

FINAL REPORT

Hydrogeological Assessment, Level 1 / 2 Water Resources Study

Proposed Port Colborne Quarries Pit #3 Extension

Submitted to:

Mr. Shawn Tylee

Manager of Procurement and Corporate Affairs Rankin Construction Inc. 222 Martindale Road St. Catharines, ON L2R 7A3Manager of Procurement and Corporate Affairs Rankin Construction Inc. 222 Martindale Road St. Catharines, ON L2R 7A3

Submitted by:

Golder Associates Ltd.

110 Hannover Drive, Building A, Suite 203, St. Catharines, Ontario, L2W 1A4, Canada +1 905 688 8217

1771656-1000-Rev3

October 2021

Distribution List

1 PDF Copy - Rankin Construction Inc.

<u>1 PDF Copy - Golder Associates Ltd.</u> 1 PDF Copy - Rankin Construction Inc.

1 PDF Copy - Golder Associates Ltd.

Table of Contents

1.0	INTR	ODUCTION	1						
	1.1	Required Land Use Approvals	1						
	1.1.1	Region of Niagara Official Plan (ROP) 2014	1						
	1.1.2	City of Port Colborne Official Plan (OP) 2017	2						
	1.1.3	City of Port Colborne Zoning By-Law No. 6575/30/18:	2						
	1.1.4	Aggregate Resources Act	2						
	1.2	Permit to Take Water (PTTW) Monitoring Program	2						
2.0	REGI	IONAL SETTING	3						
	2.1	Physiography	3						
	2.2	Surficial Geology	3						
	2.3	Bedrock Geology	4						
	2.4	Aquifer Vulnerability Index	5						
	2.5	Potential for Karst	5						
3.0	FIELD	D INVESTIGATION METHODOLOGY	6						
	3.1	Borehole Drilling and Well Installation	6						
	3.2	Hydraulic Conductivity Testing	7						
	3.3	Groundwater Level Monitoring	<u>8</u> 7						
	3.4	Groundwater Quality Sampling	8						
	3.5	Quarry Sump Quality Sampling	8						
4.0	RESULTS OF INVESTIGATION								
	4.1	Borehole Investigation Results	<u>9</u> 8						
	4.1.1	Stratigraphy	9						
	4.1.2	Hydrostratigraphy	10						
	4.2	Bedrock Surface Contours	10						
	4.3	Hydraulic Conductivity Results	11						
	4.4	Groundwater Level Monitoring Results	12 11						

	4.4.1	Overburden Groundwater Elevations	12
	4.4.2	Shallow Bedrock Groundwater Elevations	12
	4.4.3	Deep Bedrock Groundwater Elevations	12
	4.4.4	Water Table	13
	4.4.5	Hydrogeological Cross-Sections	13
	4.5	Groundwater Quality Sampling Results	13
	4.5.1	Overburden Groundwater Quality Results	<u>15</u> 14
	4.5.2	Shallow Bedrock Groundwater Quality Results	<u>15</u> 14
	4.5.3	Deep Bedrock Groundwater Quality Results	<u>16</u> 15
	4.5.4	Groundwater Quality Summary	<u>17</u> 16
	4.6	Quarry Sump Quality Sampling Results	<u>17</u> 16
5.0	GRO	UNDWATER SEEPAGE ESTIMATE	<u>17</u> 16
6.0	PRIV	ATE WATER WELLS	<u>18</u> 17
6.0	PRIV 6.1	ATE WATER WELLS	
6.0			<u>18</u> 17
6.0	6.1	Water Well Cross Sections	<u></u>
6.0	6.1 6.2	Water Well Cross Sections Zone of Influence for the Proposed Extension	<u>18</u> 47 <u>20</u> 19 <u>21</u> 20
6.0	6.16.26.36.4	Water Well Cross Sections Zone of Influence for the Proposed Extension Well Impact Assessment	<u>18</u> 47 <u>20</u> 49 <u>21</u> 20 <u>21</u> 20
	6.16.26.36.4	Water Well Cross Sections Zone of Influence for the Proposed Extension Well Impact Assessment Water Well Survey	 <u>18</u> 47 <u>20</u> 49 <u>21</u> 20 <u>21</u> 20 <u>21</u> 20
	6.16.26.36.4GROU	Water Well Cross Sections Zone of Influence for the Proposed Extension Well Impact Assessment Water Well Survey UNDWATER MONITORING AND RESPONSE PROGRAM	<u>18</u> 47 <u>20</u> 49 <u>21</u> 20 <u>21</u> 20 <u>21</u> 20 <u>21</u> 22
	 6.1 6.2 6.3 6.4 GROU 7.1 7.2 	Water Well Cross Sections Zone of Influence for the Proposed Extension Well Impact Assessment Water Well Survey UNDWATER MONITORING AND RESPONSE PROGRAM Private Well Complaint Response Program	<u>18</u> 47 <u>20</u> 49 <u>21</u> 20 <u>21</u> 20 <u>21</u> 20 <u>21</u> 20 <u>21</u> 22 <u>22</u> 24 <u>2322</u>
7.0	 6.1 6.2 6.3 6.4 GROU 7.1 7.2 	Water Well Cross Sections	 <u>18</u> 47 2049 2120 2120 2224 2224 2322 2322
7.0	 6.1 6.2 6.3 6.4 GROU 7.1 7.2 CONC 	Water Well Cross Sections	

TABLES AFTER TEXT

- Table 1 Monitoring Well Construction Details
- Table 2 Hydraulic Conductivity Results
- Table 3 Groundwater Elevations
- Table 4 Groundwater Chemistry Results
- Table 5 Quarry Sump Chemistry Results
- Table 6 Water Well Survey Responses
- Table 7 MECP Wells Within 1 km of Extraction Area
- Table 8 Proposed Extension Monitoring Locations

FIGURES AFTER TEXT

- Figure 1 Site Location Plan
- Figure 2 Regional Surficial Geology
- Figure 3 Regional Bedrock Geology
- Figure 4 Borehole Location Plan
- Figure 5 Ground Surface Elevation
- Figure 6 Overburden Thickness
- Figure 7 Bedrock Surface Topography
- Figure 8 Base of the Williamsville Unit
- Figure 9 Base of the Falkirk Unit
- Figure 10 Hydraulic Conductivity Results
- Figure 11A Groundwater Elevations Overburden May 2017
- Figure 11B Groundwater Elevations Overburden May 2018
- Figure 11C Groundwater Elevations Overburden May 2019
- Figure 11D Groundwater Elevations Overburden May 2020
- Figure 12A Groundwater Flow Map Shallow Bedrock May 2017
- Figure 12B Groundwater Flow Map Shallow Bedrock May 2018
- Figure 12C Groundwater Elevations Shallow Bedrock May 2019
- Figure 12D Groundwater Elevations Shallow Bedrock May 2020
- Figure 13A Groundwater Flow Map Deep Bedrock May 2017
- Figure 13B Groundwater Flow Map Deep Bedrock May 2018
- Figure 13C Groundwater Flow Map Deep Bedrock May 2019
- Figure 13D Groundwater Flow Map Deep Bedrock May 2020
- Figure 14 Hydrogeological Cross Section A A'
- Figure 15– Hydrogeological Cross Section B B'
- Figure 16 Water Well Locations and Zone of Influence
- Figure 17 MECP Recorded Wells and Section Key
- Figure 18 Water Well Cross Section C C'
- Figure 19 Water Well Cross Section D D'
- Figure 20 Water Well Cross Section E E'
- Figure 21 Water Well Cross Section F F'
- Figure 22 Monitoring Well Locations for Proposed Extension

APPENDICES

APPENDIX A Borehole Logs

APPENDIX B Hydraulic Conductivity Testing Results

APPENDIX C Groundwater Quality Analytical Results

APPENDIX D Hydrographs

APPENDIX E Zone of Influence Analysis Groundwater Seepage Calculation

APPENDIX F MECP Water Well Records Water Well Survey Responses

APPENDIX G Curricula Vitae

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) was retained by the Port Colborne Quarries (PCQ) to complete a hydrogeological study for a proposed expansion of the Port Colborne Quarry in Port Colborne, Ontario. PCQ, a division of Rankin Construction Inc. (Rankin) is proposing an extension to Pit 3 of their existing Port Colborne Quarry in order to continue mining of the aggregate resources.

In order to satisfy the requirements of the Ontario Aggregate Resources Act (ARA) with regard to a Category 2, Class "A" Quarry Below Water license application certain plans and studies are required to identify the effects of the proposed quarry and studies are required to identify land use impacts of the proposed quarry and to mitigate such effects so that established Ministry of the Environment, Conservation and Parks (MECP) thresholds are met. This includes the requirement for a Level 1/ 2 Water Resources Assessment. This report provides the hydrogeological component of the water resources assessment along with the hydrological assessment which is provided under separate cover.

The existing Port Colborne Quarry is located in the City of Port Colborne within the Regional Municipality of Niagara. The existing quarry is bounded by Second Concession Road to the north, Highway 140 to the west, Main Street East (Highway 3) to the south, and 200 metres (m) west of Carl Road to the east.

The proposed extension (Site) is situated directly east of the existing quarry and remains between Second Concession Road to the north and Highway 3 to the south and extends approximately 410 - 790 m east of Carl Road (see Figure 1). The Port Colborne Quarry Extension is located in Part of Lots 18 and 19 Concession 2, and Plan 59R-16702, Humberstone Township, Regional Municipality of Niagara and comprises 108.25 hectares (267.49 acres). The property is bordered by Second Concession Road to the north, Main Street East to the south, the existing Port Colborne quarry to the west and agricultural fields and Miller Road to the west. There is an estimated 40 to 50 million tonnes of limestone resources within the proposed extension. at the Site.

1.1 Required Land Use Approvals

In order for extraction to occur on the subject lands, the following approvals are required:

- Amendment to the Region of Niagara Official Plan 2014, to designate the lands as Licensed Pits and Quarries;
- Amendment to the City of Port Colborne Official Plan 2017, to re-designate the lands from Agricultural to Mineral Aggregate Operation;
- Amendment to the City of Port Colborne Zoning By-Law 6575/30/18, to rezone the lands from Agricultural (A) to Mineral Aggregate Operation (MAO); and,
- Application to the Ministry of Natural Resources and Forestry, under the Aggregate Resources Act for a Class A Category 2 Licence (Quarry Below Water).

1.1.1 Region of Niagara Official Plan (ROP) 2014

Policy 6.C.13 of the Region of Niagara ROP states: "Where a new pit or quarry or an extension to an existing licensed pit or quarry are to be located outside a Possible Aggregate Area, an amendment to this Plan is required." As the subject lands are not within a Possible Aggregate Area, a Regional Official Plan Amendment through the Region of Niagara is required to identify the subject lands on Schedule D4 - Mineral Resources.

1.1.2 City of Port Colborne Official Plan (OP) 2017

Policy 10.2 of the City of Port Colborne OP states: "The establishment of a new or an expansion to an existing mineral aggregate operation shall require an amendment to this Plan..." Therefore, an Official Plan Amendment through the City of Port Colborne is required.

1.1.3 City of Port Colborne Zoning By-Law No. 6575/30/18:

The lands are currently zoned (A) Agricultural within the City's Comprehensive Zoning By-Law. Extraction and related uses are not a permitted use. Therefore, the lands must be rezoned to (MAO) Mineral Aggregate Operations in order to permit extraction and all the permitted accessory uses. This requires an amendment to the City's Zoning By-Law No. 6575/30/18.

1.1.4 Aggregate Resources Act

In addition to the above Planning Approvals, PCQ also requires approval for a Class A Category 2 (Quarry Below Water) License under the Aggregate Resources Act as processed through the Ministry of Natural Resources and Forestry.

The proposed quarry will be excavated to the same stratigraphic horizon, corresponding to the top of bluish-grey shale on the base of the adjacent pit. This corresponds to a range of elevations from approximately 165 to 168 metres above sea level (masl). The proposed quarry consists of approximately 43,730,850 tonnes of limestone resource within the extraction limits. Golder completed the installation of 20 monitoring wells on the original proposed expansion property (Site) in order to determine the bedrock geology and the hydrogeological conditions prior to purchase of the property. PCQ purchased additional property in 2017 and 2018 which has been included in this license application.

1.2 Permit to Take Water (PTTW) Monitoring Program

A monitoring program is being completed for the existing Port Colborne Quarry Site. The existing quarry is being monitored as part of the conditions of Permit to Take Water (PTTW) No. 7675-8MBQBB, which allows for a total maximum daily withdrawal volume of 8,640,000 litres.

The existing PTTW report includes the following:

- Preparation of a water budget;
- Groundwater level monitoring;
- Measurement of sump water levels; and,
- A summary of well interference complaints.

The ECA monitoring includes the following:

- Collection of water discharge samples and analysis for hydrogen sulphite, total suspended solids (TSS), total oil and grease;
- Assessment of the effectiveness of TSS control measures; and,
- A summary of operational problems, maintenance, and corrective actions.

This PTTW includes monitoring of groundwater levels and evaluation of the potential water well interference as well as a summary of response to any well interference complaints. The PTTW documents that were reviewed as part of the hydrogeological work program for the proposed extension include:

- WSP, 2013, 2012 Annual Compliance Report, Port Colborne Quarries, March 2013;
- WSP, 2014, Port Colborne Quarries 2013 Annual Compliance Report, March 2014;
- WSP, 2015, Port Colborne Quarries 2014 Annual Compliance Report, March 2015;
- WSP, 2016, Port Colborne Quarries 2015 Annual Compliance Report, March 2016;
- WSP, 2017, Port Colborne Quarries 2016 Annual Compliance Report, March 2017;
- WSP, 2018, Port Colborne Quarries 2017 Annual Compliance Report, March 2018; and,
- WSP, 2019, Port Colborne Quarries 2018 Annual Compliance Report, March 2019.

This information in these monitoring reports was considered as part of the preparation of the work program.

2.0 REGIONAL SETTING

The existing Port Colborne Quarry is located in the City of Port Colborne within the Regional Municipality of Niagara. The existing quarry is bounded by Second Concession Road to the north, Highway 140 to the west, Main Street East (Highway 3) to the south, and 200 m west of Carl Road to the east. The Site is situated directly east of the existing quarry and remains between Second Concession Road to the north and Highway 3 to the south and extends approximately 400 m east of Carl Road (see Figure 1) along Second Concession. The southern edge of the Site extends 200 m east of Carl Road. The Port Colborne Quarry and Site are located in the vicinity of the buried Onondaga Escarpment.

2.1 Physiography

The areas surrounding the existing quarry and the Site are predominately flat to slightly undulating agricultural lands and woodlots with rural residential development along the various concession roads in the vicinity of the Site. Quarrying was focused within this specific area due to the presence of flat lying dolostone bedrock at or very near ground surface that is of high quality for the production of construction aggregates.

The general terrain associated with the existing quarry and the Site comprises a flat landscape of limited topographical relief characterised by gently undulating agricultural lands and woodlots. Local intervening areas with low, poorly drained conditions also occur within the drainage courses. Overall, the topographic relief in the quarry vicinity varies between approximately 180 to 185 masl gradually sloping southward towards Lake Erie.

2.2 Surficial Geology

The regional distribution of surficial deposits in the vicinity of the Site, based on Ontario Geological Survey (OGS) mapping, is shown on Figure 2. The regional surficial geology of the Port Colborne Quarry area is known as the Haldimand Clay Plain and is comprised of shallow overburden overlying the dolostone bedrock of the buried Onondaga Escarpment. The surficial deposits that are found around the Port Colborne Quarry area are comprised of predominantly massive, well-laminated clays. In some areas, coarse-textured glaciolacustrine deposits are also found. The thickness of the surficial deposits encountered across the Site during the drilling program ranged from approximately 0.5 m to 10.5 m.

2.3 Bedrock Geology

The regional distribution of bedrock formations is shown on Figure 3, which shows that the site area is underlain by the Onandaga Formation. Aggregate Resource and Inventory Paper 117 for the area shows on the regional bedrock map (Map 3) that the Bois Blanc Formation is the uppermost bedrock unit in the area of the existing quarry and there is a transition to the Onondaga Formation on the southeastern portion of proposed extension. Based on the work programs conducted at the site, the Port Colborne Quarry Site area is underlain by a welldefined stratigraphic sequence of limestone, dolostone, and shale bedrock including the Bois Blanc Formation and the Bertie Formation which are being excavated by the existing quarry, and the Salina Formation which underlies the quarry. The uppermost bedrock in the site area consists of the Bois Blanc Formation.

The Salina Formation consists of Upper Silurian aged rocks which are composed of alternating carbonates, evaporates, and shales. The uppermost layers of the Salina Formation can also contain anhydrite or gypsum nodules which can dissolve leaving voids and collapse structures.

The Bertie Formation overlies the Salina Formation conformably and consists of alternating carbonate and carbonate-shale units. The Bertie Formation is generally subdivided into five members known as (in ascending order):

- The Oatka Member– dolomitic shales;
- The Falkirk Member
 dark brown dolostones;
- The Scajaquada Member
 dark grey to black shales and argillaceous dolostones;
- Williamsville Member- grey micritic dolostones and dolomitic shales; and,
- The Akron Member- grey, wavy bedded, mottled dolostones.

Immediately above the Bertie Formation lies the Bois Blanc Formation where the contact between the two units represents the Silurian-Devonian disconformity. This disconformity represents the period of time where the Silurian-age bedrock units of the Niagara Peninsula were subjected to an extended period of subaerial weathering. The Bois Blanc consists of cherty fossiliferous bioclastic or argillaceous limestones.

The Onondaga Formation overlies the Bois Blanc formation in the area surrounding the Port Colborne Quarry and consists of variably cherty, fossiliferous limestone with some minor shale partings.

2.4 Aquifer Vulnerability Index

The aquifer vulnerability index (AVI) for the regional surficial geology in the vicinity of the Port Colborne Quarry is considered "high" for the Niagara Peninsula source zone protection area due to the potential for coarse-textured glaciolacustrine deposits or for relatively thin overburden areas to be present within the Haldimand Clay Plain¹. The AVI rating assesses the potential for vertical infiltration of contaminants through the shallow overburden into the underlying the bedrock formations. The overburden deposits in the area of the proposed Pit #3 extension are thin within the southern area of the Site corresponding to a moderate to high AVI, since there are not thick low permeability overburden deposits that would retard the downward migration of contaminants from surface. The overburden deposits thicken northwards and in the area of the wetlands/woodlands there are relatively thick (approximately 6 m) clayey deposits. It is interpreted that this area has a moderate to low AVI.

It should be noted that the AVI is relevant to sources of surface contamination. The AVI is not directly applicable to the proposed extension since potential sources of surface contamination will not be placed on the ground surface and as such the protection of the aquifer is not reliant on the character of overburden deposits reflected in the AVI. The AVI is not directly applicable in a below water table quarry setting since this involves excavation through the surface cover. Therefore, there is no reliance on the presence of the overburden at surface soil to protect the aquifer.

In addition, the Site is mapped within a potentially significant groundwater recharge area. However, the Site is overlain by clay, from a depth of approximately 10 mbgs on the north end of the Site to approximately 1 mbgs on the south end of the Site. Therefore, the overlying clay material will limit groundwater recharge to the underlying bedrock groundwater formations.

There is inward groundwater flow which prevents the outward flow of groundwater under existing conditions, and this is planned to be continued in the long term to maintain the quarry in a dry state by pumping. Further, the quarry is underlain by shale deposits that prevent the seepage downward seepage of contaminants through the base of the quarry. The AVI rating in the vicinity of the proposed extension at the Port Colborne Quarry is not considered to be a significant concern for potential infiltration of contaminants to affect water supply wells in nearby bedrock formations since the groundwater will continue to flow inward during active quarry dewatering.

2.5 Potential for Karst

There is potential for chemical weathering to create small-scale karstic features within dolostone units along the sidewalls of the Port Colborne Quarry. Potential karst features may include solution-widened bedding planes or conjugate fracture systems that are related to the dissolution effects of water flowing through the fractured dolostone of stratigraphic units of the Bertie formation.

During the summer months the quarry is maintained in a dry state with minimal to low pumping and if significant transmissive karst features were present they would be apparent on the quarry walls. No significant larger scale karstic features have been observed on the sidewalls of the Port Colborne Quarry and the observed relatively low rates of groundwater flow into the Port Colborne Quarry are not consistent with significant karstic features on the quarry sidewalls.

¹ Groundwater Vulnerability Analysis Niagara Peninsula Source Protection Area", Niagara Peninsula Conservation Authority (NPCA), 2011. Prepared for Niagara Peninsula Source Protection Authority, November 30, 2009, numerical amendments made in June 2011.

As noted previously, by maintaining the dewatering sump at a groundwater elevation for the foreseeable future, the local groundwater flow directions adjacent to the quarry are expected to be radially inward over the long term. This zone of depression in the water table would be expected to capture any groundwater that is flowing through potential karstic features along the quarry sidewalls. As a result of the radially inward groundwater flow, the potential for water quality impacts to occur in nearby supply wells as a result of karstic features on the sidewalls of the Port Colborne Quarry is considered to be very low.

3.0 FIELD INVESTIGATION METHODOLOGY

The hydrogeological characterization of the Site involved groundwater investigations initiated in early 2017 followed by groundwater monitoring through July 2017. The hydrogeological work program included:

- Borehole drilling and monitoring well installations;
- Hydraulic conductivity testing;
- Groundwater level monitoring;
- Groundwater quality sampling;
- Estimation of groundwater inflow;
- Water well impact assessment;
- Private water well survey;
- Development of a groundwater monitoring program and a well response complaint program for private wells; and,
- Report preparation.

Groundwater monitoring was completed monthly throughout 2018 and 2019 and is being continued on a quarterly frequency during 2020. The investigations have built upon the information available from previous site investigations and ongoing monitoring of the existing PCQ operations and adjoining lands. As part of the Site investigation, boreholes were drilled at ten on-site locations. The following sections provide an overview of the investigation while more detailed discussion of each aspect of the investigation along with the results including borehole logs and monitoring data are provided in the appendices attached to this report.

3.1 Borehole Drilling and Well Installation

The hydrogeological investigation involved the drilling and installation of monitoring wells at ten locations at the Site. A shallow and deep well were installed at each location for a total of 20 monitoring wells. These monitoring wells which were completed in February through March 2017 and are labelled as MW17-1S and MW17-1D through to MW17-10S and MW17-10D, where "S" represents the shallow well and "D" represents the deep monitoring well at each location. The location of the completed wells at the Site is shown on Figure 4. A shallow and deep 100 mm diameter borehole was cored using HQ coring equipment with water flush and completed to depths varying from 6.0 to 21.4 metres below ground surface (mbgs) in order to target pre-determined stratigraphic horizons. The bedrock core was logged to determine the rock conditions and stratigraphy of the formations encountered. Upon completion of drilling, hydraulic conductivity packer testing was carried out in the deep boreholes at each location.

Following the completion of the hydraulic conductivity testing, monitoring wells were installed in the shallow and deep boreholes using 32 mm diameter flush threaded PVC pipe and slotted well screen. At monitoring well locations MW17-1S, MW17-2S, MW17-3S, and MW17-10S where the targeted stratigraphic horizons were not encountered, shallow overburden monitoring wells were installed at depths varying from 5.18 to 6.05 mbgs. Shallow overburden wells were installed via hollow stem augers using 51 mm flush threaded PVC pipe and slotted well screen. The bedrock monitoring wells were completed using 32 mm flush threaded PVC pipe and slotted well screen. Both shallow and deep bedrock and overburden monitoring wells were set in silica sand to the target depths and sealed with bentonite to surface.

