 8.37 6.29 5.63 8.16	179.33 175.99 180.05 174.88 177.89 175.41 177.35 174.98 175.49 171.21 173.48 175.51 175.75	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6S MW17-7S MW17-7S MW17-7D	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36 182.43	182.07 181.99 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39 181.46	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 1.04	(mbtop) 3.53 6.93 2.80 7.76 5.16 7.59 6.12 8.42 8.14 12.43 9.29 7.33 6.61 9.20 5.73	(mbgs) 2.58 5.98 1.82 6.77 4.16 6.65 5.20 7.51 7.16 11.43 8.37 6.29 5.63 8.16 4.62	179.33 175.99 180.05 174.88 177.89 175.41 177.35 174.98 175.49 171.21 173.48 175.51 175.75 173.23 176.86	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6S MW17-7S MW17-7S MW17-7S MW17-7S	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36 182.43 182.43	182.07 181.99 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39 181.46 181.39	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 1.11 1.00	(mbtop) 3.53 6.93 2.80 7.76 5.16 7.59 6.12 8.42 8.14 12.43 9.29 7.33 6.61 9.20 5.73 9.12	(mbgs) 2.58 5.98 1.82 6.77 4.16 6.65 5.20 7.51 7.16 11.43 8.37 6.29 5.63 8.16 4.62 8.12	179.33 175.99 180.05 174.88 177.89 175.41 177.35 174.98 175.49 171.21 173.48 175.51 175.75 173.23 176.86 173.37	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6S MW17-6D MW17-7S MW17-7D MW17-7S MW17-7D MW17-8S MW17-8D MW17-9S	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36 182.43 182.59 182.49 181.71	182.07 181.99 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39 181.46 181.39 180.71	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 1.11 1.00 0.94	(mbtop) 3.53 6.93 2.80 7.76 5.16 7.59 6.12 8.42 8.14 12.43 9.29 7.33 6.61 9.20 5.73 9.12 4.45	(mbgs) 2.58 5.98 1.82 6.77 4.16 6.65 5.20 7.51 7.16 11.43 8.37 6.29 5.63 8.16 4.62 8.12 3.51	179.33 175.99 180.05 174.88 177.89 175.41 177.35 174.98 175.49 171.21 173.48 175.51 175.75 173.23 176.86 173.37 177.26	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6S MW17-6D MW17-7S MW17-7D MW17-8S MW17-8D MW17-9S MW17-9D	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36 182.49 181.71 181.73	182.07 181.99 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39 181.46 181.39 180.71 180.75	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 1.11 1.00 0.94	(mbtop) 3.53 6.93 2.80 7.76 5.16 7.59 6.12 8.42 8.14 12.43 9.29 7.33 6.61 9.20 5.73 9.12 4.45 7.50	(mbgs) 2.58 5.98 1.82 6.77 4.16 6.65 5.20 7.51 7.16 11.43 8.37 6.29 5.63 8.16 4.62 8.12 3.51 6.54	179.33 175.99 180.05 174.88 177.89 175.41 177.35 174.98 175.49 171.21 173.48 175.51 175.75 173.23 176.86 173.37 177.26 174.23	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6S MW17-6D MW17-7S MW17-7D MW17-8S MW17-8D MW17-9S MW17-9D MW17-10S	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36 182.43 182.59 182.49 181.71 181.73 182.86	182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39 181.46 181.39 180.71 180.75 181.94	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 1.11 1.00 0.94 0.96 0.96	(mbtop) 3.53 6.93 2.80 7.76 5.16 7.59 6.12 8.42 8.14 12.43 9.29 7.33 6.61 9.20 5.73 9.12 4.45 7.50 6.80	(mbgs) 2.58 5.98 1.82 6.77 4.16 6.65 5.20 7.51 7.16 11.43 8.37 6.29 5.63 8.16 4.62 8.12 3.51 6.54 5.84	179.33 175.99 180.05 174.88 177.89 175.41 177.35 174.98 175.49 171.21 173.48 175.51 175.75 173.23 176.86 173.37 177.26 174.23 176.06	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6S MW17-6D MW17-7S MW17-7D MW17-7S MW17-9D MW17-9D MW17-10S MW17-10D	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36 182.43 182.59 182.49 181.71 181.73 182.86 183.04	182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39 181.46 181.39 180.71 180.75 181.94	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 1.11 1.00 0.94 0.96 0.96	(mbtop) 3.53 6.93 2.80 7.76 5.16 7.59 6.12 8.42 8.14 12.43 9.29 7.33 6.61 9.20 5.73 9.12 4.45 7.50 6.80 6.93	(mbgs) 2.58 5.98 1.82 6.77 4.16 6.65 5.20 7.51 7.16 11.43 8.37 6.29 5.63 8.16 4.62 8.12 3.51 6.54 5.84 5.88	179.33 175.99 180.05 174.88 177.89 175.41 177.35 174.98 175.49 171.21 173.48 175.51 175.75 173.23 176.86 173.37 177.26 174.23 176.06 176.11	

3

1-94

2-94

3-94

4-94

181.53

183.06

182.24

183.33

184.01

NA

12.02

2.73

1.67

9.81

3.76

NA

NA

NA

NA

NA

169.51

180.33

180.57

173.52

180.25

12-Jun-17

Depth to Water

(mbgs)

2.67

5.67

1.97

6.49

4.60

6.48

5.20

7.25

6.88

11.13

8.12

6.07

5.45

7.89

4.31

7.86

3.21

6.22

5.81

5.59

Groundwater

Elevation (masl)

179.24

176.30

179.90

175.16

177.45

175.58

177.35

175.24

175.77

171.51

173.73

175.73

175.93

173.50

177.17

173.63

177.56

174.55

176.09

176.40

oth to Water

(mbtop)

3.62

6.62

2.95

7.48

5.60

7.42

6.12

8.16

7.86

12.13

9.04

7.11

6.43

8.93

5.42

8.86

4.15

7.18

6.77

6.64

20-Jun-17

Depth to Water

(mbgs)

2.63

5.73

1.96

6.55

4.51

6.48

5.20

7.31

6.95

11.19

8.21

6.10

5.52

7.98

4.51

7.92

3.42

6.34

5.82

5.65

Depth to Water

(mbtop)

3.58

6.68

2.94

7.54

5.51

7.42

6.12

8.22

7.93

12.19

9.13

7.14

6.50

9.02

5.62

8.92

4.36

7.30

6.78

6.70

		Ground			10-Jan-18			5-Feb-18			8-Mar-18		11-Apr-18		
Well ID	Top of Pipe Elevation	Surface Elevation	Well Stick Up (m)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)
MW17-1S	182.86	182.07	0.95	4.70	3.75	177.37	3.91	2.96	178.16	3.16	2.21	178.91	2.77	1.82	179.30
MW17-1D	182.92	181.99	0.95	6.55	5.60	175.44	6.28	5.33	175.71	6.00	5.05	175.99	6.20	5.25	175.79
MW17-2S	182.85	181.70	0.98	2.79	1.81	178.91	2.81	1.83	178.89	2.80	1.82	178.90	2.77	1.79	178.93
MW17-2D	182.64	181.70	0.99	7.43	6.44	174.27	7.26	6.27	174.44	7.03	6.04	174.67	7.24	6.25	174.46
MW17-3S	183.05	182.06	1.00	7.23	6.23	174.83	5.51	4.51	176.55	5.32	4.32	176.74	4.89	3.89	177.17
MW17-3D	183.00	181.99	0.94	5.48	4.54	176.51	7.13	6.19	174.86	6.99	6.05	175.00	7.09	6.15	174.90
MW17-4S	183.47	182.53	0.92	6.12	5.20	176.41	6.12	5.20	176.41	6.11	5.19	176.42	6.10	5.18	176.43
MW17-4D	183.40	182.51	0.91	8.31	7.40	174.20	8.18	7.27	174.33	7.90	6.99	174.61	8.14	7.23	174.37
MW17-5S	183.63	182.58	0.98	8.06	7.08	174.52	8.00	7.02	174.58	7.91	6.93	174.67	7.96	6.98	174.62
MW17-5D	183.64	182.56	1.00	12.59	11.59	169.97	12.77	11.77	169.79	12.66	11.66	169.90	12.89	11.89	169.67
MW17-6S	182.77	181.79	0.92	9.23	8.31	172.56	9.35	8.43	172.44	9.19	8.27	172.60	9.38	8.46	172.41
MW17-6D	182.84	181.83	1.04	7.21	6.17	174.62	7.08	6.04	174.75	6.82	5.78	175.01	7.03	5.99	174.80
MW17-7S	182.36	181.37	0.98	6.46	5.48	174.91	6.35	5.37	175.02	6.22	5.24	175.15	6.27	5.29	175.10
MW17-7D	182.43	181.39	1.04	9.15	8.11	172.24	9.23	8.19	172.16	9.06	8.02	172.33	9.25	8.21	172.14
MW17-8S	182.59	181.46	1.11	5.44	4.33	176.02	5.26	4.15	176.20	5.09	3.98	176.37	5.08	3.97	176.38
MW17-8D	182.49	181.39	1.00	9.06	8.06	172.33	9.12	8.12	172.27	8.97	7.97	172.42	9.14	8.14	172.25
MW17-9S	181.71	180.71	0.94	4.10	3.16	176.61	3.84	2.90	176.87	3.60	2.66	177.11	3.58	2.64	177.13
MW17-9D	181.73	180.75	0.96	7.36	6.40	173.39	7.34	6.38	173.41	7.23	6.27	173.52	7.33	6.37	173.42
MW17-10S	182.86	181.94	0.96	6.81	5.85	175.13	6.81	5.85	175.13	6.82	5.86	175.12	6.82	5.86	175.12
MW17-10D	183.04	181.96	1.05	6.58	5.53	175.38	6.31	5.26	175.65	6.04	4.99	175.92	6.25	5.20	175.71
	Ton of Pine	Ground			15-May-18			14-Jun-18			18-Jul-18			1-Aug-18	
Well ID	Top of Pipe Elevation	Ground Surface Elevation	Well Stick Up (m)	Depth to Water (mbtop)	15-May-18 Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	14-Jun-18 Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	18-Jul-18 Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	1-Aug-18 Depth to Water (mbgs)	Groundwater Elevation (masl)
Well ID		Surface			Depth to Water (mbgs)		· ·	Depth to Water (mbgs)		(mbtop)	Depth to Water	Elevation (masl)		Depth to Water	Elevation (masl)
	Elevation	Surface Elevation	Well Stick Up (m) 0.95 0.95	(mbtop)	Depth to Water	Elevation (masl)	(mbtop)	Depth to Water	Elevation (masl)	•	Depth to Water (mbgs)		(mbtop)	Depth to Water (mbgs)	
MW17-1S	Elevation 182.86	Surface Elevation 182.07	0.95	(mbtop) 2.20	Depth to Water (mbgs)	Elevation (masl) 179.87	(mbtop) 2.47	Depth to Water (mbgs)	Elevation (masl) 179.60	(mbtop) 2.68	Depth to Water (mbgs)	Elevation (masl) 179.39	(mbtop) 2.74	Depth to Water (mbgs)	Elevation (masl) 179.33
MW17-1S MW17-1D	182.86 182.92	Surface Elevation 182.07 181.99	0.95 0.95	(mbtop) 2.20 6.45	Depth to Water (mbgs) 1.25 5.50	Elevation (masl) 179.87 175.54	(mbtop) 2.47 6.72	Depth to Water (mbgs) 1.52 5.77	179.60 175.27	(mbtop) 2.68 6.88	Depth to Water (mbgs) 1.73 5.93	179.39 175.11	(mbtop) 2.74 6.97	Depth to Water (mbgs) 1.79 6.02	179.33 175.02
MW17-1S MW17-1D MW17-2S	182.86 182.92 182.85	Surface Elevation 182.07 181.99 181.70	0.95 0.95 0.98	(mbtop) 2.20 6.45 2.68	Depth to Water (mbgs) 1.25 5.50 1.70	179.87 175.54 179.02	(mbtop) 2.47 6.72 2.60	Depth to Water (mbgs) 1.52 5.77 1.62	179.60 175.27 179.10	(mbtop) 2.68 6.88 2.57	Depth to Water (mbgs) 1.73 5.93 1.59	179.39 175.11 179.13	(mbtop) 2.74 6.97 2.58	Depth to Water (mbgs) 1.79 6.02 1.60	179.33 175.02 179.12
MW17-1S MW17-1D MW17-2S MW17-2D	182.86 182.92 182.85 182.64	Surface Elevation 182.07 181.99 181.70 181.70	0.95 0.95 0.98 0.99	(mbtop) 2.20 6.45 2.68 7.35	Depth to Water (mbgs) 1.25 5.50 1.70 6.36	179.87 175.54 179.02 174.35	(mbtop) 2.47 6.72 2.60 7.79	Depth to Water (mbgs) 1.52 5.77 1.62 6.80	179.60 175.27 179.10 173.91	(mbtop) 2.68 6.88 2.57 7.83	Depth to Water (mbgs) 1.73 5.93 1.59 6.84	179.39 175.11 179.13 173.87	(mbtop) 2.74 6.97 2.58 7.91	Depth to Water (mbgs) 1.79 6.02 1.60 6.92	179.33 175.02 179.12 173.79
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S	182.86 182.92 182.85 182.64 183.05	Surface Elevation 182.07 181.99 181.70 181.70 182.06	0.95 0.95 0.98 0.99 1.00	(mbtop) 2.20 6.45 2.68 7.35 4.58	Depth to Water (mbgs) 1.25 5.50 1.70 6.36 3.58	179.87 175.54 179.02 174.35 177.48	(mbtop) 2.47 6.72 2.60 7.79 4.47	Depth to Water (mbgs) 1.52 5.77 1.62 6.80 3.47	179.60 175.27 179.10 173.91 177.59	(mbtop) 2.68 6.88 2.57 7.83 4.43	Depth to Water (mbgs) 1.73 5.93 1.59 6.84 3.43	179.39 175.11 179.13 173.87 177.63	(mbtop) 2.74 6.97 2.58 7.91 4.42	Depth to Water (mbgs) 1.79 6.02 1.60 6.92 3.42	179.33 175.02 179.12 173.79 177.64
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D	182.86 182.92 182.85 182.64 183.05 183.00	Surface Elevation 182.07 181.99 181.70 182.06 181.99	0.95 0.95 0.98 0.99 1.00 0.94	(mbtop) 2.20 6.45 2.68 7.35 4.58 7.15	Depth to Water (mbgs) 1.25 5.50 1.70 6.36 3.58 6.21	179.87 175.54 179.02 174.35 177.48	(mbtop) 2.47 6.72 2.60 7.79 4.47 7.47	Depth to Water (mbgs) 1.52 5.77 1.62 6.80 3.47 6.53	179.60 175.27 179.10 173.91 177.59 174.52	(mbtop) 2.68 6.88 2.57 7.83 4.43 7.44	Depth to Water (mbgs) 1.73 5.93 1.59 6.84 3.43 6.50	179.39 175.11 179.13 173.87 177.63 174.55	(mbtop) 2.74 6.97 2.58 7.91 4.42 7.61	Depth to Water (mbgs) 1.79 6.02 1.60 6.92 3.42 6.67	179.33 175.02 179.12 173.79 177.64 174.38
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S	182.86 182.92 182.85 182.64 183.05 183.00 183.47	Surface Elevation 182.07 181.99 181.70 182.06 181.99 182.53	0.95 0.95 0.98 0.99 1.00 0.94	(mbtop) 2.20 6.45 2.68 7.35 4.58 7.15 6.10	Depth to Water (mbgs) 1.25 5.50 1.70 6.36 3.58 6.21 5.18	179.87 175.54 179.02 174.35 177.48 174.84 176.43	2.47 6.72 2.60 7.79 4.47 7.47 6.11	Depth to Water (mbgs) 1.52 5.77 1.62 6.80 3.47 6.53 5.19	179.60 175.27 179.10 173.91 177.59 174.52 176.42	(mbtop) 2.68 6.88 2.57 7.83 4.43 7.44 6.14	Depth to Water (mbgs) 1.73 5.93 1.59 6.84 3.43 6.50 5.22	179.39 175.11 179.13 173.87 177.63 174.55	(mbtop) 2.74 6.97 2.58 7.91 4.42 7.61 6.13	Depth to Water (mbgs) 1.79 6.02 1.60 6.92 3.42 6.67 5.21	179.33 175.02 179.12 173.79 177.64 174.38 176.40
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91	(mbtop) 2.20 6.45 2.68 7.35 4.58 7.15 6.10 8.25	Depth to Water (mbgs) 1.25 5.50 1.70 6.36 3.58 6.21 5.18 7.34	179.87 175.54 179.02 174.35 177.48 174.84 176.43 174.26	2.47 6.72 2.60 7.79 4.47 7.47 6.11 8.85	Depth to Water (mbgs) 1.52 5.77 1.62 6.80 3.47 6.53 5.19 7.94	179.60 175.27 179.10 173.91 177.59 174.52 176.42 173.66	(mbtop) 2.68 6.88 2.57 7.83 4.43 7.44 6.14 8.98	Depth to Water (mbgs) 1.73 5.93 1.59 6.84 3.43 6.50 5.22 8.07	179.39 175.11 179.13 173.87 177.63 174.55 176.39 173.53	(mbtop) 2.74 6.97 2.58 7.91 4.42 7.61 6.13 9.07	Depth to Water (mbgs) 1.79 6.02 1.60 6.92 3.42 6.67 5.21 8.16	179.33 175.02 179.12 173.79 177.64 174.38 176.40 173.44
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91	(mbtop) 2.20 6.45 2.68 7.35 4.58 7.15 6.10 8.25 8.13	Depth to Water (mbgs) 1.25 5.50 1.70 6.36 3.58 6.21 5.18 7.34 7.15	179.87 175.54 179.02 174.35 177.48 174.84 176.43 174.26	(mbtop) 2.47 6.72 2.60 7.79 4.47 7.47 6.11 8.85 8.31	Depth to Water (mbgs) 1.52 5.77 1.62 6.80 3.47 6.53 5.19 7.94 7.33	179.60 175.27 179.10 173.91 177.59 174.52 176.42 173.66 174.27	(mbtop) 2.68 6.88 2.57 7.83 4.43 7.44 6.14 8.98 8.47	Depth to Water (mbgs) 1.73 5.93 1.59 6.84 3.43 6.50 5.22 8.07 7.49	179.39 175.11 179.13 173.87 177.63 174.55 176.39 173.53	(mbtop) 2.74 6.97 2.58 7.91 4.42 7.61 6.13 9.07 8.51	Depth to Water (mbgs) 1.79 6.02 1.60 6.92 3.42 6.67 5.21 8.16 7.53	179.33 175.02 179.12 173.79 177.64 174.38 176.40 173.44 174.07
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D	182.86 182.92 182.85 182.64 183.05 183.47 183.40 183.63 183.63	Surface Elevation 182.07 181.99 181.70 182.06 181.99 182.53 182.51 182.58 182.56	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00	(mbtop) 2.20 6.45 2.68 7.35 4.58 7.15 6.10 8.25 8.13 13.03	Depth to Water (mbgs) 1.25 5.50 1.70 6.36 3.58 6.21 5.18 7.34 7.15 12.03	179.87 175.54 179.02 174.35 177.48 174.84 176.43 174.26 174.45	(mbtop) 2.47 6.72 2.60 7.79 4.47 7.47 6.11 8.85 8.31 13.49	Depth to Water (mbgs) 1.52 5.77 1.62 6.80 3.47 6.53 5.19 7.94 7.33 12.49	179.60 175.27 179.10 173.91 177.59 174.52 176.42 173.66 174.27 169.07	(mbtop) 2.68 6.88 2.57 7.83 4.43 7.44 6.14 8.98 8.47 13.68	Depth to Water (mbgs) 1.73 5.93 1.59 6.84 3.43 6.50 5.22 8.07 7.49 12.68	179.39 175.11 179.13 173.87 177.63 174.55 176.39 173.53 174.11	(mbtop) 2.74 6.97 2.58 7.91 4.42 7.61 6.13 9.07 8.51 13.76	Depth to Water (mbgs) 1.79 6.02 1.60 6.92 3.42 6.67 5.21 8.16 7.53 12.76	179.33 175.02 179.12 173.79 177.64 174.38 176.40 173.44 174.07
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6S	182.86 182.92 182.85 182.64 183.05 183.47 183.40 183.63 183.64 182.77	Surface Elevation 182.07 181.99 181.70 182.06 181.99 182.53 182.51 182.56 181.79	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92	(mbtop) 2.20 6.45 2.68 7.35 4.58 7.15 6.10 8.25 8.13 13.03 9.47	Depth to Water (mbgs) 1.25 5.50 1.70 6.36 3.58 6.21 5.18 7.34 7.15 12.03 8.55	179.87 175.54 179.02 174.35 177.48 174.84 176.43 174.26 174.45 169.53 172.32	(mbtop) 2.47 6.72 2.60 7.79 4.47 7.47 6.11 8.85 8.31 13.49 9.75	Depth to Water (mbgs) 1.52 5.77 1.62 6.80 3.47 6.53 5.19 7.94 7.33 12.49 8.83	179.60 175.27 179.10 173.91 177.59 174.52 176.42 173.66 174.27 169.07	(mbtop) 2.68 6.88 2.57 7.83 4.43 7.44 6.14 8.98 8.47 13.68 9.95	Depth to Water (mbgs) 1.73 5.93 1.59 6.84 3.43 6.50 5.22 8.07 7.49 12.68 9.03	179.39 175.11 179.13 173.87 177.63 174.55 176.39 173.53 174.11 168.88 171.84	(mbtop) 2.74 6.97 2.58 7.91 4.42 7.61 6.13 9.07 8.51 13.76 9.99	Depth to Water (mbgs) 1.79 6.02 1.60 6.92 3.42 6.67 5.21 8.16 7.53 12.76 9.07	179.33 175.02 179.12 173.79 177.64 174.38 176.40 173.44 174.07 168.80 171.80
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6S MW17-6D	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84	Surface Elevation 182.07 181.99 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.00	(mbtop) 2.20 6.45 2.68 7.35 4.58 7.15 6.10 8.25 8.13 13.03 9.47 7.12	Depth to Water (mbgs) 1.25 5.50 1.70 6.36 3.58 6.21 5.18 7.34 7.15 12.03 8.55 6.08	179.87 175.54 179.02 174.35 177.48 174.84 176.43 174.26 174.45 169.53 172.32	(mbtop) 2.47 6.72 2.60 7.79 4.47 7.47 6.11 8.85 8.31 13.49 9.75 7.73	Depth to Water (mbgs) 1.52 5.77 1.62 6.80 3.47 6.53 5.19 7.94 7.33 12.49 8.83 6.69	179.60 175.27 179.10 173.91 177.59 174.52 176.42 173.66 174.27 169.07 172.04	(mbtop) 2.68 6.88 2.57 7.83 4.43 7.44 6.14 8.98 8.47 13.68 9.95 7.83	Depth to Water (mbgs) 1.73 5.93 1.59 6.84 3.43 6.50 5.22 8.07 7.49 12.68 9.03 6.79	179.39 175.11 179.13 173.87 177.63 174.55 176.39 173.53 174.11 168.88 171.84 174.00	(mbtop) 2.74 6.97 2.58 7.91 4.42 7.61 6.13 9.07 8.51 13.76 9.99 7.93	Depth to Water (mbgs) 1.79 6.02 1.60 6.92 3.42 6.67 5.21 8.16 7.53 12.76 9.07 6.89	179.33 175.02 179.12 173.79 177.64 174.38 176.40 173.44 174.07 168.80 171.80
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6S MW17-6D MW17-7S	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.63 183.64 182.77 182.84 182.36	Surface Elevation 182.07 181.99 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98	(mbtop) 2.20 6.45 2.68 7.35 4.58 7.15 6.10 8.25 8.13 13.03 9.47 7.12 6.50	Depth to Water (mbgs) 1.25 5.50 1.70 6.36 3.58 6.21 5.18 7.34 7.15 12.03 8.55 6.08 5.52	179.87 175.54 179.02 174.35 177.48 174.84 176.43 174.26 174.45 169.53 172.32 174.71	(mbtop) 2.47 6.72 2.60 7.79 4.47 7.47 6.11 8.85 8.31 13.49 9.75 7.73 6.73	Depth to Water (mbgs) 1.52 5.77 1.62 6.80 3.47 6.53 5.19 7.94 7.33 12.49 8.83 6.69 5.75	179.60 175.27 179.10 173.91 177.59 174.52 176.42 173.66 174.27 169.07 172.04 174.10	(mbtop) 2.68 6.88 2.57 7.83 4.43 7.44 6.14 8.98 8.47 13.68 9.95 7.83 6.87	Depth to Water (mbgs) 1.73 5.93 1.59 6.84 3.43 6.50 5.22 8.07 7.49 12.68 9.03 6.79 5.89	179.39 175.11 179.13 173.87 177.63 174.55 176.39 173.53 174.11 168.88 171.84 174.00 174.50	(mbtop) 2.74 6.97 2.58 7.91 4.42 7.61 6.13 9.07 8.51 13.76 9.99 7.93 6.94	Depth to Water (mbgs) 1.79 6.02 1.60 6.92 3.42 6.67 5.21 8.16 7.53 12.76 9.07 6.89 5.96	179.33 175.02 179.12 173.79 177.64 174.38 176.40 173.44 174.07 168.80 171.80 173.90
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-6S MW17-6D MW17-7S MW17-7D	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36 182.43	Surface Elevation 182.07 181.99 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04	(mbtop) 2.20 6.45 2.68 7.35 4.58 7.15 6.10 8.25 8.13 13.03 9.47 7.12 6.50 9.36	Depth to Water (mbgs) 1.25 5.50 1.70 6.36 3.58 6.21 5.18 7.34 7.15 12.03 8.55 6.08 5.52 8.32	179.87 175.54 179.02 174.35 177.48 174.84 176.43 174.26 174.45 169.53 172.32 174.71 174.87	(mbtop) 2.47 6.72 2.60 7.79 4.47 7.47 6.11 8.85 8.31 13.49 9.75 7.73 6.73 9.71	Depth to Water (mbgs) 1.52 5.77 1.62 6.80 3.47 6.53 5.19 7.94 7.33 12.49 8.83 6.69 5.75 8.67	179.60 175.27 179.10 173.91 177.59 174.52 176.42 173.66 174.27 169.07 172.04 174.10 174.64 171.68	(mbtop) 2.68 6.88 2.57 7.83 4.43 7.44 6.14 8.98 8.47 13.68 9.95 7.83 6.87 9.92	Depth to Water (mbgs) 1.73 5.93 1.59 6.84 3.43 6.50 5.22 8.07 7.49 12.68 9.03 6.79 5.89 8.88	179.39 175.11 179.13 173.87 177.63 174.55 176.39 173.53 174.11 168.88 171.84 174.00 174.50 171.47	(mbtop) 2.74 6.97 2.58 7.91 4.42 7.61 6.13 9.07 8.51 13.76 9.99 7.93 6.94 10.01	Depth to Water (mbgs) 1.79 6.02 1.60 6.92 3.42 6.67 5.21 8.16 7.53 12.76 9.07 6.89 5.96 8.97	179.33 175.02 179.12 173.79 177.64 174.38 176.40 173.44 174.07 168.80 171.80 173.90 174.43 171.38
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6D MW17-6D MW17-7S MW17-7D MW17-7D	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36 182.43 182.59	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39 181.46	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04	(mbtop) 2.20 6.45 2.68 7.35 4.58 7.15 6.10 8.25 8.13 13.03 9.47 7.12 6.50 9.36 5.42 9.49 3.99	Depth to Water (mbgs) 1.25 5.50 1.70 6.36 3.58 6.21 5.18 7.34 7.15 12.03 8.55 6.08 5.52 8.32 4.31 8.49 3.05	179.87 175.54 179.02 174.35 177.48 174.84 176.43 174.26 174.45 169.53 172.32 174.71 174.87 172.03 176.04 171.90	(mbtop) 2.47 6.72 2.60 7.79 4.47 7.47 6.11 8.85 8.31 13.49 9.75 7.73 6.73 9.71 5.77	Depth to Water (mbgs) 1.52 5.77 1.62 6.80 3.47 6.53 5.19 7.94 7.33 12.49 8.83 6.69 5.75 8.67 4.66	179.60 175.27 179.10 173.91 177.59 174.52 176.42 173.66 174.27 169.07 172.04 174.10 174.64 171.68	(mbtop) 2.68 6.88 2.57 7.83 4.43 7.44 6.14 8.98 8.47 13.68 9.95 7.83 6.87 9.92 6.05	Depth to Water (mbgs) 1.73 5.93 1.59 6.84 3.43 6.50 5.22 8.07 7.49 12.68 9.03 6.79 5.89 8.88 4.94 8.88 3.82	179.39 175.11 179.13 173.87 177.63 174.55 176.39 173.53 174.11 168.88 171.84 174.00 174.50 171.47 175.41 175.95	(mbtop) 2.74 6.97 2.58 7.91 4.42 7.61 6.13 9.07 8.51 13.76 9.99 7.93 6.94 10.01 6.11	Depth to Water (mbgs) 1.79 6.02 1.60 6.92 3.42 6.67 5.21 8.16 7.53 12.76 9.07 6.89 5.96 8.97 5.00 8.96 3.96	179.33 175.02 179.12 173.79 177.64 174.38 176.40 173.44 174.07 168.80 171.80 173.90 174.43 171.38 175.35 171.43
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6S MW17-6D MW17-7S MW17-7D MW17-8S MW17-8D	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36 182.49 181.71 181.73	Surface Elevation 182.07 181.99 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39 181.46 181.39 180.71 180.75	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 1.11 1.00 0.94	(mbtop) 2.20 6.45 2.68 7.35 4.58 7.15 6.10 8.25 8.13 13.03 9.47 7.12 6.50 9.36 5.42 9.49 3.99 7.50	Depth to Water (mbgs) 1.25 5.50 1.70 6.36 3.58 6.21 5.18 7.34 7.15 12.03 8.55 6.08 5.52 8.32 4.31 8.49 3.05 6.54	179.87 175.54 179.02 174.35 177.48 174.84 176.43 174.26 174.45 169.53 172.32 174.71 174.87 172.03 176.04 171.90 176.72 173.25	(mbtop) 2.47 6.72 2.60 7.79 4.47 7.47 6.11 8.85 8.31 13.49 9.75 7.73 6.73 9.71 5.77 9.67 4.43 7.91	Depth to Water (mbgs) 1.52 5.77 1.62 6.80 3.47 6.53 5.19 7.94 7.33 12.49 8.83 6.69 5.75 8.67 4.66 8.67 3.49 6.95	179.60 175.27 179.10 173.91 177.59 174.52 176.42 173.66 174.27 169.07 172.04 174.10 174.64 171.68 175.69 171.72 176.28 172.84	(mbtop) 2.68 6.88 2.57 7.83 4.43 7.44 6.14 8.98 8.47 13.68 9.95 7.83 6.87 9.92 6.05 9.88 4.76 8.10	Depth to Water (mbgs) 1.73 5.93 1.59 6.84 3.43 6.50 5.22 8.07 7.49 12.68 9.03 6.79 5.89 8.88 4.94 8.88 3.82 7.14	179.39 175.11 179.13 173.87 177.63 174.55 176.39 173.53 174.11 168.88 171.84 174.00 174.50 171.47 175.41 171.51 175.95	(mbtop) 2.74 6.97 2.58 7.91 4.42 7.61 6.13 9.07 8.51 13.76 9.99 7.93 6.94 10.01 6.11 9.96 4.90 8.22	Depth to Water (mbgs) 1.79 6.02 1.60 6.92 3.42 6.67 5.21 8.16 7.53 12.76 9.07 6.89 5.96 8.97 5.00 8.96 3.96 7.26	179.33 175.02 179.12 173.79 177.64 174.38 176.40 173.44 174.07 168.80 171.80 173.90 174.43 175.35 171.43 175.81
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6S MW17-6D MW17-7S MW17-7D MW17-7S MW17-8S MW17-8D MW17-9S	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36 182.43 182.59 182.49 181.71	Surface Elevation 182.07 181.99 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39 181.46 181.39 180.71	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 1.11 1.00 0.94	(mbtop) 2.20 6.45 2.68 7.35 4.58 7.15 6.10 8.25 8.13 13.03 9.47 7.12 6.50 9.36 5.42 9.49 3.99	Depth to Water (mbgs) 1.25 5.50 1.70 6.36 3.58 6.21 5.18 7.34 7.15 12.03 8.55 6.08 5.52 8.32 4.31 8.49 3.05	179.87 175.54 179.02 174.35 177.48 174.84 176.43 174.26 174.45 169.53 172.32 174.71 174.87 172.03 176.04 171.90	(mbtop) 2.47 6.72 2.60 7.79 4.47 7.47 6.11 8.85 8.31 13.49 9.75 7.73 6.73 9.71 5.77 9.67 4.43	Depth to Water (mbgs) 1.52 5.77 1.62 6.80 3.47 6.53 5.19 7.94 7.33 12.49 8.83 6.69 5.75 8.67 4.66 8.67 3.49	179.60 175.27 179.10 173.91 177.59 174.52 176.42 173.66 174.27 169.07 172.04 174.10 174.64 171.68 175.69 171.72 176.28	(mbtop) 2.68 6.88 2.57 7.83 4.43 7.44 6.14 8.98 8.47 13.68 9.95 7.83 6.87 9.92 6.05 9.88 4.76	Depth to Water (mbgs) 1.73 5.93 1.59 6.84 3.43 6.50 5.22 8.07 7.49 12.68 9.03 6.79 5.89 8.88 4.94 8.88 3.82	179.39 175.11 179.13 173.87 177.63 174.55 176.39 173.53 174.11 168.88 171.84 174.00 174.50 171.47 175.41 175.95	(mbtop) 2.74 6.97 2.58 7.91 4.42 7.61 6.13 9.07 8.51 13.76 9.99 7.93 6.94 10.01 6.11 9.96 4.90	Depth to Water (mbgs) 1.79 6.02 1.60 6.92 3.42 6.67 5.21 8.16 7.53 12.76 9.07 6.89 5.96 8.97 5.00 8.96 3.96	179.33 175.02 179.12 173.79 177.64 174.38 176.40 173.44 174.07 168.80 171.80 173.90 174.43 171.38 175.35 171.43

		Ground			5-Sep-18			18-Oct-18 15-Nov-18					5-Dec-18			
Well ID	Top of Pipe Elevation	Surface Elevation	Well Stick Up (m)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	
MW17-1S	182.86	182.07	0.95	2.92	1.97	179.15	3.16	2.21	178.91	3.25	2.30	178.82	3.32	2.37	178.75	
MW17-1D	182.92	181.99	0.95	6.90	5.95	175.09	6.75	5.80	175.24	6.32	5.37	175.67	6.10	5.15	175.89	
MW17-2S	182.85	181.70	0.98	2.48	1.50	179.22	2.35	1.37	179.35	2.30	1.32	179.40	2.31	1.33	179.39	
MW17-2D	182.64	181.70	0.99	7.85	6.86	173.85	7.75	6.76	173.95	7.40	6.41	174.30	7.23	6.24	174.47	
MW17-3S	183.05	182.06	1.00	4.38	3.38	177.68	4.74	3.74	177.32	5.06	4.06	177.00	5.21	4.21	176.85	
MW17-3D	183.00	181.99	0.94	7.60	6.66	174.39	7.54	6.60	174.45	7.29	6.35	174.70	7.18	6.24	174.81	
MW17-4S	183.47	182.53	0.92	6.15	5.23	176.38	6.14	5.22	176.39	6.18	5.26	176.35	6.18	5.26	176.35	
MW17-4D	183.40	182.51	0.91	9.12	8.21	173.39	9.15	8.24	173.36	8.80	7.89	173.71	8.74	7.83	173.77	
MW17-5S	183.63	182.58	0.98	8.55	7.57	174.03	8.45	7.47	174.13	8.25	7.27	174.33	8.20	7.22	174.38	
MW17-5D	183.64	182.56	1.00	13.94	12.94	168.62	14.07	13.07	168.49	14.07	13.07	168.49	14.07	13.07	168.49	
MW17-6S	182.77	181.79	0.92	9.99	9.07	171.80	9.93	9.01	171.86	9.80	8.88	171.99	9.92	9.00	171.87	
MW17-6D	182.84	181.83	1.04	7.93	6.89	173.90	7.93	6.89	173.90	7.59	6.55	174.24	7.50	6.46	174.33	
MW17-7S	182.36	181.37	0.98	6.88	5.90	174.49	6.72	5.74	174.65	6.49	5.51	174.88	6.47	5.49	174.90	
MW17-7D	182.43	181.39	1.04	10.12	9.08	171.27	10.11	9.07	171.28	10.05	9.01	171.34	10.01	8.97	171.38	
MW17-8S	182.59	181.46	1.11	5.97	4.86	175.49	5.70	4.59	175.76	5.31	4.20	176.15	5.25	4.14	176.21	
MW17-8D	182.49	181.39	1.00	10.02	9.02	171.37	9.99	8.99	171.40	9.86	8.86	171.53	9.82	8.82	171.57	
MW17-9S	181.71	180.71	0.94	4.68	3.74	176.03	4.32	3.38	176.39	3.90	2.96	176.81	3.78	2.84	176.93	
MW17-9D	181.73	180.75	0.96	8.23	7.27	172.52	8.13	7.17	172.62	7.96	7.00	172.79	7.88	6.92	172.87	
MW17-10S	182.86	181.94	0.96	6.80	5.84	175.14	6.80	5.84	175.14	6.80	5.84	175.14	6.80	5.84	175.14	
MW17-10D	183.04	181.96	1.05	6.93	5.88	175.03	6.80	5.75	175.16	6.36	5.31	175.60	6.17	5.12	175.79	
Race Track		NA	0.67	-	-	-	-	-	-	-	-	-	4.47	3.80	NA	
		Ground			14-Jan-19			8-Mar-19			27-Mar-19			4-Apr-19		
Well ID	Top of Pipe Elevation	Ground Surface Elevation	Well Stick Up (m)	Depth to Water (mbtop)	14-Jan-19 Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	8-Mar-19 Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	27-Mar-19 Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	4-Apr-19 Depth to Water (mbgs)	Groundwater Elevation (masl)	
	Elevation	Surface Elevation		(mbtop)	Depth to Water (mbgs)	Elevation (masl)	(mbtop)	Depth to Water (mbgs)	Elevation (masl)	(mbtop)	Depth to Water (mbgs)	Elevation (masl)	(mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	
MW17-1S	Elevation 182.86	Surface Elevation 182.07	0.95	(mbtop) 2.84	Depth to Water (mbgs)	Elevation (masl)	(mbtop) 2.65	Depth to Water (mbgs)	Elevation (masl)	(mbtop)	Depth to Water (mbgs)	Elevation (masl)	(mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl) 181.00	
	Elevation	Surface Elevation	0.95 0.95	(mbtop) 2.84 6.64	Depth to Water (mbgs)	180.02 176.28	(mbtop)	Depth to Water (mbgs)	Elevation (masl)	(mbtop)	Depth to Water (mbgs)	Elevation (masl)	(mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	
MW17-1S MW17-1D MW17-2S	182.86 182.92	Surface Elevation 182.07 181.99	0.95 0.95 0.98	(mbtop) 2.84	Depth to Water (mbgs) 1.89 5.69 1.41	180.02 176.28 180.46	2.65 6.04 2.41	Depth to Water (mbgs) 1.70 5.09 1.43	180.21 176.88 180.44	(mbtop) 1.91 6.09 2.44	Depth to Water (mbgs) 0.96 5.14 1.46	180.95 176.83 180.41	(mbtop) 1.86 5.98 2.42	Depth to Water (mbgs) 0.91 5.03	Groundwater Elevation (masl) 181.00 176.94 180.43	
MW17-1S MW17-1D	182.86 182.92 182.85 182.64	Surface Elevation 182.07 181.99 181.70	0.95 0.95 0.98 0.99	(mbtop) 2.84 6.64 2.39 7.18	Depth to Water (mbgs) 1.89 5.69 1.41 6.19	180.02 176.28 180.46 175.46	(mbtop) 2.65 6.04 2.41 7.18	Depth to Water (mbgs) 1.70 5.09 1.43 6.19	Elevation (masl) 180.21 176.88	(mbtop) 1.91 6.09	Depth to Water (mbgs) 0.96 5.14	180.95 176.83 180.41 175.43	(mbtop) 1.86 5.98 2.42 7.15	Depth to Water (mbgs) 0.91 5.03 1.44 6.16	Groundwater Elevation (masl) 181.00 176.94	
MW17-1S MW17-1D MW17-2S MW17-2D	182.86 182.92 182.85	Surface Elevation 182.07 181.99 181.70 181.70	0.95 0.95 0.98	(mbtop) 2.84 6.64 2.39	Depth to Water (mbgs) 1.89 5.69 1.41	180.02 176.28 180.46	2.65 6.04 2.41	Depth to Water (mbgs) 1.70 5.09 1.43	180.21 176.88 180.44 175.46	(mbtop) 1.91 6.09 2.44 7.21	Depth to Water (mbgs) 0.96 5.14 1.46 6.22	180.95 176.83 180.41	(mbtop) 1.86 5.98 2.42	Depth to Water (mbgs) 0.91 5.03 1.44	Groundwater Elevation (masl) 181.00 176.94 180.43 175.49	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S	182.86 182.92 182.85 182.64 183.05	Surface Elevation 182.07 181.99 181.70 181.70 182.06	0.95 0.95 0.98 0.99 1.00	(mbtop) 2.84 6.64 2.39 7.18 5.60	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60	180.02 176.28 180.46 175.46 177.45	2.65 6.04 2.41 7.18 5.75	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75	180.21 176.88 180.44 175.46 177.30	(mbtop) 1.91 6.09 2.44 7.21 5.66	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66	180.95 176.83 180.41 175.43 177.39	(mbtop) 1.86 5.98 2.42 7.15 5.63	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63	Groundwater Elevation (masl) 181.00 176.94 180.43 175.49	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D	182.86 182.92 182.85 182.64 183.05 183.00	Surface Elevation 182.07 181.99 181.70 182.06 181.99	0.95 0.95 0.98 0.99 1.00 0.94	(mbtop) 2.84 6.64 2.39 7.18 5.60 7.15	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60 6.21	180.02 176.28 180.46 175.46 177.45	(mbtop) 2.65 6.04 2.41 7.18 5.75 7.18	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75 6.24	180.21 176.88 180.44 175.46 177.30 175.82	(mbtop) 1.91 6.09 2.44 7.21 5.66 7.16	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66 6.22	180.95 176.83 180.41 175.43 177.39 175.84	(mbtop) 1.86 5.98 2.42 7.15 5.63 7.12	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63 6.18	Groundwater Elevation (masl) 181.00 176.94 180.43 175.49 177.42	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S	182.86 182.92 182.85 182.64 183.05 183.00 183.47	Surface Elevation 182.07 181.99 181.70 182.06 181.99 182.53	0.95 0.95 0.98 0.99 1.00 0.94 0.92	(mbtop) 2.84 6.64 2.39 7.18 5.60 7.15 6.12	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60 6.21 5.20	180.02 176.28 180.46 175.46 177.45 175.85	2.65 6.04 2.41 7.18 5.75 7.18 6.13	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75 6.24 5.21	180.21 176.88 180.44 175.46 177.30 175.82 177.34	1.91 6.09 2.44 7.21 5.66 7.16 6.11	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66 6.22 5.19	180.95 176.83 180.41 175.43 177.39 175.84 177.36	(mbtop) 1.86 5.98 2.42 7.15 5.63 7.12 6.10	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63 6.18 5.18	Groundwater Elevation (masl) 181.00 176.94 180.43 175.49 177.42 175.88	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40	Surface Elevation 182.07 181.99 181.70 182.06 181.99 182.53 182.51	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91	(mbtop) 2.84 6.64 2.39 7.18 5.60 7.15 6.12 8.56	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60 6.21 5.20 7.65	180.02 176.28 180.46 175.46 177.45 175.85 177.35	2.65 6.04 2.41 7.18 5.75 7.18 6.13 8.52	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75 6.24 5.21 7.61	180.21 176.88 180.44 175.46 177.30 175.82 177.34	1.91 6.09 2.44 7.21 5.66 7.16 6.11 8.63	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66 6.22 5.19 7.72	180.95 176.83 180.41 175.43 177.39 175.84 177.36	(mbtop) 1.86 5.98 2.42 7.15 5.63 7.12 6.10 8.61	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63 6.18 5.18 7.70	Groundwater Elevation (masl) 181.00 176.94 180.43 175.49 177.42 175.88 177.37	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63	Surface Elevation 182.07 181.99 181.70 182.06 181.99 182.53 182.51 182.58	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91	(mbtop) 2.84 6.64 2.39 7.18 5.60 7.15 6.12 8.56 8.19	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60 6.21 5.20 7.65 7.21	180.02 176.28 180.46 175.46 177.45 175.85 177.35 174.84	(mbtop) 2.65 6.04 2.41 7.18 5.75 7.18 6.13 8.52 8.25	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75 6.24 5.21 7.61 7.27	180.21 176.88 180.44 175.46 177.30 175.82 177.34 174.88	1.91 6.09 2.44 7.21 5.66 7.16 6.11 8.63 8.17	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66 6.22 5.19 7.72 7.19	180.95 176.83 180.41 175.43 177.39 175.84 177.36 174.77	1.86 5.98 2.42 7.15 5.63 7.12 6.10 8.61 8.10	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63 6.18 5.18 7.70 7.12	Groundwater Elevation (masl) 181.00 176.94 180.43 175.49 177.42 175.88 177.37 174.79 175.53	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D	182.86 182.92 182.85 182.64 183.05 183.47 183.40 183.63 183.64	Surface Elevation 182.07 181.99 181.70 182.06 181.99 182.53 182.51 182.58 182.56	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00	(mbtop) 2.84 6.64 2.39 7.18 5.60 7.15 6.12 8.56 8.19 13.94	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60 6.21 5.20 7.65 7.21 12.94	180.02 176.28 180.46 175.46 177.45 175.85 177.35 174.84 175.44	(mbtop) 2.65 6.04 2.41 7.18 5.75 7.18 6.13 8.52 8.25 13.95	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75 6.24 5.21 7.61 7.27 12.95	180.21 176.88 180.44 175.46 177.30 175.82 177.34 174.88 175.38	1.91 6.09 2.44 7.21 5.66 7.16 6.11 8.63 8.17	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66 6.22 5.19 7.72 7.19 13.05	180.95 176.83 180.41 175.43 177.39 175.84 177.36 174.77 175.46 169.59	1.86 5.98 2.42 7.15 5.63 7.12 6.10 8.61 8.10	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63 6.18 5.18 7.70 7.12 13.10	Groundwater Elevation (masl) 181.00 176.94 180.43 175.49 177.42 175.88 177.37 174.79 175.53 169.54	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6S	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64	Surface Elevation 182.07 181.99 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92	(mbtop) 2.84 6.64 2.39 7.18 5.60 7.15 6.12 8.56 8.19 13.94 9.93	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60 6.21 5.20 7.65 7.21 12.94 9.01	180.02 176.28 180.46 175.46 177.45 175.85 177.35 174.84 169.70	(mbtop) 2.65 6.04 2.41 7.18 5.75 7.18 6.13 8.52 8.25 13.95 9.95	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75 6.24 5.21 7.61 7.27 12.95 9.03	180.21 176.88 180.44 175.46 177.30 175.82 177.34 174.88 175.38 169.69	1.91 6.09 2.44 7.21 5.66 7.16 6.11 8.63 8.17 14.05 9.96	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66 6.22 5.19 7.72 7.19 13.05 9.04	180.95 176.83 180.41 175.43 177.39 175.84 177.36 174.77 175.46 169.59 172.81	1.86 5.98 2.42 7.15 5.63 7.12 6.10 8.61 8.10 14.10 9.98	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63 6.18 5.18 7.70 7.12 13.10 9.06	Groundwater Elevation (masl) 181.00 176.94 180.43 175.49 177.42 175.88 177.37 174.79 175.53 169.54 172.79	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6S MW17-6D	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77	Surface Elevation 182.07 181.99 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04	(mbtop) 2.84 6.64 2.39 7.18 5.60 7.15 6.12 8.56 8.19 13.94 9.93 7.29	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60 6.21 5.20 7.65 7.21 12.94 9.01 6.25	180.02 176.28 180.46 175.46 177.45 175.85 177.35 174.84 169.70 172.84	(mbtop) 2.65 6.04 2.41 7.18 5.75 7.18 6.13 8.52 8.25 13.95 9.95 6.19	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75 6.24 5.21 7.61 7.27 12.95 9.03 5.15	180.21 176.88 180.44 175.46 177.30 175.82 177.34 174.88 175.38 169.69 172.82	1.91 6.09 2.44 7.21 5.66 7.16 6.11 8.63 8.17 14.05 9.96 7.30	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66 6.22 5.19 7.72 7.19 13.05 9.04 6.26	180.95 176.83 180.41 175.43 177.39 175.84 177.36 174.77 175.46 169.59 172.81	1.86 5.98 2.42 7.15 5.63 7.12 6.10 8.61 8.10 14.10 9.98 7.27	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63 6.18 5.18 7.70 7.12 13.10 9.06 6.23	Groundwater Elevation (masl) 181.00 176.94 180.43 175.49 177.42 175.88 177.37 174.79 175.53 169.54 172.79 175.57	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6S MW17-6D MW17-7S	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98	(mbtop) 2.84 6.64 2.39 7.18 5.60 7.15 6.12 8.56 8.19 13.94 9.93 7.29 6.48	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60 6.21 5.20 7.65 7.21 12.94 9.01 6.25 5.50	180.02 176.28 180.46 175.46 177.45 175.85 177.35 174.84 175.44 169.70 172.84 175.55	(mbtop) 2.65 6.04 2.41 7.18 5.75 7.18 6.13 8.52 8.25 13.95 9.95 6.19 6.54	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75 6.24 5.21 7.61 7.27 12.95 9.03 5.15 5.56	180.21 176.88 180.44 175.46 177.30 175.82 177.34 174.88 175.38 169.69 172.82 176.65	1.91 6.09 2.44 7.21 5.66 7.16 6.11 8.63 8.17 14.05 9.96 7.30 6.44	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66 6.22 5.19 7.72 7.19 13.05 9.04 6.26 5.46	180.95 176.83 180.41 175.43 177.39 175.84 177.36 174.77 175.46 169.59 172.81 175.54 175.92	1.86 5.98 2.42 7.15 5.63 7.12 6.10 8.61 8.10 14.10 9.98 7.27 6.39	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63 6.18 5.18 7.70 7.12 13.10 9.06 6.23 5.41	Groundwater Elevation (masl) 181.00 176.94 180.43 175.49 177.42 175.88 177.37 174.79 175.53 169.54 172.79 175.57	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6D MW17-7S MW17-7D	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.63 183.64 182.77 182.84 182.36 182.43	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04	(mbtop) 2.84 6.64 2.39 7.18 5.60 7.15 6.12 8.56 8.19 13.94 9.93 7.29 6.48 9.90	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60 6.21 5.20 7.65 7.21 12.94 9.01 6.25 5.50 8.86	180.02 176.28 180.46 175.46 177.45 175.85 177.35 174.84 169.70 172.84 175.55 175.88	(mbtop) 2.65 6.04 2.41 7.18 5.75 7.18 6.13 8.52 8.25 13.95 9.95 6.19 6.54 9.88	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75 6.24 5.21 7.61 7.27 12.95 9.03 5.15 5.56 8.84	180.21 176.88 180.44 175.46 177.30 175.82 177.34 174.88 175.38 169.69 172.82 176.65 175.82	1.91 6.09 2.44 7.21 5.66 7.16 6.11 8.63 8.17 14.05 9.96 7.30 6.44 9.91	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66 6.22 5.19 7.72 7.19 13.05 9.04 6.26 5.46 8.87	180.95 176.83 180.41 175.43 177.39 175.84 177.36 174.77 175.46 169.59 172.81 175.54 175.92 172.52	(mbtop) 1.86 5.98 2.42 7.15 5.63 7.12 6.10 8.61 8.10 14.10 9.98 7.27 6.39 9.92	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63 6.18 5.18 7.70 7.12 13.10 9.06 6.23 5.41 8.88	Groundwater Elevation (masl) 181.00 176.94 180.43 175.49 177.42 175.88 177.37 174.79 175.53 169.54 172.79 175.57 175.97	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6D MW17-7S MW17-7D MW17-7D	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36 182.43 182.59	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39 181.46	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04	(mbtop) 2.84 6.64 2.39 7.18 5.60 7.15 6.12 8.56 8.19 13.94 9.93 7.29 6.48 9.90 5.30	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60 6.21 5.20 7.65 7.21 12.94 9.01 6.25 5.50 8.86 4.19	180.02 176.28 180.46 175.46 177.45 175.85 177.35 174.84 169.70 172.84 175.55 175.88 172.53	(mbtop) 2.65 6.04 2.41 7.18 5.75 7.18 6.13 8.52 8.25 13.95 9.95 6.19 6.54 9.88 5.40	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75 6.24 5.21 7.61 7.27 12.95 9.03 5.15 5.56 8.84 4.29	180.21 176.88 180.44 175.46 177.30 175.82 177.34 174.88 175.38 169.69 172.82 176.65 175.82 172.55	(mbtop) 1.91 6.09 2.44 7.21 5.66 7.16 6.11 8.63 8.17 14.05 9.96 7.30 6.44 9.91 5.22	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66 6.22 5.19 7.72 7.19 13.05 9.04 6.26 5.46 8.87 4.11	180.95 176.83 180.41 175.43 177.39 175.84 177.36 174.77 175.46 169.59 172.81 175.92 172.52	(mbtop) 1.86 5.98 2.42 7.15 5.63 7.12 6.10 8.61 8.10 14.10 9.98 7.27 6.39 9.92 5.16	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63 6.18 5.18 7.70 7.12 13.10 9.06 6.23 5.41 8.88 4.05	Groundwater Elevation (masl) 181.00 176.94 180.43 175.49 177.42 175.88 177.37 174.79 175.53 169.54 172.79 175.57 175.97 172.51 177.43	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6S MW17-6D MW17-7S MW17-7D MW17-8S MW17-8D	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36 182.43 182.59 182.49	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39 181.46 181.39	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 1.11 1.00	(mbtop) 2.84 6.64 2.39 7.18 5.60 7.15 6.12 8.56 8.19 13.94 9.93 7.29 6.48 9.90 5.30 9.72	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60 6.21 5.20 7.65 7.21 12.94 9.01 6.25 5.50 8.86 4.19 8.72	180.02 176.28 180.46 175.46 177.45 175.85 177.35 174.84 169.70 172.84 175.55 175.88 172.53 177.29	(mbtop) 2.65 6.04 2.41 7.18 5.75 7.18 6.13 8.52 8.25 13.95 9.95 6.19 6.54 9.88 5.40 9.73	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75 6.24 5.21 7.61 7.27 12.95 9.03 5.15 5.56 8.84 4.29 8.73	180.21 176.88 180.44 175.46 177.30 175.82 177.34 174.88 175.38 169.69 172.82 176.65 175.82 177.19	(mbtop) 1.91 6.09 2.44 7.21 5.66 7.16 6.11 8.63 8.17 14.05 9.96 7.30 6.44 9.91 5.22 9.73	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66 6.22 5.19 7.72 7.19 13.05 9.04 6.26 5.46 8.87 4.11 8.73	180.95 176.83 180.41 175.43 177.39 175.84 177.36 174.77 175.46 169.59 172.81 175.92 172.52 177.37	(mbtop) 1.86 5.98 2.42 7.15 5.63 7.12 6.10 8.61 8.10 14.10 9.98 7.27 6.39 9.92 5.16 9.73	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63 6.18 5.18 7.70 7.12 13.10 9.06 6.23 5.41 8.88 4.05 8.73	Groundwater Elevation (masl) 181.00 176.94 180.43 175.49 177.42 175.88 177.37 174.79 175.53 169.54 172.79 175.57 175.97 172.51 177.43 172.76	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6S MW17-6D MW17-7S MW17-7D MW17-8S MW17-8D MW17-9S	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36 182.43 182.59 182.49 181.71	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39 181.46 181.39 180.71	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 1.11 1.00 0.94	(mbtop) 2.84 6.64 2.39 7.18 5.60 7.15 6.12 8.56 8.19 13.94 9.93 7.29 6.48 9.90 5.30 9.72 3.78	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60 6.21 5.20 7.65 7.21 12.94 9.01 6.25 5.50 8.86 4.19 8.72 2.84	180.02 176.28 180.46 175.46 177.45 175.85 177.35 174.84 175.44 169.70 172.84 175.55 175.88 172.53 177.29 172.77	(mbtop) 2.65 6.04 2.41 7.18 5.75 7.18 6.13 8.52 8.25 13.95 9.95 6.19 6.54 9.88 5.40 9.73 3.80	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75 6.24 5.21 7.61 7.27 12.95 9.03 5.15 5.56 8.84 4.29 8.73 2.86	180.21 176.88 180.44 175.46 177.30 175.82 177.34 174.88 175.38 169.69 172.82 176.65 175.82 177.79 172.76	(mbtop) 1.91 6.09 2.44 7.21 5.66 7.16 6.11 8.63 8.17 14.05 9.96 7.30 6.44 9.91 5.22 9.73 3.60	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66 6.22 5.19 7.72 7.19 13.05 9.04 6.26 5.46 8.87 4.11 8.73 2.66	180.95 176.83 180.41 175.43 177.39 175.84 177.36 174.77 175.46 169.59 172.81 175.54 175.92 172.52 177.37 172.76 178.11	(mbtop) 1.86 5.98 2.42 7.15 5.63 7.12 6.10 8.61 8.10 14.10 9.98 7.27 6.39 9.92 5.16 9.73 3.51	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63 6.18 5.18 7.70 7.12 13.10 9.06 6.23 5.41 8.88 4.05 8.73 2.57	Groundwater Elevation (masl) 181.00 176.94 180.43 175.49 177.42 175.88 177.37 174.79 175.53 169.54 172.79 175.57 175.97 172.51 177.43 172.76 178.20	
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6S MW17-6D MW17-7S MW17-7D MW17-8S MW17-8D MW17-9S MW17-9D	182.86 182.92 182.85 182.64 183.05 183.47 183.40 183.63 183.64 182.77 182.84 182.36 182.43 182.59 182.49 181.71 181.73	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39 181.46 181.39 180.71 180.75	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 1.11 1.00 0.94 0.96	(mbtop) 2.84 6.64 2.39 7.18 5.60 7.15 6.12 8.56 8.19 13.94 9.93 7.29 6.48 9.90 5.30 9.72 3.78 7.78	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60 6.21 5.20 7.65 7.21 12.94 9.01 6.25 5.50 8.86 4.19 8.72 2.84 6.82	180.02 176.28 180.46 175.46 177.45 175.85 177.35 174.84 169.70 172.84 175.55 175.88 172.53 177.29 172.77 177.93 173.95	(mbtop) 2.65 6.04 2.41 7.18 5.75 7.18 6.13 8.52 8.25 13.95 9.95 6.19 6.54 9.88 5.40 9.73 3.80 7.80	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75 6.24 5.21 7.61 7.27 12.95 9.03 5.15 5.56 8.84 4.29 8.73 2.86 6.84	180.21 176.88 180.44 175.46 177.30 175.82 177.34 174.88 175.38 169.69 172.82 176.65 175.82 177.79 172.76	(mbtop) 1.91 6.09 2.44 7.21 5.66 7.16 6.11 8.63 8.17 14.05 9.96 7.30 6.44 9.91 5.22 9.73 3.60 7.77	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66 6.22 5.19 7.72 7.19 13.05 9.04 6.26 5.46 8.87 4.11 8.73 2.66 6.81	180.95 176.83 180.41 175.43 177.39 175.84 177.36 174.77 175.46 169.59 172.81 175.54 175.92 172.52 177.37 172.76 178.11 173.96	(mbtop) 1.86 5.98 2.42 7.15 5.63 7.12 6.10 8.61 8.10 14.10 9.98 7.27 6.39 9.92 5.16 9.73 3.51 7.74	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63 6.18 5.18 7.70 7.12 13.10 9.06 6.23 5.41 8.88 4.05 8.73 2.57 6.78	Groundwater Elevation (masl) 181.00 176.94 180.43 175.49 177.42 175.88 177.37 174.79 175.53 169.54 172.79 175.57 175.97 172.51 177.43 172.76 178.20 173.99	

					27-May-19			5-Jun-19			10-Jul-19			13-Aug-19	
	Гор of Pipe Elevation	Ground Surface Elevation	Well Stick Up (m)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)
	182.86	182.07	0.95	1.68	0.73	181.18	1.65	0.70	181.21	1.77	0.82	181.09	2.00	1.05	180.86
MW17-1D	182.92	181.99	0.95	6.13	5.18	176.79	6.20	5.25	176.72	6.28	5.33	176.64	6.61	5.66	176.31
	182.85	181.70	0.98	2.27	1.29	180.58	2.24	1.26	180.61	2.14	1.16	180.71	2.14	1.16	180.71
	182.64	181.70	0.99	7.27	6.28	175.37	7.31	6.32	175.33	7.38	6.39	175.26	7.65	6.66	174.99
	183.05	182.06	1.00	4.88	3.88	178.17	4.80	3.80	178.25	4.65	3.65	178.40	4.59	3.59	178.46
	183.00	181.99	0.94	7.13	6.19	175.87	7.15	6.21	175.85	7.16	6.22	175.84	7.34	6.40	175.66
	183.47	182.53	0.92	6.10	5.18	177.37	6.11	5.19	177.36	6.11	5.19	177.36	6.13	5.21	177.34
	183.40	182.51	0.91	8.82	7.91	174.58	8.89	7.98	174.51	8.98	8.07	174.42	9.23	8.32	174.17
	183.63	182.58	0.98	8.50	7.52	175.13	8.63	7.65	175.00	8.71	7.73	174.92	8.89	7.91	174.74
	183.64	182.56	1.00	14.52	13.52	169.12	14.60	13.60	169.04	14.82	13.82	168.82	15.01	14.01	168.63
	182.77	181.79	0.92	9.96	9.04	172.81	9.99	9.07	172.78	10.00	9.08	172.77	9.99	9.07	172.78
	182.84	181.83	1.04	7.40	6.36	175.44	7.47	6.43	175.37	7.51	6.47	175.33	7.77	6.73	175.07
	182.36	181.37	0.98	6.67	5.69	175.69	6.80	5.82	175.56	6.90	5.92	175.46	7.31	6.33	175.05
	182.43	181.39	1.04	10.03	8.99	172.40	10.12	9.08	172.31	10.24	9.20	172.19	10.52	9.48	171.91
MW17-8S	182.59	181.46	1.11	5.42	4.31	177.17	5.50	4.39	177.09	5.68	4.57	176.91	6.15	5.04	176.44
MW17-8D	182.49	181.39	1.00	9.91	8.91	172.58	10.02	9.02	172.47	10.16	9.16	172.33	10.50	9.50	171.99
	181.71	180.71	0.94	3.93	2.99	177.78	3.99	3.05	177.72	4.18	3.24	177.53	4.75	3.81	176.96
	181.73	180.75	0.96	7.94	6.98	173.79	8.04	7.08	173.69	8.18	7.22	173.55	8.55	7.59	173.18
MW17-10S	182.86	181.94	0.96	6.24	5.28	176.62	5.97	5.01	176.89	5.50	4.54	177.36	5.46	4.50	177.40
MW17-10D	183.04	181.96	1.05	6.19	5.14	176.85	6.25	5.20	176.79	6.32	5.27	176.72	6.64	5.59	176.40
Race Track	NA	NA	0.67	3.90	3.23	-	4.07	3.40	-	4.01	3.34	-	4.62	3.95	-
					10-Sep-19			11-Oct-19			6-Nov-19			23-Dec-19	
Wellin	Fop of Pipe Elevation	Ground Surface Elevation	Well Stick Up (m)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)
MW17-1S	182.86	182.07	0.95	2.14	1.19	180.72	2.26	1.31	180.60	2.35	1.40	180.51	2.21	1.26	180.65
	182.92	181.99	0.95	6.58	5.63	176.34	6.54	5.59	176.38	6.18	5.23	176.74	5.78	4.83	177.14
	182.85	181.70	0.98	2.11	1.13	180.74	2.05	1.07	180.80	2.04	1.06	180.81	2.05	1.07	180.80
	182.64	181.70	0.99	7.62	6.63	175.02	7.58	6.59	175.06	7.33	6.34	175.31	7.02	6.03	175.62
	183.05	182.06	1.00	4.64	3.64	178.41	4.83	3.83	178.22	5.07	4.07	177.98	5.47	4.47	177.58
	183.00	181.99	0.94	7.31	6.37	175.69	7.35	6.41	175.65	7.18	6.24	175.82	6.99	6.05	176.01
	183.47	182.53	0.92	6.14	5.22	177.33	6.14	5.22	177.33	6.17	5.25	177.30	6.13	5.21	177.34
	183.40	182.51	0.91	9.20	8.29	174.20	9.43	8.52	173.97	9.17	8.26	174.23	8.84	7.93	174.56
	183.63	182.58	0.98	8.85	7.87	174.78	8.79	7.81	174.84	8.33	7.35	175.30	8.52	7.54	175.11
	183.64	182.56	1.00	14.95	13.95	168.69	15.17	14.17	168.47	15.22	14.22	168.42	15.35	14.35	168.29
	182.77	181.79	0.92	9.97	9.05	172.80	10.00	9.08	172.77	9.99	9.07	172.78	9.97	9.05	172.80
MW17-6S	182.84	181.83	1.04	7.72	6.68	175.12	7.84	6.80	175.00	7.61	6.57	175.23	7.26	6.22	175.58
	182.36	181.37	0.98	7.19	6.21	175.17	6.93	5.95	175.43	6.49	5.51	175.87	6.60	5.62	175.76
MW17-6D		181.39	1.04	10.46	9.42	171.97	10.47	9.43	171.96	10.37	9.33	172.06	10.35	9.31	172.08
MW17-6D MW17-7S	182.43 I									5.37	4.26	177.22	+		
MW17-6D MW17-7S MW17-7D	182.43 182.59	181.46		5.95	4.84	176.64	5.72	4.61	176.87	5.51		111.44	5.31	4.20	177.28
MW17-6D MW17-7S MW17-7D MW17-8S	182.59	181.46	1.11	5.95									5.31 10.26		
MW17-6D MW17-7S MW17-7D MW17-8S MW17-8D	182.59 182.49	181.46 181.39	1.11 1.00	5.95 10.40	9.40	172.09	10.37	9.37	172.12	10.23	9.23	172.26	10.26	9.26	172.23
MW17-6D MW17-7S MW17-7D MW17-8S MW17-8D MW17-9S	182.59 182.49 181.71	181.46 181.39 180.71	1.11 1.00 0.94	5.95 10.40 4.45	9.40 3.51	172.09 177.26	10.37 4.20	9.37 3.26	172.12 177.51	10.23 3.83	9.23 2.89	172.26 177.88	10.26 3.77	9.26 2.83	172.23 177.94
MW17-6D MW17-7S MW17-7D MW17-8S MW17-8D MW17-9S MW17-9D	182.59 182.49 181.71 181.73	181.46 181.39 180.71 180.75	1.11 1.00 0.94 0.96	5.95 10.40 4.45 8.38	9.40 3.51 7.42	172.09 177.26 173.35	10.37 4.20 8.30	9.37 3.26 7.34	172.12 177.51 173.43	10.23 3.83 8.10	9.23 2.89 7.14	172.26 177.88 173.63	10.26 3.77 8.06	9.26 2.83 7.10	172.23 177.94 173.67
MW17-6D MW17-7S MW17-7D MW17-8S MW17-8D MW17-9S MW17-9D MW17-10S	182.59 182.49 181.71	181.46 181.39 180.71	1.11 1.00 0.94	5.95 10.40 4.45	9.40 3.51	172.09 177.26	10.37 4.20	9.37 3.26	172.12 177.51	10.23 3.83	9.23 2.89	172.26 177.88	10.26 3.77	9.26 2.83	172.23 177.94

					13-Jan-20			13-Feb-20		29-May-20			
Well ID	Top of Pipe Elevation	Ground Surface Elevation	Well Stick Up (m)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	
MW17-1S	182.86	182.07	0.95	1.97	1.02	180.89	1.65	0.70	181.21	1.48	0.53	181.38	
MW17-1D	182.92	181.99	0.95	5.56	4.61	177.36	5.50	4.55	177.42	5.97	5.02	176.95	
MW17-2S	182.85	181.70	0.98	2.06	1.08	180.79	2.11	1.13	180.74	2.06	1.08	180.79	
MW17-2D	182.64	181.70	0.99	6.85	5.86	175.79	6.79	5.80	175.85	7.24	6.25	175.40	
MW17-3S	183.05	182.06	1.00	5.53	4.53	177.52	5.29	4.29	177.76	4.15	3.15	178.90	
MW17-3D	183.00	181.99	0.94	6.90	5.96	176.10	6.89	5.95	176.11	7.34	6.40	175.66	
MW17-4S	183.47	182.53	0.92	6.13	5.21	177.34	6.11	5.19	177.36	6.11	5.19	177.36	
MW17-4D	183.40	182.51	0.91	8.65	7.74	174.75	8.57	7.66	174.83	9.21	8.30	174.19	
MW17-5S	183.63	182.58	0.98	8.35	7.37	175.28	8.33	7.35	175.30	8.83	7.85	174.80	
MW17-5D	183.64	182.56	1.00	15.19	14.19	168.45	15.18	14.18	168.46	16.40	15.40	167.24	
MW17-6S	182.77	181.79	0.92	9.97	9.05	172.80	9.91	8.99	172.86	9.98	9.06	172.79	
MW17-6D	182.84	181.83	1.04	7.04	6.00	175.80	6.91	5.87	175.93	7.50	6.46	175.34	
MW17-7S	182.36	181.37	0.98	6.48	5.50	175.88	6.45	5.47	175.91	7.01	6.03	175.35	
MW17-7D	182.43	181.39	1.04	10.25	9.21	172.18	10.18	9.14	172.25	10.84	9.80	171.59	
MW17-8S	182.59	181.46	1.11	5.17	4.06	177.42	5.05	3.94	177.54	5.60	4.49	176.99	
MW17-8D	182.49	181.39	1.00	10.15	9.15	172.34	10.08	9.08	172.41	10.66	9.66	171.83	
MW17-9S	181.71	180.71	0.94	3.47	2.53	178.24	3.32	2.38	178.39	3.95	3.01	177.76	
MW17-9D	181.73	180.75	0.96	7.90	6.94	173.83	7.83	6.87	173.90	8.54	7.58	173.19	
MW17-10S	182.86	181.94	0.96	5.54	4.58	177.32	5.12	4.16	177.74	5.51	4.55	177.35	
MW17-10D	183.04	181.96	1.05	6.61	5.56	176.43	5.54	4.49	177.50	5.79	4.74	177.25	
Race Track	NA	NA	0.67	3.75	3.08	-	3.51	2.84	-	3.88	3.21	-	

Parameters Health General Parameters pH Conductivity Total Suspended Solids Total Dissolved Solids Hardness (CaCO3) Nutrients/Organic Indicators Total Ammonia Nitrite 1 Nitrate 10 Nitrate + Nitrite 10 Dissolved Organic Carbon Orthophosphate Major and Minor Ions Alkalinity (Total as CaCO3) Calcium Chloride Magnesium Potassium Sodium Sulphate Anion Sum Cation Sum	Standar AO 500	OG 6.5 to 8.5	Units PH umho/cm mg/L mg/L mg/L	MW17-1S 10-Apr-17 8.15 1200 9000 670	MW17-2S 11-Apr-17 8.04 960	MW17-4S 10-Apr-17	MW17-6S 10-Apr-17	MW17-8S 10-Apr-17	MW17-9S 10-Apr-17	MW17-1D	MW17-3D	MW17-6D	MW17-8D	MW17-9D	MW17-10D
General Parameters pH Conductivity Total Suspended Solids Total Dissolved Solids Hardness (CaCO3) Nutrients/Organic Indicators Total Ammonia Nitrite 1 Nitrate 10 Nitrate + Nitrite 10 Dissolved Organic Carbon Orthophosphate Major and Minor Ions Alkalinity (Total as CaCO3) Calcium Chloride Magnesium Potassium Sodium Sulphate Anion Sum	500	6.5 to 8.5	pH umho/cm mg/L mg/L	8.15 1200 9000	8.04 960		10-Apr-17	10-Apr-17	10-Apr-17	40 Apr 47					
pH Conductivity Total Suspended Solids Total Dissolved Solids Hardness (CaCO3) Nutrients/Organic Indicators Total Ammonia Nitrite 1 Nitrate 10 Nitrate + Nitrite 10 Dissolved Organic Carbon Orthophosphate Major and Minor Ions Alkalinity (Total as CaCO3) Calcium Chloride Magnesium Potassium Sodium Sulphate Anion Sum			umho/cm mg/L mg/L	1200 9000	960	7.8				10-Apr-17	10-Apr-17	10-Apr-17	10-Apr-17	10-Apr-17	10-Apr-17
Conductivity Total Suspended Solids Total Dissolved Solids Hardness (CaCO3) Nutrients/Organic Indicators Total Ammonia Nitrite 1 Nitrate 10 Nitrate + Nitrite 10 Dissolved Organic Carbon Orthophosphate Major and Minor Ions Alkalinity (Total as CaCO3) Calcium Chloride Magnesium Potassium Sodium Sulphate Anion Sum			umho/cm mg/L mg/L	1200 9000	960	7.8		·	Ī	n		Ī			
Total Suspended Solids Total Dissolved Solids Hardness (CaCO3) Nutrients/Organic Indicators Total Ammonia Nitrite 1 Nitrate 10 Nitrate + Nitrite 10 Dissolved Organic Carbon Orthophosphate Major and Minor Ions Alkalinity (Total as CaCO3) Calcium Chloride Magnesium Potassium Sodium Sulphate Anion Sum		100	mg/L mg/L	9000			7.82	7.81	7.85	7.58	7.77	7.79	7.65	7.78	7.51
Total Dissolved Solids Hardness (CaCO3) Nutrients/Organic Indicators Total Ammonia Nitrite 1 Nitrate 10 Nitrate + Nitrite 10 Dissolved Organic Carbon Orthophosphate Major and Minor Ions Alkalinity (Total as CaCO3) Calcium Chloride Magnesium Potassium Sodium Sulphate Anion Sum		100	mg/L		1	1200	1200	1000	1800	2100	1200	980	2800	2900	2000
Hardness (CaCO3) Nutrients/Organic Indicators Total Ammonia Nitrite 1 Nitrate 10 Nitrate + Nitrite 10 Dissolved Organic Carbon Orthophosphate Major and Minor Ions Alkalinity (Total as CaCO3) Calcium Chloride Magnesium Potassium Sodium Sulphate Anion Sum		100		670	1900	1300	1900	1900	270	630	970	2100	170	38	240
Nutrients/Organic Indicators Total Ammonia Nitrite 1 Nitrate 10 Nitrate + Nitrite 10 Dissolved Organic Carbon Orthophosphate Major and Minor Ions Alkalinity (Total as CaCO3) Calcium Chloride Magnesium Potassium Sodium Sulphate Anion Sum	5	100	mg/L		590	740	740	590	980	1500	680	600	2300	2200	1600
Total Ammonia Nitrite 1 Nitrate 10 Nitrate + Nitrite 10 Dissolved Organic Carbon Orthophosphate Major and Minor Ions Alkalinity (Total as CaCO3) Calcium Chloride Magnesium Potassium Sodium Sulphate Anion Sum	5			220	410	650	540	470	730	1200	560	450	1500	1200	1200
Nitrite 1 Nitrate 10 Nitrate + Nitrite 10 Dissolved Organic Carbon Orthophosphate Major and Minor Ions Alkalinity (Total as CaCO3) Calcium Chloride Magnesium Potassium Sodium Sulphate Anion Sum	5							<u>'</u>	T	<u> </u>		Ī			
Nitrate 10 Nitrate + Nitrite 10 Dissolved Organic Carbon Orthophosphate Major and Minor Ions Alkalinity (Total as CaCO3) Calcium Chloride Magnesium Potassium Sodium Sulphate Anion Sum	5		mg/L	0.43	0.25	0.093	0.5	0.44	0.14	1.3	0.5	0.96	2.5	3.7	0.58
Nitrate + Nitrite 10 Dissolved Organic Carbon Orthophosphate Major and Minor Ions Alkalinity (Total as CaCO3) Calcium Chloride Magnesium Potassium Sodium Sulphate Anion Sum	5		mg/L	<0.050	<0.010	0.39	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Dissolved Organic Carbon Orthophosphate Major and Minor Ions Alkalinity (Total as CaCO3) Calcium Chloride Magnesium Potassium Sodium Sulphate Anion Sum	5		mg/L	0.58	<0.10	1.46	<0.10	<0.10	1.34	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Orthophosphate Major and Minor Ions Alkalinity (Total as CaCO3) Calcium Chloride Magnesium Potassium Sodium Sulphate Anion Sum	5		mg/L	0.58	<0.10	1.85	<0.10	<0.10	1.34	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Major and Minor Ions Alkalinity (Total as CaCO3) Calcium Chloride Magnesium Potassium Sodium Sulphate Anion Sum			mg/L	4.7	5.9	1.8	1.9	2.9	2.1	0.46	1.7	0.57	1.8	1	1
Alkalinity (Total as CaCO3) Calcium Chloride Magnesium Potassium Sodium Sulphate Anion Sum			mg/L	0.017	<0.010	<0.010	<0.010	0.015	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Calcium Chloride Magnesium Potassium Sodium Sulphate Anion Sum															
Chloride Magnesium Potassium Sodium Sulphate Anion Sum		500	mg/L	200	320	410	310	340	410	290	380	270	320	310	310
Magnesium Potassium Sodium Sulphate Anion Sum			mg/L	49	79	110	120	91	110	320	120	120	440	350	360
Potassium Sodium Sulphate Anion Sum	250		mg/L	19	18	18	62	40	200	20	36	28	36	98	21
Sodium Sulphate Anion Sum			mg/L	25	51	90	57	59	110	84	61	39	100	88	81
Sulphate Anion Sum			mg/L	4	3.4	3	5.3	2.9	3.1	11	5	7.8	17	22	5.8
Anion Sum	200		mg/L	160	46	18	31	28	79	36	19	13	83	170	19
			mg/L	280	190	240	270	160	220	880	190	220	1400	1200	910
Cation Sum			me/L	10.4	10.8	13.9	13.5	11.3	18.5	24.7	12.5	10.8	36.8	34.2	25.6
Californ Carri			me/L	11.7	10.3	13.8	12.4	10.7	18	25	12.2	9.81	34.7	33.3	25.6
Dissolved Metals															
Aluminum		0.1	mg/L	0.018	0.0065	0.0094	0.0069	0.0077	0.0059	0.0059	0.0057	0.0078	0.0078	0.016	<0.0050
Antimony 0.006			mg/L	0.0017	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Arsenic 0.025			mg/L	0.0028	<0.0010	<0.0010	<0.0010	0.001	<0.0010	<0.0010	<0.0010	<0.0010	0.001	<0.0010	<0.0010
Barium 1			mg/L	0.076	0.065	0.071	0.019	0.023	0.023	0.016	0.01	0.0051	0.015	0.0094	0.0073
Beryllium			mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Boron 5			mg/L	0.19	0.28	0.11	0.38	0.22	0.096	1.6	0.2	0.5	2.4	3.9	0.39
Cadmium 0.005			mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Chromium 0.05			mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050
Cobalt			mg/L	<0.00050	<0.00050	0.00075	<0.00050	<0.00050	0.0012	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Copper 1			mg/L	0.003	0.0021	0.0011	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Iron 0.3			mg/L	<0.10	<0.10	<0.10	<0.10	0.13	<0.10	0.13	<0.10	<0.10	<0.10	<0.10	<0.10
Lead 0.01			mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Manganese	0.05		mg/L	0.017	0.094	0.061	0.012	0.021	0.031	0.011	0.0038	0.003	0.019	0.0084	0.0055
Molybdenum			mg/L	0.082	0.03	0.016	<0.00050	0.0019	0.0007	<0.00050	0.0014	<0.00050	<0.00050	<0.00050	<0.00050
Nickel	1 1		mg/L	0.0016	0.004	0.0067	<0.0010	0.0014	0.0022	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Phosphorus	1 1		mg/L	<0.10	<0.10	<0.10	<0.10	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Selenium 0.01		Oct-17	mg/L	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.002	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
Silicon			mg/L	2.8	3.3	3.9	5.6	3.9	4.4	7	10	7.5	3.9	4.1	8.1
Silver			mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Strontium	1 1		mg/L	1.8	5.1	2.2	7	3.2	3.5	12	15	14	10	8.1	11
Thallium	1		mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Titanium	1		mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Uranium 0.02									0.0036						0.00011
Vanadium			IIIU/L	U.U11	0.0058	II 0.026	J 0.0006	0.0007	U.UU3N	<0.00010	0.00019	<0.00010	0.00054	0.00033	0.00011
Zinc			mg/L mg/L	0.011 0.0021	0.0058 0.00086	0.026 0.0012	0.0006 <0.00050	0.0007 0.00066	<0.0036	<0.00010 <0.00050	0.00019 <0.00050	<0.00010 <0.00050	0.00054 <0.00050	0.00033 <0.00050	<0.00011

ODWS-AO - Ontario Drinking Water Objectives - Aesthetic Objectives

ODWS-OG - Ontario Drinking Water Standards - Operational Guidelines

ODWS-Health - Ontario Drinking Water Standards - Health

Bold denotes an exceedance of the applicable ODWS - AO

Italicized denotes an exceedance of the applicable ODWS - OG

Underlined indicates an exceedance of the applicable ODWS - Health

Table 5 - Quarry Sump Quality Sample Results Port Colborne Quarries

Parameters	Provincial Water Quality Objectives	Location	Quarry Sump
	Objectives	Units	11-Apr-17
General Parameters			
рН		рН	7.93
Conductivity		umho/cm	1300
Turbidity		NTU	1.5
Total Dissolved Solids		mg/L	870
Total Suspended Solids		mg/L	<3
Hardness (CaCO3)		mg/L	670
Nutrients/Organic Indicators			
Total Ammonia-N		mg/L	< 0.050
Nitrite (N)		mg/L	<0.010
Nitrate (N)		mg/L	0.73
Nitrate + Nitrite (N)		mg/L	0.73
Total Organic Carbon (TOC)		mg/L	2.1
Orthophosphate (P)		mg/L	<0.010
Total Phosphorus	0.01	mg/L	0.005
Major and Minor lons		9. –	
Alkalinity (Total as CaCO3)		mg/L	140
Calcium		mg/L	170
Chloride (CI)		mg/L	45
Magnesium		mg/L	52
Potassium		mg/L	5.4
Sodium		mg/L	32
Sulphate (SO4)		mg/L	460
Total Metals		IIIg/L	400
Aluminum	0.075	mg/L	0.047
Antimony	0.02	mg/L	<0.00050
Arsenic	0.1	mg/L	<0.0010
Barium	0.1	mg/L	0.038
Beryllium	0.011	mg/L	<0.00050
Boron	0.2	mg/L	0.24
Cadmium	0.0002	mg/L	<0.00010
Chromium	0.0002	mg/L	<0.0050
Cobalt	0.0009		<0.0050
	0.005	mg/L	0.0014
Copper Iron	0.005	mg/L	<0.10
		mg/L	+
Lead	0.005	mg/L	<0.00050
Manganese	2.24	mg/L	0.0046
Molybdenum Niekal	0.04	mg/L	0.0085
Nickel	0.025	mg/L	0.0049
Selenium	0.1	mg/L	<0.0020
Silicon	0.0004	mg/L	1.5
Silver	0.0001	mg/L	<0.00010
Strontium	2.225	mg/L	4.8
Thallium	0.0003	mg/L	<0.000050
Titanium		mg/L	<0.0050
Vanadium	0.006	mg/L	<0.00050
Zinc	0.02	mg/L	< 0.0050

			Water Supply	/	1	Well Details	
	Address	Number of Wells	Number of Cisterns	Municipal Water	Depth of Well	Water Description	Other Groundwater Related Issues/Complaints/Notes
1645	2nd Concession	-	-	Yes	-	-	
2146	2nd Concession	2	-	Yes	-	Sulphurous	On city water, but use well water for chickens, have well tested semi-annual by Pinty's
2261	2nd Concession	1	-	Yes	45'	Hard	On city water, but use well water for outdoor use and back-up, indicated previous E.coli contamination from neighbouring sheep farm property which no longer exists
2276	2nd Concession	-	-	Yes	-	-	
1326	Hwy 3	2	1	No	20'	Iron Staining	Does not drink water due to quality, has second well in barn which produces black water
2229	Hwy 3	-	1	No	-	-	
1379 1384	Killaly Street Killaly Street	1	<u>1</u>	No No	-	- Sulphurous	Well on property not connected Does not drink well water due to quality
1408	Killaly Street	1	-	No	-	Sulphurous & Hard	Water used for drinking, no problems, Culligan treatment, tested when salt
1430	Killaly Street	-	1	No	_		is replaced
1446	Killaly Street	-	1	No	-	-	
1739	Killaly Street	1	-	No	25'	Hard & Sulphurous	Previous issues with well due to mud in bottom of well
1740	Killaly Street	1	-	No	-	Sulphurous, Iron Staining & Salty	Owners recently purchased property 1 year ago, do not use water for drinking due to quality
1750	Killaly Street	1	-	No	21'	Iron Staining & Hard	Newly installed well, approximately 3 years ago
2015	Killaly Street	1	-	No	-	Hard & Sulphurous	Don't use water from drinking due to taste, peroxide treatment in house for water, on occasion will dry out well due to high use
1359	Miller Road	1	-	No	55'	Iron Staining & Sulphurous	Do not use well water for drinking due to smell and floating black particles
1580	Miller Road	1	-	No	-	Hard & Iron Staining	Old well on site was decommissioned previously
1630	Miller Road	1	-	No	-	Sulphurous & Iron Staining	Do not use well water for drinking due to quality, but use it for livestock
1778	Miller Road	1	-	No	-	Sulphurous, Iron Staining & Hard	Do not use well water for drinking due to quality, drilled well most likely buried in backyard somewhere
1826	Miller Road	-	1	No	-	-	Possible well on property, owner unsure, use cistern
1903	Miller Road	1	-	No	40'	Sulphurous, Iron Staining & Hard	Water used for drinking, no problems, water is tested 3 to 4 times per year, reverse osmosis, softener and filters
2225	Miller Road	-	1	No	-	-	
2282	Miller Road	1	-	No	40'	Sulphurous & Hard	Owners recently purchased home 2 years ago, homeowner indicated issue with significant water loss in surface water pond at back of property
2391	Miller Road	1	-	No	65'	Hard	Newly constructed home, < 1 year
2439	Miller Road	2	1	No	-	-	Recently constructed home, owner aware of two wells on property that are not in use, may connect to them for future outdoor use
2478	Miller Road	1	-	No	-	Iron Staining	Owners recently purchased property 1 year ago
974	Weaver Road	1	-	No	-	Iron Staining & Hard	Do not use well water for drinking due to quality
1080	Weaver Road	1	1	No	15'	Sulphurous & Hard	Dug well used for outdoor use
1094	Weaver Road	-	1	No	-	-	
1162	Weaver Road	1	-	No	-	Fresh	No treatment
1030	Weaver Road						Not Participating
2506	Miller Road						Not Participating
1458 1470	Killaly Street						Not Participating
1394	Killaly Street Killaly Street						Not Participating Not Participating
1374	Killaly Street						Not Participating
1740	2nd Concession						No Response
2317	Miller Road						No Response
2322	Miller Road						No Response
2363	Miller Road						No Response
2394	Miller Road						No Response
2168	Miller Road						No Response
2187 1110	Miller Road Weaver Road						No Response No Response
1732	Miller Road						No Response
1498	Miller Road						No Response
1591	Miller Road						No Response
1728	Killaly Street						No Response
1716	Hwy 3						No Response

Totals

49 Surveys
49 Delivered
29 Responses
6 Not Participating
13 No Response
59% Response Rate

Borehole ID	Well ID	Date Completed	Depth (m)	Depth to Bedrock (m)	Static Water Level (m)
				` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	` ′
1004120689 1004120686	7185637 7185636	2012-07-20 2012-07-15	0.00 18.90	0.00	0.00 3.00
11767154	7044668	2007-05-18	0.00	0.00	0.00
10460615	6600881	1960-09-23	4.90	1.80	1.50
10460604	6600870	1967-06-27	15.20	3.00	0.00
10460605 10463804	6600871 6604207	1967-11-30 1995-06-28	17.40 7.60	7.30 2.40	0.30 3.40
10462849	6603234	1977-10-05	7.60	2.40	0.60
1007456541	7333353	2019-04-28	9.10	0.00	2.10
10460712	6600978	1957-07-01	6.40	2.40	2.10
10462804	6603188	1976-12-14	6.10	2.10	0.90
10460719 10460717	6600985 6600983	1953-07-18 1952-05-13	11.90 4.60	3.40 2.40	8.20 0.60
10460713	6600979	1959-01-12	6.40	2.10	1.80
10462510	6602787	1973-10-10	7.30	0.60	1.50
1005035417	7225195	2014-07-11	6.40	0.00	2.10
10460705	6600971	1948-07-29	8.80	2.70	0.60
10460701 10460704	6600967 6600970	1966-11-09 1963-10-23	9.10 16.80	4.60 13.70	1.80 10.70
10460714	6600980	1961-06-19	6.10	0.60	0.90
10460718	6600984	1952-07-26	6.40	3.00	1.20
10536270	6604662	2002-06-09	10.10	3.00	0.60
10463391	6603793	1988-01-25	10.70	5.80	0.90
10460711 10460700	6600977 6600966	1951-11-20 1965-05-20	19.20 8.50	1.80 3.70	5.20 0.60
10460699	6600965	1956-06-06	6.70	2.40	1.50
10460708	6600974	1958-05-27	12.20	7.90	2.40
1006223490	7269706	2016-08-05	18.90	0.00	5.20
10460710	6600976	1951-07-12	9.10	0.90	2.40
10460709 10463253	6600975 6603653	1949-09-25 1985-07-09	9.10 6.10	0.90 4.00	3.70 2.70
10462509	6602786	1973-10-13	10.10	4.30	1.20
10460706	6600972	1952-03-21	9.10	5.80	2.40
10462508	6602785	1973-09-18	18.30	4.00	3.00
10462432	6602706	1972-09-19	7.00	2.10	2.40
10463936 10463921	6604339 6604324	1999-03-01 1998-08-22	6.70 14.60	2.40 1.20	0.90 6.10
10463656	6604059	1992-01-04	13.40	11.30	4.90
10463676	6604079	1992-08-24	90.80	10.10	0.00
10463675	6604078	1992-08-21	90.80	14.00	12.80
10463103	6603494	1981-07-23	30.80	7.30 11.90	7.00 10.70
10463104 10463101	6603495 6603492	1982-01-22	24.40 24.40	11.90	10.70
10462512	6602789	1973-10-20	11.60	3.40	4.90
10462612	6602990	1974-09-05	12.20	8.20	4.90
10462394	6602667	1972-05-27	13.70	6.40	2.10
10462286 10460707	6602558 6600973	1970-10-28 1954-08-14	13.70 7.30	5.80 6.40	2.40 3.00
10460707	6602790	1973-10-17	16.10	8.50	4.00
10460703	6600969	1954-05-21	9.40	7.60	2.40
1004060730	7184673	2012-07-04	0.00	0.00	7.60
10460702	6600968	1949-08-28	13.70	9.10	7.60
10460828 10464119	6601094 6604522	1947-08-06 2000-09-07	8.50 12.80	4.30 0.90	8.50 0.00
10464119	6601092	1965-11-13	12.80	8.80	6.10
10460834	6601100	1959-03-11	10.10	5.80	3.70
10460827	6601093	1966-10-06	12.50	8.20	6.70
10464118	6604521	2000-09-09	14.30	0.90	0.00
1006991669 10462705	7306395 6603087	2018-01-26 1975-06-16	0.00 22.60	0.00 10.70	0.00 6.70
10462705	6603670	1985-10-17	19.50	0.00	8.20
10460833	6601099	1959-03-06	9.40	5.20	3.00
10462992	6603379	1979-09-26	16.80	0.00	8.50
10460836	6601102	1961-07-08	8.80	4.90	2.40
10463603 10462916	6604006 6603301	1991-07-10 1978-05-11	6.40 17.40	1.20 9.80	0.00 6.70
10460825	6601091	1958-05-29	7.90	3.70	2.40
10463604	6604007	1991-07-09	7.90	1.80	0.00
10463605	6604008	1991-07-08	7.00	0.00	0.00
10462805	6603189	1976-12-15	7.60	3.40	1.20
10460837 1006081749	6601103 7265731	1962-04-04 2016-06-14	8.20 18.90	3.70 0.00	1.20 3.40
10460838	6601104	1965-09-04	9.40	2.40	3.70
10462708	6603090	1975-08-07	9.10	2.40	1.80