Following installation of all of the monitoring wells, Golder returned to the site to complete GPS and elevation surveying of each of the locations. Details of the monitoring well locations and elevations are provided in Table 1 and can be found on the borehole records in Appendix A.

3.2 Hydraulic Conductivity Testing

A total of 30 packer tests were completed in order to assess the horizontal hydraulic conductivity of the bedrock at the Site. The packer tests were conducted in the open boreholes (MW17-1D through MW17-10D) prior to the installation of the monitoring wells. Prior to the start of packer testing, the open boreholes were developed by flushing with water and over-pumping until clear water was produced. Drill rod seal tests were also performed prior to the initiation of all the packer tests to determine the competency of the drill rods.

The majority of the packer tests (20 of the 30 tests) were conducted over 3.2 m vertical intervals. Testing was conducted using a double packer assembly between the bottom of the hole and the water table or the casing, whichever was lower. The overlap between test intervals was generally 0.3 m, in some cases larger overlaps were used in order to test all available bedrock. The remainder of the packer tests were completed on the bottom of each hole using a single packer assembly with vertical intervals ranging from 2.9 to 3.8 m.

All packer tests were performed using the falling head test method, where the column of water representing the static water level within the packer interval is raised by adding water from an external source. Subsequently, the water column falls while the water level and elapsed time are recorded. The packers were inflated with nitrogen gas to pressures around 200 pounds per square inch (psi) to ensure an adequate seal between the packer glands and the wall of the borehole. Following the inflation of the packers, the water column in the test interval was monitored within the drill rods until static or near static conditions were observed over periods of 5 to 30 minutes. The drill rods were then filled with water and the falling head test was initiated. The water level and elapsed time was then measured using Solinst level loggers until the water level reached static or at least 60% of the initial static level. In some cases, 60% of initial static was not achievable due to very slow hydraulic conductivity. Manual recordings of time and water column depth were also recorded during each test where applicable.

The packer test data for all falling head tests were analyzed by the Bouwer and Rice method using the Aqtesolv software program. The use of the Bouwer and Rice analytical solution for the determination of hydraulic conductivity of fracture rocks is deemed appropriate in this situation based on the scale of the proposed quarry, which makes it impractical to consider the individual flow paths within the bedrock. Rather, the net effect of the fractures, in terms of their ability to conduct water under the influence of a hydraulic gradient, must be considered as a bulk hydraulic conductivity. In this study, the geometric mean is applied to measure hydraulic conductivities for this purpose. During this process, minor analytical errors in the analysis of the data are not significant.

Results of the packer test data are summarized in Table 2.

3.3 Groundwater Level Monitoring

Following the installation of each monitoring well, Golder completed monitoring well development as per Golder's Standard Operating Procedure No. 5: Monitoring Well Development. Each monitoring well was developed to remove fine particles from the filter pack and to remove any fluids introduced to the monitoring well during drilling and to ensure fresh formation water has entered the well prior to groundwater sample collection.

Starting April 10, 2017, Golder initiated a weekly groundwater monitoring program which involved the groundwater level collection in each of the newly installed monitoring wells for a period of 12 weeks which was completed on July 31, 2017. Water levels in each well were measured using an electronic water level meter. The water level meter was appropriately cleaned using a liquid Alcanox[™] and distilled water rinse to prevent cross contamination between monitored locations. The results of the groundwater monitoring program are presented in Table 3.

From January 2018 through December 2019, Golder collected monthly groundwater levels at all of the accessible groundwater monitoring wells that were installed as part of the 2017 drilling program. The results of this groundwater monitoring program are also included in Table 3. Golder continues to collect groundwater levels quarterly at these wells throughout 2020.

The 2017 through 2020 groundwater elevations have been included in the hydrographs provided in Appendix D.

3.4 Groundwater Quality Sampling

Prior to sampling, water levels in each well were measured using an electronic water level meter. The water level meter was appropriately cleaned using a liquid AlcanoxTM and distilled water rinse to prevent cross contamination between monitored locations. Prior to sampling, the monitoring wells were purged of either a volume of water equivalent to three standing well volumes or until dry using the dedicated inertial lift pumps installed in each well.

Groundwater sampling involved purging prior to sample collection to ensure that the samples are representative of true aquifer conditions. Field parameters (pH, electrical conductivity, and temperature) were measured after the removal of each well volume and prior to sample collection. The samples collected for metals analyses were field filtered using a disposable in-line 0.45 micron filter attached directly to the inertial lift pump assemblage. Samples were stored on ice and shipped to the laboratory within 24 hours of collection under chain of custody. Samples were compared to Ontario Drinking Water Standards (ODWS) (MECP 2006) and any applicable site specific limits or criteria.

3.5 Quarry Sump Quality Sampling

Quarry sump sampling involved the collection of one quality sample from the main quarry sump located within <u>Pit</u> <u>2 of</u> the existing Port Colborne Quarry. Prior to sampling, field parameters (pH, electrical conductivity, temperature, and dissolved oxygen) were measured from directly within the quarry sump. The samples were then collected directly from the quarry sump into laboratory provided bottles. Samples were compared to the Provincial Water Quality Objectives (PWQO).

4.0 RESULTS OF INVESTIGATION

The results of the investigation conducted by Golder at the Site are presented below.

4.1 Borehole Investigation Results

The stratigraphic sequence of bedrock encountered during the drilling program included the Bois Blanc Formation, the Bertie Formation, and the Salina Formation. The details of each stratigraphic unit are described below.

The Salina Formation was only encountered at borehole location MW17-1D where drilling progressed deeper in order to confirm the location of the targeted stratigraphic horizons. The bottom of the Salina Formation was not encountered so the formation thickness is not reported.

The Bertie Formation was encountered at all deep borehole locations and in six of the shallow borehole locations. Unit 1 of the Bertie Formation was the target horizon for the deep borehole locations. The thickness of the Oatka Shale was 5.2 m and was only encountered in its entirety at borehole location MW17-1D. The thickness of the Bertie Formation in the southern portion of the site that will be extracted ranged from 13.9 m to 14.9 m (not including the Oatka shale). The thickness of the Bertie Formation in the northern portion of the site ranged from 5.1 to 6.2 m where it was truncated and overlain by overburden.

The Bois Blanc Formation was only encountered at borehole locations MW17-4, MW17-5, MW17-7, MW17-8, and MW17-9. The Bois Blanc was overlain by overburden at all of these locations and the thickness of the overburden ranged from 0.4 m to 5.1 m.

4.1.1 Stratigraphy

The stratigraphic units are described below:

Bois Blanc Formation

The Bois Blanc Formation consists of medium to light grey, medium bedded, medium grained cherty limestone with light to medium grey calcareous sandstone and siltstone beds and green glauconitic layers, and green glauconitic coatings on fracture surfaces, with a sharp lower contact.

Akron Member

The Akron Member consists of mottled light to medium grey, thin to medium bedded and medium grained dolostone with occasional thin argillaceous partings with green glauconitic coatings on fracture surfaces and brecciated intervals, with a sharp contact and a gradational transitional lower contact. This Member has been referred to as Unit 5 throughout this report.

Williamsville Member

This member consists of a grey, medium grained, thin to medium bedded laminar textured dolostone with numerous thin to argillaceous to shaly laminate and thin shale beds. The upper contact with the Akron Member is transitional and distinguished by the transitional from its matted to laminate textured appearance. <u>This Member has been referred to as Unit 4 throughout this report.</u>

Scajaquada Member

The Scajaquada Member consists of medium to dark bluish grey argillaceous to shaly dolostone with thin shale interbeds. The upper contact with the Williamsville Member is transitional identified at the transitional first appearance of dark grey shaly bedding. This Member has been referred to as Unit 3 throughout this report.

Falkirk Member

The Falkirk member is comprised of brown medium to thickly bedded to missive, medium crystalline dolostone with occasional argillaceous laminate. The upper contact is sharp and identified at the base of the argillaceous to shaly bedding, and appearance of brown to crystalline rock. <u>This Member has been referred to as Unit 2</u> throughout this report.

Oatka Member

The Oatka Member is a fine grained, thinly bedded, bluish-grey argillaceous dolostone and shale. The upper contact is sharp and demarcated by the transition from crystalline brown rock to fine grain bluish grey rock. <u>This Member has been referred to as Unit 1 throughout this report.</u>

Salina Formation

The Salina Formation consists of dark grey to black argillaceous dolostone, and black shale with thin gypsum beds and nodules. The upper contact drawn at the transition from bluish grey rock to dark grey to black shale.

4.1.2 Hydrostratigraphy

The upper aquifer units are interpreted to consist of the limestone of the Bois Blanc Formation and the dolostones of Akron Member and Williamsville Member of the Bertie Formation. These aquifer units are underlain by the shaly dolostone of the Scajaquada Member of the Bertie Formation which is interpreted to act as weak aquitard. This unit is underlain by the lower aquifer which is comprised of the Falkirk Member of the Bertie Formation. This sequence is underlain by the shaly Oatka member which acts as an aquitard and is forms the floor of the existing quarry.

4.2 Bedrock Surface Contours

Overburden thickness contours were derived using the ground surface elevation (shown on Figure 5) and digitally subtracting a contour plan of the bedrock surface elevation. The overburden thickness contours are shown on Figure 6. The overburden is thin in the southern portion of the site and thickens northward where is reaches its maximum thickness beneath the wetland/woodland area. At Borehole 17-1D a thickness of 10.2 m of silty clay overlain by topsoil was encountered. At Borehole 17-2D topsoil underlain by silty clay with a thickness of 8.7 m was encountered while at 17-3D a thickness of 5.4 m was encountered. The silty clay overburden deposits beneath the wetland form a low permeability clayey base to the wetland.

Bedrock surface contour maps were created based on the data from the borehole locations and are presented on Figures 7, 8, and 9. The inferred bedrock surface at the Site is presented on Figure 7. The bedrock surface depth varied across the Site from 0.51 mbgs at location MW17-5D to 10.21 mbgs at location MW17-1D. On the south side of the Site the bedrock surface gradually slopes to the east away from the existing quarry. On the north side of the Site the bedrock surface slopes towards the north with a decrease in elevation of 9 m between locations MW17-4D and MW17-1D. This subsurface topographic feature may be the result of a localized depression, a buried channel or possibly the presence of the buried Onondaga Escarpment.

Figure 8 shows the inferred surface of the base of the Williamsville Member (Unit 54) of the Bertie Formation. The base of Unit 54 was encountered at every deep borehole location except for MW17-1D and at shallow borehole location MW17-6S. The base of Unit 4 slopes gently towards the southwest with a decrease in elevation of approximately 6.5 m between locations MW17-3D and MW17-8D.

Figure 9 shows the inferred surface of the base of the Falkirk Member (Unit 2) of the Bertie Formation. The base of Unit 2 was encountered at every deep borehole location. The base of the Falkirk Member also slopes gently

towards the southwest with a decrease in elevation of approximately 8 m between locations MW17-3D and MW17-8D.

4.3 Hydraulic Conductivity Results

A total of 30 packer tests were completed within the deep borehole locations MW17-1D through MW17-10D located at the Site. The results of all the tests are presented in Table 2 and the summary of each test including a plot is compiled in Appendix B. The results of the tests are also presented on the borehole logs in Appendix A.

The individual packer test results are plotted on Figure 10 which indicates the overall range of hydraulic conductivity with depth. The test intervals are shown with respect to the formation stratigraphy and relative to the base of Unit 2 of the Bertie Formation which will act as the base of the proposed quarry. Figure 10 indicates that the hydraulic conductivity of the rock sequence varies over a wide range between 8.7 x 10^{-10} metres per second (m/s) and 1.2 x 10^{-5} m/s. The test results characterize the hydraulic conductivity of the individual formations including the wide variation both spatially and with depth.

Examination of the exposed quarry faces, core logging, and packer testing results indicate that the hydraulic conductivity of the bedrock is primarily related to open, near-horizontal bedding partings within the rock. Therefore, the hydraulic conductivity values determined during packer testing are considered to primarily reflect horizontal permeability along the open bedding partings. The vertical permeability of the intact beds of rock separating the open bedding partings is anticipated to be much lower, with the possible exception of the Falkirk Member of the Bertie Formation based on the interconnectivity of the vugs.

Due to the observed static water levels within the open boreholes during packer testing, the majority of the packer test intervals (25 tests) were completed within the lowermost portion of the Bertie Formation, Unit 1 through to Unit 3. One packer test interval was completed within the Salina Formation at MW17-1D. While four packer test intervals were completed in Unit 4. No packer tests were completed within the Bois Blanc Formation. The results of the packer test interval within the Salina Formation returned the lowest hydraulic conductivity recorded at the Site of 8.7 x 10^{-10} m/s.

The results of the 25 packer test intervals that fall within Units 1 through 3 of the Bertie Formation returned a wide range of results from 1.2×10^{-5} m/s to 4.6×10^{-9} m/s. Due to the length of the packer interval, the majority of the tests would straddle two of the stratigraphic units. As Unit 1 was the targeted stratigraphic horizon, the exposure of this Unit was between 0.2 m to 1.5 m in all of the deep boreholes except for MW17-1D where its entirety was encountered. The only packer test completed completely within Unit 1 returned the result of 7.6 x 10^{-6} m/s.

Six packer tests were completed entirely within Unit 2 of the Bertie Formation. The results from these tests ranged from 8.8 x 10^{-6} m/s to 9.5 x 10^{-8} m/s.

One packer test was completed entirely within Unit 3 of the Bertie Formation at MW17-9D and one completed almost entirely within at MW17-8D. The results from these two tests were 2.8×10^{-8} m/s and 4.6×10^{-9} m/s, respectively.

One packer test was completed entirely within Unit 4 of the Bertie Formation at MW17-8D and three packer tests were completed partially within Unit 4. The result from the packer test that was entirely within Unit 4 was 5.1×10^{-5} m/s. The other three test results ranged from 2.6×10^{-7} m/s to 4.6×10^{-9} m/s.

4.4 Groundwater Level Monitoring Results

The results of the 12 week groundwater level monitoring program and the monthly and quarterly groundwater level monitoring program are presented in Table 3. Using the results of the groundwater level monitoring program in May 2017, May 2018, May 2019, and May 2020 and based on the stratigraphy encountered at the Site, groundwater potentiometric surfaces were produced for overburden (Figures 11A, 11B, 11C, 11D), shallow bedrock (12A, 12B, 12C, 12D) and deep bedrock (Figures 13A, 13B, 13C, and 13D).

4.4.1 Overburden Groundwater Elevations

The overburden groundwater potentiometric surfaces are presented on Figures 11A to 11D based on the groundwater levels collected during May 2017 to May 2020. Based on Figures 11A to 11D, overburden groundwater appears to flow to the east away from the active quarry, however, there is limited data available, therefore, overburden contours have not been included on this figure.

The 2017 to 2020 groundwater elevations have been included on hydrographs presented in Appendix D. The hydrographs indicate that the groundwater elevations in the overburden monitoring wells, MW17-1S, MW17-2S, and MW17-3S, increased since the development and sampling of the wells until August 2017 when they appeared to reach static. The groundwater elevations at MW17-1S and MW17-3S fluctuated seasonally in 2018 with higher elevations observed in late spring/early summer. The groundwater elevation at MW17-2S has remained relatively stable since August 2017 and the groundwater elevation at MW17-10S has remained near the base of the well screen since well development.

The wetland areas in the north of the site were not observed to be in a flooded condition during much of the year which is interpreted to reflect the underlying low permeability clayey deposits which reduce seepage through the base of the wetland

4.4.2 Shallow Bedrock Groundwater Elevations

The shallow bedrock groundwater monitoring wells are either completely installed within the Akron and Williamsville Members of the Bertie Formation or partially within these members and partially within the Bois Blanc Formation. The shallow bedrock groundwater potentiometric surfaces are presented on Figures 12A to 12 D based on the groundwater levels collected during May 2017 to May 2020.

Groundwater levels within the shallow bedrock remained relatively stable. Subtle fluctuations in the groundwater elevations were observed across each of the monitoring well locations indicating that the shallow bedrock groundwater surface is well connected across the Site, with the exception of MW17-4S which exhibited very limited fluctuations. Higher groundwater elevations were typically observed during the spring and late fall in the shallow bedrock monitoring wells.

Based on Figures 12A to 12D, the shallow bedrock groundwater flows from south to north toward MW17-7S. From this location it flows northwest towards MW17-5S and the existing quarry. There is also southward groundwater flow from MW17-4S. This may be due to the overburden groundwater influence from the north which may act as a recharge area for the shallow bedrock groundwater as it is truncated and overlain by overburden between MW17-4 to MW17-2. Monitoring well MW17-6S has not been included in the contouring as the groundwater elevation at this location appears to be anomalously low.

4.4.3 Deep Bedrock Groundwater Elevations

The deep bedrock groundwater monitoring wells are either completely installed within the Falkirk Member of the Bertie Formations or mostly within the Falkirk Member and partially within the Oatka Member of the Bertie

Formation. The deep bedrock groundwater potentiometric surfaces are presented on Figures 13A to 13D based on the groundwater levels collected during May 2017 to May 2020.

Groundwater elevations within the deep bedrock remained relatively stable. Subtle fluctuations in the groundwater elevations were observed across each of the monitoring well locations indicating that the deep bedrock groundwater surface is well connected across the Site. The overall groundwater elevations appear to be decreasing over time with muted seasonal fluctuations observed. A noticeable decrease in groundwater elevations is observed at MW17-5D, MW17-7D, MW17-8D, and MW17-9D which are all located on the southern portion of the Site.

Based on Figures 13A to 13D, the deep bedrock groundwater flows from the south, west, and northern property boundaries towards the eastern property boundary and MW17-5D. The potentiometric surface represents a slight draw down cone with MW17-5D as the lowest point. This may indicate that MW17-5D is more strongly connected to the exposed quarry to the northwest.

4.4.4 Water Table

The approximate water table corresponds to the shallow monitoring wells installed in the bedrock and overburden. The overburden water table is shown on Figures 11A and 11B and ranges from 176.19 to 179.51 masl in May 2017. The shallow bedrock water table is shown on Figures 12A and 12B and ranges from 176.0 to 177.88 masl in May 2017. Therefore, a generalized value for the water table is approximately 178 masl. No overburden wells were installed on the southern portion of the Site as the bedrock is near surface.

4.4.5 Hydrogeological Cross-Sections

Two hydrogeological cross-sections were developed across the site area at the locations shown on Figures 11 to 13. Cross-Section A-A' on Figure 14 is oriented west-east and extends through the wetland/woodland in the northern portion of the site (and is oriented along the direction of groundwater flow toward the quarry). Cross section B-B' on Figure 15 is oriented north-south and extends along the western edge of the proposed extension (and is oriented across the direction of inward groundwater flow to quarry).

Cross-section A-A' shows the relatively thick clayey overburden deposits beneath the wetland. The section shows the groundwater levels in the monitoring wells installed and are below ground surface with downward hydraulic gradients from the overburden to the bedrock wells. The wetland/woodland is noted to have standing water during the fall and spring which is considered to reflect the low permeability of the clayey materials beneath the wetland. It is interpreted that other areas of the wetland will continue to have standing water during spring and summer during the quarry expansion since this is occurring under existing conditions in areas directly adjacent to the existing quarry.

Cross-section B-B' indicates the increase in elevation of the bedrock units from north to south, while the bedrock surface is decreasing to the north. This result in the truncation of the upper bedrock units northward. The relatively thick overburden deposits are a result of the northward decline in bedrock surface. The relatively consistent groundwater elevations along the section reflect the orientation of the section along the general trend of groundwater flow contours.

4.5 Groundwater Quality Sampling Results

On April 10, 2017 Golder collected 12 groundwater samples from MW17-1S, MW17-1D, MW17-2S, MW17-3D, MW17-4S, MW17-6S, MW17-6D, MW17-8S, MW17-8D, MW17-9S, MW17-9D, and MW17-10D. A summary of the groundwater results has been provided in Table 4. The groundwater samples were analyzed for the Rapid

Chemical Analysis Package (RCAP) Comprehensive list of parameters which includes general parameters, nutrients and organic indicators, major and minor ions, and dissolved metals. The groundwater results were compared to the ODWS as shown on Table 4. The laboratory certificates of analysis are provided in Appendix D.

4.5.24.5.1 Overburden Groundwater Quality Results

A review of the groundwater chemistry from the two samples collected from overburden monitoring wells MW17-1S and MW17-2S is provided below:

- Concentrations of general parameters were generally similar at each of the wells with the exception of TSS and TDS which were elevated at MW17-1S and hardness which was elevated at MW17-2S. The groundwater quality typically complied with the applicable ODWS with the exception of TDS at both sampled locations.
- Concentrations of nutrients and organic indicator parameters were generally similar at MW17-1S and MW17-2S. The concentrations of orthophosphate, nitrate, and nitrite were below detection limits at MW17-2S, while they were marginally above detection limits at MW17-1S. The groundwater quality typically complied with the applicable ODWS with the exception of DOC at MW17-2S.
- Concentrations of major and minor ions were variable at MW17-1S and MW17-2S. The concentrations of alkalinity, calcium, and magnesium were marginally elevated at MW17-2S, while the concentrations of sodium and sulphate were significantly elevated at MW17-1S. There were no ODWS exceedances for the major and minor ion parameters.
- Concentrations of dissolved metal parameters were generally similar at MW17-1S and MW17-2S. The concentration of aluminum, barium, molybdenum, uranium, and vanadium were elevated at MW17-1S, while boron, silicon, and strontium were elevated at MW17-2S. The groundwater quality typically complied with the applicable ODWS with the exception Manganese at MW17-2S.

4.5.34.5.2 Shallow Bedrock Groundwater Quality Results

A review of the groundwater chemistry from the four samples collected from the shallow bedrock monitoring wells MW17-4S, MW17-6S, MW17-8S, and MW17-9S is provided below:

- Concentrations of general parameters were generally similar at each of the bedrock wells with the exception of TDS and hardness which were elevated at MW17-9S and TSS which was elevated at MW17-4S, MW17-6S and MW17-8S. The groundwater quality typically complied with the applicable ODWS with the exception of TDS and hardness at all sampled locations.
- Concentrations of nutrients and organic indicator parameters were generally similar at all sampled shallow bedrock locations. There were no ODWS exceedances for the nutrients and organic indicator parameters in shallow bedrock.
- Concentrations of major and minor ions were variable at the sampled shallow bedrock monitoring wells. The following observations were noted:
 - Alkalinity and magnesium were elevated at MW17-4S and MW17-9S;
 - Sodium and chloride were significantly elevated at MW17-9S; and,
 - Sulphate was notably lower at MW17-8S.

There were no ODWS exceedances for the major and minor ion parameters.

- Concentrations of dissolved metal parameters were generally consistent between the four shallow bedrock monitoring wells with the exception of:
 - Barium, manganese, molybdenum, and uranium were elevated at MW17-4S; and,
 - Silicon and strontium were elevated at MW17-6S.

The groundwater quality typically complied with the applicable ODWS with the exception of manganese <u>(aesthetic</u> objective) and uranium (health related) at MW17-4S.

4.5.44.5.3 Deep Bedrock Groundwater Quality Results

A review of the groundwater chemistry from the six samples collected from the deep bedrock monitoring wells MW17-1D, MW17-3D, MW17-6D, MW17-8D, MW17-9D, and MW17-10D are provided below:

- Concentrations of general parameters were generally similar at each of the deep bedrock wells with the following exceptions:
 - Conductivity was notably lower at MW17-6D;
 - TSS was elevated at MW17-3D and MW17-6D; and,
 - TDS and hardness were notably lower at MW17-3D and MW17-6D.