Notes All depths recorded in metres

Table 8 - Proposed Extension Monitoring Locations Port Colborne Quarries

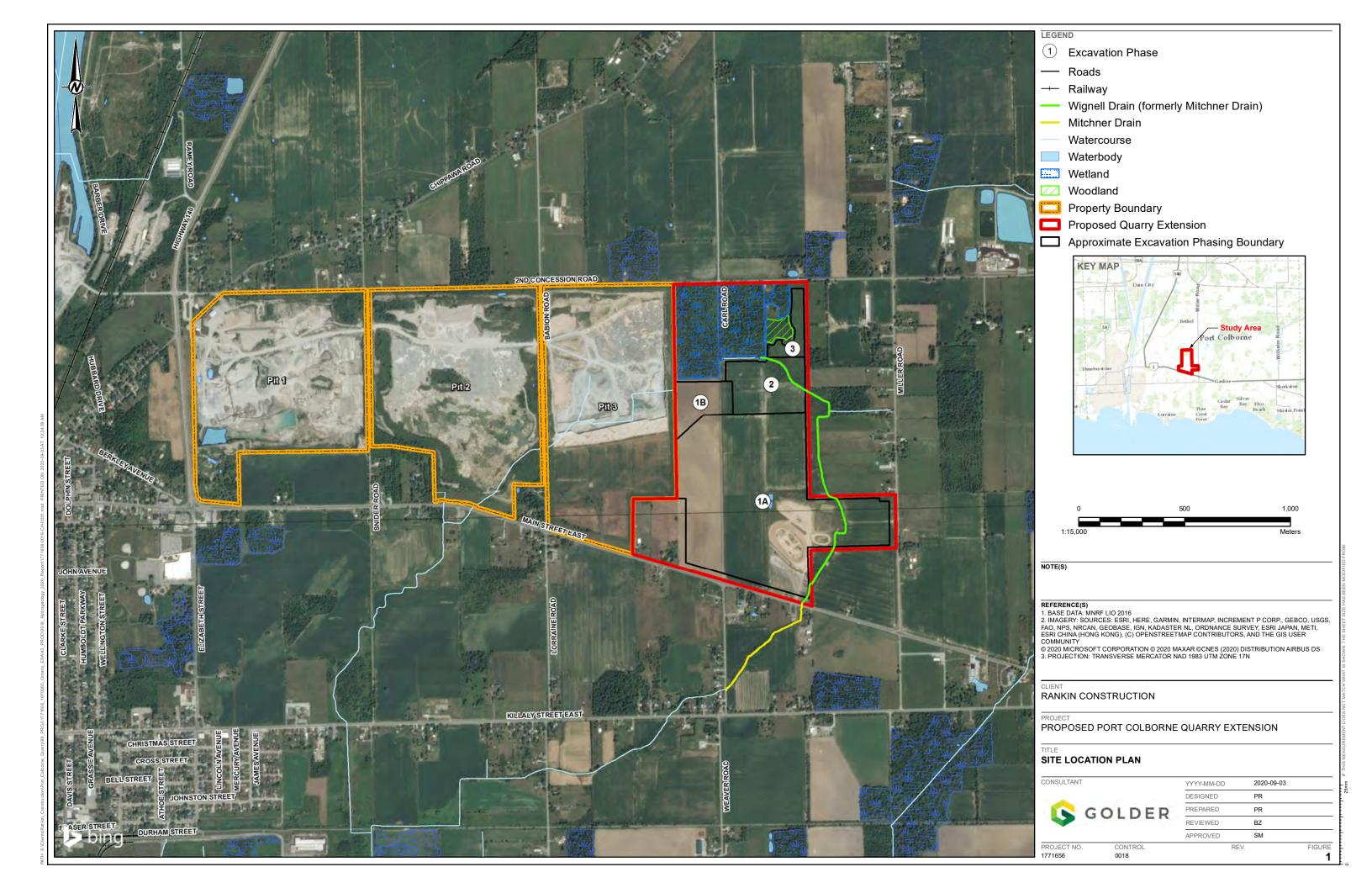
Monitoring Well ID	Groundwater Level Monitoring	Groundwater Sampling	Analytical Parameters
MW17-1S	X	Χ	General Chemistry
MW17-1D	X	Х	pH, EC, TSS, TDS, Hardness
MW17-2S	X	Χ	
MW17-2D	X	Х	Nutrients/Organic Indicators
MW17-3S	X	Х	Total ammonia, Nitrate, Nitrite, DOC,
MW17-3D	X	Х	Orthophosphate
MW17-4S	X	Х	
MW17-4D	X	Х	Major and Minor Ions
MW17-5S	X	Х	Akalinity, calcium, chloride, magnesium,
MW17-5D	X	Х	potassium, sodium, sulphate, anion sum,
MW17-6S	X	Х	cation sum
MW17-6D	X	Х	
MW17-7S	X	Х	Dissolved Metals
MW17-7D	X	Х	aluminum, antimony, arsenic, barium,
MW17-8S	X	Х	beryllium, boron, cadmium, chromium,
MW17-8D	X	Х	cobalt, copper, iron, lead, manganese,
MW17-9S	X	Х	molybdenum, nickel, phosphorous,
MW17-9D	X	Χ	selenium, silicon, silver, strontium,
MW17-10S	X	Χ	thallium, titanium, uranium, vanadium,
MW17-10D	X	Χ	zinc

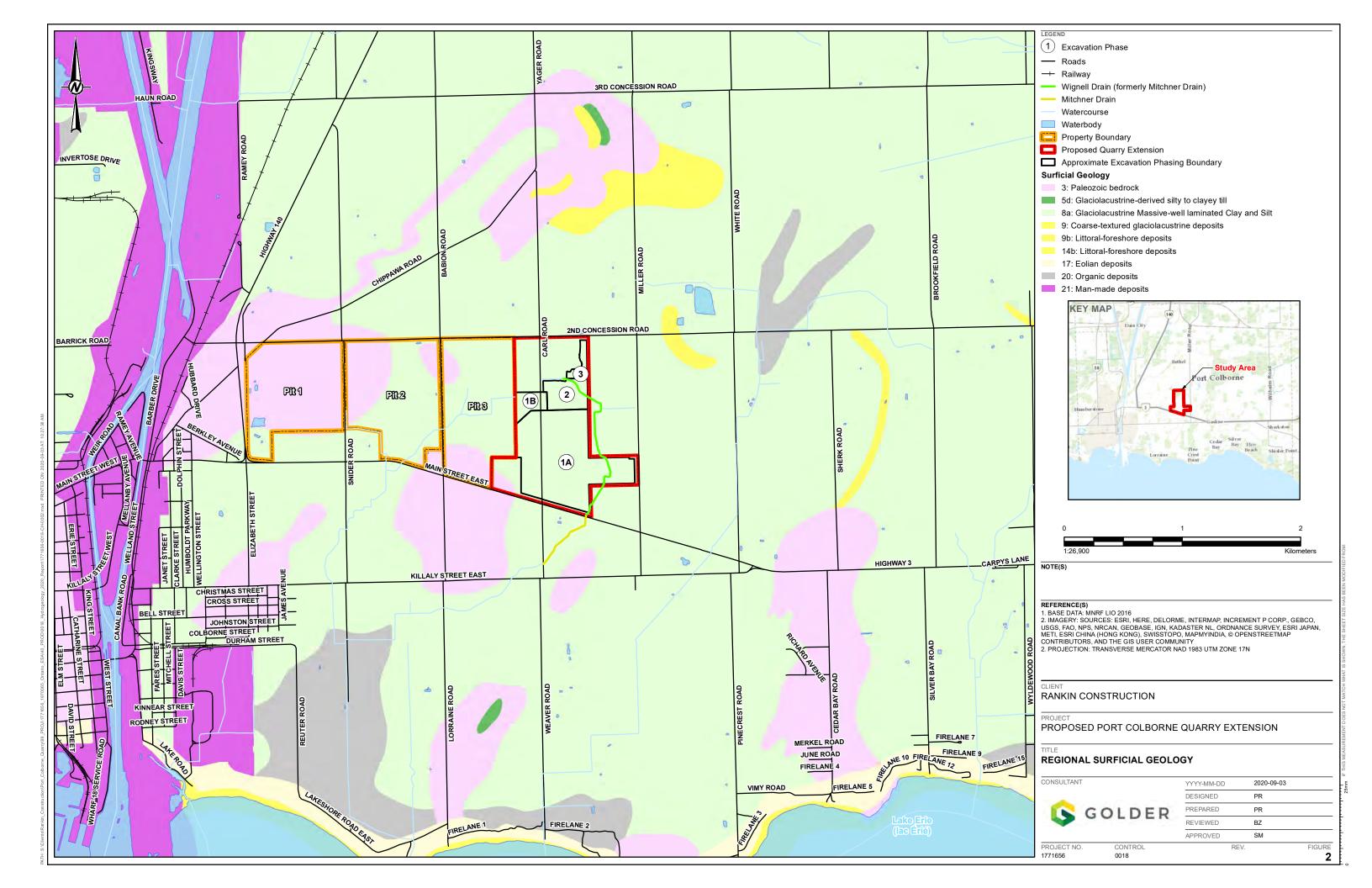
Notes:

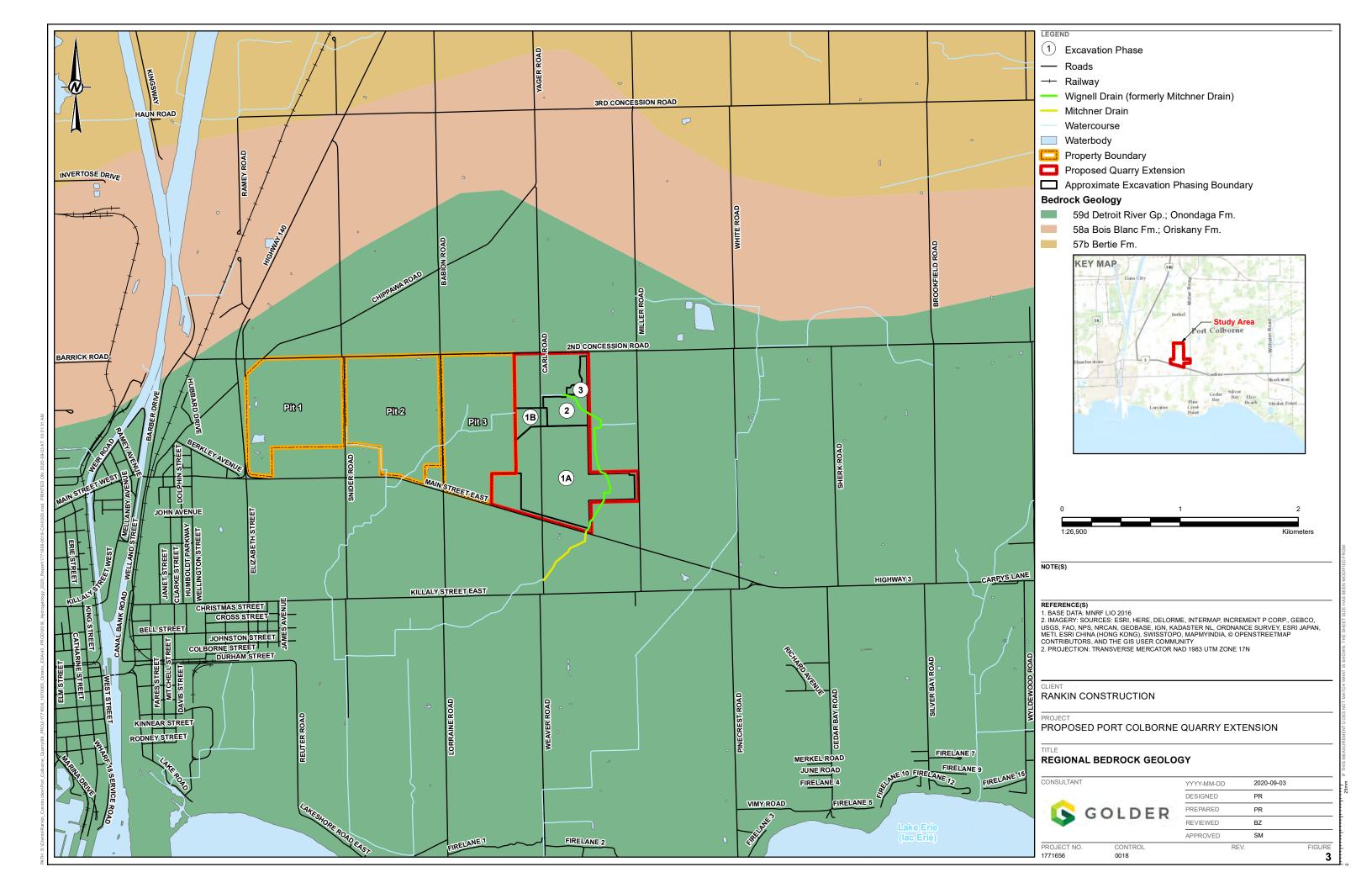
Groundwater levels measured on a monthly basis

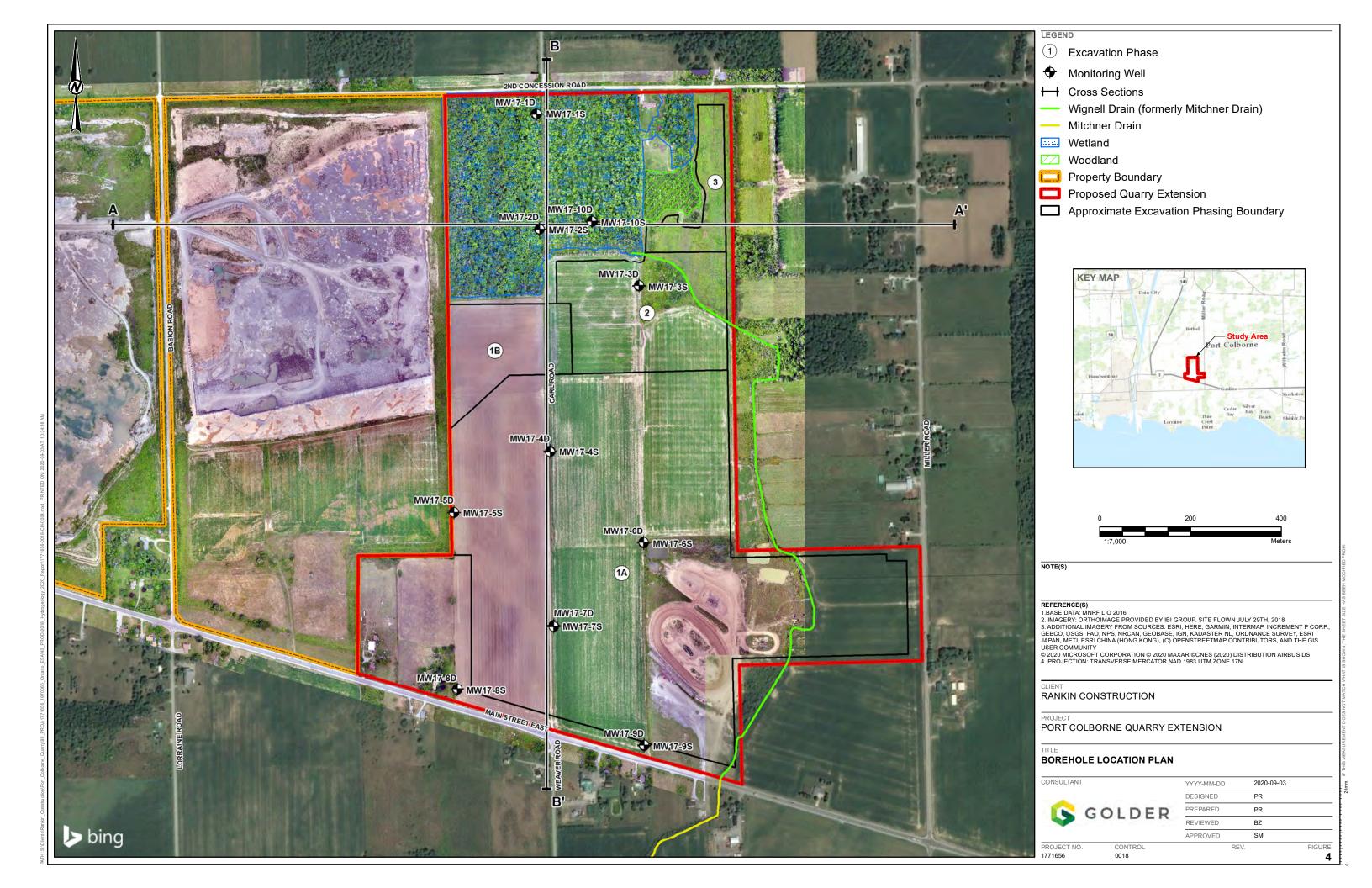
Groundwater quality monitoring conducted every five years

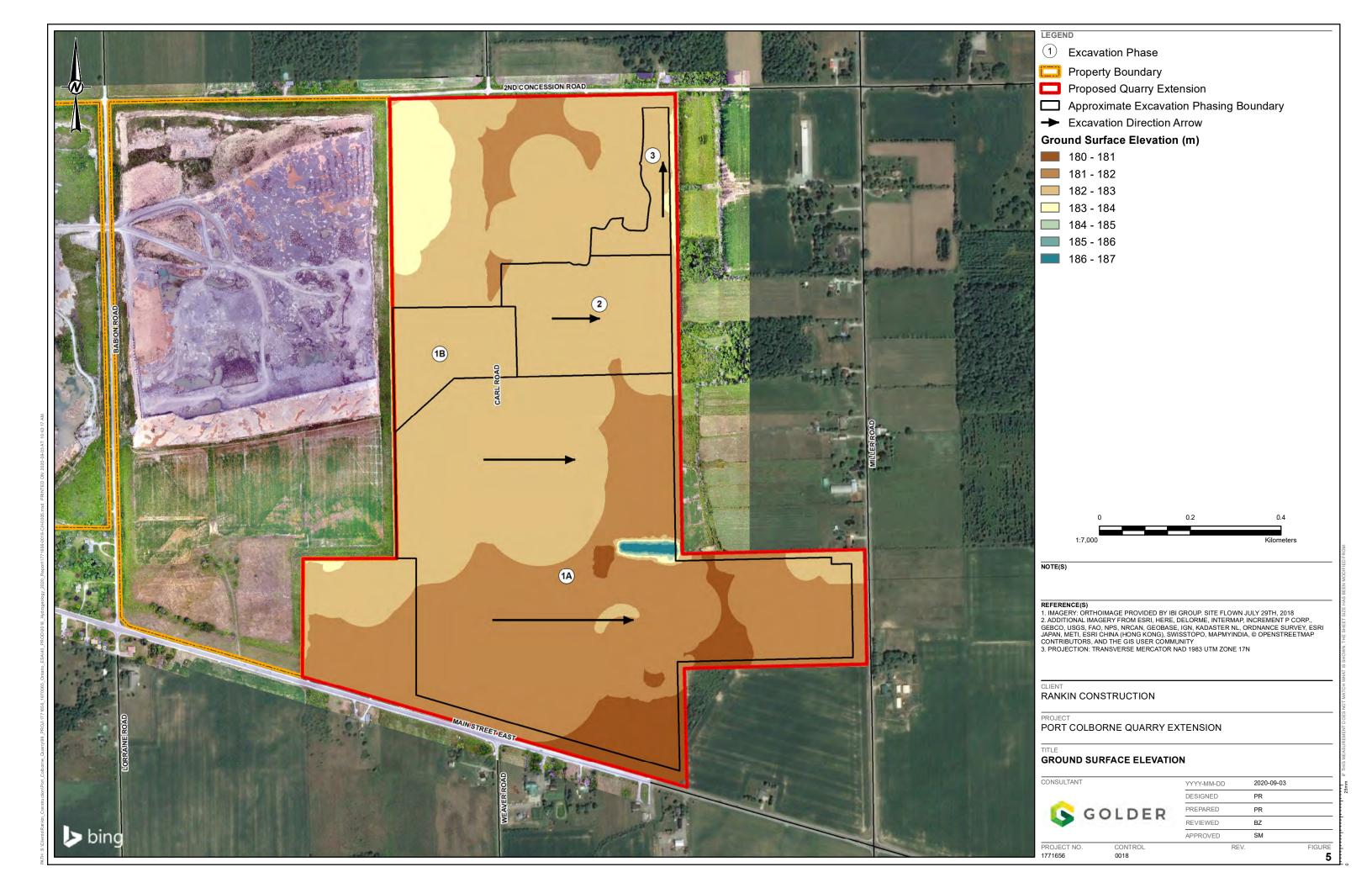
Three new monitoring wells will be installed along eastern property boundary

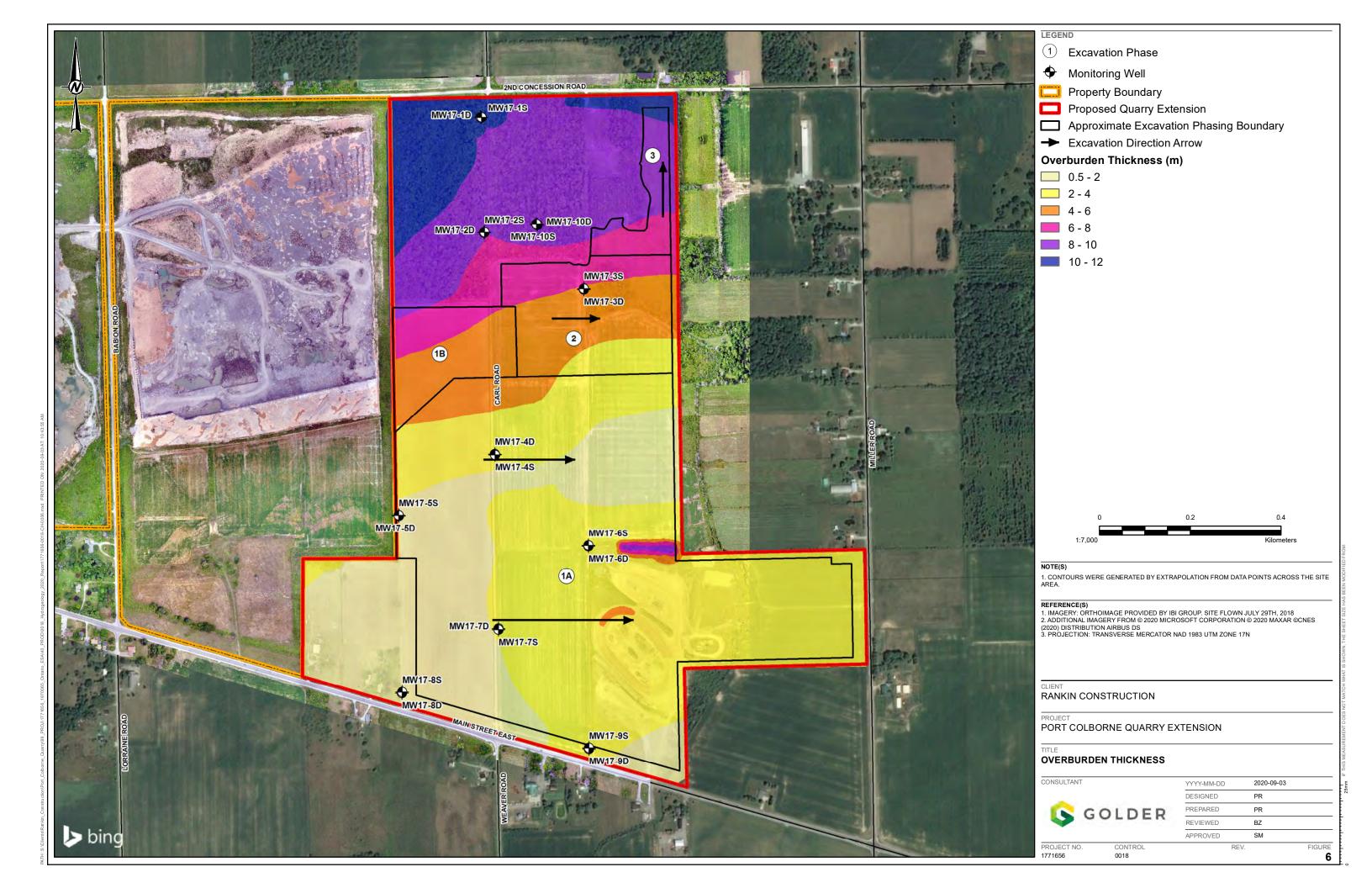


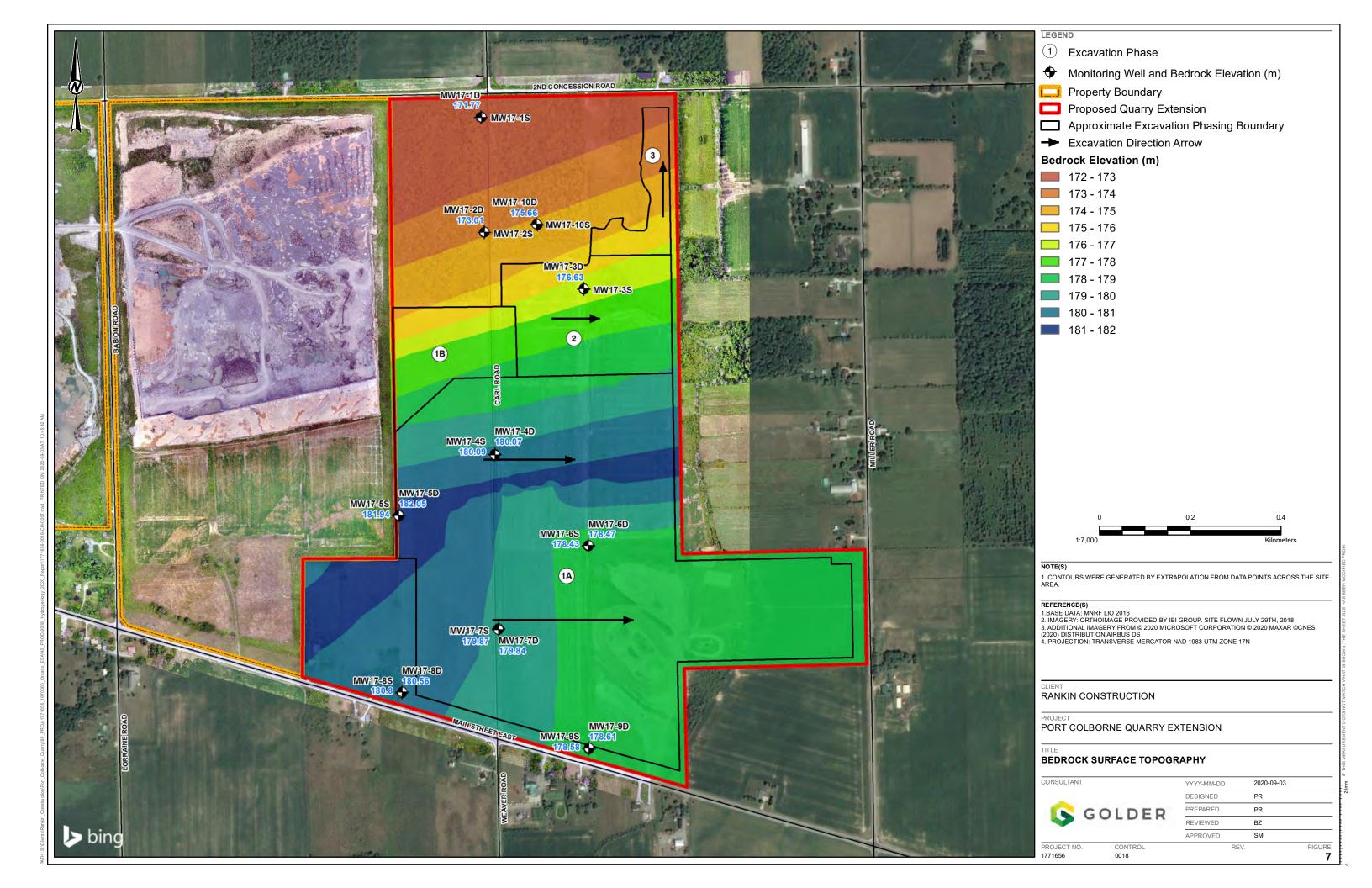

October 2020 1771656-1000-Rev2

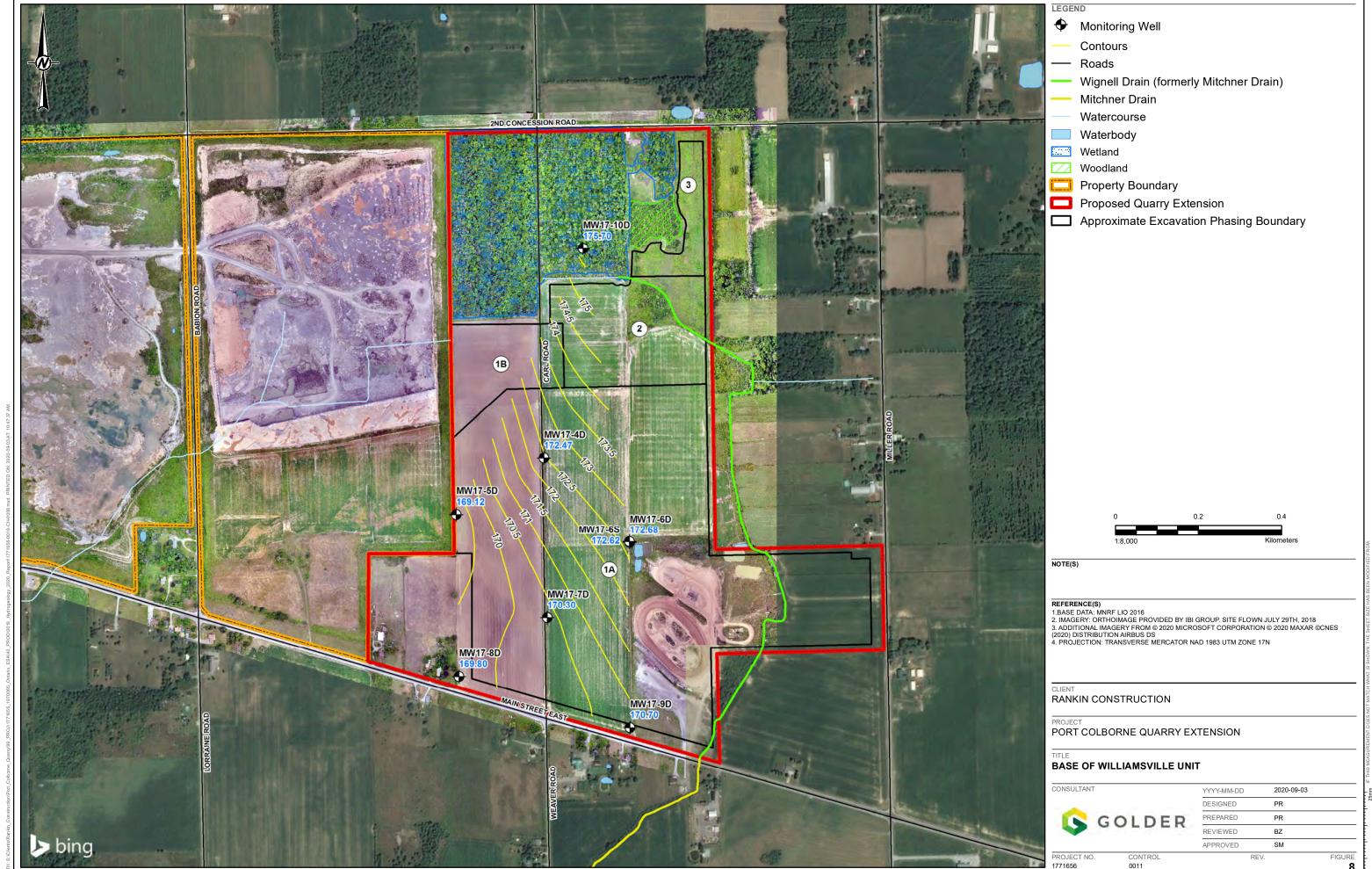

FIGURES

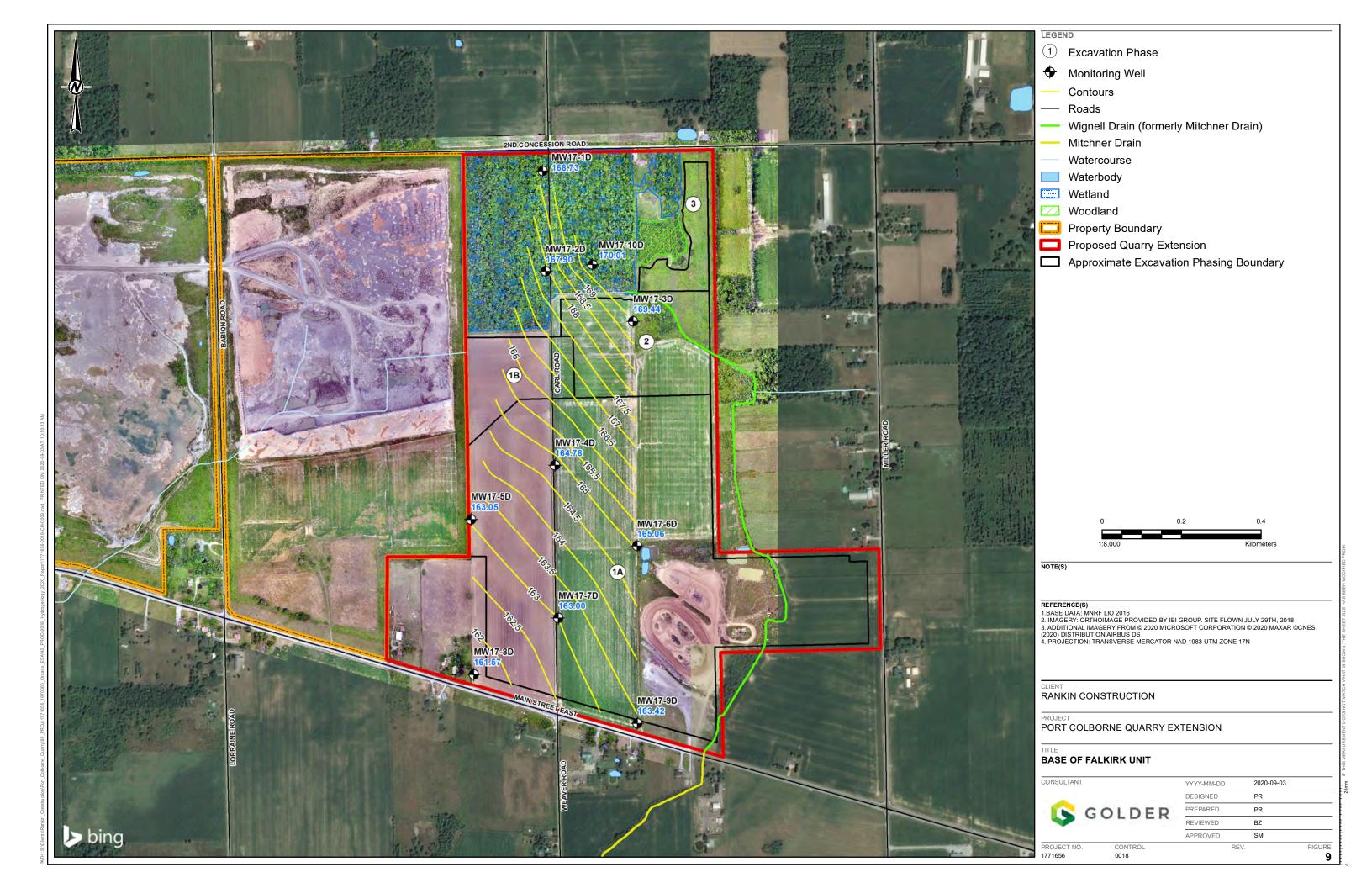

FIGURES

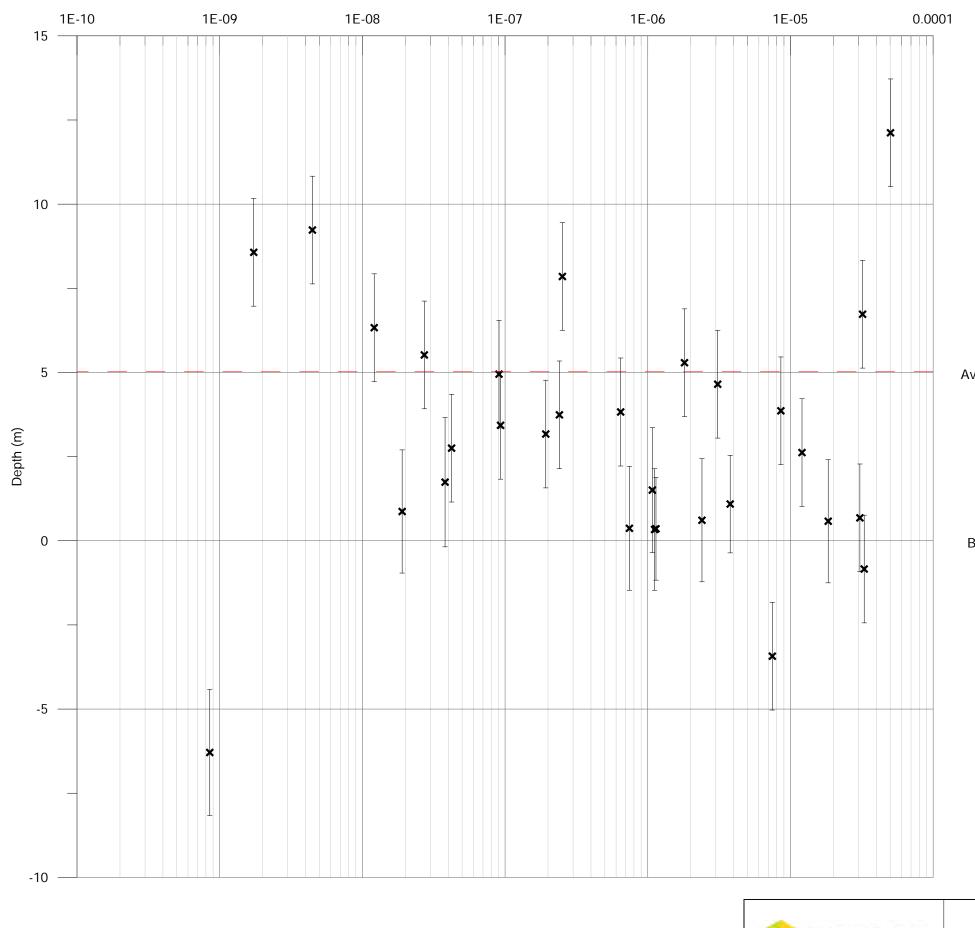


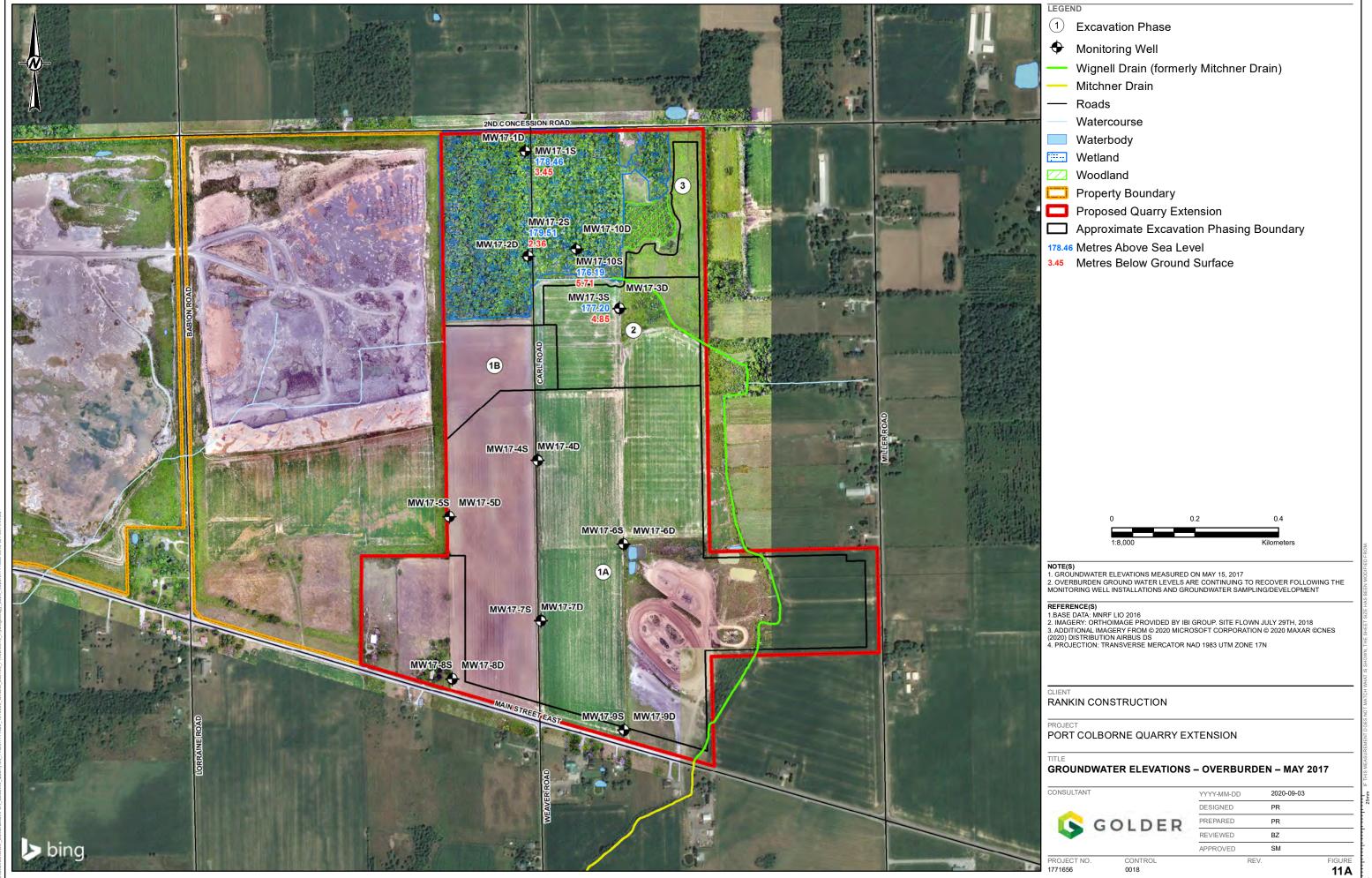


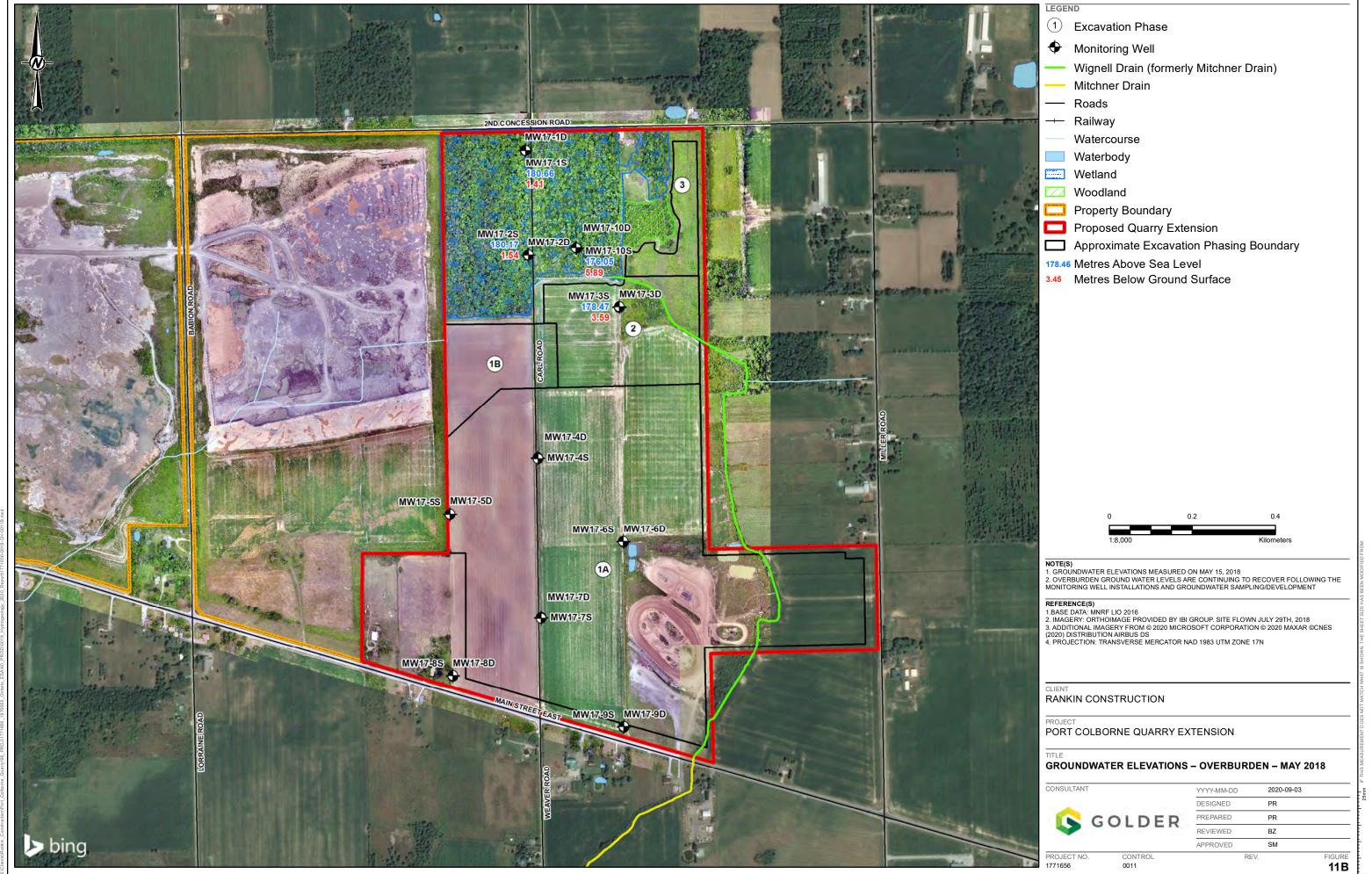






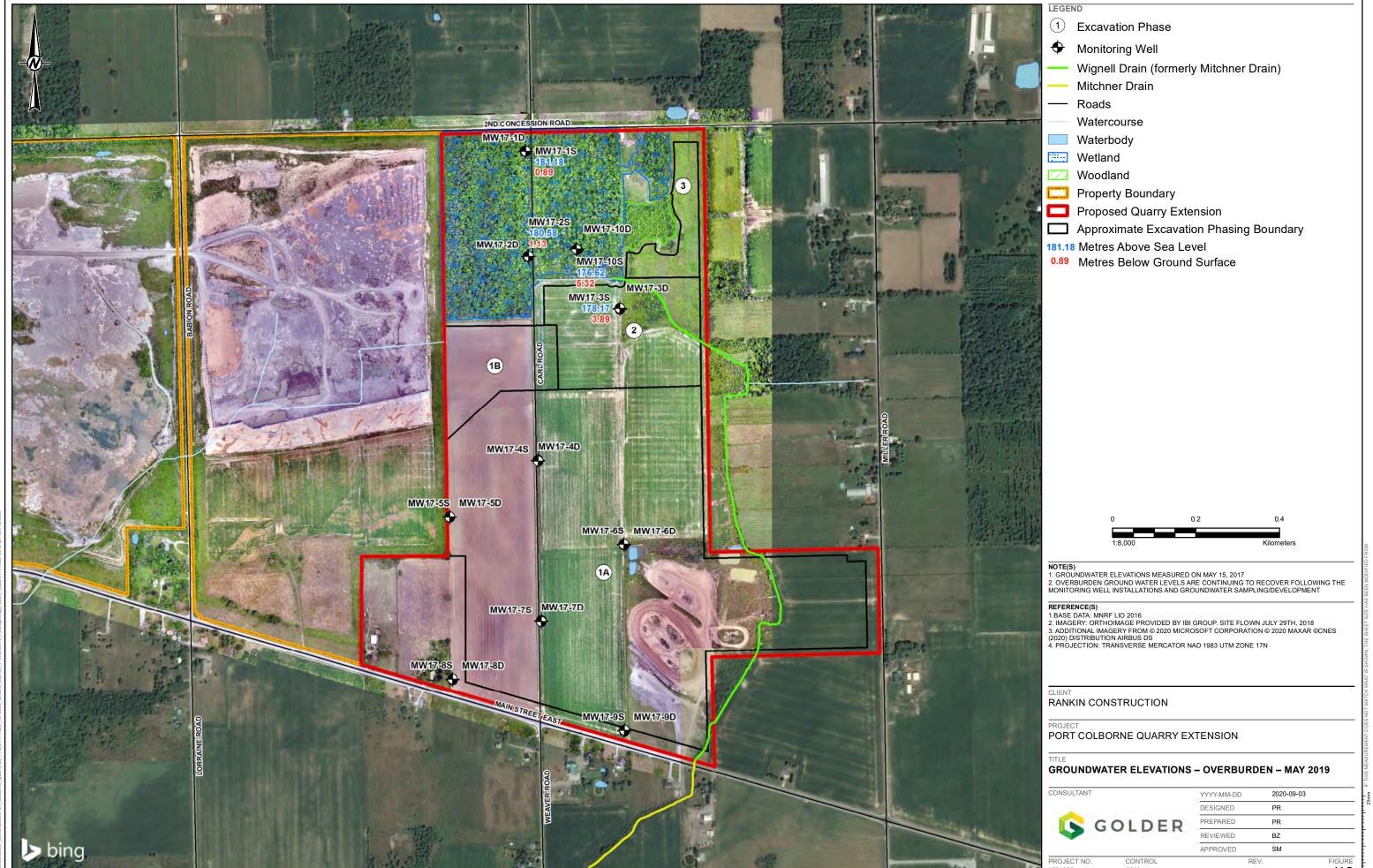
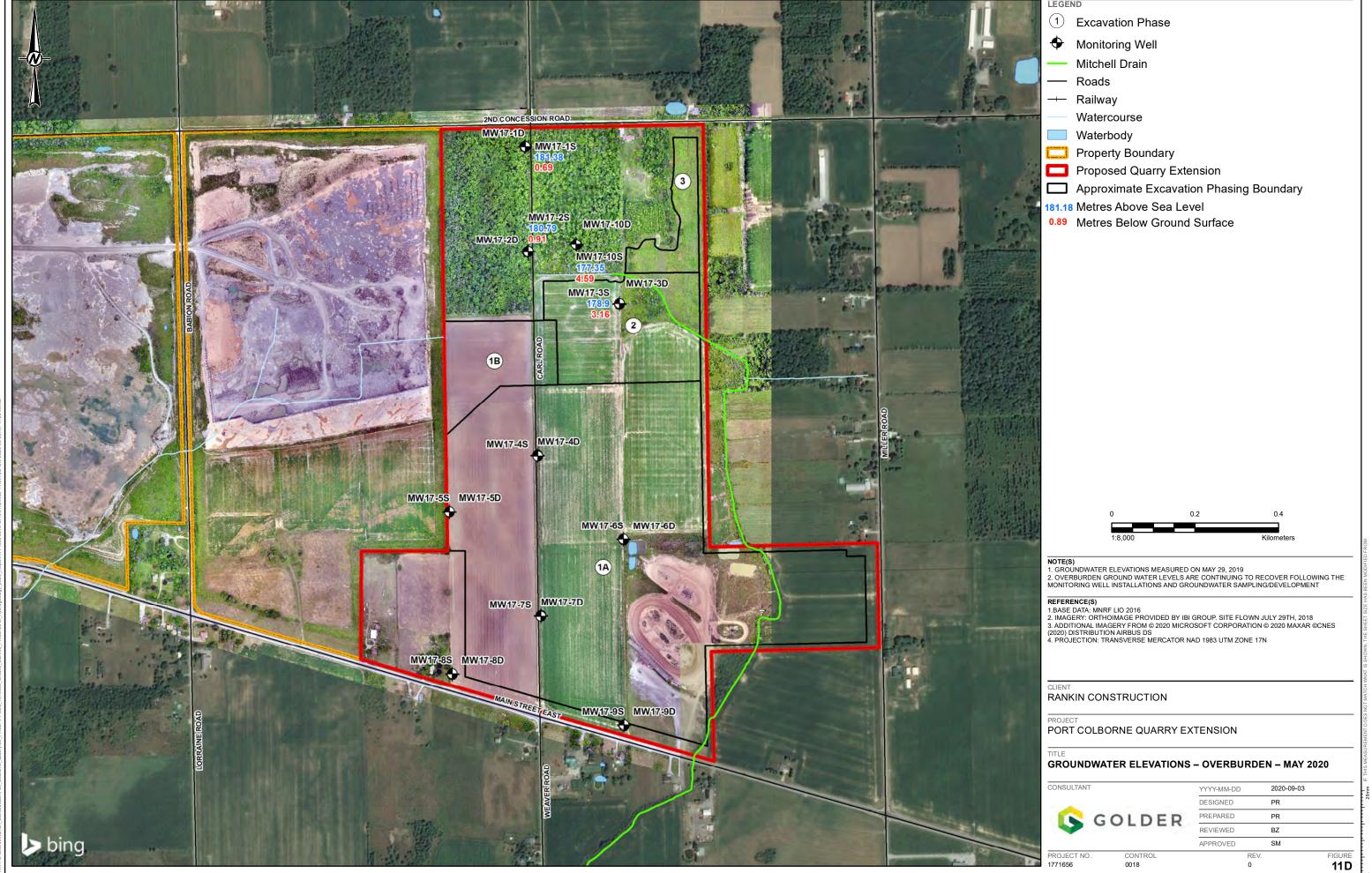
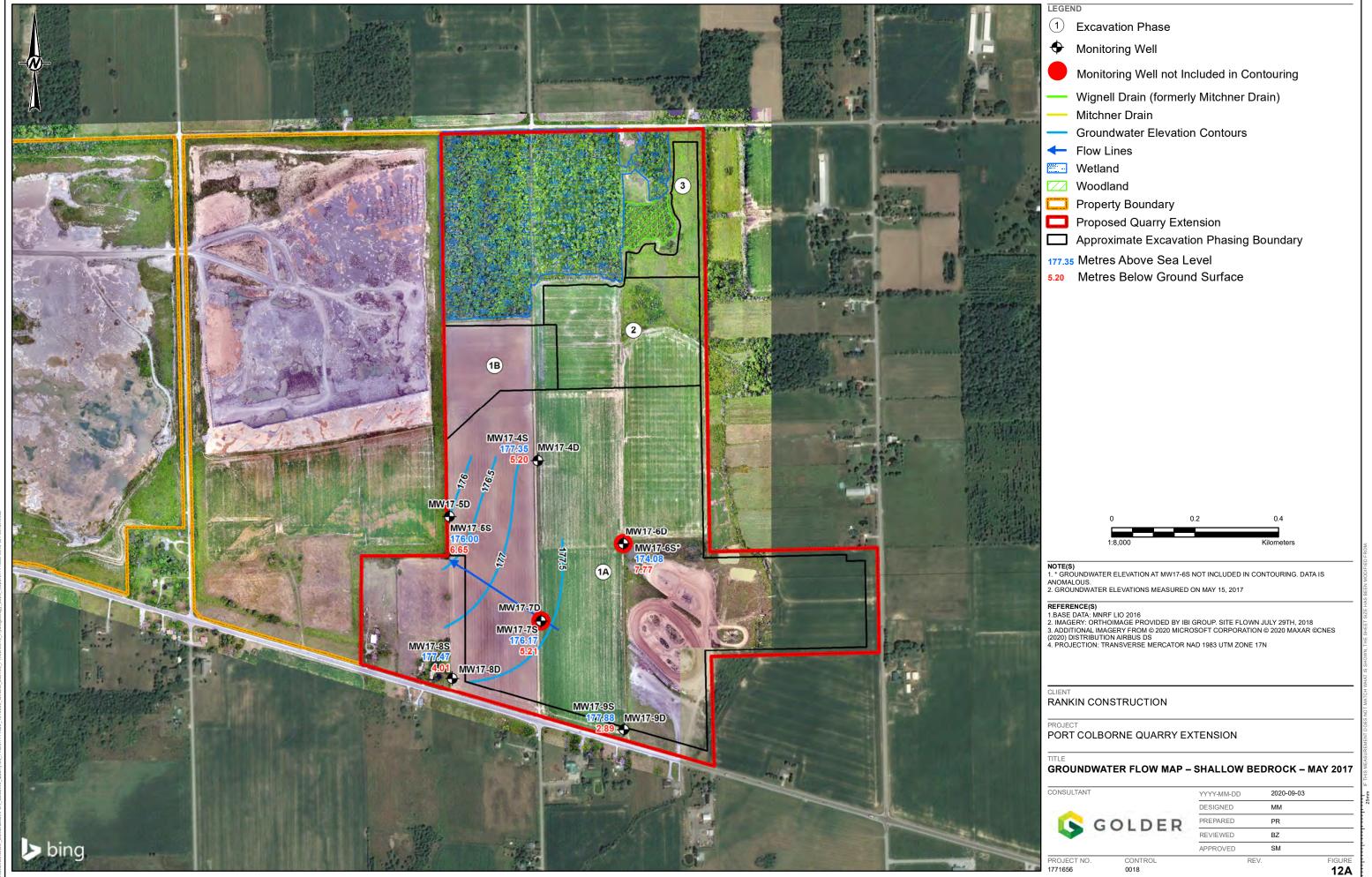
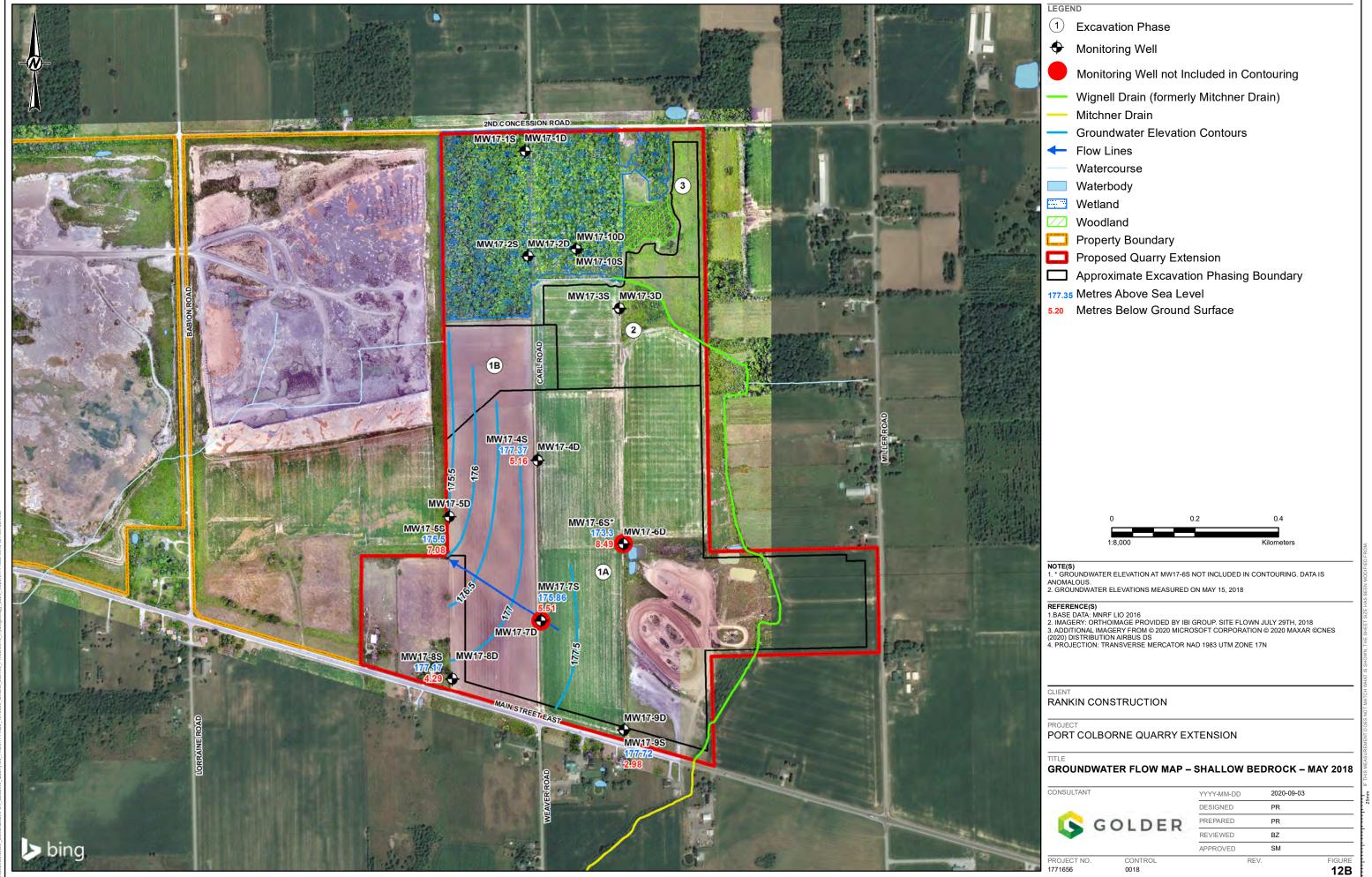
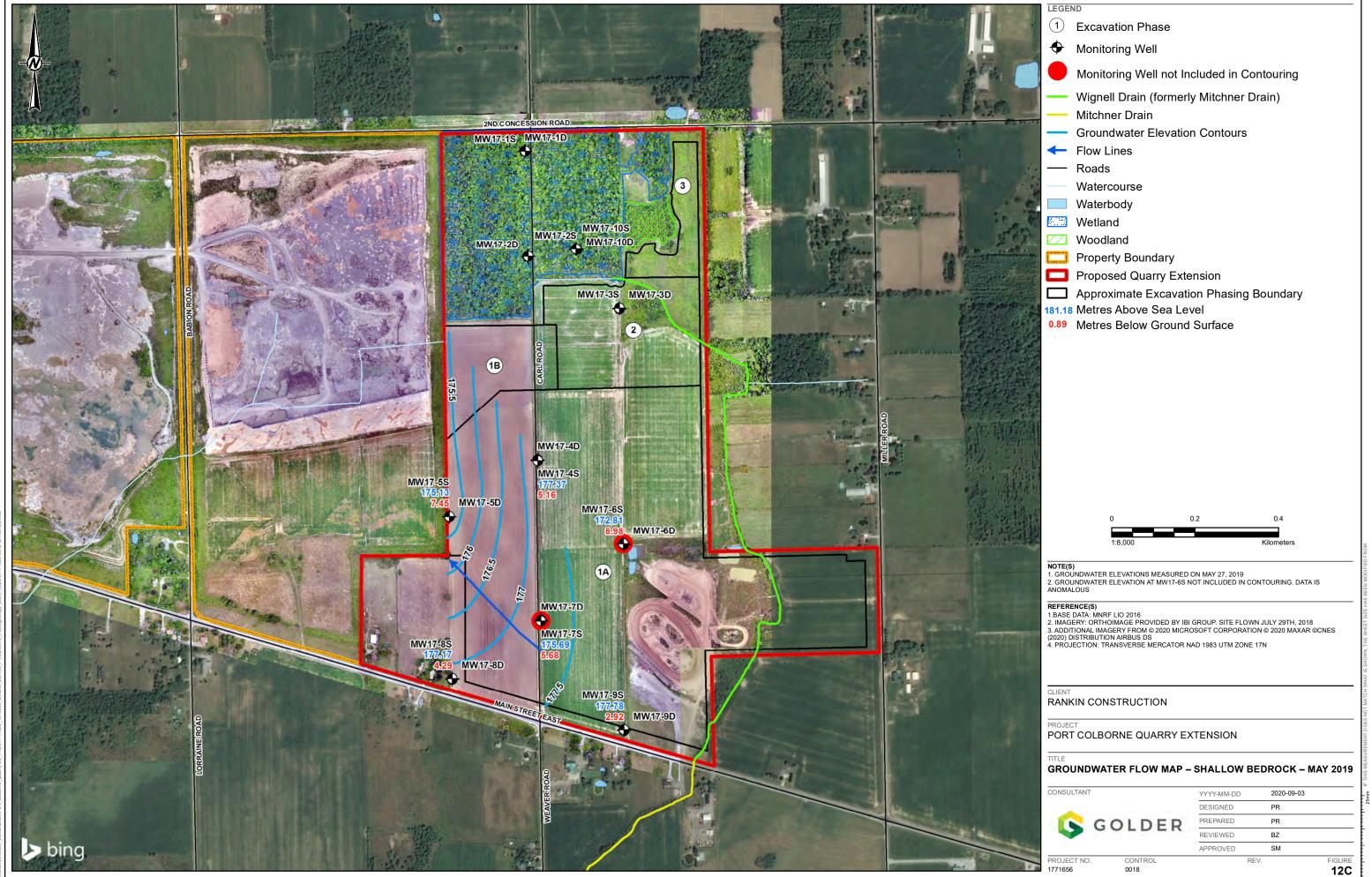


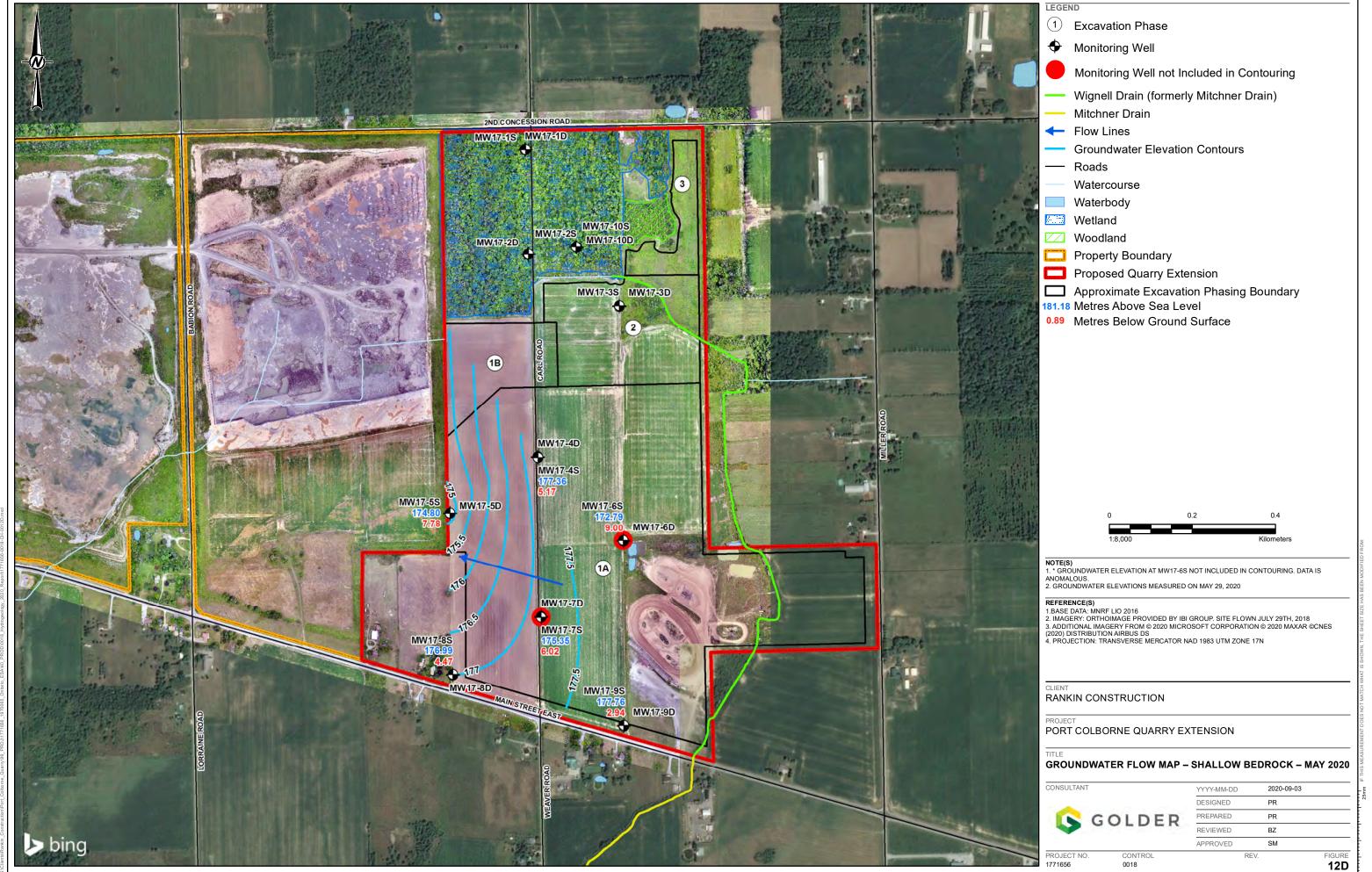

Average Thickness Unit 2 of the Bertie Formation (5.02 m)

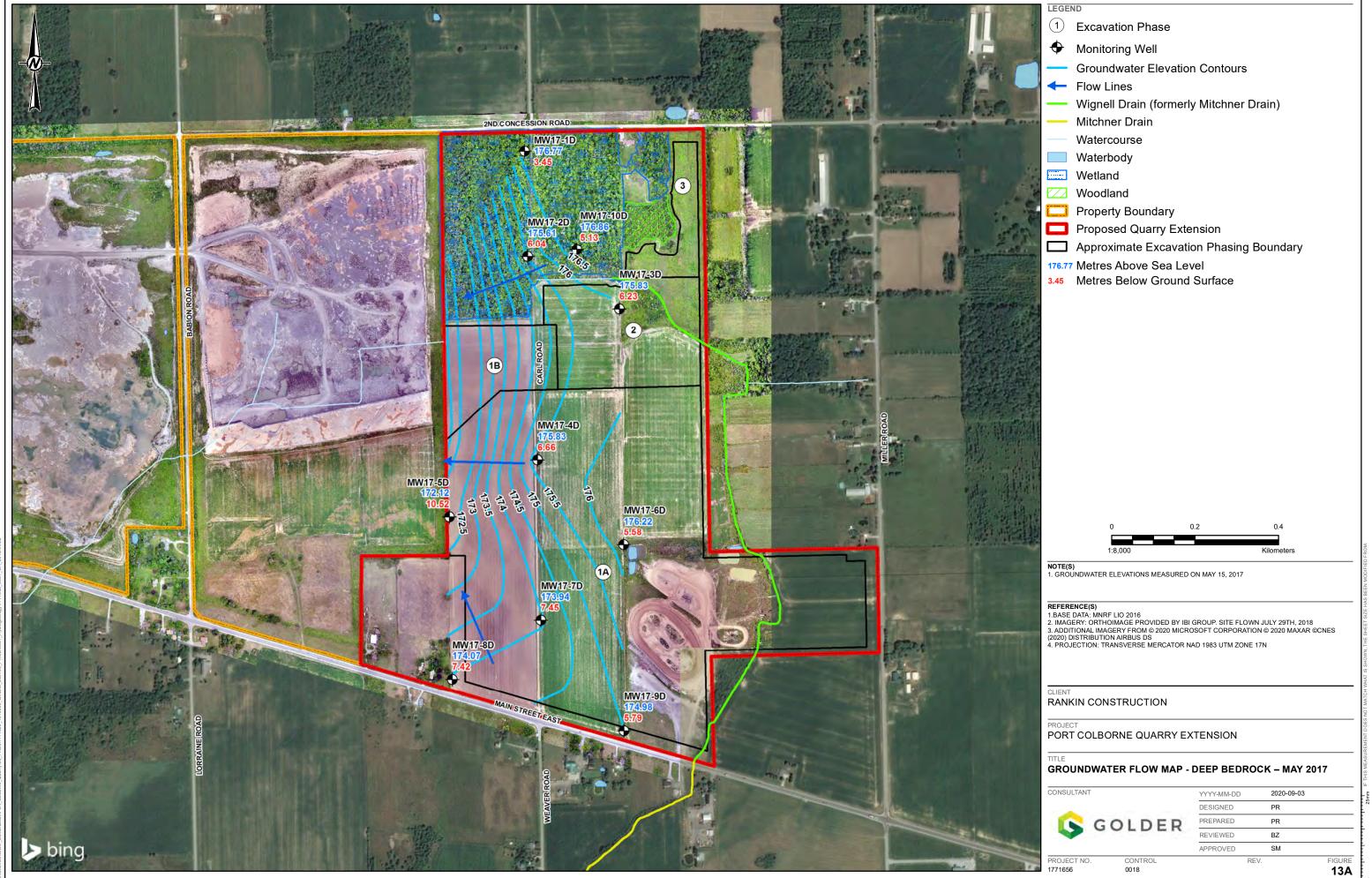

Base of Unit 2 of the Bertie Formation

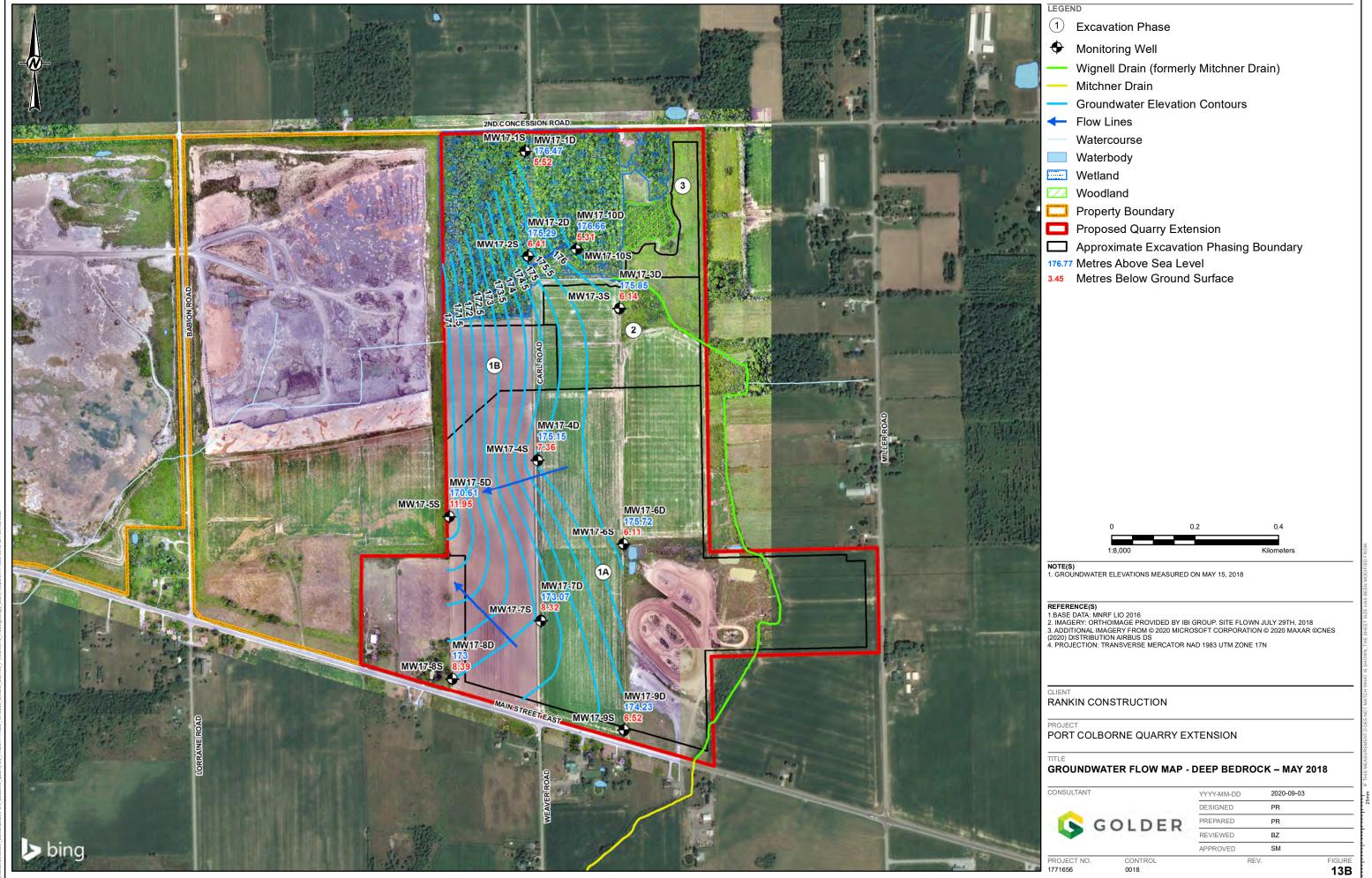
Hydraulic Conductivity Results Port Colborne Quarries

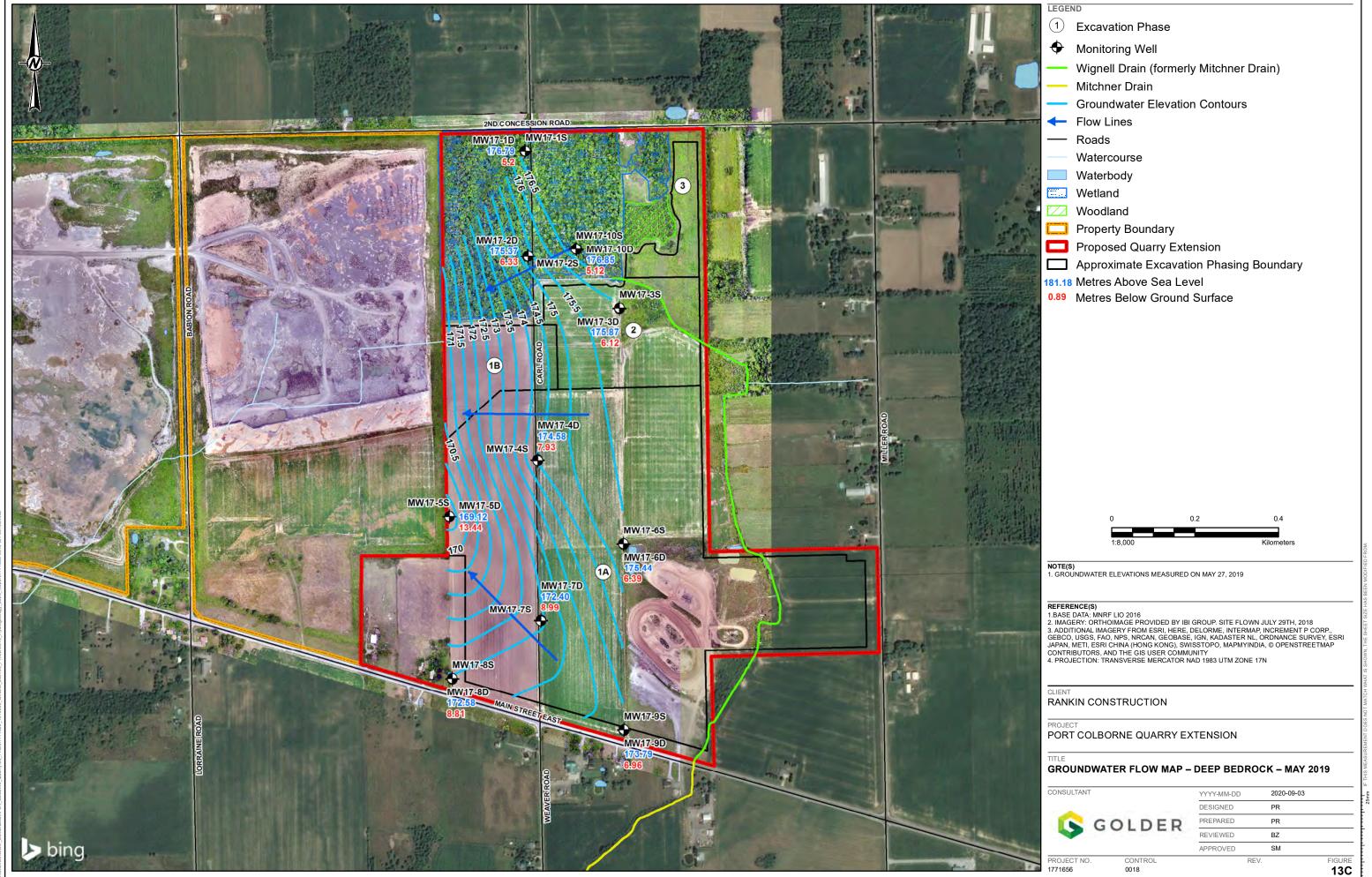
FIGURE 10
PROJECT NO: 1771656
DATE: October 20, 2017
DRAWN: TP APPROVED: SM

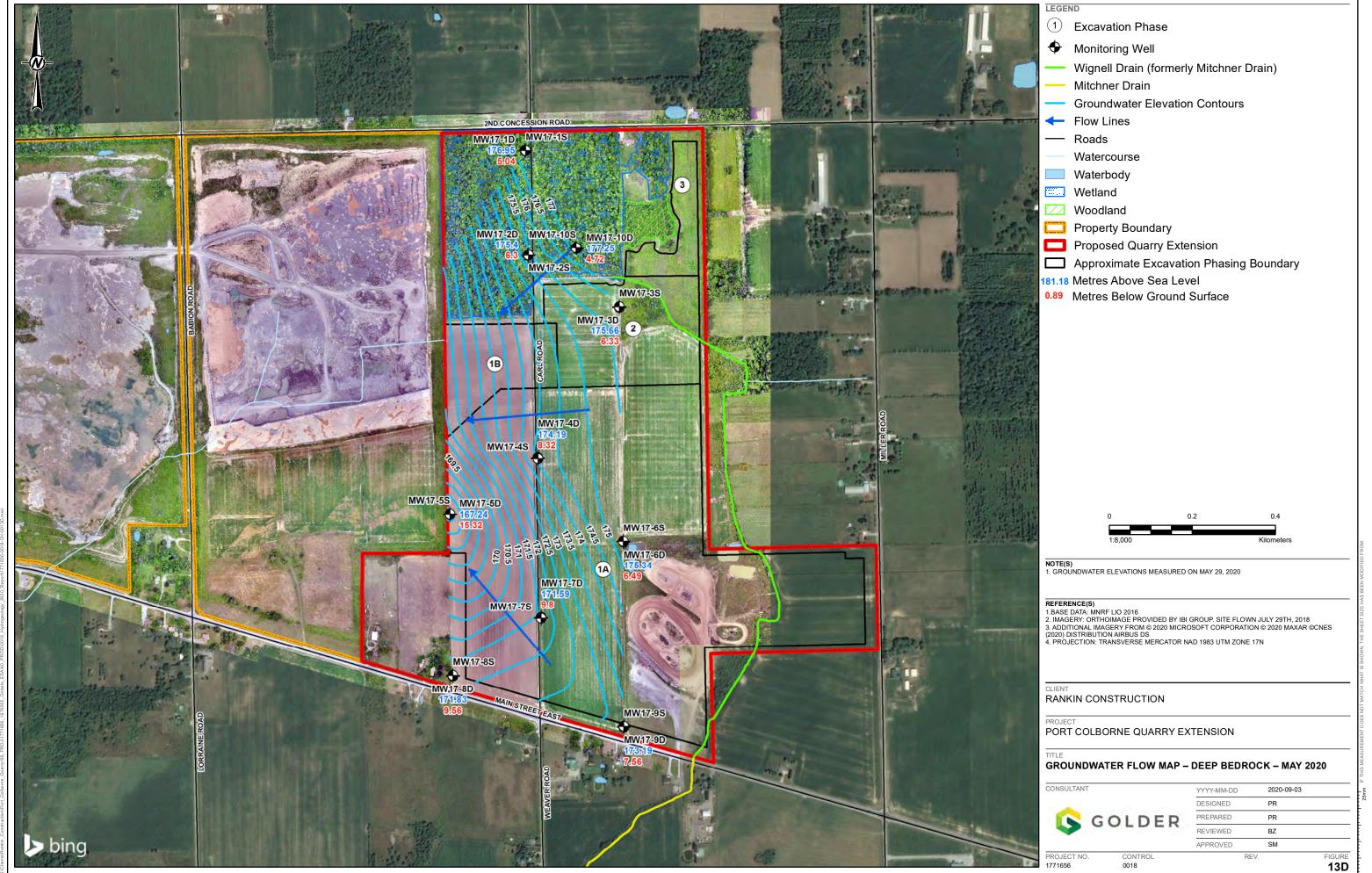






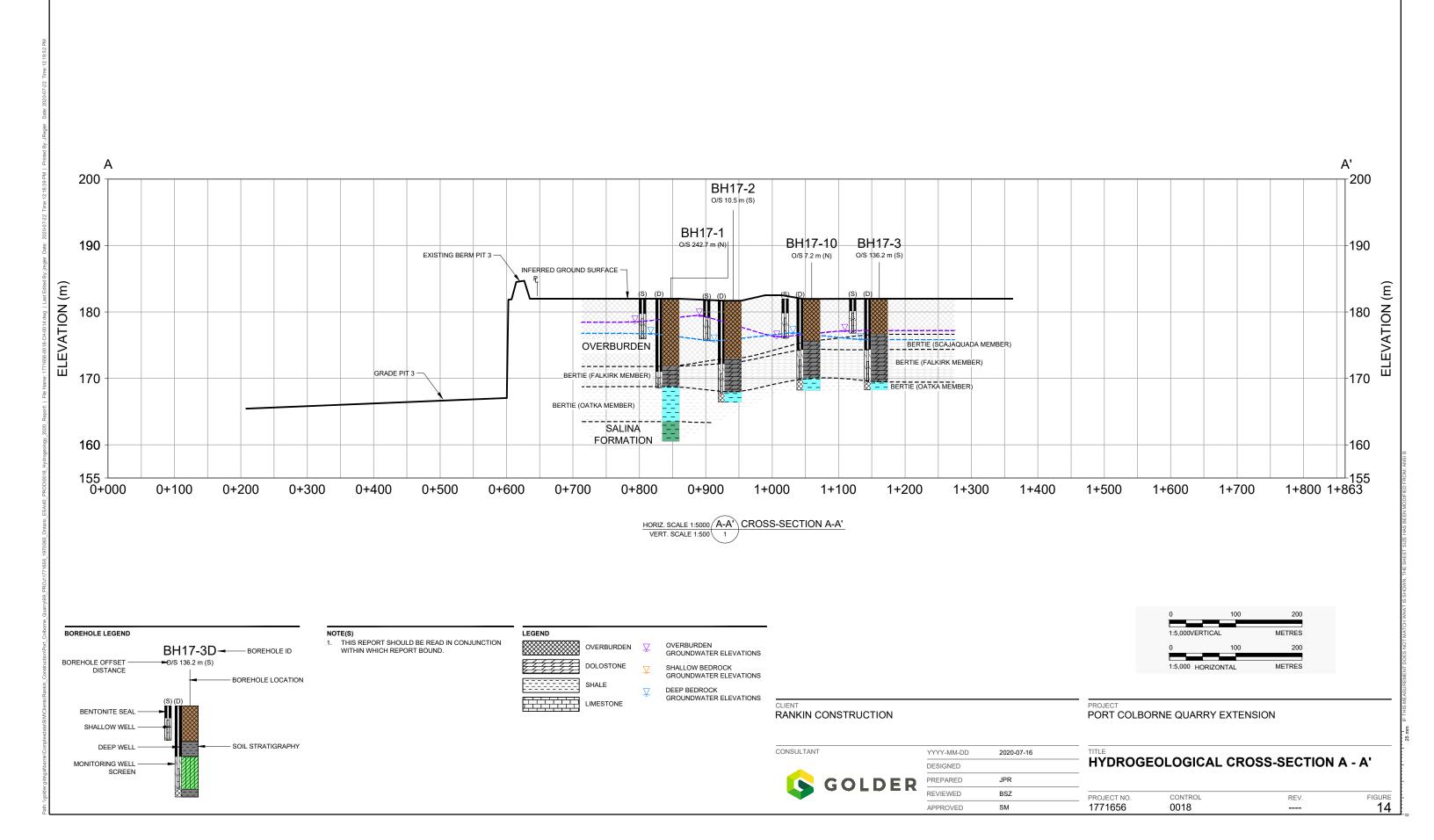

FIGURE 11C

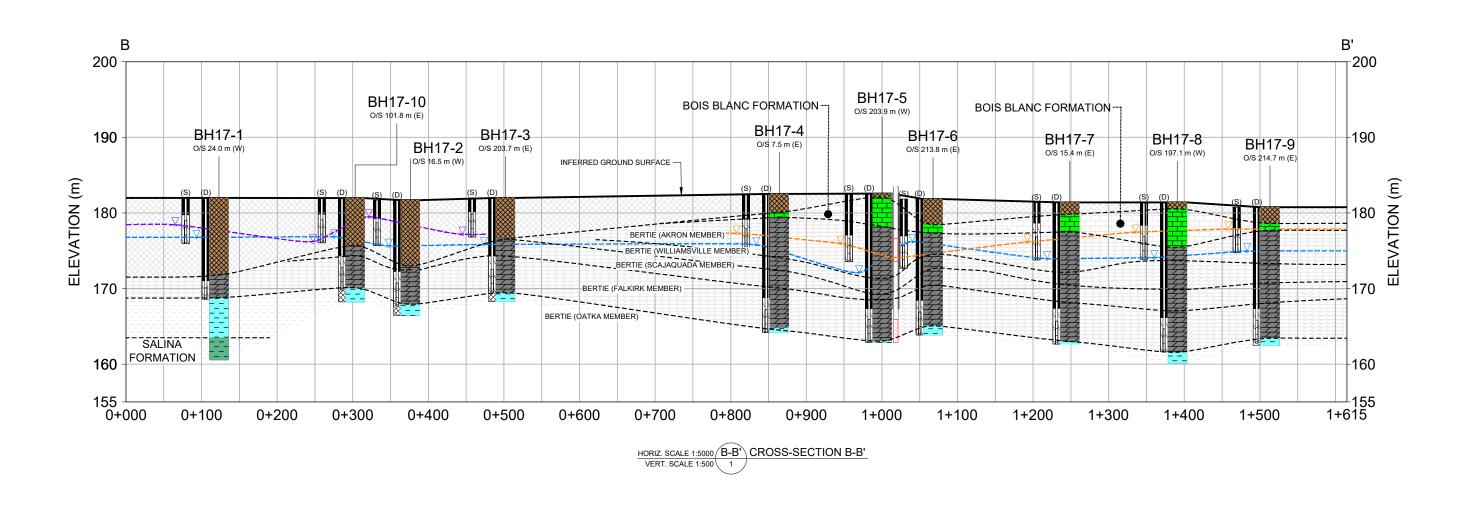


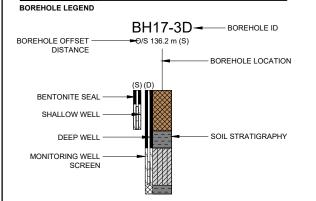








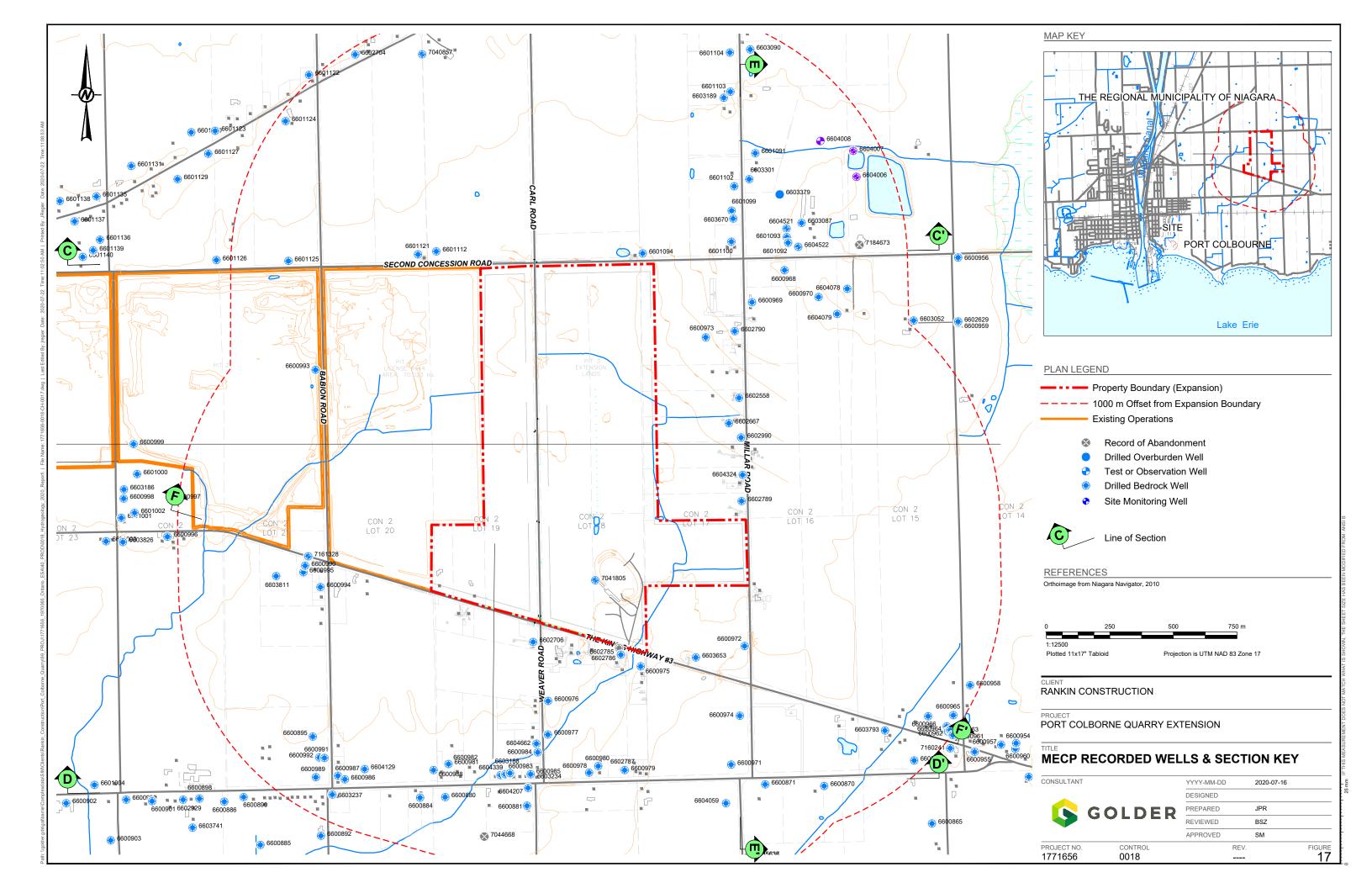


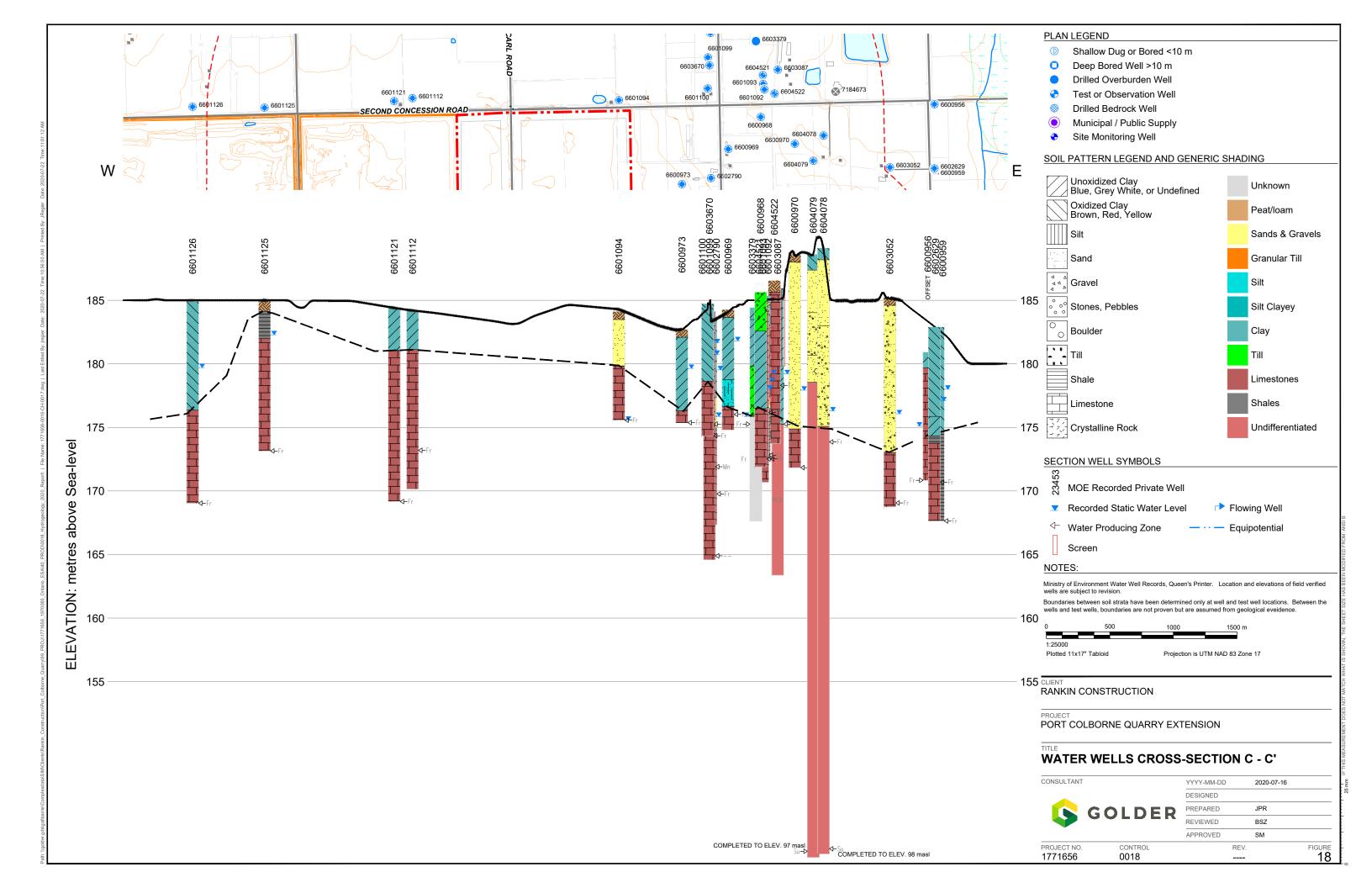


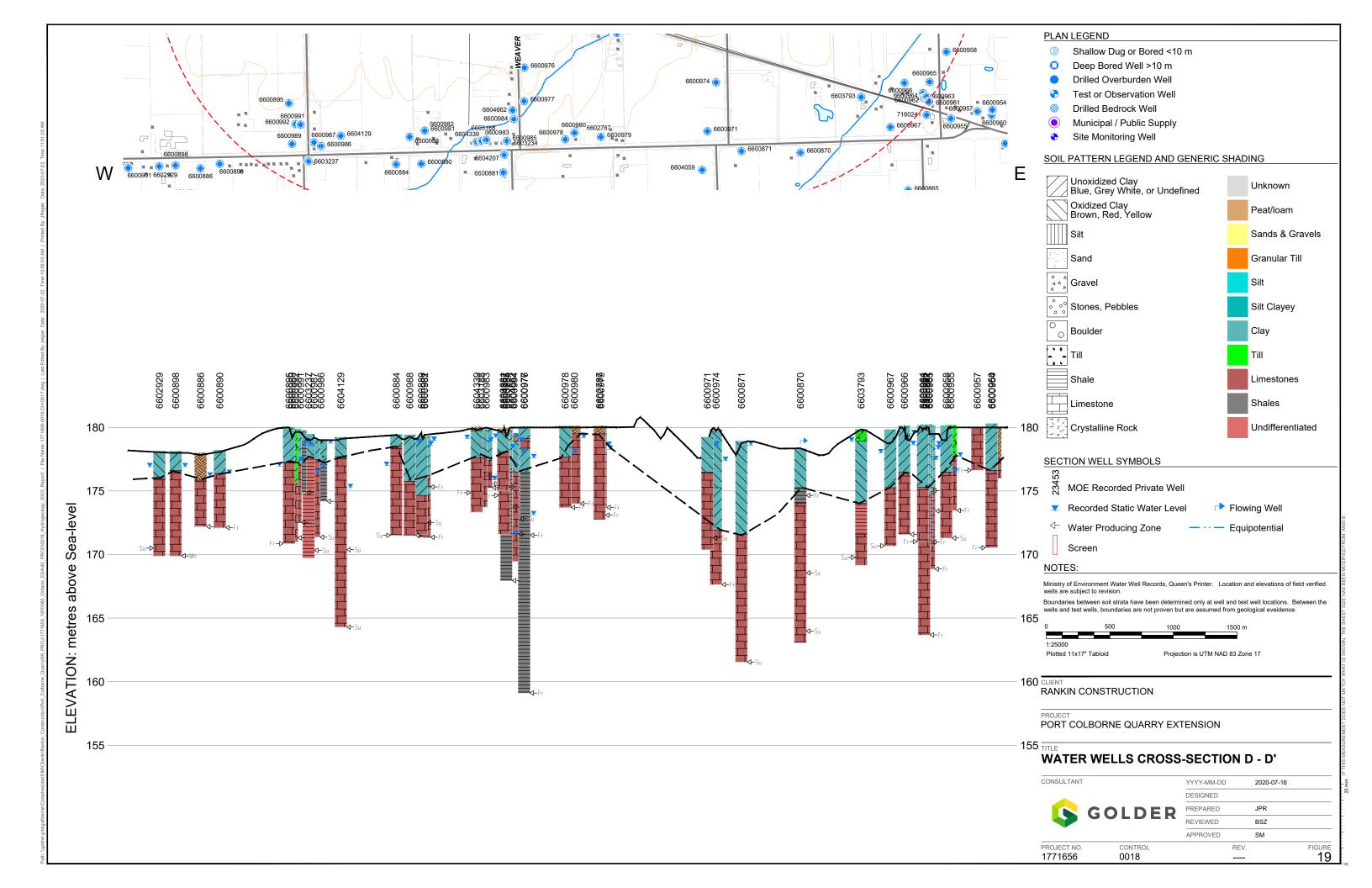
1. THIS REPORT SHOULD BE READ IN CONJUNCTION WITHIN WHICH REPORT BOUND.