The groundwater quality typically complied with the applicable ODWS with the exception of TDS and hardness at all sampled locations.

- Concentrations of nutrients and organic indicator parameters were generally similar at all sampled deep bedrock locations with the exception of total ammonia which was elevated at MW17-8D and MW17-9D. There were no ODWS exceedances for the nutrients and organic indicator parameters in shallow bedrock.
- Concentrations of major and minor ions were variable at the sampled deep bedrock monitoring wells. The following observations were noted:
 - Chloride was elevated at MW17-9D;
 - Sodium was elevated at MW17-8D and MW17-9D; and,
 - Calcium, magnesium, and sulphate were notably lower at MW17-3D and MW17-6D.

There were no ODWS exceedances for the major and minor ion parameters with the exception of sulphate in the deep bedrock wells MW17-1D, MW17-8D, MW17-9D and MW17-10D.

- Concentrations of dissolved metal parameters were generally consistent between the deep bedrock monitoring wells with the exception of:
 - Aluminum was elevated at MW17-9D;
 - Boron was elevated at MW17-8D and MW17-9D and,
 - Manganese was elevated at MW17-1D and MW17-8D.

There were no ODWS exceedances for the dissolved metals parameters.

4.5.54.5.4 Groundwater Quality Summary

The groundwater quality in the overburden and bedrock at the Site was generally similar based on the groundwater quality results. Overburden groundwater quality was typically elevated in pH and TSS concentrations in comparison with the bedrock groundwater quality. The shallow bedrock was typically elevated in hardness and TDS, calcium, chloride, and magnesium in comparison with the overburden groundwater quality. The deep bedrock groundwater quality was typically more mineralized than the shallow bedrock groundwater quality as expected. In comparison to the shallow bedrock groundwater quality, TDS, hardness, calcium, potassium, sodium, sulphate, boron, and strontium were elevated.

4.6 Quarry Sump Quality Sampling Results

On April 11, 2017, Golder collected one surface water sample from the main quarry sump located within the existing Port Colborne Quarry. A summary of the quarry sump results is provided in Table 5. The quarry sump sample was analyzed for the RCAP surface water list of parameters which included general parameters, nutrients and organic indicators, major and minor ions, and total metals. The quarry sump results were compared to the PWQO. The concentrations of all analyzed parameters from the quarry sump sample were below the PWQO with the exception of total boron.

5.0 GROUNDWATER SEEPAGE ESTIMATE

A groundwater seepage estimate has been developed for the proposed quarry extension. This estimate involves calculation of the seepage along the east, north, and south faces. This seepage estimate does not include upward seepage from the floor of the quarry as this is comprised of low permeability dolomitic shales that will be the floor of the proposed extension. The seepage estimate was calculated using Darcy's Law Q=KIA, where:

 $Q = seepage in m^3/sec$

- K = hydraulic conductivity corresponding to the geomean of packer test results (m/sec)
- I = hydraulic gradient, assuming a 500 m radius of influence and a drawdown of 15 m

A = cross-sectional area of quarry faces (m²)

The results of the seepage estimate using the Darcy Calculation are provided in Table E.2 in Appendix E. The parameters and results of calculation are summarized below:

Seepage Calculation Values									
К	7 x 10 ⁻⁷ m/s								
I	0.03 (15 m/500 m)								
А	56850 m² (15 m x 3790 m)								
Q	0.00119385 m³/sec or 71.63 L/min								

Based on this calculation using the geomean of the packer test results, the estimated seepage from the east, north, and south walls of the proposed extension is 72 L/min. If the hydraulic conductivity were increased by one order of magnitude, to produce a conservative estimate the resultant seepage would be 720 L/min.

6.0 PRIVATE WATER WELLS

An evaluation of the MECP water well database was completed to provide additional information with respect to the bedrock surface and groundwater elevations at the water wells surrounding the proposed extension. The location of water wells relative to the calculated dewatering zone of influence is shown on Figure 16. The location of water well cross sections is shown on Figure 17. The MECP water well records in the area of the sections are included in Appendix F. The sections are discussed below.

6.1 Water Well Cross Sections

Four water well cross sections were completed based on the MECP water well records.

- Section C-C' was completed in an east-west direction along Second Concession and is presented on Figure 18;
- Section D-D' was completed in an east-west direction along Killaly Road and is presented on Figure 19;
- Section E-E' was completed in a north-south direction along Miller Road and is presented on Figure 20; and,
- Section F-F' was completed in a northwest-southeast direction along Highway 3 and is presented on Figure 21.

The ground surface and bedrock surface have been included on these cross sections. The recorded depth that water was found during drilling and the static water levels following drilling have also been included on these cross sections for reference, however these water levels have a low degree of accuracy since the depth that water is found is typically estimated and the static water levels may not have fully reached static conditions. In addition, the ground surface elevation, that is used to calculate the ground surface elevation from the measured depth, at the well location is usually not surveyed but instead estimated from mapping based on the location indicated on the drillers log.

Water Well Cross Section C-C'

Cross section C-C' was completed along Second Concession which is located at the northern property boundary of the current quarry operation and the expansion property. The ground surface elevation is approximately 185 masl and increases to approximately 190 masl east of the expansion property. According to the MECP well records this topographic high consists of sand and gravel material whereas the overburden material in the vicinity of the expansion property is typically clay. The bedrock surface is approximately 180 masl in the vicinity of the expansion property and continues to decrease in elevation towards the east. Immediately to the east of the expansion property the bedrock surface decreases to approximately 175 masl as shown on Figure 18. In this area of lower bedrock elevation, the overburden deposits were noted to be sand and gravels rather than clayey materials, which were noted in the western portion of the section. The wells are typically less than 10 m in depth except for two very deep wells and one deeper well. The water was found in bedrock and various depths with no consistent producing horizon. The static water levels are generally above the bedrock surface in the overburden deposits. The water was noted to vary from fresh to sulphur taste.

Water Well Cross Section D-D'

Cross section D-D' was completed along Killaly Road which is located south of the current quarry operation and the expansion property. The overburden deposits consist of clayey that overlie limestone bedrock. The ground surface elevation along Killaly Road is approximately 178 masl to 180 masl. There is a topographic low located south of the expansion property as shown on this cross section. The bedrock surface is approximately 177 masl south of the current quarry operations. The bedrock surface is very close to the ground surface in this location. South of the expansion property, the bedrock surface decreases in elevation to approximately 173 masl. The decrease in bedrock elevation in this area coincides with the decrease in ground surface elevation that is also observed in this area. Further east of the expansion property the bedrock surface increases to approximately 177 masl as shown on Figure 19. The wells are generally completed less than 20 m into bedrock. The water was found a variable depth with no apparent consistent elevation. The water was noted to vary from fresh or sulphur in taste.

Water Well Cross Section E-E'

Cross section E-E' was completed along Miller Road which is located to the east of the expansion property. The ground surface elevation decreases from north to south along Miller Road. The ground surface at the northern end of Miller Road is approximately 185 masl and decreases to approximately 178 masl at the southern end of Miller Road. In general, the overburden deposits are clayey materials overlying bedrock. The bedrock surface elevation typically is similar to the ground surface topography as the bedrock surface also decreases from north to south along Miller Road. At the north end of Miller Road, the bedrock surface is located at approximately 183 masl and decreases to approximately 170 masl at the south end of Miller Road. A bedrock surface elevation increase is noted at some locations along Miller Road based on MECP well records which indicate that the bedrock surface is close to the ground surface as shown on Figure 20. The wells are generally completed less than 20 m into bedrock. The water was found at variable depths with no apparent consistent producing horizon, with the static water levels in the overburden or near bedrock surface. The water was noted to vary from fresh to sulphur in taste.

Water Well Cross Section F-F'.

Cross section F-F' was completed along Highway 3 which is located at the southern property boundary of the current quarry operation and the extension property. The ground surface elevation in the vicinity of the current site and the expansion property is approximately 180 masl and is relatively flat. The clayey overburden deposits overlie bedrock along the section. The bedrock is located at ground surface in the vicinity of the current operation, to the west of the expansion property. South of the expansion property the bedrock surface begins to decrease to approximately 177 masl. To the east of the expansion property, the bedrock surface continues to decrease to approximately 173 masl. Further to the east the bedrock surface begins to increase as shown on Figure 21.

The cross sections indicate that the bedrock surface in the vicinity of the current quarry operation and the proposed extension property is variable. This is likely attributed to the close proximity of the Onondaga Escarpment which appears to be located at the northern end of the expansion property. The bedrock surface appears to slope from the north to the south towards Lake Erie as shown on cross section D-D' on Figure 19. The bedrock surface appears to decrease in elevation moving from west to east along the northern and southern property boundary of the current operations and expansion property as shown on Figures 18 and 21.

6.2 Zone of Influence for the Proposed Extension

The dewatering Zone of Influence (ZOI) represents the lateral extent of groundwater drawdown in response to dewatering which could potentially affect the supply of surrounding water wells (see Appendix E). The dewatering ZOI is governed by the transmissivity of the fractured bedrock and the depth of dewatering required. In the vicinity of the dewatering area a transmissivity ranging from $0.6 \text{ m}^2/\text{day}$ to $1.0 \text{ m}^2/\text{day}$ has been assumed, based on the observed geomean hydraulic conductivity from the packer testing in the Bertie Formation (7 x 10^{-7} m/s) and a saturated aquifer thickness ranging from 10.4 m to 16.8 m. The Theis equation was used to estimate the ZOI. The Theis equation is considered to provide a conservative estimate of the groundwater level drawdown since it does not incorporate groundwater recharge which would limit the expansion of the drawdown curve. Applying the Theis analytical solution, the lateral extend of groundwater level drawdown can be estimated as follows:

$$s(r,t) = \frac{Q}{4\pi T} W\left(\frac{r^2 S}{4Tt}\right)$$

where:

s(r,t) = drawdown at distance (r) and time (t) after the start of pumping

- Q = pumping rate required to achieve maximum drawdown (m³/day)
- T = aquifer transmissivity (0.6 m²/day to 1.0 m²/day)
- S = aquifer storativity $(10^{-4} \text{assumed for specific yield of fractured bedrock})$
- W = Theis well function

Based on the Theis analytical approach discussed above and assuming 14 days for the dewatering system to reach steady-state, the dewatering ZOI for the proposed extension is interpreted to range from 700 m to 1,000 m at which distance the groundwater level drawdown will be less than 10 cm and considered minimal. The results of the Theis drawdown analysis are provided in Table E.1 in Appendix E. The distance-drawdown relationship is expressed on a curve on Figure E.1 in Appendix E. The maximum drawdown case corresponds to a distance of 1,000 m. The intermediate drawdown case corresponds to a distance of approximately 900 m, while the minimum drawdown case corresponds to a distance of approximately 700 m.

This results of this calculation are comparable with the 1 kilometre (km) area that is currently used for the PTTW monitoring for the existing quarry. The estimated ZOI is shown on Figure 16.

The upper range of the ZOI calculation of 1 km is used as the area of groundwater level drawdown and area for potential impact on surrounding water wells. A water well survey was conducted within a 1 km radius of the site (see Figure 16). The MECP water well numbers within the 1 km offset from the extraction boundary of the proposed extension is provided in Table 7.

6.3 Well Impact Assessment

The potential for impacts on the groundwater supply of surrounding wells was determined based on the calculated ZOI which was assumed to be 10 cm. It is assumed that wells within this zone could potentially be affected would occur within the ZOI. The wells with the closest proximity would have a higher likelihood of experiencing a decline in groundwater levels that may affect their supply, although this would be dependent upon the specifics of each well, actual drawdown in groundwater levels. Based on the operating history of the quarry there are wells within a comparable distance from the quarry that have historically not complained to the quarry about their water supply, based on the monitoring reports by WSP.

A water well survey was conducted to establish an initial baseline on wells situated within the potential ZOI (see Section 6.4).

The closest water wells to the proposed extension are at five houses situated south of Highway No. 3 ranging from approximately 75 m to 110 m from the proposed extension (Figure 16). <u>These five properties are identified as 1252 Highway 3 East, 1305 Highway 3 East, 1331 Highway 3 East, 1266 Weaver Road and 1751 Highway 3 East. Of these five properties, the residents at 1305 Highway 3 East, 1331 Highway 3 East, 1331 Highway 3 East and 1266 Weaver Road and 1751 Highway 3 East. Of these five properties, the residents at 1305 Highway 3 East, 1331 Highway 3 East and 1266 Weaver Road responded to the 2018 water well survey completed by WSP. The predicted drawdown for the distances of 100 m and 150 m from the quarry are approximately 2.6 m and 2.8 m respectively. The potential for drawdown will be assessed based on the groundwater monitoring program, including monthly groundwater level monitoring of monitoring wells MW17-8 and MW17-9. Any complaints will be addressed by the complaint response program. In 2018, the resident at 1305 Highway 3 East indicated that they are using a cistern, the resident at 1331 Highway 3 East updated their pump, piping and treatment in 2016 and the resident at 1266 Weaver. The water wells along Miller Road are situated from approximately 365 m to 385 m from the proposed extension (Figure 16). A groundwater monitoring program and complaint response program have also been developed for the operating lifespan of the quarry (see Section 7.0). The predicted drawdowns from the Theis analysis at 350 m, 375 m, and 400 m are 1.52 m, 1.38 m, and 1.27 m respectively.</u>

The potential drawdown of these will be evaluated based on the new monitoring wells to be installed along the eastern perimeter at the proposed extension. There are also wells situated to the east of Miller Road along the 2nd Concession Road within the ZOI. To the southeast there are wells within the ZOI along Killaly Street, Miller Road, and Highway No. 3 (Figure 16). The wells more distant from the quarry monitoring well network will be included in the complaint response program. In addition, these wells could be fitted with pressure transducers to measure groundwater levels if this is agreed to between Rankin and the property owner.

6.4 Water Well Survey

Golder conducted a water well survey for all properties located within 1 km of the expansion property at the addresses indicated in Table 6. A total of 74 private wells were identified within a 1,000 m distance from the perimeter of the Site (Figure 16 and Table 7). Properties that were included in the water well survey completed by WSP were not included in this survey. Golder completed this well survey on September 5, 19, 20, and 26, 2017. A notification letter was delivered to all of the residents on August 23, 2017 indicating that Golder staff would be attempting two visits at each location between August 23 and September 29, 2017. These visits were completed on September 5 and 19, 2017. An additional visit was completed at the remaining residents on September 20, 2017.

Additional properties were included in the well survey based on the revised expansion property boundary provided by PCQ. These additional properties were included in the September 19 and 20, 2017 site visits. On

September 25, 2017 the resident of 1580 Miller Road requested that the well survey be completed which required an additional visit on September 26, 2017. On September 22, 2017 Golder delivered a revised letter and the well survey form to the remaining properties where no response was previously received. Golder requested that the residents fill out the survey form and send it back to the St. Catharines office. No completed survey forms were received by the deadline, September 29, 2017 as indicated on the cover letter provided with the survey form.

A summary of the completed survey forms is provided on Table 6, and a copy of all the completed survey forms is provided in Appendix F. All available information from the residents is included in the survey form. Golder attempted to contact a total of 49 residences as part of the water well survey. A total of 30 residences were successfully surveyed. A total of six residences were not interested in participating in this survey. At the remaining 13 residences, no resident was home during the visits and no response to the letters was received. A summary of these responses is provided in Table 6.

7.0 GROUNDWATER MONITORING AND RESPONSE PROGRAM

This section provides a recommended monitoring program that will be implemented at the onset of extraction in the proposed extension.

Currently, manual monitoring of groundwater levels is being carried out on a quarterly basis at all of the on-site monitoring wells within the proposed extension. The monitoring well network will be augmented by three additional monitoring wells along the eastern perimeter. The groundwater monitoring locations are shown on Figure 22 and summarized in Table 8. This on-site water level monitoring program will be conducted during quarry operations on a monthly basis. Groundwater quality sampling and analysis will be continued every five years during extraction of the proposed extension. It should be noted that the monitoring wells within the extraction area will progressively be mined out as the quarry expands and three new wells will be added along the eastern property boundary. The monitoring program will be discontinued once the quarrying is completed and the quarry will be allowed to flood through natural surface water and groundwater inflows, and the groundwater levels will recover to static conditions.

A monitoring and response program is in place for the existing quarry to detect groundwater level drawdown at the monitoring well locations. A response program would be initiated, if required, to evaluate potential impacts and implement operational measures, or contingency measures, to prevent an interruption of the water supply or to restore the supply. This monitoring and response program will include all residences within 1,000 m of the proposed extension. If required, a temporary water supply would be provided by PCQ to the homeowners that had their water supply interrupted due to quarrying activities. This will be outlined in the PTTW. PCQ will install continuous data loggers in the quarry monitoring wells closest to the five closest water wells (MW17-8S, MW17-8D, MW17-9D). PCQ would also record manual water levels as part of the PTTW monitoring program from the five closest water wells assuming they are accessible, and permission has been granted by the <u>Owner</u>.

In order to implement appropriate response actions in a timely manner, PCQ will retain qualified personnel in the areas of hydrogeology and will have water well contractors and a plumbing contractor on retainer in the event that the need for these services arises. The Complaint Response Program (CRP) is described below.

7.1 Private Well Complaint Response Program

The following description provides the decision process to be followed when a well interference complaint is received.

- The well will be inspected by a Hydrogeologist and/or a Licenced Well Contractor to initially evaluate the complaint. An analysis and impact assessment will then be conducted by a Hydrogeologist to evaluate potential impacts for groundwater level drawdown to affect the water supply of the well. An assessment of the well system performance will then be carried out by the Hydrogeologist and Contractor.
- If it is determined by a Hydrogeologist that there is a significant potential for interruption of the water supply of the well or the water supply of the well has been interrupted, then the water supply restoration program will be initiated. If the initial measures are not successful, then mitigation measures will be implemented in the interim until a successful response is achieved. This could involve the implementation of additional contingency measures until a successful result is achieved.
- If there is no significant potential for the interruption of water supply, then no restoration action will be undertaken, and the temporary water supply will be discontinued. The actions and responses undertaken, as determined by a Hydrogeologist, will be documented for the annual report, and reported to the agencies as required.

7.2 Potential Mitigation Options

There are several mitigation strategies that could be implemented to affect the supply of surrounding water wells, to counteract the effect of quarry-related groundwater level drawdown, if required, based on the results of the monitoring and complaint response program.

Well Deepening

This would be effective, for example, for shallow bedrock wells that no longer have a sufficient water column due to quarry-related groundwater level drawdown. The results of the hydrogeological program indicate that well deepening for shallow wells is feasible, since water supply is obtained from the lower bedrock above the Salina shales.

Well Replacement

This measure could be introduced for wells where well deepening was not sufficient and could also be positioned further from the quarry, or where the facilities are not directly connected to the quarry wall.

Additional Wells

Additional wells could be installed and connected by plumbing into the residence by piping as such that there is a common feed of water from multiple wells.

Trickle Wells

This would involve the pumping low yield wells into a storage system such as a subsurface cistern.

Grouting

The bedrock along the quarry wall could be grouted to seal the fractures and remove the hydraulic connection to adjacent wells.

Low Permeability Side Slopes

The quarry walls could be sloped with low permeability clayey materials to line the fractures on the quarry wall.

Recharge Wells

Recharge wells could be installed to maintain groundwater levels in areas affected by groundwater level drawdown.

The requirement for any of these mitigation measures would be determined based on the results of the groundwater monitoring program.

The results of the monitoring and response program will be incorporated into a report that will be submitted to the MECP on an annual basis as part of the future requirements for a Site-wide PTTW.

8.0 CONCLUSIONS AND RECOMMENDATIONS

The following conclusions and recommendations are provided for the proposed quarry extension.

8.1 Conclusions

- 1) The topography in the area of the proposed extension is generally flat lying ranging from approximately 180 masl to 185 masl.
- 2) The regional surficial geology in the site area consists of deposits of the Haldimand Clay Plain.
- 3) The overburden thickness at the drill hole locations ranged from approximately 0.5 to 10.5 m. The decrease in bedrock surface results in an increase in overburden thickness from south to north across the site with the thickest overburden deposits occurring in the area of the wetland/woodland which are underlain by low permeability silty clay deposits.
- 4) The bedrock surface elevation in the area of the proposed extension decreases from south to north across the area. The highest bedrock surface elevations occur in the southwestern area of the site, near Main Street East, with the lowest elevations occurring in the northern area of the site, in the wooded area near 2nd Concession Road.
- 5) The bedrock geology is comprised of the uppermost Bois Blanc Formation which is underlain by the Bertie Formation, and the Salina Formation. The proposed quarry will extract the same formations (the Bois Blanc and Bertie Formations) as the existing quarry. The bedrock units slope westward to southwestward toward the quarry. The base of The Falkirk Member of the Bertie Formation will be the floor of the proposed quarry at the top of the Oatka shale, which ranges in elevation from 169 masl in the northern area of the site to 162 masl in the southern area of the site.
- 6) The results of the packer testing in the Bertie Formation range from 1.8 X 10⁻⁹ m/sec to 1.2 X 10⁻⁵ m/sec. The hydraulic conductivity test result for the Salina Formation was 8.7 X 10⁻¹⁰ m/sec.
- 7) Contouring of groundwater levels in the bedrock indicates a westward direction of groundwater flow reflecting inward groundwater flow to the existing quarry excavation. The direction of groundwater flow will be inward toward the proposed extension from the areas to the west, north and site of excavation.
- 8) The wetland/woodland has surface water during the fall and spring which is considered to reflect the low permeability of the clayey materials beneath the wetland. The wetland will continue to have standing water during spring and summer during the quarry expansion since this is occurring under existing conditions in areas directly adjacent to the existing quarry.
- 9) The results of the groundwater quality sampling have indicated that the shallow bedrock was typically elevated in hardness, TDS, calcium chloride, and manganese in comparison to overburden quality. The overburden groundwater quality was typically elevated in pH concentrations in comparison to the shallow bedrock quality. The deep bedrock groundwater quality was more mineralized than the overburden or shallow bedrock, with elevated TDS, hardness, calcium potassium, sodium, sulphate, boron, and strontium. The results reflect natural groundwater quality and generally meets applicable ODWS with the exception of TDS in overburden samples at two locations, and uranium and manganese in the shallow bedrock at one location.
- 10) The results of the analysis of the surface water sample obtained from the quarry sump indicates that all of the analyzed parameters were below the PWQO, with the exception of boron.

- The estimated additional seepage from the north, south, and west walls of the proposed extension is 72 L/min.
- 12) An estimate of the radius of groundwater level drawdown associated with the dewatering of the proposed extension was developed to be utilized for the hydrogeological impact assessment on surrounding water wells. The ZOI of the dewatering is 700 m to 1,000 m from the proposed extension.
- 13) A baseline water well survey has been carried out within 1 km of the boundary of the proposed extension in advance of quarrying activities. A total of 74 private wells were identified within a 1,000 m distance from the perimeter of the Site. Detailed cross-sections have been developed for the area along the road surrounding the proposal extension.
- 14) A groundwater monitoring program has been developed for the proposed extension involving both groundwater quality sampling and analysis and groundwater level monitoring at existing monitoring wells in the area of the proposed extension. The results of the groundwater quality monitoring will be used to evaluate potential changes in water quality as the proposed quarry extension expands. The groundwater level monitoring results will be used to assess the groundwater level drawdown associated with quarry dewatering as the quarry expands. The monitoring program will be used to evaluate potential impacts on surrounding water wells. The results will also be utilized as part of the hydrogeological and ecological disciplines to confirm that there are no unanticipated effects on the natural environment.
- 15) A monitoring and response program will be in place to detect groundwater level drawdown at the proposed quarry extension quarry monitoring wells as part of the PTTW.
- 16) A Complain Response Program (CRP) will be in place to respond to well interference complaints from surrounding residents.
- 17) There will be no impacts on the surrounding water wells with the operation of the monitoring and CRP since the quarry operator will ensure that there are no impacts on the quantity or quality of the supply of surrounding water wells.

8.2 **Recommendations**

Golder recommends the following actions be taken:

- 1) The quarry should adopt the groundwater monitoring and response program during the excavation of the proposed extension.
- The quarry should utilize the proposed CRP for complaints associated with supply of residents within 1 km of the quarry for the Pit #3 extension.
- The quarry should incorporate the monitoring program for the proposed extension into a PTTW for the site operations.

9.0 LIMITATIONS

This report has been prepared by Golder Associates Ltd. (Golder) for use by Rankin Construction and Port Colborne Quarries and its authorized agents. The factual information, descriptions, interpretations, comments, results, conclusions, and electronic files contained herein are specific to the project described in this report. Information used in this report should be restricted to that specified in the scope of work unless otherwise mutually agreed upon by Golder and Rankin and Port Colborne Quarries. This report should be read in its entirety as some sections could be falsely interpreted when taken individually or out-of-context. Golder is not responsible for any use of this report and its content by a third party, and/or for its use for purposes other than those intended.

Golder is not responsible for any damages that may result from unpredictable or unknown underground conditions, from erroneous information provided by and/or obtained from sources other than Golder, and from ulterior changes in the site conditions unless Golder has been notified of any occurrence, activity, information, or discovery, past or future, susceptible of modifying the underground conditions described herein, and have had the opportunity of revising its interpretations.

The professional groundwater services described in this report are conducted in a manner consistent with that level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions. The results of previous or simultaneous work provided by sources other than Golder and quoted and/or used herein are considered as having been obtained according to recognized and accepted professional rules and practices, and therefore deemed valid.

Signature Page

Golder Associates Ltd.

Ryum Jung

Byron Zwiep, BSc(Hons), PGeo Environmental Scientist

the hot

Dr. Sean McFarland, PGeo Principal, Senior Hydrogeologist (PhD, LLM, MBA, MSc, Hons BSc)

https://golderassociates.sharepoint.com/sites/32998g/deliverables/phase 1000 hydrogeology/task 1004 - data analysis and reporting/1771656 (1000-1004)-r-rev3-01oct2021-rankin hydrogeo.docxhttps://golderassociates.sharepoint.com/sites/32998g/deliverables/phase 1000 hydrogeology/task 1004 - data analysis and reporting/1771656 (1000-1004)-r-rev3-01oct2021rankin hydrogeo.docxhttps://golderassociates.sharepoint.com/sites/32998g/deliverables/phase 1000 hydrogeology/task 1004 - data analysis and reporting/1771656 (1000-1004)-r-rev3-01oct2021rankin hydrogeo.docxhttps://golderassociates.sharepoint.com/sites/32998g/deliverables/phase 1000 hydrogeology/task 1004 - data analysis and reporting/1771656 (1000-1004)-r-rev3-01oct2020-rankin hydrogeo.docx

TABLES

Location	Top of Pipe (masl)	Ground Surface (masl)	Depth to Bedrock (mbgs)	Depth to Bedrock (masl)	Bottom Depth (mbtop)	Bottom of Screen (mbtop)	Bottom of Screen (masl)	Top of Screen (mbgs)	Top of Screen (masl)	Top of Sand (mbgs)	Screened In	Stick Up (m) field measured	Stick Up (from survey data)	Easting (UTM Zone 17)	Northing (UTM Zone 17)	Notes
MW17-1D	182.92	181.99	10.21	171.77	14.39	14.39	168.53	11.89	170.10	10.98	lower dolostone	0.95	0.94	646595.40	4752362.64	hole back filled to 13.41
MW17-2D	182.64	181.70	8.69	173.01	15.15	15.15	167.49	10.98	170.72	9.45	lower dolostone	0.99	0.94	646602.90	4752109.43	hole back filled to 14.02
MW17-3D	183.00	181.99	5.36	176.63	13.45	13.45	169.49	9.45	172.54	7.62	lower dolostone	0.94	1.01	646823.07	4751983.70	hole back filled to 12.50
MW17-4D	183.40	182.51	2.44	180.07	19.40	19.40	164.00	15.29	167.22	13.72	lower dolostone/lower shale	0.91	0.89	646626.89	4751621.30	
MW17-5D	183.64	182.56	0.51	182.05	20.80	20.80	162.84	16.64	165.92	15.24	lower dolostone/lower shale	1.00	1.08	646415.54	4751485.26	
MW17-6D	182.84	181.83	3.35	178.47	19.11	19.11	163.73	14.94	166.89	13.41	lower dolostone/lower shale	1.04	1.01	646833.18	4751418.07	
MW17-7D	182.43	181.39	1.55	179.84	19.93	19.93	162.50	15.70	165.69	14.02	lower dolostone/lower shale	1.04	1.04	646634.77	4751237.03	
MW17-8D	182.49	181.39	0.84	180.56	20.76	20.76	161.65	16.69	164.70	15.24	lower dolostone	1.00	1.09	646422.35	4751094.88	hole backfilled to 19.74
MW17-9D	181.73	180.75	2.13	178.61	19.08	19.08	162.65	14.94	165.81	13.41	lower dolostone	0.96	0.98	646834.09	4750972.13	hole backfilled to 17.99
MW17-10D	183.04	181.96	6.30	175.66	13.18	13.18	169.77	9.15	172.82	7.62	lower dolostone	1.05	1.07	646721.25	4752127.19	hole backfilled to 12.20
MW17-4S	183.47	182.53	2.44	180.09	8.50	8.50	174.88	4.60	177.93	3.35	upper dolostone	0.92	0.94	646627.13	4751619.19	
MW17-5S	183.63	182.58	0.64	181.94	10.05	10.05	173.56	5.97	176.61	5.49	upper dolostone	0.98	1.06	646415.35	4751486.30	
MW17-6S	182.77	181.79	3.35	178.43	10.17	10.17	172.60	6.12	175.66	4.88	upper dolostone/middle shale	0.92	0.98	646833.02	4751420.19	well screen goes 0.3 m into middle shale layer
MW17-7S	182.36	181.37	1.50	179.87	8.60	8.60	173.75	4.57	176.80	2.74	upper dolostone/upper limestone	0.98	0.99	646634.86	4751234.36	
MW17-8S	182.59	181.46	0.66	180.80	8.56	8.56	173.94	4.47	176.99	3.05	*upper limestone/upper dolostone	1.11	1.13	646422.56	4751097.20	*well screen within only 1.52 m of upper dolostone, rest of scree within upper limestone
MW17-9S	181.71	180.71	2.13	178.58	6.92	6.92	174.69	2.97	177.74	2.74	upper dolostone*	0.94	0.99	646834.03	4750974.29	*well screen crosses a unique 0.3 m shale layer and sand goe 0.3 m into upper limestone
MW17-1S	182.86	182.07	NA	NA	7.13	7.13	175.73	3.00	179.07	2.24	overburden	0.95	0.79	646597.97	4752362.66	
MW17-2S	182.85	181.70	NA	NA	7.17	7.17	175.65	3.00	178.70	2.44	overburden	0.98	1.15	646604.84	4752108.56	
MW17-3S	183.05	182.06	NA	NA	6.22	6.22	176.83	2.13	179.93	1.83	overburden	1.00	0.99	646822.97	4751985.67	
MW17-10S	182.86	181.94	NA	NA	6.92	6.92	175.94	2.87	179.07	2.13	overburden	0.96	0.92	646718.75	4752127.45	

Notes:

masl - metres above sea level

mbgs - metres below ground surface

Well	Test Interval (mbgs)	Interval Length (m)	Formation Screened	Test Completed	Hydraulic Conductivity (m/s)
	17.68 - 21.42	3.74	Salina Formation	Single Packer Falling Head Test	8.5E-10
MW17-1D	15.09 - 18.29	3.20	Bertie Formation	Double Packer Falling Head Test	7.5E-06
	12.50 - 15.70	3.20	Bertie Formation	Double Packer Falling Head Test	3.3E-05
	10.98 - 14.18	3.20	Bertie Formation	Double Packer Falling Head Test	3.1E-05
MW17-2D	11.59 - 15.27	3.68	Bertie Formation	Single Packer Falling Head Test	7.4E-07
	9.45 - 12.65	3.20	Bertie Formation	Double Packer Falling Head Test	4.2E-08
MW17-3D	10.67 - 13.72	3.05	Bertie Formation	Single Packer Falling Head Test	1.1E-06
	7.78 - 10.98	3.20	Bertie Formation	Double Packer Falling Head Test	1.9E-07
MW17-4D	14.63 - 18.34	3.71	Bertie Formation	Single Packer Falling Head Test	1.1E-06
	11.74 - 14.94	3.20	Bertie Formation	Double Packer Falling Head Test	3.1E-06
	15.85 - 19.69	3.84	Bertie Formation	Single Packer Falling Head Test	3.8E-08
MW17-5D	12.96 - 16.16	3.20	Bertie Formation	Double Packer Falling Head Test	9.1E-08
	10.06 - 13.26	3.20	Bertie Formation	Double Packer Falling Head Test	2.5E-07
	14.33 - 17.99	3.66	Bertie Formation	Single Packer Falling Head Test	2.4E-06
MW17-6D	11.43 - 14.63	3.20	Bertie Formation	Double Packer Falling Head Test	2.4E-07
	9.88 - 13.08	3.20	Bertie Formation	Double Packer Falling Head Test	1.8E-06
	15.85 - 18.75	2.90	Bertie Formation	Single Packer Falling Head Test	3.8E-06
MW17-7D	12.96 - 16.17	3.20	Bertie Formation	Double Packer Falling Head Test	6.5E-07
	10.06 - 13.26	3.20	Bertie Formation	Double Packer Falling Head Test	3.2E-05
	17.68 - 21.29	3.61	Bertie Formation	Single Packer Falling Head Test	1.1E-06
	14.79 - 17.99	3.20	Bertie Formation	Double Packer Falling Head Test	9.3E-08
MW17-8D	11.89 - 15.09	3.20	Bertie Formation	Double Packer Falling Head Test	1.2E-08
	8.99 - 12.19	3.20	Bertie Formation	Double Packer Falling Head Test	4.5E-09
	6.10 - 9.30	3.20	Bertie Formation	Double Packer Falling Head Test	5.0E-05
	14.63 - 18.29	3.66	Bertie Formation	Single Packer Falling Head Test	1.9E-08
	13.11 - 16.31	3.20	Bertie Formation	Double Packer Falling Head Test	1.2E-05
MW17-9D	10.21 - 13.41	3.20	Bertie Formation	Double Packer Falling Head Test	2.7E-08
	7.16 - 10.36	3.20	Bertie Formation	Double Packer Falling Head Test	1.7E-09
	10.06 - 13.72	3.66	Bertie Formation	Single Packer Falling Head Test	1.8E-05
MW17-10D	7.01 - 10.21	3.20	Bertie Formation	Double Packer Falling Head Test	8.6E-06