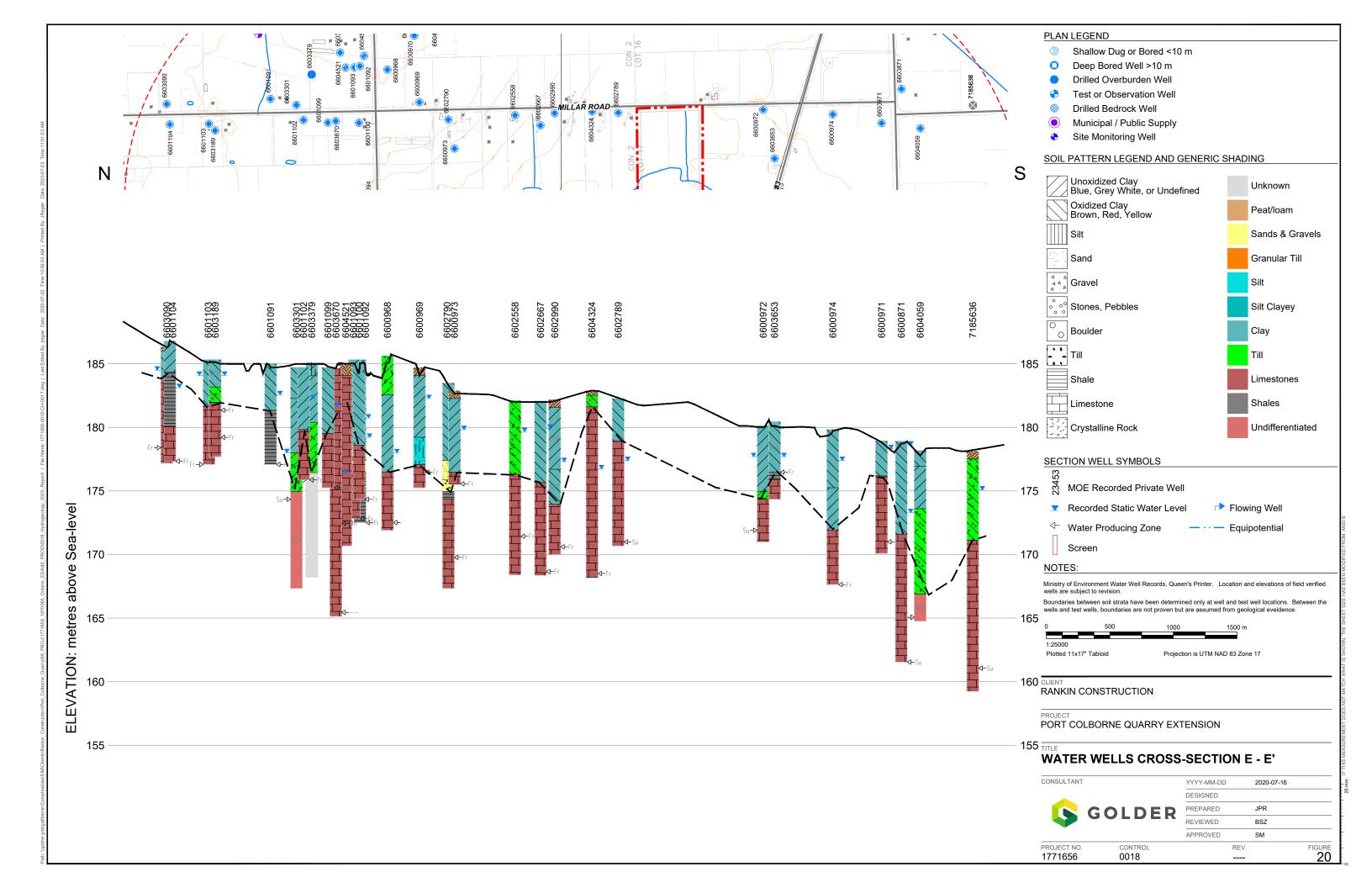
RANKIN CONSTRUCTION

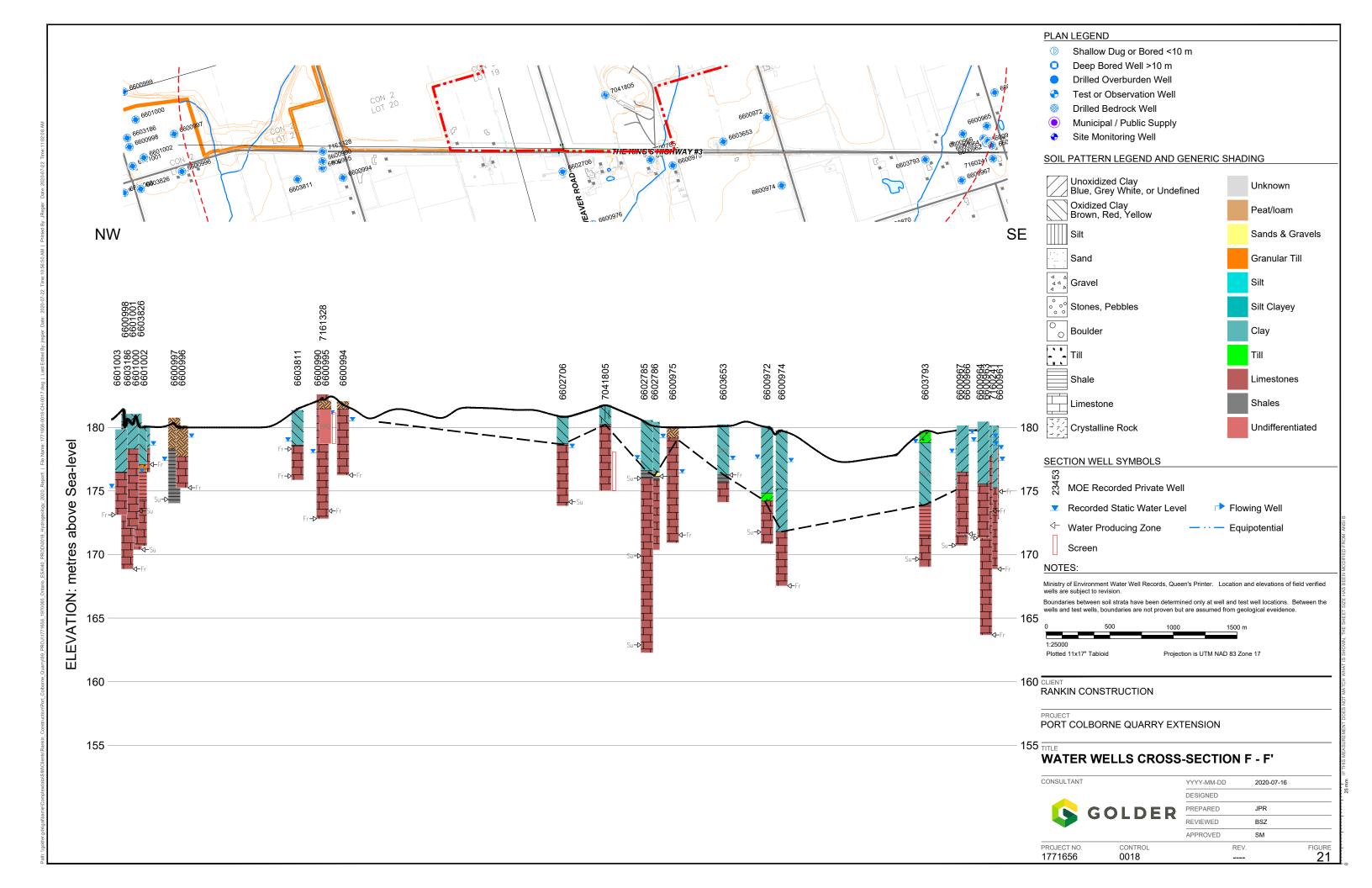
CONSULTANT

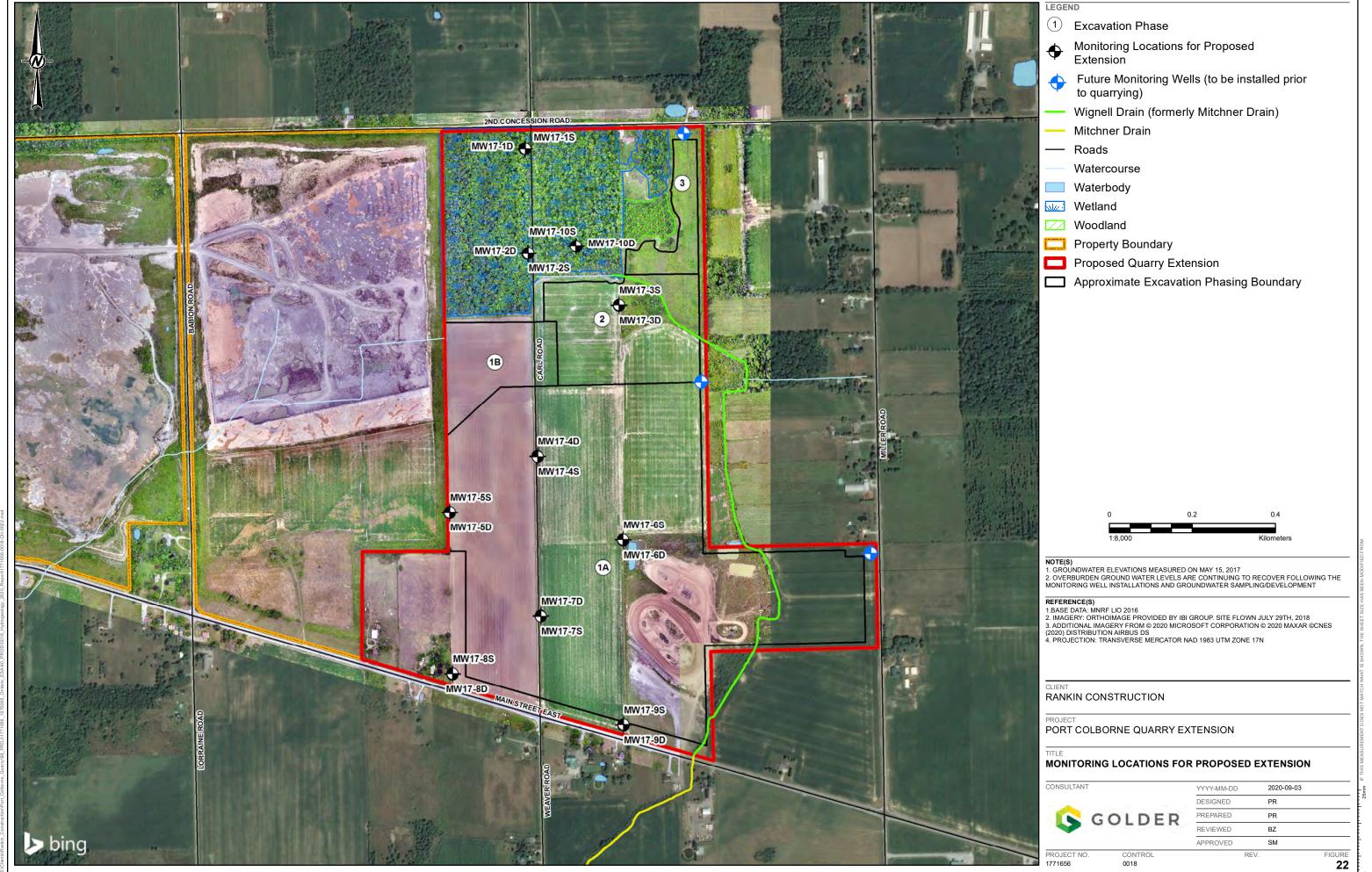

YYYY-MM-DD 2020-07-16 S GOLDER PREPARED JPR SM


DODT COLDODNIE OLIADDY EVTENSIONI		PROJECT
FUNT COLBONNE QUARKT EXTENSION	NSION	PORT COLBORNE QUARRY EXTER


HYDROGEOLOGICAL CROSS-SECTION B - B'


FIGURE 15 PROJECT NO. REV. 1771656 0018





October 2020 1771656-1000-Rev2

APPENDIX A

Borehole Logs

RECORD OF BOREHOLE: BH17-10D

SHEET 1 OF 2

DATUM: Geodetic

LOCATION: N 4752127.19; E 646721.25

BORING DATE: April 3, 2017

Second Supervision Second	DESCRIPTION	ا ہ	Ð	SOIL PROFILE			SA	MPLES	RESI	STANCE	NETRAT	ION S/0.3m	()	HYDRAUL k, c	:m/s	CTIVITY,	T	ا ی ا	DIE 301 :====
DODAND SIFFACE OCHANGE STATE OCHAN	### ### ### ### ### ### ### ### ### ##	ZES	WETF		LOT		œ	ag.					80 `			10 ⁻⁷	10-6	- NON NEW NEW	OR
GONDAM SIRREACE OCALAY: reddish brown Lagrange and the state of the	### ### ### ### ### ### ### ### ### ##	MET	NG.	DESCRIPTION	TA P		MBE	YPE	SHEA	AR STRE	NGTH	nat V.	- Q - ●					18.8 18.1 18.1	
OFFICIAL STREET, STREE	### (### 12.50 1.50	J.	BOR		TRA		N		S Cu, Ki									\[\]	
CLAY, readish frown CLAY, readish frown Angle and angle and angle angl	CONTROLLEDIEN - TOPSOIL , over SILTY CONTROLLEDIEN - TOPSOIL , over S			GROUND SURFACE	S		H	-		20	40	60	80	10	20	30	40	++	
		0	\Box	OVERBURDEN - TOPSOIL, over SILTY	***	0.00	\forall	+								+	+	+	
		. 1	Adker SoilMax Hollow Stem Augers	CLAY; reddish brown		0.00													. સ્વ.સ્વ.સ્વ.સ્વ.સ્વ.સ્વ.સ્વ.સ્વ.સ્વ.સ્વ.

RECORD OF BOREHOLE: BH17-10D

SHEET 2 OF 2

DATUM: Geodetic

LOCATION: N 4752127.19; E 646721.25

BORING DATE: April 3, 2017

⊀د I ⊨										k, cm/s				
DEPTH SCALE METRES BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	20 SHEAR STF Cu, kPa	ENGTH r	60 80 hat V. + Q em V. ⊕ U	` - O	WATER C	10 ⁻⁸ 10 ⁻⁷ CONTENT PE	10 ⁶ I RCENT WI 40	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
6	CONTINUED FROM PREVIOUS PAGE OVERBURDEN - TOPSOIL , over SILTY CLAY ; reddish brown END OF BOREHOLE - AUGER REFUSAL - For Bedrock coring details, refer to Record of Drillhole BH17-10D	-	175.66 6.30											
. 7														
9														
. 10														

LOCATION: N 4752127.45; E 646718.75

RECORD OF BOREHOLE: BH17-10S

BORING DATE: April 5, 2017

SHEET 1 OF 2 DATUM: Geodetic

T DEPTH SCALE METRES BORING METHOD	1	DESCRIPTION GROUND SURFACE TOPSOIL	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ELEV. DEPTH (m) 181.94 0.00		TYPE BLOWS/0.3m	SHEA Cu, ki	AR STREM	40 6 NGTH r	60 8 ⊥ nat V. + rem V. ⊕	Q - • U - O	10 ⁻⁹ WAT	ER CONTEN			ADDITIONAL LAB. TESTING	PIEZOMETEI OR STANDPIPE INSTALLATIO	=
0	1	GROUND SURFACE	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	DEPTH (m)		TYPE	SHEA Cu, kf	AR STREM	NGTH r			Wp I	0	۷ ۱		ADDITI LAB. TE		
0	1		STRA	(m) 181.94			ou, Ar									₹₹		
0	1			181.94 0.00				20 4	40 (ου 8	5U	10	20	30 4	U			
				0.00)				\top						-			
1										1			1		, 1		, P	
1								1	1									ı
1																	ı	ı
1																	ı	ı
1																		ı
1																		ı
1				1														ı
1			===	1													ı	ı
1			EEE														ı	ı
																	Bentonite Seal	ı
																		ı
																	ı	ı
1		CILTY OLANGE LAT		180.42														
		SILTY CLAY; light brown;		1.52														
																	ı	ı
																		ı
2																	ı	ı
																	ı	,
	s																ı	
Acker SoilMax	Auger																ı	$v_i = v_i + v_i $
er Soi	Stem																Sand	4
Ack	lollow																	
																	ı	
3																	ı	Ä
																	ı İ	ð
																	ı	
																	ı	
																		Ä
																		4
																		Ž
																	Screen and Sand	
4																	Screen and Sand	
																		3
																		1
																	ı N	4
																		4
																		A
																		Ä
																		A
																		4
5 L	ᅡ	CONTINUED NEXT PAGE		1		+-	-	+	·	+		⊦	-+	-	⊦ — — -			-1
DEPTH					1 1		1	1	1								1	

RECORD OF BOREHOLE: BH17-10S

LOCATION: N 4752127.45; E 646718.75 DATUM: Geodetic BORING DATE: April 5, 2017

5P	I/DC	PT HAMMER: MASS, 64kg; DROP, 760mm	l													HAM	/IER T	YPE: AUTOMATIC
ш	400	SOIL PROFILE			SAN	ИPLE	s	DYNAMIC PENET RESISTANCE, BL	RATIOI OWS/0	۱ \ .3m د		HYDRA	AULIC CO k, cm/s	ONDUCT	IVITY,	T	 	DIEZOMETED
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 40 L SHEAR STRENG Cu, kPa	TH na	80 t V. + Q m V. ⊕ U	`` }- •	10 W/ Wp	ATER CO	DNTENT	PERCEI	WI	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
- 5	Acker SoilMax Hollow Stem Augers	CONTINUED FROM PREVIOUS PAGE SILTY CLAY; light brown;	-					20 40	60	80		10	U Z	0 30	U 4	10		Screen and Sand
- 6		END OF BOREHOLE		176.02 5.92														<u></u>
7																		
8																		
9																		
10																		
DEI		SCALE						GO	LD	ΕR								OGGED: TP ECKED: SM

RECORD OF BOREHOLE: BH17-1D

SHEET 1 OF 3

LOCATION: N 4752362.64; E 646595.40 BORING DATE: February 6, 2017 DATUM: Geodetic

щ	ДQ	SOIL PROFILE			SAI	MPLE	S	DYNAM RESIST	IC PEN ANCE,	ETRATIONS	ON /0.3m	1	HYDRA I	ULIC CONE k, cm/s	DUCTIVIT	Υ,]	ا ي	DIEZOMETED
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	SHEAR Cu, kPa	STREN	0 (GTH	60 8 L nat V. + rem V. ⊕	30	10 ⁻ WA Wp	10° TER CONT	10 ⁻⁷ ENT PEF	10 ⁻⁶ L RCENT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
	ш	GROUND SURFACE	,				ш	20) 4	0 (8 06	30	10	20	30	40		
- 0 · · · · · · · · · · · · · · · · · ·		OVERBURDEN - TOPSOIL over SILTY CLAY; reddish brown		181.99														
		CONTINUED NEXT PAGE	1								1		i					

RECORD OF BOREHOLE: BH17-1D

LOCATION: N 4752362.64; E 646595.40 BORING DATE: February 6, 2017 DATUM: Geodetic

щ	0	SOIL PROFILE			SA	MPLES	RESIS	MIC PEN STANCE,	BLOWS	/0.3m		HYDRAU k,	cm/s	NDOCII	IVII T,	T	ا ی _	D.==0: :	_
SCAL 3ES	BORING METHOD		LOT		œ	3m					80	10 ⁻⁹		10	⁻⁷ 10) _{-e} T	ADDITIONAL LAB. TESTING	PIEZOMETEF OR	
DEPTH SCALE METRES	NG N	DESCRIPTION	TAPI	ELEV.	NUMBER	TYPE DWS/0.3	SHEA		NGTH	nat V. +	Q - • U - O				PERCEN	١T	3. TE	STANDPIPE INSTALLATIO	
DE	BORI		STRATA PLOT	DEPTH (m)	Ñ	TYPE BLOWS/0.3m	Cu, KF										<u>F</u> A		
	_	CONTINUED FROM PRESIDENCE			H	- 1 "	1	20 4	40 (30 E	80	10	20	30) 40	D			
- 5	\Box	CONTINUED FROM PREVIOUS PAGE OVERBURDEN - TOPSOIL over SILTY	·			+			+				+					<u>3</u> -3	Į
		CLAY; reddish brown																	
				3															
			\otimes	1														≱ ∓≱	
			\otimes	3														[\$ ∃ \$]	
			\otimes															(3 3	
				3															
				1															
																			ı
6																			
																			ı
																			ı
				1															
																			J
. 7																			Į
'																			
																			ı
																			ı
. 8																			
																			ı
																			ı
. 9																			ı
				1															
				1															
				1															1
10	_L		_	1	oxdot	- 4-	L	<u> </u>	L	↓	<u> </u>	_			↓				
		CONTINUED NEXT PAGE																	
		CALE					\$												

RECORD OF BOREHOLE: BH17-1D

SHEET 3 OF 3

LOCATION: N 4752362.64; E 646595.40

BORING DATE: February 6, 2017

DATUM: Geodetic

Щ	Q	SOIL PROFILE			SA	MPLES	DYNAI RESIS	MIC PEN TANCE,	IETRATION S	ON 0.3m	1	HYDRAL k	JLIC CON , cm/s	DUCTIV	/ITY,	Τ	ا ق	DIEZOLISTES
RES	METH		LOT		ĸ.	3m					30	10 ⁻⁹		10 ⁻⁷		е <u>Т</u>	STIN	PIEZOMETER OR
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE BLOWS/0.3m	SHEAI Cu, kP	RSTRE	NGTH I	nat V. +	Q - • U - O		TER CON		ERCEN	Т	ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
5	BOF		STR/	(m)	ž	. BLO					30	Wp I 10		30			45	
10		CONTINUED FROM PREVIOUS PAGE																
		OVERBURDEN - TOPSOIL over SILTY CLAY; reddish brown																
		END OF BOREHOLE - AUGER		171.78 10.21														
		REFUSAL																
		- For Bedrock coring details, refer to Record of Drillhole BH17-1D																
11																		
12																		
13																		
14																		
•																		
15																		
			,	•					•		•							
DE	PTHS	CALE						$G \subset$	ΝГ	\ F I	ח						LOC	GED: TP

RECORD OF BOREHOLE: BH17-1S

LOCATION: N 4752362.66; E 646597.97 DATUM: Geodetic BORING DATE: March 29, 2017

SHEET 1 OF 2

ا بي	О О	SOIL PROFILE			SA	MPLE	ES	DYNAMIC PE RESISTANCI	E, BLOWS	S/0.3m)	HYDRAI	c, cm/s	NDOCT	vii i,	ي∟ ∐	DIEZONAET	ED
DEPIH SCALE METRES	BORING METHOD		LOT		œ	\exists	.3m	20		60 8	0 `	10 ⁻				ADDITIONAL LAB. TESTING	PIEZOMET OR	
AE T	ING	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.3m	SHEAR STRI Cu, kPa					TER CO	NTENT	PERCENT	90.TE	STANDPIF INSTALLAT	ION
7	BOR		STRA	(m)	N	-	BLO						- 20			₹₫		
- I		GROUND SURFACE	0,	182.07		+		20	40	60 8	U	10	20	30	40			
0		TOPSOIL	EEE	0.00		1			+									
1																		
																	Bentonite Seal	
				180.55														
		SILTY CLAY; reddish brown;		1.52														
2																		
	Acker SoilMax Hollow Stem Augers																	
	Acker SoilMax low Stem Auge																	
	Acke																Sand	
	Ĭ																	
3																		
																		Ö
																		×
. 4																	0	
4																	Screen and Sand	
																		7.
5	_L				_		_			 			‡			_		
		CONTINUED NEXT PAGE																
		CALE						G										

RECORD OF BOREHOLE: BH17-1S

LOCATION: N 4752362.66; E 646597.97 BORING DATE: March 29, 2017 DATUM: Geodetic

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

HAMMER TYPE: AUTOMATIC

<u> </u>	P 1	SOIL PROFILE		,	SAI	MPLE	RE	NAMIC PE SISTANCE	, BLOW	ION S/0.3m	(HYDRAUI k,	cm/s	DUCTIV	/IIY,	T	ۇڭ	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE		20 IEAR STRE , kPa	40 I NGTH	nat V. + rem V. €	0 - O	WAT Wp I -	ER CON	TENT PI	ERCEN	NI NI	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
\dashv	_	CONTINUED FROM PREVIOUS PAGE				-	+	20	40	60	80	10	20	30	40	U		
- 5	Acker SoilMax Hollow Stem Augers	SILTY CLAY; reddish brown;		176.02														Screen and Sand
-		END OF BOREHOLE		6.05														
. 7																		
8																		
. 9																		
10																		
DEF	PTH S	CALE				i	<u> </u>	GC	<u> </u>		<u></u>						L(OGGED: TP

LOCATION: N 4752109.43; E 646602.90

RECORD OF BOREHOLE: BH17-2D

SHEET 1 OF 2 DATUM: Geodetic BORING DATE: March 29, 2017

щ	QQ	SOIL PROFILE			SA	MPLES	DYNA RESIS	MIC PEN	IETRATIONS	ON /0.3m)	HYDRAU k,	LIC CON	NDUCT	IVITY,	Т	ا و ا	DIE 201 :
DEPIH SCALE METRES	BORING METHOD		LOT		2	m.					80 `	10 ⁻⁹		10) ⁻⁷ 10	-6 Т	ADDITIONAL LAB. TESTING	PIEZOMETER OR
MET I	NG	DESCRIPTION	TA P	ELEV.	NUMBER	TYPE	SHEA	R STREN	NGTH	nat V. +	Q - • U - O				PERCEN		B. H	STANDPIPE INSTALLATION
٦ _	BORI		STRATA PLOT	DEPTH (m)	N N	TYPE BLOWS/0.3m	Cu, KF										\[\]	
	_	GROUND SURFACE	S		\vdash	- -	+ :	20 4	40 (30 E	80	10	20	3	0 40)	\vdash	
- 0		OVERBURDEN - TOPSOIL, over SILTY	***	181.70 0.00	H	+	1											
- 0 - - 1		GROUND SURFACE OVERBURDEN - TOPSOIL, over SILTY CLAY; reddish brown		181.70 0.00				20 4	40	80 8	80							
- 5	_L		_		\vdash	-4-		↓	<u> </u>	↓	<u> </u>	_			∔		-	
- 1		CONTINUED NEXT PAGE																
, l																		

RECORD OF BOREHOLE: BH17-2D

LOCATION: N 4752109.43; E 646602.90 DATUM: Geodetic BORING DATE: March 29, 2017

SOIL-PROPRIES
PACOPTION OF BOREHOLE - AUGER REPUBLIC - For Bedicox coring details, refer to Record of Dillinate Brit7-2D
B COMMUNICATION TO PROBLEM AND

1:25

RECORD OF BOREHOLE: BH17-2S

SHEET 1 OF 2

CHECKED: SM

LOCATION: N 4752108.56; E 646604.84

DATUM: Geodetic BORING DATE: March 30, 2017 SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm HAMMER TYPE: AUTOMATIC DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m $\begin{array}{c} \text{HYDRAULIC CONDUCTIVITY,} \\ \text{k, cm/s} \end{array}$ SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 10⁻⁸ 10⁻⁷ BLOWS/0.3m STANDPIPE INSTALLATION NUMBER TYPE ELEV. SHEAR STRENGTH Cu, kPa nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION DEPTH OW. Wp -(m) GROUND SURFACE 181.70 TOPSOIL Bentonite Seal 180.18 1.52 SILTY CLAY; reddish brown; GTA-BHS 001 S:\CLIENTS\RANKIN_CONSTRUCTION\PORT_COLBORNE_QUARRY\\02_DATA\GINT\1771656.GPJ GAL-MIS.GDT 7/27/20 Acker SoilMax Sand Screen and Sand CONTINUED NEXT PAGE GOLDER DEPTH SCALE LOGGED: TP

RECORD OF BOREHOLE: BH17-2S

SHEET 2 OF 2 LOCATION: N 4752108.56; E 646604.84 DATUM: Geodetic BORING DATE: March 30, 2017

 Щ	dot	SOIL PROFILE			SA	MPLE	≣s	DYNAMIC RESISTAN	PENETRA CE, BLOW	TION 'S/0.3m	1	HYDRA	AULIC Co k, cm/s	ONDUCT	IVITY,	T		DIEZO: "	
METRES	BORING METHOD		LOT		ĸ			20	40		80	10) ⁻⁸ 10	D ⁻⁷ 1	0 _e T	ADDITIONAL LAB. TESTING	PIEZOMET OR	
MET	ING	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.3m	SHEAR ST Cu, kPa		nat V. +	- Q- •	W	ATER CO	ONTENT			B. 7E	STANDPIF INSTALLAT	
ק	BOR		STRA	(m)	N	-	BLO					vvp		OW 3			₹≦		
		CONTINUED FROM PREVIOUS PAGE					\dashv	20	40	60	80	1	υ 2	0 3	0 4	40			
5		SILTY CLAY; reddish brown;					\dashv												
	lax ugers																		
	Acker SoilMax low Stem Auge																	Screen and Sand	
	Acker SoilMax Hollow Stem Augers																		
	유																		1
																			X
6																			
Ü		END OF BOREHOLE	- KKK	175.65 6.05															431
7																			
8																			
_																			
9																			
10																			
10																			
DE	PTH S	CALE					1	G	OΙ	DF	R						LO	GGED: TP	
1:	25								→ -		•						CLIE	CKED: SM	

RECORD OF BOREHOLE: BH17-3D

SHEET 1 OF 2

LOCATION: N 4751983.70; E 646823.07

BORING DATE: March 23, 2017

DATUM: Geodetic

RECORD OF BOREHOLE: BH17-3D

LOCATION: N 4751983.70; E 646823.07 BORING DATE: March 23, 2017 DATUM: Geodetic

HAMMER TYPE: AUTOMATIC

52	I/DCF	PT HAMMER: MASS, 64kg; DROP, 760mm														HAMI	viEK I	PE: AUTOMATIC
DEPTH SCALE METRES	BORING METHOD	SOIL PROFILE	1.	_	SA	MPL	ES	DYNAMIC PEI RESISTANCE	NETRATI BLOWS	ON /0.3m	1	HYDRA	ULIC Co k, cm/s	ONDUCT	ΓΙVΙΤΥ,	Ţ	일	PIEZOMETER
RES	MET		LOT		K.		.3m				30	10) ⁻⁹ 10	0 ⁻⁸ 10	0 ⁻⁷ 1	0 _{-e} T	ADDITIONAL LAB. TESTING	OR
MET	NG	DESCRIPTION	TAP	ELEV. DEPTH	NUMBER	TYPE	NS/0	SHEAR STRE Cu, kPa	NGTH	nat V. +	Q- •	l		ONTENT			90T 8. TE	STANDPIPE INSTALLATION
7 -	BOR		STRATA PLOT	(m)	N	-	BLOWS/0.3m					Wp		OW.		WI	\[\]	
		CONTINUED FROM PREVIOUS PAGE	S		_		F	20	40	8 06	30	1	J 2	20 3	0 4	10		
5		OVERBURDEN - TOPSOIL, over SILTY		1					1									3 <u></u> −8
		CLAY ; reddish brown		3														
			\otimes	3														1,51,123
			\longrightarrow	176.63														
		END OF BOREHOLE - AUGER REFUSAL		5.36														
		- For Bedrock coring details, refer to																
		- For Bedrock coring details, refer to Record of Drillhole BH17-3D																
6																		
_																		
7																		
8																		
9																		
10																		
DF	PTH S	SCALE								\ - -	_						17	OGGED: TP
								GC) L L) E I	K							
1:	2ن																UH	ECKED: SM

LOCATION: N 4751985.67; E 646822.97

RECORD OF BOREHOLE: BH17-3S

SHEET 1 OF 2 DATUM: Geodetic BORING DATE: March 27, 2017

щ	9	SOIL PROFILE			SA	MPLE	S	DYNAMIC PENE RESISTANCE, B	LOWS/0.3	m \	HYDRA	ULIC CON k, cm/s	IDUCTIVIT	Υ, Τ	밀	DIEZOMETE	P
METRES	BORING METHOD		STRATA PLOT		H.		.3m	20 40	60	80	10 ⁻			10 ⁶	ADDITIONAL LAB. TESTING	PIEZOMETER OR	
MET	ING	DESCRIPTION	TAP	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.3m	SHEAR STRENC Cu, kPa	TH nat	V. + Q - ● V. ⊕ Ū - O	WA		ITENT PER		B.E.E.	STANDPIPE INSTALLATIO	<u>:</u> DN
7	BOR		STRA	(m)	Ŋ		BLO	20 40			Wp 10	20		→ WI 40	< 5		
		GROUND SURFACE	- 37	182.06		\dashv	\dashv	20 40	60	80	10	20	30	40			_
0		TOPSOIL	EEE	0.00		1	\dashv										J
																	ı
																	ı
																	ı
																	ı
																Bentonite Seal	
1																	
																	ı
																	ı
																	ı
				180.54													
		SILTY CLAY; reddish brown;		1.52													Į
																	ı
																	4
2																Sand	
																	4
	/ax ugers																
	Acker SoilMax Hollow Stem Augers																Ž
	Acke Iow S															[
	P.																4
																	3
3																	
																Screen and Sand	
4																	
																	á
																	3
5		CONTINUED NEXT PAGE	7			-	_	†	†-		†	+	_	-†			-1
			1					GO			1				1		_
DEF	PTH S	CALE					~ .			- D					L	OGGED: TP	

RECORD OF BOREHOLE: BH17-3S

LOCATION: N 4751985.67; E 646822.97

BORING DATE: March 27, 2017

DATUM: Geodetic

HAMMER TYPE: AUTOMATIC

	7001	T HAMMER: MASS, 64kg; DROP, 760mm																YPE: AUTOMATIC
i	ОО	SOIL PROFILE			SA	MPL	ES	DYNAMIC PERESISTANC	NETRATI	ON 5/0.3m	Ž	HYDRA	AULIC Co k, cm/s	ONDUCT	ΓΙVΙΤΥ,	Т	ان	
METRES	BORING METHOD		TO.		~		33	20			30			D ⁻⁸ 10	D ⁻⁷ 1	^о е Т	ADDITIONAL LAB. TESTING	PIEZOMETER OR
<u> </u>	NG N	DESCRIPTION	A PL	ELEV.	1BEF	TYPE	'S/0.	SHEAR STR Cu, kPa					ATER CO			NT	ĮĘË.	STANDPIPE INSTALLATION
ے د	ORII		STRATA PLOT	DEPTH (m)	NUMBER	🕇	BLOWS/0.3m	Cu, kPa		rem V. ⊕	U- O	W	·—			WI	₽§	
_	В		ST	(111)			В	20	40	60 8	30					40	<u> </u>	
5 —	\dashv	CONTINUED FROM PREVIOUS PAGE	-														_	J =41
		SILTY CLAY; reddish brown;																Screen and Sand
⊢	\perp	END OF BOREHOLE		176.88 5.18			\dashv										\vdash	[M
6																		
7																		
8																		
9																		
10																		
- 1			1							1	1	1	1		l	1	1	
							•								l	1		
DEP.	TH S	CALE						G) I [) E I	D D	•					L	OGGED: TP

LOCATION: N 4751621.30; E 646626.89

RECORD OF BOREHOLE: BH17-4D

SHEET 1 OF 1 DATUM: Geodetic BORING DATE: February 27, 2017

SOLL-RICHE SOME SUPPLY OF SOLL PROPERTY	1 0	SOIL PROFILE	SAMPLES	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	- J <u>o</u>
CLAY; reddish brown END OF BOREHOLE - AUGER REFUSAL - For Beddisck coring details, refer to Record of Drillhole BH17-4D	METRES BORING METHOD	DESCRIPTION	STRATA PLOT (a) HIGH (b) HIGH (c) NUMBER (c) TYPE (c) BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - O	10° 10° 10 ⁷ 10° 10° WATER CONTENT PERCENT Wp	PIEZOMETER OR OR STANDPIPE INSTALLATION
	2 2	OVERBURDEN - TOPSOIL , over SILTY CLAY ; reddish brown END OF BOREHOLE - AUGER REFUSAL	182.51			

RECORD OF BOREHOLE: BH17-4S

BORING DATE: February 28, 2017

SHEET 1 OF 1

LOCATION: N 4751619.19; E 646627.13

HAMMER TYPE: AUTOMATIC

DATUM: Geodetic

Proceedings
GROUND SURFACE OVERBURGEN TOPSOIL, over SILTY CARY, raddish brown Inc. 25 END OF BORREHOLE - AUGER REFUSAL - For Bedurck coming details, refer to Record of Drillhole BH17-45
GROUND SURFACE 192
OVERBURDEN-TOPSOIL, over SILTY LAY: roddish brown Bentorate Seal Bentorate Seal Bentorate Seal Description of Borehoue - Augen

RECORD OF BOREHOLE: BH17-5D

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 4751485.26; E 646415.54

BORING DATE: March 20, 2017

ا پ	HOD	SOIL PROFILE			SAM	PLES	DYNA RESIS	MIC PEN TANCE,	ETRATIO BLOWS/	ON '0.3m	\	HYDRAU k,	JLIC CON , cm/s	IDUCTI	VITY,	Ţ	ود	PIEZOMETER
METRES	G MET		PLOT	ELEV.	3ER	7E 3/0.3m	SHEA	20 4			30 `	10 ⁻⁹	10° TER CON				ADDITIONAL LAB. TESTING	OR STANDPIPE
M	BORING METHOD	DESCRIPTION	STRATA PLOT	DEPTH (m)	NUMBER	IYPE BLOWS/0.3m	Cu, kP	R STREN a 20 4			U - O 30			OW.	— v	۷I	ADD LAB.	INSTALLATION
0		GROUND SURFACE	0,	182.56				4	.0 6	0 6	50	10	20	30	40	,		
Ĭ		OVERBURDEN - TOPSOIL		0.00														
		END OF BOREHOLE - AUGER		182.05 0.51														
		REFUSAL		0.51														
		- For Bedrock coring details, refer to Record of Drillhole BH17-5D																
1																		
2																		
٢																		
3																		
4																		
5																		
							•	G O										

RECORD OF BOREHOLE: BH17-5S

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 4751486.30; E 646415.35

BORING DATE: March 23, 2017

Щ	무	SOIL PROFILE	_		SAM	PLES	DYNAMI RESISTA	C PENETRAT NCE, BLOW	ION S/0.3m)	HYDRA	ULIC CC k, cm/s	NDUCT	IVITY,	T	قبـ ا	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	BLOWS/0.3m	20 SHEAR S Cu, kPa	40 STRENGTH	nat V. + rem V. ⊕	Q - • U - O	10 W.A Wp 10	ATER CC	NTENT I	PERCEN	NT NI	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
0		GROUND SURFACE		182.58			1		Ĭ			. 20	. 30		-		_
		OVERBURDEN - TOPSOIL END OF BOREHOLE - AUGER		0.00 181.82 0.76													
		REFUSAL															
. 1		- For Bedrock coring details, refer to Record of Drillhole BH17-5S															
. 3	Acker SoilMax Hollow Stem Augers																Bentonite Seal
4																	
- 5																	
	PTH S	CALE					\$ 0										OGGED: TP

RECORD OF BOREHOLE: BH17-6D

BORING DATE: February 22, 2017 DATUM: Geodetic

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

LOCATION: N 4751418.07; E 646833.18

HAMMER TYPE: AUTOMATIC

SHEET 1 OF 1

DESCRIPTION DE	LE HOD	SOIL PROFILE	1. 1		SA	MPLES	DYNAMIC F RESISTANO	ENETRAT E, BLOW	ION 5/0.3m		HYDRA	ULIC CC k, cm/s	NDUC ⁻	TIVITY,	T	- 구일	PIEZOMETER
### ONE-SERVICE AUGUST TO BEILD OF SOREHULE - AUGUST TO BEILD OF BOREHULE - AUGUST TO RECORD TO	DEPTH SCA METRES ORING MET	DESCRIPTION	TRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE LOWS/0.3m	20 SHEAR STE Cu, kPa		nat V. +	Q - •	WA	ATER CC	NTENT	PERCI	ENT	ADDITION/ LAB. TESTII	OR STANDPIPE
OMERBURGEN, TOSPOUL, over SILTY CLAY; redden hower Triud, RED OF BOREHOLE - AUGER RETURN For Bedock coding details, refer to Record of Detables B117 40		CPOLIND SUPEACE	S	` ′		<u> </u>	20	40	60	80	10) <u>2</u> () 3	30	40	+	
	. 1	OVERBURDEN - TOPSOIL , over SILTY CLAY ; reddish brown		178.48													
	. 5																

RECORD OF BOREHOLE: BH17-6S

LOCATION: N 4751420.19; E 646833.02 BORING DATE: February 23, 2017 DATUM: Geodetic

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

HAMMER TYPE: AUTOMATIC

SHEET 1 OF 1

0	GROUND SURFACE OVERBURDEN - TOPSOIL , over SILTY CLAY ; reddish brown	STRATA PLOT	ELEV. DEPTH (m) 181.79 0.00	Z	BLOWS/0.3m	20 SHEAR S' Cu, kPa	40 TRENGTH	nat V. + rem V. ⊕	80 - Q- ● - U- ○	WA WP	TER CC	0 30	PERCEN	WI	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
0 GF	OVERBURDEN - TOPSOIL , over SILTY	SI	181.79		8	20	40	60	80	10) 20	0 30) 4	0		
OCI	OVERBURDEN - TOPSOIL , over SILTY		181.79 0.00												\vdash	
R	END OF BOREHOLE - AUGER REFUSAL - For Bedrock coring details, refer to Record of Drillhole BH17-6S		178.44 3.35													Bentonite Seal

LOCATION: N 4751237.03; E 646634.77

RECORD OF BOREHOLE: BH17-7D

SHEET 1 OF 1 DATUM: Geodetic BORING DATE: March 1, 2017

. E	3	SOIL PROFILE			SAI	MPLE	s	DYNAMIC PEN RESISTANCE,	ETRATI	ON 5/0.3m	1	HYDRAULI k, ci	C CONDUCT	IVITY,		DIEZONETES
DEPTH SCALE METRES BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	.3m	20 4 SHEAR STREM Cu, kPa	IO I IGTH	60 8 nat V. + rem V. ⊕		10 ⁻⁹ WATEI Wp I	10 ⁸ 10 R CONTENT	PERCENT WI	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
. 1		GROUND SURFACE OVERBURDEN - TOPSOIL , over SILTY CLAY ; reddish brown END OF BOREHOLE - AUGER REFUSAL - For Bedrock coring details, refer to Record of Drillhole BH17-7D	ILS STEE	181.39 0.00 179.84 1.55			18	20 4	10	60 8	0	10	20 3			
. 3																
DEPTH	150	CAL F						G G								OGGED: TP

RECORD OF BOREHOLE: BH17-7S

SHEET 1 OF 1 DATUM: Geodetic BORING DATE: March 7, 2017

LOCATION: N 4751234.36; E 646634.86

HAMMER TYPE: AUTOMATIC

SOL PROPERTY SOL
COUNTY SURFACE GENERAL PROBLEM OF SLITY COR LITER PROBLEM CE - AUGER RN-FUSA. - For Bedeck coming details, refer to Record of Dathole Bril 17-73 2 3 4 4 4 4 4 4 4 4 4 4 4 4
COUNTY SURFACE GENERAL PROBLEM OF SLITY COR LITER PROBLEM CE - AUGER RN-FUSA. - For Bedeck coming details, refer to Record of Dathole Bril 17-73 2 3 4 4 4 4 4 4 4 4 4 4 4 4
GOUND SUPPLIES OCHENICAN TO PSGUL, over SILTY CLAY Indide hower END OF BORRHOLE - AUCER FRIBA - The Benefold control shalls, refer to Necodo of Drinnels BH17-75 2 2 2 2 2 2 2 2 2 2 2 2 2
END OF BOREPICLE - AUGER REFUSAL - For Bedresck coming details, refer to Record of Orthhole Birl 7-78 2 4 4 4 4 4 4 4 4 4 4 4 4

RECORD OF BOREHOLE: BH17-8D

SHEET 1 OF 1

LOCATION: N 4751094.88; E 646422.35

BORING DATE: March 8, 2017

DATUM: Geodetic

Į Į	НОР	SOIL PROFILE			SAM	PLES	DYNAMIC P RESISTANC	E, BLOWS/0.3m		k, cm/s	CONDUCTIVITY, s	TI_	9 PIEZOMETER
DEPIH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	BLOWS/0.3m	20 SHEAR STR Cu, kPa	40 60 ENGTH nat V. rem V	80 + Q - ● .⊕ U - ○	WATER	10 ⁸ 10 ⁻⁷ CONTENT PERC	10 ⁶ I VI	PIEZOMETER OR STANDPIPE INSTALLATION
0 -		GROUND SURFACE OVERBURDEN - TOPSOIL		181.39									
1		END OF BOREHOLE - AUGER REFUSAL - For Bedrock coring details, refer to Record of Drillhole BH17-8D		180.55 0.84									
2													
3													
5													
	PTH S	CALE					\$ G						LOGGED: TP

LOCATION: N 4751097.20; E 646422.56

RECORD OF BOREHOLE: BH17-8S

SHEET 1 OF 1 DATUM: Geodetic BORING DATE: March 17, 2017

4	HOD	SOIL PROFILE			SAM	PLES	RESIST	IC PENETRA [*] ANCE, BLOW	S/0.3m)	k,	JLIC COND , cm/s	ociivii i,	΄ Τ	ا پاپ	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	BLOWS/0.3m	20 SHEAR Cu, kPa	STRENGTH	nat V. + rem V. €	80 - Q - • 9 U - O		TER CONTI	ENT PERC	10 ⁶ ⊥ ENT ¶ WI 40	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
0		GROUND SURFACE OVERBURDEN - TOPSOIL	——————————————————————————————————————	181.46 0.00			20	40		80	10	20	30	40		
1		END OF BOREHOLE - AUGER REFUSAL - For Bedrock coring details, refer to Record of Drillhole BH17-8S		180.80 0.66												
																Bentonite Seal
2																
	ers															
	Acker SoilMax Hollow Stem Augers															
3																
4																
5																
	DTIL C	CALE						GOL								DGGED: TP

RECORD OF BOREHOLE: BH17-9D

SHEET 1 OF 1

LOCATION: N 4750972.13; E 646834.09 BORING DATE: February 14, 2017

DATUM: Geodetic

ш	40D	SOIL PROFILE			SA	MPLI	ES	RESIS	TANCE,	ETRATI BLOWS	ON /0.3m	\	HYDRA	ULIC CO k, cm/s	ONDUCT	IVITY,	T	으느	PIEZOMETER
H SCA TRES	3 METI		PLOT	ELEV.	ER	ш	/0.3m	2				80	10				0 ⁻⁶	ADDITIONAL LAB. TESTING	OR STANDPIPE
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m					Q- • D- O		1	ONTENT		WI	ADDI LAB.	INSTALLATIO
- 0		GROUND SURFACE OVERBURDEN - TOPSOIL , over SILTY CLAY ; reddish brown		180.75				2	0 2	40	60	80	10) 2	J 3	0 4	10		
- 2		END OF BOREHOLE - AUGER REFUSAL - For Bedrock coring details, refer to Record of Drillhole BH17-9D		178.62 2.13															
- 3																			
- 4																			
- 5																			
DEI	PTH S	CALE						>											DGGED: TP

RECORD OF BOREHOLE: BH17-9S

BORING DATE: February 21, 2017

LOCATION: N 4750974.29; E 646834.03

SHEET 1 OF 1

DATUM: Geodetic

RECORD OF DRILLHOLE: BH17-10D PROJECT: 1771656 SHEET 1 OF 2 DRILLING DATE: April 3, 2017 DATUM: Geodetic LOCATION: N 4752127.2 ;E 646721.3 DRILL RIG: Acker SoilMax INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjuga PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea BR - Broken Rock VRo - Very Rough NOTE: For additional DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES ġ ELEV. WATER LEVELS DESCRIPTION RUN FRACT. INDEX PER 0.3 m WEATH ERING INDEX DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION R.Q.D. OIP w.r.t CORE AXIS (m) FLUSH TOTAL CORE % SOLID CORE % TYPE AND SURFACE DESCRIPTION 10-7-0 2008 Continued from Record of Borehole BH17-10D 175.66 Fresh, medium to dark grey, fine to medium grained, ARGILLACEOUS DOLOSTONE and SHALY DOLOSTONE BD/JN,PL to UN,SM to RO BD/JN,PL to UN,SM to RO BD/JN,PL to UN,SM to RO (Bertie Formation, Scajaquada Member) UN.SM to RO
BD/JN/PL to
UN,SM to RO
BD/JN/PL to 175.00 6.96 Fresh, brownish-grey to brown, medium grained, pitted to vuggy DOLOSTONE (Bertie Formation, Falkirk Member) BD/JN,PL to UN,SM to RO BD/JN,PL to UN,SM to RO BD/JN,PL to UN,SM to RO

BD/JN,PL to UN,SM to RO BD/JN,PL to UN,SM to RO BD/JN,PL to UN,SM to RO BD/JN,PL to UN,SM to RO QUARRY\02_DATA\GINT\1771656.GPJ GAL-MISS.GDT 7/27/20 Sand BD/JN,PL to UN,SM to RO BD/JN,PL to UN,SM to RO BD/JN,PL to UN,RO to SM BD/JN,PL to UN,RO to SM COLBORNE 10 BD/JN,PL to UN,RO to SM Screen and Sand S:\CLIENTS\RANKIN CONSTRUCTION\PORT BD/JN,PL to UN,RO to SM BD/JN,IR to UN,RO BD/JN,IR to UN.RO 11 BD/JN,IR to UN,RO BD/JN,IR to UN.RO CONTINUED NEXT PAGE 025 DEPTH SCALE LOGGED: TP **GOLDER** CHECKED: SM

1:25

RECORD OF DRILLHOLE: BH17-10D PROJECT: 1771656

S:\CLIENTS\RANKIN CONSTRUCTIONIPORT_COLBORNE_QUARRY\\02_DATA\GINT\1771656.GPJ_GAL-MISS:GDT_7/27/20

GTA-RCK 025

1:25

DRILLING DATE: April 3, 2017

LOCATION: N 4752127.2 ;E 646721.3 DATUM: Geodetic DRILL RIG: Acker SoilMax INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular BD- Bedding FO- Foliation CO- Contact OR- Orthogonal CL - Cleavage JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugat BR - Broken Rock VRo - Very Rough NOTE: For additional PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES Š ELEV. WATER LEVELS DESCRIPTION RUNI FRACT. INDEX PER 0.3 m DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION R.Q.D. % DIP w.r.t. CORE AXIS (m) FLUSH TOTAL CORE % SOLID CORE % TYPE AND SURFACE DESCRIPTION 0000 8848 --- CONTINUED FROM PREVIOUS PAGE --Fresh, brownish-grey to brown, medium grained, pitted to vuggy DOLOSTONE (Bertie Formation, Falkirk Member) BD/JN,IR to UN,RO Screen and Sand BD/JN,IR to UN,RO 12 BD/JN,IR to UN,RO BD/JN,IR to UN.RO BD/JN,PL,SM BD/JN,PL,SM BD/JN,PL,SM BD/JN,PL,SM BD/JN,PL,SM BD/JN,PL,SM Fresh, dark bluish grey to black argillaceous DOLOSTONE and SHALE (Bertie Formation, Oatka Member) BD/JN,PL,SM Backfill 13 BD/JN,PL,SM 168.24 13.72 END OF DRILLHOLE 14 15 16 DEPTH SCALE LOGGED: TP

GOLDER

SHEET 2 OF 2

RECORD OF DRILLHOLE: **BH17-1D** PROJECT: 1771656 SHEET 1 OF 3 LOCATION: N 4752362.6 ;E 646595.4 DRILLING DATE: February 6, 2017 DATUM: Geodetic DRILL RIG: Acker SoilMax INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjuga PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES ģ ELEV. WATER LEVELS DESCRIPTION RUNI FRACT. INDEX PER 0.3 m DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION OIP w.r.t CORE AXIS (m) FLUSH TYPE AND SURFACE DESCRIPTION 00,00 8848 Continued from Record of Borehole BH17-1D 171.78 Fresh, brownish-grey to brown, medium 10.21 grained, pitted to vuggy DOLOSTONE (Bertie Formation, Falkirk Member) 11 BD,PL,SM BD,PL,SM BD,PL,SM BD,PL,SM 12 BD,PL,SM S:\CLIENTS\RANKIN CONSTRUCTIONIPORT_COLBORNE_QUARRY\\02_DATA\GINT\1771656.GPJ_GAL-MISS:GDT_7/27/20 BD,PL,SM Screen and Sand BD,PL,SM 13 BD,PL,SM 168.73 13.26 Fresh, dark bluish grey to black argillaceous DOLOSTONE and SHALE (Bertie Formation, Oatka Member) FR/BC,PL,SM FR/BC.PL.SM 14 BD,PL,SM

GOLDER

BD,PL,SM

DEPTH SCALE

GTA-RCK 025

CONTINUED NEXT PAGE

15

RECORD OF DRILLHOLE: **BH17-1D** PROJECT: 1771656

DRILLING DATE: February 6, 2017

DRILL RIG: Acker SoilMax INCLINATION: -90° AZIMUTH: ---

LOCATION: N 4752362.6 ;E 646595.4

1:25

SHEET 2 OF 3 DATUM: Geodetic

CHECKED: SM

DRILLING CONTRACTOR: Lantech BD- Bedding FO- Foliation CO- Contact OR- Orthogonal CL - Cleavage PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugat PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea BR - Broken Rock VRo - Very Rough NOTE: For additional DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES WATER LEVELS Š ELEV. DESCRIPTION RUNI FRACT. INDEX PER 0.3 m DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION DIP w.r.t. CORE AXIS (m) FLUSH SOLID CORE % TYPE AND SURFACE DESCRIPTION 0000 8848 --- CONTINUED FROM PREVIOUS PAGE --Fresh, dark bluish grey to black argillaceous DOLOSTONE and SHALE (Bertie Formation, Oatka Member) 3 BD,PL,SM FR,PL,PO 16 BD PL SM BD,PL,SM 17 S:\CLIENTS\RANKIN CONSTRUCTIONIPORT_COLBORNE_QUARRY\\02_DATA\GINT\1771656.GPJ_GAL-MISS:GDT_7/27/20 18 BD.PL.SM BD,PL,SM fresh, fine to medium grained, thin to medium bedded, medium to dark grey, SHALE, with increasing gypsum horizons BD,PL,SM (Salina Formation) BD,PL,SM BD,PL,SM 19 BD,PL,SM BD,PL,SM FR,PL,SM BD,PL,SM 20 CONTINUED NEXT PAGE GTA-RCK 025 DEPTH SCALE LOGGED: TP

GOLDER

PROJECT: 1771656

LOCATION: N 4752362.6 ;E 646595.4

RECORD OF DRILLHOLE: BH17-1D

DRILLING DATE: February 6, 2017

DRILL RIG: Acker SoilMax INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech BD- Bedding FO- Foliation CO- Contact OR- Orthogonal CL - Cleavage PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugat PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea BR - Broken Rock VRo - Very Rough NOTE: For additional abbreviations refer to list of abbreviations & DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES WATER LEVELS Š ELEV. DESCRIPTION RUNI FRACT. INDEX PER 0.3 m HYDRAULIC CONDUCTIVIT K, m/sec DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION R.Q.D. % DIP w.r.t. CORE AXIS FLUSH (m) TOTAL CORE % SOLID CORE % TYPE AND SURFACE DESCRIPTION 8848 --- CONTINUED FROM PREVIOUS PAGE -fresh, fine to medium grained, thin to medium bedded, medium to dark grey, SHALE, with increasing gypsum horizons (Salina Formation) BD,PL,SM BD,PL,SM BD,PL,SM 21 BD,PL,SM FR,PL,SM 160.57 21.42 END OF DRILLHOLE 22 23 24 25

S GOLDER

SHEET 3 OF 3

DATUM: Geodetic

GTA-RCK 025 S:CLIENTS/RANKIN, CONSTRUCTION/PORT, COLBORNE, QUARRY/02, DATA/GINT/171656.GPJ GAL-MISS.GDT 7/27/20

RECORD OF DRILLHOLE: **BH17-2D** PROJECT: 1771656 SHEET 1 OF 2 LOCATION: N 4752109.4 ;E 646602.9 DRILLING DATE: March 29, 2017 DATUM: Geodetic DRILL RIG: Acker SoilMax INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage PL - Planar CU - Curved UN - Undulating ST - Stepped IR - Irregular JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjuga PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brei BR - Broken Rock VRo - Very Rough NOTE: For additional DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES ġ ELEV. WATER LEVELS DESCRIPTION RUN FRACT. INDEX PER 0.3 m DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION R.Q.D. OIP w.r.t CORE AXIS (m) FLUSH SOLID CORE 9 TYPE AND SURFACE DESCRIPTION 0 0 0 0 8848 Continued from Record of Borehole BH17-2D 173.01 BD/JN,PL,SM Fresh, medium to dark grey, fine to medium grained, ARGILLACEOUS DOLOSTONE and SHALY DOLOSTONE BD/JN,PL,SM (Bertie Formation, Scajaquada Member) BD/JN,PL,SM BD/JN,PL,SM BD/JN,PL,SM BD/JN,PL,SM BC,IR,RO Fresh, brownish-grey to brown, medium grained, pitted to vuggy DOLOSTONE (Bertie Formation, Falkirk Member) FR/JN,PL to UN,SM FR/JN,PL to UN,SM FR/JN,PL to UN,SM $\frac{1}{12} \sum_{i=1}^{n} \sum_{i=1}$ FR/JN,PL to UN,SM FR/JN,PL to UN,SM 10 FR/JN,PL to UN,SM FR/JN,PL to UN,SM FR/JN,PL to UN,SM 11 JN/BD,PL to IR,RO to SM 12 JN/BD,PL to IR,RO to SM 13 Concentration and frequency of vugs reduce @13.1 m JN/BD,PL to IR,RO to SM

DEPTH SCALE

GTA-RCK 025

CONTINUED NEXT PAGE

S:\CLIENTS\RANKIN_CONSTRUCTION\PORT_COLBORNE_QUARRY\\02_DATA\GINT\1771656.GPJ_GAL-MISS.GDT_7/27/20

RECORD OF DRILLHOLE: PROJECT: 1771656

LOCATION: N 4752109.4 ;E 646602.9

BH17-2D

DRILLING DATE: March 29, 2017

DRILL RIG: Acker SoilMax INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech BD- Bedding FO- Foliation CO- Contact OR- Orthogonal CL - Cleavage PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugat BR - Broken Rock VRo - Very Rough NOTE: For additional abbreviations refer to list of abbreviations & PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES WATER LEVELS Š ELEV. DESCRIPTION RUNI FRACT. INDEX PER 0.3 m HYDRAULIC CONDUCTIVIT K, m/sec DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION R.Q.D. % DIP w.r.t. CORE AXIS FLUSH (m) TOTAL CORE % SOLID CORE % TYPE AND SURFACE DESCRIPTION 8848 --- CONTINUED FROM PREVIOUS PAGE --167.90 13.80 Fresh, dark bluish grey to black argillaceous DOLOSTONE and SHALE Screen and Sand (Bertie Formation, Oatka Member) 14 BD/JN,PL,SM BD/JN,PL,SM Clay Seam from 14.1 m to 14.2 m BD/JN,PL,SM BD/JN,PL,SM BD/JN,PL,SM BD/JN,PL,SM BD/JN,PL,SM Bentonite BD/JN,PL,SM BD/JN,PL,SM BD/JN,PL,SM 15 BD/JN,PL,SM 166.43 15.27 END OF DRILLHOLE 16 17 18 DEPTH SCALE LOGGED: TP

SHEET 2 OF 2

DATUM: Geodetic

GTA-RCK 025 S:CLIENTS/RANKIN, CONSTRUCTION/PORT, COLBORNE, QUARRY/02, DATA/GINT/171656.GPJ GAL-MISS.GDT 7/27/20

RECORD OF DRILLHOLE: BH17-3D PROJECT: 1771656

DRILLING DATE: March 23, 2017

SHEET 1 OF 2 DATUM: Geodetic

LOCATION: N 4751983.7 ;E 646823.1 INCLINATION: -90° AZIMUTH: ---

DRILL RIG: Acker SoilMax DRILLING CONTRACTOR: Lantech

DESCRIPTION DESCR	DEPTH SCALE METRES RILLING RECORD	DESCRIPTION	IC LOG	ELEV.	No.	ION RATE (m) COLOUR	% RETURN O A S 3 L	N - Joint LT - Fault SHR- Shear /N - Vein CJ - Conjugate	F	D-Bed O-Folia O-Con R-Orth L-Clea	tion act ogonal	U S	:U-Curved K - IN-Undulating SM-	Polished Slickensided Smooth Rough Mechanical Brei	BR - B VRo - V NOTE: Fo abbreviat of abbrev symbols.	roken Ro ery Roug or addition ions refer t iations &	ock gh nal to list	NOTES WATER LEVELS
Contented from Record of Develope (BHT) 00 Fresh, monthing granted, ARCILLACE, DASS (B) (Bottle Formation, Scoperased Member) 1	DEPTH SCALE METRES DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG		RUN	PENETRAT min/	T CC 08	RECOVERY OTAL SOLID ORE %	R.Q.D %	PEF 0.3 r	Rroken Core	DIP w.r CORE AXIS	TYPE AND SURFACE	CONDUCTIVITY K, m/sec	ROCK STRENGTH INDEX	INDI	NG EX	
medium gramed, ARDLACEOUS (Berler Formation, Section accounts) 1		III	4				\prod					Щ			Ш	Щ	Щ	
┸┹╸╸╸╸ ╸┥┥┼┞┼┞┼┞┩╇ ┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	- 7 - 7 - 8 - 8	Fresh, brownish-grey to brown, medium grained, pitted to vuggy DOLOSTONE		5.36	2						Broken Core Broken Core		PL,SM PL,SM PL,SM PR,BD,PL,SM FR,BD,PL,SM					<u>સાર્યા સાર્યા સાર્યા સાર્યા સાથે સો સ</u>
		CONTINUED NEXT PAGE																

RECORD OF DRILLHOLE: BH17-3D PROJECT: 1771656 SHEET 2 OF 2 LOCATION: N 4751983.7 ;E 646823.1 DRILLING DATE: March 23, 2017 DATUM: Geodetic DRILL RIG: Acker SoilMax INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular BD- Bedding FO- Foliation CO- Contact OR- Orthogonal CL - Cleavage JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugat PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES Š ELEV. WATER LEVELS DESCRIPTION RUNI FRACT. INDEX PER 0.3 m DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION R.Q.D. % DIP w.r.t. CORE AXIS (m) FLUSH SOLID CORE % TYPE AND SURFACE DESCRIPTION 0000 8848 --- CONTINUED FROM PREVIOUS PAGE --Fresh, brownish-grey to brown, medium FR/JN,IR to UN,RO grained, pitted to vuggy DOLOSTONE (Bertie Formation, Falkirk Member) FR/JN,IR to UN,RO FR/JN,IR to UN,RO 11 FR/JN,IR to UN,RO FR/JN,IR to UN,RO FR/JN,IR to UN,RO Screen and Sand 12 FR/JN,IR to UN,RO Fresh, dark bluish grey to black argillaceous DOLOSTONE and SHALE (Bertie Formation, Oatka Member) BD,PL,SM 13 Backfill BD,PL,SM 168.27 END OF DRILLHOLE 15

DEPTH SCALE

GTA-RCK 025

S:\CLIENTS\RANKIN CONSTRUCTIONIPORT_COLBORNE_QUARRY\\02_DATA\GINT\1771656.GPJ_GAL-MISS:GDT_7/27/20

RECORD OF DRILLHOLE: PROJECT: 1771656

LOCATION: N 4751621.3 ;E 646626.9

BH17-4D

DRILLING DATE: February 27, 2017 DRILL RIG: Acker SoilMax

DRILLING CONTRACTOR: Lantech

INCLINATION: -90° AZIMUTH: ---BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage PL - Planar CU - Curved UN - Undulating ST - Stepped IR - Irregular JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjuga PO- Polished K - Slickensided SM- Smooth BR - Broken Rock VRo - Very Rough NOTE: For additional DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES ġ Ro - Rough MB- Mechanical Brea ELEV. WATER LEVELS DESCRIPTION RUN FRACT. INDEX PER 0.3 m WEATH ERING INDEX DEPTH RECOVERY DISCONTINUITY DATA HYDRAULIC CONDUCTIVIT INSTRUMENTATION R.Q.D. OIP w.r.t CORE AXIS (m) FLUSH TOTAL CORE % SOLID CORE % TYPE AND SURFACE DESCRIPTION 0000 2008 Continued from Record of Borehole BH17-4D 180.07 Fresh to highly weathered, medium grey, medium bedded, medium grained LIMESTONE with siltstone and FR/JN,IR to UN,SM to RO FR/JN,IR to UN,SM to RO sandstone horizons and greenish grey siltstone and cherty limestone beds (Bois Blanc Formation) FR/JN,IR to UN,SM to RO FR/JN,IR to UN,SM to RO 179.38 3.13 Fresh, light to medium grey, medium bedded, medium grained, mottled FR/JN,IR to UN,SM to RO FR/JN,IR to UN,SM to RO DOLOSTONE with green beds, green fracture coatings and brecciated intervals (Bertie Formation, Akron Member) FR/JN,IR to UN,SM to RO BD,IR to UN,SM to RO 2 FR/JN,IR to UN,SM to RO FR/JN IR to UN,SM to RO FR/JN,IR to UN,SM to RO FR/JN,IR to UN,RO to SM FR/JN,IR to UN,RO to SM FR/JN,IR to UN,RO to SM FR/JN,PL to IR,SM to PO 5 Large fracture from 5.0 m to 5.1 m with sub-rounded pieces of green mineralized FR/JN,PL to IR,SM to PO core. FR,IR to UN,RO Brecciated horizons end @ 5.5 m and light grey mottled appearance begins FR,IR to UN,RO BD or JN,IR to
UN,RC to SM
BD or JN,IR to
UN,RC to SM
BD or JN,IR to
UN,RC to SM
BD or JN,IR to
UN,RC to SM
BD or JN,IR to
UN,RC to SM
BD or JN,IR to
UN,RC to SM
BD or JN,IR to
UN,RC to SM
BD or JN,IR to
UN,RC to SM
BD or JN,IR to
UN,RC to SM
BD or JN,IR to
UN,RC to SM
BD or JN,IR to
UN,RC to SM
BD or JN,IR to
UN,RC to SM
BD or JN,IR to
UN,RC to SM
BD or JN,IR to
UN,RC to SM
BD or JN,IR to
UN,RC to SM
BD or JN,IR to
UN,RC to SM
BD or JN,IR to
UN,RC to SM
BD or JN,IR to
UN,RC to SM UN,RO to SM BD or JN,IR to CONTINUED NEXT PAGE DEPTH SCALE LOGGED: TP

GOLDER

SHEET 1 OF 4

DATUM: Geodetic

QUARRY\02_DATA\GINT\1771656.GPJ GAL-MISS.GDT 7/27/20

S:\CLIENTS\RANKIN_CONSTRUCTION\PORT_COLBORNE_

GTA-RCK 025

RECORD OF DRILLHOLE: **BH17-4D** PROJECT: 1771656 SHEET 2 OF 4 LOCATION: N 4751621.3 ;E 646626.9 DRILLING DATE: February 27, 2017 DATUM: Geodetic DRILL RIG: Acker SoilMax INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugat PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea BR - Broken Rock VRo - Very Rough NOTE: For additional DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES ġ ELEV. WATER LEVELS DESCRIPTION RUN FRACT. INDEX PER 0.3 m DEPTH RECOVERY DISCONTINUITY DATA HYDRAULIC CONDUCTIVIT INSTRUMENTATION R.Q.D. OIP w.r.t CORE AXIS (m) FLUSH SOLID CORE % TYPE AND SURFACE DESCRIPTION 0000 --- CONTINUED FROM PREVIOUS PAGE ---UN,RO to SM BD or JN,IR to UN,RO to SM BD or JN,IR to UN,RO to SM Fresh, light to medium grey, medium 4 bedded, medium grained, mottled DOLOSTONE with green beds, green fracture coatings and brecciated intervals (Bertie Formation, Akron Member) FR/JN,IR to UN,RO to SM FR/JN,IR to UN,RO to SM FR/JN,IR to UN,RO to SM FR or JN,IR to UN,RO to SM FR or JN,IR to UN,RO to SM FR or JN,IR to FR or JN,IR to UN,RO to SM 174.03 Fresh, grey to bluish-grey, medium grained, thin to medium bedded, fine to 8.48 medium grained laminate textured DOLOSTONE with thin argillaceous laminae (Bertie Formation, Williamsville Member) FR,IR to UN,RO to SM FR,IR to UN,RO to SM FR/JN or BD,IR to UN,RO to SM FR/JN or BD,IR to UN,RO to SM FR/JN or BD,IR t UN,RO to SM FR/JN or BD,IR UN,RO to SM UN,RO to SM
FR/JN or BD,IR to
UN,RO to SM
FR/JN or BD,IR to
UN,RO to SM
FR/JN or BD,IR to
UN,RO to SM
UN,RO to SM
BD,PL,SM 10 172.47 10.04 Fresh, medium to dark grey, fine to medium grained, ARGILLACEOUS DOLOSTONE and SHALY DOLOSTONE (Bertie Formation, Scajaquada Member) BD,PL,SM 11 BD,PL,SM BD.PL.SM 12 BD,PL,SM BD,PL,SM BD,PL,SM 170.11 CONTINUED NEXT PAGE DEPTH SCALE LOGGED: TP **GOLDER**

CHECKED: SM

QUARRY\02_DATA\GINT\1771656.GPJ GAL-MISS.GDT 7/27/20

S:\CLIENTS\RANKIN_CONSTRUCTION\PORT_COLBORNE_

GTA-RCK 025

1:25

RECORD OF DRILLHOLE: **BH17-4D** PROJECT: 1771656 SHEET 3 OF 4 LOCATION: N 4751621.3 ;E 646626.9 DRILLING DATE: February 27, 2017 DATUM: Geodetic DRILL RIG: Acker SoilMax INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjuga PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES ģ ELEV. WATER LEVELS DESCRIPTION RUNI FRACT. INDEX PER 0.3 m WEATH ERING INDEX DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION R.Q.D. OIP w.r.t CORE AXIS (m) FLUSH SOLID CORE % TYPE AND SURFACE DESCRIPTION 0000 8848 --- CONTINUED FROM PREVIOUS PAGE --Fresh, brownish-grey to brown, medium 12.40 grained, pitted to vuggy DOLOSTONE (Bertie Formation, Falkirk Member) BD,UN,SM BD,UN,SM 13 FR/JN,UN to IR,RO to SM FR or BD,UN to IR,RO to SM FR or BD,UN to IR,RO to SM FR or BD,UN to IR,RO to SM 14 FR/JN,IR to UN,RO to SM Sand FR/JN,IR to UN,RO to SM 15 10 16 Screen and Sand FR/JN,IR to ST.RO 17 BD,PL to CU,SM to RO CONTINUED NEXT PAGE

DEPTH SCALE

GTA-RCK 025

S:\CLIENTS\RANKIN CONSTRUCTIONIPORT_COLBORNE_QUARRY\\02_DATA\GINT\1771656.GPJ_GAL-MISS:GDT_7/27/20

RECORD OF DRILLHOLE: PROJECT: 1771656

BH17-4D

LOCATION: N 4751621.3 ;E 646626.9 DRILLING DATE: February 27, 2017 DRILL RIG: Acker SoilMax INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech

DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV.	I No.	PENETRATION RATE min(m)	% RETURN	SHR-	Joint Fault Shea Vein Conju	r		CO- OR- CL -	Beddi Foliati Conta Ortho Cleav	ct gonal age	CL UN ST IR	- Planar J- Curved N- Undulating Γ- Stepped : - Irregular	PO- Polished K - Slickens SM- Smooth Ro - Rough MB- Mechani	ided cal Brea	ofa k sym	nbols.	oken F ery Rou r additio ons refer ations &		NOTES WATER LEVELS	s
DEPTH	DRILLING	DESCRIPTION	SYMBOI	DEPTH (m)	RUN	PENETRAI	FLUSH	TOTAL CORE S	% CO	S 4 % RE %	R.Q.I %	D. I	RACT NDEX PER 0.3 m	Broken	DIP w.r.t CORE AXIS	TYPE AND SUF DESCRIPTI	TA HYDR CONDU	AULIC JO 0 JO 0	RO STRE IND	EX	INE	ATH- ING DEX	INSTRUMENTATIO	ON
- - - - 1	8			164.78 17.73	11										•	BD,PL to C to RO BD,PL to C to RO BD,PL to C to RO BD,PL,SM	JU,SM JU,SM JU,SM						Screen and Sand	
02/72/7	99	END OF DRILLHOLE		18.34																			M. I	- - - - - - - -
2_DATA/GINT/1771656.GPJ_GAL-MISS.GDT	0																							- - - - - -
S:CLIENTSRANKIN CONSTRUCTION PORT COLBORNE QUARRYC																								- - - - - - -
4-RCK 025		ISCALE												EF	2								OGGED: TP ECKED: SM	- - -

SHEET 4 OF 4

DATUM: Geodetic

PROJECT: 1771656

LOCATION: N 4751619.2 ;E 646627.1

AZIMUTH: ---

INCLINATION: -90°

QUARRY\02_DATA\GINT\1771656.GPJ GAL-MISS.GDT 7/27/20

S:\CLIENTS\RANKIN_CONSTRUCTION\PORT_COLBORNE_

GTA-RCK 025

1:25

RECORD OF DRILLHOLE: **BH17-4S**

DRILLING DATE: February 28, 2017

DRILL RIG: Acker SoilMax DRILLING CONTRACTOR: Lantech

BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage PL - Planar CU - Curved UN - Undulating ST - Stepped IR - Irregular JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjuga PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brei DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES ġ ELEV. WATER LEVELS DESCRIPTION RUNI FRACT. INDEX PER 0.3 m DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION OIP w.r.t CORE AXIS (m) FLUSH TYPE AND SURFACE DESCRIPTION 10-7-0 8848 Continued from Record of Borehole BH17-4S 180.12 Fresh to highly weathered, medium grey, medium bedded, medium grained LIMESTONE with siltstone and BC,IR,RO sandstone horizons and greenish grey siltstone and cherty limestone beds (Bois Blanc Formation) 179.68 FR/JN,IR,RO Fresh, light to medium grey, medium bedded, medium grained, mottled DOLOSTONE with green beds, green Bentonite Seal FR/JN.IR.RO FR/JN,IR,RO fracture coatings and brecciated intervals (Bertie Formation, Akron Member) BC,IR,RO FR/JW.IR.RO FR/JW.IR.RO FR/JW,IR,RO FR/JW,IR,RO FR/JW,IR,RO FR/JW,IR,RO Large fracture from 4.9 m to 5.1 m, wih sub-rounded pieces of green mineralized BC,IR to PL,RO to SM JN/FR,IR,RO JN/FR,IR,RO JN/FR.IR.RO Brecciated horizons end @5.8 m JN/FR.IR.RO Light grey mottled appearance begins @ beginning of run (6.1) FR/JN,IR,RO FR/JN.IR.RO FR/JN,IR,RO FR/JN,IR,RO CONTINUED NEXT PAGE DEPTH SCALE

GOLDER

SHEET 1 OF 2

DATUM: Geodetic

RECORD OF DRILLHOLE: **BH17-4S** PROJECT: 1771656 SHEET 2 OF 2 LOCATION: N 4751619.2 ;E 646627.1 DRILLING DATE: February 28, 2017 DATUM: Geodetic DRILL RIG: Acker SoilMax INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech BD- Bedding FO- Foliation CO- Contact OR- Orthogonal CL - Cleavage PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular PENETRATION RATE min/(m)
COLOUR
FLUSH % RETURN JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugat PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea BR - Broken Rock VRo - Very Rough NOTE: For additional abbreviations refer to list of abbreviations & DRILLING RECORD SYMBOLIC LOG DEPTH SCALE METRES NOTES WATER LEVELS RUN No. ELEV. DESCRIPTION FRACT. INDEX PER 0.3 m HYDRAULIC CONDUCTIVIT K, m/sec WEATH-ERING INDEX DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION DIP w.r.t. CORE AXIS FLUSH (m) TYPE AND SURFACE DESCRIPTION 8848 --- CONTINUED FROM PREVIOUS PAGE --Screen and Sand END OF DRILLHOLE 8 9 10 11 12 DEPTH SCALE LOGGED: TP GOLDER

CHECKED: SM

GTA-RCK 025 S:CLIENTS/RANKIN, CONSTRUCTION/PORT, COLBORNE, QUARRY/02, DATA/GINT/171656.GPJ GAL-MISS.GDT 7/27/20

1:25

RECORD OF DRILLHOLE: BH17-5D PROJECT: 1771656 SHEET 1 OF 4 LOCATION: N 4751485.3 ;E 646415.5 DRILLING DATE: March 20, 2017 DATUM: Geodetic DRILL RIG: Acker SoilMax INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjuga PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea BR - Broken Rock VRo - Very Rough NOTE: For additional DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES ġ ELEV. WATER LEVELS DESCRIPTION RUN FRACT. INDEX PER 0.3 m DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION R.Q.D. OIP w.r.t CORE AXIS (m) FLUSH TOTAL CORE % SOLID CORE % TYPE AND SURFACE DESCRIPTION 00,00 2008 Continued from Record of Borehole BH17-5D 182.05 Fresh to highly weathered, medium grey, medium bedded, medium grained LIMESTONE with siltstone and sandstone horizons and greenish grey siltstone and cherty limestone beds BD,IR to UN,RO BD,IR to UN,RO BD,IR to UN,RO (Bois Blanc Formation) BD,IR to UN,RO BD/JN,IR to UN,RO to SM BD/JN,IR to UN,RO to SM BD/JN,IR to UN,RO to SM UN,RO to SM