					10-Apr-17			17-Apr-17			24-Apr-17			01-May-17	
Well ID	Top of Pipe Elevation	Ground Surface Elevation	Well Stick Up (m)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)
MW17-1S	182.86	182.07	0.95	5.95	5.00	176.91	6.11	5.16	176.75	5.57	4.62	177.29	5.10	4.15	177.76
MW17-1D	182.92	181.99	0.95	5.97	5.02	176.95	6.25	5.30	176.67	6.17	5.22	176.75	6.26	5.31	176.66
MW17-2S	182.85	181.70	0.98	2.93	1.95	179.92	5.75	4.77	177.10	5.02	4.04	177.83	4.46	3.48	178.39
MW17-2D	182.64	181.70	0.99	7.16	6.17	175.48	7.12	6.13	175.52	7.03	6.04	175.61	7.09	6.10	175.55
MW17-3S	183.05	182.06	1.00	5.83	4.83	177.22	5.95	4.95	177.10	5.95	4.95	177.10	5.93	4.93	177.12
MW17-3D	183.00	181.99	0.94	7.28	6.34	175.72	7.36	6.42	175.64	7.17	6.23	175.83	7.12	6.18	175.88
MW17-4S	183.47	182.53	0.92	6.10	5.18	177.37	6.12	5.20	177.35	6.12	5.20	177.35	6.11	5.19	177.36
MW17-4D	183.40	182.51	0.91	7.45	6.54	175.95	7.67	6.76	175.73	7.62	6.71	175.78	7.66	6.75	175.74
MW17-5S	183.63	182.58	0.98	7.58	6.60	176.05	7.71	6.73	175.92	7.59	6.61	176.04	7.63	6.65	176.00
MW17-5D	183.64	182.56	1.00	11.40	10.40	172.24	11.60	10.60	172.04	11.59	10.59	172.05	11.59	10.59	172.05
MW17-6S	182.77	181.79	0.92	8.63	7.71	174.14	8.72	7.80	174.05	8.67	7.75	174.10	8.69	7.77	174.08
MW17-6D	182.84	181.83	1.04	6.46	5.42	176.38	6.67	5.63	176.17	6.62	5.58	176.22	6.67	5.63	176.17
MW17-7S	182.36	181.37	0.98	5.99	5.01	176.37	6.20	5.22	176.16	6.14	5.16	176.22	6.18	5.20	176.18
MW17-7D	182.43	181.39	1.04	8.38	7.34	174.05	8.51	7.47	173.92	8.47	7.43	173.96	8.49	7.45	173.94
MW17-8S	182.59	181.46	1.11	4.81	3.70	177.78	5.11	4.00	177.48	4.92	3.81	177.67	4.98	3.87	177.61
MW17-8D	182.49	181.39	1.00	8.25	7.25	174.24	8.45	7.45	174.04	8.40	7.40	174.09	8.41	7.41	174.08
MW17-9S	181.71	180.71	0.94	3.52	2.58	178.19	3.80	2.86	177.91	3.62	2.68	178.09	3.71	2.77	178.00
MW17-9D	181.73	180.75	0.96	6.61	5.65	175.12	6.78	5.82	174.95	6.69	5.73	175.04	6.73	5.77	175.00
MW17-10S	182.86	181.94	0.96	4.15	3.19	178.71	6.48	5.52	176.38	6.53	5.57	176.33	6.58	5.62	176.28
MW17-10D	183.04	181.96	1.05	5.96	4.91	177.08	6.30	5.25	176.74	6.21	5.16	176.83	6.27	5.22	176.77
					08-May-17			15-May-17			23-May-17			29-May-17	
		Ground													
Well ID	Top of Pipe Elevation	Ground Surface Elevation	Well Stick Up (m)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)
	Elevation	Surface Elevation		(mbtop)	Depth to Water (mbgs)	Elevation (masl)	(mbtop)	Depth to Water (mbgs)	Elevation (masl)	(mbtop)	Depth to Water (mbgs)	Elevation (masl)	(mbtop)	Depth to Water (mbgs)	Elevation (masl)
MW17-1S	Elevation 182.86	Surface	0.95	(mbtop) 4.71	Depth to Water (mbgs) 3.76	Elevation (masl) 178.15	(mbtop) 4.40	Depth to Water	Elevation (masl) 178.46	(mbtop) 4.12	Depth to Water (mbgs) 3.17	Elevation (masl) 178.74		Depth to Water (mbgs) 2.92	Elevation (masl) 178.99
	Elevation	Surface Elevation 182.07		(mbtop)	Depth to Water (mbgs)	Elevation (masl)	(mbtop)	Depth to Water (mbgs) 3.45	Elevation (masl)	(mbtop)	Depth to Water (mbgs)	Elevation (masl)	(mbtop) 3.87	Depth to Water (mbgs)	Elevation (masl)
MW17-1S MW17-1D	Elevation 182.86 182.92	Surface Elevation 182.07 181.99	0.95 0.95	(mbtop) 4.71 5.83	Depth to Water (mbgs) 3.76 4.88	Elevation (masl) 178.15 177.09	(mbtop) 4.40 6.15	Depth to Water (mbgs) 3.45 5.20	Elevation (masl) 178.46 176.77	(mbtop) 4.12 6.34	Depth to Water (mbgs) 3.17 5.39	Elevation (masl) 178.74 176.58	(mbtop) 3.87 6.20	Depth to Water (mbgs) 2.92 5.25	Elevation (masl) 178.99 176.72
MW17-1S MW17-1D MW17-2S	Elevation 182.86 182.92 182.85	Surface Elevation 182.07 181.99 181.70	0.95 0.95 0.98	(mbtop) 4.71 5.83 3.87	Depth to Water (mbgs) 3.76 4.88 2.89	Elevation (masl) 178.15 177.09 178.98	(mbtop) 4.40 6.15 3.34	Depth to Water (mbgs) 3.45 5.20 2.36	Elevation (masl) 178.46 176.77 179.51	(mbtop) 4.12 6.34 3.14	Depth to Water (mbgs) 3.17 5.39 2.16	Elevation (masl) 178.74 176.58 179.71	(mbtop) 3.87 6.20 3.05	Depth to Water (mbgs) 2.92 5.25 2.07	Elevation (masl) 178.99 176.72 179.80
MW17-1S MW17-1D MW17-2S MW17-2D	Elevation 182.86 182.92 182.85 182.64	Surface Elevation 182.07 181.99 181.70 181.70	0.95 0.95 0.98 0.99	(mbtop) 4.71 5.83 3.87 6.73	Depth to Water (mbgs) 3.76 4.88 2.89 5.74	Elevation (masl) 178.15 177.09 178.98 175.91	(mbtop) 4.40 6.15 3.34 7.03	Depth to Water (mbgs) 3.45 5.20 2.36 6.04	Elevation (masl) 178.46 176.77 179.51 175.61	(mbtop) 4.12 6.34 3.14 7.22	Depth to Water (mbgs) 3.17 5.39 2.16 6.23	Elevation (masl) 178.74 176.58 179.71 175.42	(mbtop) 3.87 6.20 3.05 7.10	Depth to Water (mbgs) 2.92 5.25 2.07 6.11	Elevation (masl) 178.99 176.72 179.80 175.54
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S	Elevation 182.86 182.92 182.85 182.64 183.05	Surface Elevation 182.07 181.99 181.70 181.70 182.06	0.95 0.95 0.98 0.99 1.00	(mbtop) 4.71 5.83 3.87 6.73 5.89	Depth to Water (mbgs) 3.76 4.88 2.89 5.74 4.89	Elevation (masl) 178.15 177.09 178.98 175.91 177.16	(mbtop) 4.40 6.15 3.34 7.03 5.85	Depth to Water (mbgs) 3.45 5.20 2.36 6.04 4.85	Elevation (masl) 178.46 176.77 179.51 175.61 177.20	(mbtop) 4.12 6.34 3.14 7.22 5.80	Depth to Water (mbgs) 3.17 5.39 2.16 6.23 4.80	Elevation (masl) 178.74 176.58 179.71 175.42 177.25	(mbtop) 3.87 6.20 3.05 7.10 5.73	Depth to Water (mbgs) 2.92 5.25 2.07 6.11 4.73	Elevation (masl) 178.99 176.72 179.80 175.54 177.32
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D	Elevation 182.86 182.92 182.85 182.64 183.05 183.00	Surface Elevation 182.07 181.99 181.70 181.70 181.70 181.99	0.95 0.95 0.98 0.99 1.00 0.94	(mbtop) 4.71 5.83 3.87 6.73 5.89 6.99	Depth to Water (mbgs) 3.76 4.88 2.89 5.74 4.89 6.05	Elevation (masl) 178.15 177.09 178.98 175.91 177.16 176.01	(mbtop) 4.40 6.15 3.34 7.03 5.85 7.17	Depth to Water (mbgs) 3.45 5.20 2.36 6.04 4.85 6.23	Elevation (masl) 178.46 176.77 179.51 175.61 177.20 175.83	(mbtop) 4.12 6.34 3.14 7.22 5.80 7.26	Depth to Water (mbgs) 3.17 5.39 2.16 6.23 4.80 6.32	Elevation (masl) 178.74 176.58 179.71 175.42 177.25 175.74	(mbtop) 3.87 6.20 3.05 7.10 5.73 7.20	Depth to Water (mbgs) 2.92 5.25 2.07 6.11 4.73 6.26	Elevation (masl) 178.99 176.72 179.80 175.54 177.32 175.80
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S	Elevation 182.86 182.92 182.85 182.64 183.05 183.00 183.47	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53	0.95 0.95 0.98 0.99 1.00 0.94 0.92	(mbtop) 4.71 5.83 3.87 6.73 5.89 6.99 6.11	Depth to Water (mbgs) 3.76 4.88 2.89 5.74 4.89 6.05 5.19	Elevation (masl) 178.15 177.09 178.98 175.91 177.16 176.01 177.36	(mbtop) 4.40 6.15 3.34 7.03 5.85 7.17 6.12	Depth to Water (mbgs) 3.45 5.20 2.36 6.04 4.85 6.23 5.20	Elevation (masl) 178.46 176.77 179.51 175.61 177.20 175.83 177.35	(mbtop) 4.12 6.34 3.14 7.22 5.80 7.26 6.11	Depth to Water (mbgs) 3.17 5.39 2.16 6.23 4.80 6.32 5.19	Elevation (masl) 178.74 176.58 179.71 175.42 177.25 175.74 177.36	(mbtop) 3.87 6.20 3.05 7.10 5.73 7.20 6.10	Depth to Water (mbgs) 2.92 5.25 2.07 6.11 4.73 6.26 5.18	Elevation (masl) 178.99 176.72 179.80 175.54 177.32 175.80 177.37
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3S MW17-4S MW17-4D	Elevation 182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91	(mbtop) 4.71 5.83 3.87 6.73 5.89 6.99 6.11 7.36	Depth to Water (mbgs) 3.76 4.88 2.89 5.74 4.89 6.05 5.19 6.45	Elevation (masl) 178.15 177.09 178.98 175.91 177.16 176.01 177.36 176.04	(mbtop) 4.40 6.15 3.34 7.03 5.85 7.17 6.12 7.57	Depth to Water (mbgs) 3.45 5.20 2.36 6.04 4.85 6.23 5.20 6.66	Elevation (masl) 178.46 176.77 179.51 175.61 177.20 175.83 177.35 175.83	(mbtop) 4.12 6.34 3.14 7.22 5.80 7.26 6.11 7.70	Depth to Water (mbgs) 3.17 5.39 2.16 6.23 4.80 6.32 5.19 6.79	Elevation (masl) 178.74 176.58 179.71 175.42 177.25 175.74 177.36 175.70	(mbtop) 3.87 6.20 3.05 7.10 5.73 7.20 6.10 7.62	Depth to Water (mbgs) 2.92 5.25 2.07 6.11 4.73 6.26 5.18 6.71	Elevation (masl) 178.99 176.72 179.80 175.54 177.32 175.80 177.37 175.78
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3D MW17-3D MW17-4S MW17-4D MW17-5S	Elevation 182.86 182.92 182.85 182.64 183.05 183.47 183.40 183.63	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98	(mbtop) 4.71 5.83 3.87 6.73 5.89 6.99 6.11 7.36 7.51	Depth to Water (mbgs) 3.76 4.88 2.89 5.74 4.89 6.05 5.19 6.45 6.53	Elevation (masl) 178.15 177.09 178.98 175.91 177.16 176.01 177.36 176.04 176.12	(mbtop) 4.40 6.15 3.34 7.03 5.85 7.17 6.12 7.57 7.63	Depth to Water (mbgs) 3.45 5.20 2.36 6.04 4.85 6.23 5.20 6.66 6.65	Elevation (masl) 178.46 176.77 179.51 175.61 177.20 175.83 177.35 175.83 176.00	(mbtop) 4.12 6.34 3.14 7.22 5.80 7.26 6.11 7.70 7.74	Depth to Water (mbgs) 3.17 5.39 2.16 6.23 4.80 6.32 5.19 6.79 6.76	Elevation (masl) 178.74 176.58 179.71 175.42 177.25 175.74 177.36 175.70 175.89	(mbtop) 3.87 6.20 3.05 7.10 5.73 7.20 6.10 7.62 7.70	Depth to Water (mbgs) 2.92 5.25 2.07 6.11 4.73 6.26 5.18 6.71 6.72	Elevation (masl) 178.99 176.72 179.80 175.54 177.32 175.80 177.37 175.78 175.93
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-4S MW17-4S MW17-5S MW17-5D	Elevation 182.86 182.92 182.85 182.64 183.05 183.47 183.40 183.63 183.64	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00	(mbtop) 4.71 5.83 3.87 6.73 5.89 6.99 6.11 7.36 7.51 11.40	Depth to Water (mbgs) 3.76 4.88 2.89 5.74 4.89 6.05 5.19 6.45 6.53 10.40	Elevation (masl) 178.15 177.09 178.98 175.91 177.16 176.01 177.36 176.04 176.12 172.24	(mbtop) 4.40 6.15 3.34 7.03 5.85 7.17 6.12 7.57 7.63 11.52	Depth to Water (mbgs) 3.45 5.20 2.36 6.04 4.85 6.23 5.20 6.66 6.65 10.52	Elevation (masl) 178.46 176.77 179.51 175.61 177.20 175.83 177.35 175.83 176.00 172.12	(mbtop) 4.12 6.34 3.14 7.22 5.80 7.26 6.11 7.70 7.74 11.63	Depth to Water (mbgs) 3.17 5.39 2.16 6.23 4.80 6.32 5.19 6.79 6.76 10.63	Elevation (masl) 178.74 176.58 179.71 175.42 177.25 175.74 177.36 175.70 175.89 172.01	(mbtop) 3.87 6.20 3.05 7.10 5.73 7.20 6.10 7.62 7.70 11.57	Depth to Water (mbgs) 2.92 5.25 2.07 6.11 4.73 6.26 5.18 6.71 6.72 10.57	Elevation (masl) 178.99 176.72 179.80 175.54 177.32 175.80 177.37 175.78 175.93 172.07
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3S MW17-4S MW17-4S MW17-5S MW17-5D MW17-6S	Elevation 182.86 182.92 182.85 182.64 183.05 183.47 183.47 183.63 183.63 183.64	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92	(mbtop) 4.71 5.83 3.87 6.73 5.89 6.99 6.11 7.36 7.51 11.40 8.65	Depth to Water (mbgs) 3.76 4.88 2.89 5.74 4.89 6.05 5.19 6.45 6.53 10.40 7.73	Elevation (masl) 178.15 177.09 178.98 175.91 177.16 176.01 177.36 176.04 176.12 172.24 174.12	(mbtop) 4.40 6.15 3.34 7.03 5.85 7.17 6.12 7.57 7.63 11.52 8.69	Depth to Water (mbgs) 3.45 5.20 2.36 6.04 4.85 6.23 5.20 6.66 6.65 10.52 7.77	Elevation (masl) 178.46 176.77 179.51 175.61 175.83 177.35 175.83 176.00 172.12 174.08	(mbtop) 4.12 6.34 3.14 7.22 5.80 7.26 6.11 7.70 7.74 11.63 8.72	Depth to Water (mbgs) 3.17 5.39 2.16 6.23 4.80 6.32 5.19 6.79 6.76 10.63 7.80	Elevation (masl) 178.74 176.58 179.71 175.42 177.25 175.74 177.36 175.70 175.89 172.01 174.05	(mbtop) 3.87 6.20 3.05 7.10 5.73 7.20 6.10 7.62 7.70 11.57 8.69	Depth to Water (mbgs) 2.92 5.25 2.07 6.11 4.73 6.26 5.18 6.71 6.71 6.72 10.57 7.77	Elevation (masl) 178.99 176.72 179.80 175.54 177.32 175.80 177.37 175.78 175.93 172.07 174.08
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3S MW17-4S MW17-4D MW17-5S MW17-6S MW17-6D	Elevation 182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.63 183.63 182.77 182.84	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.53 182.51 182.58 182.56 181.79 181.83	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04	(mbtop) 4.71 5.83 3.87 6.73 5.89 6.99 6.11 7.36 7.51 11.40 8.65 6.39	Depth to Water (mbgs) 3.76 4.88 2.89 5.74 4.89 6.05 5.19 6.45 6.53 10.40 7.73 5.35	Elevation (masl) 178.15 177.09 178.98 175.91 177.16 176.01 177.36 176.04 176.12 176.12 172.24 174.12 176.45	(mbtop) 4.40 6.15 3.34 7.03 5.85 7.17 6.12 7.57 7.63 11.52 8.69 6.62	Depth to Water (mbgs) 3.45 5.20 2.36 6.04 4.85 6.23 5.20 6.66 6.65 10.52 7.77 5.58	Elevation (masl) 178.46 176.77 179.51 175.61 175.83 177.35 175.83 176.00 172.12 174.08 176.22	(mbtop) 4.12 6.34 3.14 7.22 5.80 7.26 6.11 7.70 7.74 11.63 8.72 6.73	Depth to Water (mbgs) 3.17 5.39 2.16 6.23 4.80 6.32 5.19 6.79 6.76 10.63 7.80 5.69	Elevation (masl) 178.74 176.58 179.71 175.42 177.25 175.74 177.36 175.70 175.89 172.01 174.05 176.11	(mbtop) 3.87 6.20 3.05 7.10 5.73 7.20 6.10 7.62 7.70 11.57 8.69 6.64	Depth to Water (mbgs) 2.92 5.25 2.07 6.11 4.73 6.26 5.18 6.71 6.72 10.57 7.77 5.60	Elevation (masl) 178.99 176.72 179.80 175.54 177.32 175.80 177.37 175.78 175.93 172.07 174.08 176.20
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4S MW17-5S MW17-5D MW17-6D MW17-7S	Elevation 182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.63 183.63 182.77 182.84 182.36	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98	(mbtop) 4.71 5.83 3.87 6.73 5.89 6.99 6.11 7.36 7.51 11.40 8.65 6.39 6.06	Depth to Water (mbgs) 3.76 4.88 2.89 5.74 4.89 6.05 5.19 6.45 6.53 10.40 7.73 5.35 5.08	Elevation (masl) 178.15 177.09 178.98 175.91 177.16 176.01 177.36 176.04 176.12 172.24 174.12 176.45 176.30	(mbtop) 4.40 6.15 3.34 7.03 5.85 7.17 6.12 7.57 7.63 11.52 8.69 6.62 6.19	Depth to Water (mbgs) 3.45 5.20 2.36 6.04 4.85 6.23 5.20 6.66 6.65 10.52 7.77 5.58 5.21	Elevation (masl) 178.46 176.77 179.51 175.61 175.83 177.35 175.83 176.00 172.12 174.08 176.22 176.17	(mbtop) 4.12 6.34 3.14 7.22 5.80 7.26 6.11 7.70 7.74 11.63 8.72 6.73 6.32	Depth to Water (mbgs) 3.17 5.39 2.16 6.23 4.80 6.32 5.19 6.79 6.76 10.63 7.80 5.69 5.34	Elevation (masl) 178.74 176.58 179.71 175.42 177.25 175.74 177.36 175.70 175.89 172.01 174.05 176.11 176.04	(mbtop) 3.87 6.20 3.05 7.10 5.73 7.20 6.10 7.62 7.70 11.57 8.69 6.64 6.26	Depth to Water (mbgs) 2.92 5.25 2.07 6.11 4.73 6.26 5.18 6.71 6.72 10.57 7.77 5.60 5.28	Elevation (masl) 178.99 176.72 179.80 175.54 177.32 175.80 177.37 175.78 175.93 172.07 174.08 176.20 176.10
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3D MW17-3D MW17-4S MW17-5S MW17-5D MW17-6S MW17-7D MW17-7S MW17-7S MW17-7D	Elevation 182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36 182.43	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 0.91 0.98 1.00 0.98 1.00 0.92 1.04 0.98 1.04	(mbtop) 4.71 5.83 3.87 6.73 5.89 6.99 6.11 7.36 7.51 11.40 8.65 6.39 6.06 8.42	Depth to Water (mbgs) 3.76 4.88 2.89 5.74 4.89 6.05 5.19 6.45 6.53 10.40 7.73 5.35 5.08 7.38	Elevation (masl) 178.15 177.09 178.98 175.91 177.16 176.01 177.36 176.04 176.12 172.24 174.12 176.45 176.30 174.01	(mbtop) 4.40 6.15 3.34 7.03 5.85 7.17 6.12 7.57 7.63 11.52 8.69 6.62 6.19 8.49	Depth to Water (mbgs) 3.45 5.20 2.36 6.04 4.85 6.23 5.20 6.66 6.65 10.52 7.77 5.58 5.21 7.45	Elevation (masl) 178.46 176.77 179.51 175.61 175.83 177.35 175.83 176.00 172.12 174.08 176.22 176.17 173.94	(mbtop) 4.12 6.34 3.14 7.22 5.80 7.26 6.11 7.70 7.74 11.63 8.72 6.73 6.32 8.57	Depth to Water (mbgs) 3.17 5.39 2.16 6.23 4.80 6.32 5.19 6.79 6.76 10.63 7.80 5.69 5.34 7.53	Elevation (masl) 178.74 176.58 179.71 175.42 177.25 175.74 177.36 175.70 175.89 172.01 174.05 176.11 176.04 173.86	(mbtop) 3.87 6.20 3.05 7.10 5.73 7.20 6.10 7.62 7.70 11.57 8.69 6.64 6.26 8.51	Depth to Water (mbgs) 2.92 5.25 2.07 6.11 4.73 6.26 5.18 6.71 6.72 10.57 7.77 5.60 5.28 7.47	Elevation (masl) 178.99 176.72 179.80 175.54 177.32 175.80 177.37 175.78 175.93 172.07 174.08 176.20 176.10 173.92
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4S MW17-5S MW17-5D MW17-6D MW17-7S MW17-8S MW17-8S MW17-7D MW17-7D	Elevation 182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.63 183.63 182.77 182.84 182.36 182.43 182.59	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39 181.46	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 1.11	(mbtop) 4.71 5.83 3.87 6.73 5.89 6.99 6.11 7.36 7.51 11.40 8.65 6.39 6.06 8.42 4.85	Depth to Water (mbgs) 3.76 4.88 2.89 5.74 4.89 6.05 5.19 6.45 6.53 10.40 7.73 5.35 5.08 7.38 3.74	Elevation (masl) 178.15 177.09 178.98 175.91 177.16 176.01 177.36 176.04 176.12 172.24 174.12 176.45 176.30 174.01 177.74	(mbtop) 4.40 6.15 3.34 7.03 5.85 7.17 6.12 7.57 7.63 11.52 8.69 6.62 6.19 8.49 5.12	Depth to Water (mbgs) 3.45 5.20 2.36 6.04 4.85 6.23 5.20 6.66 6.65 10.52 7.77 5.58 5.21 7.45 4.01	Elevation (masl) 178.46 176.77 179.51 175.61 175.63 175.83 177.35 175.83 176.00 172.12 174.08 176.22 176.17 173.94 177.47	(mbtop) 4.12 6.34 3.14 7.22 5.80 7.26 6.11 7.70 7.74 11.63 8.72 6.73 6.32 8.57 5.28	Depth to Water (mbgs) 3.17 5.39 2.16 6.23 4.80 6.32 5.19 6.76 10.63 7.80 5.69 5.34 7.53 4.17	Elevation (masl) 178.74 176.58 179.71 175.42 177.25 175.74 177.36 175.70 175.89 172.01 174.05 176.11 176.04 173.86 177.31	(mbtop) 3.87 6.20 3.05 7.10 5.73 7.20 6.10 7.62 7.70 11.57 8.69 6.64 6.26 8.51 5.04	Depth to Water (mbgs) 2.92 5.25 2.07 6.11 4.73 6.26 5.18 6.71 6.72 10.57 7.77 5.60 5.28 7.47 3.93	Elevation (masl) 178.99 176.72 179.80 175.54 177.32 175.80 177.37 175.78 175.93 172.07 174.08 176.20 176.10 173.92 177.55
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S MW17-5D MW17-6D MW17-6D MW17-7S MW17-8S MW17-9S MW17-9D	Elevation 182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.47 183.63 183.63 182.77 182.84 182.36 182.36 182.43 182.49	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39 181.46 181.39	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 1.04 1.04 1.04 1.04 1.04	(mbtop) 4.71 5.83 3.87 6.73 5.89 6.99 6.11 7.36 7.51 11.40 8.65 6.39 6.06 8.42 4.85 8.27	Depth to Water (mbgs) 3.76 4.88 2.89 5.74 4.89 6.05 5.19 6.45 6.53 10.40 7.73 5.35 5.08 7.38 3.74 7.27 2.63 5.63	Elevation (masl) 178.15 177.09 178.98 175.91 177.16 176.01 177.36 176.04 176.12 172.24 174.12 176.45 176.30 174.01 177.74 174.22	(mbtop) 4.40 6.15 3.34 7.03 5.85 7.17 6.12 7.57 7.63 11.52 8.69 6.62 6.19 8.49 5.12 8.49 5.12 8.42 3.83 6.75	Depth to Water (mbgs) 3.45 5.20 2.36 6.04 4.85 6.23 5.20 6.66 6.65 10.52 7.77 5.58 5.21 7.45 4.01 7.42	Elevation (masl) 178.46 176.77 179.51 175.61 175.83 177.35 175.83 176.00 172.12 174.08 176.22 176.17 173.94 177.47 174.07	(mbtop) 4.12 6.34 3.14 7.22 5.80 7.26 6.11 7.70 7.74 11.63 8.72 6.73 6.32 8.57 5.28 8.47	Depth to Water (mbgs) 3.17 5.39 2.16 6.23 4.80 6.32 5.19 6.76 10.63 7.80 5.69 5.34 7.53 4.17 7.47 3.09 5.91	Elevation (masl) 178.74 176.58 179.71 175.42 177.25 175.74 177.36 175.70 175.89 172.01 174.05 176.11 176.04 173.86 177.31 174.02	(mbtop) 3.87 6.20 3.05 7.10 5.73 7.20 6.10 7.62 7.70 11.57 8.69 6.64 6.26 8.51 5.04 8.40	Depth to Water (mbgs) 2.92 5.25 2.07 6.11 4.73 6.26 5.18 6.71 6.72 10.57 7.77 5.60 5.28 7.47 3.93 7.40 2.83 5.77	Elevation (masl) 178.99 176.72 179.80 175.54 177.32 175.80 177.37 175.78 175.93 172.07 174.08 176.20 176.10 173.92 177.55 174.09
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3S MW17-4S MW17-4S MW17-5S MW17-5D MW17-6D MW17-6S MW17-7S MW17-8D MW17-8S MW17-8D MW17-8D MW17-8D MW17-9S	Elevation 182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 182.77 182.84 182.36 182.43 182.43 182.49 181.71	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39 181.46 181.39 180.71	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98	(mbtop) 4.71 5.83 3.87 6.73 5.89 6.99 6.11 7.36 7.51 11.40 8.65 6.39 6.06 8.42 4.85 8.27 3.57	Depth to Water (mbgs) 3.76 4.88 2.89 5.74 4.89 6.05 5.19 6.45 6.53 10.40 7.73 5.35 5.08 7.38 3.74 7.27 2.63	Elevation (masl) 178.15 177.09 178.98 175.91 177.16 176.01 177.36 176.04 176.12 176.12 176.45 176.45 176.30 174.01 177.74 174.22 178.14	(mbtop) 4.40 6.15 3.34 7.03 5.85 7.17 6.12 7.57 7.63 11.52 8.69 6.62 6.19 8.49 5.12 8.42 3.83	Depth to Water (mbgs) 3.45 5.20 2.36 6.04 4.85 6.23 5.20 6.66 6.65 10.52 7.77 5.58 5.21 7.45 4.01 7.42 2.89	Elevation (masl) 178.46 176.77 179.51 175.61 177.20 175.83 177.35 175.83 176.00 172.12 174.08 176.22 176.17 173.94 177.47 174.07 177.88 	(mbtop) 4.12 6.34 3.14 7.22 5.80 7.26 6.11 7.70 7.74 11.63 8.72 6.73 6.32 8.57 5.28 8.47 4.03	Depth to Water (mbgs) 3.17 5.39 2.16 6.23 4.80 6.32 5.19 6.76 10.63 7.80 5.69 5.34 7.53 4.17 7.47 3.09	Elevation (masl) 178.74 176.58 179.71 175.42 177.25 175.74 177.36 175.70 175.89 172.01 174.05 176.11 176.04 173.86 177.31 174.02 177.68	(mbtop) 3.87 6.20 3.05 7.10 5.73 7.20 6.10 7.62 7.70 11.57 8.69 6.64 6.26 8.51 5.04 8.40 3.77	Depth to Water (mbgs) 2.92 5.25 2.07 6.11 4.73 6.26 5.18 6.71 6.72 10.57 7.77 5.60 5.28 7.47 3.93 7.40 2.83	Elevation (masl) 178.99 176.72 179.80 175.54 177.32 175.80 177.37 175.78 175.93 172.07 174.08 176.20 176.10 173.92 177.55 174.09 177.94

					05-Jun-17			12-Jun-17			20-Jun-17			26-Jun-17	
	Top of Pipe	Ground									20-0411-17			20-5011-17	
Well ID	Elevation	Surface Elevation	Well Stick Up (m)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)
MW17-1S	182.86	182.07	0.95	3.68	2.73	179.18	3.62	2.67	179.24	3.58	2.63	179.28	3.57	2.62	179.29
MW17-1D	182.92	181.99	0.95	6.45	5.50	176.47	6.62	5.67	176.30	6.68	5.73	176.24	6.74	5.79	176.18
MW17-2S	182.85	181.70	0.98	2.98	2.00	179.87	2.95	1.97	179.90	2.94	1.96	179.91	2.92	1.94	179.93
MW17-2D	182.64	181.70	0.99	7.34	6.35	175.30	7.48	6.49	175.16	7.54	6.55	175.10	7.60	6.61	175.04
MW17-3S	183.05	182.06	1.00	5.67	4.67	177.38	5.60	4.60	177.45	5.51	4.51	177.54	5.45	4.45	177.60
MW17-3D MW17-4S	183.00 183.47	181.99 182.53	0.94 0.92	7.33 6.11	6.39 5.19	175.67 177.36	7.42 6.12	6.48 5.20	175.58 177.35	7.42 6.12	6.48 5.20	175.58 177.35	7.46 6.13	6.52 5.21	175.54 177.34
MW17-43	183.40	182.53	0.92	7.94	7.03	175.46	8.16	7.25	177.35	8.22	7.31	177.35	8.30	7.39	177.34
MW17-4D MW17-5S	183.63	182.58	0.98	7.79	6.81	175.84	7.86	6.88	175.77	7.93	6.95	175.70	7.99	7.01	175.64
MW17-5D	183.64	182.56	1.00	11.91	10.91	171.73	12.13	11.13	171.51	12.19	11.19	171.45	12.25	11.25	171.39
MW17-6S	182.77	181.79	0.92	8.83	7.91	173.94	9.04	8.12	173.73	9.13	8.21	173.64	9.19	8.27	173.58
MW17-6D	182.84	181.83	1.04	6.90	5.86	175.94	7.11	6.07	175.73	7.14	6.10	175.70	7.24	6.20	175.60
MW17-7S	182.36	181.37	0.98	6.34	5.36	176.02	6.43	5.45	175.93	6.50	5.52	175.86	6.55	5.57	175.81
MW17-7D	182.43	181.39	1.04	8.71	7.67	173.72	8.93	7.89	173.50	9.02	7.98	173.41	9.09	8.05	173.34
MW17-8S	182.59	181.46	1.11	5.21	4.10	177.38	5.42	4.31	177.17	5.62	4.51	176.97	5.70	4.59	176.89
MW17-8D	182.49	181.39	1.00	8.65	7.65	173.84	8.86	7.86	173.63	8.92	7.92	173.57	9.01	8.01	173.48
MW17-9S	181.71	180.71	0.94	3.97	3.03	177.74	4.15	3.21	177.56	4.36	3.42	177.35	4.47	3.53	177.24
MW17-9D	181.73	180.75	0.96	6.94	5.98	174.79	7.18	6.22	174.55	7.30	6.34	174.43	7.38	6.42	174.35
MW17-10S	182.86	181.94	0.96	6.77	5.81	176.09	6.77	5.81	176.09	6.78	5.82	176.08	6.78	5.82	176.08
MW17-10D	183.04	181.96	1.05	6.47	5.42 31-Jul-17	176.57	6.64	5.59	176.40	6.70	5.65	176.34	6.76	5.71	176.28
Well ID	Top of Pipe Elevation	Ground Surface Elevation	Well Stick Up (m)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)									
MW17-1S	182.86	182.07	0.95	3.53	2.58	179.33									
MW17-1D	182.92	181.99	0.95	6.93	5.98	175.99									
MW17-2S	182.85	181.70	0.98	2.80	1.82	180.05									
MW17-2D	182.64	181.70	0.99	7.76	6.77	174.88									
MW17-3S	183.05	182.06	1.00	5.16	4.16	177.89									
MW17-3D	183.00	181.99	0.94	7.59	6.65	175.41									
MW17-4S	183.47	182.53	0.92	6.12	5.20	177.35									
MW17-4D	183.40	182.51	0.91	8.42	7.51	174.98									
MW17-5S MW17-5D	183.63 183.64	182.58 182.56	0.98	8.14 12.43	7.16 11.43	175.49 171.21									
MW17-5D MW17-6S	183.04	182.30	0.92	9.29	8.37	173.48									
MW17-60	182.84	181.83	1.04	7.33	6.29	175.51									
MW17-7S	182.36	181.37	0.98	6.61	5.63	175.75									
MW17-7D	182.43	181.39	1.04	9.20	8.16	173.23									
MW17-8S	182.59	181.46	1.11	5.73	4.62	176.86									
MW17-8D	182.49	181.39	1.00	9.12	8.12	173.37									
MW17-9S	181.71	180.71	0.94	4.45	3.51	177.26									
MW17-9D	181.73	180.75	0.96	7.50	6.54	174.23									
MW17-10S	182.86	181.94	0.96	6.80	5.84	176.06									
MW17-10D	183.04	181.96	1.05	6.93	5.88	176.11									
	181.8	NA	NA	2.69	NA	179.11									
2	179.24	NA	NA	4.02	NA	175.22									
3	181.53	NA	NA	12.02	NA	169.51									
1-94 2-94	183.06 182.24	NA	NA NA	2.73 1.67	NA NA	180.33 180.57									
2-94 3-94	183.33	NA NA	NA	9.81	NA	173.52									
<u> </u>	184.01	NA	NA	3.76	NA	180.25									
	101.01	1 1/ 1		0.10		100.20									