> BD/JN,IR to
UN,RO to SM

> BD/JN,IR to
UN,RO to SM

> BD/JN,IR to
UN,RO to SM

> BD/JN,IR to
UN,RO to SM

> BD/JN,IR to
UN,RO to SM

> BD/JN,IR to
UN,RO to SM BD/JN,IR to UN,RO to SM BD/JN,IR to UN,RO to SM BD/JN,IR to UN,RO to SM BD/JN,IR to UN,RO to SM BD/JN,IR to UN,RO UN,RO
BD/JN,IR to
UN,RO
BD/JN,IR to
UN,RO
BD/JN,IR to
UN,RO
BD/JN,IR to
UN,RO
BD/JN,IR to
UN,RO
BD/JN,IR to
UN,RO UN,RO BD/JN,IR to UN,RO BD/JN,IR to UN.RO BD/JN,IR to UN,RO BD/JN,IR to BC,IR,RO BC,IR,RO BD/JN,IR to UN,RO BD/JN,IR to UN,RO 178.15 4.41 BD/JN,IR to UN,RO Fresh, light to medium grey, medium bedded, medium grained, mottled DOLOSTONE with green beds, green fracture coatings and brecciated intervals BD/JN,IR to UN,RO (Bertie Formation, Akron Member) BD/JN,IR to UN,RO BD/JN,IR to UN,RO
BD/JN,IR to
UN,RO
BD/JN,IR to

GTA-RCK 025

CONTINUED NEXT PAGE

S:\CLIENTS\RANKIN CONSTRUCTION\PORT_COLBORNE_QUARRY\02_DATA\GINT\1771656.GPJ_GAL-MISS.GDT_7/20

RECORD OF DRILLHOLE: BH17-5D PROJECT: 1771656 SHEET 2 OF 4 LOCATION: N 4751485.3 ;E 646415.5 DATUM: Geodetic DRILLING DATE: March 20, 2017 DRILL RIG: Acker SoilMax INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugat BR - Broken Rock VRo - Very Rough NOTE: For additional PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES ġ ELEV. WATER LEVELS DESCRIPTION RUN FRACT. INDEX PER 0.3 m DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION R.Q.D. OIP w.r.t CORE AXIS (m) FLUSH TOTAL CORE % SOLID CORE % TYPE AND SURFACE DESCRIPTION 00,00 2008 --- CONTINUED FROM PREVIOUS PAGE ---JNFR,IR to ST,RO to SM JNFR,IR to ST,RO to SM JNFR,IR to ST,RO to SM Fresh, light to medium grey, medium EVERT OF THE WEST OF THE SECRET OF THE SECRE bedded, medium grained, mottled DOLOSTONE with green beds, green fracture coatings and brecciated intervals (Bertie Formation, Akron Member) JN/FR,IR to ST,RO to SM JN/FR,IR to ST,RO to SM BC,IR,RO BC,IR,RO JN/FR,IR or ST,RO JN/FR,IR or ST,RO JN/FR,IR or ST,RO JN/FR,IR or ST,RO • JN/FR,IR or ST,RO JN/FR,IR or ST,RO JN/FR,IR or ST,RO JN/FR,IR to UN,RO JN/FR,IR to UN,RO Zone of green mineralization from 7.6 m to 8.2 m FR/FLT,IR to PL,SM to PO FR/FLT, IR to PL, SM to PO JN/FR, IR to UN, RO to SM UN, RO to SM UN, RO to SM Light grey mottled appearance begins @ JN/FR,IR to UN,RO to SM JN/FR,IR to UN,RO to SM JN/FR,IR or ST,RO ST,RO 10 ST,RO JN/FR.IR or ST.RO JN/FR,IR or ST,RO

JN/FR,IR or ST,RO

DEPTH SCALE

CONTINUED NEXT PAGE

QUARRY\02_DATA\GINT\1771656.GPJ GAL-MISS.GDT 7/27/20

COLBORNE

S:\CLIENTS\RANKIN_CONSTRUCTION\PORT

GTA-RCK 025

RECORD OF DRILLHOLE: BH17-5D PROJECT: 1771656 SHEET 3 OF 4 LOCATION: N 4751485.3 ;E 646415.5 DRILLING DATE: March 20, 2017 DATUM: Geodetic DRILL RIG: Acker SoilMax INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugat PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea BR - Broken Rock VRo - Very Rough NOTE: For additional DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES ġ ELEV. WATER LEVELS DESCRIPTION RUN FRACT. INDEX PER 0.3 m DEPTH RECOVERY DISCONTINUITY DATA HYDRAULIC CONDUCTIVIT INSTRUMENTATION R.Q.D. OIP w.r.t. CORE AXIS (m) FLUSH SOLID CORE % TYPE AND SURFACE DESCRIPTION 0000 8048 --- CONTINUED FROM PREVIOUS PAGE ---JN/FR,IR or ST,RO JN/FR,IR or ST,RO - JN/FR,IR to UN,RO to SM Fresh, light to medium grey, medium 7 bedded, medium grained, mottled DOLOSTONE with green beds, green fracture coatings and brecciated intervals (Bertie Formation, Akron Member) JN/FR,IR to UN,RO to SM 11 JN/FR,IR to UN,RO to SM JN/FR,IR to UN,RO to SM Fresh, grey to bluish-grey, medium grained, thin to medium bedded, fine to 11.31 JN/FR.IR to UN,RO to SM medium grained laminate textured DOLOSTONE with thin argillaceous JN/FR,IR to UN,RO to SM laminae (Bertie Formation, Williamsville UN,RO to SM
JNIFR,IR to
UN,RO to SM
JNIFR,IR to
UN,RO to SM
JNIFR,IR to
UN,RO to SM
JNIFR,IR to
UN,RO, To SM
JNIFR,IR to
UN,RO to SM
BD,PL,SM
BD,PL,SM Member) 12 BC,IR,RO BD/JN,PL to IR,SM BD/JN,PL to IR.SM BD/JN,PL to IR,SM 13 BD/JN,PL to IR,SM BD/JN,PL to IN,OM BD/JN,PL to IR,SM Fresh, medium to dark grey, fine to medium grained, ARGILLACEOUS DOLOSTONE and SHALY DOLOSTONE BD/JN,PL to IR,SM (Bertie Formation, Scajaquada Member) BD/JN,IR to PL,RO to SM BD/JN,IR to PL,RO to SM 14 BD/JN,IR to PL,RO to SM BD/JN,IR to PL,RO to SM Fresh, brownish-grey to brown, medium grained, pitted to vuggy DOLOSTONE (Bertie Formation, Falkirk Member) 14.14 10 BD/JN,IR to PL,RO to SM BD/JN,IR to PL,RO to SM BD/JN,IR to PL,RO to SM FR/JN,IR,RO 15 FR/JN IR RO 7,847,847 11 Sand CONTINUED NEXT PAGE DEPTH SCALE LOGGED: TP

QUARRY\02_DATA\GINT\1771656.GPJ GAL-MISS.GDT 7/27/20

COLBORNE

S:\CLIENTS\RANKIN CONSTRUCTION\PORT

025

RECORD OF DRILLHOLE: BH17-5D PROJECT: 1771656 SHEET 4 OF 4 LOCATION: N 4751485.3 ;E 646415.5 DRILLING DATE: March 20, 2017 DATUM: Geodetic DRILL RIG: Acker SoilMax INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugat PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES ģ ELEV. WATER LEVELS DESCRIPTION RUNI FRACT. INDEX PER 0.3 m DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION R.Q.D. OIP w.r.t CORE AXIS (m) FLUSH SOLID CORE % TYPE AND SURFACE DESCRIPTION 00,00 8848 --- CONTINUED FROM PREVIOUS PAGE --Fresh, brownish-grey to brown, medium FR/JN,IR,RO grained, pitted to vuggy DOLOSTONE (Bertie Formation, Falkirk Member) FR/JN,IR,RO FR/JN,IR,RO Large vug 0.2 m long at 15.9 m with Quartz and Calcite infilling FR/JN,IR,RO FR/JN,IR,RO 16 FR/JN,IR,RO FR/JN,IR,RO 17 12 18 Screen and Sand BD/JN,IR to UN,RO BD/JN,IR to UN,RO 13 19 BD/JN,IR to UN,RO BD/JN,IR to UN,RO BD/JN,IR to UN,RO BD,PL,SM BD,PL,SM 163.05 19.51 Fresh, dark bluish grey to black argillaceous DOLOSTONE and SHALE (Bertie Formation, Oatka Member) END OF DRILLHOLE 20

DEPTH SCALE

GTA-RCK 025

S:\CLIENTS\RANKIN CONSTRUCTION\PORT_COLBORNE_QUARRY\02_DATA\GINT\1771656.GPJ_GAL-MISS.GDT_7/20

RECORD OF DRILLHOLE: **BH17-5S** PROJECT: 1771656 SHEET 1 OF 2 LOCATION: N 4751486.3 ;E 646415.4 DRILLING DATE: March 23, 2017 DATUM: Geodetic DRILL RIG: Acker SoilMax INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugat PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea BR - Broken Rock VRo - Very Rough NOTE: For additional DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES ġ ELEV. WATER LEVELS DESCRIPTION RUN FRACT. INDEX PER 0.3 m DEPTH RECOVERY DISCONTINUITY DATA HYDRAULIC CONDUCTIVIT INSTRUMENTATION R.Q.D. OIP w.r.t. CORE AXIS SOLID CORE % (m) FLUSH INDEX TYPE AND SURFACE DESCRIPTION 00,00 2008 Continued from Record of Borehole BH17-5S 181.82 Fresh to highly weathered, medium grey, 0.76 BD/JIN,IR to UN,RO BD/JIN,IR to medium bedded, medium grained LIMESTONE with siltstone and sandstone horizons and greenish grey siltstone and cherty limestone beds (Bois Blanc Formation) BDJ/JN,IR to UN,RO BD/JN,IR to 2 2 BD/JN,IR to UN,RO BD/JN,IR to MBDJ/JN,IR to UN,RO BD/JN,IR to UN,RO BD/JN,IR to UN,RO FR/BC,IR to ST,RO FR/BC,IR to ST,RO BD/JN,IR to UN,RO BD/JN,IR T 179.58 3.00 Fresh, light to medium grey, medium bedded, medium grained, mottled BD/JN,IR to UN,RO Bentonite Seal DOLOSTONE with green beds, green fracture coatings and brecciated intervals BD/JN,IR to (Bertie Formation, Akron Member) UN,RO BD/JN,IR to UN,RO FR/BC/FLT,PL to IR,RO to PO FR/BC/FLT,PL to IR,RO to PO BD/JN,IR to PL,RO to SM DEJAINE to BOM PLEAS TO BE SM BED AN IRE to EACH OF SM BED AN IRE to EACH OF SM BED AN IRE TO BE SM BE SM 5 3,80,80 SH/JN,IR to UN,RO to SM Sand

CHECKED: SM

DEPTH SCALE

CONTINUED NEXT PAGE

COLBORNE_QUARRY\\02_DATA\GINT\\1771656.GPJ GAL-MISS.GDT 7/27/20

S:\CLIENTS\RANKIN CONSTRUCTION\PORT

GTA-RCK 025

RECORD OF DRILLHOLE: **BH17-5S** PROJECT: 1771656 SHEET 2 OF 2 LOCATION: N 4751486.3 ;E 646415.4 DRILLING DATE: March 23, 2017 DATUM: Geodetic DRILL RIG: Acker SoilMax INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugat BR - Broken Rock VRo - Very Rough NOTE: For additional PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES ģ ELEV. WATER LEVELS DESCRIPTION RUNI FRACT. INDEX PER 0.3 m HYDRAULIC CONDUCTIVIT K, m/sec DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION R.Q.D. OIP w.r.t. CORE AXIS (m) FLUSH SOLID CORE % TYPE AND SURFACE DESCRIPTION 0000 2008 --- CONTINUED FROM PREVIOUS PAGE ---Fresh, light to medium grey, medium 4 bedded, medium grained, mottled DOLOSTONE with green beds, green JN/FR,IR to UN,RO JN/FR,IR to UN,RO Sand fracture coatings and brecciated intervals (Bertie Formation, Akron Member) JN/FR,IR to UN,RO - JN/FR,IR to UN,RO - JN/FR,IR to UN,RO UN,RÓ
JN/FR,IR to
UN,RO
JN/FR,IR to
UN,RO
JN/FR,IR to
UN,RO
FLT/FR,IR to
ST,RO
FLT/FR,IR to
ST,RO Zone of green mineralization from 7.8 m to 8.2 m Light grey mottled appearace begins @ 8.2 m JN/FR,IR to UN,RO END OF DRILLHOLE 10

S GOLDER

DEPTH SCALE

GTA-RCK 025

S:\CLIENTS\RANKIN CONSTRUCTIONIPORT_COLBORNE_QUARRY\\02_DATA\GINT\1771656.GPJ_GAL-MISS:GDT_7/27/20

RECORD OF DRILLHOLE: **BH17-6D** PROJECT: 1771656 SHEET 1 OF 3 DRILLING DATE: February 22, 2017 LOCATION: N 4751418.1 ;E 646833.2 DATUM: Geodetic DRILL RIG: Acker SoilMax INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage PL - Planar CU - Curved UN - Undulating ST - Stepped IR - Irregular JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjuga PO- Polished K - Slickensided SM- Smooth DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES ġ Ro - Rough MB- Mechanical Brea ELEV. WATER LEVELS DESCRIPTION RUN FRACT. INDEX PER 0.3 m DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION R.Q.D. OIP w.r.t CORE AXIS (m) FLUSH TYPE AND SURFACE DESCRIPTION 0000 2008 Continued from Record of Borehole BH17-6D 178.48 Fresh to highly weathered, medium grey, medium bedded, medium grained LIMESTONE with siltstone and FR,IR,RO sandstone horizons and greenish grey siltstone and cherty limestone beds FR,IR,RO (Bois Blanc Formation) BC,IR,RO FR,IR,RO FR,IR,RO FR.IR.RO Brecciated horizons end @ 4.6 m , light \grey mottled appearance begins 177.22 4.61 Fresh, light to medium grey, medium BD/FR IR RO bedded, medium grained, mottled DOLOSTONE with green beds, green fracture coatings and brecciated intervals (Bertie Formation, Akron Member) FR,IR,RO FR,IR,RO FR.IR.RO FR,IR,RO FR,IR,RO FR IR RO BC,IR,RO FR,IR,RO FR,IR to UN,RO to SM FR,IR to UN,RO to SM FR,IR to UN,RO to SM FR.IR to UN.RO to SM
FRIR to UN.RO TRIR to UN.RO TRIR to UN.RO FRIR to UN.RO Fresh, grey to bluish-grey, medium grained, thin to medium bedded, fine to medium grained laminate textured DOLOSTONE with thin argillaceous laminae (Bertie Formation, Williamsville Member)

GOLDER

FR,IR to UN,RO to SM

FR.IR to UN.RO

DEPTH SCALE

GTA-RCK 025

CONTINUED NEXT PAGE

S:\CLIENTS\RANKIN_CONSTRUCTION\PORT_COLBORNE_QUARRY\\02_DATA\GINT\1771656.GPJ_GAL-MISS.GDT_7/27/20

RECORD OF DRILLHOLE: **BH17-6D** PROJECT: 1771656 SHEET 2 OF 3 LOCATION: N 4751418.1 ;E 646833.2 DRILLING DATE: February 22, 2017 DATUM: Geodetic DRILL RIG: Acker SoilMax INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjuga BR - Broken Rock VRo - Very Rough NOTE: For additional PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES ġ ELEV. WATER LEVELS DESCRIPTION RUNI FRACT. INDEX PER 0.3 m DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION R.Q.D. OIP w.r.t. CORE AXIS (m) FLUSH SOLID CORE % TYPE AND SURFACE DESCRIPTION 00,00 2008 --- CONTINUED FROM PREVIOUS PAGE -Fresh, grey to bluish-grey, medium grained, thin to medium bedded, fine to medium grained laminate textured DOLOSTONE with thin argillaceous laminae (Bertie Formation, Williamsville to SM
FR.IR to UN,RO
to SM
FR.IR to UN,RO
to SM
FR.IR to UN,RO
to SM
FR.IR to UN,RO
to SM
FR.IR to UN,RO
to SM
FR.IR to UN,RO
TR.IR to UN,RO
TR.IR to UN,RO
TR.IR to UN,RO
TR.IR to FLT,IR to
PL,SM to PO
FR.IR,RO FR,IR,RO Fresh, medium to dark grey, fine to medium grained, ARGILLACEOUS DOLOSTONE and SHALY DOLOSTONE (Bertie Formation, Scajaquada Member) BD,PL,SM BD,PL,SM BD,PL,SM BD,PL,SM BD,PL,SM BD,PL,SM 10 BD,PL,SM BD,PL,SM 11 BD,PL,SM 170.46 11.37 BD,PL,SM BD,PL,SM Fresh, brownish-grey to brown, medium grained, pitted to vuggy DOLOSTONE (Bertie Formation, Falkirk Member) FLT or FR,BC,RC FR,IR,RO BD,PL to IR,RO to SM BD,PL to IR,RO to SM BD,PL to IR,RO to SM 12

GTA-RCK 025

CONTINUED NEXT PAGE

13

S:\CLIENTS\RANKIN CONSTRUCTIONIPORT_COLBORNE_QUARRY\\02_DATA\GINT\1771656.GPJ_GAL-MISS:GDT_7/27/20

RECORD OF DRILLHOLE: PROJECT: 1771656

BH17-6D

SHEET 3 OF 3 DATUM: Geodetic

LOCATION: N 4751418.1 ;E 646833.2

DRILLING DATE: February 22, 2017 DRILL RIG: Acker SoilMax

DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV.	No.	TION RATE	min/(m) COLOUR COLOUR	N S E I S N C	N - LT - HR- 'N -	Joint Fault Shea Vein Conju	r ugate		BE FC CC OF)- Bed)- Foli)- Cor R- Orth	dding ation ntact nogo avag	g n t onal		PL - CU - UN - ST - IR -	Planar PO- Curved K - Undulating SM- Stepped Ro - Irregular MB-	Polished Slickensided Smooth Rough Mechanical Brea	ak s	NOTE: F abbrevia of abbrev symbols.	or ad itions viation	refer to list ns &	NOTES WATER LEVE			
DEPTH	DRILLING		SYMBC	DEPTH (m)	RUI	PENETRA	FLUSH	FLUSH 80 23 4	FLUSH	FLUSH	OTAL ORE %		RE %	9	348 3.D.	FRAG INDE PE 0.3	R m	Broken Core	DIP CC A	w.r.t. RE (IS 88	ONTINUITY DATA TYPE AND SURFACE DESCRIPTION	HYDRAULIC CONDUCTIVITY K, m/sec		ROCK RENGTI NDEX	Н	WEATH- ERING INDEX	INSTRUMENTA ⁻	LION
-		CONTINUED FROM PREVIOUS PAGE Fresh, brownish-grey to brown, medium grained, pitted to vuggy DOLOSTONE (Bertie Formation, Falkirk Member)			7													•	FR,IR,RO FR,IR,RO							Cantantantanta		
- 14					8													•	FR.IR.RO						Sand	ostostostostostostostostostostostostosto		
- 16					9													•	BD.PL to IR.RO to SM BD.PL to IR.RO to SM BD.PL to IR.RO to SM									
- 17		Fresh, dark bluish grey to black argillaceous DOLOSTONE and SHALE (Bertie Formation, Oatka Member)		165.06 16.77														• • • • • • • • • • • • • • • • • • • •	BD,PL,SM BD,PL,SM BD,PL,SM BD,PL,SM BD,PL,SM BD,PL,SM BD,PL,SM BD,PL,SM BD,PL,SM						Screen and Sand			
- 18		END OF DRILLHOLE		163.85 17.98	10													•	BD,PL,SM									
DEF	PTH S	CALE						<u> </u>			<u> </u>	Ш Э		D			<u> </u>							<u> </u>	OGGED: TP			

RECORD OF DRILLHOLE: BH17-6S PROJECT: 1771656

LOCATION: N 4751420.2 ;E 646833.0

S:\CLIENTS\RANKIN_CONSTRUCTION/PORT_COLBORNE_QUARRY\02_DATA\GINT\1771656.GPJ_GAL-MISS.GDT_7/20

GTA-RCK 025

1:25

DRILLING DATE: February 23, 2017 DRILL RIG: Acker SoilMax

SHEET 1 OF 2 DATUM: Geodetic

CHECKED: SM

INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage PL - Planar CU - Curved UN - Undulating ST - Stepped IR - Irregular JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjuga PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES ġ ELEV. WATER LEVELS DESCRIPTION RUNI FRACT. INDEX PER 0.3 m DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION OIP w.r.t CORE AXIS (m) FLUSH TYPE AND SURFACE DESCRIPTION 10-7-0 2008 Continued from Record of Borehole BH17-6S 178.44 Fresh to highly weathered, medium grey, medium bedded, medium grained LIMESTONE with siltstone and BC,IR,RO sandstone horizons and greenish grey siltstone and cherty limestone beds (Bois Blanc Formation) BC,IR,RO BC,IR,RO Bentonite Seal FR,IR,RO FR,IR,RO 177.25 4.54 Fresh, light to medium grey, medium bedded, medium grained, mottled DOLOSTONE with green beds, green fracture coatings and brecciated intervals (Bertie Formation, Akron Member) $a_i x a_i Brecciated horizons end @ 4.6 m, light grey mottled appearrance begins FR.IR.RO FR.IR.RO FR,IR,RO FR,IR,RO FR,IR,RO FR,IR,RO FR,IR,RO FR,IR to UN,RO to SM FR,IR to UN,RO to SM FR,IR to UN,RO to SM FR.IR to UN.RO
to SM
FR.IR to UN.RO
to SM
FR.IR to UN.RO
to SM
FR.IR to UN.RO
to SM
FR.IR to UN.RO
to SM
FR.IR to UN.RO
to SM
FR.IR to UN.RO
to SM
FR.IR to UN.RO
TR.IR to UN.RO
TR.IR to UN.RO
TR.IR to UN.RO
TR.IR to UN.RO FR,IR to UN,RO to SM Screen and Sand FR,IR to UN,RO FR,IR to UN,RO to SM - FR,IR to UN,RO to SM FR,PL,SM FR,PL,SM FR,PL,SM Large green tinged sediment filled vertical fracture from 7.9 m to 8.6 m FR,PL,SM FR,PL,SM CONTINUED NEXT PAGE DEPTH SCALE LOGGED: TP GOLDER

RECORD OF DRILLHOLE: **BH17-6S** PROJECT: 1771656 SHEET 2 OF 2 LOCATION: N 4751420.2 ;E 646833.0 DRILLING DATE: February 23, 2017 DATUM: Geodetic DRILL RIG: Acker SoilMax

INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech BD- Bedding FO- Foliation CO- Contact OR- Orthogonal CL - Cleavage PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular BR - Broken Rock VRo - Very Rough NOTE: For additional abbreviations refer to lis of abbreviations & JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugat PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES WATER LEVELS Š ELEV. DESCRIPTION RUNI FRACT. INDEX PER 0.3 m HYDRAULIC CONDUCTIVIT K, m/sec DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION R.Q.D. % DIP w.r.t. CORE AXIS FLUSH (m) TOTAL CORE % SOLID CORE % TYPE AND SURFACE DESCRIPTION 8848 --- CONTINUED FROM PREVIOUS PAGE ---Fresh, light to medium grey, medium bedded, medium grained, mottled DOLOSTONE with green beds, green fracture coatings and brecciated intervals (Bertie Formation, Akron Member) Screen and Sand 172.95 Fresh, grey to bluish-grey, medium grained, thin to medium bedded, fine to medium grained laminate textured DOLOSTONE with thin argillaceous 8.84 BD,PL,SM BD,PL,SM BD.PL.SM laminae (Bertie Formation, Williamsville 172.62 9.17 END OF DRILLHOLE 10 GTA-RCK 025 S:CLIENTS/RANKIN, CONSTRUCTION/PORT, COLBORNE, QUARRY/02, DATA/GINT/171656.GPJ GAL-MISS.GDT 7/27/20 11 13 DEPTH SCALE

RECORD OF DRILLHOLE: **BH17-7D** PROJECT: 1771656 SHEET 1 OF 4 DATUM: Geodetic LOCATION: N 4751237.0 ;E 646634.8 DRILLING DATE: March 1, 2017 DRILL RIG: Acker SoilMax INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjuga PO- Polished K - Slickensided SM- Smooth BR - Broken Rock VRo - Very Rough NOTE: For additional DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES ġ Ro - Rough MB- Mechanical Brea ELEV. WATER LEVELS DESCRIPTION RUN FRACT. INDEX PER 0.3 m DISCONTINUITY DATA HYDRAULIC WEATH ERING INDEX DEPTH RECOVERY INSTRUMENTATION R.Q.D. OIP w.r.t. CORE AXIS (m) FLUSH TOTAL CORE % SOLID CORE % TYPE AND SURFACE DESCRIPTION 0000 2008 Continued from Record of Borehole BH17-7D 179.84 Fresh to highly weathered, medium grey, medium bedded, medium grained LIMESTONE with siltstone and sandstone horizons and greenish grey siltstone and cherty limestone beds (Bois Blanc Formation) 2 <u>PROPERTOR OF THE PROPERTOR OF THE PROPERTOR OF THE PROPERTOR OF THE TREET THE PROPERTOR OF /u> FR or BD,IR,RO FR or BD,IR,RO FR or BD IR RO FR or BD,IR,RO BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD or JNJR to
BD 177.43 3.96 Fresh, light to medium grey, medium bedded, medium grained, mottled DOLOSTONE with green beds, green fracture coatings and brecciated intervals (Bertie Formation, Akron Member) BD or JN,IR to S¹ to UN,RO to SM BD or JN,IR to ST to UN,RO to SM - BD or JN,IR to ST to UN,RO to SM JN or FR,IR to UN,SM to RO

GOLDER

DEPTH SCALE

CONTINUED NEXT PAGE

QUARRY\02_DATA\GINT\1771656.GPJ GAL-MISS.GDT 7/27/20

COLBORNE

S:\CLIENTS\RANKIN_CONSTRUCTION\PORT

GTA-RCK 025

PROJECT: 1771656 RECORD OF DRILLHOLE: BH17-7D

LOCATION: N 4751237.0 ;E 646634.8

DRILLING DATE: March 1, 2017

DRILL RIG: Acker SoilMax INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage PL - Planar CU - Curved UN - Undulating ST - Stepped IR - Irregular JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjuga PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea BR - Broken Rock VRo - Very Rough NOTE: For additional DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES ġ ELEV. WATER LEVELS DESCRIPTION RUN FRACT. INDEX PER 0.3 m DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION R.Q.D. OIP w.r.t CORE AXIS (m) FLUSH SOLID CORE % TYPE AND SURFACE DESCRIPTION 0000 2008 --- CONTINUED FROM PREVIOUS PAGE ---NJN or FR,IR to UI
to ST,SM to RO
JN or FR,IR to UI
to ST,SM to RO
JN or FR,IR to UI
to ST,SM to RO
to ST,SM to RO Fresh, light to medium grey, medium bedded, medium grained, mottled DOLOSTONE with green beds, green fracture coatings and brecciated intervals (Bertie Formation, Akron Member) Brecciated horizons end @ 6.7 m', light JN or FR,IR to UN to ST,SM to RO grey mottled appearance begins JN or FR,IR to UN to ST,SM to RO ST,SM to RO to ST,SM to RO JN or FR,IR to UN to ST,SM to RO JN or FR,IR to UN to ST,SM to RO FR or JN,IR to ST,RO to SM FR or JN,IR to ST,RO to SM JN or BD,UN,SM JN or BD,UN,SM JN or BD UN SM JN or BD,UN,SM 9 JN or BD,UN,SM > JN or BD,UN,SM BD,PL,SM BD,PL,SM 171.79 Fresh, grey to bluish-grey, medium grained, thin to medium bedded, fine to medium grained laminate textured 9.60 DOLOSTONE with thin argillaceous laminae (Bertie Formation, Williamsville BD,PL,SM Member) 10 BD,PL,SM BD,PL,SM BD,PL,SM BD,PL,SM BD,PL,SM BD,PL,SM BD,PL,SM BD,PL,SM BD,PL,SM 11 170.30 Fresh, medium to dark grey, fine to medium grained, ARGILLACEOUS DOLOSTONE and SHALY DOLOSTONE (Bertie Formation, Scajaquada Member) BD.PL.SM CONTINUED NEXT PAGE

SHEET 2 OF 4

DATUM: Geodetic

DEPTH SCALE

GTA-RCK 025

S:\CLIENTS\RANKIN_CONSTRUCTION/PORT_COLBORNE_QUARRY\02_DATA\GINT\1771656.GPJ_GAL-MISS.GDT_7/20

RECORD OF DRILLHOLE: **BH17-7D** PROJECT: 1771656 SHEET 3 OF 4 LOCATION: N 4751237.0 ;E 646634.8 DRILLING DATE: March 1, 2017 DATUM: Geodetic DRILL RIG: Acker SoilMax INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjuga PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES ģ ELEV. WATER LEVELS DESCRIPTION RUNI FRACT. INDEX PER 0.3 m DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION OIP w.r.t CORE AXIS (m) FLUSH TYPE AND SURFACE DESCRIPTION 00,00 8848 --- CONTINUED FROM PREVIOUS PAGE Fresh, medium to dark grey, fine to medium grained, ARGILLACEOUS DOLOSTONE and SHALY DOLOSTONE BD,PL,SM (Bertie Formation, Scajaquada Member) 12 BD,PL,SM 13 BD/JN IR RO BD/JN.IR.RO Fresh, brownish-grey to brown, medium grained, pitted to vuggy DOLOSTONE (Bertie Formation, Falkirk Member) BD,PL,SM 14 FR/JN,IR to ST,RO FR/JN,IR to ST.RO 15 BD,PL to IR,SM to RO BD,PL to IR,SM to RO 10 BD,PL to IR,SM to RO BD,PL to IR,SM to RO 16 BD,PL to IR,SM to RO CONTINUED NEXT PAGE DEPTH SCALE LOGGED: TP **GOLDER**

CHECKED: SM

GTA-RCK 025 S:CLIENTS/RANKIN, CONSTRUCTION/PORT, COLBORNE, QUARRY/02, DATA/GINT/171656.GPJ GAL-MISS.GDT 7/27/20

1:25

RECORD OF DRILLHOLE: PROJECT: 1771656

LOCATION: N 4751237.0 ;E 646634.8

AZIMUTH: ---

INCLINATION: -90°

1:25

BH17-7D

DRILLING DATE: March 1, 2017 DRILL RIG: Acker SoilMax

SHEET 4 OF 4

CHECKED: SM

DATUM: Geodetic

DRILLING CONTRACTOR: Lantech

PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular BD- Bedding FO- Foliation CO- Contact OR- Orthogonal CL - Cleavage JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugat PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES Š ELEV. WATER LEVELS DESCRIPTION RUNI FRACT. INDEX PER 0.3 m HYDRAULIC CONDUCTIVIT K, m/sec DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION DIP w.r.t. CORE AXIS (m) FLUSH SOLID CORE % TYPE AND SURFACE DESCRIPTION 2008 --- CONTINUED FROM PREVIOUS PAGE --Fresh, brownish-grey to brown, medium grained, pitted to vuggy DOLOSTONE (Bertie Formation, Falkirk Member) BD,PL,SM 17 Screen and Sand BD/JN,PL,SM BD/JN.PL.SM BD/JN,PL,SM 18 BD,PL,SM BD,PL,SM 163.00 Fresh, dark bluish grey to black argillaceous DOLOSTONE and SHALE (Bertie Formation, Oatka Member) 18.39 12 BD,PL,SM GTA-RCK 025 S:CLIENTS/RANKIN, CONSTRUCTION/PORT, COLBORNE, QUARRY/02, DATA/GINT/171656.GPJ GAL-MISS.GDT 7/27/20 END OF DRILLHOLE 19 20 21 DEPTH SCALE LOGGED: TP GOLDER

RECORD OF DRILLHOLE: PROJECT: 1771656

LOCATION: N 4751234.4 ;E 646634.9

AZIMUTH: ---

INCLINATION: -90°

QUARRY\02_DATA\GINT\1771656.GPJ GAL-MISS.GDT 7/27/20

COLBORNE

S:\CLIENTS\RANKIN CONSTRUCTION\PORT

025

1:25

BH17-7S

SHEET 1 OF 2 DATUM: Geodetic

CHECKED: SM

DRILLING DATE: March 7, 2017 DRILL RIG: Acker SoilMax

DRILLING CONTRACTOR: Lantech

BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage PL - Planar CU - Curved UN - Undulating ST - Stepped IR - Irregular JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjuga PO- Polished K - Slickensided SM- Smooth BR - Broken Rock VRo - Very Rough NOTE: For additional DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES ġ Ro - Rough MB- Mechanical Brea ELEV. WATER LEVELS DESCRIPTION RUN FRACT. INDEX PER 0.3 m DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION R.Q.D. OIP w.r.t CORE AXIS (m) FLUSH SOLID CORE % TYPE AND SURFACE DESCRIPTION 0000 2008 Continued from Record of Borehole BH17-7S 179.87 Fresh to highly weathered, medium grey, medium bedded, medium grained LIMESTONE with siltstone and FR/JN,IR to UN,RO to SM sandstone horizons and greenish grey siltstone and cherty limestone beds (Bois Blanc Formation) FR/JN,IR to UN,RO to SM FR/JN,IR to PL,RO to SM 178.22 3.15 Fresh, light to medium grey, medium bedded, medium grained, mottled FR/JN IR to PL,RO to SM PL,RO to SM FR/JN,IR to PL,RO to SM FR/JN,IR to PL,RO to SM DOLOSTONE with green beds, green fracture coatings and brecciated intervals (Bertie Formation, Akron Member) FR/JN,IR to PL,RO to SM FR/JN,IR to PL,RO to SM FR/JN,IR to FRJINJIR to PL,RO to SM FRJINJIR to SM FRJINJIR to PL,RO to SM FR/JN,IR to PL,RO to SM FR/JN,IR to UN,RO to SM FR/JN,IR to UN,RO to SM FR/JN,IR to UN,RO to SM Screen and Sand FR/JN,IR to UN,RO to SM FR/JN,IR to UN,RO to SM FR/JN,IR to UN,RO to SM FR/JN,IR to ST,RO to SM FR/JN,IR to CONTINUED NEXT PAGE DEPTH SCALE LOGGED: TP GOLDER

PROJECT: 1771656

LOCATION: N 4751234.4 ;E 646634.9

RECORD OF DRILLHOLE: **BH17-7S**

DRILLING DATE: March 7, 2017

SHEET 2 OF 2 DATUM: Geodetic

ш	ORD		90			SATE		JN - FLT - SHR-	- Joi - Fa	nt ult	NG (BE)- Bed	lding ation		PI C	L - Planar U- Curved	PO- K -	Polisher Slickens Smooth	d sided		BR - I VRo - \ NOTE: F abbrevia	Broke Very For ad	en Ro Roug	ock jh		
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	PENETRATION RATE min/(m)	FLUSH COL	VN ·	- Ve - Co COV	in njugat 'ERY SOLID CORE 9	R.(Q.D. %	FRAGINDE 0.3	CT. EX R	Core	II-	N - Undulating T - Stepped R - Irregular SCONTINUITY I.I. TYPE AND	MB-	Rough Mechan HYDI CONDI K, i	RAULIC JCTIVIT n/sec	eak Y ST	abbrevia of abbre symbols ROCK RENGT NDEX	rviatio	WEAT ERIN INDE	TH- IG EX	NOTES WATER LEVI INSTRUMENTA	
- 7		CONTINUED FROM PREVIOUS PAGE Fresh, light to medium grey, medium bedded, medium grained, mottled DOLOSTONE with green beds, green fracture coatings and brecciated intervals (Bertie Formation, Akron Member) Breciated horizons end @ 6.7 m light grey mottled apperance begins			4										Lost Core	•	to SM FR,IR to to SM	to SM 5 ST,RO 5 ST,RO 5 ST,RO								Screen and Sand	TO TO TO TO TO TO TO
		0.1 m fracture infilled with cemerited sand @ 7.2 m		173.75												•	to SM	ST,RO									<u> </u>
- 8		END OF DRILLHOLE		7.62																							
- 9																											
- 10																											
- 11																											

RECORD OF DRILLHOLE: **BH17-8D** PROJECT: 1771656 SHEET 1 OF 5 LOCATION: N 4751094.9 ;E 646422.4 DRILLING DATE: March 8, 2017 DATUM: Geodetic DRILL RIG: Acker SoilMax INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjuga PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea BR - Broken Rock VRo - Very Rough NOTE: For additional DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES ġ ELEV. WATER LEVELS DESCRIPTION RUN FRACT. INDEX PER 0.3 m WEATH ERING INDEX DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION R.Q.D. OIP w.r.t. CORE AXIS (m) FLUSH TOTAL CORE % SOLID CORE % TYPE AND SURFACE DESCRIPTION 0000 2008 Continued from Record of Borehole BH17-8D 180.55 Fresh to highly weathered, medium grey, FR/JN,IR,RO to SM medium bedded, medium grained LIMESTONE with siltstone and FR/JN,IR,RO to SM FR/JN,IR,RO to SM FR/JN,IR,RO to SM sandstone horizons and greenish grey siltstone and cherty limestone beds (Bois Blanc Formation) FR/JN,IR,RO to SM FR/JN,IR,RO to SM FR/JN,IR,RO to
SM
FR/JN,IR,RO to SM FR/JN,IR to UN,RO to SM FRUNIR to UN RO TO THE RO THE RO TO THE RO TO THE RO 2 FR/JN,IR to UN,RO to SM FR/JN/IR to UN,RO to SM FR/JN,IR to UN,RO to SM BD,PL,SM BD,PL,SM FR/JN,IR to UN,RO to SM FR,PL,SM

FR/JN.IR to

DEPTH SCALE

CONTINUED NEXT PAGE

COLBORNE_QUARRY/02_DATA\GINT\1771656.GPJ GAL-MISS.GDT 7/27/20

S:\CLIENTS\RANKIN CONSTRUCTION\PORT

GTA-RCK 025

RECORD OF DRILLHOLE: **BH17-8D** PROJECT: 1771656 SHEET 2 OF 5 LOCATION: N 4751094.9 ;E 646422.4 DRILLING DATE: March 8, 2017 DATUM: Geodetic DRILL RIG: Acker SoilMax INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugat PO- Polished K - Slickensided SM- Smooth BR - Broken Rock VRo - Very Rough NOTE: For additional DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES ġ Ro - Rough MB- Mechanical Brea ELEV. WATER LEVELS DESCRIPTION RUN FRACT. INDEX PER 0.3 m HYDRAULIC DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION R.Q.D. OIP w.r.t. CORE AXIS (m) FLUSH SOLID CORE % TYPE AND SURFACE DESCRIPTION 0000 2008 --- CONTINUED FROM PREVIOUS PAGE --UN,RO to SM FR/JN,IR to UN,RO to SM FR/JN,IR to UN,RO to SM 175.44 5.95 Fresh, light to medium grey, medium bedded, medium grained, mottled UN,RO to SM
FR/JN,IR or
UN,RO to SM
FR/JN,IR or
UN,RO to SM
FR/JN,IR or
UN,RO to SM
FR/JN,IR or
UN,RO to SM
FR/JN,IR or
UN,RO to SM
FR/JN,IR or
UN,RO to SM
FR/JN,IR or
UN,RO to SM
FR/JN,IR or
UN,RO to SM
FR/JN,IR or
UN,RO to SM
FR/JN,IR or
IN,RO to SM
FR/JN,IR or DOLOSTONE with green beds, green fracture coatings and brecciated intervals (Bertie Formation, Akron Member) UN,RO to SM FR/JN,IR to UN/PL,RO to SM FR/JN,IR to
UN/PL,RO to SM
FR/JN,IR to
UN/PL,RO to SM
UN/PL,RO to SM 173.8 Brecciated horizons end @ 7.6 m , light \grey mottled appearance begins Fresh, grey to bluish-grey, medium grained, thin to medium bedded, fine to medium grained laminate textured
DOLOSTONE with thin argillaceous
laminae (Bertie Formation, Williamsville JN,IR,RO FR/JN,IR to ST,RO FR/JN,IR to UN,SM to RO FR/JN,IR to UN,SM to RO FR/JN,IR to
UN,SM to RO
FR/JN,IR to
UN,SM to RO
FR/JN,IR to
UN,SM to RO
FR/JN,IR to
UN,SM to RO UN,SM to RO
FR/JN/IR to
UN,SM to RO
FR/JN/IR to
UN,SM to RO
FR/JN/IR to
UN,SM to RO
FR/JN/IR to
UN,SM to RO
FR/JN/IR to
UN,SM to RO
FR/JN/IR to
UN,SM to RO
FR/JN/IR to
UN,SM to RO
FR/JN/IR to
UN,SM to RO
FR/JN/IR to
UN,SM to RO
FR/JN/IR to
UN,SM to RO
FR/JN/IR to
UN,SM to RO
FR/JN/IR to
UN,SM to RO
FR/JN/IR to
UN,SM to RO CONTINUED NEXT PAGE DEPTH SCALE LOGGED: TP GOLDER 1:25 CHECKED: SM

COLBORNE_QUARRY/02_DATA\GINT\1771656.GPJ GAL-MISS.GDT 7/27/20

S:\CLIENTS\RANKIN CONSTRUCTION\PORT

025

RECORD OF DRILLHOLE: **BH17-8D** PROJECT: 1771656 SHEET 3 OF 5 LOCATION: N 4751094.9 ;E 646422.4 DATUM: Geodetic DRILLING DATE: March 8, 2017 DRILL RIG: Acker SoilMax INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjuga PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea BR - Broken Rock VRo - Very Rough NOTE: For additional DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES ġ ELEV. WATER LEVELS DESCRIPTION RUN FRACT. INDEX PER 0.3 m DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION R.Q.D. OIP w.r.t. CORE AXIS (m) FLUSH SOLID CORE % TYPE AND SURFACE DESCRIPTION 00,00 2008 --- CONTINUED FROM PREVIOUS PAGE -Fresh, grey to bluish-grey, medium grained, thin to medium bedded, fine to medium grained laminate textured DOLOSTONE with thin argillaceous laminae (Bertie Formation, Williamsville 11 FR/JN,IR to UN,RO to SM UN,KO to S...
FR/JN,IR to
UN,RO to SM
BD,PL,SM
BD,PL,SM
BD,PL,SM 169.80 Fresh, medium to dark grey, fine to medium grained, ARGILLACEOUS DOLOSTONE and SHALY DOLOSTONE (Bertie Formation, Scajaquada Member) 12 BD.PL.SM BD,PL,SM BD.PL.SM BD,PL,SM BD.PL.SM FR.IR.RO 13 FR.IR.RO BD,PL,SM BD,PL,SM BD,PL,SM 14 BD,PL,SM 166.96 14.43 10 BD,PL,SM Fresh, brownish-grey to brown, medium grained, pitted to vuggy DOLOSTONE (Bertie Formation, Falkirk Member) BD,PL,SM BD,PL,SM BD,PL,SM FR,IR,RO 15 FR,IR,RO

GOLDER

BD/FR,IR,RO to SM BD/FR,IR,RO to SM

Sand

GTA-RCK 025

CONTINUED NEXT PAGE

S:\CLIENTS\RANKIN CONSTRUCTIONIPORT_COLBORNE_QUARRY\\02_DATA\GINT\1771656.GPJ_GAL-MISS:GDT_7/27/20

RECORD OF DRILLHOLE: **BH17-8D** PROJECT: 1771656 SHEET 4 OF 5 LOCATION: N 4751094.9 ;E 646422.4 DRILLING DATE: March 8, 2017 DATUM: Geodetic DRILL RIG: Acker SoilMax INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjuga PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES ģ ELEV. WATER LEVELS DESCRIPTION RUNI FRACT. INDEX PER 0.3 m DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION OIP w.r.t CORE AXIS (m) FLUSH SOLID CORE % TYPE AND SURFACE DESCRIPTION 00,00 8048 --- CONTINUED FROM PREVIOUS PAGE --Fresh, brownish-grey to brown, medium grained, pitted to vuggy DOLOSTONE (Bertie Formation, Falkirk Member) 16 Sand BD/FR.IR.RO BD/FR,IR,RO 17 BD/FR,IR,RO 12 18 Screen and Sand 19 13 BD/FR,IR,RO BD/FR,IR,RO Fresh, dark bluish grey to black argillaceous DOLOSTONE and SHALE (Bertie Formation, Oatka Member) 19.82 BD,PL,SM BD,PL,SM BD,PL,SM

GTA-RCK 025

CONTINUED NEXT PAGE

S:\CLIENTS\RANKIN CONSTRUCTIONIPORT_COLBORNE_QUARRY\\02_DATA\GINT\1771656.GPJ_GAL-MISS:GDT_7/27/20

RECORD OF DRILLHOLE: PROJECT: 1771656

LOCATION: N 4751094.9 ;E 646422.4

INCLINATION: -90°

AZIMUTH: ---

BH17-8D

DRILLING DATE: March 8, 2017 DATUM: Geodetic

SHEET 5 OF 5

DRILL RIG: Acker SoilMax

DRILLING CONTRACTOR: Lantech

S		907		·	N RATE DLOUR RETURN					BI	D- Be D- Fo D- Co R- Or	ddin	g n t		PL	- Planar PO- - Curved K - - Undulating SM-	Polished Slickensided Smooth	E \ N	BR - /Ro- NOTE: abbrev	Bro Ver For a	ken F y Ro idditions refe	Rock ugh onal er to lis	t NOTES
DEP IN SCALE METRES DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	DEPTH (m)	RUN N	PENETRATION RATE min/(m) COLOUR FLUSH % RETURN	TOTA CORE	L S	ORE 9	- R.	Q.D. %	FRA INC PE 0.3	CT. EX R	ge	DIP CC A)	W.r.t. W.RE	- Irregular MB- CONTINUITY DATA TYPE AND SURFACE DESCRIPTION	Rough Mechanical Breat HYDRAULIC CONDUCTIVITY K, m/sec	STF	ROCK RENG NDEX	TH	WE ER INI	ATH- RING DEX	INSTRUMENTATIO
	CONTINUED FROM PREVIOUS PAGE					8884	8 5	848	188	848	122	#2 		o⊗ 	11		1777	4	72 33	<u>~ </u>	3 \$	W3 W4	:
21	Fresh, dark bluish grey to black argillaceous DOLOSTONE and SHALE (Bertie Formation, Oatka Member)		160.10 21.29	14											•	BD,PL,SM BD,PL,SM							
22	END OF DRILLHOLE		21.29																				
. 23																							
- 24																							
- 25																							
DEPTH	H SCALE	<u> </u>) }		 ~	\Box	ı	L		 =	Ⅲ D	11	I	1111			Ш	11		LOGGED: TP

RECORD OF DRILLHOLE: **BH17-8S** PROJECT: 1771656

LOCATION: N 4751097.2 ;E 646422.6

AZIMUTH: ---

INCLINATION: -90°

DRILLING DATE: March 17, 2017 DATUM: Geodetic

SHEET 1 OF 2

DRILL RIG: Acker SoilMax DRILLING CONTRACTOR: Lantech

BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage PL - Planar CU - Curved UN - Undulating ST - Stepped IR - Irregular JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjuga PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG NOTES ġ ELEV. WATER LEVELS DESCRIPTION RUN FRACT. INDEX PER 0.3 m DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION OIP w.r.t CORE AXIS (m) FLUSH TYPE AND SURFACE DESCRIPTION 0 0 0 0 8848 Continued from Record of Borehole BH17-8S 180.80 Fresh to highly weathered, medium grey, FR/JN,IR,RO

DEPTH SCALE METRES medium bedded, medium grained LIMESTONE with siltstone and sandstone horizons and greenish grey siltstone and cherty limestone beds FR/JN,IR,RO FR/JN,IR,RO (Bois Blanc Formation) FR/JN,IR,RO FR/JN,IR,RO Some DOLOSTONE interbed; between 1.4 m to 2.9 m. BD/JN.IR.RO BD/JN,IR,RO Bentonite Seal BD/JN IR RO BD/JN.IR.RO BD/JN,IR,RO BD/JN,IR,RO BD/JN IR RO BD/JN,IR,RO BD/JN,IR,RO BD/JN,IR,RO S:\CLIENTS\RANKIN_CONSTRUCTION/PORT_COLBORNE_QUARRY\02_DATA\GINT\1771656.GPJ_GAL-MISS.GDT_7/20 BD/JN,PL to IR,RO to SM a_1^{\prime} BD/JN,PL to IR,RO to SM Sand BD/JN,PL to IR,RO to SM BD/IR,PL to IR,RO to SM 176.59 4.87 Fresh, light to medium grey, medium bedded, medium grained, mottled DOLOSTONE with green beds, green fracture coatings and brecciated intervals (Bertie Formation, Akron Member) BD/IR,PL to IR,RO to SM Screen and Sand BD/IR,PL to IR,RO to SM BD/IR,PL to IR,RO to SM CONTINUED NEXT PAGE GTA-RCK 025

DEPTH SCALE 1:25

 PROJECT:
 1771656
 RECORD OF DRILLHOLE:
 BH17-8S

 LOCATION:
 N 4751097.2 ;E 646422.6
 DRILLING DATE: March 17, 2017

DRILLING DATE: March 17, 2017 DRILL RIG: Acker SoilMax SHEET 2 OF 2

DATUM: Geodetic

INCLINATION: -90° AZIMUTH: ---

DRILLING CONTRACTOR: Lantech

DESCRIPTION DESCR	SSCALE TES RECORD	IC LOG	ELEV.	No.	iON RATE (m)	% RETURN	JN - FLT - SHR- VN - CJ -	Fault Shea Vein	i ar		FO- CO- OR-	Bedd Foliat Conta Ortho	ion act gonal		CU-	- Curved K - Undulating SN	D- Poli - Slic M- Smo D - Rou B- Med	kension	ded al Brea	NO	R - Bro Ro - Ve DTE: For breviation abbreviation	additio	nal	NOTES WATER LEV	
Fresh, light to medium graymed model to be continued to the continued of t	DEPTH SCALE METRES METRES MILLING RECORI	SYMBOL		RUN	PENETRAT min/	FLUSH	TOTAL	s % cc	OLID ORE %	9/	6	PER 0.3 m	300	DIF CI	DISC w.r.t. ORE XIS	ONTINUITY DATA	_ ct	HYDR/ ONDU	AULIC CTIVITY (sec	STRE INI	OCK ENGTH DEX	INE	DEX		
END OF DRILLHOLE 7.52 Valenting Wind to SM	Fresh, light to medium grey, medium bedded, medium grained, mottled DOLOSTONE with green beds, green fracture coatings and brecciated intervals (Bertie Formation, Akron Member)														• • • • • • • • • •	BD/IR.PL to IR.RO to SM JN.PL.SM FR.PL.SM FR.PL.SM JNFR.IR to W.RO to SM JNFR.IR to SM JNFR.IR to W.RO to SM								Screen and Sand	<u>YIN'IN'IN'IN'IN'IN'IN'IN'IN'IN'IN'IN'IN'I</u>
															•••	JN/FR,IR to W,RO to SM JN/FR,IR to									

RECORD OF DRILLHOLE: PROJECT: 1771656

LOCATION: N 4750972.1 ;E 646834.1

COLBORNE_QUARRY/02_DATA\GINT\1771656.GPJ GAL-MISS.GDT 7/27/20

S:\CLIENTS\RANKIN_CONSTRUCTION\PORT_

GTA-RCK 025

1:25

BH17-9D

SHEET 1 OF 4

CHECKED: SM

DATUM: Geodetic

DRILLING DATE: February 14, 2017 DRILL RIG: Acker SoilMax

INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjuga PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES ģ ELEV. WATER LEVELS DESCRIPTION RUNI FRACT. INDEX PER 0.3 m DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION R.Q.D. OIP w.r.t CORE AXIS (m) FLUSH TYPE AND SURFACE DESCRIPTION 00,00 2008 Continued from Record of Borehole BH17-9D 178.62 Fresh to highly weathered, medium grey, medium bedded, medium grained LIMESTONE with siltstone and BD,PL to CU,SM to RO
BD,PL to CU,SM to RO
BD,PL to CU,SM to RO
FR,PL to CU,SM to RO
BD,PL to CU,SM to RO sandstone horizons and greenish grey siltstone and cherty limestone beds (Bois Blanc Formation) 177.68 3.07 Fresh, light to medium grey, medium FR,UN,SM bedded, medium grained, mottled DOLOSTONE with green beds, green fracture coatings and brecciated intervals (Bertie Formation, Akron Member) BD.UN.SM FR,UN,SM BD,UN,SM BD,UN,SM BD.UN.SM BD,UN,SM BD,UN,SM CON,PL,SM BD,PL,SM Weathered to fresh, thinly bedded to laminated , dark grey to black , soft , SHALE interval from 4.9 m to 5.3 m CON.PL.SM FR,UN,SM to RO Breciated horizons end @ 6.4 m , light grey mottled appearance begins FR,UN,SM to RO FR.UN.SM to RO CONTINUED NEXT PAGE DEPTH SCALE LOGGED: TP GOLDER

RECORD OF DRILLHOLE: PROJECT: 1771656

LOCATION: N 4750972.1 ;E 646834.1

COLBORNE_QUARRY/02_DATA\GINT\1771656.GPJ GAL-MISS.GDT 7/27/20

S:\CLIENTS\RANKIN_CONSTRUCTION\PORT_

GTA-RCK 025

1:25

BH17-9D

DRILLING DATE: February 14, 2017 DRILL RIG: Acker SoilMax

SHEET 2 OF 4

CHECKED: SM

DATUM: Geodetic

INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjuga PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES ġ ELEV. WATER LEVELS DESCRIPTION RUNI FRACT. INDEX PER 0.3 m DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION OIP w.r.t CORE AXIS (m) FLUSH TYPE AND SURFACE DESCRIPTION 00,00 8948 --- CONTINUED FROM PREVIOUS PAGE --Fresh, light to medium grey, medium bedded, medium grained, mottled DOLOSTONE with green beds, green FR,UN,SM to RO fracture coatings and brecciated intervals (Bertie Formation, Akron Member) 173.16 7.59 Fresh, grey to bluish-grey, medium grained, thin to medium bedded, fine to FR,UN,SM to RO medium grained laminate textured DOLOSTONE with thin argillaceous laminae (Bertie Formation, Williamsville Member) FR,UN,SM to RO FR,UN,SM to RO FR,UN,SM to RO FR,UN to ST,SM to RO FR,UN to ST,SM to RO BD,PL,SM FR,ST,RO FR,UN,SM FR,UN,SM FR,UN to ST,SM to RO BD,UN to PL,BD to SM
BD,UN to PL,BD to SM
BD,UN to PL,BD to SM
BD,UN to PL,BD to SM
BD,UN to PL,BD to SM
BD,UN to PL,BD 10 Fresh, medium to dark grey, fine to medium grained, ARGILLACEOUS DOLOSTONE and SHALY DOLOSTONE (Bertie Formation, Scajaquada Member) BD,PL,SM BD,PL,SM 11 BD,PL,SM BD,PL,SM BD.PL.SM 12 CONTINUED NEXT PAGE DEPTH SCALE LOGGED: TP GOLDER

RECORD OF DRILLHOLE: BH17-9D PROJECT: 1771656 SHEET 3 OF 4 LOCATION: N 4750972.1 ;E 646834.1 DRILLING DATE: February 14, 2017 DATUM: Geodetic DRILL RIG: Acker SoilMax INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjuga PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES ģ ELEV. WATER LEVELS DESCRIPTION RUNI FRACT. INDEX PER 0.3 m DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION OIP w.r.t CORE AXIS (m) FLUSH SOLID CORE % TYPE AND SURFACE DESCRIPTION 00,00 2008 --- CONTINUED FROM PREVIOUS PAGE -Fresh, medium to dark grey, fine to medium grained, ARGILLACEOUS DOLOSTONE and SHALY DOLOSTONE (Bertie Formation, Scajaquada Member) 168.20 12.55 Fresh, brownish-grey to brown, medium grained, pitted to vuggy DOLOSTONE (Bertie Formation, Falkirk Member) BD,PL,SM BD,PL,SM BD,PL,SM BD,PL,SM BD,PL,SM 13 BD,PL,SM BD,PL,SM BD,PL,SM 14 Sand 15 FR.PL.RO FR,IR,RO BD,PL,SM 10 16 Screen and Sand 17

COLBORNE_QUARRY/02_DATA\GINT\1771656.GPJ GAL-MISS.GDT 7/27/20

S:\CLIENTS\RANKIN_CONSTRUCTION\PORT_

GTA-RCK 025

DEPTH SCALE

1:25

CONTINUED NEXT PAGE

RECORD OF DRILLHOLE: PROJECT: 1771656

LOCATION: N 4750972.1 ;E 646834.1

1:25

BH17-9D

DRILLING DATE: February 14, 2017 DRILL RIG: Acker SoilMax

SHEET 4 OF 4

CHECKED: SM

DATUM: Geodetic

INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech BD- Bedding FO- Foliation CO- Contact OR- Orthogonal CL - Cleavage PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugat BR - Broken Rock VRo - Very Rough NOTE: For additional abbreviations refer to list of abbreviations & PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES WATER LEVELS Š ELEV. DESCRIPTION RUNI FRACT. INDEX PER 0.3 m HYDRAULIC CONDUCTIVIT K, m/sec DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION DIP w.r.t. CORE AXIS FLUSH (m) SOLID CORE % TYPE AND SURFACE DESCRIPTION 8848 --- CONTINUED FROM PREVIOUS PAGE ---Fresh, brownish-grey to brown, medium grained, pitted to vuggy DOLOSTONE (Bertie Formation, Falkirk Member) 163.42 17.33 Fresh, dark bluish grey to black argillaceous DOLOSTONE and SHALE (Bertie Formation, Oatka Member) Screen and Sand 18 Sand 162.46 18.29 END OF DRILLHOLE 19 COLBORNE_QUARRY/02_DATA\GINT\1771656.GPJ GAL-MISS.GDT 7/27/20 20 21 GTA-RCK 025 S:\CLIENTS\RANKIN_CONSTRUCTION\PORT_ 22 DEPTH SCALE LOGGED: TP GOLDER

PROJECT: 1771656

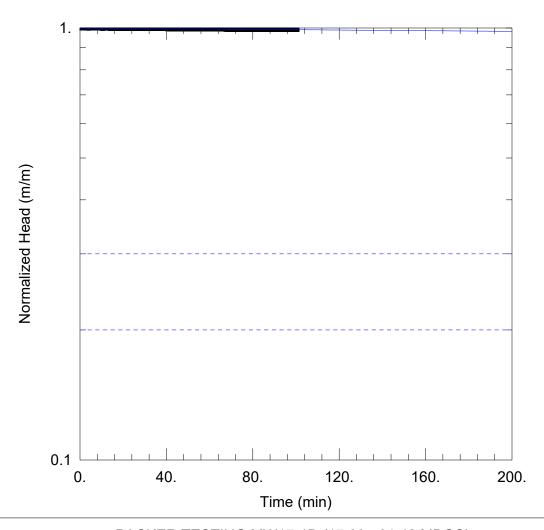
1:25

LOCATION: N 4750974.3 ;E 646834.0

RECORD OF DRILLHOLE: BH17-9S

DRILLING DATE: February 21, 2017

SHEET 1 OF 1


DATUM: Geodetic

DRILL RIG: Acker SoilMax INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Lantech PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjuga PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Brea DRILLING RECORD PENETRATION RATE min/(m) SYMBOLIC LOG DEPTH SCALE METRES NOTES ġ ELEV. WATER LEVELS DESCRIPTION RUNI FRACT. INDEX PER 0.3 m DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION R.Q.D. OIP w.r.t CORE AXIS (m) FLUSH TYPE AND SURFACE DESCRIPTION 10-7-0 2008 Continued from Record of Borehole BH17-9S 178.63 Fresh to highly weathered, medium grey, FR,IR to UN,RO medium bedded, medium grained LIMESTONE with siltstone and FR,IR to UN,RO sandstone horizons and greenish grey siltstone and cherty limestone beds FR,IR to UN,RO (Bois Blanc Formation) FR,IR to UN,RO Bentonite Seal FR,IR to UN,RO FR,IR to UN,RO FR,IR to UN,RO FR.IR to UN.RO FR,IR,RO Fresh, light to medium grey, medium bedded, medium grained, mottled DOLOSTONE with green beds, green fracture coatings and brecciated intervals (Bertie Formation, Akron Member) FR,IR,RO FR,IR,RO FR,IR,RO FR,IR,RO FR,IR,RO FR IR RO COLBORNE_QUARRY/02_DATA\GINT\1771656.GPJ GAL-MISS.GDT 7/27/20 FR,IR,RO FR,IR,RO Screen and Sand FR.IR.RO Weathered to fresh, thinly bedded to laminated , dark grey to black , soft , SHALE interval from 5.1 m to 5.3 m FR,IR,RO FR,IR,RO 174.69 6.02 S:\CLIENTS\RANKIN CONSTRUCTION\PORT END OF DRILLHOLE 025 DEPTH SCALE LOGGED: TP

October 2020 1771656-1000-Rev2

APPENDIX B

Hydraulic Conductivity Testing Results

PACKER TESTING MW17-1D (17.68 - 21.42 MBGS)

Data Set: Z:\...\MW17-1D Test 1_jlh.aqt

Date: 02/15/18 Time: 10:33:05

PROJECT INFORMATION

Company: Golder Associates

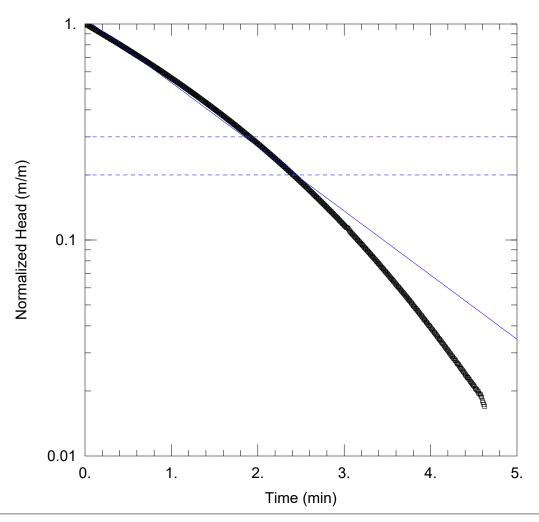
Client: Rankin Project: 1771656

Location: Port Colborne
Test Well: MW17-1D Test 1
Test Date: March 28, 2017

AQUIFER DATA

Saturated Thickness: 16.76 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW17-1D Test 1)


Initial Displacement: 6.509 m Static Water Column Height: 16.76 m

Total Well Penetration Depth: 3.74 m Screen Length: 3.74 m Casing Radius: 0.0389 m Well Radius: 0.048 m

SOLUTION

Aguifer Model: Confined Solution Method: Bouwer-Rice

K = 8.516E-10 m/sec y0 = 6.505 m

PACKER TESTING MW17-1D (15.09 - 18.29 MBGS)

Data Set: Z:\...\MW17-1D Test 2 jlh.aqt

Date: 02/15/18 Time: 10:39:14

PROJECT INFORMATION

Company: Golder Associates

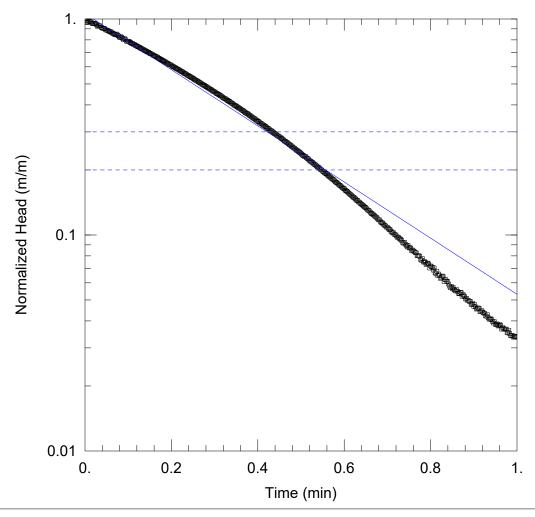
Client: Rankin
Project: 1771656

Location: Port Colborne
Test Well: MW17-1D Test 2
Test Date: March 28, 2017

AQUIFER DATA

Saturated Thickness: 13.22 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW17-1D Test 2)


Initial Displacement: 6.483 m Static Water Column Height: 13.22 m

Total Well Penetration Depth: 3.2 m Screen Length: 3.2 m Casing Radius: 0.0389 m Well Radius: 0.048 m

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 7.462E-6 m/sec y0 = 6.87 m

PACKER TESTING MW17-1D (12.50 - 15.70 MBGS)

Data Set: Z:\...\MW17-1D Test 3 jlh.aqt

Date: 02/15/18 Time: 10:40:06

PROJECT INFORMATION

Company: Golder Associates

Client: Rankin Project: 1771656

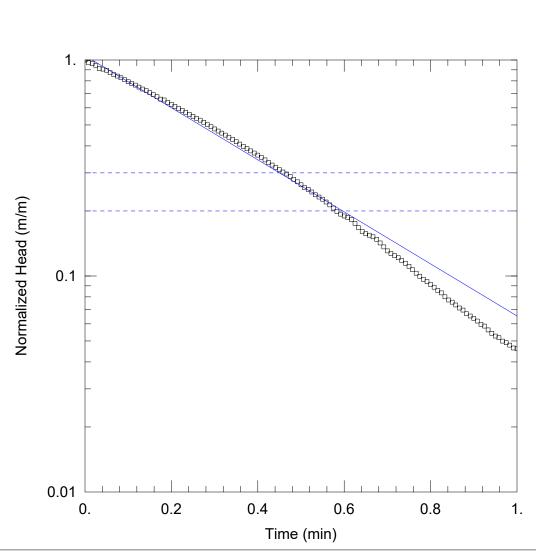
Location: Port Colborne Test Well: MW17-1D Test 3 Test Date: March 28, 2017

AQUIFER DATA

Saturated Thickness: 10.66 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW17-1D Test 3)

Initial Displacement: 5.216 m Static Water Column Height: 10.66 m


Total Well Penetration Depth: 3.2 m Screen Length: 3.2 m

Casing Radius: 0.0389 m Well Radius: 0.048 m

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 3.289E-5 m/secy0 = 5.524 m

PACKER TESTING MW17-1D (10.98 - 14-18 MBGS)

Data Set: Z:\...\MW17-1D Test 4 jlh.aqt

Date: 02/15/18 Time: 10:40:34

PROJECT INFORMATION

Company: Golder Associates

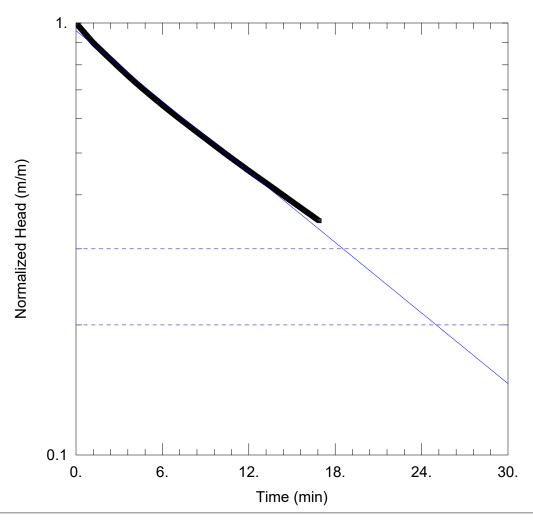
Client: Rankin Project: 1771656

Location: Port Colborne
Test Well: MW17-1D Test 4
Test Date: March 28, 2017

AQUIFER DATA

Saturated Thickness: 9.13 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW17-1D Test 4)


Initial Displacement: 5.006 m Static Water Column Height: 9.13 m

Total Well Penetration Depth: 3.2 m Screen Length: 3.2 m Casing Radius: 0.0389 m Well Radius: 0.048 m

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 3.065E-5 m/sec y0 = 5.236 m

PACKER TESTING MW17-2D (11.59 - 15.27 MBGS)

Data Set: Z:\...\MW17-2D Test 1 jlh.aqt

Date: 02/15/18 Time: 10:54:32

PROJECT INFORMATION

Company: Golder Associates

Client: Rankin
Project: 1771656

Location: Port Colborne
Test Well: MW17-2D Test 1
Test Date: March 30, 2017

AQUIFER DATA

Saturated Thickness: 9.24 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW17-2D Test 1)

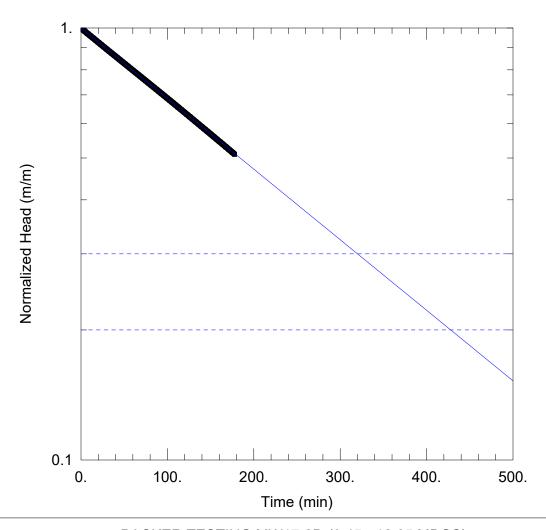
Initial Displacement: 7.071 m

Static Water Column Height: 9.24 m

Total Well Penetration Depth: 8.19 m

Screen Length: 3.68 m Well Radius: 0.048 m

Casing Radius: 0.0389 m


SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 7.438E-7 m/sec

y0 = 6.787 m

PACKER TESTING MW17-2D (9.45 - 12.65 MBGS)

Data Set: Z:\...\MW17-2D Test 2_jlh.aqt

Date: 02/15/18 Time: 10:55:02

PROJECT INFORMATION

Company: Golder Associates

Client: Rankin Project: 1771656

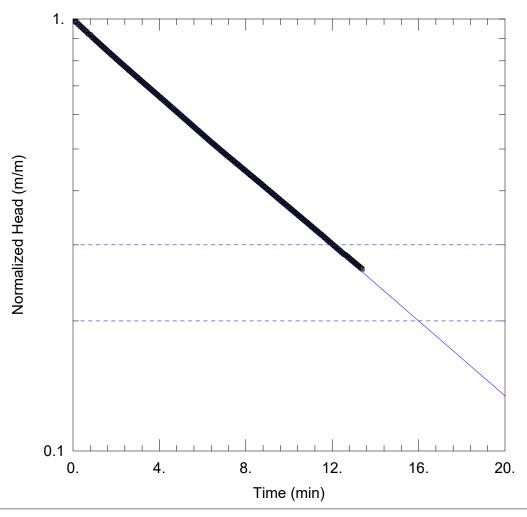
Location: Port Colborne
Test Well: MW17-2D Test 2
Test Date: March 30, 2017

AQUIFER DATA

Saturated Thickness: 6.31 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW17-2D Test 2)

Initial Displacement: 7.44 m Static Water Column Height: 6.31 m


Total Well Penetration Depth: 3.2 m Screen Length: 3.2 m

Casing Radius: 0.0389 m Well Radius: 0.048 m

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 4.221E-8 m/sec y0 = 7.437 m

PACKER TESTING MW17-3D (10.67 - 13.72 MBGS)

Data Set: Z:\...\MW17-3D Test 1_jlh.aqt

Date: 02/15/18 Time: 10:55:38

PROJECT INFORMATION

Company: Golder Associates

Client: Rankin
Project: 1771656

Location: Port Colborne
Test Well: MW17-3D Test 1
Test Date: March 27, 2017

AQUIFER DATA

Saturated Thickness: 9.24 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW17-3D Test 1)

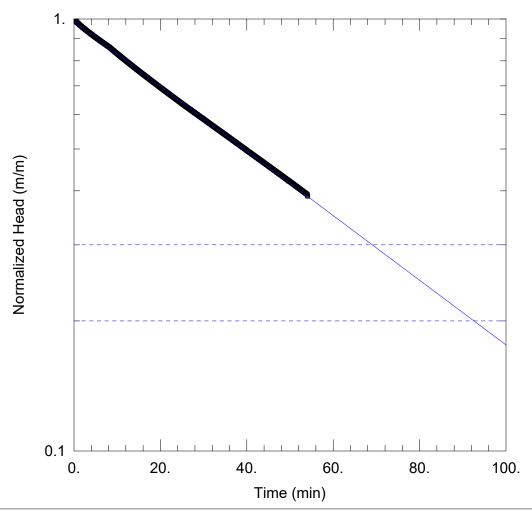
Initial Displacement: 5.672 m

Static Water Column Height: 9.24 m

Total Well Penetration Depth: 3.05 m

Screen Length: 3.05 m Well Radius: 0.048 m

Casing Radius: 0.0389 m


SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 1.141E-6 m/sec

y0 = 5.614 m

PACKER TESTING MW17-3D (7.77 - 10.98 MBGS)

Data Set: Z:\...\MW17-3D Test 2 jlh.aqt

Date: 02/15/18 Time: 10:56:04

PROJECT INFORMATION

Company: Golder Associates

Client: Rankin Project: 1771656

Location: Port Colborne
Test Well: MW17-3D Test 2
Test Date: March 27, 2017

AQUIFER DATA

Saturated Thickness: <u>6.6</u> m Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA (MW17-3D)

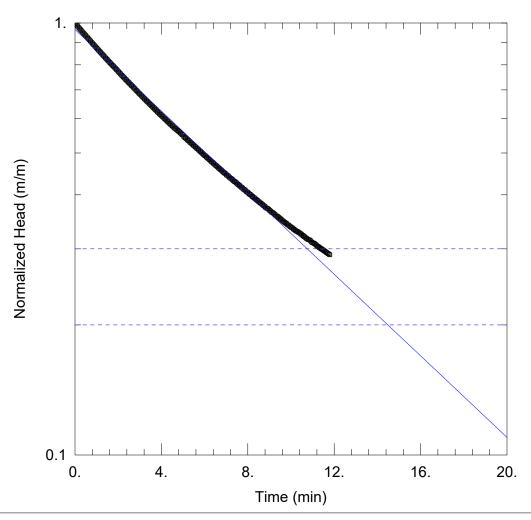
Initial Displacement: 5.545 m

Total Well Penetration Depth: 3.2 m

Casing Radius: 0.0389 m

Static Water Column Height: 6.6 m

Screen Length: 3.2 m Well Radius: 0.048 m


SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 1.93E-7 m/sec

y0 = 5.469 m

PACKER TESTING MW17-4D (14.63 - 18.34 MBGS)

Data Set: Z:\...\MW17-4D Test 1 jlh.aqt

Date: 02/15/18 Time: 10:56:31

PROJECT INFORMATION

Company: Golder Associates

Client: Rankin Project: 1771656

Location: Port Colborne
Test Well: MW17-4D Test 1
Test Date: February 28, 2017

AQUIFER DATA

Saturated Thickness: 11.39 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW17-4D Test 1)

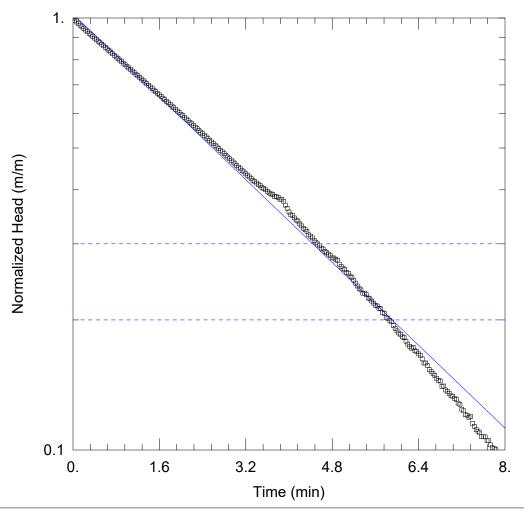
Initial Displacement: 7.919 m

Static Water Column Height: 11.39 m

Total Well Penetration Depth: 3.71 m

Screen Length: 3.71 m Well Radius: 0.048 m

Casing Radius: 0.0389 m


SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 1.076E-6 m/sec

y0 = 7.648 m

PACKER TESTING MW17-4D (11.74 - 14.94 MBGS)

Data Set: Z:\...\MW17-4D Test 2 jlh.aqt

Date: 02/15/18 Time: 10:57:01

PROJECT INFORMATION

Company: Golder Associates

Client: Rankin
Project: 1771656

Location: Port Colborne
Test Well: MW17-4D Test 2
Test Date: February 28, 2017

AQUIFER DATA

Saturated Thickness: 6.47 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW17-4D Test 2)

Initial Displacement: 9.13 m

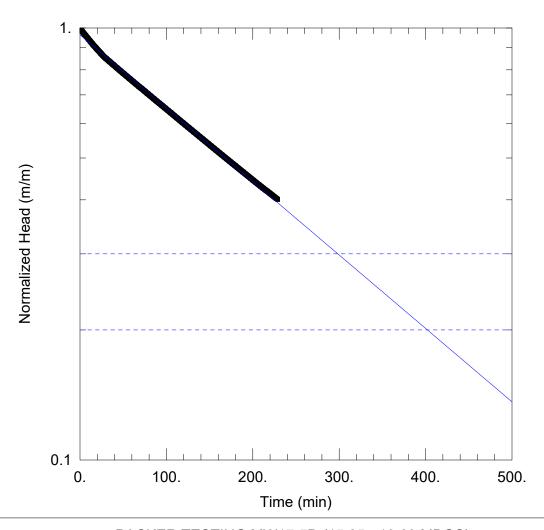
Static Water Column Height: 6.47 m

Total Well Penetration Depth: 3.2 m

Screen Length: 3.2 m

Casing Radius: 0.0389 m

Well Radius: 0.048 m


SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 3.093E-6 m/sec

y0 = 9.323 m

PACKER TESTING MW17-5D (15.85 - 19.69 MBGS)

Data Set: Z:\...\MW17-5D Test 1_jlh.aqt

Date: 02/15/18 Time: 10:57:36

PROJECT INFORMATION

Company: Golder Associates

Client: Rankin Project: 1771656

Location: Port Colborne
Test Well: MW17-5D Test 1
Test Date: March 21, 2017

AQUIFER DATA

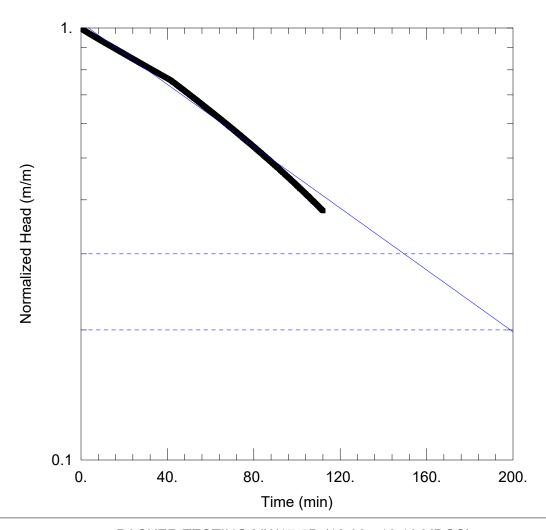
Saturated Thickness: 9.86 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW17-5D Test 1)

Initial Displacement: 11.12 m

Static Water Column Height: 9.86 m

Total Well Penetration Depth: 3.84 m


Screen Length: 3.84 m Well Radius: 0.048 m

Casing Radius: 0.0389 m

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 3.8E-8 m/sec y0 = 10.72 m

PACKER TESTING MW17-5D (12.96 - 16.16 MBGS)

Data Set: Z:\...\MW17-5D Test 2_jlh.aqt

Date: 02/15/18 Time: 10:58:14

PROJECT INFORMATION

Company: Golder Associates

Client: Rankin Project: 1771656

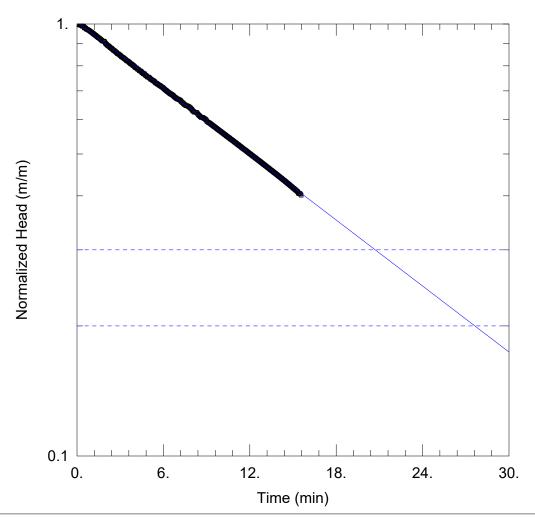
Location: Port Colborne Test Well: MW17-5D Test 2 Test Date: March 21, 2017

AQUIFER DATA

Saturated Thickness: 9.93 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW17-5D Test 2)

Initial Displacement: 7.399 m Static Water Column Height: 9.93 m


Total Well Penetration Depth: 3.2 m Screen Length: 3.2 m Casing Radius: 0.0389 m

Well Radius: 0.048 m

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 9.076E-8 m/secy0 = 7.612 m

PACKER TESTING MW17-5D (10.06 - 13.26 MBGS)

Data Set: Z:\...\MW17-5D Test 3 jlh.aqt

Date: 02/15/18 Time: 10:59:13

PROJECT INFORMATION

Company: Golder Associates

Client: Rankin
Project: 1771656

Location: Port Colborne
Test Well: MW17-5D Test 3
Test Date: March 21, 2017

AQUIFER DATA

Saturated Thickness: 6.07 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW17-5D Test3)

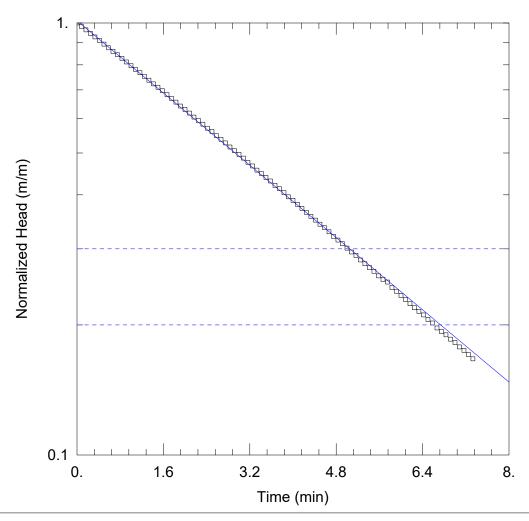
Initial Displacement: 8.274 m

Static Water Column Height: 6.07 m

Total Well Penetration Depth: 3.2 m

Screen Length: 3.2 m Well Radius: 0.48 m

Casing Radius: 0.0389 m


SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 2.523E-7 m/sec

y0 = 8.36 m

PACKER TESTING MW17-6D (14.33 - 17.99 MBGS)

Data Set: Z:\...\MW17-6D Test 1 jlh.aqt

Date: 02/15/18 Time: 10:59:55

PROJECT INFORMATION

Company: Golder Associates

Client: Rankin Project: 1771656

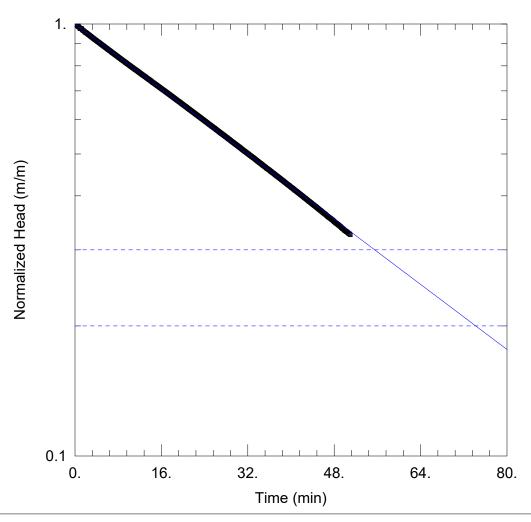
Location: Port Colborne
Test Well: MW17-6D Test 1
Test Date: February 22, 2017

AQUIFER DATA

Saturated Thickness: 12.26 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW17-6D Test 1)

Initial Displacement: 7.01 m Static Water Column Height: 12.26 m


Total Well Penetration Depth: 3.66 m Screen Length: 3.66 m

Casing Radius: 0.0389 m Well Radius: 0.048 m

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 2.399E-6 m/sec y0 = 7.094 m

PACKER TESTING MW17-6D (11.43 - 14.63 MBGS)

Data Set: Z:\...\MW17-6D Test 2 jlh.aqt

Date: 02/15/18 Time: 11:00:23

PROJECT INFORMATION

Company: Golder Associates

Client: Rankin Project: 1771656

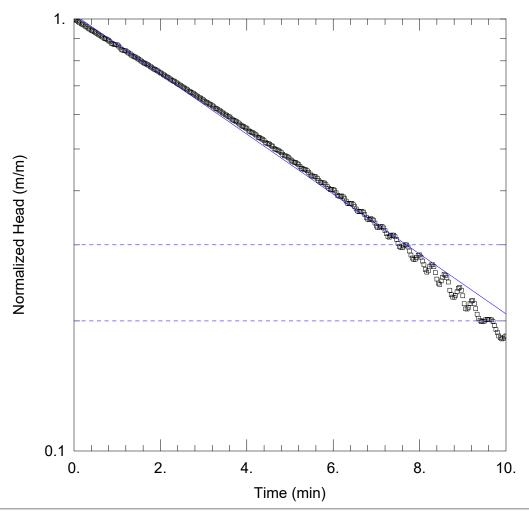
Location: Port Colborne
Test Well: MW17-6D Test 2
Test Date: February 23, 2017

AQUIFER DATA

Saturated Thickness: 8.58 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW17-6D Test 2)

Initial Displacement: 7.076 m Static Water Column Height: 8.58 m


Total Well Penetration Depth: 3.2 m Screen Length: 3.2 m

Casing Radius: 0.0389 m Well Radius: 0.048 m

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 2.402E-7 m/sec y0 = 7.074 m

PACKER TESTING MW17-6D (9.88 - 13.08 MBGS)

Data Set: Z:\...\MW17-6D Test 3 jlh.aqt

Date: 02/15/18 Time: 11:00:43

PROJECT INFORMATION

Company: Golder Associates

Client: Rankin
Project: 1771656

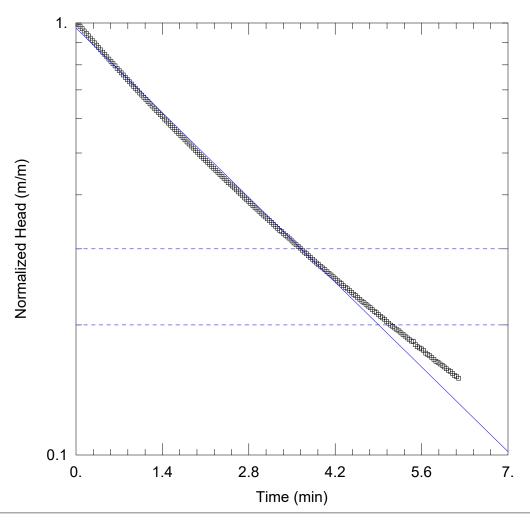
Location: Port Colborne
Test Well: MW17-6D Test 3
Test Date: February 23, 2017

AQUIFER DATA

Saturated Thickness: 5.35 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW17-6D Test 3)

Initial Displacement: 8.929 m Static Water Column Height: 5.35 m


Total Well Penetration Depth: 3.2 m Screen Length: 3.2 m

Casing Radius: 0.0389 m Well Radius: 0.048 m

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 1.808E-6 m/sec y0 = 9.151 m

PACKER TESTING MW17-7D (15.85 - 18.75 MBGS)

Data Set: Z:\...\MW17-7D Test 1 jlh.aqt

Date: 02/15/18 Time: 11:01:13

PROJECT INFORMATION

Company: Golder Associates

Client: Rankin Project: 1771656

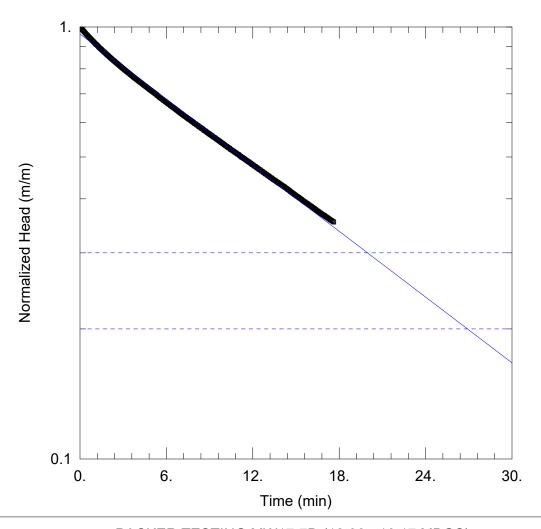
Location: Port Colborne
Test Well: MW17-7D Test 1
Test Date: March 2, 2017

AQUIFER DATA

Saturated Thickness: 11.56 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW17-7D Test 1)

Initial Displacement: 8.03 m Static Water Column Height: 11.56 m


Total Well Penetration Depth: 2.9 m Screen Length: 2.9 m

Casing Radius: 0.0389 m Well Radius: 0.048 m

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 3.782E-6 m/sec y0 = 7.816 m

PACKER TESTING MW17-7D (12.96 - 16.17 MBGS)

Data Set: Z:\...\MW17-7D Test 2 jlh.aqt

Date: 02/15/18 Time: 11:01:46

PROJECT INFORMATION

Company: Golder Associates

Client: Rankin
Project: 1771656

Location: Port Colborne
Test Well: MW17-7D Test 2
Test Date: March 2, 2017

AQUIFER DATA

Saturated Thickness: 8.93 m Anisotropy Ratio (Kz/Kr): 1.