		Ground			10-Jan-18			05-Feb-18			08-Mar-18			11-Apr-18	
Well ID	Top of Pipe Elevation	Surface Elevation	Well Stick Up (m)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)
MW17-1S	182.86	182.07	0.95	4.70	3.75	177.37	3.91	2.96	178.16	3.16	2.21	178.91	2.77	1.82	179.30
MW17-1D	182.92	181.99	0.95	6.55	5.60	175.44	6.28	5.33	175.71	6.00	5.05	175.99	6.20	5.25	175.79
MW17-2S	182.85	181.70	0.98	2.79	1.81	178.91	2.81	1.83	178.89	2.80	1.82	178.90	2.77	1.79	178.93
MW17-2D	182.64	181.70	0.99	7.43	6.44	174.27	7.26	6.27	174.44	7.03	6.04	174.67	7.24	6.25	174.46
MW17-3S	183.05	182.06	1.00	7.23	6.23	174.83	5.51	4.51	176.55	5.32	4.32	176.74	4.89	3.89	177.17
MW17-3D	183.00	181.99	0.94	5.48	4.54	176.51	7.13	6.19	174.86	6.99	6.05	175.00	7.09	6.15	174.90
MW17-4S	183.47	182.53	0.92	6.12	5.20	176.41	6.12	5.20	176.41	6.11	5.19	176.42	6.10	5.18	176.43
MW17-4D	183.40	182.51	0.91	8.31	7.40	174.20	8.18	7.27	174.33	7.90	6.99	174.61	8.14	7.23	174.37
MW17-5S	183.63	182.58	0.98	8.06	7.08	174.52	8.00	7.02	174.58	7.91	6.93	174.67	7.96	6.98	174.62
MW17-5D	183.64	182.56	1.00	12.59	11.59	169.97	12.77	11.77	169.79	12.66	11.66	169.90	12.89	11.89	169.67
MW17-6S	182.77	181.79	0.92	9.23	8.31	172.56	9.35	8.43	172.44	9.19	8.27	172.60	9.38	8.46	172.41
MW17-6D	182.84	181.83	1.04	7.21	6.17	174.62	7.08	6.04	174.75	6.82	5.78	175.01	7.03	5.99	174.80
MW17-7S	182.36	181.37	0.98	6.46	5.48	174.91	6.35	5.37	175.02	6.22	5.24	175.15	6.27	5.29	175.10
MW17-7D	182.43	181.39	1.04	9.15	8.11	172.24	9.23	8.19	172.16	9.06	8.02	172.33	9.25	8.21	172.14
MW17-8S	182.59	181.46	1.11	5.44	4.33	176.02	5.26	4.15	176.20	5.09	3.98	176.37	5.08	3.97	176.38
MW17-8D	182.49	181.39	1.00	9.06	8.06	172.33	9.12	8.12	172.27	8.97	7.97	172.42	9.14	8.14	172.25
MW17-9S	181.71	180.71	0.94	4.10	3.16	176.61	3.84	2.90	176.87	3.60	2.66	177.11	3.58	2.64	177.13
MW17-9D	181.73	180.75	0.96	7.36	6.40	173.39	7.34	6.38	173.41	7.23	6.27	173.52	7.33	6.37	173.42
MW17-10S	182.86	181.94	0.96	6.81	5.85	175.13	6.81	5.85	175.13	6.82	5.86	175.12	6.82	5.86	175.12
MW17-10D	183.04	181.96	1.05	6.58	5.53	175.38	6.31	5.26	175.65	6.04	4.99	175.92	6.25	5.20	175.71
	- (5)	Ground			15-May-18			14-Jun-18			18-Jul-18			01-Aug-18	
Well ID	Top of Pipe	Surface	Well Stick Up (m)												
	Elevation	Elevation		Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)
				(mbtop)	(mbgs)	Elevation (masl)	(mbtop)	(mbgs)	Elevation (masl)	(mbtop)	(mbgs)	Elevation (masl)	(mbtop)	(mbgs)	Elevation (masl)
MW17-1S MW17-1D	Elevation 182.86 182.92	Elevation 182.07 181.99	0.95	(mbtop) 2.20	(mbgs)		(mbtop) 2.47	(mbgs)	Elevation (masl) 179.60	(mbtop) 2.68	(mbgs)		(mbtop) 2.74	(mbgs)	
MW17-1S MW17-1D	182.86	182.07	0.95 0.95	(mbtop) 2.20 6.45	(mbgs) 1.25 5.50	Elevation (masl) 179.87 175.54	(mbtop) 2.47 6.72	(mbgs) 1.52 5.77	Elevation (masl) 179.60 175.27	(mbtop) 2.68 6.88	(mbgs) 1.73 5.93	Elevation (masl) 179.39 175.11	(mbtop) 2.74 6.97	(mbgs) 1.79 6.02	Elevation (masl) 179.33 175.02
MW17-1S MW17-1D MW17-2S	182.86 182.92	182.07 181.99	0.95 0.95 0.98	(mbtop) 2.20 6.45 2.68	(mbgs) 1.25 5.50 1.70	Elevation (masl) 179.87 175.54 179.02	(mbtop) 2.47 6.72 2.60	(mbgs) 1.52 5.77 1.62	Elevation (masl) 179.60 175.27 179.10	(mbtop) 2.68 6.88 2.57	(mbgs) 1.73 5.93 1.59	Elevation (masl) 179.39 175.11 179.13	(mbtop) 2.74 6.97 2.58	(mbgs) 1.79 6.02 1.60	Elevation (masl) 179.33 175.02 179.12
MW17-1S MW17-1D	182.86 182.92 182.85	182.07 181.99 181.70	0.95 0.95	(mbtop) 2.20 6.45	(mbgs) 1.25 5.50	Elevation (masl) 179.87 175.54	(mbtop) 2.47 6.72	(mbgs) 1.52 5.77	Elevation (masl) 179.60 175.27	(mbtop) 2.68 6.88	(mbgs) 1.73 5.93	Elevation (masl) 179.39 175.11	(mbtop) 2.74 6.97	(mbgs) 1.79 6.02	Elevation (masl) 179.33 175.02
MW17-1S MW17-1D MW17-2S MW17-2D	182.86 182.92 182.85 182.64	182.07 181.99 181.70 181.70	0.95 0.95 0.98 0.99	(mbtop) 2.20 6.45 2.68 7.35	(mbgs) 1.25 5.50 1.70 6.36	Elevation (masl) 179.87 175.54 179.02 174.35	(mbtop) 2.47 6.72 2.60 7.79	(mbgs) 1.52 5.77 1.62 6.80	Elevation (masl) 179.60 175.27 179.10 173.91	(mbtop) 2.68 6.88 2.57 7.83	(mbgs) 1.73 5.93 1.59 6.84	Elevation (masl) 179.39 175.11 179.13 173.87	(mbtop) 2.74 6.97 2.58 7.91	(mbgs) 1.79 6.02 1.60 6.92	Elevation (masl) 179.33 175.02 179.12 173.79
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S	182.86 182.92 182.85 182.64 183.05	182.07 181.99 181.70 181.70 182.06	0.95 0.95 0.98 0.99 1.00	(mbtop) 2.20 6.45 2.68 7.35 4.58	(mbgs) 1.25 5.50 1.70 6.36 3.58	Elevation (masl) 179.87 175.54 179.02 174.35 177.48	(mbtop) 2.47 6.72 2.60 7.79 4.47	(mbgs) 1.52 5.77 1.62 6.80 3.47	Elevation (masl) 179.60 175.27 179.10 173.91 177.59	(mbtop) 2.68 6.88 2.57 7.83 4.43	(mbgs) 1.73 5.93 1.59 6.84 3.43	Elevation (masl) 179.39 175.11 179.13 173.87 177.63	(mbtop) 2.74 6.97 2.58 7.91 4.42	(mbgs) 1.79 6.02 1.60 6.92 3.42	Elevation (masl) 179.33 175.02 179.12 173.79 177.64
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D	182.86 182.92 182.85 182.64 183.05 183.00	182.07 181.99 181.70 181.70 182.06 181.99	0.95 0.95 0.98 0.99 1.00 0.94	(mbtop) 2.20 6.45 2.68 7.35 4.58 7.15	(mbgs) 1.25 5.50 1.70 6.36 3.58 6.21	Elevation (masl) 179.87 175.54 179.02 174.35 177.48 174.84	(mbtop) 2.47 6.72 2.60 7.79 4.47 7.47	(mbgs) 1.52 5.77 1.62 6.80 3.47 6.53	Elevation (masl) 179.60 175.27 179.10 173.91 177.59 174.52	(mbtop) 2.68 6.88 2.57 7.83 4.43 7.44	(mbgs) 1.73 5.93 1.59 6.84 3.43 6.50	Elevation (masl) 179.39 175.11 179.13 173.87 177.63 174.55	(mbtop) 2.74 6.97 2.58 7.91 4.42 7.61	(mbgs) 1.79 6.02 1.60 6.92 3.42 6.67	Elevation (masl) 179.33 175.02 179.12 173.79 177.64 174.38
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S	182.86 182.92 182.85 182.64 183.05 183.00 183.47	182.07 181.99 181.70 181.70 182.06 181.99 182.53	0.95 0.95 0.98 0.99 1.00 0.94 0.92	(mbtop) 2.20 6.45 2.68 7.35 4.58 7.15 6.10	(mbgs) 1.25 5.50 1.70 6.36 3.58 6.21 5.18	Elevation (masl) 179.87 175.54 179.02 174.35 177.48 174.84 176.43	(mbtop) 2.47 6.72 2.60 7.79 4.47 7.47 6.11	(mbgs) 1.52 5.77 1.62 6.80 3.47 6.53 5.19	Elevation (masl) 179.60 175.27 179.10 173.91 177.59 174.52 176.42	(mbtop) 2.68 6.88 2.57 7.83 4.43 7.44 6.14	(mbgs) 1.73 5.93 1.59 6.84 3.43 6.50 5.22	Elevation (masl) 179.39 175.11 179.13 173.87 177.63 174.55 176.39	(mbtop) 2.74 6.97 2.58 7.91 4.42 7.61 6.13	(mbgs) 1.79 6.02 1.60 6.92 3.42 6.67 5.21	Elevation (masl) 179.33 175.02 179.12 173.79 177.64 174.38 176.40
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40	182.07 181.99 181.70 181.70 181.70 182.06 181.99 182.53 182.51	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91	(mbtop) 2.20 6.45 2.68 7.35 4.58 7.15 6.10 8.25	(mbgs) 1.25 5.50 1.70 6.36 3.58 6.21 5.18 7.34	Elevation (masl) 179.87 175.54 179.02 174.35 177.48 174.84 176.43 174.26	(mbtop) 2.47 6.72 2.60 7.79 4.47 7.47 6.11 8.85	(mbgs) 1.52 5.77 1.62 6.80 3.47 6.53 5.19 7.94	Elevation (masl) 179.60 175.27 179.10 173.91 177.59 174.52 176.42 173.66	(mbtop) 2.68 6.88 2.57 7.83 4.43 7.44 6.14 8.98	(mbgs) 1.73 5.93 1.59 6.84 3.43 6.50 5.22 8.07	Elevation (masl) 179.39 175.11 179.13 173.87 177.63 174.55 176.39 173.53	(mbtop) 2.74 6.97 2.58 7.91 4.42 7.61 6.13 9.07	(mbgs) 1.79 6.02 1.60 6.92 3.42 6.67 5.21 8.16	Elevation (masl) 179.33 175.02 179.12 173.79 177.64 174.38 176.40 173.44
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63	182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98	(mbtop) 2.20 6.45 2.68 7.35 4.58 7.15 6.10 8.25 8.13	(mbgs) 1.25 5.50 1.70 6.36 3.58 6.21 5.18 7.34 7.15	Elevation (masl) 179.87 175.54 179.02 174.35 177.48 174.84 176.43 174.26 174.45 	(mbtop) 2.47 6.72 2.60 7.79 4.47 7.47 6.11 8.85 8.31	(mbgs) 1.52 5.77 1.62 6.80 3.47 6.53 5.19 7.94 7.33	Elevation (masl) 179.60 175.27 179.10 173.91 177.59 174.52 176.42 173.66 174.27	(mbtop) 2.68 6.88 2.57 7.83 4.43 7.44 6.14 8.98 8.47	(mbgs) 1.73 5.93 1.59 6.84 3.43 6.50 5.22 8.07 7.49	Elevation (masl) 179.39 175.11 179.13 173.87 177.63 174.55 176.39 173.53 174.11	(mbtop) 2.74 6.97 2.58 7.91 4.42 7.61 6.13 9.07 8.51	(mbgs) 1.79 6.02 1.60 6.92 3.42 6.67 5.21 8.16 7.53	Elevation (masl) 179.33 175.02 179.12 173.79 177.64 174.38 176.40 173.44 174.07
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4S MW17-5S MW17-5D	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64	182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00	(mbtop) 2.20 6.45 2.68 7.35 4.58 7.15 6.10 8.25 8.13 13.03	(mbgs) 1.25 5.50 1.70 6.36 3.58 6.21 5.18 7.34 7.15 12.03	Elevation (masl) 179.87 175.54 179.02 174.35 177.48 174.84 176.43 174.26 174.45 169.53	(mbtop) 2.47 6.72 2.60 7.79 4.47 7.47 6.11 8.85 8.31 13.49	(mbgs) 1.52 5.77 1.62 6.80 3.47 6.53 5.19 7.94 7.33 12.49	Elevation (masl) 179.60 175.27 179.10 173.91 177.59 174.52 176.42 173.66 174.27 169.07	(mbtop) 2.68 6.88 2.57 7.83 4.43 7.44 6.14 8.98 8.47 13.68	(mbgs) 1.73 5.93 1.59 6.84 3.43 6.50 5.22 8.07 7.49 12.68	Elevation (masl) 179.39 175.11 179.13 173.87 177.63 174.55 176.39 173.53 174.11 168.88	(mbtop) 2.74 6.97 2.58 7.91 4.42 7.61 6.13 9.07 8.51 13.76	(mbgs) 1.79 6.02 1.60 6.92 3.42 6.67 5.21 8.16 7.53 12.76	Elevation (masl) 179.33 175.02 179.12 173.79 177.64 174.38 176.40 173.44 174.07 168.80
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3D MW17-3D MW17-4D MW17-4D MW17-5D MW17-6S	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77	182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92	(mbtop) 2.20 6.45 2.68 7.35 4.58 7.15 6.10 8.25 8.13 13.03 9.47	(mbgs) 1.25 5.50 1.70 6.36 3.58 6.21 5.18 7.34 7.15 12.03 8.55	Elevation (masl) 179.87 175.54 175.54 179.02 174.35 177.48 174.84 176.43 174.26 174.45 169.53 172.32	(mbtop) 2.47 6.72 2.60 7.79 4.47 7.47 6.11 8.85 8.31 13.49 9.75	(mbgs) 1.52 5.77 1.62 6.80 3.47 6.53 5.19 7.94 7.33 12.49 8.83	Elevation (masl) 179.60 175.27 179.10 173.91 177.59 174.52 176.42 173.66 174.27 169.07 172.04	(mbtop) 2.68 6.88 2.57 7.83 4.43 7.44 6.14 8.98 8.47 13.68 9.95	(mbgs) 1.73 5.93 1.59 6.84 3.43 6.50 5.22 8.07 7.49 12.68 9.03	Elevation (masl) 179.39 175.11 179.13 173.87 177.63 174.55 176.39 173.53 174.11 168.88 171.84	(mbtop) 2.74 6.97 2.58 7.91 4.42 7.61 6.13 9.07 8.51 13.76 9.99	(mbgs) 1.79 6.02 1.60 6.92 3.42 6.67 5.21 8.16 7.53 12.76 9.07	Elevation (masl) 179.33 175.02 179.12 173.79 177.64 174.38 176.40 173.44 174.07 168.80 171.80
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3D MW17-3D MW17-4D MW17-4D MW17-5S MW17-5D MW17-6S MW17-6D	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84	182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04	(mbtop) 2.20 6.45 2.68 7.35 4.58 7.15 6.10 8.25 8.13 13.03 9.47 7.12	(mbgs) 1.25 5.50 1.70 6.36 3.58 6.21 5.18 7.34 7.15 12.03 8.55 6.08	Elevation (masl) 179.87 175.54 179.02 174.35 177.48 174.84 176.43 174.26 174.45 169.53 172.32 174.71 	(mbtop) 2.47 6.72 2.60 7.79 4.47 7.47 6.11 8.85 8.31 13.49 9.75 7.73	(mbgs) 1.52 5.77 1.62 6.80 3.47 6.53 5.19 7.94 7.33 12.49 8.83 6.69	Elevation (masl) 179.60 175.27 179.10 173.91 177.59 174.52 176.42 173.66 174.27 169.07 172.04 174.10	(mbtop) 2.68 6.88 2.57 7.83 4.43 7.44 6.14 8.98 8.47 13.68 9.95 7.83	(mbgs) 1.73 5.93 1.59 6.84 3.43 6.50 5.22 8.07 7.49 12.68 9.03 6.79	Elevation (masl) 179.39 175.11 179.13 173.87 177.63 174.55 176.39 173.53 174.11 168.88 171.84 174.00	(mbtop) 2.74 6.97 2.58 7.91 4.42 7.61 6.13 9.07 8.51 13.76 9.99 7.93	(mbgs) 1.79 6.02 1.60 6.92 3.42 6.67 5.21 8.16 7.53 12.76 9.07 6.89	Elevation (masl) 179.33 175.02 179.12 173.79 177.64 174.38 176.40 173.44 174.07 168.80 171.80 173.90
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3D MW17-3D MW17-4S MW17-4S MW17-5S MW17-5D MW17-6D MW17-7S	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36	182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98	(mbtop) 2.20 6.45 2.68 7.35 4.58 7.15 6.10 8.25 8.13 13.03 9.47 7.12 6.50	(mbgs) 1.25 5.50 1.70 6.36 3.58 6.21 5.18 7.34 7.15 12.03 8.55 6.08 5.52	Elevation (masl) 179.87 175.54 179.02 174.35 177.48 174.84 176.43 174.26 174.45 169.53 172.32 174.71 174.87	(mbtop) 2.47 6.72 2.60 7.79 4.47 7.47 6.11 8.85 8.31 13.49 9.75 7.73 6.73	(mbgs) 1.52 5.77 1.62 6.80 3.47 6.53 5.19 7.94 7.94 7.33 12.49 8.83 6.69 5.75	Elevation (masl) 179.60 175.27 179.10 173.91 177.59 174.52 176.42 173.66 174.27 169.07 172.04 174.10 174.64	(mbtop) 2.68 6.88 2.57 7.83 4.43 7.44 6.14 8.98 8.47 13.68 9.95 7.83 6.87	(mbgs) 1.73 5.93 1.59 6.84 3.43 6.50 5.22 8.07 7.49 12.68 9.03 6.79 5.89	Elevation (masl) 179.39 175.11 179.13 173.87 177.63 174.55 176.39 173.53 174.11 168.88 171.84 174.00 174.50	(mbtop) 2.74 6.97 2.58 7.91 4.42 7.61 6.13 9.07 8.51 13.76 9.99 7.93 6.94	(mbgs) 1.79 6.02 1.60 6.92 3.42 6.67 5.21 8.16 7.53 12.76 9.07 6.89 5.96	Elevation (masl) 179.33 175.02 179.12 173.79 177.64 174.38 176.40 173.44 174.07 168.80 171.80 173.90 174.43
MW17-1S MW17-1D MW17-2D MW17-2D MW17-3D MW17-3D MW17-4D MW17-4D MW17-5S MW17-5D MW17-6S MW17-6S MW17-7S MW17-7D	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36 182.43	182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04	(mbtop) 2.20 6.45 2.68 7.35 4.58 7.15 6.10 8.25 8.13 13.03 9.47 7.12 6.50 9.36	(mbgs) 1.25 5.50 1.70 6.36 3.58 6.21 5.18 7.34 7.15 12.03 8.55 6.08 5.52 8.32	Elevation (masl) 179.87 175.54 179.02 174.35 177.48 174.84 176.43 174.26 174.45 169.53 172.32 174.71 174.87 172.03 	(mbtop) 2.47 6.72 2.60 7.79 4.47 7.47 6.11 8.85 8.31 13.49 9.75 7.73 6.73 9.71	(mbgs) 1.52 5.77 1.62 6.80 3.47 6.53 5.19 7.94 7.33 12.49 8.83 6.69 5.75 8.67	Elevation (masl) 179.60 175.27 179.10 173.91 177.59 174.52 176.42 173.66 174.27 169.07 172.04 174.10 174.64 171.68	(mbtop) 2.68 6.88 2.57 7.83 4.43 7.44 6.14 8.98 8.47 13.68 9.95 7.83 6.87 9.92	(mbgs) 1.73 5.93 1.59 6.84 3.43 6.50 5.22 8.07 7.49 12.68 9.03 6.79 5.89 8.88	Elevation (masl) 179.39 175.11 179.13 173.87 177.63 174.55 176.39 173.53 174.11 168.88 171.84 174.00 174.50 174.50 171.47	(mbtop) 2.74 6.97 2.58 7.91 4.42 7.61 6.13 9.07 8.51 13.76 9.99 7.93 6.94 10.01	(mbgs) 1.79 6.02 1.60 6.92 3.42 6.67 5.21 8.16 7.53 12.76 9.07 6.89 5.96 8.97	Elevation (masl) 179.33 175.02 179.12 173.79 177.64 174.38 176.40 173.44 174.07 168.80 171.80 173.90 174.43 171.38
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3D MW17-3S MW17-4S MW17-4S MW17-5S MW17-5D MW17-6D MW17-7S MW17-7D MW17-7D MW17-7S	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36 182.43 182.59	182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39 181.46	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 1.04 0.98	(mbtop) 2.20 6.45 2.68 7.35 4.58 7.15 6.10 8.25 8.13 13.03 9.47 7.12 6.50 9.36 5.42	(mbgs) 1.25 5.50 1.70 6.36 3.58 6.21 5.18 7.34 7.15 12.03 8.55 6.08 5.52 8.32 4.31	Elevation (masl) 179.87 175.54 179.02 174.35 177.48 174.84 176.43 174.26 174.45 169.53 172.32 174.71 174.87 172.03 176.04	(mbtop) 2.47 6.72 2.60 7.79 4.47 7.47 6.11 8.85 8.31 13.49 9.75 7.73 6.73 9.71 5.77	(mbgs) 1.52 5.77 1.62 6.80 3.47 6.53 5.19 7.94 7.94 7.33 12.49 8.83 6.69 5.75 8.67 4.66	Elevation (masl) 179.60 175.27 179.10 173.91 177.59 174.52 176.42 173.66 174.27 169.07 172.04 174.10 174.64 171.68 175.69	(mbtop) 2.68 6.88 2.57 7.83 4.43 7.44 6.14 8.98 8.47 13.68 9.95 7.83 6.87 9.92 6.05	(mbgs) 1.73 5.93 1.59 6.84 3.43 6.50 5.22 8.07 7.49 12.68 9.03 6.79 5.89 8.88 4.94	Elevation (masl) 179.39 175.11 179.13 173.87 177.63 174.55 176.39 173.53 174.11 168.88 171.84 174.00 174.50 171.47 175.41	(mbtop) 2.74 6.97 2.58 7.91 4.42 7.61 6.13 9.07 8.51 13.76 9.99 7.93 6.94 10.01 6.11	(mbgs) 1.79 6.02 1.60 6.92 3.42 6.67 5.21 8.16 7.53 12.76 9.07 6.89 5.96 8.97 5.00	Elevation (masl) 179.33 175.02 179.12 173.79 177.64 174.38 176.40 173.44 174.07 168.80 171.80 173.90 174.43 171.38 175.35
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3D MW17-3D MW17-4D MW17-4S MW17-5S MW17-6S MW17-6S MW17-7D MW17-8S MW17-8D	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36 182.43 182.43 182.49	182.07 181.99 181.70 181.70 181.70 182.06 181.99 182.53 182.51 182.56 181.79 181.83 181.37 181.39 181.46 181.39	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 0.98 1.04 1.11 1.11 1.00	(mbtop) 2.20 6.45 2.68 7.35 4.58 7.15 6.10 8.25 8.13 13.03 9.47 7.12 6.50 9.36 5.42 9.49	(mbgs) 1.25 5.50 1.70 6.36 3.58 6.21 5.18 7.34 7.15 12.03 8.55 6.08 5.52 8.32 4.31 8.49	Elevation (masl) 179.87 175.54 175.54 179.02 174.35 177.48 174.84 176.43 174.26 174.45 169.53 172.32 174.71 174.87 172.03 176.04 171.90	(mbtop) 2.47 6.72 2.60 7.79 4.47 7.47 6.11 8.85 8.31 13.49 9.75 7.73 6.73 9.71 5.77 9.67	(mbgs) 1.52 5.77 1.62 6.80 3.47 6.53 5.19 7.94 7.33 12.49 8.83 6.69 5.75 8.67 4.66 8.67	Elevation (masl) 179.60 175.27 179.10 173.91 177.59 174.52 176.42 173.66 174.27 169.07 172.04 174.10 174.64 171.68 175.69 171.72	(mbtop) 2.68 6.88 2.57 7.83 4.43 7.44 6.14 8.98 8.47 13.68 9.95 7.83 6.87 9.92 6.05 9.88	(mbgs) 1.73 5.93 1.59 6.84 3.43 6.50 5.22 8.07 7.49 12.68 9.03 6.79 5.89 8.88 4.94 8.88	Elevation (masl) 179.39 175.11 179.13 173.87 177.63 174.55 176.39 173.53 174.11 168.88 171.84 174.00 174.50 174.50 171.47 175.41 171.51	(mbtop) 2.74 6.97 2.58 7.91 4.42 7.61 6.13 9.07 8.51 13.76 9.99 7.93 6.94 10.01 6.11 9.96	(mbgs) 1.79 6.02 1.60 6.92 3.42 6.67 5.21 8.16 7.53 12.76 9.07 6.89 5.96 8.97 5.00 8.96	Elevation (masl) 179.33 175.02 179.12 173.79 177.64 174.38 176.40 173.44 174.07 168.80 171.80 173.90 174.43 171.38 175.35 171.43
MW17-1S MW17-1D MW17-2D MW17-2D MW17-3D MW17-3D MW17-3D MW17-4D MW17-5S MW17-5S MW17-5D MW17-6S MW17-6D MW17-7D MW17-7D MW17-8D MW17-8D MW17-9S	182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36 182.43 182.43 182.49 181.71	182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.53 182.51 182.56 181.79 181.83 181.37 181.39 181.46 181.39 180.71	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98	(mbtop) 2.20 6.45 2.68 7.35 4.58 7.15 6.10 8.25 8.13 13.03 9.47 7.12 6.50 9.36 5.42 9.49 3.99	(mbgs) 1.25 5.50 1.70 6.36 3.58 6.21 5.18 7.34 7.15 12.03 8.55 6.08 5.52 8.32 4.31 8.49 3.05	Elevation (masl) 179.87 175.54 179.02 174.35 177.48 174.84 176.43 174.26 174.45 169.53 172.32 174.71 174.87 172.03 176.04 171.90 176.72 	(mbtop) 2.47 6.72 2.60 7.79 4.47 7.47 6.11 8.85 8.31 13.49 9.75 7.73 6.73 9.71 5.77 9.67 4.43	(mbgs) 1.52 5.77 1.62 6.80 3.47 6.53 5.19 7.94 7.33 12.49 8.83 6.69 5.75 8.67 4.66 8.67 3.49	Elevation (masl) 179.60 175.27 179.10 173.91 177.59 174.52 176.42 173.66 174.27 169.07 172.04 174.10 174.64 171.68 175.69 171.72 176.28	(mbtop) 2.68 6.88 2.57 7.83 4.43 7.44 6.14 8.98 8.47 13.68 9.95 7.83 6.87 9.92 6.05 9.88 4.76	(mbgs) 1.73 5.93 1.59 6.84 3.43 6.50 5.22 8.07 7.49 12.68 9.03 6.79 5.89 8.88 4.94 8.88 3.82	Elevation (masl) 179.39 175.11 179.13 173.87 177.63 174.55 176.39 173.53 174.11 168.88 171.84 174.00 174.50 171.47 175.41 171.51 175.95	(mbtop) 2.74 6.97 2.58 7.91 4.42 7.61 6.13 9.07 8.51 13.76 9.99 7.93 6.94 10.01 6.11 9.96 4.90	(mbgs) 1.79 6.02 1.60 6.92 3.42 6.67 5.21 8.16 7.53 12.76 9.07 6.89 5.96 8.97 5.00 8.96 3.96	Elevation (masl) 179.33 175.02 179.12 173.79 177.64 174.38 176.40 173.44 174.07 168.80 171.80 173.90 174.43 175.35 171.43 175.81