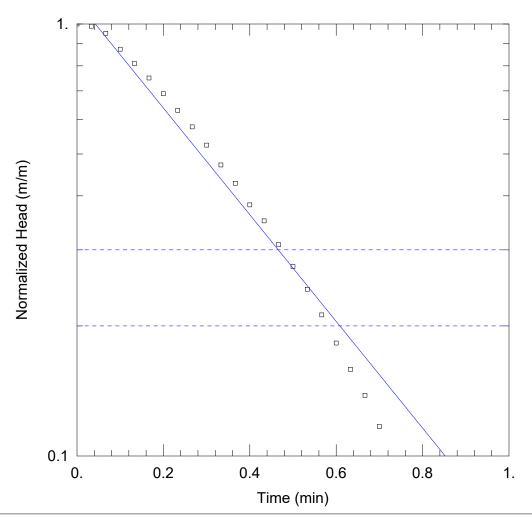
WELL DATA (MW17-7D Test 2)

Initial Displacement: 8.143 m

3.2 m Screen Length: 3.2 m

Total Well Penetration Depth: 3.2 m

Well Radius: 0.048 m


Static Water Column Height: 8.93 m

Casing Radius: 0.0389 m

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 6.461E-7 m/sec y0 = 7.841 m

PACKER TESTING MW17-7D (10.06 - 13.26 MBGS)

Data Set: Z:\...\MW17-7D Test 3 jlh.aqt

Date: 02/15/18 Time: 11:02:05

PROJECT INFORMATION

Company: Golder Associates

Client: Rankin Project: 1771656

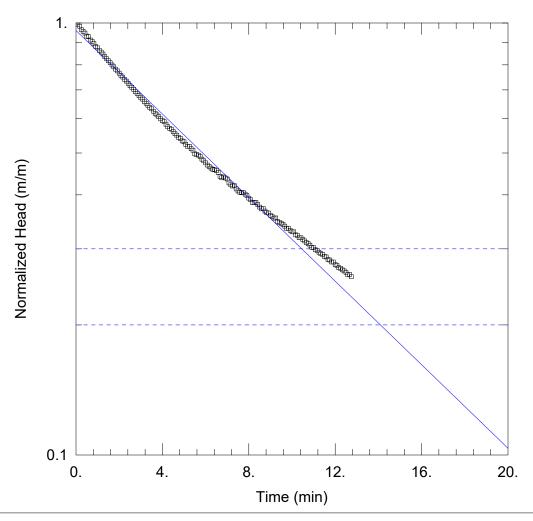
Location: Port Colborne
Test Well: MW17-7D Test 3
Test Date: March 2, 2017

AQUIFER DATA

Saturated Thickness: 5.89 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW17-7D Test 3)

Initial Displacement: 6.341 m Static Water Column Height: 5.89 m


Total Well Penetration Depth: 3.2 m Screen Length: 3.2 m

Casing Radius: 0.0389 m Well Radius: 0.048 m

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 3.203E-5 m/sec y0 = 7.153 m

PACKER TESTING MW17-8D (17.68 - 21.29 MBGS)

Data Set: Z:\...\MW17-8D Test 1 jlh.aqt

Date: 02/15/18 Time: 11:03:17

PROJECT INFORMATION

Company: Golder Associates

Client: Rankin Project: 1771656

Location: Port Colborne
Test Well: MW17-8D Test 1
Test Date: March 9, 2017

AQUIFER DATA

Saturated Thickness: 14. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW17-8D Test 1)

Initial Displacement: 7.402 m

Static Water Column Height: 14. m

Total Well Penetration Depth: 3.61 m

Screen Length: 3.61 m Well Radius: 0.048 m

Casing Radius: 0.0389 m

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 1.115E-6 m/sec y0 = 7.11 m

PACKER TESTING MW17-8D (14.79 - 17.99 MBGS)

Data Set: Z:\...\MW17-8D Test 2 jlh.aqt

Date: 02/15/18 Time: 11:03:39

PROJECT INFORMATION

Company: Golder Associates

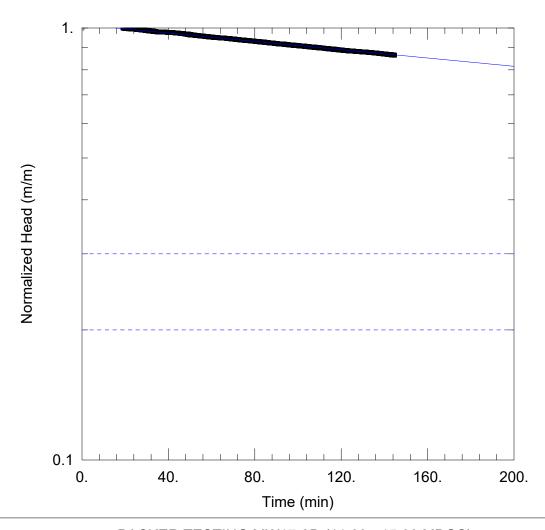
Client: Rankin Project: 1771656

Location: Port Colborne
Test Well: MW17-8D Test 2
Test Date: March 9, 2017

AQUIFER DATA

Saturated Thickness: 10.74 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW17-8D Test2)


Initial Displacement: 8.953 m Static Water Column Height: 10.74 m

Total Well Penetration Depth: 3.2 m Screen Length: 3.2 m Casing Radius: 0.0389 m Well Radius: 0.048 m

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 9.292E-8 m/sec y0 = 8.731 m

PACKER TESTING MW17-8D (11.89 - 15.09 MBGS)

Data Set: Z:\...\MW17-8D Test 3 jlh.aqt

Date: 02/15/18 Time: 11:04:01

PROJECT INFORMATION

Company: Golder Associates

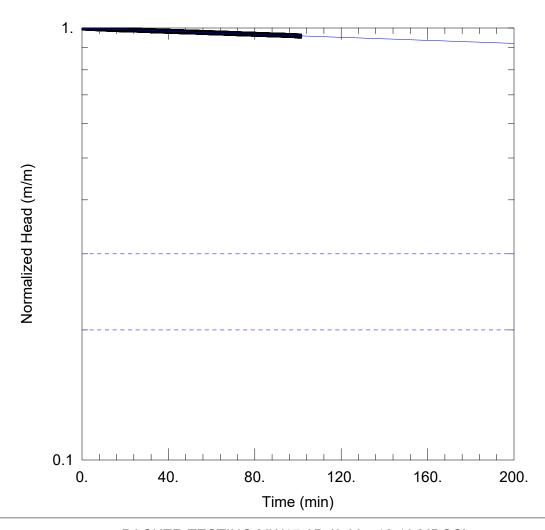
Client: Rankin Project: 1771656

Location: Port Colborne
Test Well: MW17-8D Test 3
Test Date: March 9, 2017

AQUIFER DATA

Saturated Thickness: 12.76 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW17-8D Test 3)


Initial Displacement: 3.869 m Static Water Column Height: 12.76 m

Total Well Penetration Depth: 3.2 m Screen Length: 3.2 m Casing Radius: 0.0389 m Well Radius: 0.048 m

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 1.21E-8 m/sec y0 = 3.936 m

PACKER TESTING MW17-8D (8.99 - 12.19 MBGS)

Data Set: Z:\...\MW17-8D Test 4 jlh.aqt

Date: <u>02/15/18</u> Time: <u>11:04:23</u>

PROJECT INFORMATION

Company: Golder Associates

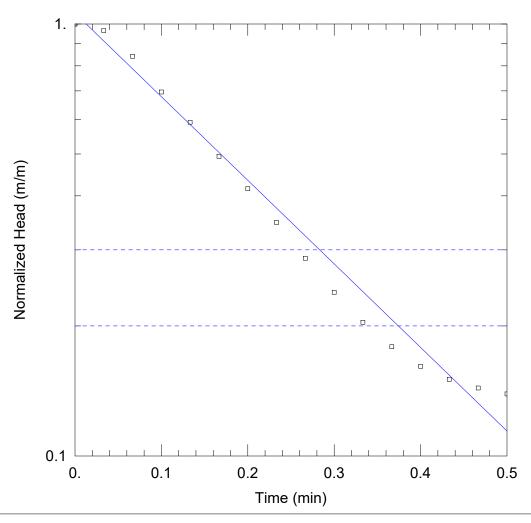
Client: Rankin Project: 1771656

Location: Port Colborne
Test Well: MW17-8D Test 4
Test Date: March 13, 2017

AQUIFER DATA

Saturated Thickness: 9.63 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW17-8D Test 4)


Initial Displacement: 4.11 m Static Water Column Height: 9.63 m

Total Well Penetration Depth: 3.2 m Screen Length: 3.2 m Casing Radius: 0.0389 m Well Radius: 0.048 m

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 4.465E-9 m/sec y0 = 4.104 m

PACKER TESTING MW17-8D (6.10 - 9.30 MBGS)

Data Set: Z:\...\MW17-8D Test 5-2sec jlh.aqt

Date: 02/15/18 Time: 11:04:46

PROJECT INFORMATION

Company: Golder Associates

Client: Rankin Project: 1771656

Location: Port Colborne
Test Well: MW17-8D Test 5-2
Test Date: March 13, 2017

AQUIFER DATA

Saturated Thickness: 5.78 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW17-8D Test5)

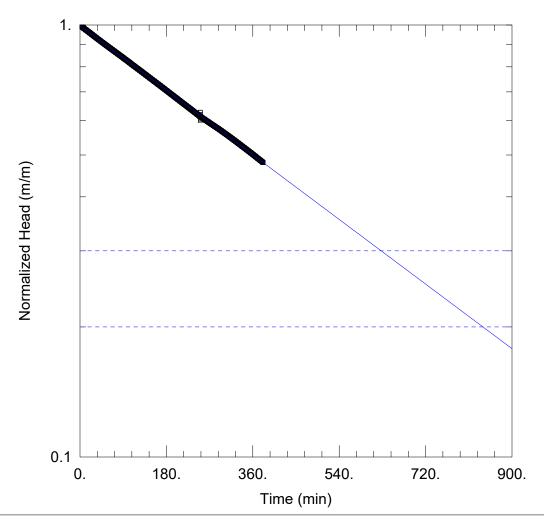
Initial Displacement: 3.572 m

72 m Static Water Column Height: 5.78 m

Total Well Penetration Depth: 3.2 m

Screen Length: 3.2 m Well Radius: 0.048 m Gravel Pack Porosity: 0.

Casing Radius: 0.0389 m


SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 5.023E-5 m/sec

y0 = 3.784 m

WELL TEST ANALYSIS

Data Set: Z:\...\MW17-9D Test 1 jlh.aqt

Date: 02/15/18 Time: 11:05:23

PROJECT INFORMATION

Company: Golder Associates

Client: Rankin Project: 1771656

Location: Port Colborne
Test Well: MW17-9D Test 1
Test Date: February 15, 2017

AQUIFER DATA

Saturated Thickness: 13.63 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW17-9D Test 1)

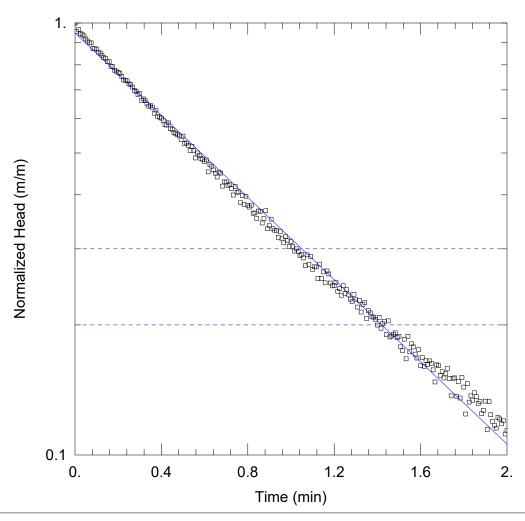
Initial Displacement: 5.571 m

Static Water Column Height: 13.63 m

Total Well Penetration Depth: 3.66 m

Screen Length: 3.66 m Well Radius: 0.048 m

Casing Radius: 0.0389 m


SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 1.9E-8 m/sec

y0 = 5.552 m

PACKER TESTING MW17-9D (13.11 - 16.31 MBGS)

Data Set: Z:\...\MW17-9D Test 2 jlh.aqt

Date: 02/15/18 Time: 11:05:58

PROJECT INFORMATION

Company: Golder Associates

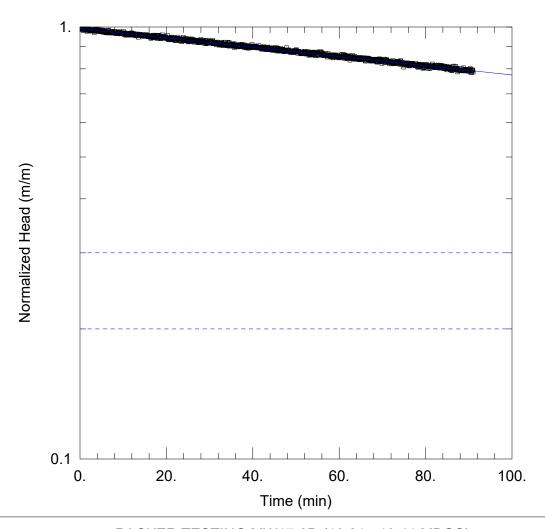
Client: Rankin
Project: 1771656

Location: Port Colborne
Test Well: MW17-9D Test 2
Test Date: February 15, 2017

AQUIFER DATA

Saturated Thickness: 10.42 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW17-9D Test 2)


Initial Displacement: 6.056 m Static Water Column Height: 10.42 m

Total Well Penetration Depth: 3.2 m Screen Length: 3.2 m Casing Radius: 0.0389 m Well Radius: 0.048 m

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 1.205E-5 m/sec y0 = 5.741 m

PACKER TESTING MW17-9D (10.21 - 13.41 MBGS)

Data Set: Z:\...\MW17-9D Test 3 jlh.aqt

Date: 02/15/18 Time: 11:06:19

PROJECT INFORMATION

Company: Golder Associates

Client: Rankin Project: 1771656

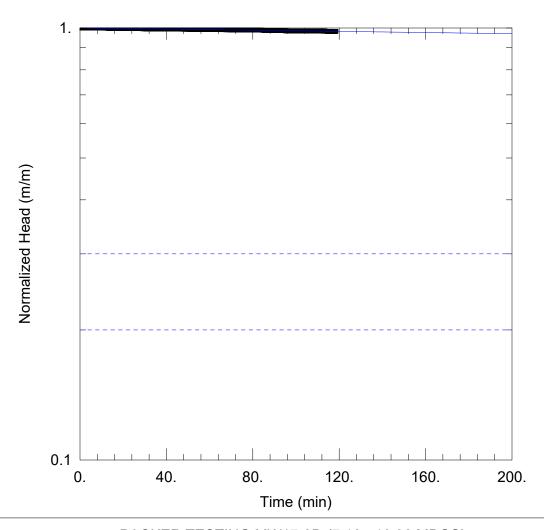
Location: Port Colborne
Test Well: MW17-9D Test 3
Test Date: February 16, 2017

AQUIFER DATA

Saturated Thickness: 10.43 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW17-9D Test 3)

Initial Displacement: 3.908 m Static Water Column Height: 10.43 m


Total Well Penetration Depth: 3.2 m Screen Length: 3.2 m

Casing Radius: 0.0389 m Well Radius: 0.048 m

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 2.717E-8 m/sec y0 = 3.874 m

PACKER TESTING MW17-9D (7.16 - 10.36 MBGS)

Data Set: Z:\...\MW17-9D Test 4 jlh.aqt

Date: 02/15/18 Time: 11:06:43

PROJECT INFORMATION

Company: Golder Associates

Client: Rankin Project: 1771656

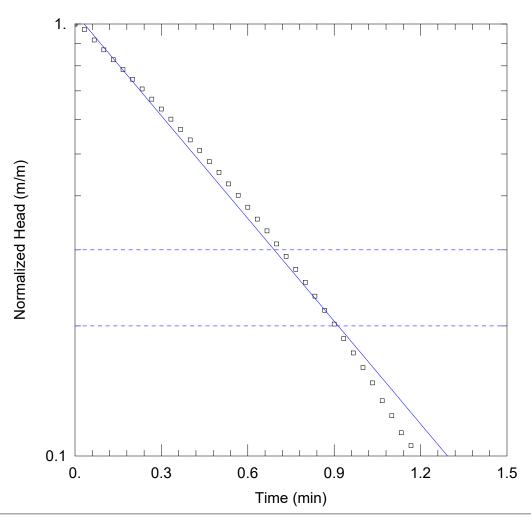
Location: Port Colborne Test Well: MW17-9D Test 4 Test Date: February 17, 2017

AQUIFER DATA

Saturated Thickness: 8.07 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW17-9D Test 4)

Initial Displacement: 3.25 m Static Water Column Height: 8.07 m


Total Well Penetration Depth: 3.2 m Screen Length: 3.2 m Casing Radius: 0.0389 m

Well Radius: 0.048 m

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 1.731E-9 m/secy0 = 3.252 m

PACKER TESTING MW17-10D (10.06 - 13.72 MBGS)

Data Set: Z:\...\MW17-10D Test 1_jlh.aqt

Date: 02/15/18 Time: 11:07:15

PROJECT INFORMATION

Company: Golder Associates

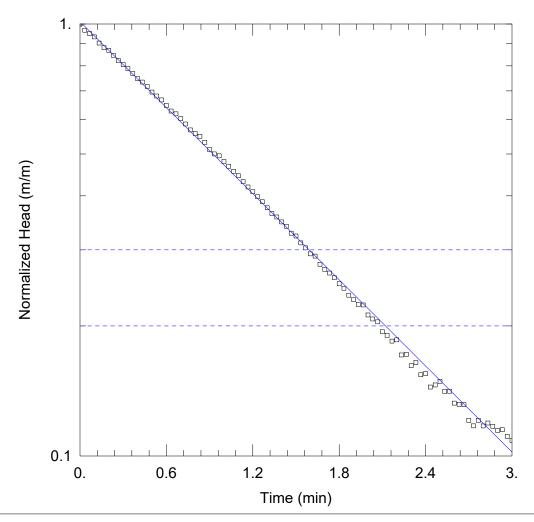
Client: Rankin Project: 1771656

Location: Port Colborne
Test Well: MW17-10D Test 1
Test Date: April 4, 2017

AQUIFER DATA

Saturated Thickness: 8.81 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW17-10D Test 1)


Initial Displacement: 5.069 m Static Water Column Height: 8.81 m

Total Well Penetration Depth: 3.66 m
Casing Radius: 0.0389 m
Screen Length: 3.66 m
Well Radius: 0.048 m

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 1.84E-5 m/sec y0 = 5.371 m

PACKER TESTING MW17-10 D (7.01 - 10.21 MBGS)

Data Set: Z:\...\MW17-10D Test 2_jlh.aqt

Date: 02/15/18 Time: 11:08:25

PROJECT INFORMATION

Company: Golder Associates

Client: Rankin Project: 1771656

Location: Port Colborne
Test Well: MW17-10D Test 2
Test Date: April 4, 2017

AQUIFER DATA

Saturated Thickness: 6.45 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW17-10D Test 2)

Initial Displacement: 4.846 m Static Water Column Height: 6.45 m

Total Well Penetration Depth: 3.2 m Screen Length: 3.2 m Well Radius: 0.048 m

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 8.573E-6 m/sec y0 = 4.907 m

October 2020 1771656-1000-Rev2

APPENDIX C

Groundwater Quality Analytical Results

Your Project #: 1771656 (1000/1003) Your C.O.C. #: 605301-01-01, 605301-02-01

Attention:Byron Zwiep

Golder Associates Ltd St. Catharines 110 Hanover Dr Building A, Suite 203 St.Catharines, ON CANADA L2W 1A4

Report Date: 2017/04/20

Report #: R4432611 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B772423 Received: 2017/04/11, 15:30

Sample Matrix: Water # Samples Received: 14

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Alkalinity	13	N/A	2017/04/13	CAM SOP-00448	SM 22 2320 B m
Alkalinity	1	N/A	2017/04/20	CAM SOP-00448	SM 22 2320 B m
Carbonate, Bicarbonate and Hydroxide	1	N/A	2017/04/13	CAM SOP-00102	APHA 4500-CO2 D
Carbonate, Bicarbonate and Hydroxide	13	N/A	2017/04/17	CAM SOP-00102	APHA 4500-CO2 D
Chloride by Automated Colourimetry	1	N/A	2017/04/13	CAM SOP-00463	EPA 325.2 m
Chloride by Automated Colourimetry	12	N/A	2017/04/17	CAM SOP-00463	EPA 325.2 m
Chloride by Automated Colourimetry	1	N/A	2017/04/20	CAM SOP-00463	EPA 325.2 m
Conductivity	14	N/A	2017/04/13	CAM SOP-00414	SM 22 2510 m
Dissolved Organic Carbon (DOC) (1)	13	N/A	2017/04/13	CAM SOP-00446	SM 22 5310 B m
Hardness (calculated as CaCO3)	7	N/A	2017/04/13	CAM SOP 00102/00408/00447	SM 2340 B
Hardness (calculated as CaCO3)	6	N/A	2017/04/17		SM 2340 B
Hardness (calculated as CaCO3)	1	N/A	2017/04/19	CAM SOP 00102/00408/00447	SM 2340 B
Lab Filtered Metals Analysis by ICP	1	2017/04/17	7 2017/04/18	CAM SOP-00408	EPA 6010C m
Dissolved Metals by ICPMS	6	N/A	2017/04/13	CAM SOP-00447	EPA 6020B m
Dissolved Metals by ICPMS	6	N/A	2017/04/17	CAM SOP-00447	EPA 6020B m
Dissolved Metals by ICPMS	1	N/A	2017/04/20	CAM SOP-00447	EPA 6020B m
Total Metals Analysis by ICPMS	1	N/A	2017/04/17	CAM SOP-00447	EPA 6020B m
Ion Balance (% Difference)	13	N/A	2017/04/18		
Anion and Cation Sum	13	N/A	2017/04/17		
Total Ammonia-N	10	N/A	2017/04/17	CAM SOP-00441	EPA GS I-2522-90 m
Total Ammonia-N	4	N/A	2017/04/18	CAM SOP-00441	EPA GS I-2522-90 m
Nitrate (NO3) and Nitrite (NO2) in Water (2)	14	N/A	2017/04/13	CAM SOP-00440	SM 22 4500-NO3I/NO2B
рН	14	N/A	2017/04/13	CAM SOP-00413	SM 4500H+ B m
Orthophosphate	1	N/A	2017/04/13	CAM SOP-00461	EPA 365.1 m
Orthophosphate	13	N/A	2017/04/17	CAM SOP-00461	EPA 365.1 m
Sat. pH and Langelier Index (@ 20C)	13	N/A	2017/04/18		

Your Project #: 1771656 (1000/1003) Your C.O.C. #: 605301-01-01, 605301-02-01

Attention:Byron Zwiep

Golder Associates Ltd St. Catharines 110 Hanover Dr Building A, Suite 203 St.Catharines, ON CANADA L2W 1A4

Report Date: 2017/04/20

Report #: R4432611 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B772423 Received: 2017/04/11, 15:30

Sample Matrix: Water # Samples Received: 14

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Sat. pH and Langelier Index (@ 20C)	1	N/A	2017/04/19		
Sat. pH and Langelier Index (@ 4C)	13	N/A	2017/04/18		
Sat. pH and Langelier Index (@ 4C)	1	N/A	2017/04/19		
Sulphate by Automated Colourimetry	1	N/A	2017/04/13	CAM SOP-00464	EPA 375.4 m
Sulphate by Automated Colourimetry	12	N/A	2017/04/17	CAM SOP-00464	EPA 375.4 m
Sulphate by Automated Colourimetry	1	N/A	2017/04/20	CAM SOP-00464	EPA 375.4 m
Total Dissolved Solids (TDS calc)	13	N/A	2017/04/18		
Total Dissolved Solids (TDS calc)	1	N/A	2017/04/19		
Total Organic Carbon (TOC) (3)	1	N/A	2017/04/13	CAM SOP-00446	SM 22 5310B m
Total Phosphorus (Colourimetric)	1	2017/04/13	2017/04/13	CAM SOP-00407	SM 22 4500 P B H m
Total Suspended Solids	2	2017/04/12	2017/04/12	CAM SOP-00428	SM 22 2540D m
Total Suspended Solids	2	2017/04/13	2017/04/13	CAM SOP-00428	SM 22 2540D m
ow Level Total Suspended Solids	3	2017/04/12	2017/04/12	CAM SOP-00428	SM 22 2540D m
ow Level Total Suspended Solids	2	2017/04/12	2017/04/13	CAM SOP-00428	SM 22 2540D m
ow Level Total Suspended Solids	5	2017/04/13	2017/04/13	CAM SOP-00428	SM 22 2540D m
Furbidity	1	N/A	2017/04/12	CAM SOP-00417	SM 22 2130 B m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Your Project #: 1771656 (1000/1003) Your C.O.C. #: 605301-01-01, 605301-02-01

Attention:Byron Zwiep

Golder Associates Ltd St. Catharines 110 Hanover Dr Building A, Suite 203 St.Catharines, ON CANADA L2W 1A4

Report Date: 2017/04/20

Report #: R4432611 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B772423 Received: 2017/04/11, 15:30

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.
- (2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.
- (3) Total Organic Carbon (TOC) present in the sample should be considered as non-purgeable TOC.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Ema Gitej, Senior Project Manager

Email: EGitej@maxxam.ca

Phone# (905)817-5829

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Golder Associates Ltd

Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

RESULTS OF ANALYSES OF WATER

Maxxam ID		EEV132			EEV133			EEV134		
Sampling Date		2017/04/10			2017/04/10			2017/04/10		
. 5		14:45			14:42			16:30		
COC Number		605301-01-01			605301-01-01			605301-01-01		
	UNITS	MW17-1D	RDL	QC Batch	MW17-1S	RDL	QC Batch	MW17-4S	RDL	QC Batch
Calculated Parameters										
Anion Sum	me/L	24.7	N/A	4936806	10.4	N/A	4936806	13.9	N/A	4936806
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	290	1.0	4936801	200	1.0	4936801	410	1.0	4936801
Calculated TDS	mg/L	1500	1.0	4936813	670	1.0	4936813	740	1.0	4936813
Carb. Alkalinity (calc. as CaCO3)	mg/L	1.0	1.0	4936801	2.7	1.0	4936801	2.5	1.0	4936801
Cation Sum	me/L	25.0	N/A	4936806	11.7	N/A	4936806	13.8	N/A	4936806
Hardness (CaCO3)	mg/L	1200	1.0	4936804	220	1.0	4936804	650	1.0	4936804
Ion Balance (% Difference)	%	0.540	N/A	4936805	5.94	N/A	4936805	0.370	N/A	4936805
Langelier Index (@ 20C)	N/A	0.933	N/A	4936811	0.643	N/A	4936811	0.954	N/A	4936811
Langelier Index (@ 4C)	N/A	0.689	N/A	4936812	0.396	N/A	4936812	0.708	N/A	4936812
Saturation pH (@ 20C)	N/A	6.64	N/A	4936811	7.51	N/A	4936811	6.85	N/A	4936811
Saturation pH (@ 4C)	N/A	6.89	N/A	4936812	7.76	N/A	4936812	7.10	N/A	4936812
Inorganics	•		-	•			-			
Total Ammonia-N	mg/L	1.3	0.050	4938710	0.43	0.050	4938710	0.093	0.050	4938710
Conductivity	umho/cm	2100	1.0	4937827	1200	1.0	4937809	1200	1.0	4937809
Dissolved Organic Carbon	mg/L	0.46	0.20	4937584	4.7	0.20	4938932	1.8	0.20	4937584
Orthophosphate (P)	mg/L	<0.010	0.010	4938098	0.017	0.010	4938098	<0.010	0.010	4938098
рН	рН	7.58	N/A	4937828	8.15	N/A	4937811	7.80	N/A	4937811
Total Suspended Solids	mg/L	630	5	4939006	9000	500	4937582	1300	5	4939006
Dissolved Sulphate (SO4)	mg/L	880	5.0	4938104	280	1.0	4938104	240	1.0	4938104
Alkalinity (Total as CaCO3)	mg/L	290	1.0	4937823	200	1.0	4937613	410	1.0	4937613
Dissolved Chloride (CI)	mg/L	20	1.0	4938093	19	1.0	4938093	18	1.0	4938093
Nitrite (N)	mg/L	<0.010	0.010	4939014	<0.050	0.050	4937672	0.390	0.010	4937642
Nitrate (N)	mg/L	<0.10	0.10	4939014	0.58	0.50	4937672	1.46	0.10	4937642
Nitrate + Nitrite (N)	mg/L	<0.10	0.10	4939014	0.58	0.50	4937672	1.85	0.10	4937642
		<u> </u>								

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Golder Associates Ltd

Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

RESULTS OF ANALYSES OF WATER

Maxxam ID		EEV135			EEV136	EEV136		
Sampling Date		2017/04/11			2017/04/10	2017/04/10		
Sampling Date		08:45			15:14	15:14		
COC Number		605301-01-01			605301-01-01	605301-01-01		
	UNITS	MW17-2S	RDL	QC Batch	MW17-3D	MW17-3D Lab-Dup	RDL	QC Batch
Calculated Parameters								
Anion Sum	me/L	10.8	N/A	4936806	12.5	N/A	N/A	4936806
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	310	1.0	4936801	370	N/A	1.0	4936801
Calculated TDS	mg/L	590	1.0	4936813	680	N/A	1.0	4936813
Carb. Alkalinity (calc. as CaCO3)	mg/L	3.2	1.0	4936801	2.1	N/A	1.0	4936801
Cation Sum	me/L	10.3	N/A	4936806	12.2	N/A	N/A	4936806
Hardness (CaCO3)	mg/L	410	1.0	4936804	560	N/A	1.0	4936804
lon Balance (% Difference)	%	2.57	N/A	4936805	1.41	N/A	N/A	4936805
Langelier Index (@ 20C)	N/A	0.952	N/A	4936811	0.935	N/A	N/A	4936811
Langelier Index (@ 4C)	N/A	0.705	N/A	4936812	0.688	N/A	N/A	4936812
Saturation pH (@ 20C)	N/A	7.08	N/A	4936811	6.84	N/A	N/A	4936811
Saturation pH (@ 4C)	N/A	7.33	N/A	4936812	7.08	N/A	N/A	4936812
Inorganics								
Total Ammonia-N	mg/L	0.25	0.050	4938710	0.50	N/A	0.050	4938715
Conductivity	umho/cm	960	1.0	4937809	1200	N/A	1.0	4937809
Dissolved Organic Carbon	mg/L	5.9	0.20	4937584	1.7	N/A	0.20	4937584
Orthophosphate (P)	mg/L	<0.010	0.010	4938098	<0.010	N/A	0.010	4938098
рН	рН	8.04	N/A	4937811	7.77	N/A	N/A	4937811
Total Suspended Solids	mg/L	1900	50	4937582	970	N/A	5	4939006
Dissolved Sulphate (SO4)	mg/L	190	1.0	4938104	190	N/A	1.0	4938104
Alkalinity (Total as CaCO3)	mg/L	320	1.0	4937613	380	N/A	1.0	4937613
Dissolved Chloride (CI)	mg/L	18	1.0	4938093	36	N/A	1.0	4938093
Nitrite (N)	mg/L	<0.010	0.010	4937672	<0.010	<0.010	0.010	4939014
Nitrate (N)	mg/L	<0.10	0.10	4937672	<0.10	<0.10	0.10	4939014
Nitrate + Nitrite (N)	mg/L	<0.10	0.10	4937672	<0.10	<0.10	0.10	4939014

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Golder Associates Ltd

Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

RESULTS OF ANALYSES OF WATER

	EEV137			EEV138			EEV139		
	2017/04/10 13:28			2017/04/10 13:28			2017/04/10 13:00		
	605301-01-01			605301-01-01			605301-01-01		
UNITS	MW17-6D	RDL	QC Batch	MW17-6S	RDL	QC Batch	MW17-9S	RDL	QC Batch
me/L	10.8	N/A	4936806	13.5	N/A	4936806	18.5	N/A	4936806
mg/L	270	1.0	4936801	300	1.0	4936801	410	1.0	4936801
mg/L	600	1.0	4936813	740	1.0	4936813	980	1.0	4936813
mg/L	1.6	1.0	4936801	1.9	1.0	4936801	2.8	1.0	4936801
me/L	9.81	N/A	4936806	12.4	N/A	4936806	18.0	N/A	4936806
mg/L	450	1.0	4936804	540	1.0	4936804	730	1.0	4936804
%	4.62	N/A	4936805	4.21	N/A	4936805	1.25	N/A	4936805
N/A	0.800	N/A	4936811	0.880	N/A	4936811	0.956	N/A	4936811
N/A	0.553	N/A	4936812	0.633	N/A	4936812	0.710	N/A	4936812
N/A	6.99	N/A	4936811	6.94	N/A	4936811	6.90	N/A	4936811
N/A	7.24	N/A	4936812	7.18	N/A	4936812	7.14	N/A	4936812
•					•			•	
mg/L	0.96	0.050	4938715	0.50	0.050	4938715	0.14	0.050	4938715
umho/cm	980	1.0	4937809	1200	1.0	4937809	1800	1.0	4937809
mg/L	0.57	0.20	4937584	1.9	0.20	4937584	2.1	0.20	4937584
mg/L	<0.010	0.010	4938098	<0.010	0.010	4938098	<0.010	0.010	4938098
рН	7.79	N/A	4937811	7.82	N/A	4937811	7.85	N/A	4937811
mg/L	2100	50	4939754	1900	5	4937462	270	3	4937540
mg/L	220	1.0	4938104	270	1.0	4938104	220	1.0	4938104
mg/L	270	1.0	4937613	310	1.0	4937613	410	1.0	4937613
mg/L	28	1.0	4938093	62	1.0	4938093	200	2.0	4938093
mg/L	<0.010	0.010	4937672	<0.010	0.010	4937642	<0.010	0.010	4937642
mg/L	<0.10	0.10	4937672	<0.10	0.10	4937642	1.34	0.10	4937642
mg/L	<0.10	0.10	4937672	<0.10	0.10	4937642	1.34	0.10	4937642
	me/L mg/L mg/L mg/L mg/L mg/L % N/A N/A N/A N/A N/A M/A mg/L umho/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/	2017/04/10 13:28 605301-01-01 UNITS MW17-6D	2017/04/10	2017/04/10	2017/04/10	2017/04/10	2017/04/10	2017/04/10	2017/04/10

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Golder Associates Ltd

Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

RESULTS OF ANALYSES OF WATER

me/L mg/L mg/L mg/L me/L	EEV140 2017/04/10 12:53 605301-01-01 MW17-9D 34.2 300 2200	EEV140 2017/04/10 12:53 605301-01-01 MW17-9D Lab-Dup N/A N/A	QC Batch 4936806	EEV141 2017/04/10 12:53 605301-01-01 MW17-99D	RDL	QC Batch
me/L mg/L mg/L mg/L me/L	12:53 605301-01-01 MW17-9D 34.2 300 2200	12:53 605301-01-01 MW17-9D Lab-Dup N/A N/A		12:53 605301-01-01 MW17-99D	RDL	QC Batch
me/L mg/L mg/L mg/L me/L	34.2 300 2200	MW17-9D Lab-Dup N/A N/A		MW17-99D	RDL	QC Batch
me/L mg/L mg/L mg/L me/L	34.2 300 2200	N/A N/A			RDL	QC Batch
mg/L mg/L mg/L me/L	300 2200	N/A	4936806			
mg/L mg/L mg/L me/L	300 2200	N/A	4936806			
mg/L mg/L me/L	2200	· · · · · · · · · · · · · · · · · · ·		34.0	N/A	4936806
mg/L me/L			4936801	310	1.0	4936801
me/L	4 7	N/A	4936813	2100	1.0	4936813
	1.7	N/A	4936801	1.8	1.0	4936801
	33.3	N/A	4936806	33.3	N/A	4936806
mg/L	1200	N/A	4936804	1200	1.0	4936804
%	1.37	N/A	4936805	1.07	N/A	4936805
N/A	1.15	N/A	4936811	1.17	N/A	4936811
N/A	0.909	N/A	4936812	0.925	N/A	4936812
N/A	6.63	N/A	4936811	6.62	N/A	4936811
N/A	6.87	N/A	4936812	6.87	N/A	4936812
mg/L	3.7	3.8	4938715	3.8	0.050	4938715
umho/cm	2900	N/A	4937809	2900	1.0	4937809
mg/L	1.0	N/A	4937584	1.1	0.20	4937584
mg/L	<0.010	<0.010	4938098	<0.010	0.010	4938098
рН	7.78	N/A	4937811	7.79	N/A	4937811
mg/L	38	N/A	4937540	42	2	4937540
mg/L	1200	1200	4938104	1200	5.0	4938104
mg/L	310	N/A	4937613	310	1.0	4937613
mg/L	98	94	4938093	90	1.0	4938093
mg/L	<0.010	N/A	4937642	<0.010	0.010	4937672
mg/L	<0.10	N/A	4937642	<0.10	0.10	4937672
	<0.10	N/A	4937642			4937672
	M/A N/A N/A Mg/L umho/cm mg/L mg/L pH mg/L mg/L mg/L mg/L mg/L mg/L	M/A 0.909 N/A 6.63 N/A 6.87 mg/L 3.7 umho/cm 2900 mg/L 1.0 mg/L <0.010 pH 7.78 mg/L 38 mg/L 1200 mg/L 310 mg/L 98 mg/L <0.010 mg/L <0.010 mg/L <0.010	N/A 0.909 N/A N/A 6.63 N/A N/A 6.87 N/A mg/L 3.7 3.8 umho/cm 2900 N/A mg/L 1.0 N/A mg/L <0.010	N/A 0.909 N/A 4936812 N/A 6.63 N/A 4936811 N/A 6.87 N/A 4936812 mg/L 3.7 3.8 4938715 umho/cm 2900 N/A 4937809 mg/L 1.0 N/A 4937584 mg/L <0.010	N/A 0.909 N/A 4936812 0.925 N/A 6.63 N/A 4936811 6.62 N/A 6.87 N/A 4936812 6.87 mg/L 3.7 3.8 4938715 3.8 umho/cm 2900 N/A 4937809 2900 mg/L 1.0 N/A 4937584 1.1 mg/L <0.010	N/A 0.909 N/A 4936812 0.925 N/A N/A 6.63 N/A 4936811 6.62 N/A N/A 6.87 N/A 4936812 6.87 N/A mg/L 3.7 3.8 4938715 3.8 0.050 umho/cm 2900 N/A 4937809 2900 1.0 mg/L 1.0 N/A 4937584 1.1 0.20 mg/L <0.010

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Golder Associates Ltd

Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

RESULTS OF ANALYSES OF WATER

	EEV142			EEV143			EEV144	<u></u>	
	2017/04/10 13:59			2017/04/10 13:56			2017/04/10 15:34		
	605301-02-01			605301-02-01			605301-02-01		
UNITS	MW17-8D	RDL	QC Batch	MW17-8S	RDL	QC Batch	MW17-10D	RDL	QC Batch
me/L	36.8	N/A	4936806	11.3	N/A	4936806	25.6	N/A	4936806
mg/L	320	1.0	4936801	340	1.0	4936801	310	1.0	4936801
mg/L	2300	1.0	4936813	590	1.0	4936813	1600	1.0	4936813
mg/L	1.3	1.0	4936801	2.1	1.0	4936801	<1.0	1.0	4936801
me/L	34.7	N/A	4936806	10.7	N/A	4936806	25.6	N/A	4936806
mg/L	1500	1.0	4936804	470	1.0	4936804	1200	1.0	4936804
%	2.95	N/A	4936805	2.32	N/A	4936805	0.120	N/A	4936805
N/A	1.13	N/A	4936811	0.813	N/A	4936811	0.945	N/A	4936811
N/A	0.886	N/A	4936812	0.565	N/A	4936812	0.701	N/A	4936812
N/A	6.52	N/A	4936811	7.00	N/A	4936811	6.57	N/A	4936811
N/A	6.76	N/A	4936812	7.25	N/A	4936812	6.81	N/A	4936812
•		•	-						
mg/L	2.5	0.050	4938715	0.44	0.050	4938715	0.58	0.050	4938715
umho/cm	2800	1.0	4937827	1000	1.0	4937827	2000	1.0	4937827
mg/L	1.8	0.20	4937584	2.9	0.20	4937584	1.0	0.20	4937584
mg/L	<0.010	0.010	4938098	0.015	0.010	4938098	<0.010	0.010	4938098
рН	7.65	N/A	4937828	7.81	N/A	4937828	7.51	N/A	4937828
mg/L	170	3	4939006	1900	20	4939754	240	2	4939006
mg/L	1400	5.0	4938104	160	1.0	4938104	910	5.0	4946383
mg/L	320	1.0	4937823	340	1.0	4937823	310	1.0	4946220
mg/L	36	1.0	4938093	40	1.0	4938093	21	1.0	4946377
mg/L	<0.010	0.010	4939014	<0.010	0.010	4939014	<0.010	0.010	4939014
mg/L	<0.10	0.10	4939014	<0.10	0.10	4939014	<0.10	0.10	4939014
mg/L	<0.10	0.10	4939014	<0.10	0.10	4939014	<0.10	0.10	4939014
	me/L mg/L mg/L mg/L mg/L mg/L % N/A N/A N/A N/A N/A M/A mg/L umho/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/	2017/04/10 13:59 605301-02-01 UNITS MW17-8D MW17-8D	2017/04/10	2017/04/10	2017/04/10	2017/04/10	2017/04/10	2017/04/10	2017/04/10

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Golder Associates Ltd

Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

RESULTS OF ANALYSES OF WATER

Maxxam ID		EEV144			EEV145	EEV145		
Sampling Date		2017/04/10 15:34			2017/04/11 09:15	2017/04/11 09:15		
COC Number		605301-02-01			605301-02-01	605301-02-01		
	UNITS	MW17-10D Lab-Dup	RDL	QC Batch	POND	POND Lab-Dup	RDL	QC Batch
Calculated Parameters								
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	N/A	1.0	4936801	140	N/A	1.0	4936801
Calculated TDS	mg/L	N/A	1.0	4936813	870	N/A	1.0	4936813
Carb. Alkalinity (calc. as CaCO3)	mg/L	N/A	1.0	4936801	1.1	N/A	1.0	4936801
Hardness (CaCO3)	mg/L	N/A	1.0	4936804	670	N/A	1.0	4936804
Langelier Index (@ 20C)	N/A	N/A	N/A	4936811	0.802	N/A	N/A	4936811
Langelier Index (@ 4C)	N/A	N/A	N/A	4936812	0.556	N/A	N/A	4936812
Saturation pH (@ 20C)	N/A	N/A	N/A	4936811	7.13	N/A	N/A	4936811
Saturation pH (@ 4C)	N/A	N/A	N/A	4936812	7.38	N/A	N/A	4936812
Inorganics								
Total Ammonia-N	mg/L	N/A	0.050	4938715	<0.050	N/A	0.050	4938715
Conductivity	umho/cm	2000	1.0	4937827	1300	N/A	1.0	4937260
Total Organic Carbon (TOC)	mg/L	N/A	0.20	N/A	2.1	2.1	0.20	4939254
Orthophosphate (P)	mg/L	N/A	0.010	4938098	<0.010	N/A	0.010	4937417
рН	рН	7.50	N/A	4937828	7.93	N/A	N/A	4937231
Total Phosphorus	mg/L	N/A	0.004	N/A	0.005	N/A	0.004	4938578
Total Suspended Solids	mg/L	N/A	2	4939006	<3	N/A	3	4937462
Dissolved Sulphate (SO4)	mg/L	N/A	5.0	4946383	460	N/A	2.0	4937418
Turbidity	NTU	N/A	N/A	N/A	1.5	N/A	0.1	4937002
Alkalinity (Total as CaCO3)	mg/L	N/A	1.0	4946220	140	N/A	1.0	4937223
Dissolved Chloride (CI)	mg/L	N/A	1.0	4946377	45	N/A	1.0	4937408
Nitrite (N)	mg/L	N/A	0.010	4939014	<0.010	N/A	0.010	4937451
Nitrate (N)	mg/L	N/A	0.10	4939014	0.73	N/A	0.10	4937451
DD1 D								

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Golder Associates Ltd

Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		EEV132	EEV132		EEV133	EEV134		
Sampling Date		2017/04/10	2017/04/10		2017/04/10	2017/04/10		
		14:45	14:45		14:42	16:30		
COC Number		605301-01-01	605301-01-01		605301-01-01	605301-01-01		
	UNITS	MW17-1D	MW17-1D Lab-Dup	RDL	MW17-1S	MW17-4S	RDL	QC Batch
Metals								
Dissolved Calcium (Ca)	mg/L	320	320	1.0	49	110	0.20	4937519
Dissolved Magnesium (Mg)	mg/L	84	81	0.050	25	90	0.050	4937519
Dissolved Potassium (K)	mg/L	11	10	0.20	4.0	3.0	0.20	4937519
Dissolved Sodium (Na)	mg/L	36	35	0.10	160	18	0.10	4937519
Dissolved Aluminum (AI)	mg/L	0.0059	0.0059	0.0050	0.018	0.0094	0.0050	4937519
Dissolved Antimony (Sb)	mg/L	<0.00050	<0.00050	0.00050	0.0017	<0.00050	0.00050	4937519
Dissolved Arsenic (As)	mg/L	<0.0010	<0.0010	0.0010	0.0028	<0.0010	0.0010	4937519
Dissolved Barium (Ba)	mg/L	0.016	0.016	0.0020	0.076	0.071	0.0020	4937519
Dissolved Beryllium (Be)	mg/L	<0.00050	<0.00050	0.00050	<0.00050	<0.00050	0.00050	4937519
Dissolved Boron (B)	mg/L	1.6	1.6	0.010	0.19	0.11	0.010	4937519
Dissolved Cadmium (Cd)	mg/L	<0.00010	<0.00010	0.00010	<0.00010	<0.00010	0.00010	4937519
Dissolved Chromium (Cr)	mg/L	<0.0050	<0.0050	0.0050	<0.0050	<0.0050	0.0050	4937519
Dissolved Cobalt (Co)	mg/L	<0.00050	<0.00050	0.00050	<0.00050	0.00075	0.00050	4937519
Dissolved Copper (Cu)	mg/L	<0.0010	<0.0010	0.0010	0.0030	0.0011	0.0010	4937519
Dissolved Iron (Fe)	mg/L	0.13	0.13	0.10	<0.10	<0.10	0.10	4937519
Dissolved Lead (Pb)	mg/L	<0.00050	<0.00050	0.00050	<0.00050	<0.00050	0.00050	4937519
Dissolved Manganese (Mn)	mg/L	0.011	0.010	0.0020	0.017	0.061	0.0020	4937519
Dissolved Molybdenum (Mo)	mg/L	<0.00050	<0.00050	0.00050	0.082	0.016	0.00050	4937519
Dissolved Nickel (Ni)	mg/L	<0.0010	<0.0010	0.0010	0.0016	0.0067	0.0010	4937519
Dissolved Phosphorus (P)	mg/L	<0.10	<0.10	0.10	<0.10	<0.10	0.10	4937519
Dissolved Selenium (Se)	mg/L	<0.0020	<0.0020	0.0020	<0.0020	<0.0020	0.0020	4937519
Dissolved Silicon (Si)	mg/L	7.0	6.8	0.050	2.8	3.9	0.050	4937519
Dissolved Silver (Ag)	mg/L	<0.00010	<0.00010	0.00010	<0.00010	<0.00010	0.00010	4937519
Dissolved Strontium (Sr)	mg/L	12	12	0.0010	1.8	2.2	0.0010	4937519
Dissolved Thallium (TI)	mg/L	<0.000050	<0.000050	0.000050	<0.000050	<0.000050	0.000050	4937519
Dissolved Titanium (Ti)	mg/L	<0.0050	<0.0050	0.0050	<0.0050	<0.0050	0.0050	4937519
Dissolved Uranium (U)	mg/L	<0.00010	<0.00010	0.00010	0.011	0.026	0.00010	4937519
Dissolved Vanadium (V)	mg/L	<0.00050	<0.00050	0.00050	0.0021	0.0012	0.00050	4937519
Dissolved Zinc (Zn)	mg/L	<0.0050	<0.0050	0.0050	<0.0050	<0.0050	0.0050	4937519
			•					

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Golder Associates Ltd

Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		EEV135		EEV136	EEV137		EEV138		
Sampling Date		2017/04/11 08:45		2017/04/10 15:14	2017/04/10 13:28		2017/04/10 13:28		
COC Number		605301-01-01		605301-01-01	605301-01-01		605301-01-01		
	UNITS	MW17-2S	RDL	MW17-3D	MW17-6D	RDL	MW17-6S	RDL	QC Batch
Metals					•				
Dissolved Calcium (Ca)	mg/L	79	0.40	120	120	1.0	120	0.40	4937519
Dissolved Magnesium (Mg)	mg/L	51	0.050	61	39	0.050	57	0.050	4937519
Dissolved Potassium (K)	mg/L	3.4	0.20	5.0	7.8	0.20	5.3	0.20	4937519
Dissolved Sodium (Na)	mg/L	46	0.10	19	13	0.10	31	0.10	4937519
Dissolved Aluminum (Al)	mg/L	0.0065	0.0050	0.0057	0.0078	0.0050	0.0069	0.0050	4937519
Dissolved Antimony (Sb)	mg/L	<0.00050	0.00050	<0.00050	<0.00050	0.00050	<0.00050	0.00050	4937519
Dissolved Arsenic (As)	mg/L	<0.0010	0.0010	<0.0010	<0.0010	0.0010	<0.0010	0.0010	4937519
Dissolved Barium (Ba)	mg/L	0.065	0.0020	0.010	0.0051	0.0020	0.019	0.0020	4937519
Dissolved Beryllium (Be)	mg/L	<0.00050	0.00050	<0.00050	<0.00050	0.00050	<0.00050	0.00050	4937519
Dissolved Boron (B)	mg/L	0.28	0.010	0.20	0.50	0.010	0.38	0.010	4937519
Dissolved Cadmium (Cd)	mg/L	<0.00010	0.00010	<0.00010	<0.00010	0.00010	<0.00010	0.00010	4937519
Dissolved Chromium (Cr)	mg/L	<0.0050	0.0050	<0.0050	<0.0050	0.0050	<0.0050	0.0050	4937519
Dissolved Cobalt (Co)	mg/L	<0.00050	0.00050	<0.00050	<0.00050	0.00050	<0.00050	0.00050	4937519
Dissolved Copper (Cu)	mg/L	0.0021	0.0010	<0.0010	<0.0010	0.0010	<0.0010	0.0010	4937519
Dissolved Iron (Fe)	mg/L	<0.10	0.10	<0.10	<0.10	0.10	<0.10	0.10	4937519
Dissolved Lead (Pb)	mg/L	<0.00050	0.00050	<0.00050	<0.00050	0.00050	<0.00050	0.00050	4937519
Dissolved Manganese (Mn)	mg/L	0.094	0.0020	0.0038	0.0030	0.0020	0.012	0.0020	4937519
Dissolved Molybdenum (Mo)	mg/L	0.030	0.00050	0.0014	<0.00050	0.00050	<0.00050	0.00050	4937519
Dissolved Nickel (Ni)	mg/L	0.0040	0.0010	<0.0010	<0.0010	0.0010	<0.0010	0.0010	4937519
Dissolved Phosphorus (P)	mg/L	<0.10	0.10	<0.10	<0.10	0.10	<0.10	0.10	4937519
Dissolved Selenium (Se)	mg/L	<0.0020	0.0020	<0.0020	<0.0020	0.0020	<0.0020	0.0020	4937519
Dissolved Silicon (Si)	mg/L	3.3	0.050	10	7.5	0.050	5.6	0.050	4937519
Dissolved Silver (Ag)	mg/L	<0.00010	0.00010	<0.00010	<0.00010	0.00010	<0.00010	0.00010	4937519
Dissolved Strontium (Sr)	mg/L	5.1	0.0010	15	14	0.0010	7.0	0.0010	4937519
Dissolved Thallium (TI)	mg/L	<0.000050	0.000050	<0.000050	<0.000050	0.000050	<0.000050	0.000050	4937519
Dissolved Titanium (Ti)	mg/L	<0.0050	0.0050	<0.0050	<0.0050	0.0050	<0.0050	0.0050	4937519
Dissolved Uranium (U)	mg/L	0.0058	0.00010	0.00019	<0.00010	0.00010	0.00060	0.00010	4937519
Dissolved Vanadium (V)	mg/L	0.00086	0.00050	<0.00050	<0.00050	0.00050	<0.00050	0.00050	4937519
Dissolved Zinc (Zn)	mg/L	<0.0050	0.0050	<0.0050	<0.0050	0.0050	<0.0050	0.0050	4937519
RDL = Reportable Detection Li	mit								

QC Batch = Quality Control Batch

Golder Associates Ltd

Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		EEV139		EEV140	EEV141	EEV142		
Sampling Date		2017/04/10 13:00		2017/04/10 12:53	2017/04/10	2017/04/10 13:59		
COC Number		605301-01-01		605301-01-01	12:53 605301-01-01	605301-02-01		
COC Number	UNITS	MW17-9S	RDL	MW17-9D	MW17-99D	MW17-8D	RDL	QC Batch
	UNITS	1010017-93	KUL	1010017-3D	1010017-330	IVIVV17-8D	KDL	QC Battii
Metals	1	T	ı		T		ı	ı
Dissolved Calcium (Ca)	mg/L	110	0.20	350	350	440	0.40	4937519
Dissolved Magnesium (Mg)	mg/L	110	0.050	88	89	100	0.050	4937519
Dissolved Potassium (K)	mg/L	3.1	0.20	22	22	17	0.20	4937519
Dissolved Sodium (Na)	mg/L	79	0.10	170	170	83	0.10	4937519
Dissolved Aluminum (AI)	mg/L	0.0059	0.0050	0.016	0.0077	0.0078	0.0050	4937519
Dissolved Antimony (Sb)	mg/L	<0.00050	0.00050	<0.00050	<0.00050	<0.00050	0.00050	4937519
Dissolved Arsenic (As)	mg/L	<0.0010	0.0010	<0.0010	<0.0010	0.0010	0.0010	4937519
Dissolved Barium (Ba)	mg/L	0.023	0.0020	0.0094	0.010	0.015	0.0020	4937519
Dissolved Beryllium (Be)	mg/L	<0.00050	0.00050	<0.00050	<0.00050	<0.00050	0.00050	4937519
Dissolved Boron (B)	mg/L	0.096	0.010	3.9	3.9	2.4	0.010	4937519
Dissolved Cadmium (Cd)	mg/L	<0.00010	0.00010	<0.00010	<0.00010	<0.00010	0.00010	4937519
Dissolved Chromium (Cr)	mg/L	<0.0050	0.0050	<0.0050	<0.0050	<0.0050	0.0050	4937519
Dissolved Cobalt (Co)	mg/L	0.0012	0.00050	<0.00050	<0.00050	<0.00050	0.00050	4937519
Dissolved Copper (Cu)	mg/L	<0.0010	0.0010	<0.0010	<0.0010	<0.0010	0.0010	4937519
Dissolved Iron (Fe)	mg/L	<0.10	0.10	<0.10	<0.10	<0.10	0.10	4937519
Dissolved Lead (Pb)	mg/L	<0.00050	0.00050	<0.00050	<0.00050	<0.00050	0.00050	4937519
Dissolved Manganese (Mn)	mg/L	0.031	0.0020	0.0084	0.0079	0.019	0.0020	4937519
Dissolved Molybdenum (Mo)	mg/L	0.00070	0.00050	<0.00050	<0.00050	<0.00050	0.00050	4937519
Dissolved Nickel (Ni)	mg/L	0.0022	0.0010	<0.0010	<0.0010	<0.0010	0.0010	4937519
Dissolved Phosphorus (P)	mg/L	<0.10	0.10	<0.10	<0.10	<0.10	0.10	4937519
Dissolved Selenium (Se)	mg/L	0.0020	0.0020	<0.0020	<0.0020	<0.0020	0.0020	4937519
Dissolved Silicon (Si)	mg/L	4.4	0.050	4.1	4.0	3.9	0.050	4937519
Dissolved Silver (Ag)	mg/L	<0.00010	0.00010	<0.00010	<0.00010	<0.00010	0.00010	4937519
Dissolved Strontium (Sr)	mg/L	3.5	0.0010	8.1	8.2	10	0.0010	4937519
Dissolved Thallium (TI)	mg/L	<0.000050	0.000050	<0.000050	<0.000050	<0.000050	0.000050	4937519
Dissolved Titanium (Ti)	mg/L	<0.0050	0.0050	<0.0050	<0.0050	<0.0050	0.0050	4937519
Dissolved Uranium (U)	mg/L	0.0036	0.00010	0.00033	0.00033	0.00054	0.00010	4937519
Dissolved Vanadium (V)	mg/L	<0.00050	0.00050	<0.00050	<0.00050	<0.00050	0.00050	4937519
Dissolved Zinc (Zn)	mg/L	<0.0050	0.0050	<0.0050	<0.0050	<0.0050	0.0050	4937519
RDL = Reportable Detection Li			1				ı	1
OC Patch - Quality Control Pat								

QC Batch = Quality Control Batch

Golder Associates Ltd

Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		EEV143			EEV144			EEV145		
		2017/04/10			2017/04/10			2017/04/11		
Sampling Date		13:56			15:34			09:15		
COC Number		605301-02-01			605301-02-01			605301-02-01		
	UNITS	MW17-8S	RDL	QC Batch	MW17-10D	RDL	QC Batch	POND	RDL	QC Batch
Metals										<u> </u>
Dissolved Calcium (Ca)	mg/L	91	0.20	4937519	360	1.0	4946951	180	0.05	4941831
Dissolved Magnesium (Mg)	mg/L	59	0.050	4937519	81	0.050	4946951	53	0.05	4941831
Dissolved Potassium (K)	mg/L	2.9	0.20	4937519	5.8	0.20	4946951	6	1	4941831
Dissolved Sodium (Na)	mg/L	28	0.10	4937519	19	0.10	4946951	36	0.5	4941831
Dissolved Aluminum (Al)	mg/L	0.0077	0.0050	4937519	<0.0050	0.0050	4946951	N/A	N/A	N/A
Total Aluminum (Al)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	0.047	0.0050	4941659
Dissolved Antimony (Sb)	mg/L	<0.00050	0.00050	4937519	<0.00050	0.00050	4946951	N/A	N/A	N/A
Total Antimony (Sb)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	<0.00050	0.00050	4941659
Dissolved Arsenic (As)	mg/L	0.0010	0.0010	4937519	<0.0010	0.0010	4946951	N/A	N/A	N/A
Total Arsenic (As)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	<0.0010	0.0010	4941659
Dissolved Barium (Ba)	mg/L	0.023	0.0020	4937519	0.0073	0.0020	4946951	N/A	N/A	N/A
Total Barium (Ba)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	0.038	0.0020	4941659
Dissolved Beryllium (Be)	mg/L	<0.00050	0.00050	4937519	<0.00050	0.00050	4946951	N/A	N/A	N/A
Total Beryllium (Be)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	<0.00050	0.00050	4941659
Dissolved Boron (B)	mg/L	0.22	0.010	4937519	0.39	0.010	4946951	N/A	N/A	N/A
Total Boron (B)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	0.24	0.010	4941659
Dissolved Cadmium (Cd)	mg/L	<0.00010	0.00010	4937519	<0.00010	0.00010	4946951	N/A	N/A	N/A
Total Cadmium (Cd)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	<0.00010	0.00010	4941659
Total Calcium (Ca)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	170	0.20	4941659
Dissolved Chromium (Cr)	mg/L	<0.0050	0.0050	4937519	<0.0050	0.0050	4946951	N/A	N/A	N/A
Total Chromium (Cr)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	<0.0050	0.0050	4941659
Dissolved Cobalt (Co)	mg/L	<0.00050	0.00050	4937519	<0.00050	0.00050	4946951	N/A	N/A	N/A
Total Cobalt (Co)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	<0.00050	0.00050	4941659
Dissolved Copper (Cu)	mg/L	<0.0010	0.0010	4937519	<0.0010	0.0010	4946951	N/A	N/A	N/A
Total Copper (Cu)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	0.0014	0.0010	4941659
Dissolved Iron (Fe)	mg/L	0.13	0.10	4937519	<0.10	0.10	4946951	N/A	N/A	N/A
Total Iron (Fe)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	<0.10	0.10	4941659
Dissolved Lead (Pb)	mg/L	<0.00050	0.00050	4937519	<0.00050	0.00050	4946951	N/A	N/A	N/A
Total Lead (Pb)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	<0.00050	0.00050	4941659
Total Magnesium (Mg)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	52	0.050	4941659
Dissolved Manganese (Mn)	mg/L	0.021	0.0020	4937519	0.0055	0.0020	4946951	N/A	N/A	N/A
Total Manganese (Mn)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	0.0046	0.0020	4941659
Dissolved Molybdenum (Mo)	mg/L	0.0019	0.00050	4937519	<0.00050	0.00050	4946951	N/A	N/A	N/A
Total Molybdenum (Mo)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	0.0085	0.00050	4941659

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Golder Associates Ltd

Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		EEV143			EEV144			EEV145		
Sampling Date		2017/04/10 13:56			2017/04/10 15:34			2017/04/11 09:15		
COC Number		605301-02-01			605301-02-01			605301-02-01		
	UNITS	MW17-8S	RDL	QC Batch	MW17-10D	RDL	QC Batch	POND	RDL	QC Batch
Dissolved Nickel (Ni)	mg/L	0.0014	0.0010	4937519	<0.0010	0.0010	4946951	N/A	N/A	N/A
Total Nickel (Ni)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	0.0049	0.0010	4941659
Dissolved Phosphorus (P)	mg/L	0.10	0.10	4937519	<0.10	0.10	4946951	N/A	N/A	N/A
Total Potassium (K)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	5.4	0.20	4941659
Dissolved Selenium (Se)	mg/L	<0.0020	0.0020	4937519	<0.0020	0.0020	4946951	N/A	N/A	N/A
Total Selenium (Se)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	<0.0020	0.0020	4941659
Dissolved Silicon (Si)	mg/L	3.9	0.050	4937519	8.1	0.050	4946951	N/A	N/A	N/A
Total Silicon (Si)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	1.5	0.050	4941659
Dissolved Silver (Ag)	mg/L	<0.00010	0.00010	4937519	<0.00010	0.00010	4946951	N/A	N/A	N/A
Total Silver (Ag)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	<0.00010	0.00010	4941659
Total Sodium (Na)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	32	0.10	4941659
Dissolved Strontium (Sr)	mg/L	3.2	0.0010	4937519	11	0.0010	4946951	N/A	N/A	N/A
Total Strontium (Sr)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	4.8	0.0010	4941659
Dissolved Thallium (TI)	mg/L	<0.000050	0.000050	4937519	<0.000050	0.000050	4946951	N/A	N/A	N/A
Total Thallium (TI)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	<0.000050	0.000050	4941659
Dissolved Titanium (Ti)	mg/L	<0.0050	0.0050	4937519	<0.0050	0.0050	4946951	N/A	N/A	N/A
Total Titanium (Ti)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	<0.0050	0.0050	4941659
Dissolved Uranium (U)	mg/L	0.00070	0.00010	4937519	0.00011	0.00010	4946951	N/A	N/A	N/A
Dissolved Vanadium (V)	mg/L	0.00066	0.00050	4937519	<0.00050	0.00050	4946951	N/A	N/A	N/A
Total Vanadium (V)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	<0.00050	0.00050	4941659
Dissolved Zinc (Zn)	mg/L	<0.0050	0.0050	4937519	<0.0050	0.0050	4946951	N/A	N/A	N/A
Total Zinc (Zn)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	<0.0050	0.0050	4941659

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Golder Associates Ltd

Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

TEST SUMMARY

Maxxam ID: EEV132 Sample ID: MW17-1D

Matrix: Water

Collected: 2017/04/10

Shipped:

Received: 2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	4937823	N/A	2017/04/13	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	4936801	N/A	2017/04/17	Automated Statchk
Chloride by Automated Colourimetry	KONE	4938093	N/A	2017/04/17	Alina Dobreanu
Conductivity	AT	4937827	N/A	2017/04/13	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	4937584	N/A	2017/04/13	Anastasia Hamanov
Hardness (calculated as CaCO3)		4936804	N/A	2017/04/13	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	4937519	N/A	2017/04/13	Thao Nguyen
Ion Balance (% Difference)	CALC	4936805	N/A	2017/04/18	Automated Statchk
Anion and Cation Sum	CALC	4936806	N/A	2017/04/17	Automated Statchk
Total Ammonia-N	LACH/NH4	4938710	N/A	2017/04/18	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	4939014	N/A	2017/04/13	Chandra Nandlal
pH	AT	4937828	N/A	2017/04/13	Surinder Rai
Orthophosphate	KONE	4938098	N/A	2017/04/17	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	4936811	N/A	2017/04/18	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4936812	N/A	2017/04/18	Automated Statchk
Sulphate by Automated Colourimetry	KONE	4938104	N/A	2017/04/17	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	4936813	N/A	2017/04/18	Automated Statchk
Low Level Total Suspended Solids	BAL	4939006	2017/04/13	2017/04/13	Arpan Shah

Maxxam ID: EEV132 Dup Sample ID: MW17-1D

Matrix: Water

Collected: 2017/04/10

Shipped:

Received: 2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Metals by ICPMS	ICP/MS	4937519	N/A	2017/04/13	Thao Nguyen

Maxxam ID: EEV133 Sample ID: MW17-1S

Matrix: Water

Shipped:

Collected: 2017/04/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	4937613	N/A	2017/04/13	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	4936801	N/A	2017/04/17	Automated Statchk
Chloride by Automated Colourimetry	KONE	4938093	N/A	2017/04/17	Alina Dobreanu
Conductivity	AT	4937809	N/A	2017/04/13	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	4938932	N/A	2017/04/13	Anastasia Hamanov
Hardness (calculated as CaCO3)		4936804	N/A	2017/04/13	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	4937519	N/A	2017/04/13	Thao Nguyen
Ion Balance (% Difference)	CALC	4936805	N/A	2017/04/18	Automated Statchk
Anion and Cation Sum	CALC	4936806	N/A	2017/04/17	Automated Statchk
Total Ammonia-N	LACH/NH4	4938710	N/A	2017/04/18	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	4937672	N/A	2017/04/13	Chandra Nandlal
рН	AT	4937811	N/A	2017/04/13	Surinder Rai
Orthophosphate	KONE	4938098	N/A	2017/04/17	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	4936811	N/A	2017/04/18	Automated Statchk

Golder Associates Ltd

Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

TEST SUMMARY

Maxxam ID: EEV133 Sample ID: MW17-1S

Shipped:

Collected: 2017/04/10

Matrix: Water

Received: 2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Sat. pH and Langelier Index (@ 4C)	CALC	4936812	N/A	2017/04/18	Automated Statchk
Sulphate by Automated Colourimetry	KONE	4938104	N/A	2017/04/17	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	4936813	N/A	2017/04/18	Automated Statchk
Total Suspended Solids	BAL	4937582	2017/04/12	2017/04/12	Xue Zheng Li(Scott)

Maxxam ID: EEV134 Sample ID: MW17-4S Matrix: Water

Collected: 2017/04/10

Shipped:

Received: 2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	4937613	N/A	2017/04/13	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	4936801	N/A	2017/04/17	Automated Statchk
Chloride by Automated Colourimetry	KONE	4938093	N/A	2017/04/17	Alina Dobreanu
Conductivity	AT	4937809	N/A	2017/04/13	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	4937584	N/A	2017/04/13	Anastasia Hamanov
Hardness (calculated as CaCO3)		4936804	N/A	2017/04/13	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	4937519	N/A	2017/04/17	Thao Nguyen
Ion Balance (% Difference)	CALC	4936805	N/A	2017/04/18	Automated Statchk
Anion and Cation Sum	CALC	4936806	N/A	2017/04/17	Automated Statchk
Total Ammonia-N	LACH/NH4	4938710	N/A	2017/04/18	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	4937642	N/A	2017/04/13	Chandra Nandlal
рН	AT	4937811	N/A	2017/04/13	Surinder Rai
Orthophosphate	KONE	4938098	N/A	2017/04/17	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	4936811	N/A	2017/04/18	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4936812	N/A	2017/04/18	Automated Statchk
Sulphate by Automated Colourimetry	KONE	4938104	N/A	2017/04/17	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	4936813	N/A	2017/04/18	Automated Statchk
Low Level Total Suspended Solids	BAL	4939006	2017/04/13	2017/04/13	Arpan Shah

Maxxam ID: EEV135 Sample ID: MW17-2S Matrix: Water

Collected: 2017/04/11

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	4937613	N/A	2017/04/13	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	4936801	N/A	2017/04/17	Automated Statchk
Chloride by Automated Colourimetry	KONE	4938093	N/A	2017/04/17	Alina Dobreanu
Conductivity	AT	4937809	N/A	2017/04/13	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	4937584	N/A	2017/04/13	Anastasia Hamanov
Hardness (calculated as CaCO3)		4936804	N/A	2017/04/13	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	4937519	N/A	2017/04/13	Thao Nguyen
Ion Balance (% Difference)	CALC	4936805	N/A	2017/04/18	Automated Statchk
Anion and Cation Sum	CALC	4936806	N/A	2017/04/17	Automated Statchk
Total Ammonia-N	LACH/NH4	4938710	N/A	2017/04/18	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	4937672	N/A	2017/04/13	Chandra Nandlal

Golder Associates Ltd

Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

TEST SUMMARY

Maxxam ID: EEV135 Sample ID: MW17-2S **Collected:** 2017/04/11

Matrix: Water

Shipped:

Received: 2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
pH	AT	4937811	N/A	2017/04/13	Surinder Rai
Orthophosphate	KONE	4938098	N/A	2017/04/17	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	4936811	N/A	2017/04/18	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4936812	N/A	2017/04/18	Automated Statchk
Sulphate by Automated Colourimetry	KONE	4938104	N/A	2017/04/17	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	4936813	N/A	2017/04/18	Automated Statchk
Total Suspended Solids	BAL	4937582	2017/04/12	2017/04/12	Xue Zheng Li(Scott)

Maxxam ID: EEV136 Sample ID: MW17-3D Matrix: Water

Collected: 2017/04/10

Shipped:

Received: 2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	4937613	N/A	2017/04/13	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	4936801	N/A	2017/04/17	Automated Statchk
Chloride by Automated Colourimetry	KONE	4938093	N/A	2017/04/17	Alina Dobreanu
Conductivity	AT	4937809	N/A	2017/04/13	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	4937584	N/A	2017/04/13	Anastasia Hamanov
Hardness (calculated as CaCO3)		4936804	N/A	2017/04/13	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	4937519	N/A	2017/04/13	Thao Nguyen
Ion Balance (% Difference)	CALC	4936805	N/A	2017/04/18	Automated Statchk
Anion and Cation Sum	CALC	4936806	N/A	2017/04/17	Automated Statchk
Total Ammonia-N	LACH/NH4	4938715	N/A	2017/04/17	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	4939014	N/A	2017/04/13	Chandra Nandlal
рН	AT	4937811	N/A	2017/04/13	Surinder Rai
Orthophosphate	KONE	4938098	N/A	2017/04/17	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	4936811	N/A	2017/04/18	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4936812	N/A	2017/04/18	Automated Statchk
Sulphate by Automated Colourimetry	KONE	4938104	N/A	2017/04/17	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	4936813	N/A	2017/04/18	Automated Statchk
Low Level Total Suspended Solids	BAL	4939006	2017/04/13	2017/04/13	Arpan Shah

Maxxam ID: EEV136 Dup Sample ID: MW17-3D Matrix: Water

Collected: 2017/04/10

Shipped:

Received: 2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	4939014	N/A	2017/04/13	Chandra Nandlal

Maxxam ID: EEV137 Sample ID: MW17-6D Matrix: Water

Collected: 2017/04/10

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	4937613	N/A	2017/04/13	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	4936801	N/A	2017/04/17	Automated Statchk

Golder Associates Ltd

Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

TEST SUMMARY

Maxxam ID: EEV137 Sample ID: MW17-6D **Collected:** 2017/04/10 Shipped:

Received: 2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chloride by Automated Colourimetry	KONE	4938093	N/A	2017/04/17	Alina Dobreanu
Conductivity	AT	4937809	N/A	2017/04/13	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	4937584	N/A	2017/04/13	Anastasia Hamanov
Hardness (calculated as CaCO3)		4936804	N/A	2017/04/13	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	4937519	N/A	2017/04/13	Thao Nguyen
Ion Balance (% Difference)	CALC	4936805	N/A	2017/04/18	Automated Statchk
Anion and Cation Sum	CALC	4936806	N/A	2017/04/17	Automated Statchk
Total Ammonia-N	LACH/NH4	4938715	N/A	2017/04/17	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	4937672	N/A	2017/04/13	Chandra Nandlal
pH	AT	4937811	N/A	2017/04/13	Surinder Rai
Orthophosphate	KONE	4938098	N/A	2017/04/17	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	4936811	N/A	2017/04/18	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4936812	N/A	2017/04/18	Automated Statchk
Sulphate by Automated Colourimetry	KONE	4938104	N/A	2017/04/17	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	4936813	N/A	2017/04/18	Automated Statchk
Total Suspended Solids	BAL	4939754	2017/04/13	2017/04/13	Arpan Shah

Maxxam ID: EEV138 Sample ID: MW17-6S Matrix: Water

Matrix: Water

Collected: 2017/04/10

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	4937613	N/A	2017/04/13	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	4936801	N/A	2017/04/17	Automated Statchk
Chloride by Automated Colourimetry	KONE	4938093	N/A	2017/04/17	Alina Dobreanu
Conductivity	AT	4937809	N/A	2017/04/13	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	4937584	N/A	2017/04/13	Anastasia Hamanov
Hardness (calculated as CaCO3)		4936804	N/A	2017/04/17	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	4937519	N/A	2017/04/17	Thao Nguyen
Ion Balance (% Difference)	CALC	4936805	N/A	2017/04/18	Automated Statchk
Anion and Cation Sum	CALC	4936806	N/A	2017/04/17	Automated Statchk
Total Ammonia-N	LACH/NH4	4938715	N/A	2017/04/17	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	4937642	N/A	2017/04/13	Chandra Nandlal
рН	AT	4937811	N/A	2017/04/13	Surinder Rai
Orthophosphate	KONE	4938098	N/A	2017/04/17	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	4936811	N/A	2017/04/18	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4936812	N/A	2017/04/18	Automated Statchk
Sulphate by Automated Colourimetry	KONE	4938104	N/A	2017/04/17	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	4936813	N/A	2017/04/18	Automated Statchk
Low Level Total Suspended Solids	BAL	4937462	2017/04/12	2017/04/13	Bansari Ray

Golder Associates Ltd

Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

TEST SUMMARY

Maxxam ID: EEV139 Sample ID: MW17-9S **Collected:** 2017/04/10

Matrix: Water

Shipped:

Received: 2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	4937613	N/A	2017/04/13	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	4936801	N/A	2017/04/17	Automated Statchk
Chloride by Automated Colourimetry	KONE	4938093	N/A	2017/04/17	Alina Dobreanu
Conductivity	AT	4937809	N/A	2017/04/13	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	4937584	N/A	2017/04/13	Anastasia Hamanov
Hardness (calculated as CaCO3)		4936804	N/A	2017/04/17	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	4937519	N/A	2017/04/17	Thao Nguyen
Ion Balance (% Difference)	CALC	4936805	N/A	2017/04/18	Automated Statchk
Anion and Cation Sum	CALC	4936806	N/A	2017/04/17	Automated Statchk
Total Ammonia-N	LACH/NH4	4938715	N/A	2017/04/17	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	4937642	N/A	2017/04/13	Chandra Nandlal
pH	AT	4937811	N/A	2017/04/13	Surinder Rai
Orthophosphate	KONE	4938098	N/A	2017/04/17	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	4936811	N/A	2017/04/18	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4936812	N/A	2017/04/18	Automated Statchk
Sulphate by Automated Colourimetry	KONE	4938104	N/A	2017/04/17	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	4936813	N/A	2017/04/18	Automated Statchk
Low Level Total Suspended Solids	BAL	4937540	2017/04/12	2017/04/12	Arpan Shah

Maxxam ID: EEV140 Sample ID: MW17-9D Matrix: Water

Collected: 2017/04/10

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	4937613	N/A	2017/04/13	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	4936801	N/A	2017/04/17	Automated Statchk
Chloride by Automated Colourimetry	KONE	4938093	N/A	2017/04/17	Alina Dobreanu
Conductivity	AT	4937809	N/A	2017/04/13	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	4937584	N/A	2017/04/13	Anastasia Hamanov
Hardness (calculated as CaCO3)		4936804	N/A	2017/04/17	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	4937519	N/A	2017/04/17	Thao Nguyen
Ion Balance (% Difference)	CALC	4936805	N/A	2017/04/18	Automated Statchk
Anion and Cation Sum	CALC	4936806	N/A	2017/04/17	Automated Statchk
Total Ammonia-N	LACH/NH4	4938715	N/A	2017/04/17	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	4937642	N/A	2017/04/13	Chandra Nandlal
рН	AT	4937811	N/A	2017/04/13	Surinder Rai
Orthophosphate	KONE	4938098	N/A	2017/04/17	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	4936811	N/A	2017/04/18	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4936812	N/A	2017/04/18	Automated Statchk
Sulphate by Automated Colourimetry	KONE	4938104	N/A	2017/04/17	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	4936813	N/A	2017/04/18	Automated Statchk
Low Level Total Suspended Solids	BAL	4937540	2017/04/12	2017/04/12	Arpan Shah

Golder Associates Ltd

Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

TEST SUMMARY

Maxxam ID: EEV140 Dup Sample ID: MW17-9D

Collected: 2017/04/10

Matrix: Water

Shipped:

Received: 2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chloride by Automated Colourimetry	KONE	4938093	N/A	2017/04/17	Alina Dobreanu
Total Ammonia-N	LACH/NH4	4938715	N/A	2017/04/17	Charles Opoku-Ware
Orthophosphate	KONE	4938098	N/A	2017/04/17	Alina Dobreanu
Sulphate by Automated Colourimetry	KONE	4938104	N/A	2017/04/17	Alina Dobreanu

Maxxam ID: EEV141 Sample ID: MW17-99D Matrix: Water

Collected: 2017/04/10

Shipped:

Received: 2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	4937613	N/A	2017/04/13	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	4936801	N/A	2017/04/17	Automated Statchk
Chloride by Automated Colourimetry	KONE	4938093	N/A	2017/04/17	Alina Dobreanu
Conductivity	AT	4937809	N/A	2017/04/13	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	4937584	N/A	2017/04/13	Anastasia Hamanov
Hardness (calculated as CaCO3)		4936804	N/A	2017/04/17	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	4937519	N/A	2017/04/17	Thao Nguyen
Ion Balance (% Difference)	CALC	4936805	N/A	2017/04/18	Automated Statchk
Anion and Cation Sum	CALC	4936806	N/A	2017/04/17	Automated Statchk
Total Ammonia-N	LACH/NH4	4938715	N/A	2017/04/17	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	4937672	N/A	2017/04/13	Chandra Nandlal
рН	AT	4937811	N/A	2017/04/13	Surinder Rai
Orthophosphate	KONE	4938098	N/A	2017/04/17	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	4936811	N/A	2017/04/18	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4936812	N/A	2017/04/18	Automated Statchk
Sulphate by Automated Colourimetry	KONE	4938104	N/A	2017/04/17	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	4936813	N/A	2017/04/18	Automated Statchk
Low Level Total Suspended Solids	BAL	4937540	2017/04/12	2017/04/12	Arpan Shah

Maxxam ID: EEV142 Sample ID: MW17-8D Matrix: Water

Collected: 2017/04/10

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	4937823	N/A	2017/04/13	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	4936801	N/A	2017/04/17	Automated Statchk
Chloride by Automated Colourimetry	KONE	4938093	N/A	2017/04/17	Alina Dobreanu
Conductivity	AT	4937827	N/A	2017/04/13	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	4937584	N/A	2017/04/13	Anastasia Hamanov
Hardness (calculated as CaCO3)		4936804	N/A	2017/04/13	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	4937519	N/A	2017/04/13	Thao Nguyen
Ion Balance (% Difference)	CALC	4936805	N/A	2017/04/18	Automated Statchk
Anion and Cation Sum	CALC	4936806	N/A	2017/04/17	Automated Statchk
Total Ammonia-N	LACH/NH4	4938715	N/A	2017/04/17	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	4939014	N/A	2017/04/13	Chandra Nandlal

Golder Associates Ltd

Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

TEST SUMMARY

Maxxam ID: EEV142 Sample ID: MW17-8D

Matrix: Water

Collected: 2017/04/10 Shipped:

Received: 2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
рН	AT	4937828	N/A	2017/04/13	Surinder Rai
Orthophosphate	KONE	4938098	N/A	2017/04/17	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	4936811	N/A	2017/04/18	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4936812	N/A	2017/04/18	Automated Statchk
Sulphate by Automated Colourimetry	KONE	4938104	N/A	2017/04/17	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	4936813	N/A	2017/04/18	Automated Statchk
Low Level Total Suspended Solids	BAL	4939006	2017/04/13	2017/04/13	Arpan Shah

Maxxam ID: EEV143 Sample ID: MW17-8S Matrix: Water

Collected: 2017/04/10

Shipped:

Received: 2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	4937823	N/A	2017/04/13	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	4936801	N/A	2017/04/17	Automated Statchk
Chloride by Automated Colourimetry	KONE	4938093	N/A	2017/04/17	Alina Dobreanu
Conductivity	AT	4937827	N/A	2017/04/13	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	4937584	N/A	2017/04/13	Anastasia Hamanov
Hardness (calculated as CaCO3)		4936804	N/A	2017/04/17	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	4937519	N/A	2017/04/17	Thao Nguyen
Ion Balance (% Difference)	CALC	4936805	N/A	2017/04/18	Automated Statchk
Anion and Cation Sum	CALC	4936806	N/A	2017/04/17	Automated Statchk
Total Ammonia-N	LACH/NH4	4938715	N/A	2017/04/17	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	4939014	N/A	2017/04/13	Chandra Nandlal
рН	AT	4937828	N/A	2017/04/13	Surinder Rai
Orthophosphate	KONE	4938098	N/A	2017/04/17	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	4936811	N/A	2017/04/18	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4936812	N/A	2017/04/18	Automated Statchk
Sulphate by Automated Colourimetry	KONE	4938104	N/A	2017/04/17	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	4936813	N/A	2017/04/18	Automated Statchk
Total Suspended Solids	BAL	4939754	2017/04/13	2017/04/13	Arpan Shah

Maxxam ID: EEV144 Sample ID: MW17-10D Matrix: Water

Collected: 2017/04/10

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	4946220	N/A	2017/04/20	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	4936801	N/A	2017/04/17	Automated Statchk
Chloride by Automated Colourimetry	KONE	4946377	N/A	2017/04/20	Alina Dobreanu
Conductivity	AT	4937827	N/A	2017/04/13	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	4937584	N/A	2017/04/13	Anastasia Hamanov
Hardness (calculated as CaCO3)		4936804	N/A	2017/04/17	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	4946951	N/A	2017/04/20	Cristina Petran
Ion Balance (% Difference)	CALC	4936805	N/A	2017/04/18	Automated Statchk

Golder Associates Ltd

Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

TEST SUMMARY

Maxxam ID: EEV144 Sample ID: MW17-10D Matrix: Water

Collected: 2017/04/10 Shipped:

Received: 2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Anion and Cation Sum	CALC	4936806	N/A	2017/04/17	Automated Statchk
Total Ammonia-N	LACH/NH4	4938715	N/A	2017/04/17	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	4939014	N/A	2017/04/13	Chandra Nandlal
рН	AT	4937828	N/A	2017/04/13	Surinder Rai
Orthophosphate	KONE	4938098	N/A	2017/04/17	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	4936811	N/A	2017/04/18	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4936812	N/A	2017/04/18	Automated Statchk
Sulphate by Automated Colourimetry	KONE	4946383	N/A	2017/04/20	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	4936813	N/A	2017/04/18	Automated Statchk
Low Level Total Suspended Solids	BAL	4939006	2017/04/13	2017/04/13	Arpan Shah

Maxxam ID: EEV144 Dup Collected: 2017/04/10

Sample ID: MW17-10D Shipped: Matrix: Water **Received:** 2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Conductivity	AT	4937827	N/A	2017/04/13	Surinder Rai
рН	AT	4937828	N/A	2017/04/13	Surinder Rai

Maxxam ID: EEV145 Collected: 2017/04/11

Sample ID: POND Shipped:

Matrix: Water **Received:** 2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	4937223	N/A	2017/04/13	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	4936801	N/A	2017/04/13	Automated Statchk
Chloride by Automated Colourimetry	KONE	4937408	N/A	2017/04/13	Alina Dobreanu
Conductivity	AT	4937260	N/A	2017/04/13	Surinder Rai
Hardness (calculated as CaCO3)		4936804	N/A	2017/04/19	Automated Statchk
Lab Filtered Metals Analysis by ICP	ICP	4941831	2017/04/17	2017/04/18	Azita Fazaeli
Total Metals Analysis by ICPMS	ICP/MS	4941659	N/A	2017/04/17	Kevin Comerford
Total Ammonia-N	LACH/NH4	4938715	N/A	2017/04/17	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	4937451	N/A	2017/04/13	Chandra Nandlal
рН	AT	4937231	N/A	2017/04/13	Surinder Rai
Orthophosphate	KONE	4937417	N/A	2017/04/13	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	4936811	N/A	2017/04/19	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4936812	N/A	2017/04/19	Automated Statchk
Sulphate by Automated Colourimetry	KONE	4937418	N/A	2017/04/13	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	4936813	N/A	2017/04/19	Automated Statchk
Total Organic Carbon (TOC)	TOCV/NDIR	4939254	N/A	2017/04/13	Anastasia Hamanov
Total Phosphorus (Colourimetric)	LACH/P	4938578	2017/04/13	2017/04/13	Sarabjit Raina
Low Level Total Suspended Solids	BAL	4937462	2017/04/12	2017/04/13	Bansari Ray
Turbidity	AT	4937002	N/A	2017/04/12	Tahir Anwar

Golder Associates Ltd

Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

TEST SUMMARY

Maxxam ID:EEV145 DupCollected:2017/04/11Sample ID:PONDShipped:

mple ID:PONDShipped:Matrix:WaterReceived:2017/04/11

Test DescriptionInstrumentationBatchExtractedDate AnalyzedAnalystTotal Organic Carbon (TOC)TOCV/NDIR4939254N/A2017/04/13Anastasia Hamanov

Golder Associates Ltd Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	0.3°C
Package 2	-0.7°C

Sample EEV133 [MW17-1S]: Nitrite+Nitrate: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly. ortho-Phosphate > Total Phosphorus: Both values fall within the method uncertainty for duplicates and are likely equivalent.

Results relate only to the items tested.

Golder Associates Ltd

Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

QUALITY ASSURANCE REPORT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4937002	TA1	Spiked Blank	Turbidity	2017/04/12		99	%	85 - 115
4937002	TA1	Method Blank	Turbidity	2017/04/12	<0.1		NTU	
4937002	TA1	RPD	Turbidity	2017/04/12	5.4		%	20
4937223	SAU	Spiked Blank	Alkalinity (Total as CaCO3)	2017/04/12	3	96	%	85 - 115
4937223	SAU	Method Blank	Alkalinity (Total as CaCO3)	2017/04/12	<1.0		mg/L	
4937223	SAU	RPD	Alkalinity (Total as CaCO3)	2017/04/12	0.74		%	20
4937231	SAU	Spiked Blank	pH	2017/04/12		101	%	98 - 103
4937231	SAU	RPD	pH	2017/04/12	0.068		%	N/A
4937260	SAU	Spiked Blank	Conductivity	2017/04/12		100	%	, 85 - 115
4937260	SAU	Method Blank	Conductivity	2017/04/12	<1.0		umho/c	
4937260	SAU	RPD	Conductivity	2017/04/12	0.16		%	25
4937408	ADB	Matrix Spike	Dissolved Chloride (CI)	2017/04/13		96	%	80 - 120
4937408	ADB	Spiked Blank	Dissolved Chloride (CI)	2017/04/13		103	%	80 - 120
4937408	ADB	Method Blank	Dissolved Chloride (Cl)	2017/04/13	<1.0		mg/L	
4937408	ADB	RPD	Dissolved Chloride (Cl)	2017/04/13	1.2		%	20
4937417	ADB	Matrix Spike	Orthophosphate (P)	2017/04/13		110	%	75 - 125
4937417	ADB	Spiked Blank	Orthophosphate (P)	2017/04/13		101	%	80 - 120
4937417	ADB	Method Blank	Orthophosphate (P)	2017/04/13	<0.010	202	mg/L	00 120
4937417	ADB	RPD	Orthophosphate (P)	2017/04/13	18		%	25
4937418	ADB	Matrix Spike	Dissolved Sulphate (SO4)	2017/04/13	10	NC	%	75 - 125
4937418	ADB	Spiked Blank	Dissolved Sulphate (SO4)	2017/04/13		105	%	80 - 120
4937418	ADB	Method Blank	Dissolved Sulphate (SO4)	2017/04/13	<1.0	103	mg/L	00 120
4937418	ADB	RPD	Dissolved Sulphate (SO4)	2017/04/13	0.15		%	20
4937451	C_N	Matrix Spike	Nitrite (N)	2017/04/13	0.13	94	%	80 - 120
4337431	C_IV	Watrix Spike	Nitrate (N)	2017/04/13		99	%	80 - 120
4937451	C_N	Spiked Blank	Nitrite (N)	2017/04/13		94	%	80 - 120
4337431	C_IV	Эрікса Біатік	Nitrate (N)	2017/04/13		105	%	80 - 120
4937451	C N	Method Blank	Nitrite (N)	2017/04/13	<0.010	105	mg/L	00 120
4337431	C_IV	Wiction Blatik	Nitrate (N)	2017/04/13	<0.10		mg/L	
4937451	C_N	RPD	Nitrite (N)	2017/04/13	NC		%	20
4337431	C_IV	III D	Nitrate (N)	2017/04/13	NC		%	20
4937462	RAY	QC Standard	Total Suspended Solids	2017/04/13	NC	96	%	85 - 115
4937462	RAY	Method Blank	Total Suspended Solids	2017/04/13	<1	30	mg/L	05 115
4937462	RAY	RPD	Total Suspended Solids	2017/04/13	NC		%	25
4937519	TNG	Matrix Spike [EEV132-04]	Dissolved Aluminum (Al)	2017/04/13	NC	99	%	80 - 120
4557515	1110	Wattix Spike [LLV132 04]	Dissolved Antimony (Sb)	2017/04/13		105	%	80 - 120
			Dissolved Arsenic (As)	2017/04/13		101	%	80 - 120
			Dissolved Parium (Ba)	2017/04/13		100	%	80 - 120
			Dissolved Beryllium (Be)	2017/04/13		98	%	80 - 120
			Dissolved Boron (B)	2017/04/13		NC	%	80 - 120
			Dissolved Cadmium (Cd)	2017/04/13		102	%	80 - 120
			Dissolved Calcium (Ca)	2017/04/13		NC	%	80 - 120
			Dissolved Chromium (Cr)	2017/04/13		99	% %	80 - 120 80 - 120
			Dissolved Cobalt (Co)	2017/04/13		99 97	% %	80 - 120 80 - 120
			Dissolved Copper (Cu)	2017/04/13		99	% %	80 - 120 80 - 120
			Dissolved Copper (Cu) Dissolved Iron (Fe)	2017/04/13		99	% %	80 - 120 80 - 120
			Dissolved Iron (Fe) Dissolved Lead (Pb)	2017/04/13		96	% %	80 - 120 80 - 120
			Dissolved Lead (PD) Dissolved Magnesium (Mg)	2017/04/13		NC	% %	
			Dissolved Manganese (Mn)	2017/04/13		99	% %	80 - 120 80 - 120
			Dissolved Manganese (Min) Dissolved Molybdenum (Mo)	2017/04/13 2017/04/13		99 105	% %	
								80 - 120 80 - 120
			Dissolved Nickel (Ni)	2017/04/13		96 111	%	80 - 120
			Dissolved Phosphorus (P)	2017/04/13		111	% ~	80 - 120
			Dissolved Potassium (K)	2017/04/13		97	<u>%</u>	80 - 120

Golder Associates Ltd

Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Selenium (Se)	2017/04/13		82	%	80 - 120
			Dissolved Silicon (Si)	2017/04/13		96	%	80 - 120
			Dissolved Silver (Ag)	2017/04/13		38 (1)	%	80 - 120
			Dissolved Sodium (Na)	2017/04/13		NC	%	80 - 120
			Dissolved Strontium (Sr)	2017/04/13		NC	%	80 - 120
			Dissolved Thallium (TI)	2017/04/13		96	%	80 - 120
			Dissolved Titanium (Ti)	2017/04/13		99	%	80 - 120
			Dissolved Uranium (U)	2017/04/13		100	%	80 - 120
			Dissolved Vanadium (V)	2017/04/13		99	%	80 - 120
			Dissolved Zinc (Zn)	2017/04/13		95	%	80 - 120
4937519	TNG	Spiked Blank	Dissolved Aluminum (AI)	2017/04/13		100	%	80 - 120
			Dissolved Antimony (Sb)	2017/04/13		103	%	80 - 120
			Dissolved Arsenic (As)	2017/04/13		99	%	80 - 120
			Dissolved Barium (Ba)	2017/04/13		101	%	80 - 120
			Dissolved Beryllium (Be)	2017/04/13		100	%	80 - 120
			Dissolved Boron (B)	2017/04/13		99	%	80 - 120
			Dissolved Cadmium (Cd)	2017/04/13		101	%	80 - 120
			Dissolved Calcium (Ca)	2017/04/13		95	%	80 - 120
			Dissolved Chromium (Cr)	2017/04/13		98	%	80 - 120
			Dissolved Cobalt (Co)	2017/04/13		98	%	80 - 120
			Dissolved Copper (Cu)	2017/04/13		101	%	80 - 120
			Dissolved Iron (Fe)	2017/04/13		98	%	80 - 120
			Dissolved Lead (Pb)	2017/04/13		97	%	80 - 120
			Dissolved Magnesium (Mg)	2017/04/13		98	%	80 - 120
			Dissolved Manganese (Mn)	2017/04/13		98	%	80 - 120
			Dissolved Molybdenum (Mo)	2017/04/13		101	%	80 - 120
			Dissolved Nickel (Ni)	2017/04/13		98	%	80 - 120
			Dissolved Phosphorus (P)	2017/04/13		112	%	80 - 120
			Dissolved Potassium (K)	2017/04/13		98	%	80 - 120
			Dissolved Selenium (Se)	2017/04/13		96	%	80 - 120
			Dissolved Silicon (Si)	2017/04/13		99	%	80 - 120
			Dissolved Silver (Ag)	2017/04/13		98	%	80 - 120
			Dissolved Sodium (Na)	2017/04/13		97	%	80 - 120
			Dissolved Strontium (Sr)	2017/04/13		100	%	80 - 120
			Dissolved Thallium (TI)	2017/04/13		97	%	80 - 120
			Dissolved Titanium (Ti)	2017/04/13		99	%	80 - 120
			Dissolved Uranium (U)	2017/04/13		98	%	80 - 120
			Dissolved Vanadium (V)	2017/04/13		97	%	80 - 120
			Dissolved Zinc (Zn)	2017/04/13		98	%	80 - 120
4937519	TNG	Method Blank	Dissolved Aluminum (AI)	2017/04/13	<0.0050		mg/L	
			Dissolved Antimony (Sb)	2017/04/13	<0.00050		mg/L	
			Dissolved Arsenic (As)	2017/04/13	< 0.0010		mg/L	
			Dissolved Barium (Ba)	2017/04/13	<0.0020		mg/L	
			Dissolved Beryllium (Be)	2017/04/13	<0.00050		mg/L	
			Dissolved Boron (B)	2017/04/13	<0.010		mg/L	
			Dissolved Cadmium (Cd)	2017/04/13	<0.00010		mg/L	
			Dissolved Calcium (Ca)	2017/04/13	<0.20		mg/L	
			Dissolved Chromium (Cr)	2017/04/13	<0.0050		mg/L	
			Dissolved Cobalt (Co)	2017/04/13	<0.00050		mg/L	
			Dissolved Copper (Cu)	2017/04/13	<0.0010		mg/L	
			Dissolved Iron (Fe)	2017/04/13	<0.10		mg/L	
			Dissolved Lead (Pb)	2017/04/13	<0.00050		mg/L	
			Dissolved Magnesium (Mg)	2017/04/13	<0.050		mg/L	

Golder Associates Ltd

Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Manganese (Mn)	2017/04/13	<0.0020		mg/L	
			Dissolved Molybdenum (Mo)	2017/04/13	< 0.00050		mg/L	
			Dissolved Nickel (Ni)	2017/04/13	< 0.0010		mg/L	
			Dissolved Phosphorus (P)	2017/04/13	<0.10		mg/L	
			Dissolved Potassium (K)	2017/04/13	<0.20		mg/L	
			Dissolved Selenium (Se)	2017/04/13	<0.0020		mg/L	
			Dissolved Silicon (Si)	2017/04/13	< 0.050		mg/L	
			Dissolved Silver (Ag)	2017/04/13	< 0.00010		mg/L	
			Dissolved Sodium (Na)	2017/04/13	<0.10		mg/L	
			Dissolved Strontium (Sr)	2017/04/13	<0.0010		mg/L	
			Dissolved Thallium (TI)	2017/04/13	<0.000050		mg/L	
			Dissolved Titanium (Ti)	2017/04/13	< 0.0050		mg/L	
			Dissolved Uranium (U)	2017/04/13	< 0.00010		mg/L	
			Dissolved Vanadium (V)	2017/04/13	<0.00010		mg/L	
			Dissolved Variation (V) Dissolved Zinc (Zn)	2017/04/13	<0.0050		mg/L	
937519	TNG	RPD [EEV132-04]	Dissolved Aluminum (AI)	2017/04/13	0.24		111g/L %	20
.33/313	ING	KFD [LLV132-04]	Dissolved Antimony (Sb)	2017/04/13	NC		% %	20
			• • •					
			Dissolved Arsenic (As)	2017/04/13	NC		%	20
			Dissolved Barium (Ba)	2017/04/13	0.20		%	20
			Dissolved Beryllium (Be)	2017/04/13	NC		%	20
			Dissolved Boron (B)	2017/04/13	0.70		%	20
			Dissolved Cadmium (Cd)	2017/04/13	NC		%	20
			Dissolved Calcium (Ca)	2017/04/13	1.4		%	20
			Dissolved Chromium (Cr)	2017/04/13	NC		%	20
			Dissolved Cobalt (Co)	2017/04/13	NC		%	20
			Dissolved Copper (Cu)	2017/04/13	NC		%	20
			Dissolved Iron (Fe)	2017/04/13	3.2		%	20
			Dissolved Lead (Pb)	2017/04/13	NC		%	20
			Dissolved Magnesium (Mg)	2017/04/13	3.2		%	20
			Dissolved Manganese (Mn)	2017/04/13	6.0		%	20
			Dissolved Molybdenum (Mo)	2017/04/13	NC		%	20
			Dissolved Nickel (Ni)	2017/04/13	NC		%	20
			Dissolved Phosphorus (P)	2017/04/13	NC		%	20
			Dissolved Potassium (K)	2017/04/13	4.3		%	20
			Dissolved Selenium (Se)	2017/04/13	NC		%	20
			Dissolved Silicon (Si)	2017/04/13	2.2		%	20
			Dissolved Silver (Ag)	2017/04/13	NC		%	20
			Dissolved Sodium (Na)	2017/04/13	2.8		%	20
			Dissolved Strontium (Sr)	2017/04/13	4.2		%	20
			Dissolved Thallium (TI)	2017/04/13	NC		%	20
			Dissolved Titanium (Ti)	2017/04/13	NC		%	20
			Dissolved Uranium (U)	2017/04/13	NC		%	20
			Dissolved Vanadium (V)	2017/04/13	NC		%	20
			Dissolved Zinc (Zn)	2017/04/13	NC		%	20
937540	AS6	QC Standard	Total Suspended Solids	2017/04/12		99	%	85 - 11 <u>5</u>
937540	AS6	Method Blank	Total Suspended Solids	2017/04/12	<1	33	mg/L	-5 11
937540	AS6	RPD	Total Suspended Solids	2017/04/12	4.7		%	25
937582	XZH	QC Standard	Total Suspended Solids	2017/04/12	,	96	%	85 - 11!
937582	XZH	Method Blank	Total Suspended Solids	2017/04/12	<10	50	mg/L	05 11.
937582	XZH	RPD	Total Suspended Solids Total Suspended Solids	2017/04/12	4.6		mg/L %	25
	AHA			2017/04/12	4.0	103		
937584		Matrix Spike	Dissolved Organic Carbon				% %	80 - 120
1937584	AHA	Spiked Blank	Dissolved Organic Carbon	2017/04/13	<0.30	104	% ma/l	80 - 120
1937584	AHA	Method Blank	Dissolved Organic Carbon	2017/04/13	<0.20		mg/L	

Golder Associates Ltd

Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4937584	AHA	RPD	Dissolved Organic Carbon	2017/04/13	1.6	•	%	20
4937613	SAU	Spiked Blank	Alkalinity (Total as CaCO3)	2017/04/13		97	%	85 - 115
4937613	SAU	Method Blank	Alkalinity (Total as CaCO3)	2017/04/13	<1.0		mg/L	
4937613	SAU	RPD	Alkalinity (Total as CaCO3)	2017/04/13	1.2		%	20
4937642	C_N	Matrix Spike	Nitrite (N)	2017/04/13		97	%	80 - 120
	_		Nitrate (N)	2017/04/13		102	%	80 - 120
4937642	C N	Spiked Blank	Nitrite (N)	2017/04/13		96	%	80 - 120
	_		Nitrate (N)	2017/04/13		103	%	80 - 120
4937642	C N	Method Blank	Nitrite (N)	2017/04/13	< 0.010		mg/L	
	_		Nitrate (N)	2017/04/13	< 0.10		mg/L	
4937642	C N	RPD	Nitrite (N)	2017/04/13	NC		%	20
	_		Nitrate (N)	2017/04/13	NC		%	20
4937672	C N	Matrix Spike	Nitrite (N)	2017/04/13		95	%	80 - 120
	_	·	Nitrate (N)	2017/04/13		102	%	80 - 120
4937672	C N	Spiked Blank	Nitrite (N)	2017/04/13		96	%	80 - 120
	_		Nitrate (N)	2017/04/13		106	%	80 - 120
4937672	C N	Method Blank	Nitrite (N)	2017/04/13	< 0.010		mg/L	
	_		Nitrate (N)	2017/04/13	<0.10		mg/L	
4937672	C_N	RPD	Nitrite (N)	2017/04/13	NC		%	20
			Nitrate (N)	2017/04/13	NC		%	20
4937809	SAU	Spiked Blank	Conductivity	2017/04/13		100	%	85 - 115
4937809	SAU	Method Blank	Conductivity	2017/04/13	<1.0	200	umho/d	
4937809	SAU	RPD	Conductivity	2017/04/13	0.21		%	25
4937811	SAU	Spiked Blank	рН	2017/04/13	0.21	101	%	98 - 103
4937811	SAU	RPD	pH	2017/04/13	0.34	101	%	N/A
4937823	SAU	Spiked Blank	Alkalinity (Total as CaCO3)	2017/04/13	0.0 .	96	%	85 - 115
4937823	SAU	Method Blank	Alkalinity (Total as CaCO3)	2017/04/13	<1.0	30	mg/L	03 113
4937827	SAU	Spiked Blank	Conductivity	2017/04/13	11.0	100	%	85 - 115
4937827	SAU	Method Blank	Conductivity	2017/04/13	<1.0	100	umho/o	
4937827	SAU	RPD [EEV144-01]	Conductivity	2017/04/13	0		%	25
4937828	SAU	Spiked Blank	рН	2017/04/13	Ü	101	%	98 - 103
4937828	SAU	RPD [EEV144-01]	pH	2017/04/13	0.14	101	%	N/A
4938093	ADB	Matrix Spike [EEV140-01]	Dissolved Chloride (CI)	2017/04/17	0.14	NC	%	80 - 120
4938093	ADB	Spiked Blank	Dissolved Chloride (CI)	2017/04/17		103	%	80 - 120
4938093	ADB	Method Blank	Dissolved Chloride (CI)	2017/04/17	<1.0	103	mg/L	00 120
4938093	ADB	RPD [EEV140-01]	Dissolved Chloride (CI)	2017/04/17	4.0		%	20
4938098	ADB	Matrix Spike [EEV140-01]	Orthophosphate (P)	2017/04/17	1.0	110	%	75 - 125
4938098		Spiked Blank	Orthophosphate (P)	2017/04/17		101	%	80 - 120
4938098	ADB	Method Blank	Orthophosphate (P)	2017/04/17	<0.010	101	mg/L	00 120
4938098	ADB	RPD [EEV140-01]	Orthophosphate (P)	2017/04/17	NC		%	25
4938104	ADB	Matrix Spike [EEV140-01]	Dissolved Sulphate (SO4)	2017/04/17	110	NC	%	75 - 125
4938104	ADB	Spiked Blank	Dissolved Sulphate (SO4)	2017/04/17		105	%	80 - 120
4938104	ADB	Method Blank	Dissolved Sulphate (SO4)	2017/04/17	<1.0	105	mg/L	00 120
4938104	ADB	RPD [EEV140-01]	Dissolved Sulphate (SO4)	2017/04/17	0.18		/// // // // // // // // // // // // //	20
4938578	SNR	Matrix Spike	Total Phosphorus	2017/04/17	0.10	88	%	80 - 120
4938578	SNR	QC Standard	Total Phosphorus	2017/04/13		91	% %	80 - 120 80 - 120
4938578	SNR	Spiked Blank	Total Phosphorus	2017/04/13		92	% %	80 - 120
4938578	SNR	Method Blank	Total Phosphorus	2017/04/13	<0.004	32	mg/L	00 120
4938578	SNR	RPD	Total Phosphorus	2017/04/13	NC		mg/L %	20
4938578	COP	Matrix Spike	Total Ammonia-N	2017/04/13	INC	92	% %	80 - 120
4938710	COP	Spiked Blank	Total Ammonia-N	2017/04/18		99	% %	85 - 115
4938710	COP	Method Blank	Total Ammonia-N	2017/04/18	<0.050	33		02 - 112
	COP	RPD					mg/L ∞	20
4938710	COP	NFU	Total Ammonia-N	2017/04/18	12		%	20

Golder Associates Ltd

Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4938715	СОР	Matrix Spike [EEV140-02]	Total Ammonia-N	2017/04/17	74.40	NC	%	80 - 120
4938715	COP	Spiked Blank	Total Ammonia-N	2017/04/17		99	%	85 - 115
4938715	COP	Method Blank	Total Ammonia-N	2017/04/17	<0.050	33	mg/L	00 110
4938715	COP	RPD [EEV140-02]	Total Ammonia-N	2017/04/17	0.42		%	20
4938932	AHA	Matrix Spike	Dissolved Organic Carbon	2017/04/13		103	%	80 - 120
4938932	АНА	Spiked Blank	Dissolved Organic Carbon	2017/04/13		107	%	80 - 120
4938932	АНА	Method Blank	Dissolved Organic Carbon	2017/04/13	<0.20		mg/L	
4938932	AHA	RPD	Dissolved Organic Carbon	2017/04/13	0.38		%	20
4939006	AS6	QC Standard	Total Suspended Solids	2017/04/13		95	%	85 - 115
4939006	AS6	Method Blank	Total Suspended Solids	2017/04/13	<1		mg/L	
4939006	AS6	RPD	Total Suspended Solids	2017/04/13	4.9		%	25
4939014	C_N	Matrix Spike [EEV136-01]	Nitrite (N)	2017/04/13		97	%	80 - 120
	_	, , ,	Nitrate (N)	2017/04/13		100	%	80 - 120
4939014	CN	Spiked Blank	Nitrite (N)	2017/04/13		95	%	80 - 120
	_	-r	Nitrate (N)	2017/04/13		100	%	80 - 120
4939014	CN	Method Blank	Nitrite (N)	2017/04/13	< 0.010		mg/L	
	_		Nitrate (N)	2017/04/13	<0.10		mg/L	
4939014	CN	RPD [EEV136-01]	Nitrite (N)	2017/04/13	NC		%	20
	_		Nitrate (N)	2017/04/13	NC		%	20
4939254	АНА	Matrix Spike [EEV145-02]	Total Organic Carbon (TOC)	2017/04/13		97	%	80 - 120
4939254	AHA	Spiked Blank	Total Organic Carbon (TOC)	2017/04/13		99	%	80 - 120
4939254	AHA	Method Blank	Total Organic Carbon (TOC)	2017/04/13	<0.20		mg/L	
4939254	AHA	RPD [EEV145-02]	Total Organic Carbon (TOC)	2017/04/13	0.96		%	20
4939754	AS6	QC Standard	Total Suspended Solids	2017/04/13		100	%	85 - 115
4939754	AS6	Method Blank	Total Suspended Solids	2017/04/13	<10		mg/L	
4939754	AS6	RPD	Total Suspended Solids	2017/04/13	13		%	25
4941659	ксо	Matrix Spike	Total Aluminum (Al)	2017/04/17		NC	%	80 - 120
		·	Total Antimony (Sb)	2017/04/17		109	%	80 - 120
			Total Arsenic (As)	2017/04/17		106	%	80 - 120
			Total Barium (Ba)	2017/04/17		104	%	80 - 120
			Total Beryllium (Be)	2017/04/17		97	%	80 - 120
			Total Boron (B)	2017/04/17		94	%	80 - 120
			Total Cadmium (Cd)	2017/04/17		106	%	80 - 120
			Total Calcium (Ca)	2017/04/17		NC	%	80 - 120
			Total Chromium (Cr)	2017/04/17		102	%	80 - 120
			Total Cobalt (Co)	2017/04/17		104	%	80 - 120
			Total Copper (Cu)	2017/04/17		106	%	80 - 120
			Total Iron (Fe)	2017/04/17		105	%	80 - 120
			Total Lead (Pb)	2017/04/17		98	%	80 - 120
			Total Magnesium (Mg)	2017/04/17		101	%	80 - 120
			Total Manganese (Mn)	2017/04/17		99	%	80 - 120
			Total Molybdenum (Mo)	2017/04/17		108	%	80 - 120
			Total Nickel (Ni)	2017/04/17		98	%	80 - 120
			Total Potassium (K)	2017/04/17		105	%	80 - 120
			Total Selenium (Se)	2017/04/17		104	%	80 - 120
			Total Silicon (Si)	2017/04/17		103	%	80 - 120
			Total Silver (Ag)	2017/04/17		102	%	80 - 120
			Total Sodium (Na)	2017/04/17		NC	%	80 - 120
			Total Strontium (Sr)	2017/04/17		104	%	80 - 120
			Total Thallium (TI)	2017/04/17		99	%	80 - 120
			Total Titanium (Ti)	2017/04/17		113	%	80 - 120
			Total Vanadium (V)	2017/04/17		105	%	80 - 120
			Total Zinc (Zn)	2017/04/17		102	%	80 - 120

Golder Associates Ltd

Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4941659	ксо	Spiked Blank	Total Aluminum (Al)	2017/04/17		99	%	80 - 120
		'	Total Antimony (Sb)	2017/04/17		103	%	80 - 120
			Total Arsenic (As)	2017/04/17		101	%	80 - 120
			Total Barium (Ba)	2017/04/17		99	%	80 - 120
			Total Beryllium (Be)	2017/04/17		97	%	80 - 120
			Total Boron (B)	2017/04/17		95	%	80 - 120
			Total Cadmium (Cd)	2017/04/17		102	%	80 - 120
			Total Calcium (Ca)	2017/04/17		97	%	80 - 120
			Total Chromium (Cr)	2017/04/17		97	%	80 - 120
			Total Cobalt (Co)	2017/04/17		100	%	80 - 120
			Total Copper (Cu)	2017/04/17		102	%	80 - 120
			Total Iron (Fe)	2017/04/17		99	%	80 - 120
			Total Lead (Pb)	2017/04/17		100	%	80 - 120
			Total Magnesium (Mg)	2017/04/17		99	%	80 - 120
			Total Manganese (Mn)	2017/04/17		95	%	80 - 120
			Total Molybdenum (Mo)	2017/04/17		103	%	80 - 120
			Total Nickel (Ni)	2017/04/17		95	%	80 - 120
			Total Potassium (K)	2017/04/17		99	%	80 - 120
			Total Selenium (Se)	2017/04/17		101	%	80 - 120
			Total Silicon (Si)	2017/04/17		94	%	80 - 120
			Total Silver (Ag)	2017/04/17		99	%	80 - 120
			Total Sodium (Na)	2017/04/17		97	%	80 - 120
			Total Strontium (Sr)	2017/04/17		92	%	80 - 120
			Total Thallium (TI)	2017/04/17		99	%	80 - 120
			Total Titanium (Ti)	2017/04/17		98	%	80 - 120
			Total Vanadium (V)	2017/04/17		97	%	80 - 120
			Total Zinc (Zn)	2017/04/17		98	%	80 - 120
4941659	ксо	Method Blank	Total Aluminum (Al)	2017/04/17	< 0.0050		mg/L	
			Total Antimony (Sb)	2017/04/17	< 0.00050		mg/L	
			Total Arsenic (As)	2017/04/17	< 0.0010		mg/L	
			Total Barium (Ba)	2017/04/17	< 0.0020		mg/L	
			Total Beryllium (Be)	2017/04/17	<0.00050		mg/L	
			Total Boron (B)	2017/04/17	< 0.010		mg/L	
			Total Cadmium (Cd)	2017/04/17	< 0.00010		mg/L	
			Total Calcium (Ca)	2017/04/17	<0.20		mg/L	
			Total Chromium (Cr)	2017/04/17	< 0.0050		mg/L	
			Total Cobalt (Co)	2017/04/17	< 0.00050		mg/L	
			Total Copper (Cu)	2017/04/17	< 0.0010		mg/L	
			Total Iron (Fe)	2017/04/17	< 0.10		mg/L	
			Total Lead (Pb)	2017/04/17	< 0.00050		mg/L	
			Total Magnesium (Mg)	2017/04/17	< 0.050		mg/L	
			Total Manganese (Mn)	2017/04/17	< 0.0020		mg/L	
			Total Molybdenum (Mo)	2017/04/17	< 0.00050		mg/L	
			Total Nickel (Ni)	2017/04/17	< 0.0010		mg/L	
			Total Potassium (K)	2017/04/17	<0.20		mg/L	
			Total Selenium (Se)	2017/04/17	< 0.0020		mg/L	
			Total Silicon (Si)	2017/04/17	< 0.050		mg/L	
			Total Silver (Ag)	2017/04/17	< 0.00010		mg/L	
			Total Sodium (Na)	2017/04/17	<0.10		mg/L	
			Total Strontium (Sr)	2017/04/17	< 0.0010		mg/L	
			Total Thallium (TI)	2017/04/17	<0.000050		mg/L	
			Total Titanium (Ti)	2017/04/17	< 0.0050		mg/L	
			Total Vanadium (V)	2017/04/17	< 0.00050		mg/L	

Golder Associates Ltd

Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Zinc (Zn)	2017/04/17	<0.0050		mg/L	
4941659	ксо	RPD	Total Iron (Fe)	2017/04/17	5.1		%	20
4941831	AFZ	Matrix Spike	Dissolved Calcium (Ca)	2017/04/18		NC	%	80 - 120
			Dissolved Magnesium (Mg)	2017/04/18		NC	%	80 - 120
			Dissolved Potassium (K)	2017/04/18		NC	%	80 - 120
			Dissolved Sodium (Na)	2017/04/18		NC	%	80 - 120
4941831	AFZ	Spiked Blank	Dissolved Calcium (Ca)	2017/04/18		103	%	80 - 120
			Dissolved Magnesium (Mg)	2017/04/18		100	%	80 - 120
			Dissolved Potassium (K)	2017/04/18		102	%	80 - 120
			Dissolved Sodium (Na)	2017/04/18		101	%	80 - 120
4941831	AFZ	Method Blank	Dissolved Calcium (Ca)	2017/04/18	<0.05		mg/L	
			Dissolved Magnesium (Mg)	2017/04/18	<0.05		mg/L	
			Dissolved Potassium (K)	2017/04/18	<1		mg/L	
			Dissolved Sodium (Na)	2017/04/18	<0.5		mg/L	
4946220	SAU	Spiked Blank	Alkalinity (Total as CaCO3)	2017/04/20		96	%	85 - 115
4946220	SAU	Method Blank	Alkalinity (Total as CaCO3)	2017/04/20	<1.0		mg/L	
4946220	SAU	RPD	Alkalinity (Total as CaCO3)	2017/04/20	1.2		%	20
4946377	ADB	Matrix Spike	Dissolved Chloride (Cl)	2017/04/20		NC	%	80 - 120
4946377	ADB	Spiked Blank	Dissolved Chloride (Cl)	2017/04/20		102	%	80 - 120
4946377	ADB	Method Blank	Dissolved Chloride (Cl)	2017/04/20	<1.0		mg/L	
4946377	ADB	RPD	Dissolved Chloride (CI)	2017/04/20	1.5		%	20
4946383	ADB	Matrix Spike	Dissolved Sulphate (SO4)	2017/04/20		NC	%	75 - 125
4946383	ADB	Spiked Blank	Dissolved Sulphate (SO4)	2017/04/20		104	%	80 - 120
4946383	ADB	Method Blank	Dissolved Sulphate (SO4)	2017/04/20	<1.0		mg/L	
4946383	ADB	RPD	Dissolved Sulphate (SO4)	2017/04/20	1.3		%	20
4946951	CPE	Matrix Spike	Dissolved Aluminum (AI)	2017/04/20		100	%	80 - 120
			Dissolved Antimony (Sb)	2017/04/20		102	%	80 - 120
			Dissolved Arsenic (As)	2017/04/20		99	%	80 - 120
			Dissolved Barium (Ba)	2017/04/20		99	%	80 - 120
			Dissolved Beryllium (Be)	2017/04/20		100	%	80 - 120
			Dissolved Boron (B)	2017/04/20		100	%	80 - 120
			Dissolved Cadmium (Cd)	2017/04/20		100	%	80 - 120
			Dissolved Calcium (Ca)	2017/04/20		NC	%	80 - 120
			Dissolved Chromium (Cr)	2017/04/20		98	%	80 - 120
			Dissolved Cobalt (Co)	2017/04/20		96	%	80 - 120
			Dissolved Copper (Cu)	2017/04/20		98	%	80 - 120
			Dissolved Iron (Fe)	2017/04/20		98	%	80 - 120
			Dissolved Lead (Pb)	2017/04/20		91	%	80 - 120
			Dissolved Magnesium (Mg)	2017/04/20		NC	%	80 - 120
			Dissolved Manganese (Mn)	2017/04/20		97	%	80 - 120
			Dissolved Molybdenum (Mo)	2017/04/20		103	%	80 - 120
			Dissolved Nickel (Ni)	2017/04/20		93	%	80 - 120
			Dissolved Phosphorus (P)	2017/04/20		108	%	80 - 120
			Dissolved Potassium (K)	2017/04/20		99	%	80 - 120
			Dissolved Selenium (Se)	2017/04/20 2017/04/20		94	% %	80 - 120 80 - 120
			Dissolved Silicon (Si) Dissolved Silver (Ag)	2017/04/20		99 74 (1)	% %	80 - 120 80 - 120
			Dissolved Silver (Ag) Dissolved Sodium (Na)	2017/04/20		74 (1) NC	% %	80 - 120
			Dissolved Sodium (Na) Dissolved Strontium (Sr)	2017/04/20 2017/04/20				80 - 120
			Dissolved Strontium (Sr) Dissolved Thallium (Tl)	2017/04/20		NC 91	% %	80 - 120 80 - 120
			Dissolved Triallium (Ti) Dissolved Titanium (Ti)	2017/04/20		99	% %	80 - 120 80 - 120
			Dissolved Titalium (TI) Dissolved Uranium (U)	2017/04/20		99 101	% %	80 - 120 80 - 120
			Dissolved Granium (V)	2017/04/20		98	% %	80 - 120 80 - 120
			Dissolved variable (V)	2017/04/20		30	/0	00 - 120

Golder Associates Ltd

Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
		, .	Dissolved Zinc (Zn)	2017/04/20		95	%	80 - 120
4946951	CPE	Spiked Blank	Dissolved Aluminum (Al)	2017/04/20		99	%	80 - 120
			Dissolved Antimony (Sb)	2017/04/20		100	%	80 - 120
			Dissolved Arsenic (As)	2017/04/20		98	%	80 - 120
			Dissolved Barium (Ba)	2017/04/20		98	%	80 - 120
			Dissolved Beryllium (Be)	2017/04/20		100	%	80 - 120
			Dissolved Boron (B)	2017/04/20		101	%	80 - 120
			Dissolved Cadmium (Cd)	2017/04/20		98	%	80 - 120
			Dissolved Calcium (Ca)	2017/04/20		96	%	80 - 120
			Dissolved Chromium (Cr)	2017/04/20		98	%	80 - 120
			Dissolved Cobalt (Co)	2017/04/20		98	%	80 - 120
			Dissolved Copper (Cu)	2017/04/20		99	%	80 - 120
			Dissolved Iron (Fe)	2017/04/20		99	%	80 - 120
			Dissolved Lead (Pb)	2017/04/20		94	%	80 - 120
			Dissolved Magnesium (Mg)	2017/04/20		100	%	80 - 120
			Dissolved Manganese (Mn)	2017/04/20		99	%	80 - 120
			Dissolved Molybdenum (Mo)	2017/04/20		99	%	80 - 120
			Dissolved Nickel (Ni)	2017/04/20		97	%	80 - 120
			Dissolved Phosphorus (P)	2017/04/20		107	%	80 - 120
			Dissolved Potassium (K)	2017/04/20		99	%	80 - 120
			Dissolved Selenium (Se)	2017/04/20		96	%	80 - 120
			Dissolved Silicon (Si)	2017/04/20		98	%	80 - 120
			Dissolved Silver (Ag)	2017/04/20		87	%	80 - 120
			Dissolved Sodium (Na)	2017/04/20		101	%	80 - 120
			Dissolved Strontium (Sr)	2017/04/20		98	%	80 - 120
			Dissolved Thallium (TI)	2017/04/20		93	%	80 - 120
			Dissolved Titanium (Ti)	2017/04/20		100	%	80 - 120
			Dissolved Uranium (U)	2017/04/20		100	%	80 - 120
			Dissolved Vanadium (V)	2017/04/20		97	%	80 - 120
			Dissolved Zinc (Zn)	2017/04/20		99	%	80 - 120
4946951	CPE	Method Blank	Dissolved Aluminum (Al)	2017/04/20	<0.0050		mg/L	
			Dissolved Antimony (Sb)	2017/04/20	<0.00050		mg/L	
			Dissolved Arsenic (As)	2017/04/20	<0.0010		mg/L	
			Dissolved Barium (Ba)	2017/04/20	<0.0020		mg/L	
			Dissolved Beryllium (Be)	2017/04/20	<0.00050		mg/L	
			Dissolved Boron (B) Dissolved Cadmium (Cd)	2017/04/20 2017/04/20	<0.010 <0.00010		mg/L	
			Dissolved Cadmidin (Cd) Dissolved Calcium (Ca)	2017/04/20	<0.0010		mg/L	
			Dissolved Carcium (Ca) Dissolved Chromium (Cr)	2017/04/20	<0.0050		mg/L	
			Dissolved Cobalt (Co)	2017/04/20	<0.0050		mg/L mg/L	
			Dissolved Copper (Cu)	2017/04/20	<0.0010		mg/L	
			Dissolved Copper (Cu) Dissolved Iron (Fe)	2017/04/20	<0.10		mg/L	
			Dissolved from (Fe)	2017/04/20	<0.0050		mg/L	
			Dissolved Lead (18) Dissolved Magnesium (Mg)	2017/04/20	<0.050		mg/L	
			Dissolved Manganese (Mn)	2017/04/20	<0.0020		mg/L	
			Dissolved Molybdenum (Mo)	2017/04/20	<0.0020		mg/L	
			Dissolved Nickel (Ni)	2017/04/20	<0.0010		mg/L	
			Dissolved Phosphorus (P)	2017/04/20	<0.10		mg/L	
			Dissolved Potassium (K)	2017/04/20	<0.20		mg/L	
			Dissolved Foldasidin (K) Dissolved Selenium (Se)	2017/04/20	<0.0020		mg/L	
			Dissolved Silicon (Si)	2017/04/20	<0.050		mg/L	
			Dissolved Silver (Ag)	2017/04/20	<0.00010		mg/L	
			Dissolved Sodium (Na)	2017/04/20	<0.10		mg/L	

Maxxam Job #: B772423 Report Date: 2017/04/20 **Golder Associates Ltd**

Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Strontium (Sr)	2017/04/20	<0.0010		mg/L	
			Dissolved Thallium (TI)	2017/04/20	<0.000050		mg/L	
			Dissolved Titanium (Ti)	2017/04/20	< 0.0050		mg/L	
			Dissolved Uranium (U)	2017/04/20	< 0.00010		mg/L	
			Dissolved Vanadium (V)	2017/04/20	<0.00050		mg/L	
			Dissolved Zinc (Zn)	2017/04/20	< 0.0050		mg/L	
4946951	CPE	RPD	Dissolved Aluminum (AI)	2017/04/20	NC		%	20
			Dissolved Antimony (Sb)	2017/04/20	NC		%	20
			Dissolved Arsenic (As)	2017/04/20	NC		%	20
			Dissolved Barium (Ba)	2017/04/20	1.6		%	20
			Dissolved Beryllium (Be)	2017/04/20	NC		%	20
			Dissolved Boron (B)	2017/04/20	2.0		%	20
			Dissolved Cadmium (Cd)	2017/04/20	NC		%	20
			Dissolved Calcium (Ca)	2017/04/20	1.9		%	20
			Dissolved Chromium (Cr)	2017/04/20	NC		%	20
			Dissolved Cobalt (Co)	2017/04/20	0.16		%	20
			Dissolved Copper (Cu)	2017/04/20	NC		%	20
			Dissolved Iron (Fe)	2017/04/20	0.45		%	20
			Dissolved Lead (Pb)	2017/04/20	NC		%	20
			Dissolved Magnesium (Mg)	2017/04/20	1.1		%	20
			Dissolved Manganese (Mn)	2017/04/20	0.92		%	20
			Dissolved Molybdenum (Mo)	2017/04/20	6.7		%	20
			Dissolved Nickel (Ni)	2017/04/20	0.96		%	20
			Dissolved Phosphorus (P)	2017/04/20	NC		%	20
			Dissolved Potassium (K)	2017/04/20	0.21		%	20
			Dissolved Selenium (Se)	2017/04/20	NC		%	20
			Dissolved Silicon (Si)	2017/04/20	2.3		%	20
			Dissolved Silver (Ag)	2017/04/20	NC		%	20
			Dissolved Sodium (Na)	2017/04/20	1.3		%	20
			Dissolved Strontium (Sr)	2017/04/20	1.7		%	20
			Dissolved Thallium (TI)	2017/04/20	NC		%	20
			Dissolved Titanium (Ti)	2017/04/20	NC		%	20
			Dissolved Uranium (U)	2017/04/20	1.8		%	20
			Dissolved Vanadium (V)	2017/04/20	NC		%	20
			Dissolved Zinc (Zn)	2017/04/20	0.042		%	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Maxxam Job #: B772423 Report Date: 2017/04/20 Golder Associates Ltd Client Project #: 1771656 (1000/1003)

Sampler Initials: TP

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

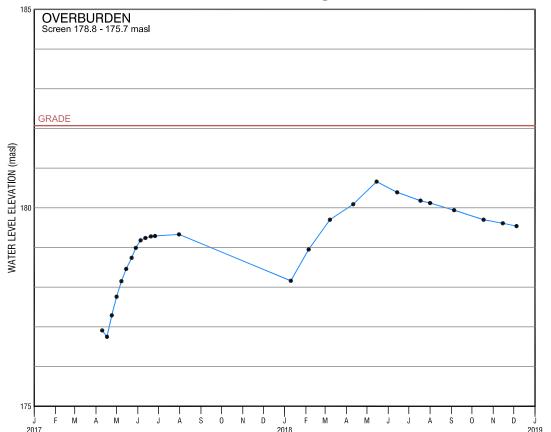
Cuistina	Carrière	
Cristina Carr	iere, Scientific Services	
Eve	Eva Prafilic S	
Ewa Praniic.	M.Sc., C.Chem. Scientific Specialist	

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

		NVOICE TO:		REPORT TO:						PROJECT INFORMATION:							Laboratory Use Only:				
ompany	Name #29096 Golder	Associates Ltd		Company Na	ame:						Quotation	#-	B7091	16			2	Maxxam Job #:		Bottle O	der#:
tention:	Accounts Payab	le		Attention:		as Proks					P.O.#	W.							di .		
idress:	110 Hanover Dr	Building A, Suite 203		Address:							Project:		17716	56 / 10	00 / 1003	В		4	2	6053	
Juli 633.	St.Catharines Ol			naar coo.							Project Na	me:						COC #:		Project M	anager:
el:	(905) 688-8217	Fax: (905) 688-4227	7 X	Γel:	(905)	688-8217 x	Fax				Site #:	iii.					1111111		nn	F	
nail:	AP CustomerSe	ervice@golder.com		Email:	Thom	as_Proks@go					Sampled E	3v:	TP	PH.	CS		11.11.11.11	C#605301-01-01	10.00	Ema (itej
-	DECLII ATED DRINKIN	G WATER OR WATER INTENDED	EOR HIII	MAN CON	NSLIMPTIO	N MUST RE				AN			(PLEASE B	E SPECI	FIC)			Turnaround Tim	e (TAT) Rec	uired:	
WICL		ON THE MAXXAM DRINKING WAT				11,1100,1 DE		-										Please provide advanc	e notice for r	ush projects	Variet
-	egulation 153 (2011)	Other Regulation	ns		Special	Instructions	Field Filtered (please circle):	3			1 1		1					Standard) TAT:			Γ
Table					Special	manuctions	≥ <u>c</u> ; ≥	3				11-A	pr-17	15:30)			ed if Rush TAT is not specified T = 5-7 Working days for mos			L
Table	= =						Cr		*		Ema	Gitej						Standard TAT for certain test		and Dinxins/Eu	rans are
Table			.,				g p	JSIVE	ater		Ellia IIII IIII			11 111				ct your Project Manager for de		o and brownia'r b	and did
Table	_	PWQO					ald Filtered (please Metals Mg / Cr	ehei	8	1	1) 11 18 8181	B772	422	11 1111		1	Job Specifi	ic Rush TAT (if applies to e	ntire submis	ision)	
		Other					Filte eta	idwa	urfac			B//24	+23		0		Date Require		Time	Required:	[
	Include Criteri	a on Certificate of Analysis (Y/N)?"_		-			e d	00 -	٠. ي		TSP	F	NV-85	6	_		Rush Confirm	mation Number:	(call	lab for #)	
	Sample Barcode Label	Sample (Location) Identification	Date Sa	mpled	Time Sampled	Matrix	- L	3CAp	SCAF		151				r I		# of Bottles		Commen	ts	
1		MW17-1D	Apr 1	0,2817	14:45	GW	V	/	-								4	i i			
		MW17-1S	1	- 1		GW	4	/									4	A silfy saw	- A. F	roceed	2
_		***	1		14:42		1										/	a Silly sav	que 1	with an	aly s
	<u> </u>	MW17-45	V	1	16:30	GW	Y	V									4				
		MW17-2S	Apr II	2017	8:45	GW	Y	/				-					4				
		MW17-3D	Apr 10	017	15:14	GW	- 7	/									4				
		MW17		-	3:28	GW	Y	/						4			4				
-	p.	MAIA147 ## C.C.	1			GW	V										1/1				_
-		MW17-# 65	-1	1	13:28	GVV	7	V									7			,	
		MW1746 95		1	3:00	GW	7	/									7				
		MW17# 9D	1.	j	2:53	GW	Y	/							·		4				
		MW17# 99D	P	-	12:53	GW	Y	-/							76. 6	30	4			-	
1_	* RELINQUISHED BY: (S	Signature/Print) Date: (YY)	/MM/DD)	Time		RECEIVED	BY: (Signature/	Print)		Date: (YY/	MM/DD)	Т	ime 🦟		used and	1	Labora	atory Use Only			
2	9	20KS 17/14	/11	11:00) H11	NW TIAN	RUIN 1	JOKHE	1	2019/1	04/11	15	130	nots	submitted	Time Sensitive	Tempera	ture (°C) on Recei	Custody Sea	Yes	
-	- 11010 7	77011	//	1,00	3/0	1111	100110	101(11)	1	1 - 1	11.7	, ,				- 100	ololi	-11-10	Present	V	-
	OTHERWISE ACREED TO IN W	RITING, WORK SUBMITTED ON THIS CHAIN	OF CUSTO	DY IS SUB-II	ECT TO MAXX	AMPS STANDARD	FRMS AND COM	IDITIONS S	IGNING O	DE THIS CH	AIN OF CUS	TODY DOC	CUMENTIS			2 A C W 52	THE RESERVE	MARKET STATE	Whit	e: Maxxa Y	_

Maxxam Analytics International Corporation o/a Maxxam Analytics

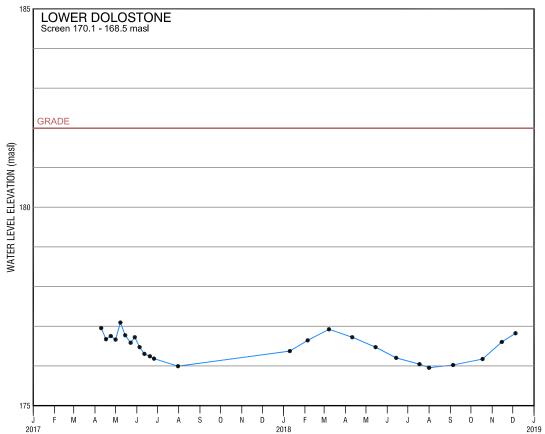
	INVO	5740 Campobello Road, Mississauga, Onti ICE TO:		1511(525751)		ORT TO:	ix.(905) 817	-5/// ww	w maxxam ca									STODY RECORD	Page
pany Name: #29	096 Golder As	sociates Ltd	C		13.61	OKT TO.							ECT INFORM	MATION:				Laboratory Use	
ntion: Acc	ounts Payable		Attentio	iny Name:	as Proks					Quotatio	n#:	B709	916					Maxxam Job #:	Bottle Orde
		Ilding A, Suite 203	Addres	-	1000					P.O. #:									
_	Catharines ON L									Project:		1//1	1656 / 100	00 / 10	03			The Control of the Co	605301
	5) 688-8217 x	Fax: (905) 688-4227 >	Tel	(905)	688-8217 x	Fax				Project N	lame:	-		_				COC #:	Project Mana
	CustomerService		Email:	Thom	as_Proks@go	older.com				Site #: Sampled	Bv:	TP	PH.C	7			- 11111		Ema Gite
OE REGULAT	ED DRINKING W SUBMITTED ON	/ATER OR WATER INTENDED F THE MAXXAM DRINKING WATE	OR HUMAN	CUSTODY	N MUST BE			_	ANA	LYSIS RE	EQUESTE	D (PLEASE	BE SPECIF	IC)			1	C#605301-02-01 Turnaround Time (TAT)	Paguirad:
Regulation 153			IN OF AIN OF			(i)	-										984	Please provide advance notice	for rush projects
	ark Medium/Fir	Other Regulations		Special	Instructions	- circle	3											(Standard) TAT:	
ble 2 Ind/Co	mm Coarse	ne CCME Sanitary Sewer E Reg 558. Storm Sewer Byl				ase ci	5	5							1			lied if Rush TAT is not specified):	
ble 3 Agri/O	ther For RSC	MISA Municipality	aw			(plea	9											AT = 5-7 Working days for most tests.	
ble		PWQ0				D - J	BUSI	Nate									days - conta	Standard TAT for certain tests such as act your Project Manager for details.	BOD and Dioxins/Furan.
		Other				als)	preh	l eo								-	Job Speci	fic Rush TAT (if applies to entire sub	mission)
In	aclude Criteria en	Certificate of Analysis (Y/N)?				ield Filtered (ple	Com	Surfa	1 1								Date Requir		me Required:
Sample Barcoo		0		. 100		i e c	9	- 0,	1 1						1	1	Rush Confir	mation Number:	
Outriple Barcoc	de Labei	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix		RCA	RCA								1	# of Bottles	Comn	call lab for #)
9		MW17-#-8D	1pr 10,	13:59	GW	Y	V										4	Comm	ieras
		MW17#8-85	,	13:56	GW	Y	V										4		
-	~	MW17-#-10D	V	15:34	GW	Y	V										7		3
		MONEY POND A	pr 11,	9:15	Sh	IN		/									7		1.
		MARRIED	2017		SM	-	y	V			-						3		
	. 45	WARE MA			QMI								-						
		CONTRACTOR OF THE PARTY			an														
		MAZAS			SAN													P .	
		MARGARD			ON.														
		MARCHOE		-						_				-	*::			,	
					BA		,							22	r (t)				
	ISHED BY: (Signatu	re/Print) Date: (YY/MM/I			RECEIVED B	Y: (Signature/P	rint)		Date: (YY/MM	(DD)	Tir	me	# jars.us	4	347				
110	MAROKS	17/04/1	1 11:0	20 Xiv	41A				40/1/04	1		30	not sub		Time S	anniti-	Laborat	tory Use Only	(A)
S OTHERWISE ACR	PEED TO IN WIDITING	WORK OUR WINNESS		,						-			×	1-	Filme S	sustive	Temperatu OO I	re (°C) on Recei Custody Se	al Yes
U EDCMENT AND A	ACCEPTANCE OF OU	WORK SUBMITTED ON THIS CHAIN OF C R TERMS WHICH ARE AVAILABLE FOR VI	USTODY IS SUE	SJECT TO MAXXAM	'S STANDARD TER	RMS AND COND	ITIONS SI	CNINC OF	THIS CHAIN	05 01155	DON DOOL			-	1	THE REAL PROPERTY.	1901	Intact	/


Maxxam Analytics International Corporation o/a Maxxam Analytics

October 2020 1771656-1000-Rev2

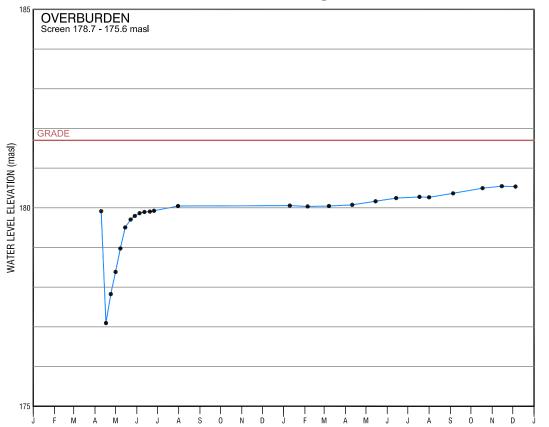
APPENDIX D

Hydrographs


MW17-1S

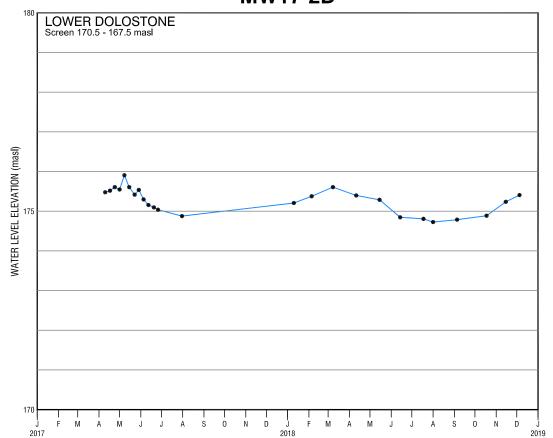
MP Elevation 182.86 masl Grade 182.1 masl

Grade 102.1	IIIasi
DATE	ELEVATION
10-Apr-17	176.91
17-Apr-17	176.75
24-Apr-17	177.29
01-May-17	177.76
08-May-17	178.15
15-May-17	178.46
23-May-17	178.74
29-May-17	178.99
05-Jun-17	179.18
12-Jun-17	179.24
20-Jun-17	179.28
26-Jun-17	179.29
31-Jul-17	179.33
10-Jan-18	178.16
05-Feb-18	178.95
08-Mar-18	179.70
11-Apr-18	180.09
15-May-18	180.66
14-Jun-18	180.39
18-Jul-18	180.18
01-Aug-18	180.12
05-Sep-18	179.94
18-0ct-18	179.70
15-Nov-18	179.61
05-Dec-18	179.54


MW17-1D

MP Elevation 182.92 masl

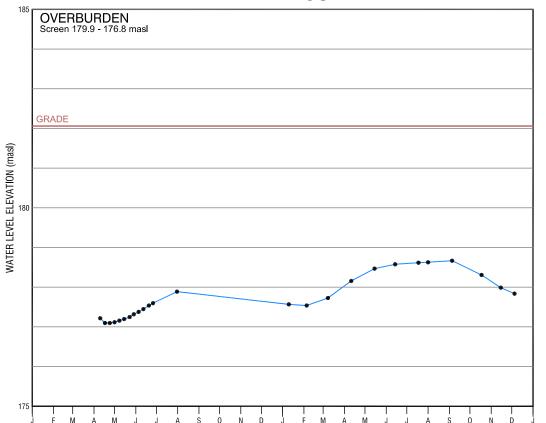
Grade 162.0	masi
DATE	ELEVATION
10-Apr-17	176.95
17-Apr-17	176.67
24-Apr-17	176.75
01-May-17	176.66
08-May-17	177.09
15-May-17	176.77
23-May-17	176.58
29-May-17	176.72
05-Jun-17	176.47
12-Jun-17	176.30
20-Jun-17	176.24
26-Jun-17	176.18
31-Jul-17	175.99
10-Jan-18	176.37
05-Feb-18	176.64
08-Mar-18	176.92
11-Apr-18	176.72
15-May-18	176.47
14-Jun-18	176.20
18-Jul-18	176.04
01-Aug-18	175.95
05 Sep 18	176.02
18-0ct-18	176.17
15-Nov-18	176.60
05-Dec-18	176.82


MW17-2S

MP Elevation 182.85 masl Grade 181.7 masl

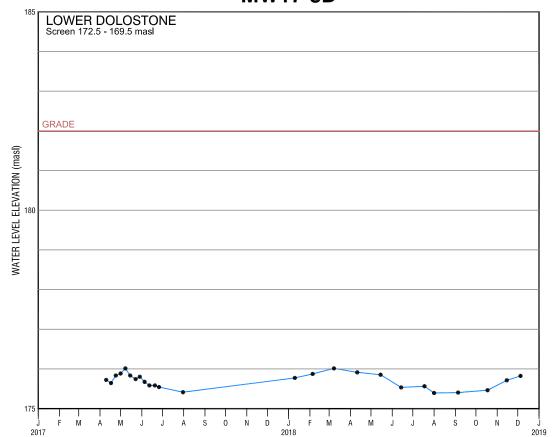
Glade 101.7	masi
DATE	ELEVATION
10-Apr-17	179.91
17-Apr-17	177.10
24-Apr-17	177.82
01-May-17	178.38
08-May-17	178.98
15-May-17	179.51
23-May-17	179.71
29-May-17	179.79
05-Jun-17	179.87
12-Jun-17	179.90
20-Jun-17	179.90
26-Jun-17	179.93
31-Jul-17	180.04
10-Jan-18	180 05
05-Feb-18	180.04
08-Mar-18	180.04
11-Apr-18	180.07
15-May-18	180.16
14-Jun-18	180.24
18-Jul-18	180.27
01-Aug-18	180.26
05-Sep-18	180.37
18-0ct-18	180.49
15-Nov-18	180 54
05-Dec-18	180.54

MW17-2D



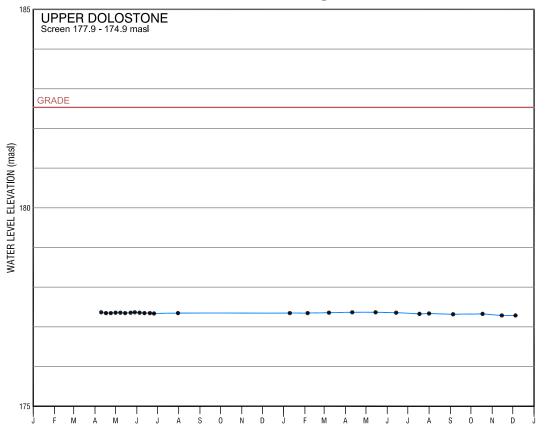
MP Elevation 182.64 masl

Grade 181.7	masl
DATE	ELEVATION
10-Apr-17	175.48
17 Apr - 17	175 52
24-Apr-17	175.61
01-May-17	175.55
08-May-17	175.91
15-May-17	175.61
23-May-17	175.42
29-May-17	175.54
05-Jun-17	175.30
12-Jun-17	175.16
20 - Jun - 17	175.10
26-Jun-17	175.04
31-Jul-17	174.88
10-Jan-18	175.21
05-Feb-18	175.38
08-Mar-18	175.61
11-Apr-18	175.40
15-May-18	175.29
14-Jun-18	174.85
18-Jul-18	174.81
01-Aug-18	174.73
05 Sep 18	174.79
18-0ct-18	174.89
15-Nov-18	175.24
05-Dec-18	175.41


MW17-3S

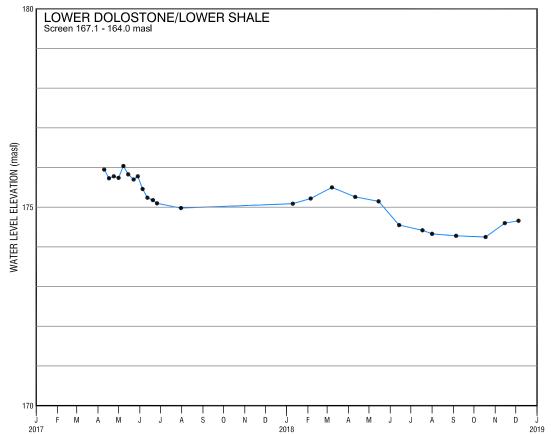
MP Elevation 183.05 masl Grade 182.1 masl

Cidac ioz.i	maoi
DATE	ELEVATION
10-Apr-17	177.22
17-Apr-17	177.10
24-Apr-17	177.10
01-May-17	177.12
08-May-17	177.16
15-May-17	177.20
23-May-17	177.25
29 - May - 17	177.32
05 - Jun - 17	177.38
12-Jun-17	177.45
20-Jun-17	177.54
26-Jun-17	177.60
31-Jul-17	177.89
10-Jan-18	177.57
05-Feb-18	177.54
08-Mar-18	177.73
11-Apr-18	178.16
15-May-18	178.47
14-Jun-18	178.58
18-Jul-18	178.62
01-Aug-18	178.63
05-Sep-18	178.67
18-0ct-18	178.31
15-Nov-18	177.99
05-Dec-18	177.84


MW17-3D

MP Elevation 183.00 masl

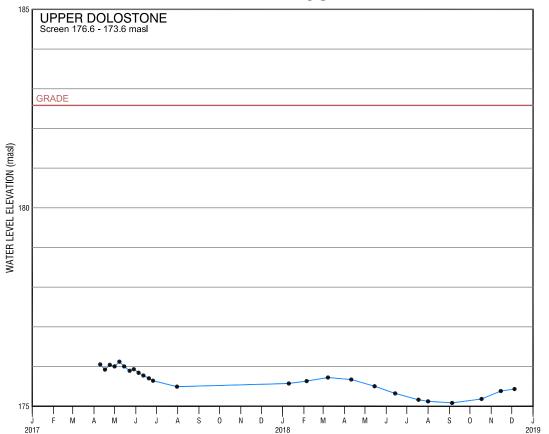
Grade 162.0	masi
DATE	ELEVATION
10-Apr-17	175.72
17-Apr-17	175.64
24-Apr-17	175.83
01-May-17	175.88
08-May-17	176.01
15-May-17	175.83
23-May-17	175.74
29-May-17	175.80
05-Jun-17	175.67
12-Jun-17	175.58
20-Jun-17	175.58
26-Jun-17	175 - 54
31-Jul-17	175.41
10-Jan-18	175.77
05-Feb-18	175.87
08-Mar-18	176.01
11-Apr-18	175.91
15-May-18	175.85
14-Jun-18	175.53
18-Jul-18	175.56
01-Aug-18	175.39
05 Sep 18	175.40
18-0ct-18	175.46
15-Nov-18	175.71
05-Dec-18	175.82


MW17-4S

MP Elevation 183.47 masl Grade 182.5 masl

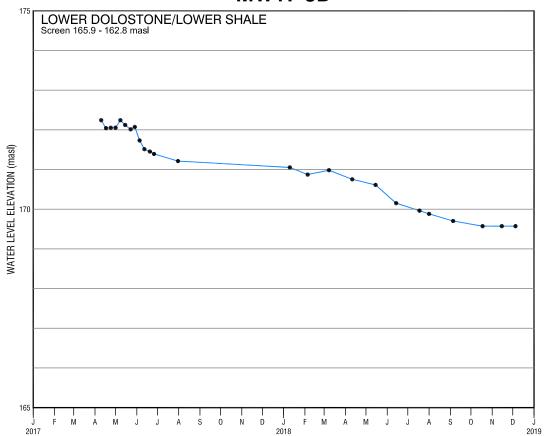
Grade 162.5	IIIasi
DATE	ELEVATION
10-Apr-17	177.37
17-Apr-17	177.35
24-Apr-17	177.35
01-May-17	177.36
08-May-17	177.36
15-May-17	177.35
23-May-17	177.36
29-May-17	177.37
05 - Jun - 17	177.36
12-Jun-17	177.35
20 - Jun - 17	177.35
26-Jun-17	177.34
31-Jul-17	177.35
10-Jan-18	177.35
05-Feb-18	177.35
08-Mar-18	177.36
11 Apr 18	177.37
15 May 18	177.37
14 - Jun - 18	177.36
18-Jul-18	177.33
01 - Aug - 18	177.34
05 Sep 18	177.32
18-0ct-18	177.33
15-Nov-18	177.29
05-Dec-18	177.29

MW17-4D



MP Elevation 183.40 masl

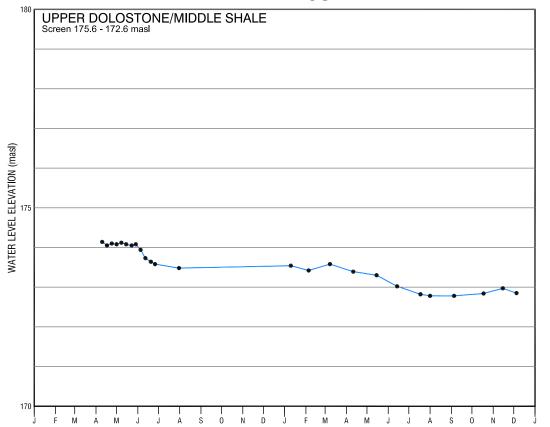
Grade 162.5	masi
DATE	ELEVATION
10-Apr-17	175.95
17-Apr-17	175.73
24 Apr - 17	175.78
01-May-17	175.74
08-May-17	176.04
15-May-17	175.83
23 May 17	175.70
29 May 17	175.78
05 Jun 17	175.46
12-Jun-17	175.24
20-Jun-17	175.18
26-Jun-17	175.10
31-Jul-17	174.98
10-Jan-18	175.09
05-Feb-18	175.22
08-Mar-18	175.50
11-Apr-18	175.26
15-May-18	175.15
14-Jun-18	174.55
18-Jul-18	174.42
01-Aug-18	174.33
05-Sep-18	174 28
18-0ct-18	174.25
15-Nov-18	174.60
05-Dec-18	174.66


MW17-5S

MP Elevation 183.63 masl Grade 182.6 masl

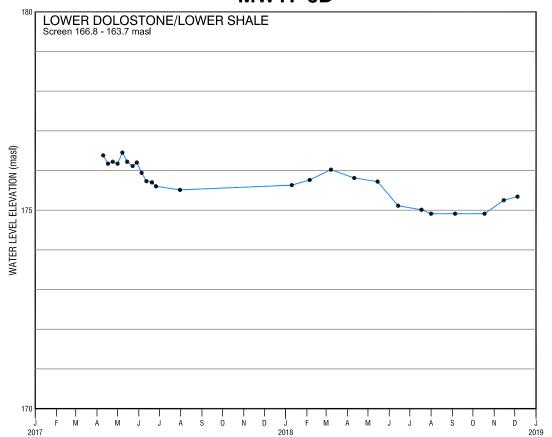
Grade 102.0	masi
DATE	ELEVATION
10-Apr-17	176.05
17-Apr-17	175.92
24-Apr-17	176.04
01-May-17	176.00
08-May-17	176.12
15-May-17	176.00
23-May-17	175.89
29-May-17	175.93
05-Jun-17	175.84
12-Jun-17	175.77
20 - Jun - 17	175.70
26 - Jun - 17	175.64
31-Jul-17	175.49
10-Jan-18	175.57
05 Feb 18	175.63
08-Mar-18	175.72
11-Apr-18	175.67
15-May-18	175.50
14-Jun-18	175.32
18-Jul-18	175.16
01-Aug-18	175.12
05-Sep-18	175.08
18-0ct-18	175.18
15-Nov-18	175.38
05-Dec-18	175.43

MW17-5D



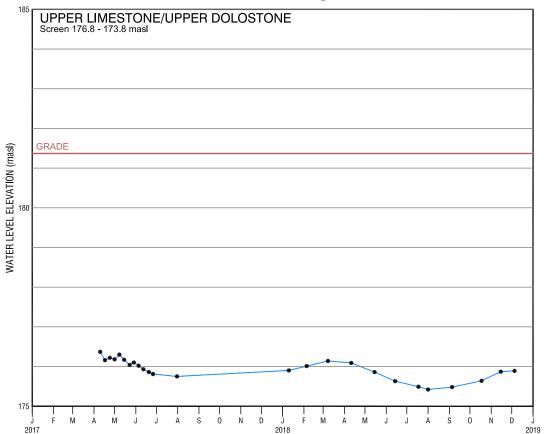
MP Elevation 183.64 masl

Grade 182.6 masi	
DATE	ELEVATION
10-Apr-17	172.24
17-Apr-17	172.04
24-Apr-17	172.05
01-May-17	172.05
08-May-17	172.24
15-May-17	172.12
23-May-17	172.01
29-May-17	172.07
05-Jun-17	171.73
12-Jun-17	171.51
20-Jun-17	171.45
26-Jun-17	171.39
31-Jul-17	171.21
10-Jan-18	171.05
05-Feb-18	170.87
08-Mar-18	170.98
11-Apr-18	170.75
15-May-18	170.61
14-Jun-18	170.15
18-Jul-18	169.96
01-Aug-18	169.88
05-Sep-18	169.70
18-0ct-18	169.57
15-Nov-18	169.57
05-Dec-18	169.57


MW17-6S

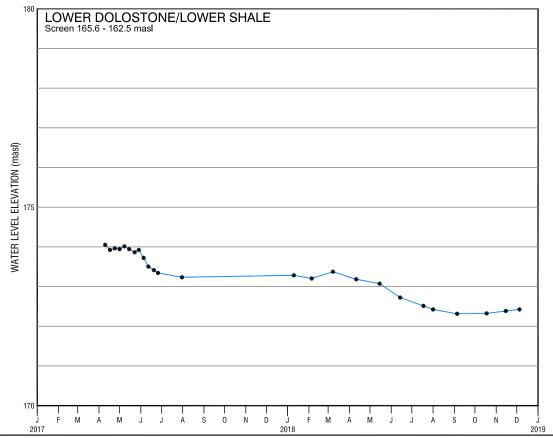
MP Elevation 182.77 masl Grade 181.8 masl

01440 10110	maoi
DATE	ELEVATION
10-Apr-17	174.14
17-Apr-17	174.05
24-Apr-17	174.10
01-May-17	174.08
08-May-17	174.12
15-May-17	174.08
23-May-17	174.05
29-May-17	174.08
05-Jun-17	173.94
12-Jun-17	173.73
20-Jun-17	173.64
26-Jun-17	173.58
31-Jul-17	173.48
10-Jan-18	173.54
05-Feb-18	173.42
08-Mar-18	173.58
11-Apr-18	173.39
15-May-18	173.30
14-Jun-18	173.02
18-Jul-18	172.82
01-Aug-18	172.78
05-Sep-18	172.78
18-0ct-18	172.84
15-Nov-18	172.97
05-Dec-18	172.85


MW17-6D

MP Elevation 182.84 masl

Grade 181.8	ması
DATE	ELEVATION
10-Apr-17	176.38
17-Apr-17	176.17
24-Apr-17	176.22
01-May-17	176.17
08-May-17	176.45
15-May-17	176.22
23-May-17	176.11
29-May-17	176.20
05-Jun-17	175.94
12-Jun-17	175.73
20-Jun-17	175.70
26-Jun-17	175.60
31-Jul-17	175.51
10-Jan-18	175.63
05-Feb-18	175.76
08-Mar-18	176.02
11-Apr-18	175.81
15-May-18	175.72
14-Jun-18	175.11
18-Jul-18	175.01
01-Aug-18	174.91
05-Sep-18	174.91
18-0ct-18	174.91
15-Nov-18	175.25
05-Dec-18	175.34


MW17-7S

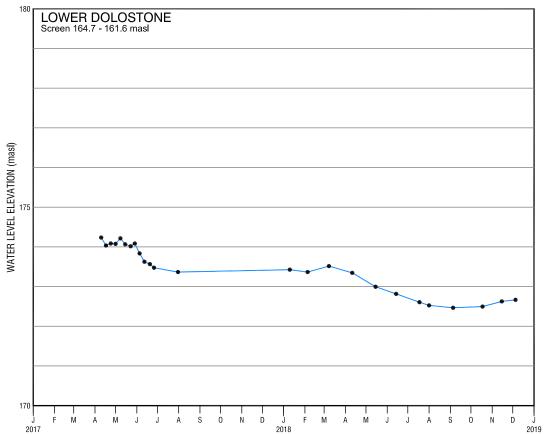
MP Elevation 182.36 masl Grade 181.4 masl

Clade 101.4 Illasi	
DATE	ELEVATION
10-Apr-17	176.37
17-Apr-17	176.16
24-Apr-17	176.22
01-May-17	176.18
08-May-17	176.30
15-May-17	176.17
23-May-17	176.04
29-May-17	176.10
05-Jun-17	176.02
12-Jun-17	175.93
20-Jun-17	175.86
26-Jun-17	175.81
31-Jul-17	175.75
10-Jan-18	175.90
05-Feb-18	176.01
08-Mar-18	176.14
11-Apr-18	176.09
15-May-18	175.86
14-Jun-18	175.63
18-Jul-18	175.49
01-Aug-18	175.42
05-Sep-18	175.48
18-0ct-18	175 64
15-Nov-18	175 87
05-Dec-18	175.89

MW17-7D

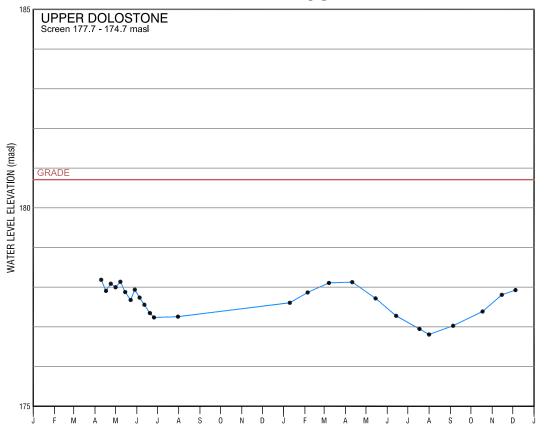
MP Elevation 182.43 masl

Grade 181.4	ması
DATE	ELEVATION
10-Apr-17	174.05
17-Apr-17	173.92
24-Apr-17	173.96
01-May-17	173.94
08-May-17	174.01
15-May-17	173.94
23-May-17	173.86
29-May-17	173.92
05-Jun-17	173.72
12-Jun-17	173.50
20-Jun-17	173.41
26-Jun-17	173.34
31-Jul-17	173.23
10-Jan-18	173.28
05-Feb-18	173.20
08-Mar-18	173.37
11-Apr-18	173.18
15-May-18	173.07
14-Jun-18	172.72
18-Jul-18	172.51
01-Aug-18	172.42
05-Sep-18	172.31
18-0ct-18	172.32
15-Nov-18	172.38
05-Dec-18	172.42


MW17-8S

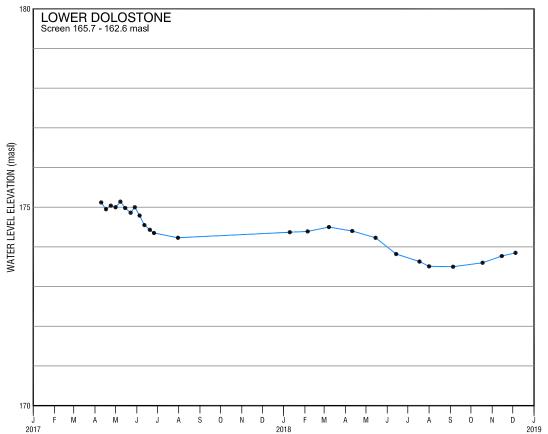
MP Elevation 182.59 masl Grade 181.5 masl

Cidac 101.0	masi
DATE	ELEVATION
10-Apr-17	177.77
17-Apr-17	177.48
24-Apr-17	177.66
01-May-17	177 60
08-May-17	177.74
15-May-17	177.46
23-May-17	177.30
29-May-17	177.54
05-Jun-17	177.38
12-Jun-17	177.16
20-Jun-17	176.96
26-Jun-17	176.88
31-Jul-17	176.85
10-Jan-18	177.15
05-Feb-18	177.32
08-Mar-18	177.49
11-Apr-18	177.51
15-May-18	177.16
14-Jun-18	176.82
18-Jul-18	176.54
01-Aug-18	176.48
05-Sep-18	176.62
18-0ct-18	176.88
15-Nov-18	177 . 27
05-Dec-18	177.34


MW17-8D

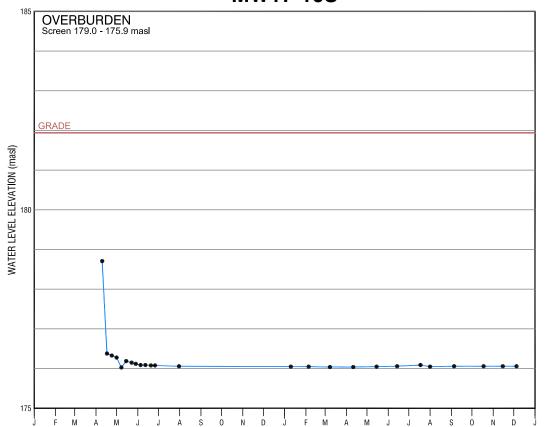
MP Elevation 182.49 masl

Grade 161.4	masi
DATE	ELEVATION
10-Apr-17	174.24
17-Apr-17	174 04
24-Apr-17	174 09
01-May-17	174.08
08-May-17	174.22
15-May-17	174.07
23-May-17	174.02
29-May-17	174.09
05-Jun-17	173.84
12-Jun-17	173.63
20-Jun-17	173.57
26-Jun-17	173.48
31-Jul-17	173.37
10-Jan-18	173.43
05-Feb-18	173.37
08-Mar-18	173.52
11-Apr-18	173.35
15-May-18	173.00
14-Jun-18	172.82
18-Jul-18	172.61
01-Aug-18	172.53
05-Sep-18	172.47
18-0ct-18	172.50
15-Nov-18	172.63
_05-Dec-18	172.67


MW17-9S

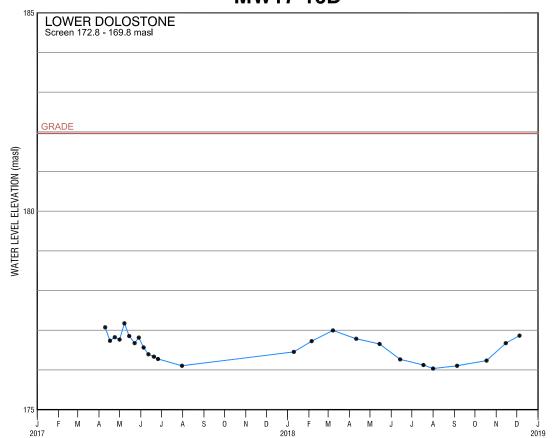
MP Elevation 181.71 masl Grade 180.7 masl

Grade 100.7	IIIasi
DATE	ELEVATION
10-Apr-17	178.19
17-Apr-17	177.91
24-Apr-17	178.09
01-May-17	178.00
08-May-17	178.14
15-May-17	177.88
23-May-17	177.68
29-May-17	177.94
05-Jun-17	177.74
12-Jun-17	177.56
20-Jun-17	177.35
26-Jun-17	177.24
31-Jul-17	177.26
10-Jan-18	177 61
05-Feb-18	177.87
08-Mar-18	178.11
11-Apr-18	178.13
15-May-18	177.72
14-Jun-18	177.28
18-Jul-18	176.95
01-Aug-18	176.81
05 - Sep - 18	177.03
18-0ct-18	177.39
15-Nov-18	177 81
05-Dec-18	177.93


MW17-9D

MP Elevation 181.73 masl

Grade 160.6	ması
DATE	ELEVATION
10-Apr-17	175.12
17-Apr-17	174.95
24 Apr - 17	175.04
01-May-17	175.00
08-May-17	175.14
15-May-17	174.98
23 - May - 17	174.86
29-May-17	175.00
05 - Jun - 17	174.79
12-Jun-17	174.55
20-Jun-17	174.43
26-Jun-17	174 35
31-Jul-17	174.23
10-Jan-18	174.37
05-Feb-18	174.39
08-Mar-18	174.50
11-Apr-18	174.40
15-May-18	174.23
14-Jun-18	173.82
18-Jul-18	173.63
01-Aug-18	173.51
05 - Sep - 18	173.50
18-0ct-18	173.60
15-Nov-18	173.77
05-Dec-18	173.85


MW17-10S

MP Elevation 182.86 masl Grade 181.9 masl

0.440 .00	madi
DATE	ELEVATION
10-Apr-17	178.71
17-Apr-17	176.38
24-Apr-17	176.33
01-May-17	176.28
08-May-17	176.03
15-May-17	176.19
23 - May - 17	176.15
29-May-17	176.12
05-Jun-17	176.09
12-Jun-17	176.09
20-Jun-17	176.08
26-Jun-17	176.08
31-Jul-17	176.06
10-Jan-18	176.05
05 - Feb - 18	176.05
08-Mar-18	176.04
11-Apr-18	176.04
15-May-18	176.05
14 - Jun - 18	176.06
18-Jul-18	176.09
01-Aug-18	176.05
05 - Sep - 18	176.06
18-0ct-18	176.06
15-Nov-18	176.06
05-Dec-18	176.06

MW17-10D

MP Elevation 183.04 masl Grade 182.0 masl

Glade 102.0	IIIasi
DATE	ELEVATION
10-Apr-17	177.07
17-Apr-17	176.74
24-Apr-17	176.82
01-May-17	176.76
08-May-17	177.18
15-May-17	176.85
23-May-17	176.68
29-May-17	176.82
05-Jun-17	176.57
12-Jun-17	176.40
20-Jun-17	176.34
26-Jun-17	176.27
31-Jul-17	176.10
10-Jan-18	176.46
05-Feb-18	176.73
08-Mar-18	176.99
11-Apr-18	176.79
15-May-18	176.65
14-Jun-18	176.26
18-Jul-18	176.13
01-Aug-18	176.04
05-Sep-18	176.10
18-0ct-18	176.24
15-Nov-18	176.68
05-Dec-18	176.87

October 2020 1771656-1000-Rev2

APPENDIX E

Zone of Influence Analysis Groundwater Seepage Calculation

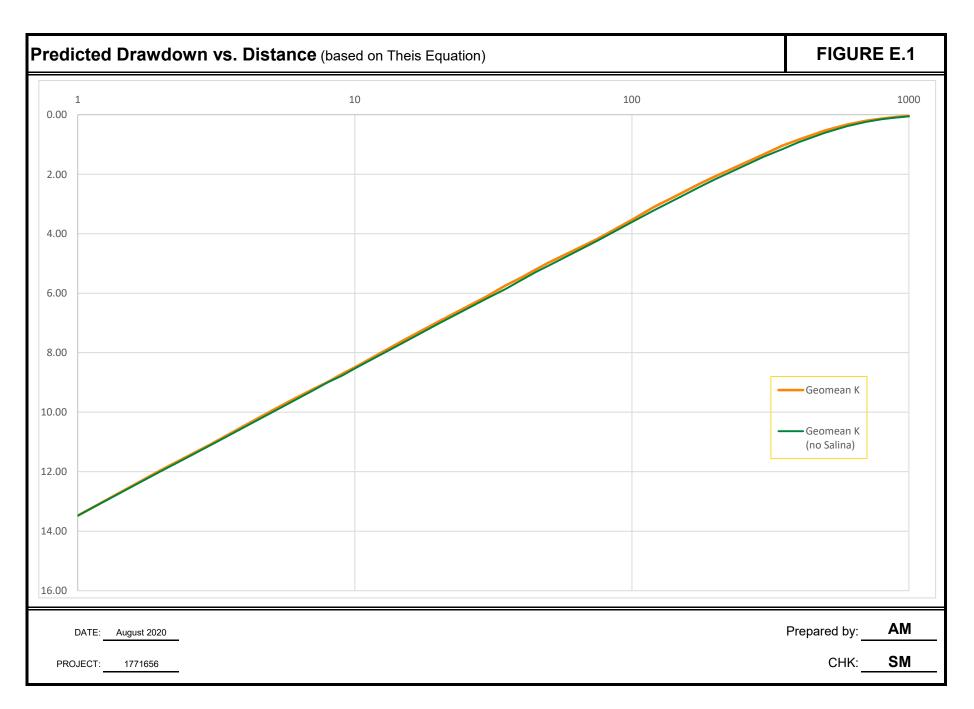
Geomean	K		5.433E-07
Paramete	rs:		
K =	0.052	m/day	
B =	15.00	. ,	
H-h =	13.48		13.48
T =	0.778	m²/day	
S =	0.0001	,,	
t =	14	day	
Q =	10.58015	_	
· ·	10.00010	III /day	
r (m)	u	W(u)	h-h _o
1	2.3E-06	12.45	13.48
2	9.2E-06	11.03	11.94
3	2.1E-05	10.24	11.09
4	3.7E-05	9.65	10.45
5	5.7E-05	9.20	9.96
6	8.3E-05	8.83	9.56
7	1.1E-04	8.54	9.24
8	1.5E-04	8.30	8.98
9	1.9E-04	8.05	8.71
10	2.3E-04	7.84	8.49
15	5.2E-04	7.00	7.58
20	9.2E-04	6.43	6.96
30	2.1E-03	5.64	6.11
35	2.8E-03	5.30	5.74
40	3.7E-03	5.05	5.47
45 50	4.7E-03	4.81	5.21
50 75	5.7E-03 1.3E-02	4.60 3.86	4.98 4.18
100	2.3E-02	3.26	3.53
120	3.3E-02	2.87	3.55 3.10
150	5.2E-02	2.45	2.65
175	7.0E-02	2.45	2.33
200	9.2E-02	1.91	2.07
300	2.1E-01	1.22	1.32
350	2.8E-01	0.96	1.04
400	3.7E-01	0.77	0.84
500	5.7E-01	0.48	0.52
600	8.3E-01	0.30	0.32
700		0.19	0.20
800	1.5E+00	0.12	0.13
900	1.9E+00	0.06	0.07
1000	2.3E+00	0.04	0.04
700 800 900	1.1E+00 1.5E+00 1.9E+00	0.19 0.12 0.06	0.20 0.13 0.07

Geomean	K (no Sali	na)	6.8E-07
Paramete	re·		
K =	0.059	m/day	
B =	15.00	iii aay	
H-h =	13.48		
T =	0.879	m²/day	
S =	0.0001	,	
t =	14	day	
Q =	11.86895	m ³ /day	
r (m)	u	W(u)	h-h _o
1	2.0E-06	12.55	13.48
2	8.1E-06	11.15	11.98
3	1.8E-05	10.35	11.12
4	3.3E-05	9.77	10.50
5	5.1E-05	9.33	10.02
6	7.3E-05	8.95	9.61
7	1.0E-04	8.64	9.29
8 9	1.3E-04 1.6E-04	8.37 8.16	8.99
9 10	2.0E-04	7.94	8.77 8.53
15	4.6E-04	7.94	7.66
20	8.1E-04	6.54	7.03
30	1.8E-03	5.74	6.17
35	2.5E-03	5.46	5.86
40	3.3E-03	5.17	5.56
45	4.1E-03	4.92	5.29
50	5.1E-03	4.73	5.08
75	1.1E-02	3.94	4.24
100	2.0E-02	3.35	3.60
120	2.9E-02	2.99	3.22
150	4.6E-02	2.57	2.76
175	6.2E-02	2.26	2.43
200	8.1E-02	2.02	2.17
300 350	1.8E-01 2.5E-01	1.31 1.08	1.41 1.16
400	3.3E-01	0.86	0.92
500	5.1E-01	0.56	0.92
600	7.3E-01	0.35	0.38
700	1.0E+00	0.22	0.24
800	1.3E+00	0.14	0.15
900	1.6E+00	0.09	0.09
1000	2.0E+00	0.05	0.05

Geomear	n K (no Sali	na)	6.8E-07
	drawdown		
Paramete	ers:		
K =	0.059	m/day	
B =	16.76		
H-h =	16.76		
T =	0.989	m ² /day	
S =	0.0001	,	
t =	14	day	
Q =	16.46271		
~		· · · · · · · · · · · · · · · · · · ·	
r (m)	u	W(u)	h-h _o
1	1.8E-06	12.65	16.76
2	7.2E-06	11.26	14.92
3	1.6E-05	10.47	13.87
4	2.9E-05	9.91	13.12
5	4.5E-05	9.43	12.50
6	6.5E-05	9.06	12.01
7	8.8E-05	8.76	11.61
8	1.2E-04	8.54	11.31
9	1.5E-04	8.30	10.99
10	1.8E-04	8.05	10.66
15	4.1E-04	7.25	9.60
20	7.2E-04	6.66	8.82
30	1.6E-03	5.86	7.77
35	2.2E-03	5.54	7.35
40	2.9E-03	5.30	7.03
45	3.7E-03	5.05	6.69
50	4.5E-03	4.83	6.40
75 100	1.0E-02	4.04	5.35
120	1.8E-02 2.6E-02	3.46 3.10	4.58 4.10
150	4.1E-02	2.68	4.10 3.55
175	5.5E-02	2.38	3.15
200	7.2E-02	2.30	2.81
300	1.6E-01	1.41	1.87
375	2.5E-01	1.04	1.38
400	2.9E-01	0.96	1.27
500	4.5E-01	0.63	0.83
600	6.5E-01	0.41	0.55
700	8.8E-01	0.27	0.36
800	1.2E+00	0.19	0.25
900	1.5E+00	0.12	0.15
1000	1.8E+00	0.06	0.09

Geomean		na)	6.8E-07
Minimum d			
Parameter			
K =	0.059	m/day	
B =	10.35		
H-h =	10.35		
T =	0.611	m²/day	
S =	0.0001		
t =	14	day	
Q =	6.524143	m³/day	
r (m)	u	W(u)	h-h _o
1	2.9E-06	12.17	10.35
2	1.2E-05	10.84	9.22
3	2.6E-05	9.98	8.49
4	4.7E-05	9.41	8.00
5	7.3E-05	8.95	7.61
6	1.1E-04	8.63	7.34
7	1.4E-04	8.30	7.05
8	1.9E-04	8.05	6.84
9	2.4E-04	7.80	6.63
10	2.9E-04	7.57	6.43
15	6.6E-04	6.76	5.75
20	1.2E-03	6.24	5.30
30	2.6E-03	5.38	4.57
35	3.6E-03	5.08	4.32
40	4.7E-03	4.81	4.09
45 50	5.9E-03 7.3E-03	4.56	3.88
75	1.6E-02	4.35 3.57	3.70 3.04
100	2.9E-02	2.99	2.54
120	4.2E-02	2.63	2.24
150	6.6E-02	2.22	1.89
175	9.0E-02	1.93	1.64
200	1.2E-01	1.74	1.48
300	2.6E-01	1.01	0.86
350	3.6E-01	0.79	0.68
400	4.7E-01	0.61	0.52
500	7.3E-01	0.35	0.30
600	1.1E+00	0.22	0.19
700	1.4E+00	0.12	0.10
800	1.9E+00	0.06	0.06
900	2.4E+00	0.03	0.03
1000	2.9E+00	0.01	0.01

Geomean	K (no Sali	na)	6.8E-07
	ite drawdov	•	
Parameter			
K =	0.059	m/day	
B =	13.64	, ,	
H-h =	13.64		
T =	0.805	m²/day	
S =	0.0001	··· , ,	
t =	14	day	
Q =	11.07966	m³/day	
	11.07000	/ day	
r (m)	u	W(u)	h-h _o
1	2.2E-06	12.45	13.64
2	8.9E-06	11.06	12.12
3	2.0E-05	10.29	11.28
4	3.6E-05	9.68	10.61
5	5.5E-05	9.23	10.11
6	8.0E-05	8.87	9.72
7	1.1E-04	8.63	9.46
8	1.4E-04	8.30	9.09
9	1.8E-04	8.10	8.88
10	2.2E-04	7.84	8.59
15	5.0E-04	7.04	7.72
20	8.9E-04	6.46	7.08
30	2.0E-03	5.69	6.23
35	2.7E-03	5.34	5.85
40 45	3.6E-03	5.08	5.57
45 50	4.5E-03 5.5E-03	4.85	5.32
75	1.2E-02	4.63 3.86	5.07 4.23
100	2.2E-02	3.26	3.57
120	3.2E-02	2.93	3.21
150	5.0E-02	2.49	2.72
175	6.8E-02	2.19	2.40
200	8.9E-02	1.94	2.12
300	2.0E-01	1.26	1.39
350	2.7E-01	0.98	1.08
400	3.6E-01	0.79	0.87
500	5.5E-01	0.50	0.55
600	8.0E-01	0.32	0.35
700	1.1E+00	0.22	0.24
800	1.4E+00	0.12	0.13
900	1.8E+00	0.07	0.08
1000	2.2E+00	0.04	0.04



			Long Wal			Short Wall	
		Min DD	Max DD	Int DD	Min DD	Max DD	Int DD
K	Hydraulic Conductivity (m/day)	0.059	0.059	0.059	0.059	0.059	0.059
	ROI (m)	500	500	500	500	500	500
	Drawdown (m)	10.35	16.76	13.56	10.35	16.76	13.56
	Length (m)	1400	1400	1400	400	400	400
Α	Drawdown (m)	10.35	16.76	13.555	10.35	16.76	13.555
Q	(m ³ /day)	17.7	46.4	30.4	5.1	13.3	8.7

Total Q - 3 walls (quarry faces)

		Min DD	Max DD	Int DD
Q	(m ³ /day)	27.8	72.9	47.7

October 2020 1771656-1000-Rev2

APPENDIX F

Well Water Survey Responses MECP Water Well Records

PRIVATE WATER WELL SURVEY QUESTIONNAIRE

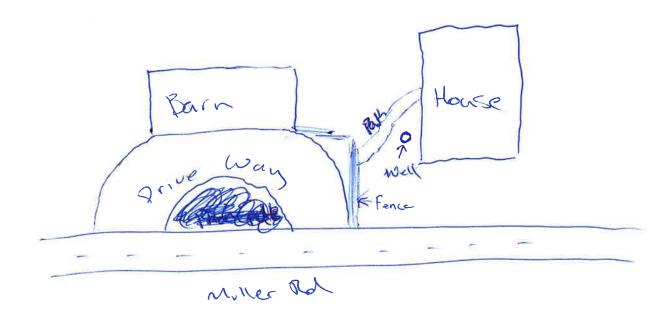
☐ Institutional ☐ Other:
Is the owner willing to participate in the survey? Yes. \square
(If no, record address below)
I. OWNER / OCCUPANT INFORMATION AND GENERAL QUESTIONS:
OWNER:
Name: Md W. Jennaier Telephone No. (business)
Address: 1580 Miller Rd Telephone No. (home)
Number of Bathrooms Number of Occupants
OCCUPANT (if other than Owner):
Name: Telephone No (buşiness)
Address: Telephone No. (home)
Number of Bathrooms
GENERAL QUESTIONS
How long have you owned/occupied this dwelling? Is the property used year-round or seasonally? 7-3 cycer
Is the property used year-round or seasonally?
Is well water used for drinking water supply? Yes ✓ No □
If no, why not?
Are there any other wells or water supplies used on the property?
If no, how long has it been since well water was used for drinking?
If no, what is the origin of drinking water? Old well onsite filled + con
II. WATER WELL
A. WELL CONSTRUCTION DETAILS:
Do you have a copy of the MOE Water Well Record? Yes (Well Record #)
☐ No ATTACH A COPY OF WATER WELL RECORD, IF POSSIBLE
Date or Year Constructed
Type of Well: Drilled ✓ Dug □ Well Diameter (inches)
Present Well Depth: Original Well Depth

Golder Associates

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface 2) Buried inside a well pit 3) Buried, but not in a well pit 1
The accurate location of the well is Known Unknown
GPS coordinates: EN
Type of pump: Submersible Jet Pump Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil) Both
B. WELL WATER LEVELS:
Indicate whether measured from ground level on from top of casing Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes ☑ No □
If no, is this the case: All the time \square Some of the time \square Seasonally \square Other
Use: Domestic: No ☐ Yes ☑ No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No Ves Lawn Watering/Garden: No Ves Ves
Livestock: No □ Yes ☑
Industrial: No 🗵 Yes 🗆 (provide details)
Irrigation: No ☐ Yes ☑ (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well?
If so, when?
What was the cause of the problem? ☐ Drought ☐ Pump Failure ☐ Plugging
☐ Increased Usage ☐ Interference ☐ Other (Please Specify)

Did you ever have your well deepened or cleaned, or a new well constructed?
Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)

•••••••••••••••••••••••••••••••••••••••
*
D. WATER TREATMENT AND QUALITY
Fresh □ Sulphur □ Salty □ Iron Staining ☑ Soft □ Hard ☑
Water Treatment equipment: Softener \square UV \square Reverse Osmosis \square Filters \square
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? ☐ Poor ☐ Good Æ Excellent
Has your water quality previously been tested? No □ Yes ☑ Gow
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:
Where was the sample collected:
Field Measurements: Conductivity7.32 Temperature
E. SURFACE WATER
Are there any ponds, creeks etc. on the property?
If yes, indicate size and denth? Use?


III. SEWAGE DISPOSAL SYSTEM

SY	ST	ΈM	DE.	ΓΔΙ	S
•	91	LIVE			

What type of sewage disposal system do you have:
☐ Holding Tank (sewage removed by regular pump-outs)
Septic Tank and Leaching Bed
□ Other method of on-site disposal. Specify
☐ Do not know
Date or year Constructed
How often do you have the holding tank or septic tank pumped out?
When was the last time? Crosby every Indexer
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusua
odours, soft ground, etc.)