		Ground			05-Sep-18			18-Oct-18			15-Nov-18			05-Dec-18	
Well ID	Top of Pipe Elevation	Surface Elevation	Well Stick Up (m)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)
MW17-1S	182.86	182.07	0.95	2.92	1.97	179.15	3.16	2.21	178.91	3.25	2.30	178.82	3.32	2.37	178.75
MW17-1D	182.92	181.99	0.95	6.90	5.95	175.09	6.75	5.80	175.24	6.32	5.37	175.67	6.10	5.15	175.89
MW17-2S	182.85	181.70	0.98	2.48	1.50	179.22	2.35	1.37	179.35	2.30	1.32	179.40	2.31	1.33	179.39
MW17-2D	182.64	181.70	0.99	7.85	6.86	173.85	7.75	6.76	173.95	7.40	6.41	174.30	7.23	6.24	174.47
MW17-3S	183.05	182.06	1.00	4.38	3.38	177.68	4.74	3.74	177.32	5.06	4.06	177.00	5.21	4.21	176.85
MW17-3D	183.00	181.99	0.94	7.60	6.66	174.39	7.54	6.60	174.45	7.29	6.35	174.70	7.18	6.24	174.81
MW17-4S	183.47	182.53	0.92	6.15	5.23	176.38	6.14	5.22	176.39	6.18	5.26	176.35	6.18	5.26	176.35
MW17-4D	183.40	182.51	0.91	9.12	8.21	173.39	9.15	8.24	173.36	8.80	7.89	173.71	8.74	7.83	173.77
MW17-5S	183.63	182.58	0.98	8.55	7.57	174.03	8.45	7.47	174.13	8.25	7.27	174.33	8.20	7.22	174.38
MW17-5D	183.64	182.56	1.00	13.94	12.94	168.62	14.07	13.07	168.49	14.07	13.07	168.49	14.07	13.07	168.49
MW17-6S	182.77	181.79	0.92	9.99	9.07	171.80	9.93	9.01	171.86	9.80	8.88	171.99	9.92	9.00	171.87
MW17-6D	182.84	181.83	1.04	7.93	6.89	173.90	7.93	6.89	173.90	7.59	6.55	174.24	7.50	6.46	174.33
MW17-7S	182.36	181.37	0.98	6.88	5.90	174.49	6.72	5.74	174.65	6.49	5.51	174.88	6.47	5.49	174.90
MW17-7D	182.43	181.39	1.04	10.12	9.08	171.27	10.11	9.07	171.28	10.05	9.01	171.34	10.01	8.97	171.38
MW17-8S	182.59	181.46	1.11	5.97	4.86	175.49	5.70	4.59	175.76	5.31	4.20	176.15	5.25	4.14	176.21
MW17-8D	182.49	181.39	1.00	10.02	9.02	171.37	9.99	8.99	171.40	9.86	8.86	171.53	9.82	8.82	171.57
MW17-9S	181.71	180.71	0.94	4.68	3.74	176.03	4.32	3.38	176.39	3.90	2.96	176.81	3.78	2.84	176.93
MW17-9D	181.73	180.75	0.96	8.23	7.27	172.52	8.13	7.17	172.62	7.96	7.00	172.79	7.88	6.92	172.87
MW17-10S	182.86	181.94	0.96	6.80	5.84	175.14	6.80	5.84	175.14	6.80	5.84	175.14	6.80	5.84	175.14
MW17-10D	183.04	181.96	1.05	6.93	5.88	175.03	6.80	5.75	175.16	6.36	5.31	175.60	6.17	5.12	175.79
Race Track		NA	0.67	-	-	-	-	-	-	-	-	-	4.47	3.80	NA
		0			14-Jan-19			08-Mar-19			27-Mar-19			04-Apr-19	
Well ID	Top of Pipe Elevation	Ground Surface Elevation	Well Stick Up (m)	Depth to Water	Depth to Water	Groundwater	Depth to Water	Depth to Water	Groundwater	Depth to Water	Depth to Water	Groundwater	Depth to Water	Depth to Water	Groundwater
Well ID			Well Stick Up (m)	Depth to Water (mbtop)		Groundwater Elevation (masl)	Depth to Water (mbtop)		Groundwater Elevation (masl)	Depth to Water (mbtop)		Groundwater Elevation (masl)	Depth to Water (mbtop)		Groundwater Elevation (masl)
Well ID MW17-1S		Surface	Well Stick Up (m) 0.95		Depth to Water			Depth to Water			Depth to Water			Depth to Water	
	Elevation	Surface Elevation		(mbtop)	Depth to Water (mbgs)	Elevation (masl)	(mbtop)	Depth to Water (mbgs)	Elevation (masl)	(mbtop)	Depth to Water (mbgs)	Elevation (masl)	(mbtop)	Depth to Water (mbgs)	Elevation (masl)
MW17-1S	Elevation 182.86	Surface Elevation 182.07	0.95	(mbtop) 2.84	Depth to Water (mbgs) 1.89	Elevation (masl) 180.02	(mbtop) 2.65	Depth to Water (mbgs) 1.70	Elevation (masl) 180.21	(mbtop)	Depth to Water (mbgs) 0.96	Elevation (masl) 180.95	(mbtop) 1.86	Depth to Water (mbgs) 0.91	Elevation (masl) 181.00
MW17-1S MW17-1D MW17-2S MW17-2D	Elevation 182.86 182.92	Surface Elevation 182.07 181.99	0.95 0.95	(mbtop) 2.84 6.64	Depth to Water (mbgs) 1.89 5.69	Elevation (masl) 180.02 176.28	(mbtop) 2.65 6.04 2.41 7.18	Depth to Water (mbgs) 1.70 5.09	Elevation (masl) 180.21 176.88	(mbtop) 1.91 6.09	Depth to Water (mbgs) 0.96 5.14	Elevation (masl) 180.95 176.83	(mbtop) 1.86 5.98	Depth to Water (mbgs) 0.91 5.03	Elevation (masl) 181.00 176.94
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S	Elevation 182.86 182.92 182.85 182.64 183.05	Surface Elevation 182.07 181.99 181.70 181.70 182.06	0.95 0.95 0.98 0.99 1.00	(mbtop) 2.84 6.64 2.39 7.18 5.60	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60	Elevation (masl) 180.02 176.28 180.46 175.46 177.45	(mbtop) 2.65 6.04 2.41 7.18 5.75	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75	Elevation (masl) 180.21 176.88 180.44 175.46 177.30	(mbtop) 1.91 6.09 2.44 7.21 5.66	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66	Elevation (masl) 180.95 176.83 180.41 175.43 177.39	(mbtop) 1.86 5.98 2.42 7.15 5.63	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63	Elevation (masl) 181.00 176.94 180.43 175.49 177.42
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D	Elevation 182.86 182.92 182.85 182.64 183.05 183.00	Surface Elevation 182.07 181.99 181.70 181.70 181.70 181.99	0.95 0.95 0.98 0.99 1.00 0.94	(mbtop) 2.84 6.64 2.39 7.18 5.60 7.15	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60 6.21	Elevation (masl) 180.02 176.28 180.46 175.46 177.45 175.85	(mbtop) 2.65 6.04 2.41 7.18 5.75 7.18	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75 6.24	Elevation (masl) 180.21 176.88 180.44 175.46 177.30 175.82	(mbtop) 1.91 6.09 2.44 7.21 5.66 7.16	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66 6.22	Elevation (masl) 180.95 176.83 180.41 175.43 177.39 175.84	(mbtop) 1.86 5.98 2.42 7.15 5.63 7.12	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63 6.18	Elevation (masl) 181.00 176.94 180.43 175.49 177.42 175.88
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S	Elevation 182.86 182.92 182.85 182.64 183.05 183.00 183.47	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53	0.95 0.95 0.98 0.99 1.00 0.94 0.92	(mbtop) 2.84 6.64 2.39 7.18 5.60 7.15 6.12	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60 6.21 5.20	Elevation (masl) 180.02 176.28 180.46 175.46 177.45 175.85 177.35	(mbtop) 2.65 6.04 2.41 7.18 5.75 7.18 6.13	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75 6.24 5.21	Elevation (masl) 180.21 176.88 180.44 175.46 177.30 175.82 177.34	(mbtop) 1.91 6.09 2.44 7.21 5.66 7.16 6.11	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66 6.22 5.19	Elevation (masl) 180.95 176.83 180.41 175.43 177.39 175.84 177.36	(mbtop) 1.86 5.98 2.42 7.15 5.63 7.12 6.10	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63 6.18 5.18	Elevation (masl) 181.00 176.94 180.43 175.49 177.42 175.88 177.37
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D	Elevation 182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91	(mbtop) 2.84 6.64 2.39 7.18 5.60 7.15 6.12 8.56	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60 6.21 5.20 7.65	Elevation (masl) 180.02 176.28 180.46 175.46 177.45 175.85 177.35 174.84	(mbtop) 2.65 6.04 2.41 7.18 5.75 7.18 6.13 8.52	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75 6.24 5.21 7.61	Elevation (masl) 180.21 176.88 180.44 175.46 177.30 175.82 177.34 174.88	(mbtop) 1.91 6.09 2.44 7.21 5.66 7.16 6.11 8.63	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66 6.22 5.19 7.72	Elevation (masl) 180.95 176.83 180.41 175.43 177.39 175.84 177.36 174.77	(mbtop) 1.86 5.98 2.42 7.15 5.63 7.12 6.10 8.61	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63 6.18 5.18 7.70	Elevation (masl) 181.00 176.94 180.43 175.49 177.42 175.88 177.37 174.79
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S	Elevation 182.86 182.92 182.85 182.64 183.05 183.47 183.40 183.63	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98	(mbtop) 2.84 6.64 2.39 7.18 5.60 7.15 6.12 8.56 8.19	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60 6.21 5.20 7.65 7.21	Elevation (masl) 180.02 176.28 180.46 175.46 177.45 175.85 177.35 174.84 175.44 	(mbtop) 2.65 6.04 2.41 7.18 5.75 7.18 6.13 8.52 8.25	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75 6.24 5.21 7.61 7.27	Elevation (masl) 180.21 176.88 180.44 175.46 177.30 175.82 177.34 174.88 175.38 	(mbtop) 1.91 6.09 2.44 7.21 5.66 7.16 6.11 8.63 8.17	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66 6.22 5.19 7.72 7.19	Elevation (masl) 180.95 176.83 180.41 175.43 177.39 175.84 177.36 174.77 175.46 	(mbtop) 1.86 5.98 2.42 7.15 5.63 7.12 6.10 8.61 8.10	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63 6.18 5.18 5.18 7.70 7.12	Elevation (masl) 181.00 176.94 180.43 175.49 177.42 175.88 177.37 174.79 175.53
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4S MW17-5S MW17-5D	Elevation 182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00	(mbtop) 2.84 6.64 2.39 7.18 5.60 7.15 6.12 8.56 8.19 13.94	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60 6.21 5.20 7.65 7.21 12.94	Elevation (masl) 180.02 176.28 180.46 175.46 177.45 175.85 177.35 177.35 174.84 175.44 169.70	(mbtop) 2.65 6.04 2.41 7.18 5.75 7.18 6.13 8.52 8.25 13.95	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75 6.24 5.21 7.61 7.27 12.95	Elevation (masl) 180.21 176.88 180.44 175.46 177.30 175.82 177.34 174.88 175.38 169.69 	(mbtop) 1.91 6.09 2.44 7.21 5.66 7.16 6.11 8.63 8.17 14.05	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66 6.22 5.19 7.72 7.19 13.05	Elevation (masl) 180.95 176.83 180.41 175.43 177.39 175.84 177.36 174.77 175.46 169.59 	(mbtop) 1.86 5.98 2.42 7.15 5.63 7.12 6.10 8.61 8.10 14.10	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63 6.18 5.18 7.70 7.12 13.10	Elevation (masl) 181.00 176.94 180.43 175.49 177.42 175.88 177.37 174.79 175.53 169.54
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3S MW17-4S MW17-4D MW17-5S MW17-5D MW17-6S	Elevation 182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 183.77	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92	(mbtop) 2.84 6.64 2.39 7.18 5.60 7.15 6.12 8.56 8.19 13.94 9.93	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60 6.21 5.20 7.65 7.21 12.94 9.01	Elevation (masl) 180.02 176.28 180.46 175.46 175.45 175.85 177.35 174.84 175.44 169.70 172.84	(mbtop) 2.65 6.04 2.41 7.18 5.75 7.18 6.13 8.52 8.25 13.95 9.95	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75 6.24 5.21 7.61 7.27 12.95 9.03	Elevation (masl) 180.21 176.88 180.44 175.46 177.30 175.82 177.34 174.88 175.38 169.69 172.82 	(mbtop) 1.91 6.09 2.44 7.21 5.66 7.16 6.11 8.63 8.17 14.05 9.96	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66 6.22 5.19 7.72 7.19 13.05 9.04	Elevation (masl) 180.95 176.83 180.41 175.43 177.39 175.84 177.36 174.77 175.46 169.59 172.81 	(mbtop) 1.86 5.98 2.42 7.15 5.63 7.12 6.10 8.61 8.10 14.10 9.98	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63 6.18 5.18 7.70 7.12 13.10 9.06	Elevation (masl) 181.00 176.94 180.43 175.49 177.42 175.88 177.37 174.79 175.53 169.54 172.79
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3D MW17-3S MW17-4S MW17-4S MW17-5S MW17-5S MW17-6S MW17-6D	Elevation 182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.47 183.63 183.63 182.77 182.84	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.53 182.54 182.58 182.56 181.79 181.83	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04	(mbtop) 2.84 6.64 2.39 7.18 5.60 7.15 6.12 8.56 8.19 13.94 9.93 7.29	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60 6.21 5.20 7.65 7.21 12.94 9.01 6.25	Elevation (masl) 180.02 176.28 180.46 175.46 177.45 175.85 177.35 174.84 175.44 169.70 172.84 175.55	(mbtop) 2.65 6.04 2.41 7.18 5.75 7.18 6.13 8.52 8.25 13.95 9.95 6.19	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75 6.24 5.21 7.61 7.27 12.95 9.03 5.15	Elevation (masl) 180.21 176.88 180.44 175.46 177.30 175.82 177.34 174.88 175.38 169.69 172.82 176.65	(mbtop) 1.91 6.09 2.44 7.21 5.66 7.16 6.11 8.63 8.17 14.05 9.96 7.30	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66 6.22 5.19 7.72 7.19 13.05 9.04 6.26	Elevation (masl) 180.95 176.83 180.41 175.43 177.39 175.84 177.36 174.77 175.46 169.59 172.81 175.54 	(mbtop) 1.86 5.98 2.42 7.15 5.63 7.12 6.10 8.61 8.10 14.10 9.98 7.27	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63 6.18 5.18 7.70 7.12 13.10 9.06 6.23	Elevation (masl) 181.00 176.94 180.43 175.49 177.42 175.88 177.37 174.79 175.53 169.54 172.79 175.57
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3S MW17-4S MW17-4S MW17-5D MW17-5D MW17-6D MW17-7S	Elevation 182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.63 183.64 182.77 182.84 182.36	Surface Elevation182.07181.99181.70181.70182.06181.99182.53182.51182.58182.56181.79181.83181.37	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98	(mbtop) 2.84 6.64 2.39 7.18 5.60 7.15 6.12 8.56 8.19 13.94 9.93 7.29 6.48	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60 6.21 5.20 7.65 7.21 12.94 9.01 6.25 5.50	Elevation (masl) 180.02 176.28 180.46 175.46 175.45 175.85 177.35 174.84 175.44 169.70 172.84 175.55 175.88	(mbtop) 2.65 6.04 2.41 7.18 5.75 7.18 6.13 8.52 8.25 13.95 9.95 6.19 6.54	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75 6.24 5.21 7.61 7.27 12.95 9.03 5.15 5.56	Elevation (masl) 180.21 176.88 180.44 175.46 177.30 175.82 177.34 175.38 169.69 172.82 176.65 175.82	(mbtop) 1.91 6.09 2.44 7.21 5.66 7.16 6.11 8.63 8.17 14.05 9.96 7.30 6.44	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66 6.22 5.19 7.72 7.19 13.05 9.04 6.26 5.46	Elevation (masl) 180.95 176.83 180.41 175.43 177.39 175.84 177.36 174.77 175.46 169.59 172.81 175.54 175.92 	(mbtop) 1.86 5.98 2.42 7.15 5.63 7.12 6.10 8.61 8.61 8.10 14.10 9.98 7.27 6.39	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63 6.18 5.18 7.70 7.12 13.10 9.06 6.23 5.41	Elevation (masl) 181.00 176.94 180.43 175.49 177.42 175.88 177.37 174.79 175.53 169.54 172.79 175.57 175.97
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3D MW17-3D MW17-4D MW17-4D MW17-5S MW17-5S MW17-6S MW17-6S MW17-7S MW17-7D	Elevation 182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 182.77 182.84 182.36 182.43	Surface Elevation 182.07 181.99 181.70 182.06 181.99 182.53 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04	(mbtop) 2.84 6.64 2.39 7.18 5.60 7.15 6.12 8.56 8.19 13.94 9.93 7.29 6.48 9.90	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60 6.21 5.20 7.65 7.21 12.94 9.01 6.25 5.50 8.86	Elevation (masl) 180.02 176.28 180.46 175.46 177.45 175.85 177.35 174.84 175.44 169.70 172.84 175.55 175.88 172.53 	(mbtop) 2.65 6.04 2.41 7.18 5.75 7.18 6.13 8.52 8.25 13.95 9.95 6.19 6.54 9.88	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75 6.24 5.21 7.61 7.27 12.95 9.03 5.15 5.56 8.84	Elevation (masl) 180.21 176.88 180.44 175.46 177.30 175.82 177.34 175.38 169.69 172.82 175.82 175.82 175.38 169.69 175.82 175.82 175.82 175.82 175.82 175.82 175.82 175.82	(mbtop) 1.91 6.09 2.44 7.21 5.66 7.16 6.11 8.63 8.17 14.05 9.96 7.30 6.44 9.91	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66 6.22 5.19 7.72 7.19 13.05 9.04 6.26 5.46 8.87	Elevation (masl) 180.95 176.83 180.41 175.43 177.39 175.84 177.36 174.77 175.46 169.59 172.81 175.54 175.92 172.52 	(mbtop) 1.86 5.98 2.42 7.15 5.63 7.12 6.10 8.61 8.10 14.10 9.98 7.27 6.39 9.92	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63 6.18 5.18 7.70 7.12 13.10 9.06 6.23 5.41 8.88	Elevation (masl) 181.00 176.94 180.43 175.49 177.42 175.88 177.37 174.79 175.53 169.54 172.79 175.57 175.97 172.51
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3D MW17-3S MW17-4S MW17-4S MW17-5S MW17-5S MW17-6D MW17-7S MW17-7S MW17-7S MW17-7S MW17-7S MW17-7D MW17-8S	Elevation 182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.47 183.63 183.63 182.77 182.84 182.36 182.36 182.43 182.59	Surface Elevation182.07181.99181.70181.70182.06182.53182.53182.51182.58182.56181.79181.83181.37181.39181.46	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 1.11	(mbtop) 2.84 6.64 2.39 7.18 5.60 7.15 6.12 8.56 8.19 13.94 9.93 7.29 6.48 9.90 5.30	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60 6.21 5.20 7.65 7.21 12.94 9.01 6.25 5.50 8.86 4.19	Elevation (masl) 180.02 176.28 180.46 175.46 177.45 175.85 177.35 174.84 175.44 169.70 172.84 175.55 175.88 172.53 177.29 	(mbtop) 2.65 6.04 2.41 7.18 5.75 7.18 6.13 8.52 8.25 13.95 9.95 6.19 6.54 9.88 5.40	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75 6.24 5.21 7.61 7.27 12.95 9.03 5.15 5.56 8.84 4.29	Elevation (masl) 180.21 176.88 180.44 175.46 177.30 175.82 177.34 175.38 169.69 172.82 176.65 175.82 177.34	(mbtop) 1.91 6.09 2.44 7.21 5.66 7.16 6.11 8.63 8.17 14.05 9.96 7.30 6.44 9.91 5.22	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66 6.22 5.19 7.72 7.19 13.05 9.04 6.26 5.46 8.87 4.11	Elevation (masl) 180.95 176.83 180.41 175.43 177.39 175.84 177.36 174.77 175.46 169.59 172.81 175.54 175.92 172.52 177.37 	(mbtop) 1.86 5.98 2.42 7.15 5.63 7.12 6.10 8.61 8.61 8.10 14.10 9.98 7.27 6.39 9.92 5.16	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63 6.18 5.18 7.70 7.12 13.10 9.06 6.23 5.41 8.88 4.05	Elevation (masl) 181.00 176.94 180.43 175.49 177.42 175.88 177.37 174.79 175.53 169.54 172.79 175.57 175.97 172.51 177.43
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3S MW17-4S MW17-4S MW17-5S MW17-5S MW17-6D MW17-7S MW17-8S MW17-8D	Elevation 182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 182.77 182.84 182.36 182.43 182.49	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39 181.39 181.39	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 1.04 1.04 1.04 1.04 1.04 1.04	(mbtop) 2.84 6.64 2.39 7.18 5.60 7.15 6.12 8.56 8.19 13.94 9.93 7.29 6.48 9.90 5.30 9.72	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60 6.21 5.20 7.65 7.21 12.94 9.01 6.25 5.50 8.86 4.19 8.72	Elevation (masl) 180.02 176.28 180.46 175.46 177.45 175.85 177.35 174.84 175.44 169.70 172.84 175.55 175.88 172.53 177.29 172.77 	(mbtop) 2.65 6.04 2.41 7.18 5.75 7.18 6.13 8.52 8.25 13.95 9.95 6.19 6.54 9.88 5.40 9.73	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75 6.24 5.21 7.61 7.27 12.95 9.03 5.15 5.56 8.84 4.29 8.73	Elevation (masl) 180.21 176.88 180.44 175.46 177.30 175.82 177.34 175.38 169.69 172.82 175.82 177.34 175.38 169.69 172.82 175.82 175.82 175.76	(mbtop) 1.91 6.09 2.44 7.21 5.66 7.16 6.11 8.63 8.17 14.05 9.96 7.30 6.44 9.91 5.22 9.73	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66 6.22 5.19 7.72 7.19 13.05 9.04 6.26 5.46 8.87 4.11 8.73	Elevation (masl) 180.95 176.83 180.41 175.43 177.39 175.84 177.36 174.77 175.46 169.59 172.81 175.54 175.92 172.52 177.37 172.76 	(mbtop) 1.86 5.98 2.42 7.15 5.63 7.12 6.10 8.61 8.10 14.10 9.98 7.27 6.39 9.92 5.16 9.73	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63 6.18 5.18 7.70 7.12 13.10 9.06 6.23 5.41 8.88 4.05 8.73	Elevation (masl) 181.00 176.94 180.43 175.49 177.42 175.88 177.37 174.79 175.53 169.54 172.79 175.57 175.97 172.51 177.43 172.76
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-4S MW17-4S MW17-5S MW17-6S MW17-7D MW17-7S MW17-8S MW17-8S MW17-9S	Elevation 182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.47 183.63 183.63 182.84 182.77 182.84 182.77 182.84 182.77 182.84 182.77 182.84 182.77 182.84 182.43 182.43 182.43 182.49 181.71	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39 181.46 181.39 180.71	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98	(mbtop) 2.84 6.64 2.39 7.18 5.60 7.15 6.12 8.56 8.19 13.94 9.93 7.29 6.48 9.90 5.30 9.72 3.78	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60 6.21 5.20 7.65 7.21 12.94 9.01 6.25 5.50 8.86 4.19 8.72 2.84	Elevation (masl) 180.02 176.28 180.46 175.46 175.85 175.85 177.35 174.84 175.55 175.88 175.85 175.70 175.83 175.70 172.84 175.55 175.88 177.29 172.77 177.93	(mbtop) 2.65 6.04 2.41 7.18 5.75 7.18 6.13 8.52 8.25 13.95 9.95 6.19 6.54 9.88 5.40 9.73 3.80	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75 6.24 5.21 7.61 7.27 12.95 9.03 5.15 5.56 8.84 4.29 8.73 2.86	Elevation (masl) 180.21 176.88 180.44 175.46 177.30 175.82 177.34 175.38 169.69 172.82 176.65 175.82 177.74	(mbtop) 1.91 6.09 2.44 7.21 5.66 7.16 6.11 8.63 8.17 14.05 9.96 7.30 6.44 9.91 5.22 9.73 3.60	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66 6.22 5.19 7.72 7.19 13.05 9.04 6.26 5.46 8.87 4.11 8.73 2.66	Elevation (masl) 180.95 176.83 180.41 175.43 177.39 175.84 177.36 174.77 175.46 169.59 172.81 175.54 175.92 172.52 177.37 172.76 178.11 	(mbtop) 1.86 5.98 2.42 7.15 5.63 7.12 6.10 8.61 8.10 14.10 9.98 7.27 6.39 9.92 5.16 9.73 3.51	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63 6.18 5.18 7.70 7.12 13.10 9.06 6.23 5.41 8.88 4.05 8.73 2.57	Elevation (masl) 181.00 176.94 180.43 175.49 177.42 175.88 177.37 174.79 175.53 169.54 172.79 175.57 175.97 172.51 177.43 172.76 178.20
MW17-1S MW17-1D MW17-2S MW17-3S MW17-3S MW17-4S MW17-4S MW17-5D MW17-5S MW17-6D MW17-7S MW17-8S MW17-9S MW17-9D	Elevation 182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 182.84 182.77 182.84 182.36 182.43 182.43 182.49 181.71 181.73	Surface Elevation 182.07 181.70 181.70 181.70 182.06 181.70 182.53 182.53 182.54 182.55 182.56 181.79 181.83 181.37 181.39 181.46 181.39 180.71 180.75	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98	(mbtop) 2.84 6.64 2.39 7.18 5.60 7.15 6.12 8.56 8.19 13.94 9.93 7.29 6.48 9.90 5.30 9.72 3.78 7.78	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60 6.21 5.20 7.65 7.21 12.94 9.01 6.25 5.50 8.86 4.19 8.72 2.84 6.82	Elevation (masl) 180.02 176.28 180.46 175.46 177.45 175.85 177.35 174.84 175.44 169.70 172.84 175.55 175.88 172.53 177.29 172.77 177.93 173.95 	(mbtop) 2.65 6.04 2.41 7.18 5.75 7.18 6.13 8.52 8.25 13.95 9.95 6.19 6.54 9.88 5.40 9.73 3.80 7.80	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75 6.24 5.21 7.61 7.27 12.95 9.03 5.15 5.56 8.84 4.29 8.73 2.86 6.84	Elevation (masl) 180.21 176.88 180.44 175.46 177.30 175.82 177.34 175.38 169.69 172.82 175.82 177.34 175.38 169.69 172.82 176.65 175.82 177.19 172.76 177.91 173.93	(mbtop) 1.91 6.09 2.44 7.21 5.66 7.16 6.11 8.63 8.17 14.05 9.96 7.30 6.44 9.91 5.22 9.73 3.60 7.77	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66 6.22 5.19 7.72 7.19 13.05 9.04 6.26 5.46 8.87 4.11 8.73 2.66 6.81	Elevation (masl) 180.95 176.83 180.41 175.43 177.39 175.84 177.36 174.77 175.46 169.59 172.81 175.54 175.92 172.52 177.37 172.76 178.11 173.96 	(mbtop) 1.86 5.98 2.42 7.15 5.63 7.12 6.10 8.61 8.10 14.10 9.98 7.27 6.39 9.92 5.16 9.73 3.51 7.74	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63 6.18 5.18 7.70 7.12 13.10 9.06 6.23 5.41 8.88 4.05 8.73 2.57 6.78	Elevation (masl) 181.00 176.94 180.43 175.49 177.42 175.88 177.37 174.79 175.53 169.54 172.79 175.57 175.97 175.97 177.43 172.76 178.20 173.99
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3D MW17-3S MW17-4S MW17-4S MW17-5S MW17-6S MW17-6D MW17-7D MW17-8S MW17-8D MW17-9S MW17-9D	Elevation 182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.47 183.47 183.40 183.63 182.77 182.84 182.36 182.43 182.43 182.49 181.71 182.86	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.70 182.53 182.53 182.53 182.56 181.79 181.83 181.37 181.39 181.39 181.39 181.39 181.39 181.39 180.71 180.75 181.94	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.94 0.96	(mbtop) 2.84 6.64 2.39 7.18 5.60 7.15 6.12 8.56 8.19 13.94 9.93 7.29 6.48 9.90 5.30 9.72 3.78 7.78 6.80	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60 6.21 5.20 7.65 7.21 12.94 9.01 6.25 5.50 8.86 4.19 8.72 2.84 6.82 5.84	Elevation (masl) 180.02 176.28 180.46 175.46 177.45 175.85 177.35 174.84 175.44 169.70 172.84 175.55 175.88 172.53 177.29 172.77 177.93 173.95 176.06 	(mbtop) 2.65 6.04 2.41 7.18 5.75 7.18 6.13 8.52 8.25 13.95 9.95 6.19 6.54 9.88 5.40 9.73 3.80 7.80 6.84	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75 6.24 5.21 7.61 7.27 12.95 9.03 5.15 5.56 8.84 4.29 8.73 2.86 6.84 5.88	Elevation (masl) 180.21 176.88 180.44 175.46 177.30 175.82 177.34 175.38 169.69 172.82 175.82 175.82 177.34 175.38 169.69 172.82 175.82 175.82 175.76 177.91 173.93 176.02	(mbtop) 1.91 6.09 2.44 7.21 5.66 7.16 6.11 8.63 8.17 14.05 9.96 7.30 6.44 9.91 5.22 9.73 3.60 7.77 6.79	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66 6.22 5.19 7.72 7.19 13.05 9.04 6.26 5.46 8.87 4.11 8.73 2.66 6.81 5.83	Elevation (masl) 180.95 176.83 180.41 175.43 177.39 175.84 177.36 174.77 175.46 169.59 172.81 175.54 175.92 172.52 177.37 172.76 178.11 173.96 176.07 	(mbtop) 1.86 5.98 2.42 7.15 5.63 7.12 6.10 8.61 8.10 14.10 9.98 7.27 6.39 9.92 5.16 9.73 3.51 7.74 6.79	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63 6.18 5.18 7.70 7.12 13.10 9.06 6.23 5.41 8.88 4.05 8.73 2.57 6.78 5.83	Elevation (masl) 181.00 176.94 180.43 175.49 177.42 175.88 177.37 174.79 175.53 169.54 172.79 175.57 175.97 175.97 172.51 177.43 172.76 178.20 173.99 176.07
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3S MW17-4S MW17-4S MW17-5D MW17-5S MW17-6D MW17-7S MW17-8S MW17-9S MW17-9D	Elevation 182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 182.84 182.77 182.84 182.36 182.43 182.43 182.49 181.71 181.73	Surface Elevation 182.07 181.70 181.70 181.70 182.06 181.70 182.53 182.53 182.54 182.55 182.56 181.79 181.83 181.37 181.39 181.46 181.39 180.71 180.75	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.99	(mbtop) 2.84 6.64 2.39 7.18 5.60 7.15 6.12 8.56 8.19 13.94 9.93 7.29 6.48 9.90 5.30 9.72 3.78 7.78	Depth to Water (mbgs) 1.89 5.69 1.41 6.19 4.60 6.21 5.20 7.65 7.21 12.94 9.01 6.25 5.50 8.86 4.19 8.72 2.84 6.82	Elevation (masl) 180.02 176.28 180.46 175.46 177.45 175.85 177.35 174.84 175.44 169.70 172.84 175.55 175.88 172.53 177.29 172.77 177.93 173.95 	(mbtop) 2.65 6.04 2.41 7.18 5.75 7.18 6.13 8.52 8.25 13.95 9.95 6.19 6.54 9.88 5.40 9.73 3.80 7.80	Depth to Water (mbgs) 1.70 5.09 1.43 6.19 4.75 6.24 5.21 7.61 7.27 12.95 9.03 5.15 5.56 8.84 4.29 8.73 2.86 6.84	Elevation (masl) 180.21 176.88 180.44 175.46 177.30 175.82 177.34 175.38 169.69 172.82 175.82 177.34 175.38 169.69 172.82 176.65 175.82 177.19 172.76 177.91 173.93	(mbtop) 1.91 6.09 2.44 7.21 5.66 7.16 6.11 8.63 8.17 14.05 9.96 7.30 6.44 9.91 5.22 9.73 3.60 7.77	Depth to Water (mbgs) 0.96 5.14 1.46 6.22 4.66 6.22 5.19 7.72 7.19 13.05 9.04 6.26 5.46 8.87 4.11 8.73 2.66 6.81	Elevation (masl) 180.95 176.83 180.41 175.43 177.39 175.84 177.36 174.77 175.46 169.59 172.81 175.54 175.92 172.52 177.37 172.76 178.11 173.96 	(mbtop) 1.86 5.98 2.42 7.15 5.63 7.12 6.10 8.61 8.10 14.10 9.98 7.27 6.39 9.92 5.16 9.73 3.51 7.74	Depth to Water (mbgs) 0.91 5.03 1.44 6.16 4.63 6.18 5.18 7.70 7.12 13.10 9.06 6.23 5.41 8.88 4.05 8.73 2.57 6.78	Elevation (masl) 181.00 176.94 180.43 175.49 177.42 175.88 177.37 174.79 175.53 169.54 172.79 175.57 175.97 175.97 177.43 172.76 178.20 173.99