IV. PROPERTY SKETCH AND PHOTOGRAPHS

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Completed by:

Date Sept 26,2017

Somer-

PRIVATE WATER WELL SURVEY QUESTIONNAIRE

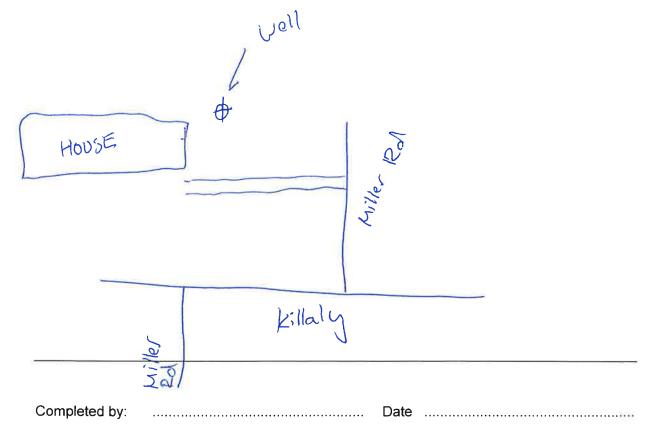
TYPE OF DWELLING: Residential Commercial Institutional Other:
Is the owner willing to participate in the survey? Yes No □
(If no, record address below)
I. OWNER / OCCUPANT INFORMATION AND GENERAL QUESTIONS:
Name: Borry Dionne Simpson Telephone No. (business) Address: 2015 Killally Telephone No. (home) Number of Bathrooms Number of Occupants
OCCUPANT (if other than Owner):
Name: Telephone No. (business) Telephone No. (home)
Number of Bathrooms
GENERAL QUESTIONS How long have you owned/occupied this dwelling?
If no, how long has it been since well water was used for drinking?
If no, what is the origin of drinking water?
II. WATER WELL
A. WELL CONSTRUCTION DETAILS:
Do you have a copy of the MOE Water Well Record? ☐ Yes (Well Record #)
ATTACH A COPY OF WATER WELL RECORD, IF POSSIBLE
Date or Year Constructed 5 years Contractor Circle Eddie
Type of Well: Drilled ☑ Dug □ Well Diameter (inches)
Present Well Depth: Original Well Depth

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface 2) Buried inside a well pit 2 3) Buried, but not in a well pit 1
The accurate location of the well is Known ☐ Unknown ☐
GPS coordinates: E N
Type of pump: Submersible ☑ Jet Pump □ Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil) Both
B. WELL WATER LEVELS:
Indicate whether measured from ☐ ground level or ☐ from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)

C. WATER QUANTITY
Does your well supply enough water for your use? Yes W No
If no, is this the case: All the time □ Some of the time ☑ Seasonally □ Other
Use: Domestic: No ☐ Yes ☑ No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No ☑ Yes ⊡ Lawn Watering/Garden: No □ Yes ☑
Livestock: No My Yes □
Industrial: No 🗹 Yes 🗆 (provide details)
Irrigation: No ≅ Yes □ (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well? high we aried well out
If so, when?
What was the cause of the problem? ☐ Drought ☐ Pump Failure ☐ Plugging
☑Increased Usage ☐ Interference ☐ Other (Please Specify)

Did you ever have your well deepened or cleaned, or a new well constructed? If so, why? Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
D. WATER TREATMENT AND QUALITY
Fresh □ Sulphur □ Salty □ Iron Staining □ Soft □ Hard ☑
Water Treatment equipment: Softener ☑ UV □ Reverse Osmosis □ Filters ☑
Other equipment in use (if any): Peroxide Treatment
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? ☐ Poor ☐ Good ☐ Excellent
Has your water quality previously been tested? No ☑ Yes □
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey: Where was the sample collected: tax atticks behink a carroll, runs the const
Where was the sample collected to attick behick a garage, runs the const
Water sample collected during this survey: Where was the sample collected: to particle behinked garage runs through peroxicle system.
P= 39 a.v
Field Measurements: Conductivity 1333. Temperature 21.2 pH.7.22
E. SURFACE WATER
Are there any ponds, creeks etc. on the property? Marsh land in back (orner
Are there any ponds, creeks etc. on the property? At the second of the s

If yes, indicate size and depth? Use?.....


III. SEWAGE DISPOSAL SYSTEM

SYSTEM DETAILS

What type of sewage disposal system do you have:
☐ Holding Tank (sewage removed by regular pump-outs)
Septic Tank and Leaching Bed
☐ Other method of on-site disposal. Specify
☐ Do not know
Date or year Constructed Contractor
How often do you have the holding tank or septic tank pumped out?
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours soft around etc.)

IV. PROPERTY SKETCH AND PHOTOGRAPHS

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

S:\Active\2017\3 \text{Proj\1771656 Rankin_License App_Port Colborne\Phase 1000 Hydrogeology\Task 1002 - Water Well Survey\Private Well Survey Form 2017.doc

Sept 19

PRIVATE WATER WELL SURVEY QUESTIONNAIRE

TYPE OF DWELLING: Residential Commercial Institutional Other:
Institutional 🗀 Other
Is the owner willing to participate in the survey? Yes ✓ No □
(If no, record address below)
I. OWNER / OCCUPANT INFORMATION AND GENERAL QUESTIONS:
Name: Roje Plante Telephone No. (business) On I Address: 1320 Hay 3 Telephone No. (home) black Number of Bathrooms Number of Occupants
OCCUPANT (if other than Owner):
Name: Telephone No. (business) Address: Telephone No. (home) Number of Bathrooms Number of Occupants
GENERAL QUESTIONS
How long have you owned/occupied this dwelling? Is the property used year-round or seasonally?
Is well water used for drinking water supply? Yes □ No ☑ If no, why not?
Are there any other wells or water supplies used on the property? Quells, well in box
If no, how long has it been since well water was used for drinking? If no, what is the origin of drinking water? Linker Cusice
II. WATER WELL
A. WELL CONSTRUCTION DETAILS:
Do you have a copy of the MOE Water Well Record? Yes (Well Record #)
ATTACH A COPY OF WATER WELL RECORD, IF POSSIBLE
Date or Year Constructed Contractor
Type of Well: Drilled ☑ Dug □ Well Diameter (inches)
Present Well Depth: Original Well Depth

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface ☐ 2) Buried inside a well pit ☐ 3) Buried, but not in a well pit ☐
The accurate location of the well is Known ☑ Unknown □
GPS coordinates: E N
Type of pump: Submersible ☐ Jet Pump ☑ Depth of Pump Intake (if known)
Well completed into: Bedrock
B. WELL WATER LEVELS:
Indicate whether measured from ground level or from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes ☑ No □
If no, is this the case: All the time \square Some of the time \square Seasonally \square Other
Use: Domestic: No ☐ Yes ☑ No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No ☑ Yes □ Lawn Watering/Garden: No □ Yes ☑
Livestock: No ☑ Yes □
Industrial: No 🗹 Yes 🗆 (provide details)
Irrigation: No 🗗 Yes 🗆 (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well?
If so, when?
What was the cause of the problem? ☐ Drought ☐ Pump Failure ☐ Plugging
□ Increased Usage □ Interference □ Other (Please Specify)

Did you ever have your well deepened or cleaned, or a new well constructed? If so, why? Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
D. WATER TREATMENT AND QUALITY
Fresh □ Sulphur □ Salty □ Iron Staining ☑ Soft □ Hard □
Water Treatment equipment: Softener □ UV □ Reverse Osmosis □ Filters □
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when? bleached the well 5-6 year
How would you describe the quality of your water? ☐ Poor ☐ Good ☐ Excellent
Has your water quality previously been tested? No □ Yes ☑
If yes, for what and how often? (bacteriological, chemical analyses, etc.) NO. 155025
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:
Where was the sample collected:
Field Measurements: Conductivity Temperature pHpH
E. SURFACE WATER
Are there any ponds, creeks etc. on the property?
If yes, indicate size and depth? Use?

III. SEWAGE DISPOSAL SYSTEM

SYSTEM DETAILS
What type of sewage disposal system do you have:
Holding Tank (sewage removed by regular pump-outs)
Septic Tank and Leaching Bed
□ Other method of on-site disposal. Specify
☐ Do not know
Date or year Constructed Contractor
How often do you have the holding tank or septic tank pumped out?
How often do you have the holding tank or septic tank pumped out?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.) NO Problems

IV. PROPERTY SKETCH AND PHOTOGRAPHS

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Did not see wells on the visit

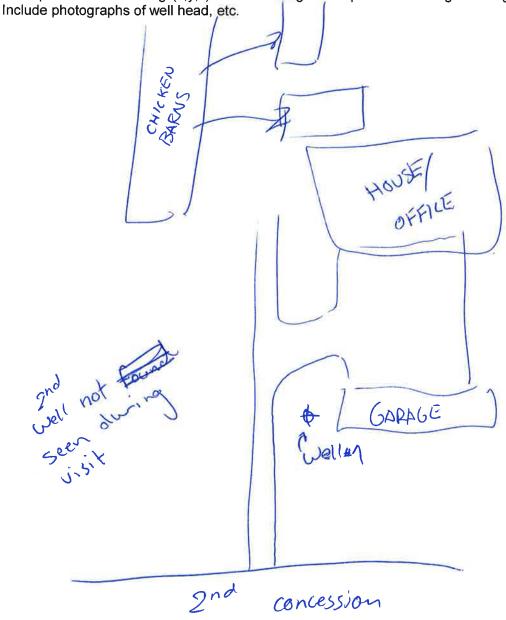
Completed by: T.Proks Date Sept 19, 2017

2146 2nd Cond

PRIVATE WATER WELL SURVEY QUESTIONNAIRE

City Water

TYPE OF DWELLING: Residential Commercial Institutional Other:
Is the owner willing to participate in the survey? Yes ☑ No ☐ (If no, record address below)
I. OWNER / OCCUPANT INFORMATION AND GENERAL QUESTIONS:
Name: Act Jack Vander Foot Address: 2146 200 (concession Telephone No. (home) Number of Bathrooms Number of Occupants
OCCUPANT (if other than Owner):
Name: Telephone No. (business) Telephone No. (home) Number of Bathrooms Number of Occupants
GENERAL QUESTIONS How long have you owned/occupied this dwelling? Is the property used year-round or seasonally?
If no, why not?
II. WATER WELL
A. WELL CONSTRUCTION DETAILS:
Do you have a copy of the MOE Water Well Record? Yes (Well Record #)
ATTACH A COPY OF WATER WELL RECORD, IF POSSIBLE
Date or Year Constructed Contractor
Type of Well: Drilled □ Dug □ Well Diameter (inches)
Present Well Depth: Original Well Depth


Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface 2 2) Buried inside a well pit 3) Buried, but not in a well pit 1
The accurate location of the well is Known ☑ Unknown □
GPS coordinates: EN
Type of pump: Submersible ✓ Jet Pump □ Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil)
vveii completed into. Bedrock Overburden (Soli) Botti
B. WELL WATER LEVELS:
Indicate whether measured from ☐ ground level or ☐ from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
<i></i>
C. WATER QUANTITY
Does your well supply enough water for your use? Yes ✓ No □
If no, is this the case: All the time \square Some of the time \square Seasonally \square Other
Use: Domestic: No ☑ Yes □ No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No ☐ Yes ☐ Lawn Watering/Garden: No ☐ Yes ☐
Livestock: No □ Yes ☑
Industrial: No ☐ Yes ☐ (provide details)
Irrigation: No □ Yes □ (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well?
If so, when?
What was the cause of the problem? ☐ Drought ☐ Pump Failure ☐ Plugging
\square Increased Usage \square Interference \square Other (Please Specify)

Did you ever have your well deepened or cleaned, or a new well constructed? If so, why?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
D. WATER TREATMENT AND QUALITY
Fresh ☑ Sulphur ☑ Salty □ Iron Staining □ Soft □ Hard □
Water Treatment equipment: Softener □ UV □ Reverse Osmosis □ Filters □
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? ☐ Poor ☐ Good ☐ Excellent
Has your water quality previously been tested? No □ Yes ☑
If yes, for what and how often? (bacteriological, chemical analyses, etc.) 2 × year / year
0 1 1
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:
Where was the sample collected:
Field Measurements: Conductivity Temperature pH
E. SURFACE WATER
Are there any ponds, creeks etc. on the property? ald pand, has been filled in
If yes, indicate size and depth? Use?

SYSTEM DETAILS	
What type of sewage disposal system do you have:	
☐ Hølding Tank (sewage removed by regular pump-outs)	
Septic Tank and Leaching Bed	
☐ Other method of on-site disposal. Specify	
□ Do not know	
Date or year Constructed Contractor How often do you have the holding tank or septic tank pumped out? Seldow	
How often do you have the holding tank or septic tank pumped out? Seldow USAN	
When was the last time?	
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding	
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual	

odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface.

Completed by:	Data	
Completed by.	 Date	

PRIVATE WATER WELL SURVEY QUESTIONNAIRE

Sept 19

TYPE OF DWELLING: Residential Commercial Institutional Other:
Is the owner willing to participate in the survey? Yes No □ (If no, record address below)
I. OWNER / OCCUPANT INFORMATION AND GENERAL QUESTIONS:
OWNER: Name: Tina Suderman Telephone No. (business) Address: 2478 Miller Rd Telephone No. (home) Number of Bathrooms Number of Occupants
OCCUPANT (if other than Owner):
Name: Telephone No. (business) Address: Telephone No. (home) Number of Bathrooms Number of Occupants
GENERAL QUESTIONS
How long have you owned/occupied this dwelling? Is the property used year-round or seasonally? Ye.S.
Is the property used year-round or seasonally?
Is well water used for drinking water supply? Yes □ No □ If no, why not?
Are there any other wells or water supplies used on the property?
If no, how long has it been since well water was used for drinking?
If no, what is the origin of drinking water?
II. WATER WELL
A. WELL CONSTRUCTION DETAILS:
Do you have a copy of the MOE Water Well Record? Yes (Well Record #)
ATTACH A COPY OF WATER WELL RECORD, IF POSSIBLE
Date or Year Constructed
Type of Well: Drilled □ Dug □ Well Diameter (inches)
Present Well Depth: Original Well Depth

Golder Associates

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface (2) Buried inside a well pit (2) 3) Buried, but not in a well pit (2)
The accurate location of the well is Known \(\subseteq \text{Unknown} \subseteq Did not see well on visit
GPS coordinates: EN
Type of pump: Submersible ☑ Jet Pump □ Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil)
B. WELL WATER LEVELS:
Indicate whether measured from □ ground level or □ from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes ✓ No □
If no, is this the case: All the time \square Some of the time \square Seasonally \square Other
Use: Domestic: No ☐ Yes ☑ No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No □ Yes □ Lawn Watering/Garden: No □ Yes 🇹
Livestock: No ☐ Yes ☑
Industrial: No ☐ Yes ☐ (provide details)
Irrigation: No ☐ Yes ☐ (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well?
What was the cause of the problem? ☐ Drought ☐ Pump Failure ☐ Plugging
☐ Increased Usage ☐ Interference ☐ Other (Please Specify)

Did you ever have your well deepened or cleaned, or a new well constructed? If so, why? Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
D. WATER TREATMENT AND QUALITY
Fresh ☐ Sulphur ☐ Salty ☐ Iron Staining ☑ Soft ☐ Hard ☐
Water Treatment equipment: Softener ✓ UV ✓ Reverse Osmosis □ Filters ☑
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? ☐ Poor ☐ Good ☐ Excellent
Has your water quality previously been tested? No \square Yes \square
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
You
Water sample collected during this survey: Yes Where was the sample collected: From outside gordan hose a book of how
where was the sample collected:
Field Measurements: Conductivity 1419 Temperature 29.15 pH. 7.32
E. SURFACE WATER
Are there any ponds, creeks etc. on the property?
If yes, indicate size and depth? Use?

SYSTEM DETAILS
What type of sewage disposal system do you have:
☐ Holding Tank (sewage removed by regular pump-outs)
Septic Tank and Leaching Bed
☐ Other method of on-site disposal. Specify
□ Do not know
Date or year Constructed Contractor How often do you have the holding tank or septic tank pumped out? When was the last time?
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Did not see well on visit

Completed by: T.Proks Date Sept 19, 2017

Sept 19

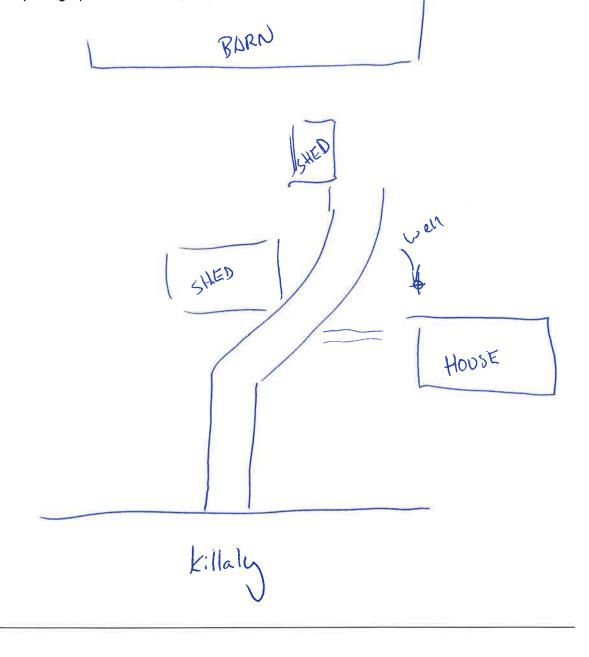
PRIVATE WATER WELL SURVEY QUESTIONNAIRE

TYPE OF DWELLING: Residential
Is the owner willing to participate in the survey? Yes ✓ No □ (If no, record address below)
I. OWNER / OCCUPANT INFORMATION AND GENERAL QUESTIONS:
OWNER:
Name: To exp. Telephone No. (business) Address: 1739 killing Telephone No. (home) Number of Bathrooms Number of Occupants
Name: Telephone No. (business) Address: 1739 killing Telephone No. (home)
Number of Bathrooms Number of Occupants
OCCUPANT (if other than Owner):
Name: Telephone No. (business)
Address: Telephone No. (home)
Number of Bathrooms
GENERAL QUESTIONS
How long have you owned/occupied this dwelling?
Is the property used year-round or seasonally?
Is well water used for drinking water supply? Yes ☐ No ☐
If no, why not?
Are there any other wells or water supplies used on the property?
If no, how long has it been since well water was used for drinking?
If no, what is the origin of drinking water?
II. WATER WELL
A. WELL CONSTRUCTION DETAILS:
Do you have a copy of the MOE Water Well Record? Yes (Well Record #)
ATTACH A COPY OF WATER WELL RECORD, IF POSSIBLE
Date or Year Constructed Contractor
Type of Well: Drilled ☑ Dug ☐ Well Diameter (inches)
Present Well Depth:25 Original Well Depth

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface 2) Buried inside a well pit □ 3) Buried, but not in a well pit □
The accurate location of the well is Known ☑ Unknown □
GPS coordinates: E
Type of pump: Submersible ☐ Jet Pump ☑ Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil) Both
B. WELL WATER LEVELS:
Indicate whether measured from ☐ ground level or ☐ from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes ☑ No □
If no, is this the case: All the time \square Some of the time \square Seasonally \square Other
Use: Domestic: No ☐ Yes ☐ No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No ☑ Yes ☐ Lawn Watering/Garden: No ☐ Yes ☑
Livestock: No ☑ Yes □
Industrial: No 🗹 Yes 🗆 (provide details)
Irrigation: No ☑ Yes ☐ (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well?
If so, when?
What was the cause of the problem? ☐ Drought ☐ Pump Failure ☑ Plugging ☐ Inc.
☐ Increased Usage ☐ Interference ☐ Other (Please Specify)

Did you ever have your well deepened or cleaned, or a new well constructed? If so, why?
Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
D. WATER TREATMENT AND QUALITY
Fresh □ Sulphur ☑ Salty □ Iron Staining □ Soft □ Hard ☑
Water Treatment equipment: Softener ☑ UV ☑ Reverse Osmosis □ Filters □ \onizction
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? ☐ Poor ☐ Good ☐ Excellent
Has your water quality previously been tested? No □ Yes ☑
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:
Where was the sample collected:
Field Measurements: Conductivity. 669 Temperature 21.87 pt. 7.76
E. SURFACE WATER
Are there any ponds, creeks etc. on the property?
If yes, indicate size and depth? Use?

SYSTEM DETAILS


What type of sewage disposal system do you have:
☐ Holding Tank (sewage removed by regular pump-outs)
☐ Other method of on-site disposal. Specify
□ Do not know
Date or year Constructed Contractor How often do you have the holding tank or septic tank pumped out?
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.)

Completed by:

Form 2017.doc

IV. PROPERTY SKETCH AND PHOTOGRAPHS

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Date S:\Active\2017\3 Proj\1771656 Rankin_License App_Port Colborne\Phase 1000 Hydrogeology\Task 1002 - Water Well Survey\Private Well Survey

PRIVATE WATER WELL SURVEY QUESTIONNAIRE

Sept 19

TYPE OF DWELLING: Residential Other:
Is the owner willing to participate in the survey? Yes ✓ No □ (If no, record address below)
I. OWNER / OCCUPANT INFORMATION AND GENERAL QUESTIONS:
Name: Rawas Wall Address: 1740 Cillaly Number of Bathrooms Telephone No. (business) Telephone No. (home) Number of Occupants
OCCUPANT (if other than Owner):
Name: Telephone No. (business) Address: Telephone No. (home) Number of Bathrooms Number of Occupants
GENERAL QUESTIONS
How long have you owned/occupied this dwelling?
Is the property used year-round or seasonally?
Is well water used for drinking water supply? Yest No ☑ If no, why not?Quality
Are there any other wells or water supplies used on the property?
If no, how long has it been since well water was used for drinking?
If no, what is the origin of drinking water?
II. WATER WELL
A. WELL CONSTRUCTION DETAILS:
Do you have a copy of the MOE Water Well Record? ☐ Yes (Well Record #)
ATTACH A COPY OF WATER WELL RECORD, IF POSSIBLE
Date or Year Constructed
Type of Well: Drilled □ Dug □ Well Diameter (inches)
Present Well Depth: Original Well Depth

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface ∠ 2) Buried inside a well pit □ 3) Buried, but not in a well pit □
The accurate location of the well is Known Unknown Did not see well an visit
GPS coordinates: E
Type of pump: Submersible ☐ Jet Pump ☐ Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil) Both
B. WELL WATER LEVELS:
Indicate whether measured from ☐ ground level or ☐ from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes ☑ No □
If no, is this the case: All the time \square Some of the time \square Seasonally \square Other
Use: Domestic: No ☐ Yes ☐ No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No Yes □ Lawn Watering/Garden: No □ Yes Ⅳ
Livestock: No ☑ Yes □
Industrial: No 🗆 Yes 🗀 (provide details)
Irrigation: No ☐ Yes ☐ (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well? If so, when?
What was the cause of the problem? ☐ Drought ☐ Pump Failure ☐ Plugging
☐ Increased Usage ☐ Interference ☐ Other (Please Specify)

Did you ever have your well deepened or cleaned, or a new well constructed?
Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
W/A
D. WATER TREATMENT AND QUALITY
Fresh □ Sulphur ☑ Salty ☑ Iron Staining ☑ Soft □ Hard □
Water Treatment equipment: Softener □ UV □ Reverse Osmosis □ Filters □
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? ☐ Poor ☐ Good ☐ Excellent
Has your water quality previously been tested? No ☑ Yes □
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:
Where was the sample collected: 1:3- outside top @ book of house
Field Measurements: Conductivity. 763 Temperature 24.68 pH. 7.58
E. SURFACE WATER
Are there any ponds, creeks etc. on the property?
If yes, indicate size and depth? Use?

SYSTEM DETAILS

III. SEWAGE DISPOSAL SYSTEM

What type of sewage disposal system do you have:
☐ Holding Tank (sewage removed by regular pump-outs)
 ☐ Holding Tank (sewage removed by regular pump-outs) ☑ Septic Tank and Leaching Bed
☐ Other method of on-site disposal. Specify
☐ Do not know
Date or year Constructed Contractor
How often do you have the holding tank or septic tank pumped out?
When was the last time? last year
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding

tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual

odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Did not see well on visit

Completed by:

T. Proks Date Sept 19, 2017

PRIVATE WATER WELL SURVEY QUESTIONNAIRE

Sept 19

TYPE OF DWELLING: Residential Commercial Institutional Other:
Is the owner willing to participate in the survey? Yes No □ (If no, record address below)
I. OWNER / OCCUPANT INFORMATION AND GENERAL QUESTIONS:
OWNER: Name: Address: Address: Number of Bathrooms Lisa Little Telephone No. (business) Telephone No. (home) Number of Occupants
OCCUPANT (if other than Owner):
Name: Telephone No. (business) Telephone No. (home) Number of Bathrooms Number of Occupants
GENERAL QUESTIONS
How long have you owned/occupied this dwelling? Is the property used year-round or seasonally?
Is well water used for drinking water supply? Yes No
If no, why not?
II. WATER WELL
A. WELL CONSTRUCTION DETAILS:
Do you have a copy of the MOE Water Well Record? ☐ Yes (Well Record #)
ATTACH A COPY OF WATER WELL RECORD, IF POSSIBLE
Date or Year Constructed
Type of Well: Drilled ☑ Dug □ Well Diameter (inches)
Present Well Depth: Original Well Depth

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface (2) Buried inside a well pit (2) Buried, but not in a well pit (2)
The accurate location of the well is Known ☐ Unknown ☐
GPS coordinates: E N
Type of pump: Submersible ☐ Jet Pump ☑ Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil) Both
B. WELL WATER LEVELS:
Indicate whether measured from $\ \square$ ground level or $\ \square$ from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes ✓ No □
If no, is this the case: All the time ☐ Some of the time ☐ Seasonally ☐ Other
Use: Domestic: No ☐ Yes ☐ No. of persons using water from well
Domestic includes (circle/all that apply) Drinking Washing Cooking
Pool: No Yes Lawn Watering/Garden: No Yes Yes
Livestock: No □ Yes ™ chickens
Industrial: No 🗹 Yes 🗆 (provide details)
Irrigation: No ☐ Yes ☐ (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well?NO
If so, when?
What was the cause of the problem? $\ \Box$ Drought $\ \Box$ Pump Failure $\ \Box$ Plugging
☐ Increased Usage ☐ Interference ☐ Other (Please Specify)

Did you ever have your well deepened or cleaned, or a new well constructed? If so, why? Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
\\
D. WATER TREATMENT AND QUALITY
Fresh ☑ Sulphur □ Salty □ Iron Staining ☑ Soft □ Hard ☑
Water Treatment equipment: Softener ☑ UV □ Reverse Osmosis □ Filters ☑
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? ☐ Poor ☐ Good ☐ Excellent
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
to VES
Water sample collected during this survey: Where was the sample collected: **Toward outsite top @ back of house
Where was the sample collected: Town outsite Top (a) Dock of fougle
017 1/26 7 10
Field Measurements: Conductivity 817. Temperature 1535pH. 7.68
E. SURFACE WATER
Are there any ponds, creeks etc. on the property?
If yes, indicate size and depth? Use?
) ; and and and and an analysis analysis and an analysis and an analysis and an analysis and an ana

SYSTEM DETAILS

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Did not see well on visit

Completed by:

TiProks

PRIVATE WATER WELL SURVEY QUESTIONNAIRE

TYPE OF DWELLING: Residential Commercial Institutional Other:	
Is the owner willing to participate in the survey? Yes ☐ No □	
(If no, record address below)	
I. OWNER / OCCUPANT INFORMATION AND GENERAL QUESTIONS:	
OWNER:	,U
Name: Lynn Blake Telephone No. (business)	
Address:1359 Miller Rd. Telephone No. (home)	100
Address: 1359 Miller Rd. Telephone No. (home) Number of Bathrooms Number of Occupants 1 + quest S 55/3	5 7
OCCUPANT (if other than Owner):	
Name: Telephone No. (business)	
Address: Telephone No. (home)	
Number of Occupants	
GENERAL QUESTIONS	
How long have you owned/occupied this dwelling?	
Is the property used year-round or seasonally?	
Is well water used for drinking water supply? Yes □ No ☑	
If no, why not? Sight swell (sulphu) and black paticles Are there any other wells or water supplies used on the property? Old wells, a few (been co	
Are there any other wells or water supplies used on the property?	PP
If no, how long has it been since well water was used for drinking?	
If no, what is the origin of drinking water?	
II. WATER WELL	
A. WELL CONSTRUCTION DETAILS:	
Do you have a copy of the MOE Water Well Record? ☐ Yes (Well Record #)	
	2000
Date or Year Constructed Dug Dug Dug Digmeter (inches)	
Type of Well: Drilled ☐ Dug ☐ Well Diameter (inches)	
Present Well Depth: 59-55 Original Well Depth	
Golder Associates	

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface ☑ 2) Buried inside a well pit □ 3) Buried, but not in a well pit □
The accurate location of the well is Known 🗹 Unknown 🗆
GPS coordinates: EN
Type of pump: Submersible ☑ Jet Pump □ Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil) Both
B. WELL WATER LEVELS:
Indicate whether measured from ☐ ground level or ☐ from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
2
C. WATER QUANTITY
Does your well supply enough water for your use? Yes ☐ No ☐
If no, is this the case: All the time ☐ Some of the time ☐ Seasonally ☐ Other
Use: Domestic: No ☐ Yes ☐ No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No ☑ Yes □ / Lawn Watering/Garden: No □ Yes ☑
Livestock: No □ Yes ☑
Industrial: No 🗹 Yes 🗆 (provide details)
Irrigation: No ☑ Yes □ (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well? slight supplied Smell, Some block
If so, when? pe frozen year
What was the cause of the problem? ☐ Drought ☐ Pump Failure ☐ Plugging
☐ Increased Usage ☐ Interference ☐ Other (Please Specify)

Did you ever have your well deepened or cleaned, or a new well constructed? If so, why? Pump test conducted? A wybe when constructed
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
UNSURT
D. WATER TREATMENT AND QUALITY
Fresh □ Sulphur ☑ Salty □ Iron Staining ☑ Soft □ Hard □
Water Treatment equipment: Softener □ UV □ Reverse Osmosis □ Filters □
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? ☐ Poor ☐ Good ☐ Excellent
Has your water quality previously been tested? No ☐ Yes ☐ \$\mathcal{U}\sqrt{0}\$
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey: DAD NOT WATER
Water sample collected during this survey: DAD NOT WATER WHOSE WATER SAMPLE

Field Measurements: Conductivity Temperature
E. SURFACE WATER
Are there any ponds, creeks etc. on the property?
Are there any ponds, creeks etc. on the property?
ii yes, iliuicate size and deptin? Use?

SYSTEM DETAILS
What type of sewage disposal system do you have:
☐ Holding Tank (sewage removed by regular pump-outs)
□ Other method of on-site disposal. Specify
□ Do not know
Date or year Constructed
How often do you have the holding tank or septic tank pumped out? HASN'T BEEN EMPTIES
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
adours soft ground etc.)

Completed by:

IV. PROPERTY SKETCH AND PHOTOGRAPHS

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

	SHLEO SWA	362N
HOUSE	1359	
	MILLER RO	
D4*****		

S:\active\2017\3 Proj\1771656 Rankin_License App_Port Colborne\Phase 1000 Hydrogeology\Task 1002 - Water Well Survey\Private Well Survey Form 2017 doc

...... Date

PRIVATE WATER WELL SURVEY QUESTIONNAIRE

_	mmercial er:			
Is the owner willing to participate in the survey? (If no, record address below)	Yes ☑ No □			
I. OWNER / OCCUPANT INFORMATION AND GE	ENERAL QUESTIONS:			
OWNER:				
Name: Usa Dyck	Telephone No. (business)			
	Telephone No. (home)			
Number of Bathrooms	Number of Occupants			
OCCUPANT (if other than Owner):	2			
Name:	Telephone No. (business)			
Address:	Telephone No. (home)			
Number of Bathrooms	Number of Occupants			
GENERAL QUESTIONS	4 100000			
How long have you owned/occupied this dwelling? Is the property used year-round or seasonally?	YES			
Is well water used for drinking water supply? Yes	No M			
If no, why not?	pipes in the house before the			
Are there any other wells or water supplies used on	the property?			
If no, how long has it been since well water was use	ed for drinking?() NSいたし			
If no, what is the origin of drinking water?				
II. WATER WELL				
A. WELL CONSTRUCTION DETAILS:	/			
Do you have a copy of the MOE Water Well Record	? □ Yes (Well Record #) □ No			
ATTACH A COPY OF WATER WELL RECORD, IF	POSSIBLE			
Date or Year Constructed	Contractor			
Type of Well: Drilled ☑ Dug □ Well Diameter (inches)				
Present Well Depth: Original Well	Depth			

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface 2) Buried inside a well pit □ 3) Buried, but not in a well pit □
The accurate location of the well is Known 🗆 Unknown 🗆
GPS coordinates: EN
Type of pump: Submersible ☑ Jet Pump □ Depth of Pump Intake (if known)
Well completed into: Bedrock
B. WELL WATER LEVELS:
Indicate whether measured from □ ground level or □ from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes ☑ No □
If no, is this the case: All the time \Box Some of the time \Box Seasonally \Box Other
Use: Domestic: No ☐ Yes ☐ No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No □ Yes □ Lawn Watering/Garden: No □ Yes ☑
Livestock: No □ Yes ☑
Industrial: No ☐ Yes ☐ (provide details)
Irrigation: No □ Yes □ (provide details)
Have you ever experienced any problems with your well?
If so, when?
What was the cause of the problem? ☐ Drought ☐ Pump Failure ☐ Plugging
☐ Increased Usage ☐ Interference ☐ Other (Please Specify)

Did you ever have your well deepened or cleaned, or a new well constructed?
If so, why?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
D. WATER TREATMENT AND QUALITY
Fresh □ Sulphur Salty □ Iron Staining Soft □ Hard □
Water Treatment equipment: Softener □ UV □ Reverse Osmosis □ Filters □
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? □ Poor ☑ Good □ Excellent
Has your water quality previously been tested? No □ Yes □ USURE
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS
RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:
Where was the sample collected: Right from the wall, with built in purp
Field Measurements: Conductivity 972 Temperature 17-6 pH 8.06
E. SURFACE WATER
Are there any ponds, creeks etc. on the property?
If ves_indicate size and depth? Use?

SYSTEM DETAILS

What type of sewage disposal system do you have:				
☐ Holding Tank (sewage removed by regular pump-outs)				
Septic Tank and Leaching Bed				
□ Other method of on-site disposal. Specify				
☐ Do not know Date or year Constructed Contractor				
How often do you have the holding tank or septic tank pumped out?				
When was the last time?				
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding				

tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual

odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

	T Praks		C + -
Completed by:	(1110-3	Date	>401)

PRIVATE WATER WELL SURVEY QUESTIONNAIRE

	mmercial ner:			
Is the owner willing to participate in the survey?	Yes ☑ No □			
(If no, record address below)	· · · · · · · · · · · · · · · · · · ·			
I. OWNER / OCCUPANT INFORMATION AND GE	ENERAL QUESTIONS:			
OWNER: Kate Argant (doughter of owner) Name: Kate Argant (doughter of owner)				
Name: Kate Argant				
Address: 1778 Miller Rd	Telephone No. (home)			
Number of Bathrooms	Number of Occupants			
OCCUPANT (if other than Owner):				
Name:	Telephone No. (business)			
Name: Address:	Telephone No. (business) Telephone No. (home) Number of Occupants			
Number of Bathrooms	Number of Occupants			
	0.0			
GENERAL QUESTIONS	25			
How long have you owned/occupied this dwelling?	45			
Is the property used year-round or seasonally?	YES J			
Is the property used year-round or seasonally? Is well water used for drinking water supply? Yes	s□ No			
If no, why not?				
Are there any other wells or water supplies used on	the property?			
If no, how long has it been since well water was use	ed for drinking?2 types. 3			
If no, what is the origin of drinking water?	0			
II. WATER WELL				
A. WELL CONSTRUCTION DETAILS:				
Do you have a copy of the MOE Water Well Record	d? ☐ Yes (Well Record #) ☐ No			
ATTACH A COPY OF WATER WELL RECORD, I	F POSSIBLE			
Date or Year Constructed	Contractor			
Type of Well: Drilled ☐ Dug ☐ Well Diam	eter (inches)			
Present Well Depth: Original Well	Depth 🗆 Same as Present			

Golder Associates

Is Well Vented and How?:		
Top of Well Casing is:		
1) Above ground surface 2) Buried inside a well pit 3) Buried, but not in a well pit		
The accurate location of the well is Known □ Unknown 世		
GPS coordinates: E		
Type of pump: Submersible ✓ Jet Pump □ Depth of Pump Intake (if known)		
Well completed into: Bedrock Overburden (Soil)		
B. WELL WATER LEVELS:		
Indicate whether measured from □ ground level or □ from top of casing		
Original water level depth in metres (on water well record)		
Subsequent water level measurements (give depths in metres and dates)		
C. WATER QUANTITY		
Does your well supply enough water for your use? Yes ☐ No ☐		
If no, is this the case: All the time \Box Some of the time \Box Seasonally \Box Other		
Use: Domestic: No □ Yes ☑ No. of persons using water from well		
Domestic includes (circle all that apply) Drinking Washing Cooking		
Pool: No ☑ Yes ☐ Lawn Watering/Garden: No ☐ Yes ☑		
Livestock: No ☑ Yes □		
Industrial: No 🗹 Yes 🗆 (provide details)		
Irrigation: No ☐ Yes □ (provide details)		
Other Uses Daily Usage (if known)		
Have you ever experienced any problems with your well?		
If so, when?		
What was the cause of the problem? ☐ Drought ☐ Pump Failure ☐ Plugging		
☐ Increased Usage ☐ Interference ☐ Other (Please Specify)		

Did you ever have your well deepened or cleaned, or a new well constructed?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
D. WATER TREATMENT AND QUALITY
1 & Sometimes
Fresh □ Sulphur ☑ Salty □ Iron Staining ☑ Soft □ Hard ☑
Water Treatment equipment: Softener □ UV □ Reverse Osmosis □ Filters ☑
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? ☐ Poor ☐ Good ☐ Excellent
Has your water quality previously been tested? No ☑ Yes □
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:
Where was the sample collected: From Sock yourd Trose
Field Measurements: Conductivity. 783 Temperature .20
E. SURFACE WATER
Are there any ponds, creeks etc. on the property?
If yes, indicate size and depth? Use?

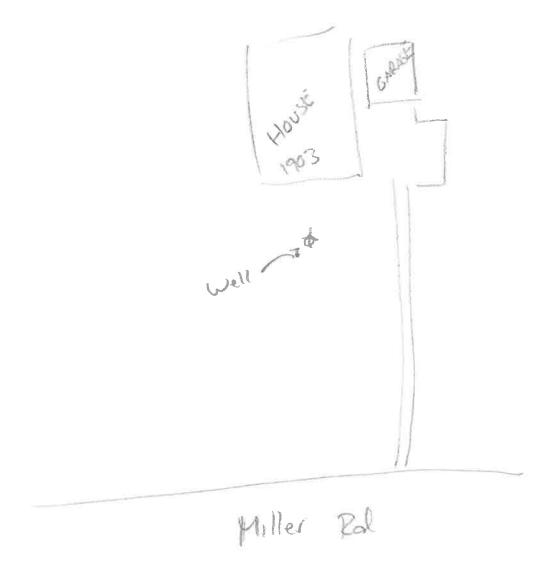
SYSTEM DETAILS
What type of sewage disposal system do you have:
☐ Holding Tank (sewage removed by regular pump-outs)
Septic Tank and Leaching Bed
☐ Other method of on-site disposal. Specify
□ Do not know reinstalled 20+ years
Date or year Constructed Contractor
How often do you have the holding tank or septic tank pumped out?
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Did not see well on visit owners think it is buried

Completed by: T.Proks Date Sept 5, 2017

	mmercial ner:	
Is the owner willing to participate in the survey? Yes ☑ No ☐ (If no, record address below)		
I. OWNER / OCCUPANT INFORMATION AND G	ENERAL QUESTIONS:	
OWNER:		
Name: Scott Miltlestead	Telephone No. (business)	
Address: 1903 Miller Rd	Telephone No. (home)	
Number of Bathrooms	Number of Occupants	
OCCUPANT (if other than Owner):		
Name:	Telephone No. (business)	
Address:	Telephone No. (home)	
Number of Bathrooms	Number of Occupants	
GENERAL QUESTIONS	W 142	
How long have you owned/occupied this dwelling?	979	
Is the property used year-round or seasonally?	YES	
Is well water used for drinking water supply? Ye	s 🗹 No 🗆	
If no, why not?		
Are there any other wells or water supplies used or	n the property?	
If no, how long has it been since well water was us	ed for drinking?	
If no, what is the origin of drinking water?		
II. WATER WELL		
A. WELL CONSTRUCTION DETAILS:		
Do you have a copy of the MOE Water Well Record	d? □ Yes (Well Record #) □ No	
ATTACH A COPY OF WATER WELL RECORD, IF POSSIBLE		
Date or Year Constructed ~ 1977	Contractor	
Type of Well: Drilled ☑ Dug ☐ Well Diam	neter (inches)	
Present Well Depth: 40' Original Well	Depth 🗆 Same as Present	


Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface (2) Buried inside a well pit (3) Buried, but not in a well pit (
The accurate location of the well is Known ☑ Unknown □
GPS coordinates: EN
Type of pump: Submersible ☑ Jet Pump ☐ Depth of Pump Intake (if known)
Well completed into: Bedrock
B. WELL WATER LEVELS:
Indicate whether measured from ☐ ground level or ☐ from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes ☑ No □
If no, is this the case: All the time \square Some of the time \square Seasonally \square Other
Use: Domestic: No
Livestock: No □ Yes □
Industrial: No 🗹 Yes 🗆 (provide details)
Irrigation: No ☑ Yes □ (provide details)
Other Uses Daily Usage (if known) Have you ever experienced any problems with your well?/
What was the cause of the problem? \Box Drought \Box Pump Failure \Box Plugging
□ Increased Usage □ Interference □ Other (Please Specify)

Did to the second and the second are a second as a
Did you ever have your well deepened or cleaned, or a new well constructed?
Pump test conducted?
Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
D. WATER TREATMENT AND QUALITY
Fresh □ Sulphur ☑ Salty □ Iron Staining ☑ Soft □ Hard ☑
Water Treatment equipment: Softener ☑ UV □ Reverse Osmosis ☑ Filters ☑
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? ☐ Poor ☐ Good ☐ Excellent
Has your water quality previously been tested? No □ Yes □
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey: no top before treatment system
Where was the sample collected:
Field Measurements: Conductivity Temperature
E. SURFACE WATER
Are there any ponds, creeks etc. on the property? $\cancel{E} \le \cancel{Pov}$ If yes, indicate size and depth? Use? $\cancel{80} \times \cancel{40}' \times \cancel{8}'$
If yes, indicate size and depth? Use?80×40'/8.'

SYSTEM DETAILS

What type of sewage disposal system do you have:
☐ Holding Tank (sewage removed by regular pump-outs)
Septic Tank and Leaching Bed
☐ Other method of on-site disposal. Specify
☐ Do not know
Date or year Constructed 1995. Contractor
How often do you have the holding tank or septic tank pumped out?
When was the last time? 5-6 years
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Completed by: T. Proks Date Sept 5, 2017

	mmercial ner:	
Is the owner willing to participate in the survey?	Yes ☑ No □	
(If no, record address below)		
I. OWNER / OCCUPANT INFORMATION AND GE	ENERAL QUESTIONS:	
OWNER: Jeff Harris Name: Jeff Harris Address: 2282 Miller Rd Number of Bathrooms 2t	Telephone No. (business) Telephone No. (home) Number of Occupants	
OCCUPANT (if other than Owner):		
Name: Address: Number of Bathrooms	Telephone No. (business) Telephone No. (home) Number of Occupants	
GENERAL QUESTIONS How long have you owned/occupied this dwelling?	2 years in Dec	
12) 2M	s ☑ No □	
Are there any other wells or water supplies used on	(P.W CAC)	
If no, how long has it been since well water was use If no, what is the origin of drinking water?	ed for drinking?	
II. WATER WELL		
A. WELL CONSTRUCTION DETAILS:		
Do you have a copy of the MOE Water Well Record	d? ☐ Yes (Well Record #) ☐ No	
ATTACH A COPY OF WATER WELL RECORD, IF POSSIBLE		
Date or Year Constructed	Contractor	
Type of Well: Drilled ☑ Dug ☐ Well Diam	eter (inches)	
Present Well Depth: 45' Original Well	Depth 🗆 Same as Present	

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface □ 2) Buried inside a well pit □ 3) Buried, but not in a well pit □
The accurate location of the well is Known Unknown Did not see
GPS coordinates: F
Type of pump: Submersible \(\text{\tex{\tex
Well completed into: Bedrock
B. WELL WATER LEVELS:
Indicate whether measured from ☐ ground level or ☐ from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes $\ \ igtriangledown$
If no, is this the case: All the time \square Some of the time \square Seasonally \square Other
Use: Domestic: No ☐ Yes ☐ No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No ☑ Yes ☐ Lawn Watering/Garden: No ☐ Yes ☐
Livestock: No 🗆 Yes 🗹
Industrial: No 🗹 Yes 🗆 (provide details)
Irrigation: No 🗹 Yes 🗆 (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well?
If so, when?
What was the cause of the problem? □ Drought □ Pump Failure □ Plugging
☐ Increased Usage ☐ Interference ☐ Other (Please Specify)

5:1
Did you ever have your well deepened or cleaned, or a new well constructed?
If so, why?
Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
······································
D. WATER TREATMENT AND QUALITY
Fresh Sulphur Salty Iron Staining Soft Hard
Water Treatment equipment: Softener ☑ UV □ Reverse Osmosis □ Filters ☑
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? ☐ Poor ☐ Good ☐ Excellent
Has your water quality previously been tested? No □ Yes 🖽
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
<i>U</i> U
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey: \(\frac{\frac}{\fracc}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}{\frac}\fir\f{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fra
Where was the sample collected: from outside top in front of house
where was the sample coincided to the runs through rounfresh filter
Field Measurements: Conductivity
E. SURFACE WATER
Are there any ponds, creeks etc. on the property?
If yes, indicate size and depth? Use? 50 X 25 pepth unswe 7 in the Inido

SYSTEM DETAILS

What type of sewage disposal system do you have:
☐ Holding Tank (sewage removed by regular pump-outs)
☑ Septic Tank and Leaching Bed
□ Other method of on-site disposal. Specify
□ Do not know
Date or year Constructed Contractor
How often do you have the holding tank or septic tank pumped out?
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Did not see well on visit

Completed by: T.Proks Date Sept 5, 2017


TYPE OF DWELLING: ☐ Residential ☐ Co	mmercial
☐ Institutional ☐ Oth	ner:
Is the owner willing to participate in the survey?	? Yes ☑ No □
I. OWNER / OCCUPANT INFORMATION AND GI	ENERAL QUESTIONS:
OWNER:	2
Name: MIKE Recine	Telephone No. (business)
Name: Mike Recine Address: 2391 Miller Rd	Telephone No. (home)
Number of Bathrooms	Telephone No. (business) Telephone No. (home) Number of Occupants
OCCUPANT (if other than Owner):	
Name:	Telephone No. (business)
Address:	Telephone No. (home)
Number of Bathrooms	Number of Occupants
GENERAL QUESTIONS	
How long have you owned/occupied this dwelling? Is the property used year-round or seasonally?	u l year
Is the property used year-round or seasonally?	, YeŚ
Is well water used for drinking water supply? Ye	s No 🗆
If no, why not?	
Are there any other wells or water supplies used or	
If no, how long has it been since well water was us	ed for drinking?
If no, what is the origin of drinking water?	
II. WATER WELL	
A. WELL CONSTRUCTION DETAILS:	
Do you have a copy of the MOE Water Well Record	d? □ Yes (Well Record #) □ No
ATTACH A COPY OF WATER WELL RECORD, I	E DOCCIDI E
Date or Year Constructed 2016 Type of Well: Drilled Dug Well Diam Present Well Denth: 65' Original Well	Contractor Marshal Fields
Type of Well: Drilled □ Dug □ Well Diam	eter (inches)
Present Well Depth:	Depth 🗆 Same as Present

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface 2) Buried inside a well pit 3) Buried, but not in a well pit 1
The accurate location of the well is Known ☑ Unknown □
GPS coordinates: E N
Type of pump: Submersible ☑ Jet Pump ☐ Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil)
B. WELL WATER LEVELS:
Indicate whether measured from ground level or from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes ☑ No □
If no, is this the case: All the time \square Some of the time \square Seasonally \square Other
Use: Domestic: No ☐ Yes ☑ No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No ☑ / Yes □ Lawn Watering/Garden: No □ Yes ☑
Livestock: No ☑ Yes □
Industrial: No ☑ Yes □ (provide details)
Irrigation: No ☑ Yes □ (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well?
What was the cause of the problem? \Box Drought \Box Pump Failure \Box Plugging
☐ Increased Usage ☐ Interference ☐ Other (Please Specify)

Did you ever have your well deepened or cleaned, or a new well constructed? If so, why? Pump test conducted?
Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
7gal/rin
D. WATER TREATMENT AND QUALITY
Fresh ♥ Sulphur □ Salty □ Iron Staining □ Soft □ Hard ♥
Water Treatment equipment: Softener ☑ UV ☐ Reverse Osmosis ☐ Filters ☑ Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? ☐ Poor ☐ Good ☐ Excellent
Has your water quality previously been tested? No ✓ Yes □
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:Yes
Where was the sample collected: From top in the garage
Field Measurements: Conductivity\855 Temperature \\9.5 pH.\8.04
E. SURFACE WATER
Are there any ponds, creeks etc. on the property?
If yes, indicate size and depth? Use?

SYSTEM DETAILS
What type of sewage disposal system do you have:
☐ Holding Tank (sewage removed by regular pump-outs)
Septic Tank and Leaching Bed
☐ Other method of on-site disposal. Specify
□ Do not know
Date or year Constructed 2016. Contractor
How often do you have the holding tank or septic tank pumped out?
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Completed by: T. Proks Date Sept 5, 2017

S:\active\2017\3 Proj\1771656 Rankin_License App_Port Colborne\Phase 1000 Hydrogeology\Task 1002 - Water Well Survey\Private Well Survey Form 2017.doc

	mmercial ner:
Is the owner willing to participate in the survey?	Yes ☑ No □
(If no, record address below)	
I. OWNER / OCCUPANT INFORMATION AND GE	ENERAL QUESTIONS:
OWNER: Name: Doug + Pat Bassiss Address: 2261 3nd Concession Number of Bathrooms	Telephone No. (business) Telephone No. (home) Number of Occupants
OCCUPANT (if other than Owner):	
Name: Address: Number of Bathrooms	Telephone No. (business) Telephone No. (home) Number of Occupants
GENERAL QUESTIONS	
How long have you owned/occupied this dwelling?	1992
Is the property used year-round or seasonally?	YES
Is well water used for drinking water supply? Ye	s M No □
If no, why not?	
Are there any other wells or water supplies used or	the property?
If no, how long has it been since well water was use	ed for drinking?
If no, what is the origin of drinking water?	
II. WATER WELL	
A. WELL CONSTRUCTION DETAILS:	
Do you have a copy of the MOE Water Well Record	f? □ Yes (Well Record #) ☑ No
ATTACH A COPY OF WATER WELL RECORD, I	
Date or Year Constructed 7-3'S	Contractor
Type of Well: Drilled ☑ Dug □ Well Diam	eter (inches)
Present Well Depth: 35-46 Original Well	Depth Same as Present

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface 2) Buried inside a well pit □ 3) Buried, but not in a well pit □
The accurate location of the well is Known \ Unknown \ Unknown \ \ well was
GPS coordinates: E
Type of pump: Submersible Jet Pump Depth of Pump Intake (if known)
Well completed into: Bedrock
B. WELL WATER LEVELS:
Indicate whether measured from ☐ ground level or ☐ from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes ☑ No □
If no, is this the case: All the time \square Some of the time \square Seasonally \square Other
Use: Domestic: No ☐ Yes ☑ No. of persons using water from well 2
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No ☑ Yes □ Lawn Watering/Garden: No □ Yes □
Livestock: No ☑ Yes □
Industrial: No ☑ Yes □ (provide details)
Irrigation: No ☑ Yes □ (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well? 46.5
If so, when? E. col: from neighbouring sheep form property (no longer exists)
What was the cause of the problem? ☐ Drought ☐ Pump Failure ☐ Plugging
☐ Increased Usage ☐ Interference ☐ Other (Please Specify)

Did you ever have your well deepened or cleaned, or a new well constructed?	NO		
If so, why? Pump test conducted?			
If yes, record pumping rate, duration and water levels (static, pumping and recove			

D. WATER TREATMENT AND QUALITY			
Fresh ☑ Sulphur □ Salty □ Iron Staining □ Soft □ Hard ☑			
Water Treatment equipment: Softener □ UV □ Reverse Osmosis □ Filter	s ☑		
Other equipment in use (if any):			
Has your well recently been chlorinated and, if so, when?			
How would you describe the quality of your water? ☐ Poor ☐ Good	☐ Excellent		
Has your water quality previously been tested? No ☐ Yes 🗅	₃∕		
If yes, for what and how often? (bacteriological, chemical analyses, etc.) 2 × from didenplot across the road	year		
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICA RESULTS ON THE WELL WATER, IF AVAILABLE			
Water sample collected during this survey: + townseque 100, did re Where was the sample collected:	stant		
Where was the sample collected:	ted)		
Field Measurements: Conductivity Temperature ph			
E. SURFACE WATER			
Are there any ponds, creeks etc. on the property?			
If ves. indicate size and depth? Use?			

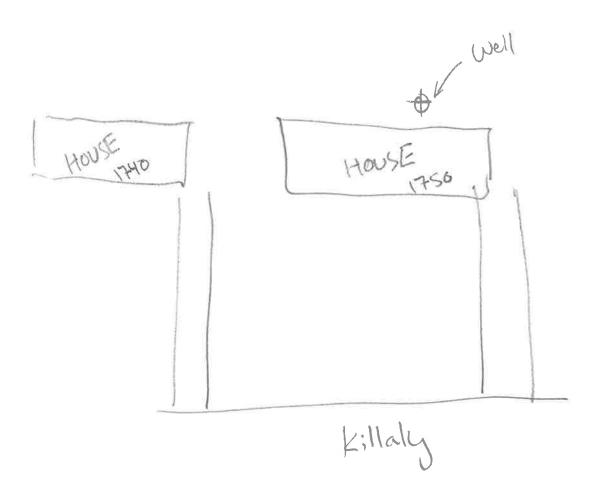
SYSTEM DETAILS

What type of sewage disposal system do you have:
☐ Holding Tank (sewage removed by regular pump-outs)
Septic Tank and Leaching Bed
☐ Other method of on-site disposal. Specify
□ Do not know
Date or year Constructed
How often do you have the holding tank or septic tank pumped out?
When was the last time? 2 years cype
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Did not see where well was

Completed by: T. Proks Date Sept 5, 2017


TYPE OF DWELLING: ☐ Residential ☐	Commercial	
☐ Institutional ☐	Other:	
Is the owner willing to participate in the surv	ey? Yes ☑ No □	
(If no, record address below)		
I. OWNER / OCCUPANT INFORMATION AND	GENERAL QUESTIONS:	
OWNER:		
Name: Pont Lorine Mills		
Address: 1750 Killaly	_	
Number of Bathrooms	Number of Occupants2	
OCCUPANT (if other than Owner):		
Name:	Telephone No. (business)	
Name: Address:	Telephone No. (home)	
Number of Bathrooms	Number of Occupants	
GENERAL QUESTIONS How long have you owned/occupied this dwelling	g? 52 yours	
Is well water used for drinking water supply?	Yes ☑ No □	
If no, why not?		
Are there any other wells or water supplies used	•	
If no, how long has it been since well water was		
If no, what is the origin of drinking water?		
II. WATER WELL	Well ID#:	
II. WATER WELL A. WELL CONSTRUCTION DETAILS: A091778		
Do you have a copy of the MOE Water Well Record? ☐ Yes (Well Record #) ☐ No		
ATTACH A COPY OF WATER WELL RECORD	D, IF POSSIBLE	
Date or Year Constructed 2014 / 2 ol 5	Contractor Schooley Dilling	
Date or Year Constructed 2014/2015 Contractor Schooley Dilling Type of Well: Drilled ☑ Dug ☐ Well Diameter (inches)		
Present Well Depth: 21' Original W		

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface 2) Buried inside a well pit 3) Buried, but not in a well pit
The accurate location of the well is Known ☐ Unknown ☐
GPS coordinates: E N
Type of pump: Submersible ☑ Jet Pump □ Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil)
B. WELL WATER LEVELS:
Indicate whether measured from □ ground level or │□ from top of casing
Original water level depth in metres (on water well record) Subsequent water level measurements (give depths in metres and dates)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes ☑ No □
If no, is this the case: All the time □ Some of the time □ Seasonally □ Other
Use: Domestic: No □ Yes ☑ No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No ☑ Yes □ Lawn Watering/Garden: No □ Yes ☑
Livestock: No ☑ Yes □
Industrial: No ☑ Yes □ (provide details)
Irrigation: No ☑ Yes ☐ (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well?
If so, when?
What was the cause of the problem? \Box Drought \Box Pump Failure \Box Plugging
□ Increased Usage □ Interference □ Other (Please Specify)

Did you ever have your well deepened or cleaned, or a new well constructed? NEW WELL If so, why? Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
<i>f</i>
D. WATER TREATMENT AND QUALITY
Fresh ☑ Sulphur □ Salty □ Iron Staining ☑ Soft □ Hard ☑
Water Treatment equipment: Softener ☑ UV ☑ Reverse Osmosis ☑ Filters ☑
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? ☐ Poor ☐ Good ☑ Excellent
Has your water quality previously been tested? No □ Yes ☑
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:\1.e.\5.
Where was the sample collected: from outside top in bode yard
Field Measurements: Conductivity 773 Temperature 933 pH. 827
Field Measurements: Conductivity
E. SURFACE WATER
Are there any ponds, creeks etc. on the property?
If yes, indicate size and denth? Use?

SYSTEM DETAILS
What type of sewage disposal system do you have:
☐ Holding Tank (sewage removed by regular pump-outs)
Septic Tank and Leaching Bed
□ Other method of on-site disposal. Specify
☐ Do not know
Date or year Constructed M. Contractor
How often do you have the holding tank or septic tank pumped out?\O
When was the last time? 2-3 years aga
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Completed by:		Date	
Completed by.	***************************************	Date	

S:\Active\2017\3 Proj\1771656 Rankin_License App_Port Colborne\Phase 1000 Hydrogeology\Task 1002 - Water Well Survey\Private Well Survey Form 2017.doc

	mmercial	
☐ Institutional ☐ Oth	er:	
Is the owner willing to participate in the survey?	Yes ⊠ No □	
(If no, record address below)		
I. OWNER / OCCUPANT INFORMATION AND GE	ENERAL QUESTIONS:	
OWNER:		
Name: Address: 1408 Killady	Telephone No. (business)	
Address: 1408 Killedy	Telephone No. (home)	
Number of Bathrooms	Number of Occupants	
OCCUPANT (if other than Owner):		
Name:	Telephone No. (business)	
Address:,	Telephone No. (home)	
Number of Bathrooms	Number of Occupants	
GENERAL QUESTIONS	46,000	
How long have you owned/occupied this dwelling? Is the property used year-round or seasonally?	Yes	
Is well water used for drinking water supply? Yes		
If no, why not?		
If no, how long has it been since well water was use		
	ed for drinking:	
The, what is the origin of annually water.		
II. WATER WELL		
A. WELL CONSTRUCTION DETAILS:		
Do you have a copy of the MOE Water Well Record? ☐ Yes (Well Record #)		
ATTACH A COPY OF WATER WELL RECORD, II	POSSIBLE	
Date or Year Constructed	Contractor UNSURE	
Type of Well: Drilled □ Dug □ Well Diam	eter (inches) UNSURE	
Present Well Depth: Original Well	Depth	

Is Well Vented and How?
Top of Well Casing is:
1) Above ground surface 2) Buried inside a well pit □ 3) Buried, but not in a well pit □
The accurate location of the well is Known ☑ Unknown □
GPS coordinates: E
Type of pump: Submersible ☐ Jet Pump ☑ Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil)
B. WELL WATER LEVELS:
Indicate whether measured from □ ground level or □ from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes ☑ No □
If no, is this the case: All the time ☐ Some of the time ☐ Seasonally ☐ Other
Use: Domestic: No ☐ Yes ☑ No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No ☑ Yes □ Lawn Watering/Garden: No □ Yes □
Livestock: No Yes □
Industrial: No ☑ Yes □ (provide details)
Irrigation: No 🖰 Yes 🗆 (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well?
If so, when?
What was the cause of the problem? □ Drought ☑ Pump Failure □ Plugging
□ Increased Usage □ Interference □ Other (Please Specify)

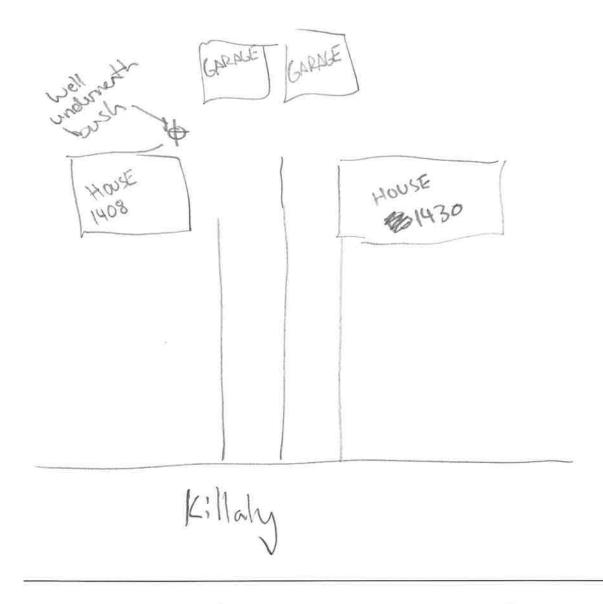
Golder Associates

Water Well and Sewage Disposal System Survey Questionnaire	Page 3 of 5
Did you ever have your well deepened or cleaned, or a new well constructed? If so, why? Pump test conducted?	No
If yes, record pumping rate, duration and water levels (static, pumping and recove	
if yes, record pumping rate, duration and water levels (static, pumping and recove	51 y)
f	***************************************

D. WATER TREATMENT AND QUALITY	
Fresh □ Sulphur ☑ Salty □ Iron Staining □ Soft □ Hard ☑	
Water Treatment equipment: Softener UV Reverse Osmosis Filter	
Other equipment in use (if any):Calleger	
Has your well recently been chlorinated and, if so, when?	
How would you describe the quality of your water? ☐ Poor ☑ Good	☐ Excellent
Has your water quality previously been tested? No □ Yes □	2
If yes, for what and how often? (bacteriological, chemical analyses, etc.) \fe 5\frac{1}{2} \cdot 6	d when sal
	eplaced
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICA RESULTS ON THE WELL WATER, IF AVAILABLE	L ANALYSIS
Wes Ves	
Water sample collected during this survey: Yes Where was the sample collected: from outside top @ side	of house
vivilere was the sample collected	

Field Measurements: Conductivity. 1250	1 8.55

E. SURFACE WATER


Are there any ponds, creeks etc. on the property?

If yes, indicate size and depth? Use?

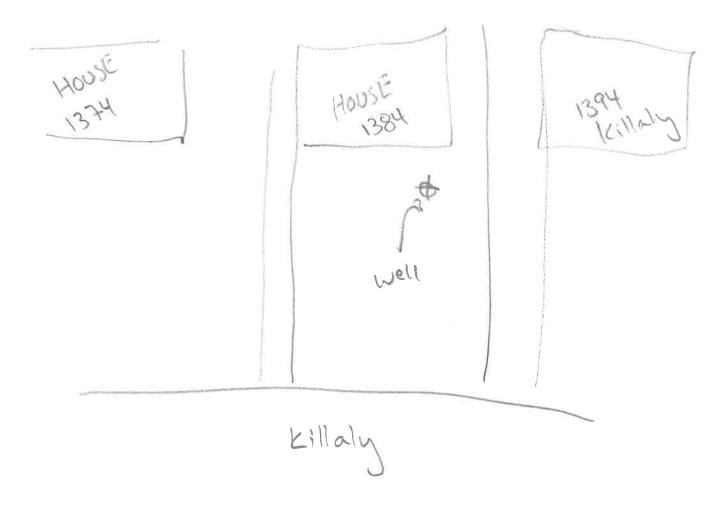
SYSTEM DETAILS

What type of sewage disposal system do you have:	
☐ Holding Tank (sewage removed by regular pump-outs)	
Septic Tank and Leaching Bed	
□ Other method of on-site disposal. Specify	
☐ Do not know	
Date or year Constructed Contractor New one put in ~10-15 years	ago
How often do you have the holding tank or septic tank pumped out?	
When was the last time?	
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding	
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual	
odours, soft ground, etc.)	

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Completed by: Thousand Date Sept 5, 2017

S:\active\2017\3 Proj\1771656 Rankin_License App_Port Colborne\Phase 1000 Hydrogeology\Task 1002 - Water Well Survey\Private Well Survey Form 2017.doc


	nmercial		
☐ Institutional ☐ Oth	er:		
Is the owner willing to participate in the survey?	Yes ☑ No ⊡		
(If no, record address below)			
I. OWNER / OCCUPANT INFORMATION AND GENERAL QUESTIONS:			
OWNER: Name: Address: \384 Killaly Number of Bathrooms	Telephone No. (business) Telephone No. (home) Number of Occupants		
OCCUPANT (if other than Owner):			
Name: Address: Number of Bathrooms	Telephone No. (business) Telephone No. (home)		
Address:	Telephone No. (home)		
Number of Bathrooms	Number of Occupants		
GENERAL QUESTIONS How long have you owned/occupied this dwelling? Is the property used year-round or seasonally?			
Is well water used for drinking water supply? Yes			
Are there any other wells or water supplies used on			
If no, how long has it been since well water was use	d for drinking?		
If no, what is the origin of drinking water?	Bottled		
II. WATER WELL			
A. WELL CONSTRUCTION DETAILS:			
Do you have a copy of the MOE Water Well Record	? □ Yes (Well Record #) ☑ No		
ATTACH A COPY OF WATER WELL RECORD, IF			
Date or Year Constructed P//4			
Type of Well: Drilled ☑ Dug ☐ Well Diame	eter (inches)		
Present Well Depth:/\(\frac{\lambda}{\lambda}\) Original Well	Depth 🗆 Same as Present		

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface 2) Buried inside a well pit 3) Buried, but not in a well pit 1
The accurate location of the well is Known ☑ Unknown □
GPS coordinates: E
Type of pump: Submersible ☐ Jet Pump ☐ Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil)
B. WELL WATER LEVELS:
Indicate whether measured from □ ground level or □ from top of casing
Original water level depth in metres (on water well record) Subsequent water level measurements (give depths in metres and dates)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes ☑ No □
If no, is this the case: All the time \square Some of the time \square Seasonally \square Other
Use: Domestic: No □ Yes ☒ No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No ☑ Yes □ Lawn Watering/Garden: No □ Yes □
Livestock: No ☑ Yes □
Industrial: No ☑ Yes □ (provide details)
Irrigation: No ☐ Yes ☐ (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well?
If so, when?
What was the cause of the problem? □ Drought □ Pump Failure □ Plugging
□ Increased Usage □ Interference □ Other (Please Specify)

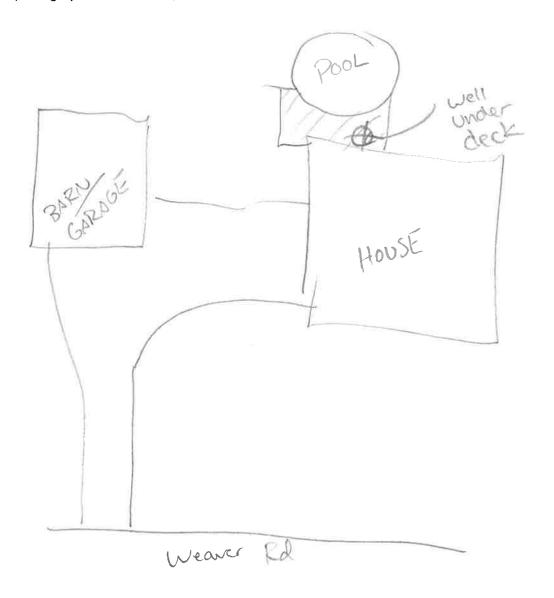
Did you ever have your well deepened or cleaned, or a new well constructed? If so, why? Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
······
D. WATER TREATMENT AND QUALITY
Fresh □ Sulphur ☑ Salty □ Iron Staining □ Soft □ Hard □
Water Treatment equipment: Softener □ UV □ Reverse Osmosis □ Filters □
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? ☐ Poor ☐ Good ☐ Excellent
Has your water quality previously been tested? No ☑ Yes □
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:
Where was the sample collected: From outside hose at side of house
Field Measurements: Conductivity 683 Temperature 22.8 pH.7.84
E. SURFACE WATER
Are there any ponds, creeks etc. on the property?
If yes, indicate size and denth? Hee?

SYSTEM DETAILS
What type of sewage disposal system do you have:
☐ Holding Tank (sewage removed by regular pump-outs)
☑ Septic Tank and Leaching Bed
☐ Other method of on-site disposal. Specify
☐ Do not know
Date or year Constructed Contractor
How often do you have the holding tank or septic tank pumped out?
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Completed by: T. Proks Date Sept 5, 2017

S:\Active\2017\3 Proj\1771656 Rankin_License App_Port Colborne\Phase 1000 Hydrogeology\Task 1002 - Water Well Survey\Private Well Survey Form 2017.doc


	mmercial ner:	***
Is the owner willing to participate in the survey	? Yes ☑	No □
(If no, record address below)		
I. OWNER / OCCUPANT INFORMATION AND G	ENERAL QUESTIONS:	
OWNER: Name: Tim Wright Address: 1080 Weaver Rd. Number of Bathrooms	Telephone No. (business Telephone No. (home) . Number of Occupants	
OCCUPANT (if other than Owner):		
Name: Address: Number of Bathrooms	Telephone No. (business Telephone No. (home) Number of Occupants	, ,
GENERAL QUESTIONS		
How long have you owned/occupied this dwelling? Is the property used year-round or seasonally? Is well water used for drinking water supply? Year-round	SO YOU'S SO NOW	
If no, why not? Hard, sul phw		
Are there any other wells or water supplies used on		
If no, how long has it been since well water was use of the since well water was used if no, what is the origin of drinking water?	ed for drinking?	used
II. WATER WELL		
A. WELL CONSTRUCTION DETAILS:		
Do you have a copy of the MOE Water Well Record	f? ☐ Yes (Well Record #)
ATTACH A COPY OF WATER WELL RECORD, II	F POSSIBLE	
Date or Year Constructed	Contractor	1/A
	eter (inches)	
Present Well Depth: ~151 Original Well	Depth	Same as Present

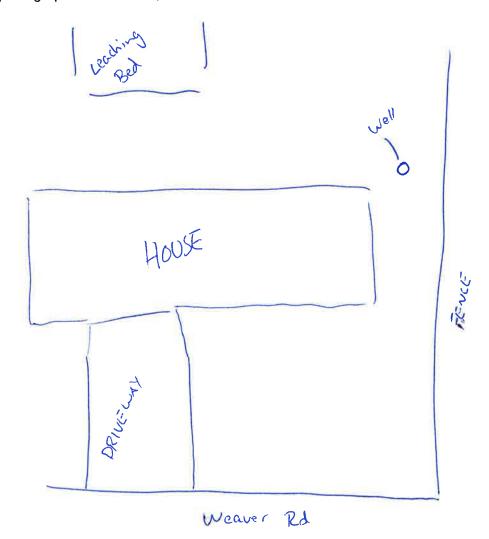
Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface 2) Buried inside a well pit 3) Buried, but not in a well pit
The accurate location of the well is Known ☑ Unknown □
GPS coordinates: E
Type of pump: Submersible ☐ Jet Pump ☑ Depth of Pump Intake (if known)
Well completed into: Bedrock
B. WELL WATER LEVELS:
Indicate whether measured from ☐ ground level or ☐ from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes ☑ No □
If no, is this the case: All the time \square Some of the time \square Seasonally \square Other
Use: Domestic: No ☐ Yes ☐ No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No □ Yes ☑ Lawn Watering/Garden: No □ Yes ☑
Livestock: No ☑ Yes □
Industrial: No 🖳 Yes 🗆 (provide details)
Irrigation: No ☑ Yes □ (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well?
If so, when?
What was the cause of the problem? ☐ Drought ☐ Pump Failure ☐ Plugging
☐ Increased Usage ☐ Interference ☐ Other (Please Specify)

Did you ever have your well deepened or cleaned, or a new well constructed?
Pump test conducted? $\mathcal{N}^{\mathcal{D}}$
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
D. WATER TREATMENT AND QUALITY
Fresh □ Sulphur ☑ Salty □ Iron Staining □ Soft □ Hard Ⅳ
Water Treatment equipment: Softener □ UV □ Reverse Osmosis □ Filters □
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? ☐ Poor ☐ Good ☐ Excellent
Has your water quality previously been tested? No ☑ Yes □
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:
Where was the sample collected: From dedicated submissible in due, well
Field Measurements: Conductivity 7-2 Temperature 19-9 pH.8-20.
E. SURFACE WATER
Are there any ponds, creeks etc. on the property?
If yes, indicate size and depth? Use?

SYSTEM DETAILS
What type of sewage disposal system do you have:
☐ Holding Tank (sewage removed by regular pump-outs)
Septic Tank and Leaching Bed
☐ Other method of on-site disposal. Specify
□ Do not know
Date or year Constructed Contractor
How often do you have the holding tank or septic tank pumped out?
When was the last time? 2 weeks ogo
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.) main line downerged from roots

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Completed by:	T. Proks	Date	Sept	5	,2017
o o proto a lo j.,					.,


TYPE OF DWELLING: Residential Commercial Institutional Other:			
Is the owner willing to participate in the survey? (If no, record address below)			
I. OWNER / OCCUPANT INFORMATION AND G	ENERAL QUESTIONS:		
OWNER:			
Name: didn't get	Telephone No. (business)		
Address: 1162 Weaver Rd	Telephone No. (home)		
Number of Bathrooms	Number of Occupants		
OCCUPANT (if other than Owner):			
Name: N/A	Telephone No. (business)		
Address: N/A	Telephone No. (home)		
Number of Bathrooms N/A	Number of Occupants		
GENERAL QUESTIONS How long have you owned/occupied this dwelling? Is the property used year-round or seasonally? Is well water used for drinking water supply? Ye If no, why not?	Yes No □ n the property?		
II. WATER WELL			
A. WELL CONSTRUCTION DETAILS:			
Do you have a copy of the MOE Water Well Record	™No		
ATTACH A COPY OF WATER WELL RECORD, I			
Date or Year Constructed unsuce 15+ year	S Contractor N/A		
Type of Well: Drilled ☑ Dug ☐ Well Diam	neter (inches)unsure		
Present Well Depth:	1		

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface 2) Buried inside a well pit 3) Buried, but not in a well pit 1
The accurate location of the well is Known ☐ Unknown ☐
GPS coordinates: E
Type of pump: Submersible ☐ Jet Pump ☑ Depth of Pump Intake (if known)
Well completed into: Bedrock
B. WELL WATER LEVELS: NAME AND ADDRESS OF THE PROPERTY OF THE
Indicate whether measured from ☐ ground level or ☐ from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes ☑ No □
If no, is this the case: All the time \square Some of the time \square Seasonally \square Other
Use: Domestic: No □ Yes ☑ No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No ☑ Yes □ Lawn Watering/Garden: No □ Yes ☑
Livestock: No ☑ Yes □
Industrial: No 🗹 Yes 🗆 (provide details)
Irrigation: No ☑ Yes □ (provide details)
Other Uses
Have you ever experienced any problems with your well?
If so, when?
What was the cause of the problem? ☐ Drought ☐ Pump Failure ☐ Plugging
☐ Increased Usage ☐ Interference ☐ Other (Please Specify)

Did you ever have your well deepened or cleaned, or a new well constructed?
Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
D. WATER TREATMENT AND QUALITY
Fresh ☑ Sulphur □ Salty □ Iron Staining □ Soft □ Hard □
Water Treatment equipment: Softener □ UV □ Reverse Osmosis □ Filters □
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? ☐ Poor ☐ Good ☐ Excellent
Has your water quality previously been tested? No ☑ Yes □
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:
Where was the sample collected:
Field Measurements: Conductivity
E. SURFACE WATER
Are there any ponds, creeks etc. on the property?
If ves. indicate size and depth? Use?

SYSTEM DETAILS
What type of sewage disposal system do you have:
☐ Holding Tank (sewage removed by regular pump-outs)
Septic Tank and Leaching Bed
☐ Other method of on-site disposal. Specify
☐ Do not know
Date or year Constructed
How often do you have the holding tank or septic tank pumped out? NOT OFTEN
When was the last time? DOESN'T KNOW
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Completed by.	Completed by:	T. Proks	Date	Sept 5, 2017
---------------	---------------	----------	------	--------------

Sept 5,2017

PRIVATE WATER WELL SURVEY QUESTIONNAIRE

	mmercial ner:
Is the owner willing to participate in the survey?	? Yes □ No □
(If no, record address below)	
I. OWNER / OCCUPANT INFORMATION AND GE	ENERAL QUESTIONS:
OWNER:	ERN
Name:	Telephone No. (business)
Address: 1430 Killaly	Telephone No. (home)
Name: Address: 1430 Killoly Number of Bathrooms	Number of Occupants
OCCUPANT (if other than Owner):	
Name:	Telephone No. (business)
Address:	Telephone No. (home)
Number of Bathrooms	Number of Occupants
GENERAL QUESTIONS How long have you owned/occupied this dwelling?	
Is the property used year-round or seasonally?	
Is well water used for drinking water supply? Yes	s □ No □
If no, why not?	
Are there any other wells or water supplies used on	the property?
If no, how long has it been since well water was use	ed for drinking?
If no, what is the origin of drinking water?	
II. WATER WELL	
A. WELL CONSTRUCTION DETAILS:	
Do you have a copy of the MOE Water Well Record	d? ☐ Yes (Well Record #) ☐ No
ATTACH A COPY OF WATER WELL RECORD, II	FPOSSIBLE
Date or Year Constructed	Contractor
Type of Well: Drilled \square Dug \square Well Diam	eter (inches)
Present Well Depth: Original Well	Depth 🗆 Same as Present

Golder Associates

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface □ 2) Buried inside a well pit □ 3) Buried, but not in a well pit □
The accurate location of the well is $\ \ \Box \ \ $ Unknown $\ \Box \ \ $
GPS coordinates: E N
Type of pump: Submersible \square Jet Pump \square Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil) Both
B. WELL WATER LEVELS:
Indicate whether measured from ☐ ground level or ☐ from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes □ No □
If no, is this the case: All the time □ Some of the time □ Seasonally □ Other
Use: Domestic: No ☐ Yes ☐ No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No ☐ Yes ☐ Lawn Watering/Garden: No ☐ Yes ☐
Livestock: No □ Yes □
Industrial: No ☐ Yes ☐ (provide details)
Irrigation: No ☐ Yes ☐ (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well? If so, when?
What was the cause of the problem? ☐ Drought ☐ Pump Failure ☐ Plugging
☐ Increased Usage ☐ Interference ☐ Other (Please Specify)

Did you ever have your well deepened or cleaned, or a new well constructed?
If so, why? Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
m yes, record partipling rate, daration and water levels (state, partipling and recovery)
D. WATER TREATMENT AND QUALITY
Fresh □ Sulphur □ Salty □ Iron Staining □ Soft □ Hard □
Water Treatment equipment: Softener □ UV □ Reverse Osmosis □ Filters □
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? ☐ Poor ☐ Good ☐ Excellent
Has your water quality previously been tested? No \square Yes \square
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS
RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:
Where was the sample collected:
Field Measurements: Conductivity Temperature pH
E. SURFACE WATER
Are there any ponds, creeks etc. on the property?
If yes, indicate size and depth? Use?

SYSTEM DETAILS

What type of sewage disposal system do you have:
☐ Holding Tank (sewage removed by regular pump-outs)
□ Septic Tank and Leaching Bed
□ Other method of on-site disposal. Specify
☐ Do not know
Date or year Constructed Contractor
How often do you have the holding tank or septic tank pumped out?
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Completed by:	 Date	

S:\active\2017\3 Proj\1771656 Rankin_License App_Port Colborne\Phase 1000 Hydrogeology\Task 1002 - Water Well Survey\Private Well Survey Form 2017.doc

	mmercial ner:
Is the owner willing to participate in the survey? (If no, record address below)	Yes □ No ☑
I. OWNER / OCCUPANT INFORMATION AND GE	ENERAL QUESTIONS:
OWNER: Cistern	
Name:	Telephone No. (business)
Address: 1094 Wear	Telephone No. (home)
Number of Bathrooms	Number of Occupants
OCCUPANT (if other than Owner):	
Name:	Telephone No. (business)
Address:	Telephone No. (home)
Number of Bathrooms	Number of Occupants
GENERAL QUESTIONS How long have you owned/occupied this dwelling? Is the property used year-round or seasonally? Is well water used for drinking water supply? Year of the seasonal or the	s □ No □ the property?
II. WATER WELL	
A. WELL CONSTRUCTION DETAILS:	
Do you have a copy of the MOE Water Well Record	d? ☐ Yes (Well Record #) ☐ No
ATTACH A COPY OF WATER WELL RECORD, I	FPOSSIBLE
Date or Year Constructed	Contractor
Type of Well: Drilled □ Dug □ Well Diam	eter (inches)
Present Well Depth: Original Well	Depth 🗆 Same as Present

Golder Associates

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface 2) Buried inside a well pit 3) Buried, but not in a well pit
The accurate location of the well is $\mbox{Known} \ \square$ Unknown \square
GPS coordinates: E
Type of pump: Submersible ☐ Jet Pump ☐ Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil) Both
B. WELL WATER LEVELS:
Indicate whether measured from $\ \square$ ground level or $\ \square$ from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)

C. WATER QUANTITY
Does your well supply enough water for your use? Yes □ No □
If no, is this the case: All the time ☐ Some of the time ☐ Seasonally ☐ Other
Use: Domestic: No ☐ Yes ☐ No. of persons using water from well Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No ☐ Yes ☐ Lawn Watering/Garden: No ☐ Yes ☐
Livestock: No □ Yes □
Industrial: No □ Yes □ (provide details)
Irrigation: No ☐ Yes ☐ (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well? If so, when?
What was the cause of the problem? \Box Drought \Box Pump Failure \Box Plugging
☐ Increased Usage ☐ Interference ☐ Other (Please Specify)

Did you ever have your well deepened or cleaned, or a new well constructed?
Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
D. WATER TREATMENT AND QUALITY
Fresh □ Sulphur □ Salty □ Iron Staining □ Soft □ Hard □
Water Treatment equipment: Softener □ UV □ Reverse Osmosis □ Filters □
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? ☐ Poor ☐ Good ☐ Excellent
Has your water quality previously been tested? No □ Yes □
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:
Where was the sample collected:
Field Measurements: Conductivity Temperature
E. SURFACE WATER
Are there any ponds, creeks etc. on the property?
If yes, indicate size and depth? Use?

SYSTEM DETAILS

What type of sewage disposal system do you have:
☐ Holding Tank (sewage removed by regular pump-outs)
□ Septic Tank and Leaching Bed
☐ Other method of on-site disposal. Specify
□ Do not know
Date or year Constructed Contractor
How often do you have the holding tank or septic tank pumped out?
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Completed by:	 Date	

S:\Active\2017\3 Proj\1771656 Rankin_License App_Port Colborne\Phase 1000 Hydrogeology\Task 1002 - Water Well Survey\Private Well Survey Form 2017 doc

	mmercial her:
Is the owner willing to participate in the survey	? Yes ⊠ No □
(If no, record address below)	
I. OWNER / OCCUPANT INFORMATION AND G	
OWNER:	TY WATER
Name:	Telephone No. (business)
Name: Address: TG45 2hd Concession	Telephone No. (home)
Number of Bathrooms	Number of Occupants
OCCUPANT (if other than Owner):	
Name:	Telephone No. (business)
Address:	Telephone No. (home)
Number of Bathrooms	Number of Occupants
GENERAL QUESTIONS	
How long have you owned/occupied this dwelling?	
Is the property used year-round or seasonally?	
Is well water used for drinking water supply? Ye	
If no, why not?	
Are there any other wells or water supplies used or	
If no, how long has it been since well water was use If no, what is the origin of drinking water?	eu for drinking?
mile, what is the origin of diffiking water:	
II. WATER WELL	
A. WELL CONSTRUCTION DETAILS:	
Do you have a copy of the MOE Water Well Record	d? □ Yes (Well Record #) □ No
ATTACH A COPY OF WATER WELL RECORD, II	
Date or Year Constructed	Contractor
Type of Well: Drilled □ Dug □ Well Diam	eter (inches)
Present Well Depth: Original Well	Depth

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface 2) Buried inside a well pit 3) Buried, but not in a well pit
The accurate location of the well is Known □ Unknown □
GPS coordinates: E N
Type of pump: Submersible ☐ Jet Pump ☐ Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil) Both
B. WELL WATER LEVELS:
Indicate whether measured from $\ \square$ ground level or $\ \square$ from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes \square No \square
If no, is this the case: All the time \Box Some of the time \Box Seasonally \Box Other
Use: Domestic: No ☐ Yes ☐ No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No ☐ Yes ☐ Lawn Watering/Garden: No ☐ Yes ☐
Livestock: No □ Yes □
Industrial: No ☐ Yes ☐ (provide details)
Irrigation: No □ Yes □ (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well?
If so, when?
What was the cause of the problem? ☐ Drought ☐ Pump Failure ☐ Plugging
☐ Increased Usage ☐ Interference ☐ Other (Please Specify)

Did you ever have your well deepened or cleaned, or a new well constructed?
Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
U.M. M.
D. WATER TREATMENT AND QUALITY
Fresh □ Sulphur □ Salty □ Iron Staining □ Soft □ Hard □
Water Treatment equipment: Softener □ UV □ Reverse Osmosis □ Filters □
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? \Box Poor \Box Good \Box Excellent
Has your water quality previously been tested? No \square Yes \square
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:
Where was the sample collected:
\$
Field Measurements: Conductivity Temperature
E. SURFACE WATER
Are there any ponds, creeks etc. on the property?
If ves. indicate size and depth? Use?

SYSTEM DETAILS

What type of sewage disposal system do you have:
☐ Holding Tank (sewage removed by regular pump-outs)
☐ Septic Tank and Leaching Bed
□ Other method of on-site disposal. Specify
☐ Do not know
Date or year Constructed Contractor
How often do you have the holding tank or septic tank pumped out?
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Completed by:	Date	4000

	mercial ···
ls the owner willing to participate in the survey? (If no, record address below)	Yes ☑ No □
I. OWNER / OCCUPANT INFORMATION AND GEN	ERAL QUESTIONS:
Address: 2225 Miller Fd To	elephone No. (business)
OCCUPANT (if other than Owner):	
Address: To	elephone No. (business)elephone No. (home)umber of Occupants
GENERAL QUESTIONS	
How long have you owned/occupied this dwelling? Is the property used year-round or seasonally? Is well water used for drinking water supply? Yes If no, why not?	
Are there any other wells or water supplies used on the If no, how long has it been since well water was used If no, what is the origin of drinking water?	
II. WATER WELL	
A. WELL CONSTRUCTION DETAILS:	
Do you have a copy of the MOE Water Well Record?	□No
ATTACH A COPY OF WATER WELL RECORD, IF F	
Date or Year Constructed Type of Well: Drilled □ Dug □ Well Diamete	Contractorer (inches)
Present Well Depth: Original Well De	

Golder Associates

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface □ 2) Buried inside a well pit □ 3) Buried, but not in a well pit □
The accurate location of the well is $\ \ \Box \ \ \ \Box \ \ \ \Box$
GPS coordinates: E N
Type of pump: Submersible □ Jet Pump □ Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil) Both
B. WELL WATER LEVELS:
Indicate whether measured from $\ \square$ ground level or $\ \square$ from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes □ No □
If no, is this the case: All the time ☐ Some of the time ☐ Seasonally ☐ Other
Use: Domestic: No ☐ Yes ☐ No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No ☐ Yes ☐ Lawn Watering/Garden: No ☐ Yes ☐
Livestock: No □ Yes □
Industrial: No ☐ Yes ☐ (provide details)
Irrigation: No ☐ Yes ☐ (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well?
If so, when?
What was the cause of the problem? ☐ Drought ☐ Pump Failure ☐ Plugging
☐ Increased Usage ☐ Interference ☐ Other (Please Specify)

Did you ever have your well deepened or cleaned, or a new well constructed?
Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
<u></u>

D. WATER TREATMENT AND QUALITY
Fresh □ Sulphur □ Salty □ Iron Staining □ Soft □ Hard □
Water Treatment equipment: Softener □ UV □ Reverse Osmosis □ Filters □
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? \square Poor \square Good \square Excellent
Has your water quality previously been tested? No \square Yes \square
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:
Where was the sample collected:
······································
Field Measurements: Conductivity Temperature
E. SURFACE WATER
Are there any ponds, creeks etc. on the property?
If yes, indicate size and depth? Use?

SYSTEM DETAILS

What type of sewage disposal system do you have:
☐ Holding Tank (sewage removed by regular pump-outs)
☐ Septic Tank and Leaching Bed
□ Other method of on-site disposal. Specify
☐ Do not know
Date or year Constructed Contractor
How often do you have the holding tank or septic tank pumped out?
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Completed by:	 Date	

TYPE OF DWELLING: Residential Commercial Institutional Other:
Is the owner willing to participate in the survey? Yes □ No □ (If no, record address below)
I. OWNER / OCCUPANT INFORMATION AND GENERAL QUESTIONS:
OWNER: ON CITY WATER
Name: Telephone No. (business) Address: 2276 2 Concession Telephone No. (home)
Address: 2276 2 Concession Telephone No. (home)
Number of Bathrooms Number of Occupants
OCCUPANT (if other than Owner):
Name: Telephone No. (business)
Address: Telephone No. (home)
Number of Bathrooms
GENERAL QUESTIONS How long have you owned/occupied this dwelling? Is the property used year-round or seasonally? Is well water used for drinking water supply? Yes \(\text{No} \) If no, why not? Are there any other wells or water supplies used on the property? If no, how long has it been since well water was used for drinking? If no, what is the origin of drinking water?
A. WELL CONSTRUCTION DETAILS:
Do you have a copy of the MOE Water Well Record? ☐ Yes (Well Record #)
ATTACH A COPY OF WATER WELL RECORD, IF POSSIBLE
Date or Year Constructed
Type of Well: Drilled □ Dug □ Well Diameter (inches)
Present Well Depth: Original Well Depth

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface □ 2) Buried inside a well pit □ 3) Buried, but not in a well pit □
The accurate location of the well is $\mbox{Known} \ \square$ $\mbox{Unknown} \ \square$
GPS coordinates: E N
Type of pump: Submersible ☐ Jet Pump ☐ Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil)
B. WELL WATER LEVELS:
Indicate whether measured from $\ \square$ ground level or $\ \square$ from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
3.00.00.00.00.00.00.00.00.00.00.00.00.00
C. WATER QUANTITY
Does your well supply enough water for your use? Yes \square No \square
If no, is this the case: All the time \square Some of the time \square Seasonally \square Other
Use: Domestic: No ☐ Yes ☐ No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No ☐ Yes ☐ Lawn Watering/Garden: No ☐ Yes ☐
Livestock: No □ Yes □
Industrial: No □ Yes □ (provide details)
Irrigation: No ☐ Yes ☐ (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well?
If so, when?
What was the cause of the problem? ☐ Drought ☐ Pump Failure ☐ Plugging
□ Increased Usage □ Interference □ Other (Please Specify)

Did you ever have your well deepened or cleaned, or a new well constructed?
Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)

D. WATER TREATMENT AND QUALITY
Fresh □ Sulphur □ Salty □ Iron Staining □ Soft □ Hard □
Water Treatment equipment: Softener □ UV □ Reverse Osmosis □ Filters □
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? \square Poor \square Good \square Excellent
Has your water quality previously been tested? No \square Yes \square
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:
Where was the sample collected:
Field Measurements: Conductivity Temperature
E. SURFACE WATER
Are there any ponds, creeks etc. on the property?
If ves. indicate size and depth? Use?

SYSTEM DETAILS

What type of sewage disposal system do you have: ☐ Holding Tank (sewage removed by regular pump-outs)

□ Septic Tank and Leaching Bed
□ Other method of on-site disposal. Specify
☐ Do not know
Date or year Constructed Contractor
How often do you have the holding tank or septic tank pumped out?
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusua

odours, soft ground, etc.)

Completed by:	 Date	

PRIVATE WATER WELL SURVEY QUESTIONNAIRE

Sept 19 2439 Maller Rl

TYPE OF DWELLING:	☐ Residential ☐ 0	Commercial Other:	Zwells	sonsite no	tin use
Is the owner willing to	participate in the surve		Yes □	No - Clst	-
(If no, record address I	pelow)				
I. OWNER / OCCUPAN	T INFORMATION AND	GENERAL QU	ESTIONS:	, not	hooked u g connect
OWNER:				yet, man	g connect
Name:		Telephone N	lo. (business)		. to Hum
Address:		Telephone N	No. (home)		in futue
Number of Bathrooms					
OCCUPANT (if other th	an Owner):				out door
Name:		Telephone N	lo. (business)	***************************************	" 018E
Address:		Telephone N	lo. (home)		×
Number of Bathrooms		Number of C	occupants		it.
GENERAL QUESTIONS	;				
How long have you owne	ed/occupied this dwelling	?			
Is the property used year	r-round or seasonally?				
Is well water used for dri	nking water supply? Y	∕es □	No □		
If no, why not?				**************************	ž.
Are there any other wells	or water supplies used	on the property	?		8)
If no, how long has it bee	en since well water was u	ised for drinking	j?		*/)
If no, what is the origin of	f drinking water?			***************************************	ě
II. WATER WELL					=
A. WELL CONSTRUCT	ION DETAILS:				
Do you have a copy of th	e MOE Water Well Reco	ord? □ Yes (We	ell Record #)	j
ATTACH A COPY OF W	ATER WELL RECORD,				
Date or Year Constructed		Contract	or		
Type of Well: Drilled □	Dug □ Well Diar	meter (inches)			
Present Well Depth:	Original We	ell Depth	🗆 s	ame as Present	

Golder Associates

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface □ 2) Buried inside a well pit □ 3) Buried, but not in a well pit □
The accurate location of the well is Known □ Unknown □
GPS coordinates: E N
Type of pump: Submersible ☐ Jet Pump ☐ Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil) Both
B. WELL WATER LEVELS:
Indicate whether measured from $\ \square$ ground level or $\ \square$ from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes \square No \square
If no, is this the case: All the time \square Some of the time \square Seasonally \square Other
Use: Domestic: No \square Yes \square No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No ☐ Yes ☐ Lawn Watering/Garden: No ☐ Yes ☐
Livestock: No □ Yes □
Industrial: No ☐ Yes ☐ (provide details)
Irrigation: No ☐ Yes ☐ (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well?
If so, when?
What was the cause of the problem? ☐ Drought ☐ Pump Failure ☐ Plugging
□ Increased Usage □ Interference □ Other (Please Specify)

Did you ever have your well deepened or cleaned, or a new well constructed? If so, why? Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)

D. WATER TREATMENT AND QUALITY
Fresh □ Sulphur □ Salty □ Iron Staining □ Soft □ Hard □
Water Treatment equipment: Softener □ UV □ Reverse Osmosis □ Filters □
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? ☐ Poor ☐ Good ☐ Excellent
Has your water quality previously been tested? No ☐ Yes ☐
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:
Where was the sample collected:
Field Measurements: Conductivity Temperature pH
E. SURFACE WATER
Are there any ponds, creeks etc. on the property?
If yes, indicate size and depth? Use?

SYSTEM DETAILS
What type of sewage disposal system do you have:
☐ Holding Tank (sewage removed by regular pump-outs)
☐ Septic Tank and Leaching Bed
☐ Other method of on-site disposal. Specify
☐ Do not know
Date or year Constructed Contractor
How often do you have the holding tank or septic tank pumped out?
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusua

odours, soft ground, etc.)

Completed by:	 Date	

PRIVATE WATER WELL SURVEY QUESTIONNAIRE

2229 44-11 13

	Nowou
	ommercial Cistern
Institutional	ther:
Is the owner willing to participate in the survey	? Yes ⊠ No □
(If no, record address below)	3
I. OWNER / OCCUPANT INFORMATION AND G	ENERAL QUESTIONS:
OWNER:	
Name:	Telephone No. (business)
Address:	Telephone No. (home)
Number of Bathrooms	Number of Occupants
OCCUPANT (if other than Owner):	
Name:	Telephone No. (business)
Address:	Telephone No. (home)
Number of Bathrooms	Number of Occupants
GENERAL QUESTIONS	
How long have you owned/occupied this dwelling?	
Is the property used year-round or seasonally?	
Is well water used for drinking water supply? Ye	
If no, why not?	
Are there any other wells or water supplies used or	
If no, how long has it been since well water was us	
If no, what is the origin of drinking water?	
II. WATER WELL	
A. WELL CONSTRUCTION DETAILS:	
	10. [] \ (10. []
Do you have a copy of the MOE Water Well Recor	d? □ Yes (Well Record #) □ No
ATTACH A COPY OF WATER WELL RECORD, I	
Date or Year Constructed	Contractor
Type of Well: Drilled \square Dug \square Well Diam	neter (inches)
Present Well Depth: Original Well	

Golder Associates

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface □ 2) Buried inside a well pit □ 3) Buried, but not in a well pit □
The accurate location of the well is $\mbox{ Known }\square$ $\mbox{ Unknown }\square$
GPS coordinates: E N
Type of pump: Submersible ☐ Jet Pump ☐ Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil) Both
B. WELL WATER LEVELS:
Indicate whether measured from ☐ ground level or ☐ from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes \square No \square
If no, is this the case: All the time \square Some of the time \square Seasonally \square Other
Use: Domestic: No ☐ Yes ☐ No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No ☐ Yes ☐ Lawn Watering/Garden: No ☐ Yes ☐
Livestock: No □ Yes □
Industrial: No ☐ Yes ☐ (provide details)
Irrigation: No ☐ Yes ☐ (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well? If so, when?
What was the cause of the problem? ☐ Drought ☐ Pump Failure ☐ Plugging
□ Increased Usage □ Interference □ Other (Please Specify)

Did you ever have your well deepened or cleaned, or a new well constructed?
Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)

D. WATER TREATMENT AND QUALITY
Fresh □ Sulphur □ Salty □ Iron Staining □ Soft □ Hard □
Water Treatment equipment: Softener □ UV □ Reverse Osmosis □ Filters □
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? \square Poor \square Good \square Excellent
Has your water quality previously been tested? No \square Yes \square
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:
Where was the sample collected:
Field Measurements: Conductivity Temperature pH
E. SURFACE WATER
Are there any ponds, creeks etc. on the property?

SYSTEM DETAILS

What type of sewage disposal system do you have:
☐ Holding Tank (sewage removed by regular pump-outs)
☐ Septic Tank and Leaching Bed
□ Other method of on-site disposal. Specify
☐ Do not know
Date or year Constructed Contractor
How often do you have the holding tank or septic tank pumped out?
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Completed by:	 Date	

S:\active\2017\3 Proj\1771656 Rankin_License App_Port Colborne\Phase 1000 Hydrogeology\Task 1002 - Water Well Survey\Private Well Survey Form 2017.doc

Sep. 19

PRIVATE WATER WELL SURVEY QUESTIONNAIRE

1826	Mulle- Nd
This.	ate there is a Vell
1.00	C.Stern
	0131011

	mmercial CvS
Is the owner willing to participate in the survey?	? Yes □ No □
I. OWNER / OCCUPANT INFORMATION AND GE	ENERAL QUESTIONS:
OWNER:	
Name:	Telephone No. (business)
Address:	Telephone No. (home)
Number of Bathrooms	Number of Occupants
OCCUPANT (if other than Owner):	
Name:	Telephone No. (business)
Address:	Telephone No. (home)
Number of Bathrooms	Number of Occupants
GENERAL QUESTIONS How long have you owned/occupied this dwelling?	
Is the property used year-round or seasonally?	
Is well water used for drinking water supply? Yes	
If no, why not?	
Are there any other wells or water supplies used or	
If no, how long has it been since well water was use	
II. WATER WELL	
A. WELL CONSTRUCTION DETAILS:	
Do you have a copy of the MOE Water Well Record	d? □ Yes (Well Record #) □ No
ATTACH A COPY OF WATER WELL RECORD, I	
Date or Year Constructed	Contractor
Type of Well: Drilled \square Dug \square Well Diam	eter (inches)
Present Well Depth: Original Well	Depth

Golder Associates

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface □ 2) Buried inside a well pit □ 3) Buried, but not in a well pit □
The accurate location of the well is $\mbox{ Known }\square$ $\mbox{ Unknown }\square$
GPS coordinates: E N
Type of pump: Submersible □ Jet Pump □ Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil)
B. WELL WATER LEVELS:
Indicate whether measured from □ ground level or □ from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes □ No □
If no, is this the case: All the time \square Some of the time \square Seasonally \square Other
Use: Domestic: No ☐ Yes ☐ No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No ☐ Yes ☐ Lawn Watering/Garden: No ☐ Yes ☐
Livestock: No □ Yes □
Industrial: No □ Yes □ (provide details)
Irrigation: No ☐ Yes ☐ (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well? If so, when?
What was the cause of the problem? ☐ Drought ☐ Pump Failure ☐ Plugging
□ Increased Usage □ Interference □ Other (Please Specify)

Did you ever have your well deepened or cleaned, or a new well constructed?
Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
D. WATER TREATMENT AND QUALITY
Fresh □ Sulphur □ Salty □ Iron Staining □ Soft □ Hard □
Water Treatment equipment: Softener □ UV □ Reverse Osmosis □ Filters □
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? ☐ Poor ☐ Good ☐ Excellent
Has your water quality previously been tested? No □ Yes □
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:
Where was the sample collected:
Field Measurements: Conductivity Temperature pH
E. SURFACE WATER
Are there any ponds, creeks etc. on the property?
If ves. indicate size and depth? Use?

SYSTEM DETAILS

What type of sewage disposal system do you have:
☐ Holding Tank (sewage removed by regular pump-outs)
□ Septic Tank and Leaching Bed
☐ Other method of on-site disposal. Specify
□ Do not know
Date or year Constructed Contractor
How often do you have the holding tank or septic tank pumped out?
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.)

Completed by:	 Date	

PRIVATE WATER WELL SURVEY QUESTIONNAIRE

not connector

	Cisten
	mmercial Well on property,
Is the owner willing to participate in the survey	? Yes □ No □
(If no, record address below)	
I. OWNER / OCCUPANT INFORMATION AND G	ENERAL QUESTIONS:
OWNER:	
Name:	Telephone No. (business)
Address: 1375 kullano	Telephone No. (home)
Number of Bathrooms	Number of Occupants
OCCUPANT (if other than Owner):	
Name:	Telephone No. (business)
Address:	Telephone No. (home)
Number of Bathrooms	Number of Occupants
GENERAL QUESTIONS	
How long have you owned/occupied this dwelling?	
Is the property used year-round or seasonally?	
Is well water used for drinking water supply? Ye	s □ No □
If no, why not?	
Are there any other wells or water supplies used or	the property?
If no, how long has it been since well water was use	ed for drinking?
If no, what is the origin of drinking water?	
II. WATER WELL	
A. WELL CONSTRUCTION DETAILS:	
Do you have a copy of the MOE Water Well Record	
ATTACH A COPY OF WATER WELL RECORD, I	□ No F <i>POSSIBLE</i>
Date or Year Constructed	Contractor
Type of Well: Drilled \Box Dug \Box Well Diam	eter (inches)
Present Well Depth: Original Well	Depth 🗆 Same as Present

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface 2) Buried inside a well pit 3) Buried, but not in a well pit
The accurate location of the well is $$ Known $$ \square $$ $$ $$ Unknown $$ \square
GPS coordinates: E N
Type of pump: Submersible \square Jet Pump \square Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil)
B. WELL WATER LEVELS:
Indicate whether measured from $\ \square$ ground level or $\ \square$ from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes ☐ No ☐
If no, is this the case: All the time ☐ Some of the time ☐ Seasonally ☐ Other
Use: Domestic: No ☐ Yes ☐ No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No ☐ Yes ☐ Lawn Watering/Garden: No ☐ Yes ☐
Livestock: No □ Yes □
Industrial: No 🗆 Yes 🗀 (provide details)
Irrigation: No ☐ Yes ☐ (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well?
What was the cause of the problem? □ Drought □ Pump Failure □ Plugging
□ Increased Usage □ Interference □ Other (Please Specify)

Did you ever have your well deepened or cleaned, or a new well constructed?
Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
D. WATER TREATMENT AND QUALITY
Fresh □ Sulphur □ Salty □ Iron Staining □ Soft □ Hard □
Water Treatment equipment: Softener □ UV □ Reverse Osmosis □ Filters □
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? \Box Poor \Box Good \Box Excellent
Has your water quality previously been tested? No □ Yes □
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:
Where was the sample collected:
Field Measurements: Conductivity Temperature
Field Measurements: Conductivity Temperature
E. SURFACE WATER
Are there any ponds, creeks etc. on the property?
If ves_indicate size and denth? Use?

SYSTEM DETAILS

What type of sewage disposal system do you have:
☐ Holding Tank (sewage removed by regular pump-outs)
□ Septic Tank and Leaching Bed
☐ Other method of on-site disposal. Specify
☐ Do not know
Date or year Constructed Contractor
How often do you have the holding tank or septic tank pumped out?
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.)

Completed by:	· · · · · · · · · · · · · · · · · · ·	Date	

PRIVATE WATER WELL SURVEY QUESTIONNAIRE

	ommercial her:
Is the owner willing to participate in the survey	? Yes □ No □
(If no, record address below)	CISTERN / NO WEL
I. OWNER / OCCUPANT INFORMATION AND G	ENERAL QUESTIONS:
OWNER:	
Name: Evon Gillespie Address: 1446 Killaly	Telephone No. (business)
Address: 1446 Cillaly	Telephone No. (home)
Number of Bathrooms	Number of Occupants
OCCUPANT (if other than Owner):	
Name:	Telephone No. (business)
Address:	Telephone No. (home)
Number of Bathrooms	Number of Occupants
Is well water used for drinking water supply? Ye If no, why not? Are there any other wells or water supplies used or If no, how long has it been since well water was us	es □ No □ n the property?
II. WATER WELL	
A. WELL CONSTRUCTION DETAILS:	
Do you have a copy of the MOE Water Well Record	□No
ATTACH A COPY OF WATER WELL RECORD, I	F POSSIBLE
Date or Year Constructed	Contractor
Type of Well: Drilled \square Dug \square Well Diam	neter (inches)
Present Well Depth: Original Well	Depth 🗆 Same as Present

Is Well Vented and How?:		
Top of Well Casing is:		
1) Above ground surface 2) Buried inside a well pit 3) Buried, but not in a well pit		
The accurate location of the well is Known □ Unknown □		
GPS coordinates: E N		
Type of pump: Submersible ☐ Jet Pump ☐ Depth of Pump Intake (if known)		
Well completed into: Bedrock Overburden (Soil) Both		
B. WELL WATER LEVELS:		
Indicate whether measured from $\ \square$ ground level or $\ \square$ from top of casing		
Original water level depth in metres (on water well record)		
Subsequent water level measurements (give depths in metres and dates)		
30000000000000000000000000000000000000		

C. WATER QUANTITY		
Does your well supply enough water for your use? Yes \square No \square		
If no, is this the case: All the time \Box Some of the time \Box Seasonally \Box Other		
Use: Domestic: No \square Yes \square No. of persons using water from well		
Domestic includes (circle all that apply) Drinking Washing Cooking		
Pool: No ☐ Yes ☐ Lawn Watering/Garden: No ☐ Yes ☐		
Livestock: No □ Yes □		
Industrial: No 🗆 Yes 🗀 (provide details)		
Irrigation: No □ Yes □ (provide details)		
Other Uses Daily Usage (if known)		
Have you ever experienced any problems with your well? If so, when?		
What was the cause of the problem? ☐ Drought ☐ Pump Failure ☐ Plugging		
☐ Increased Usage ☐ Interference ☐ Other (Please Specify)		

Did you ever have your well deepened or cleaned, or a new well constructed?
Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
······································
D. WATER TREATMENT AND QUALITY
Fresh □ Sulphur □ Salty □ Iron Staining □ Soft □ Hard □
Water Treatment equipment: Softener □ UV □ Reverse Osmosis □ Filters □
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? ☐ Poor ☐ Good ☐ Excellent
Has your water quality previously been tested? No □ Yes □
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:
Where was the sample collected:
Field Measurements: ConductivityTemperature pH
E. SURFACE WATER
Are there any ponds, creeks etc. on the property?
If yes, indicate size and denth? Use?

What type of sewage disposal system do you have: Holding Tank (sewage removed by regular pump-outs) Septic Tank and Leaching Bed Other method of on-site disposal. Specify..... Do not know Date or year Constructed Contractor How often do you have the holding tank or septic tank pumped out?.... When was the last time?..... Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding

tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual

odours, soft ground, etc.)

Completed by:	 Date	

August 2020 1771656-1000-Rev1

APPENDIX F

MECP Water Well Records

LABEL		DATE	EASTING			CR TOP LEN		RATE	TIME				WELL NAME
0000070			NORTHING	masl	mbgl Qu	mbgl m	mbgl	L/min	min		METHOD		
6600870	1	Jun-67	647750	178.3	14.3 Su		FLW	9	15	13.7		WS	MOE# 6600870
2222274	16		4750356	470.0	9.8 Su				100	4= 0	CT	DO	0.0 BRWN CLAY 3.0 SHLE GRVL 4.3 LMSN 15.2
6600871	1	Nov-67	647518	178.9	17.4 Su		0.3	9	120	15.2	4720	WS	MOE# 6600871
	16		4750362								CT	DO	0.0 BRWN CLAY 7.3 LMSN 17.4
6600880	1	May-57	646259	179.2	6.7 Su		0.6	5	60	6.1	2526	WS	MOE# 6600880
0000001	19		4750312	4=0.0							CT	DO	0.0 CLAY 4.6 LMSN 7.6
6600881	1	Sep-60	646581	179.8	4.6 Fr		1.5	91	30	2.4	5425	WS	MOE# 6600881
	19		4750278								CT	DO	0.0 TPSL 0.3 BRWN CLAY 1.8 BRWN LMSN 4.9
6600884	1	Jan-52	646160	179.5	7.9 Su		2.4	18	30	2.4	4720	WS	MOE# 6600884
	20		4750310								CT	DO	0.0 CLAY 0.9 LMSN 7.9
6600886	1	Sep-52	645390	178.0	5.8 Fr		1.8	14	30	1.8	4720	WS	MOE# 6600886
	21		4750294								CT	DO	0.0 TPSL CLAY 2.1 LMSN 5.8
6600890	1	Jul-61	645466	178.3	6.1 Fr		1.8	32	90	5.5	4720	WS	MOE# 6600890
	21		4750312								CT	DO	0.0 CLAY 1.8 LMSN 6.1
6600895	1	Jul-63	645738	180.1	9.1 Fr		3.0	9	90	8.5	4720	WS	MOE# 6600895
	21		4750550								CT	DO	0.0 CLAY 2.7 LMSN 9.1
6600898	1	Jun-51	645292	178.0	8.2 Mn		1.2				1915	WS	MOE# 6600898
	22		4750306								CT	DO	0.0 CLAY 1.5 LMSN 8.2
6600954	2	Feb-47	648505	181.4			NR				3204	WS	MOE# 6600954
	14		4750524								CT	DO	0.0 TPSL CLAY 2.4 LMSN 4.0
6600955	2	May-52	648342	180.7	6.7 Fr		2.4			2.4	3210	WS	MOE# 6600955
	14		4750490								CT	DO	0.0 CLAY STNS 2.4 LMSN 6.7
6600956	2	Aug-54	648277	181.1	10.1 Fr		5.8	36	10	5.8	3208	WS	MOE# 6600956
	14		4752434								CT	DO	0.0 CLAY 1.2 BRWN LMSN 10.1
6600957	2	Nov-54	648446	180.1	3.4 Fr		NR	91	120	1.2	3536	WS	MOE# 6600957
	14		4750518								CT	DO	0.0 LMSN 3.4
6600958	2	Jul-59	648324	180.1	8.8 Su		3.7	23	60	4.3	2526	WS	MOE# 6600958
	14		4750752								CT	DO	0.0 CLAY 3.7 LMSN 8.8
6600959	2	Apr-64	648277	182.9	15.2 Fr		4.9	23	90	12.2	4720	WS	MOE# 6600959
	14		4752176								CT	DO	0.0 RED CLAY 8.2 SHLE 15.2
6600960	2	Nov-65	648502	180.4	9.8 Fr		1.2	45	90	4.6	4720	WS	MOE# 6600960
	14		4750502								CT	DO	0.0 CLAY 3.7 LMSN 9.8
6600961	2	Jun-51	648256	179.8	11.0 Fr		1.5				1915	WS	MOE# 6600961
	15		4750556								CT	DO	0.0 CLAY 4.6 GREY LMSN 11.0
6600962	2	Jul-53	648246	180.1	9.1 Fr		NR	23	120		3210	WS	MOE# 6600962
	15		4750576								CT	DO	0.0 CLAY MSND STNS 1.2 RED CLAY 5.2 GREY
													SHLE 9.4
6600963	2	May-54	648237	180.1	16.5 Fr		0.9	136	60	0.9	3208	WS	MOE# 6600963
	15		4750570								CT	DO	0.0 CLAY 5.5 LMSN 16.5
6600964	2	Jul-54	648232	180.4	9.1 Fr		1.5	364	15	1.5	3208	WS	MOE# 6600964
	15		4750590								CT	DO	0.0 CLAY 4.9 LMSN 9.1
6600965	2	Jun-56	648258	180.1	6.7 Fr		1.5	227	60	3.0	2526	WS	MOE# 6600965
	15		4750634								CT	DO	0.0 CLAY 2.4 LMSN 6.7
6600966	2	May-65	648159	180.1	8.5 Su		0.6	91	60	0.6	4720	WS	MOE# 6600966
	15	-	4750630								CT	DO	0.0 CLAY 3.7 LMSN 8.5
6600967	2	Nov-66	648104	179.8	9.1 Su		1.8	45	90	3.7	4720	WS	MOE# 6600967
	15		4750456								СТ	DO	0.0 CLAY 4.6 LMSN 9.1
L			55.55										

LABEL		DATE	EASTING			CR TOP LEN		RATE	TIME				WELL NAME
			NORTHING	masl	mbgl Qu	mbgl m		L/min	min	mbgi			DESCRIPTION OF MATERIALS
6600968	2	Aug-49	647594	185.6	13.1 Fr		7.6				3204	WS	MOE# 6600968
	16		4752384								CT	DO	0.0 CLAY GRVL 3.0 CLAY 9.1 LMSN 13.7
6600969	2	May-54	647466	184.7	8.2 Fr		2.4	68	60	2.4	3210	WS	MOE# 6600969
	16	0	4752258	100 =	1005		40 =			40.0	CT	DO	0.0 TPSL 0.6 CLAY 5.5 QSND 7.6 LMSN 9.4
6600970	2	Oct-63	647728	188.7	16.8 Fr		10.7	45	90	12.8	4720	WS	MOE# 6600970
2222274	16	1 1 40	4752278	470.0	700		0.0				CT	DO	0.0 TPSL 0.6 MSND 13.7 LMSN 16.8
6600971	2	Jul-48	647384	179.2	7.9 Su		0.6	9	60	8.2	3017	WS	MOE# 6600971
22222	17	14 50	4750440	100.1	0.00		0.4			0.4	CT	DO	0.0 RED CLAY 2.7 LMSN 8.8
6600972	2	Mar-52	647437	180.1	8.2 Su		2.4			2.4	3210	WS	MOE# 6600972
22222	17	A 54	4750906	100.0	705			4.5			CT	DO	0.0 CLAY 5.2 CLAY GRVL 5.8 LMSN 9.1
6600973	2	Aug-54	647284	182.9	7.3 Fr		3.0	45	60	3.0	3209	WS	MOE# 6600973
0000074	17	M 50	4752120	470.0	10.0 E		0.4	00	00	0.4	CT	DO	0.0 TPSL 0.6 CLAY 6.4 LMSN 7.3
6600974	2	May-58	647418	179.8	12.2 Fr		2.4	68	30	2.4	4720	WS	MOE# 6600974
0000075	17	0 10	4750632	100.1	0.5.5		0.7	40	00	0.4	CT	IR VACO	0.0 RED CLAY 4.6 BLUE CLAY 7.9 LMSN 12.2
6600975	2	Sep-49	647028	180.1	8.5 Fr		3.7	18	30	6.1	3204	WS	MOE# 6600975
2000070	18	1.154	4750826	100.1	0.5.5		0.4				CT	DO	0.0 TPSL 0.9 LMSN 9.1
6600976	2	Jul-51	646664	180.1	8.5 Fr		2.4				4754	WS	MOE# 6600976
	18		4750690	4=0.0	1005						CT	DO	0.0 CLAY 0.9 LMSN 9.1
6600977	2	Nov-51	646663	178.3	19.2 Fr		5.2	18	30	5.2	4720	WS	MOE# 6600977
	18		4750558	100.1							CT	ST	0.0 CLAY 1.8 BRWN SHLE 19.2
6600978	2	Jul-57	646825	180.1	6.4 Fr		2.1	45	30	2.1	4720	WS	MOE# 6600978
	18		4750408	100.1	2.1.5						CT	DO	0.0 RED CLAY 2.4 LMSN 6.4
6600979	2	Jan-59	646965	180.1	6.4 Fr		1.8	227	60	2.4	2526	WS	MOE# 6600979
	18		4750418								CT	DO	0.0 CLAY 2.1 LMSN 6.4
6600980	2	Jun-61	646861	180.1	6.1 Fr		0.9	68	60	0.9	4720	WS	MOE# 6600980
	18		4750434								CT	DO	0.0 TPSL CLAY 0.6 LMSN 6.1
6600981	2	Dec-47	646271	179.2	4.0 Fr		0.3				4629	WS	MOE# 6600981
	19		4750442								CT	DO	0.0 CLAY 3.0 LMSN 4.0
6600982	2	Dec-47	646272	179.2	7.9 Fr		0.3				4629	WS	MOE# 6600982
	19		4750442								CT	DO	0.0 CLAY 4.6 LMSN 7.9
6600983	2	May-52	646514	179.8	4.6 Su		0.6			0.6	3210	WS	MOE# 6600983
	19		4750406								CT	DO	0.0 CLAY 2.4 LMSN 4.6
6600984	2	Jul-52	646623	179.2	6.4 Su		1.2			1.2	3210	WS	MOE# 6600984
	19		4750488								CT	DO	0.0 RED CLAY 3.0 LMSN 6.4
6600985	2	Jul-53	646593	179.8	11.9 Su		8.2	18	120	9.1	3210	WS	MOE# 6600985
	19		4750406								СТ	DO	0.0 CLAY MSND STNS 3.4 GREY SHLE 11.9
6600986	2	Jul-53	645864	179.2	4.9 Su		0.3	9	120	0.9	3210	WS	MOE# 6600986
	19		4750382								CT	DO	0.0 CLAY MSND STNS 1.8 GREY SHLE 4.9
6600987	2	May-52	645837	178.9	7.6 Su		2.1			2.1	3210	WS	MOE# 6600987
	20		4750396								CT	DO	0.0 CLAY 1.5 LMSN 7.6
6600988	2	Mar-67	646213	179.5	7.9 Su		0.6	68	60	0.6	4720	WS	MOE# 6600988
	20		4750418								СТ	DO	0.0 CLAY 3.7 LMSN 7.9
6600989	2	Jul-48	645750	179.8	8.5 Fr		2.4	23	30	7.6	3017	WS	MOE# 6600989
	21		4750390								CT	DO	0.0 CLAY GRVL 4.3 LMSN 8.8
6600990	2	Mar-50	645708	182.3	8.8 Fr		1.2			9.4	3809	WS	MOE# 6600990
	21		4751222								CT	DO	0.0 TPSL 0.6 LMSN 9.4

LABEL	CON	DATE	EASTING	ELEV	WTR FND	CR TOP LEN		RATE	TIME	PL I	DRILLER	TYPE	WELL NAME
	LOT	mmm-yr	NORTHING	masl	mbgl Qu	mbgl m	mbgl	L/min	min	mbgl	METHOD	STAT	DESCRIPTION OF MATERIALS
6600991	2	Apr-53	645784	179.8	4.9 Fr		1.2	23			3210	WS	MOE# 6600991
	21	•	4750466								CT	DO	0.0 CLAY MSND STNS 0.9 GREY SHLE 4.9
6600992	2	Oct-53	645764	180.4	7.3 Su		1.2	18	30	7.3	4720	WS	MOE# 6600992
	21		4750468								CT	DO	0.0 CLAY 2.7 LMSN 7.3
6600994	2	Sep-59	645768	182.0	5.8 Fr		1.5	18	60	2.4	2526	WS	MOE# 6600994
	21		4751138								CT	DO	0.0 TPSL STNS 0.6 LMSN 5.8
6600995	2	Mar-62	645701	182.6	9.8 Fr		4.6	45	60	6.1	4720	WS	MOE# 6600995
	21		4751196								CT	DO	0.0 LMSN 9.8
6600996	2	Dec-48	645166	180.1	4.9 Fr		0.9				3204	WS	MOE# 6600996
	22		4751336								CT	DO	0.0 TPSL CLAY 2.4 LMSN 4.9
6600997	2	Mar-52	645177	180.7	6.4 Su		3.4	18	30	3.4	4720	WS	MOE# 6600997
	22		4751486								CT	DO	0.0 TPSL CLAY 2.4 BLCK SHLE 6.7
6600998	2	Aug-57	644994	180.7	4.3 Fr		1.8	14	30	2.7	2526	WS	MOE# 6600998
	22	Ü	4751486								CT	DO	0.0 CLAY 2.4 LMSN 4.3
6600999	2	May-58	645033	181.7	7.6 Su		1.2	9	30	7.6	4720	WS	MOE# 6600999
	22	•	4751700								CT	DO	0.0 RED CLAY 1.8 SHLE 7.6
6601000	2	Jul-59	645047	181.1	10.7 Su		3.7		90		4720	WS	MOE# 6601000
	22		4751582								CT	DO	0.0 CLAY 1.8 GREY LMSN 10.7
6601001	2	May-59	644985	180.1	6.7 Su		3.7	23	60	6.1	2526	WS	MOE# 6601001
	22	,	4751410								CT	DO	0.0 CLAY 1.8 LMSN 7.9
6601002	2	May-59	645037	180.1	3.0 Fr		1.5	9	60	2.1	2526	WS	MOE# 6601002
	22	,	4751430								CT	DO	0.0 CLAY 1.8 LMSN 3.7
6601003	2	Apr-54	644925	179.8	6.7 Fr		4.6	45	60	4.6	2526	WS	MOE# 6601003
	23	•	4751318								CT	DO	0.0 CLAY 3.4 LMSN 6.7
6601091	3	May-58	647479	185.0	7.9 Fr		2.4	68	30	2.4	4720	WS	MOE# 6601091
	16	,	4752844								CT	DO	0.0 RED CLAY 3.7 SHLE 7.9
6601092	3	Nov-65	647608	185.3	12.8 Fr		6.1	68	90	6.1	4720	WS	MOE# 6601092
	16		4752492								CT	CO	0.0 BLUE CLAY 7.9 GRVL 8.8 SHLE 12.8
6601093	3	Oct-66	647603	185.3	12.5 Fr		6.7	91	90	8.2	4720	WS	MOE# 6601093
	16		4752514								CT	ST	0.0 CLAY 6.7 GRVL MSND 8.2 LMSN 12.5
6601094	3	Aug-47	647036	184.1	8.5 Fr		8.5				1915	WS	MOE# 6601094
	17	•	4752450								CT	DO	0.0 TPSL 0.6 MSND 4.3 LMSN 8.5
6601099	3	Mar-59	647386	184.7	9.4 Fr		3.0	45	30	3.0	4720	WS	MOE# 6601099
	17		4752618								CT	DO	0.0 RED CLAY 5.2 GREY LMSN 9.4
6601100	3	Mar-59	647385	184.4	10.1 Fr		3.7	45	30	3.7	4720	WS	MOE# 6601100
	17		4752496								CT	DO	0.0 RED CLAY 5.8 GREY LMSN 10.1
6601102	3	Jul-61	647396	184.7	8.8 Fr		2.4	32	60	4.6	4720	WS	MOE# 6601102
	17		4752714								CT	DO	0.0 CLAY 4.9 LMSN 8.8
6601103	3	Apr-62	647381	185.3	8.2 Fr		1.2	45	60	3.7	4720		MOE# 6601103
	17	•	4753086								CT	DO	0.0 BRWN CLAY 3.7 LMSN 8.2
6601104	3	Sep-65	647379	186.8	9.4 Fr		3.7	32	90	6.1	4720	WS	MOE# 6601104
	17	•	4753240								СТ	DO	0.0 CLAY 2.4 SHLE 6.7 LMSN 9.4
6601112		Sep-46	646224	184.1	11.0 Fr		NR				4629	WS	MOE# 6601112
	19		4752458								CT	DO	0.0 CLAY 3.0 LMSN 14.0
6601121	3	Apr-47	646152	184.4	15.2 Fr		NR				1915	WS	MOE# 6601121
	20	•	4752446								CT	DO	0.0 CLAY 3.4 LMSN 15.2
<u> </u>													

LABEL		DATE mmm-yr	EASTING NORTHING	ELEV masl	WTR FND mbgl Qu	CR TOP LEN		RATE L/min	TIME min				WELL NAME DESCRIPTION OF MATERIALS
6601125	3	Jun-57	645642	185.0	11.9 Fr	<u> </u>	2.7	45	30	2.7	4720	WS	MOE# 6601125
0001120	21	oun or	4752420	100.0	11.011		2.1	-10	00	,	CT	DO	0.0 TPSL CLAY 0.9 SHLE 3.0 LMSN 11.9
6601126	3	Jun-58	645359	185.0	15.8 Fr		5.2	18	30	15.8	4720	WS	MOE# 6601126
0001120	21	0411-00	4752424	100.0	10.011		0.2	10	00	10.0	CT	DO	0.0 RED CLAY 8.5 GREY LMSN 15.8
6602558	2	Oct-70	647415	182.0	10.7 Fr		2.4	45	60	12.2	5405	WS	MOE# 6602558
0002330	17	001-70	4751882	102.0	10.7 11		2.4	40	00	12.2	CT	DO	0.0 RED CLAY STNS 5.8 LMSN 13.7
6602629	2	Aug-71	648277	182.9	12.2 Fr		5.8	55	60	9.1	3640	WS	MOE# 6602629
0002023	14	Aug-1	4752182	102.5	12.2 1 1		5.0	33	00	3.1	CT	ST	0.0 BRWN CLAY 7.0 GREY CLAY 8.5 GREY SHLE
	14		4732102								Ci	31	9.1 GREY LMSN 15.2
6602667	2	May-72	647375	182.0	13.4 Fr		2.1	36	60	4.0	3640	WS	MOE# 6602667
0002007	2 17	iviay-12	4751782	102.0	13.4 [1		2.1	30	00	4.0	CT	DO	0.0 BRWN CLAY 6.4 GREY LMSN 13.7
6600706		Can 70	646605	100.7	6.7 Su		2.4	26	60	2.0	3640		MOE# 6602706
6602706	2	Sep-72		180.7	6.7 Su		2.4	36	60	3.0		WS	
0000705	19	0 70	4750922	400.7	47.7.0		0.0			40.0	CT	DO	0.0 BRWN CLAY 2.1 GREY LMSN 7.0
6602785	2	Sep-73	646943	180.7	17.7 Su		3.0	5	60	18.3	3640	AQ	MOE# 6602785
	18		4750898		10.7 Su						CT	-	0.0 BRWN CLAY 4.0 GREY SHLE LMSN 4.6 GREY
0000700		0 1 70	0.400.50	100.1	4.6 Su		4.0	40		40.4	00.40	14/0	LMSN 18.3
6602786	2	Oct-73	646950	180.4	4.3 Fr		1.2	18	60	10.1	3640	WS	MOE# 6602786
	18		4750872								CT	DO	0.0 BRWN CLAY 4.0 GREY GRVL 4.3 GREY SHLE
													4.6 GREY LMSN 10.1
6602787	2	Oct-73	646960	180.1	7.0 Fr		1.5	64	60	2.1	3640	WS	MOE# 6602787
	18		4750418								CT	DO	0.0 BRWN TPSL 0.6 GREY LMSN 7.3
6602789	2	Oct-73	647425	182.3	11.3 Su		4.9	64	60	6.1	3640	WS	MOE# 6602789
	17		4751476								CT	DO	0.0 BRWN CLAY 3.4 GREY LMSN 11.6
6602790	2	Oct-73	647398	183.5	13.7 Fr		4.0	18	75	16.2	3640	WS	MOE# 6602790
	17		4752144								CT	DO	0.0 BRWN CLAY 6.1 BRWN FSND 7.6 BRWN STNS
													8.5 GREY SHLE 9.1 GREY LMSN 16.2
6602929	1	Feb-74	645228	178.0	7.6 Su		1.2	55	60	3.0	3640	WS	MOE# 6602929
	22		4750302								CT	DO	0.0 BRWN CLAY 2.1 GREY LMSN 8.2
6602990	2	Sep-74	647423	182.3	11.6 Fr		4.9	68	60	6.1	3661	WS	MOE# 6602990
	17	-	4751726								CT	DO	0.0 TPSL 0.6 CLAY PCKD 5.5 BRWN CLAY SOFT
													8.2 GREY LMSN 12.2
6603052	2	Feb-75	648102	185.3	16.2 Fr		9.1	68	75	10.1	3640	WS	MOE# 6603052
	15		4752186								CT	ST	0.0 BRWN TPSL 0.6 BRWN SAND GRVL 12.2 GREY
													LMSN 16.5
6603087	3	Jun-75	647661	185.9	10.7 Fr		6.7	114	180	11.6	2102	WS	MOE# 6603087
	16		4752570				***				CT	CO	0.0 BRWN CLAY 1.5 GREY CLAY 10.7 ROCK 22.6
6603090	3	Aug-75	647459	186.2	7.9 Fr		1.8	23	60	8.2	3571	WS	MOE# 6603090
000000	16	rag ro	4753252	100.2	7.0		1.0		00	0.2	CT	DO	0.0 BLCK TPSL 0.3 BRWN CLAY 2.4 GREY LMSN
	10		4700202								01	ЪО	9.1
6603186	2	Nov-74	644995	181.1	12.2 Fr		7.0	23	60	12.2	3640	WS	MOE# 6603186
0000100	22	INOV-14	4751522	101.1	12.2 1 1		7.0	20	00	12.2	CT	DO	0.0 BRWN CLAY PCKD 0.6 BRWN SHLE LOOS 1.2
	22		4731322								Ci	ЪО	GREY LMSN LYRD 12.2
6603188	2	Dec-76	646495	179.8	3.7 Su		0.9	36	60	3.0	3640	WS	MOE# 6603188
0003108		Dec-10		179.0	J.I Ju		0.9	30	00	3.0			
	19		4750402								CT	DO	0.0 BRWN CLAY PCKD 2.1 GREY LMSN FLNT LYRD
6600400	2	Dec 70	647055	105.0	615-		4.0	70	00	2.0	2640	14/0	6.1 MOE# 6602490
6603189	3	Dec-76	647355	185.3	6.1 Fr		1.2	73	60	3.0	3640	WS	MOE# 6603189
	17		4753062		4.0 Fr						CT	DO	0.0 BRWN CLAY PCKD 2.1 BRWN CLAY GRVL PCKD
													3.4 GREY LMSN LYRD 7.6

LABEL		DATE mmm-vr	EASTING NORTHING		WTR FND mbgl Qu	CR TOP LEN mbgl m	SWL mbgl	RATE L/min	TIME min				WELL NAME DESCRIPTION OF MATERIALS
6603234	2	Oct-77	646595		6.1 Su		0.6	9	60	7.3	3640	WS	MOE# 6603234
000020.	19	000	4750402	170.0	0.1 00		0.0	Ŭ			CT	DO	0.0 BRWN TPSL SOFT 0.3 BRWN CLAY PCKD 2.4
	10		4700402								01	ЪО	BRWN SHLE LYRD 3.0 GREY LMSN LYRD 7.6
6603237	1	Sep-77	645815	170.5	9.1 Su		3.0	136	60	4.6	5417	WS	MOE# 6603237
0003237		Sep-11		179.5	9.1 Gu		3.0	130	00	4.0	CT		
6602204	20	May 70	4750322	1017	10.4.5		6.7	04	150	0.0		DO	0.0 BRWN CLAY SNDY 1.8 GREY FLNT 9.8
6603301	3	May-78	647455	104.7	10.4 Su		6.7	91	150	9.8	2123	WS	MOE# 6603301
İ	16		4752742								CT	ST	0.0 BRWN CLAY 2.4 GREY CLAY 6.7 CLAY GRVL
00000=5				4011						40.0	0466	14/0	9.8 ROCK 17.4
6603379	2	Sep-79	647575	184.4	9.1 Fr		8.5	45		12.2	2123	WS	MOE# 6603379
	16		4752682								CT	ST	0.0 CLAY TPSL 0.9 GREY CLAY 4.6 GREY CLAY
													GRVL 8.5 UNKN 16.8
6603653	2	Jul-85	647245	180.4	4.0 Fr		2.7	68	60	3.7	3640	WS	MOE# 6603653
	17		4750861								CT	DO	0.0 BRWN CLAY DNSE 4.0 GREY SHLE 4.6 GREY
													LMSN SHLE LYRD 6.1
6603670	3	Oct-85	647392	184.1	19.2 -		8.2	36	60	15.2	3640	WS	MOE# 6603670
	17		4752587		12.2 Mn						CT	DO	0.0 GREY LMSN LYRD 19.5
6603793	2	Jan-88	647989	179.8	10.1 Su		0.9	95	180	1.5	4795	WS	MOE# 6603793
	_ 16		4750574				•				CT	DO	0.0 BLUE CLAY STNS PCKD 0.9 BRWN CLAY PCKD
			4700074								٥.	20	5.8 GREY FLNT LYRD 8.2 GREY LMSN LYRD 10.7
6603811	2	Apr-88	645594	181 /	5.2 Fr		2.4	27	120	2.4	4795	WS	MOE# 6603811
0000011	22	7h1-00	4751181	101.4	3.0 Fr		۷.4	۷.	120	∠.₩	4793 CT	DO	0.0 BRWN CLAY PCKD 2.7 GREY LMSN LYRD 5.5
6603036	22	Λυα 00	644991	170.0	3.0 FI		NR				4795	-	MOE# 6603826
6603826		Aug-88		179.0			NK					-	
	22		4751315								CT	-	0.0 BRWN CLAY PCKD 2.7 GREY FGVL CLAY PCKD
													3.4 GREY FLNT LMSN LYRD 5.5 GREY LMSN FLNT
													9.1
6604059	2	Jan-92	647364	178.3	13.1 Fr		4.9	55	60	13.1	2123	WS	MOE# 6604059
	17		4750288								RA	DO	0.0 BRWN CLAY 1.2 GREY CLAY 4.6 RED CLAY
													GRVL 11.3 ROCK 13.4
6604078	2	Aug-92	647841	189.0	60.0 Su		12.8	159	120	12.2	2123	WS	MOE# 6604078
İ	16		4752311		49.7 Su						RA	IN	0.0 BRWN CLAY 0.9 BRWN SAND 6.1 BRWN SAND
					47.2 Su								STNS 14.0 ROCK 90.8
6604079	2	Aug-92	647801	188.7	46.9 Su		NR	9			2123	AS	MOE# 6604079
	16	J -	4752212								RA	IN	0.0 BRWN CLAY 1.2 BRWN SAND 4.6 BRWN SAND
			3										GRVL 7.9 BRWN SAND BLDR 10.1 ROCK 90.8
6604129	2	Dec-92	645942	179 2	14.9 Su		4.0	23	90	13.7	4795	WS	MOE# 6604129
550 T 125	20	D00-02	4750422	110.2	8.8 Su		7.0	20	50	10.1	CT	DO	0.0 BRWN CLAY PCKD 1.5 GREY LMSN LYRD 14.9
6604207	1	Jun-95	646585	170.0	4.6 Fr		3.4	27	150	7.0	4795	WS	MOE# 6604207
0004207		Jun-ชอ		119.2			3.4	21	150	7.0			
	21		4750348		3.7 Fr						CT	DO	0.0 BLCK TPSL PCKD 0.3 BRWN CLAY PCKD 2.4
0004007			0.17.105	100.5			<u> </u>				4767	14/0	GREY LMSN LYRD 7.6
6604324		Aug-98	647429	182.9	14.3 Fr		6.1	91	150	6.1	4795	WS	MOE# 6604324
	17		4751579								CT	DO	0.0 BLCK TPSL PCKD 0.3 BRWN CLAY FGVL PCKD
													1.2 GREY LMSN LYRD 14.6
6604339	2	Mar-99	646477	180.1	5.2 Fr		0.9	50	90	6.1	4795	WS	MOE# 6604339
	19		4750399								CT	DO	0.0 BLCK TPSL PCKD 0.3 RED CLAY PCKD 2.4
													GREY LMSN LYRD 6.7
6604521	3	Sep-00	647602	185.0	8.8 Fr	2.1 -6.1	NR				6571	OW	MOE# 6604521
	16		4752548		0.0 1 1						PC	_	0.0 BRWN TPSL LOOS 0.9 GREY LMSN LYRD 14.3
,	10		4732340								гС		U.U DINVIN IFOL LOUS U.S GRET LINSIN LTRU 14.3

LABEL	CON	DATE	EASTING	ELEV	WTR FND	CR TOP LEN	SWL	RATE	TIME	PL	DRILLER	TYPE	WELL NAME
	LOT	mmm-yr	NORTHING	masl	mbgl Qu	mbgl m	mbgl	L/min	min	mbgl	METHOD	STAT	DESCRIPTION OF MATERIALS
6604522	3	Sep-00	647648	186.5	8.2 Fr	0.6 -6.1	NR				6571	OW	MOE# 6604522
	16		4752476								PC	-	0.0 BRWN TPSL LOOS 0.9 GREY LMSN LYRD 12.8
6604662	2	Jun-02	646618	179.5	7.9 Fr		0.6	45	90	9.1	4795	WS	MOE# 6604662
			4750522								CT	DO	0.0 BLCK TPSL PCKD 0.6 BRWN CLAY PCKD 3.0
													GREY LMSN LYRD 10.1
7041805		Feb-07	646849	181.7		3.7 -3.0	NR				6809	OW	MOE# 7041805 TAG#A052598
			4751165								-	-	0.0 RED CLAY SILT 1.5 GREY LMSN 6.7
7160241	2	Feb-11	648246	180.1	5.2 Fr		2.7	95	240	3.4	4795	WS	MOE# 7160241 TAG#A079412
	15		4750504								CT	CO	0.0 BRWN CLAY PCKD 1.5 GREY LMSN SHLE LOOS
													5.5 GREY LMSN DNSE 7.3
7161328		Mar-11	645720	182.0		0.9 -2.4	NR				7241	OW	MOE# 7161328 TAG#A107756
			4751259								DM	TH	0.0 BRWN TPSL SAND SOFT 0.6 GREY ROCK HARD
													3.4
7184673		Jul-12	647889	188.7			7.6		60		2123	AB	MOE# 7184673 TAG#A073942
			4752484								-	Oth	0.0
7185636	1	Jul-12	647454	178.0	17.1 Su		3.0	18	60	11.3	7294	WS	MOE# 7185636 TAG#A115943
	16		4750081								CT	DO	0.0 BRWN TPSL 0.6 BRWN CLAY GRVL 7.0 GREY
													LMSN 18.9
7185637	1	Jul-12	647454	177.7			NR				7294	AQ	MOE# 7185637
	16		4750081								-	DO	0.0

	QUALITY: TYPE:				USE	<u>:</u>		METHOD:		
Fr	Fresh	WS	Water Supply	CO	Comercial	NU	Not Used	CT	Cable Tool	
Mn	Mineral	AQ	Abandoned Quality	DO	Domestic	IR	Irrigation	JT	Jetting	
Sa	Salty	AS	Abandoned Supply	MU	Municipal	AL	Alteration	RC	Rotary Conventional	
Su	Sulphur	AB	Abandonment Record	PU	Public	MO	Monitoring	RA	Rotary Air	
	Unrecorded	TH	Test Hole or Observation	ST	Stock	-	Not Recorded	BR	Boring	

Easting and Northings UTM NAD 83 Zone 17, Translated from Recorded UTM NAD, subject to Field Verified Location or Improved Location Accuracy.

Records Copyright Ministry of Environment Queen's Printer. Selected information tabulated to metric with changes and corrections subject to Driller's Records.

October 2020 1771656-1000-Rev2

APPENDIX G

Curricula Vitae

Education

PhD Osgoode Hall Law School, York University, 2013

LLM Osgoode Hall Law School, York University, 2005

MBA Centre for Innovative Management, Athabasca University, 2001

M.Sc. Earth Sciences, Brock University, 1997

B.Sc. Geological Sciences (Honours), University of Toronto, 1985

Certifications

Professional Geoscientist, P.Geo., Ontario

Certified Professional Accountant, CPA, Ontario

Certified Management Consultant, CMC

Project Management Professional, PMP

Languages

English - Fluent

St. Catharines

Senior Hydrogeologist and Principal

As a Senior Hydrogeologist with Golder, Dr. McFarland has more than 30 years of professional experience and a broad background in conducting, managing, and directing aggregate waste management, mining, power, oil and gas, and ground management and protection projects. He served as the project director for work programs for proposed mines, aggregate operations, and industrial facilities.

He has a broad background in licensing and permitting of pits and quarries. This includes the licensing for the expansion of the Lafarge Dundas Quarry, the expansion of the Lafarge Woodstock Quarry, the expansion of the Nelson Aggregate Quarry, the RW Tomlinson license application, the St. Mary's cement Bonis Quarry, the ongoing expansion of the Port Colborne Quarry, and the Lafarge Goodwood Pit and other sites. He is also involved in numerous PPTW applications for pits and quarries. In addition, he has extensive experience in site selection studies and resource evaluations for aggregate sites.

Sean acted as the Project Director and Senior Hydrogeologist for the 2014 and 2015 annual landfill monitoring reports for the Vale Port Colborne site and for eight landfill monitoring programs in Niagara Region. He was the Project Manager and Senior Hydrogeologist for the extensive Adams Mine landfill project, which involved the successful permitting of a 20 million tonne hydraulic containment engineered landfill facility, within a 200 m deep former open pit mine, following hydrogeological investigations collected over an 8-year period that involved extensive monitoring well installation, electronic instrumentation and testing, pump test analyses and groundwater flow modelling. He has also been an expert witness for hydrogeology at Environmental Assessment (EA) and Ontario Municipal board (OMB) hearings and has been involved in extensive contaminated site investigations including legal disputes.

Additional project experience includes hydrogeological assessments for the low level radioactive (LLRWM) facility concepts of waste management for the Canadian federal government Siting Task Force Secretariat (STFS) in limestone bedrock beneath the Great Lakes, and fractured and faulted Precambrian granitic gneiss at the Chalk River Nuclear Reactor site in northern Ontario, Canada. Further project experience in fractured rock includes the proposed Steetley Landfill, in limestone bedrock of the Niagara escarpment, including an extensive EA level hydrogeological investigation, over a 5-year period, and the existing Brow Landfill including an EPA level investigation, a long-term monitoring program and remediation.

Employment History

Golder Associates Ltd. - Mississauga, Ontario

Senior Geoscientist and Principal (1987 to Present)

Hydrogeologist then Senior Hydrogeologist (1987-present) Managing Principal, Vice President, Canada (2005-2014) Associate - 1997 appointment Principal - 2003 appointment

Geologist and Hydrogeologist (1985 to 1987)

Characterization of proposed and existing metal and industrial mineral facilities and impact assessments for industrial facilities.

Regina Associates Ltd. - Kingston, Ontario

Geoscientist (1983 to 1987)

Characterization of proposed and existing metal and industrial mineral facilities in Ontario, Nova Scotia, Newfoundland, British Columbia, and the Northwest Territories; and hydrogeological impact assessments for industrial facilities.

PROJECT EXPERIENCE - AGGREGATE INDUSTRY

Aggregate Resource Evaluation

Regional Municipality of Peel, ON

of Municipal Affairs and Housing (MMAH). The project was carried out as part of the development of the official plan for the Region.

Region of Peel Regional Municipality of

Peel, ON

Technical advisor for ARIP (Aggregate Resource Inventory Paper) report for the Regional Municipality of Peel. The project involves and evaluation of shale and gravel, limestone and shale resources in the Region and was submitted to the Ontario Geological Survey for publication as a government document ARIP Paper.

Project Manager and geologist for evaluation of sand and gravel and bedrock

resources in the Regional Municipality of Peel, Ontario for the provincial Ministry

Navan Quarry

Navan, ON

Project Manager and geologist for evaluation of sand and gravel and bedrock resources in the Regional Municipality of Peel, Ontario for the provincial Ministry of Municipal Affairs and Housing (MMAH). The project was carried out as part of the development of the official plan for the Region.

Brockville Quarry

Brockville, ON

Project Manager and hydrogeologist for hydrogeological evaluation of the Permanent Lafarge Brockville Quarry. The results of the evaluation were used to negotiate the liability of the quarry to alleged water well interference associated with quarry expansion with the Ontario Ministry of the Environment.

Dufferin Aggregates

ON

Project Director and senior hydrogeologist for numerous aggregate projects at quarries and sand and gravel pits within Ontario including resource evaluations, hydrogeological investigations, and environmental assessments.

Due Diligence Studies

Southern Ontario

Project Manager and senior hydrogeologist for due diligence studies as part of the potential purchase of aggregate companies and operating pits and quarries in Ontario.

Site Selection Studies Southern Ontario

Project Director for site selection studies for development of quarries and sand and gravel operations in Ontario.

Lafarge - North Quarry Flamborough, ON

Project Director for hydrogeological program at the Lafarge (formerly Redland) Quarry Operations in Flamborough, Ontario, to meet the regulatory requirements of the Ontario Ministry of the Environment.

Proposed Halminen Quarry

Project Manager for a private application for a license for a proposed limestone guarry near Buckhorn, Ontario. The project involved management of multi-Buckhorn, ON disciplinary project team public meetings, and application for a Class A licence under the Aggregate Resources Act.

Votorantim Cimentos Bowmanville, ON

Project Director for the development of a limestone/dolostone mine under Lake Ontario. The work programs involve drilling and testing of a 275 m deep borehole under the lake, development of an underground mine plan, preparation of an EA document for regulatory approvals and public participation programs.

Milton Limestone Quarry Peer Review Milton, ON

Project Director for the peer review of the hydrogeological and adaptive management plan report for the proposed Dufferin Aggregates Milton Quarry expansion. The work program involved meetings with the hydrogeological consultant and legal counsel and attendance at Ontario Municipal Board hearings.

SAROS Study Greater Golder Horseshoe, ON

Evaluation of supply and demand of aggregate resources in the Greater Golden Horseshoe for the MMNR (Ministry of Natural Resources and Forestry). The project includes resource estimates for 25 quarries and 120 pits and unlicensed sand and gravel resources in the study area.

Nelson Quarry Expansion Burlington, ON

Project Director for the proposed Nelson Quarry extension including extensive borehole drilling and monitoring well installations, water quality sampling, a surface water program, groundwater flow modeling, impact assessments, preparation of an Adaptive Management Plan (AMP), reporting and acting as an expert witness at an Ontario Municipal Board hearing.

Lafarge South Quarry **Expansion** Dundas, ON

Project Director for a hydrogeological and hydrological work programs in support of a license application for the expansion of the Lafarge South Quarry near Dundas, Ontario (ongoing). The work program involves borehole drilling and monitoring well installations, geophysical borehole logging, water quality sampling and analyses, hydrological analyses of streams and wetlands, a karst assessment, a water well survey, geological and hydrogeological interpretation, groundwater flow modeling, agency interaction and attendance at public meetings.

Lafarge Fonthill Pit PTTW Renewal Fonthill, ON

Project Director for a hydrogeological work program in support of a Permit to Take Water (PTTW) application for the Lafarge, The work program included interpretation of pumping wells records, evaluation of drawdown in water wells related to pumping, water quality analyses and preparation and submission of a report in support of the permit application.

Lafarge North Quarry Expansion Dundas, ON

Project Director for a hydrogeological work program conducted in support of a license application for the expansion of the Lafarge North Quarry. The work program involved borehole drilling and monitoring well installations, pumping tests, groundwater flow modelling, a water well survey, an impact assessment of potential effects on water wells and an adjacent provincially significant wetland, agency interaction and preparation of a report submitted in support of the license application. The application was approved with an Ontario Municipal Board hearing.

Lafarge PTTW Monitoring Programs ON

Project Director for hydrogeological monitoring programs for a portfolio of more than 50 pits and quarries in Ontario. The programs involved water level and water quality monitoring, evaluation of pumping records, effects assessments and preparation and submission of monitoring reports for compliance with the permits.

RW Tomlinson Quarry License Application Brechin, ON

Project Co-director for the hydrogeological work program for a hydrogeological work program performed in support of a license application for a dolostone quarry in the Carden Plain. The work program involved borehole drilling and monitoring well installation, geophysical borehole logging, packer testing, well response testing, pump testing, water quality sampling, groundwater flow monitoring, an impact assessment including potential effects on surrounding water wells and an adjacent wetland, development of a monitoring program preparation of a report in support of the application and agency interaction.

Proposed Lafarge Glen Morris Pit

ON

Project Director and senior hydrogeologist for the hydrogeological work program in support of a license application for the proposed Glen Morris Pit. The work program included borehole drilling, monitoring well installations, groundwater level monitoring and the provision of data and preparation of a hydrogeological report.

Lafarge Wellington Quarry PTTW and ECA Renewal

ON

Project Director and senior hydrogeologist for the Lafarge Wellington Quarry Renewal. The field program involved borehole drilling, packer testing, monitoring well installations, groundwater level monitoring, a field pumping test, development of a water budget and groundwater quality sampling. A hydrogeological impact assessment was developed to assess the potential impacts of quarry groundwater level drawdown related to quarry dewatering activities on surrounding private water wells and municipal wells. The work program included the modification of the regional source water protection to incorporate site data to assess the potential effects on the Guelph municipal wells.

Lafarge Regan Resource Drilling

ON

Project Manager and senior geoscientist for resource drilling at the Lafarge Regan site using some drilling techniques. The results of the work program were provided to Lafarge for their resource assessment.

Lafarge Hagersville Quarry Hagersville, ON

Senior Hydrogeologist for the assessment of quarry dewatering and pumping for the Lafarge Hagersville Quarry as part of the PTTW monitoring program.

Arbour Farms License Application

ON

Senior Hydrogeologist for the Arbour Farms license application for a pit below water. The work program included borehole drilling, installation of monitoring wells, groundwater level monitoring and assessment of potential effects on an adjacent water course. Three-dimensional groundwater flow and heat transport modeling was completed to assess the potential thermal impacts on the surrounding surface water courses.

Rankin Construction Port Colborne Quarry Extension

Port Colborne, ON

Project Director for a multi-disciplinary work program for a license application for an extension of the Port Colborne Quarry. The work program involved hydrogeological, hydrological, blasting, noise, air, natural environment, planning, agricultural and archaeological studies, and a resource estimate. Senior Hydrogeologist for the hydrogeological work program that involved borehole drilling, monitoring well installations, groundwater quality sampling and analysis, an impact assessment and a monitoring and response program for potential impacts on surrounding water wells.

Lafarge Goodwood Pit Extension

Goodwood, ON

Project Director and senior hydrogeologist for a license application for the Lafarge Goodwood Pit extension, for a Category 1 Class EA pit below water. The objective of the work program was to characterize the existing hydrogeological and hydrological conditions in the vicinity of the site, including the depth and elevation of the water table and assess potential effects of the operational and rehabilitation scenarios. The work program involved borehole drilling, monitoring well installations, groundwater level monitoring, development of a water budget and a hydrogeological impact assessment.

Lafarge Woodstock Quarry Expansion Woodstock, ON

Project Director and senior hydrogeologist for the hydrogeological investigation of the Woodstock quarry for support of a license amendment. The field program involved borehole drilling, packer testing, monitoring well installations, groundwater quality sampling and analysis, a field water well survey and development of a water budget. An impact assessment was conducted to assess the potential effect of quarry related groundwater level drawdown on surrounding water wells and surface water courses.

CRH Resource Evaluation and Due Diligence ON

Project Manager and senior geoscientist for a resource evaluation of a property near Orangeville, Ontario for potential acquisition for quarry development. The work program included borehole drilling, geological logging of the rock core, monitoring well installations to determine the depth of the water table, aggregate quality testing and reporting.

Limestone and Sandstone Resource Evaluation and Due Diligence Regional Municipality of

Project Director and senior hydrogeologist for a resource evaluation for a property developer for potential acquisition of an existing quarry near Mississauga. The work program involved borehole drilling, core logging, aggregate quality testing and reporting.

Stouffville Resource Drilling Stouffville, ON

Peel. ON

Project Manager and senior hydrogeologist for the resource drilling at Lafarge Stouffville Quarry. The drilling was conducted using a sonic drill rig with continuous core sampling. The results were provided to the Lafarge geologist for the resource assessment.

Lakeridge Resource Drilling

ON

Project Manager and senior geoscientist for the resource drilling at the Lafarge Lakeridge site. The drilling was conducted using sonic coring and the results provided to the Lafarge geologist for development of a resource assessment.

Votorantim Thomas Quarry License Application ON Senior hydrogeologist for the hydrogeological component of the Votorantim Thomas Quarry Extension license application. The work program involved borehole drilling, packer testing, geophysical borehole logging monitoring well installations and groundwater quality sampling and analysis. Three-dimensional groundwater flow monitoring was conducted to assessment the potential hydrogeological impacts of the quarry.

Lafarge Pinkney Pit #3

ON

Senior Hydrogeologist for the hydrogeological work program for the Lafarge Pinkney Pit #3 license application. The work program involved borehole drilling, monitoring well installations and a hydrogeological impact assessment.

Lafarge Mosport Resource Drilling

ΩÑ

Project Manager and senior geoscientist for the sonic borehole drilling at the Lafarge Mosport Pit. The results of the resource drilling were provided to the Lafarge geologist as part of the site resource assessment.

Lafarge Goodwood Resource Drilling Project Manager and senior geoscientist for sonic borehole drilling of the resource near the Lafarge Goodwood Pit. The results of the drilling were provided to the Lafarge geologist for a resource assessment.

APAO (Aggregate Producers Association of Ontario) Water Consumption Study ON Project Director for a study for the APAO to determine the consumption of water associated with pits and quarries.

Lafarge Sunningdale Pit Monitoring Program ON Senior Hydrogeologist for the Lafarge Sunningdale Pit Monitoring Program. The work program includes hydrogeological monitoring, an assessment of potential impacts and preparation of an annual monitoring report.

Votorantim Resource Assessment

ON

Project Manager and senior geoscientist for a resource assessment at a Votorantim Quarry in central Ontario. The work program involved borehole drilling and borehole geophysics were used to identify and correlate the geological formations and members at the site.

Cox Construction
Monitoring Well
Network
Wellington County, ON

Project Manager and senior hydrogeologist for borehole drilling and monitoring well installations at a property in Wellington County to provide baseline date for potential future licensing as a quarry. The wells were installed in the thick sequence of Amabel Formation at this locates. Groundwater level monitoring was performed to determine the depth to water table.

Cox Construction Resource Evaluation and Due Diligence ON Project Director for a drilling program to evaluate to the limestone resource for potential acquisition of a property for development. The work program involved borehole drilling, geological logging of the rock core, monitoring well installations, aggregate quality testing and reporting.

PROJECT EXPERIENCE - WASTE MANAGEMENT

Adams Mine Kirkland Lake, ON Project Hydrogeologist and Project Manager for the hydrogeological assessment of the Adams Mine near Kirkland Lake, Ontario over a five-year period as part of the proposed development of 20 million tonne engineered landfill facility for solid non-hazardous waste. The facility will receive waste from the Greater Toronto Area (GTA) via a rail line system. The landfill facility incorporates a hydraulic containment design, which prevents outward migration of contaminants from the landfill, which reduces environmental impacts and long-term operating costs. Provided expert witness testimony in an environmental assessment (EA) hearing.

Brow Landfill Dundas, ON Project Hydrogeologist then Project Manager for hydrogeological assessment for landfill expansion of the existing Redland Quarries Inc. (formerly Steetley Quarry Products Ltd.) solid industrial waste Brow Landfill in Flamborough, Ontario. Subsequent work included ongoing groundwater and surface water quality monitoring and preparation monitoring reports submitted to the MOE, followed by development of a closure plan and an ongoing compliance monitoring program.

South Quarry Landfill Flamborough, ON

Project Hydrogeologist for hydrogeological assessment of the proposed Redland Quarries Inc. (formerly Steetley Quarry Products Ltd.) South Quarry in Flamborough, Ontario for the proposed development of an engineered landfill facility. Participated in environmental assessment (EA) hearings and assisted with the preparation of final arguments with legal counsel.

Siting Task Force Secretariat

Chalk River, ON

Project Hydrogeologist, then Project Manager for geological and hydrogeological characterizations of the Chalk River Nuclear laboratories property, near Chalk River, Ontario for siting of a proposed facility for the disposal of low-level nuclear waste for the federal Siting Task Force Secretariat (STFS).

Siting Task Force Secretariat Port Hope, ON

Project Hydrogeologist then Project Manager for geological and hydrogeological characterization of the Lakeshore site in Port Hope, Ontario, for the federal Siting Task Force Secretariat (STFS). The work was carried out as part of the feasibility level I study for dispose of low-level waste in engineered caverns beneath Lake Ontario and the Cameco Uranium fuel processing facility in Port Hope.

Interim Waste Authority

Regional Municipality of Peel, ON

Project Hydrogeologist for geological and hydrogeological characterization comparative evaluation of five short-listed sites for siting of an engineered landfill facility as part of the provincial Interim Waste Authority (IWA) landfill site selection process for the Region of Peel.

Guelph-Wellington County WMMP Wellington County, ON Project Hydrogeologist for geological and hydrogeological characterization of five candidate sites and identification of a preferred site in Wellington County for siting of an engineered municipal landfill facility, as part of the joint City of Guelph - County of Wellington Waste Management Master Plan (WMMP).

Model City Landfill Lewiston, NY Project Hydrogeologist for hydrogeological investigation of the Model City hazardous waste landfill, near Lewiston, New York, carried out as part of landfill expansion.

Welland-Wainfleet **WWMP**

Townships of Welland and Wainfleet, ON

Project Hydrogeologist for the identification of preferred sites for development of a municipal landfill facility, as part of the Welland-Wainfleet Waste Management Master Plan (WMMP).

Brock South Landfill

Pickering, ON

Project Hydrogeologist for assessment of the proposed Brock South Landfill near Pickering, Ontario, to assess the suitability of the site for development of an engineered municipal landfill facility for Metropolitan Toronto.

Redland Queenston Quarry

Queenston, ON

Project Hydrogeologist for hydrogeological assessment of the Redland Quarries Inc., Queenston Quarry to determine the suitability of the site for disposal of waste rock saline shale, from the construction of the proposed diversion tunnels of the Sir Adam Beck III hydroelectric generating facility in Niagara Falls, Ontario.

Fly Ash Disposal **Facility** ON

Project Hydrogeologist for hydrogeological investigations at four quarries located near Hagersville, Cayuga, Smithville, and Milton to determine their suitability for development an engineered landfill for disposal of fly ash from the Ontario Hydro Lakeview Power Generating Station.

Mohawk Street Landfill Brantford, ON

Project Hydrogeologist for assessment of groundwater and surface water quality impacts at the municipal Mohawk Street Landfill in Brantford, Ontario.

Vale Industrial Landfill Port Colborne, ON

Project director for the preparation of an annual report for the groundwater monitoring program for an industrial waste landfill at a former nickel refinery. The work program included interpretation of groundwater flow directions and water quality trends, evaluation of the extent of the leachate plume, and an impact assessment.

Vale Industrial Refinery Landfill Monitoring Port Colborne, ON

Project Director and senior hydrogeologist for an evaluation of the effectiveness of the purge well system at a former nickel refinery and the development of mitigation and rehabilitation measures for well clogging. The work program involved step drawdown pumping tests, longer term pumping tests, hydraulic analysis of pumping test data, assessment of the decline of well efficiency due to scaling and bio fouling and the development of a work program for well rehabilitation and maintenance including acidification.

Municipal Landfill Annual Monitoring Programs Niagara Region, ON

Project Director for the annual monitoring program for 8 landfills in bedrock and escarpment settings in Niagara Region. The work program involves field water quality sampling, groundwater level monitoring, and provision of progress and annual reports.

Proposed Walker Ingersoll Landfill ON

Senior Hydrogeologist for the hydrogeological investigation for the proposed Walker Landfill near Ingersoll, Ontario. The field program involved borehole drilling, monitoring well installations, packer testing, geophysical borehole logging, downhole flow profiling, groundwater quality sampling and analysis, a karst study, and a water well survey. Three-dimensional groundwater flow modeling was conducted to assess the potential impacts of the landfill.

PROJECT EXPERIENCE - SHALE INDUSTRY

Canada Brick

Mississauga, ON

Specialist for assessment of geological controls upon shale quality at the Canada Brick Britannia Road quarry site. The work was carried out in conjunction with quality control estimate of shale reservoir on the property.

Canada Brick

Halton Region, ON

Project Manager for a hydrogeological work program in support on an application for a license for the Hanson Brick Tremaine Quarry in Halton Region, Ontario.

Brampton Brick Limited

Halton and Peel Region,

Project Director for a hydrogeological and surface water program in support of a license application for a proposed shale quarry for a brick manufacturer. The work programs involved borehole drilling and monitoring well installations, surface water flow monitoring, water quality sampling, groundwater flow modelling and preparation of an Adaptive Management Plan (AMP).

Hanson Brick Limited Halton Region, ON

Project Director for the assessment of the potential gas migration from a landfill to an adjacent brick manufacturing facility containing a brick kiln. The program identified potential risks and a monitoring and response program.

PROJECT EXPERIENCE - MINING

Stanleigh Mine Elliot Lake, ON Project Hydrogeologist for assessment of the Rio Algom Stanleigh Mine near Elliot Lake, Ontario. The project included development of a three-dimensional flow model of a low-level radioactive waste tailings facility in Precambrian bedrock of the Canadian Shield. The model was used to develop estimates of seepage rates from the facility and was submitted to the Atomic Energy Control Board (AECB) as part of the regulatory approvals process.

Voisey's Bay Mine Labrador Technical specialist for hydrogeological modelling at the Voisey's Bay Mine site involving development of three-dimensional groundwater flow models of a proposed tailings basin, mine waste rock disposal facility, and an open pit mine at the Voisey's Bay Mine Site in Labrador. The modelling was carried out for the Voisey's Bay Nickel Company (VBNC) as part of the hydrogeological assessment of the mine. The work was subject to regulatory review and presented as evidence at an environmental assessment hearing.

Baley Gold Mine Baley, Russia Project Hydrogeologist for an Environmental Impact Assessment (EIA) as part of a feasibility study for mine expansion. The hydrogeological component included evaluation of potential for water quality impacts for an open pit mine and tailings basin, reduction of flow in stream and interference with the municipal water well supply.

Asacha Gold Mine Kamchatka, Russia Project Hydrogeologist of the proposed Asacha Gold Mine in northeastern Russia. The assessment focused upon chemical water quality and streamflow impacts associated dewatering of an underground mine and construction of a tailings basin. The results of the assessment formed part of the mine feasibility study.

Timmins Mine Water

Study Timmins, ON

Project Hydrogeologist for assessment of flooding of an extensive array of underground mine working beneath the City of Timmins. The assessment included evaluation of the potential impacts arising from the discharge of water

from the flooded mine workings at surface within the city.

Cigar Lake Mine

Saskatchewan

Project Hydrogeologist for assessment of potential groundwater inflows into proposed shaft in northern Saskatchewan for the Cigar Lake Mining Corporation (CLMC). The results of the assessment were used as the basis for the

engineering design at the shaft.

Denison Mines Elliot Lake, ON

Project Hydrogeologist for an assessment of low-level nuclear waste tailings basin at the Denison Mines near Elliot Lake, Ontario. The hydrogeology study included assessment of seepage of uranium-impacted groundwater from the

basin.

MaCassa Mines

Kirkland Lake, ON

Project Hydrogeologist for hydrogeological assessment at the Lac Minerals MaCassa Mine tailing basins in Precambrian bedrock near Kirkland Lake, Ontario. The work was carried out to evaluate the potential impacts during operation and following decommissioning of the facility.

PROJECT EXPERIENCE - CONTAMINATED INDUSTRIAL SITES

ICI

Nobel, ON

Hydrogeological assessment of groundwater and surface water quality at the former ICI explosives and war productions plant near Parry Sound, Ontario for ICI Canada. The program included assessment of groundwater and surface water quality impacts and removal of buried underground fuel storage tanks. The results of the investigations were submitted to the Ontario Ministry of the Environment as part of the site decommissioning.

Ford Motor Company

North York, ON

Dewatering of a groundwater collection gallery and discharge of the contaminated (chlorinated solvent) wastewater to the municipal sewer system. (under special conditions), at the Ford Motor Company Plant in North York, Ontario.

Shell Oil

North York, ON

Dewatering of a groundwater collection gallery and discharge of the contaminated (chlorinated solvent) wastewater to the municipal sewer system (under special conditions), at the Ford Motor Company Plant in North York, Ontario.

Beaver Lumber

Cole Harbour, NS

Excavation of underground storage tank (fuel oil) at the Beaver Lumber store at Cole Harbour, Nova Scotia. The results of the investigation favoured Beaver Lumber, by indicating that damage to the store was due to lack of delivery of the

fuel supplier rather than leakage from the site fuel storage tank.

ICI Surfactants

Oakville, ON

Hydrogeological impact assessment of cadmium concentrations in groundwater at the ICI Surfactants (formerly Atkemix) site in Oakville, Ontario. The results of the monitoring were submitted to the Ministry of Environment and Energy for regulatory purposes.

Bata Footwear

Batawa, ON

Participation in the hydrogeological investigation of chlorinated solvent contamination of a bedrock limestone aquifer at the Bata Footwear plant site in Batawa, Ontario. The results of the hydrogeological impact assessment were submitted to the Ministry of Environment and Energy and used during subsequent legal proceedings to determine financial liability of Bata Footwear for the groundwater contamination.

Niagara Recycling Centre

Niagara Falls, ON

Project Director and senior hydrogeologist for the annual operational and monitoring programs for a hydrogeological work program involving groundwater contaminated with chlorinated solvents at the Niagara Recycling Centre related to prior industrial land use. The work program involved operation of the groundwater injection remediation system, assessment of subsurface contamination and preparation of annual monitoring reports.

Rankin Construction Fill Management Plan Port Colborne, ON

Project Director and senior geoscientist for the development of a fill management plan for Pit 1 at the Rankin Construction Port Colborne Quarry. The program included a plan to take excess fill from the area to fill Pit 1. This included a sampling and reporting program to meet MECP requirements.

PROJECT EXPERIENCE - OIL & GAS

Assessment of Natural Gas Storage Potential Lake Erie, ON Project Manager for an assessment of the potential for natural gas storage on Crown Lands beneath Lake Erie. The study involved the assessment of natural gas reservoirs to evaluate their suitability for use as gas storage facilities. Estimated available storage volumes were provided for each of the reservoirs.

Assessment of Natural Gas Storage Potential Southwestern Ontario Project Manager for an evaluation of the hydrocarbon resources in Southwestern Ontario for the Petroleum Resources Centre of the Ministry of Natural Resources. The study included the interpretation and mapping of pool boundaries for major pools, calculations of in place and recoverable reserves, tabulation of reservoir characteristics, and estimation of potential hydrocarbon resources in the Ordovician strata of southern Ontario.

PROJECT EXPERIENCE - MUNICIPAL GROUNDWATER STUDIES

Groundwater Study for the County of Victoria ON

Project Director and senior hydrogeologist for a large-scale groundwater study for the County of Victoria with funding from the Provincial Water Protection Plan (PWPP). The work program involved a groundwater resource assessment, evaluation of existing groundwater usage, contamination assessment, development of management options and protection strategies, and an economic evaluation.

Groundwater Study for the City of Stratford ON Project Director and senior hydrogeologist for a Groundwater Study for the City of Stratford involving an assessment of groundwater resources, source of contamination, pump testing of deep wells in limestone bedrock, and development of groundwater management options and protection strategies.

Simcoe and South Simcoe Groundwater Studies ON Provided specialist hydrogeological services for both the North Simcoe Groundwater Study and South Simcoe Groundwater Study. The work program involved a characterization of the hydrogeology of the study areas and numerical groundwater modelling of Well Head Protection Areas for municipal wells (WHPAs).

PROJECT EXPERIENCE - KARST

Nelson Quarry Extension ON Project Director and Senior Hydrogeologist for karst assessment of the proposed Nelson Quarry extension that involved mapping of the Amabel Formation along the exposed cliff faces of the Mount Nemo outlier, identification of karstic springs in the Medad Valley and associated water courses, mapping of karst features along more than 1 km of exposed quarry faces. Examination of surface karst features including sinkholes and internal drainage were mapped in the area of the quarry. An ERI (Electrical Resistivity Imaging) survey was conducted over a linear distance to identify potential anomalies that could represent karstic features. Boreholes were drilled into the karstic features to evaluate karstic conditions. The boreholes were video logged along the length of the hole to evaluate karstic features such as solution enlarged fractures and voids. The flow in the boreholes were pumped and logged during an impeller flow meter to assess inflow into boreholes from potential karstic features. An array of eight wells and a pumping well were drilled to conduct a tracer test using fluorescein dye. The dye was injected into the wells and the travel time and dye concentrations were recorded to evaluate karstic flow paths and velocities. The results were incorporated in a report submitted as part of the regulatory approvals process and presented and defended at an Ontario Municipal Board hearing.

Proposed Redland Quarries Landfill ON

Project Hydrogeologist for a karst study as part of a geological and hydrogeological evaluations of a proposed hydraulic containment engineered landfill facility in a quarry near Dundas, Ontario. The karst study involved examination and evaluation of karstic features in the vicinity of the quarry including solution-enhanced weathering and extensive network of surficial dolostone plain, and examination of epi-karst on more than 1 km of quarry faces including solution enlarged and materialized vertical joints. The results of groundwater level monitoring results were evaluated for patterns indicative of presence of karst including rapid rises in groundwater levels ('spiking'). Pump tests were analysed to evaluate the drawdown and recovery responses characteristic of karst.

Proposed Dundas
Quarry Extension
ON

Project Director and Senior Hydrogeologist for a karst assessment as part of a hydrogeological work program for the approval of an application for a large dolostone quarry near Dundas, Ontario. The work program involved an ERI surface geophysical survey along more than 500 m of line to test for potential karstic anomalies. Boreholes were drilled in the areas of identified anomalies to evaluate the potential presence of karst. The faces of the quarries were also examined for layers of karstic groundwater inflow. The results of the karst study have been peer reviewed and are currently being used in support of the license application for quarry expansion.

Karst Remediation

Hamilton, ON

Senior Hydrogeologist for a karst assessment of a remediated industry site in the area of the Eramosa Karst Conservation Area in Hamilton, Ontario. The work program involved a review of literature on karst in the area. An inspection of the karstic features includes sinkholes, internal drainage and inferred subsurface karstic flow pathways was undertaken in areas around the site. A report in support of a property transaction was provided to regulatory authorities and agencies.

Brow Landfill Monitoring Program ON

Project Hydrogeologist for an assessment of leachate seepage from an industrial solid waste landfill along karstic flow pathways including epi-karst, solution weathered vertical joints and horizontal fracture networks. The assessment involved monitoring of the flow rates from leachate springs and water quality of springs.

Hydrocarbon Reserve Evaluation

Southwestern Ontario

Project Director and Senior Geologist/Hydrogeologist for the estimation of hydrocarbon reserves in Southern Ontario for the Petroleum Resource Centre of Ontario Ministry of Natural Resources. The work program involved extensive analysis of karstic reservoirs formed and dolomitization from solution weathering and collapse along vertical joints and horizontal sub horizontal fracture networks. Prepared a report summarizing the study and provided to the MNR as a commercial publication.

PROJECT EXPERIENCE - LAND DEVELOPMENT AND INFRASTRUCTURE

Peer Review, Town of Caledon

Caledon, ON

Peer review of the hydrogeological work program for a proposed residential development in Palgrave for the Town of Caledon planning department. The work program involved review of hydrogeological reports, discussions with the Town and preparation of a peer review reports with recommendations.

Peer Review, Town of Caledon

Caledon, ON

Peer review of the hydrogeological and geotechnical work program for a proposed residential development in Beaverhall for the Town of Caledon planning department. The work program involved review of hydrogeological reports, discussions with the Town and preparation of a peer review reports with recommendations.

Niacon Construction

Niagara-on-the-Lake,

ON

Hydrogeological assessment of the potential impacts associated with the development of an infrastructure for a zipline facility along the Niagara river at Thompsons Point. The work program involved an evaluation of the potential for reduction of groundwater seepage along the Niagara Gorge and related environmental effects. A report was prepared that was submitted to agencies as part of the regulatory approvals process.

Time Developments Niagara Falls, ON

Senior hydrogeologist for the hydrogeological assessment of the existing conditions and potential impacts associated with the development of a condominium adjacent to the Niagara River in Niagara Falls. The work program involved borehole drilling, monitoring wells installation, groundwater level monitoring and assessment of groundwater levels and flow directions. The results of the work program were incorporated into a geotechnical and hydrogeological report.

Time Developments

Niagara Falls, ON

Phase 1 and Phase 2 Environmental Site Assessments (ESA) for regulatory approval for condominium development on River Road in Niagara Falls, Ontario. The work program involved test pitting and surface sampling as well as collection and analysis of soil and water samples and evaluation of potential soil and water contamination.

AECOM Oakville, ON

Hydrogeological assessment of the excavation and construction of a water pumping station in till and bedrock adjacent to a surface water course. The work program involved borehole drilling, monitoring well installations, hydraulic conductivity testing and a hydrogeological assessment of impacts on surrounding private wells associated with construction dewatering.

Geranium Homes Woodview Development ON

Hydrogeological assessment in support of approval for a proposed residential development involving borehole drilling, monitoring well installations, hydraulic conductivity testing, groundwater level monitoring, determination of groundwater levels and flow directions and a hydrogeological impact assessment involving a water balance to evaluate reduction in infiltration and potential interference with surrounding water wells and effects on an adjacent provincially significant wetland. Participated in meetings with the TRCA as part of the approvals process. A report was prepared in support of the approvals process.

Geranium Homes Altona Development

ON

Hydrogeological assessment in support of approval for a proposed residential development. The work program involved borehole drilling, monitoring well installations, groundwater level monitoring, development of a water balance and a hydrogeological impact assessment. A report was prepared in support of the application.

Curriculum Vitae BYRON ZWIEP

Education

B.Sc.(Hons) Environmental Geoscience, Brock University, St. Catharines, 2012

Certifications

Professional Geoscientist -P.Geo., February 2017

Languages

English - Fluent

Golder Associates Ltd. - St. Catharines

Byron Zwiep B. Sc. (Hons), P.Geo. Environmental Scientist

Mr. Zwiep is an Environmental Scientist who is involved with environmental monitoring and investigations; he also has significant experience with groundwater and surface water monitoring, leachate and combustible gas monitoring. His responsibilities include project management, co-ordinating and conducting field monitoring events, data analysis and verification, and preparation of technical reports and landfill annual monitoring reports. He also has experience drilling and installing overburden and bedrock wells, slug testing and completion of landfill gas monitoring and sampling.

Employment History

Golder Associates Ltd. – St. Catharines Environmental Scientist (2014 to Present)

AECOM - St. Catharines

Environmental Scientist (2012 to 2014)

AECOM - St. Catharines

Environmental Technician (September 2010 to December 2010)

PROJECT EXPERIENCE - CONTAMINATED LAND REMEDIATION

Stelco

Hamilton, Nanticoke, Ontario, Canada Project coordinator responsible for assisting in the project initiation phase including borehole layout, locate clearances and drilling program start up. Assisted with drilling, monitoring well development and subsequent groundwater sampling programs.

St. Lawrence Seaway Management Corporation

Thorold, Ontario, Canada Project manager responsible for the investigation and cleanout of a culvert that directs discharge water from adjacent properties under the Welland Canal. The culvert was used by various industries historically resulting in contamination of the sediments that partially blocked the canal. Design drawings and site supervision/inspection was completed.

Magellan Aerospace Fort Erie, Ontario, Canada Provide ongoing troubleshooting and maintenance support for the operation of the groundwater treatment system on-site. Organized the monthly surface water and semi-annual groundwater sampling programs.

Regional Municipality of Niagara Recycling Centre

Niagara Falls, Ontario, Canada Project Manager responsible for the organization and implementation of the environmental monitoring program and maintenance related to the operations and maintenance and monitoring of the Groundwater Treatment System at the Niagara Region Recycling Centre. Also responsible for the production of the annual monitoring reports in 2015 through 2021.

Regional Municipality of Niagara Recycling Centre

Niagara Falls, Ontario, Canada Developed and implemented a geoprobe investigation involving the completion of fifteen boreholes to bedrock surface and associated soil sampling to identify a potential source of contamination for chlorinated solvent concentrations observed in shallow bedrock groundwater. Completed associated reporting and future recommendations for additional bedrock monitoring wells to further delineate the plume and understand the bedrock hydrogeology in greater detail

Pen Centre St. Catharines, Ontario, Canada Field technician responsible for contractor oversight to complete a sewer inspection. Also, set up diversion in storm sewer to pump water over to sanitary sewer.

Regional Municipality of Niagara Recycling Centre

Niagara Falls, Ontario, Canada Completed a work program involving the installation of seven additional bedrock monitoring wells, well development, hydraulic conductivity testing, groundwater sampling and associated reporting to complete a chlorinated solvent plume delineation and provide a greater understanding of the shallow bedrock groundwater flow direction. Provided recommendations for the installation of additional bedrock monitoring wells and overburden sampling to identify source of contamination.

Loblaws

Elmira, Ontario, Canada

Field program co-ordinator responsible for oversight of surfactant and persulfate injections. Completed well development and groundwater sampling to assess performance of remedial measures.

Confidential Client Scarborough, Ontario, Canada Assisted with construction oversight during excavation. Completed soil sampling to determine soil quality of backfill. Carried out an air monitoring program to ensure health and safety of workers. Completed groundwater sampling programs to determine extent of contamination and effectiveness of a treatment system

Confidential Client Confidential Locations, Canada Involved in sewer sampling project to determine the extent of groundwater intrusion into the sewer systems. Also completed multiple groundwater monitoring and sampling events. Completed data analysis to assist in the production of annual reports. Performed vacuum testing in a home to assess the extent of a sub slab depressurization system. Involved in performance testing to determine effectiveness of the remedial action plan.

PROJECT EXPERIENCE - WASTE MANAGEMENT

Regional Municipality of Niagara, Landfills in an Escarpment and **Bedrock Setting** Niagara Region, Ontario, Canada Project Manager responsible for co-ordination and execution of all aspects of the landfill monitoring including scheduling, budget control, data analyses and interpretation, preparation of technical and annual reports and liaising with clients and regulatory agencies. Also, performed the role of Project Co-ordinator responsible for the organization and implementation of all field related monitoring requirements for seven landfills in the Region of Niagara including the: Glenridge Naturalization Site, Mountain Road Landfill, Quarry Road Landfill, Bridge Street Landfill, Station Road Landfill, Niagara Road 12 Landfill and Park Road Landfill. Tasks include groundwater, surface water, combustible gas and leachate level monitoring and sampling, assessment of field data in comparison to applicable environmental compliance approval requirements and other regulatory criteria.

Vale Canada Limited Port Colborne, Ontario, Canada Assisted with the preparation of compliance annual monitoring report including data compilation and analysis as well as assessment of hydrogeological conditions for the 2014 and 2015 annual landfill monitoring reports.

Halton Waste Management Site Milton, Ontario, Canada

Program Manager for monthly, quarterly and bi-annual environmental monitoring programs. Completed bi-annual groundwater, surface water and leachate monitoring program including sampling of residential wells. Created task hazard analysis in addition to a health and safety plan for the site. Replaced 40 well casings to upgrade current monitoring network of wells. Involved in field monitoring aspects of current depressurization program.

PROJECT EXPERIENCE - HYDROGEOLOGY

Port Colborne Quarries Port Colborne, Ontario,

Canada

Project coordinator responsible for developing and implementing a hydrogeological investigation to determine bedrock surface depth as well as bedrock geology underlying the Site. Provided project management support for hydrogeology and monitoring well installation portions of the project.

Time Development Group

Niagara Falls, Ontario, Canada Completed Phase I ESA site visit, well development, groundwater sampling and hydraulic conductivity testing. Assisted in development of hydrogeological work program and associated reporting. Co-ordinated Phase II ESA site work and assisted with associated reporting.

Vale Canada Limited Port Colborne, Ontario,

Canada

Completed field program in order to assess the performance of Vale's interceptor purge wells. Assisted with preparation of report summarizing results of step and 24 hour pump tests.

Curriculum Vitae BYRON ZWIEP

Ministry of Transportation - MTO Magnetewan First Nation, Ontario, Canada Completed bedrock drilling program to determine location and quality of groundwater as a preliminary study to highway construction. Constructed borehole logs and assisted in preparation of the report.

TRAINING

Transportation of Dangerous Goods

AECOM, 2014

WHIMIS

Golder Associates Ltd., 2017

First Aid and CPR Level C

Red Cross, January 2017

40 Hour Hazardous Waste Operations and Emergency Response Training in Accordance with OSHA 29CFR 1910.120,

ACUTE, 2014

SUPPLEMENTAL SKILLS

PROFESSIONAL AFFILIATIONS

Association of Professional Geoscientists of Ontario

golder.com