		Ground			27-May-19			05-Jun-19			10-Jul-19			13-Aug-19	
Well ID	Top of Pipe Elevation	Surface Elevation	Well Stick Up (m)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)
MW17-1S	182.86	182.07	0.95	1.68	0.73	181.18	1.65	0.70	181.21	1.77	0.82	181.09	2.00	1.05	180.86
MW17-1D	182.92	181.99	0.95	6.13	5.18	176.79	6.20	5.25	176.72	6.28	5.33	176.64	6.61	5.66	176.31
MW17-2S	182.85	181.70	0.98	2.27	1.29	180.58	2.24	1.26	180.61	2.14	1.16	180.71	2.14	1.16	180.71
MW17-2D	182.64	181.70	0.99	7.27	6.28	175.37	7.31	6.32	175.33	7.38	6.39	175.26	7.65	6.66	174.99
MW17-3S	183.05	182.06	1.00	4.88	3.88	178.17	4.80	3.80	178.25	4.65	3.65	178.40	4.59	3.59	178.46
MW17-3D	183.00	181.99	0.94	7.13	6.19	175.87	7.15	6.21	175.85	7.16	6.22	175.84	7.34	6.40	175.66
MW17-4S	183.47	182.53	0.92	6.10	5.18	177.37	6.11	5.19	177.36	6.11	5.19	177.36	6.13	5.21	177.34
MW17-4D	183.40	182.51	0.91	8.82	7.91	174.58	8.89	7.98	174.51	8.98	8.07	174.42	9.23	8.32	174.17
MW17-5S	183.63	182.58	0.98	8.50	7.52	175.13	8.63	7.65	175.00	8.71	7.73	174.92	8.89	7.91	174.74
MW17-5D	183.64	182.56	1.00	14.52	13.52	169.12	14.60	13.60	169.04	14.82	13.82	168.82	15.01	14.01	168.63
MW17-6S	182.77	181.79	0.92	9.96	9.04	172.81	9.99	9.07	172.78	10.00	9.08	172.77	9.99	9.07	172.78
MW17-6D	182.84	181.83	1.04	7.40	6.36	175.44	7.47	6.43	175.37	7.51	6.47	175.33	7.77	6.73	175.07
MW17-7S	182.36	181.37	0.98	6.67	5.69	175.69	6.80	5.82	175.56	6.90	5.92	175.46	7.31	6.33	175.05
MW17-7D	182.43	181.39	1.04	10.03	8.99	172.40	10.12	9.08	172.31	10.24	9.20	172.19	10.52	9.48	171.91
MW17-8S	182.59	181.46	1.11	5.42	4.31	177.17	5.50	4.39	177.09	5.68	4.57	176.91	6.15	5.04	176.44
MW17-8D	182.49	181.39	1.00	9.91	8.91	172.58	10.02	9.02	172.47	10.16	9.16	172.33	10.50	9.50	171.99
MW17-9S	181.71	180.71	0.94	3.93	2.99	177.78	3.99	3.05	177.72	4.18	3.24	177.53	4.75	3.81	176.96
MW17-9D	181.73	180.75	0.96	7.94	6.98	173.79	8.04	7.08	173.69	8.18	7.22	173.55	8.55	7.59	173.18
MW17-10S	182.86	181.94	0.96	6.24	5.28	176.62	5.97	5.01	176.89	5.50	4.54	177.36	5.46	4.50	177.40
MW17-10D	183.04	181.96	1.05	6.19	5.14	176.85	6.25	5.20	176.79	6.32	5.27	176.72	6.64	5.59	176.40
Race Track	NA	NA	0.67	3.90	3.23	-	4.07	3.40	-	4.01	3.34	-	4.62	3.95	-
					10-Sep-19			11-Oct-19			06-Nov-19			23-Dec-19	
Well ID	Top of Pipe Elevation	Ground Surface Elevation	Well Stick Up (m)	Depth to Water (mbtop)	10-Sep-19 Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	11-Oct-19 Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	06-Nov-19 Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	23-Dec-19 Depth to Water (mbgs)	Groundwater Elevation (masl)
	Elevation	Surface Elevation		(mbtop)	Depth to Water (mbgs)	Elevation (masl)	(mbtop)	Depth to Water (mbgs)	Elevation (masl)	(mbtop)	Depth to Water (mbgs)	Elevation (masl)	(mbtop)	Depth to Water (mbgs)	Elevation (masl)
MW17-1S	Elevation 182.86	Surface Elevation 182.07	0.95	(mbtop) 2.14	Depth to Water (mbgs) 1.19	Elevation (masl) 180.72	(mbtop) 2.26	Depth to Water (mbgs) 1.31	Elevation (masl) 180.60	(mbtop) 2.35	Depth to Water (mbgs) 1.40	Elevation (masl) 180.51	(mbtop) 2.21	Depth to Water (mbgs) 1.26	Elevation (masl) 180.65
MW17-1S MW17-1D	Elevation 182.86 182.92	Surface Elevation 182.07 181.99	0.95	(mbtop) 2.14 6.58	Depth to Water (mbgs) 1.19 5.63	Elevation (masl) 180.72 176.34	(mbtop) 2.26 6.54	Depth to Water (mbgs) 1.31 5.59	Elevation (masl) 180.60 176.38	(mbtop) 2.35 6.18	Depth to Water (mbgs) 1.40 5.23	Elevation (masl) 180.51 176.74	(mbtop) 2.21 5.78	Depth to Water (mbgs) 1.26 4.83	Elevation (masl) 180.65 177.14
MW17-1S MW17-1D MW17-2S	Elevation 182.86 182.92 182.85	Surface Elevation 182.07 181.99 181.70	0.95 0.95 0.98	(mbtop) 2.14 6.58 2.11	Depth to Water (mbgs) 1.19 5.63 1.13	Elevation (masl) 180.72 176.34 180.74	(mbtop) 2.26 6.54 2.05	Depth to Water (mbgs) 1.31 5.59 1.07	Elevation (masl) 180.60 176.38 180.80	(mbtop) 2.35 6.18 2.04	Depth to Water (mbgs) 1.40 5.23 1.06	Elevation (masl) 180.51 176.74 180.81	(mbtop) 2.21 5.78 2.05	Depth to Water (mbgs) 1.26 4.83 1.07	Elevation (masl) 180.65 177.14 180.80
MW17-1S MW17-1D MW17-2S MW17-2D	Elevation 182.86 182.92 182.85 182.64	Surface Elevation 182.07 181.99 181.70 181.70	0.95 0.95 0.98 0.99	(mbtop) 2.14 6.58 2.11 7.62	Depth to Water (mbgs) 1.19 5.63 1.13 6.63	Elevation (masl) 180.72 176.34 180.74 175.02	(mbtop) 2.26 6.54 2.05 7.58	Depth to Water (mbgs) 1.31 5.59 1.07 6.59	Elevation (masl) 180.60 176.38 180.80 175.06	(mbtop) 2.35 6.18 2.04 7.33	Depth to Water (mbgs) 1.40 5.23 1.06 6.34	Elevation (masl) 180.51 176.74 180.81 175.31	(mbtop) 2.21 5.78 2.05 7.02	Depth to Water (mbgs) 1.26 4.83 1.07 6.03	Elevation (masl) 180.65 177.14 180.80 175.62
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S	Elevation 182.86 182.92 182.85 182.64 183.05	Surface Elevation 182.07 181.99 181.70 181.70 182.06	0.95 0.95 0.98 0.99 1.00	(mbtop) 2.14 6.58 2.11 7.62 4.64	Depth to Water (mbgs) 1.19 5.63 1.13 6.63 3.64	Elevation (masl) 180.72 176.34 180.74 175.02 178.41	(mbtop) 2.26 6.54 2.05 7.58 4.83	Depth to Water (mbgs) 1.31 5.59 1.07 6.59 3.83	Elevation (masl) 180.60 176.38 180.80 175.06 178.22	(mbtop) 2.35 6.18 2.04 7.33 5.07	Depth to Water (mbgs) 1.40 5.23 1.06 6.34 4.07	Elevation (masl) 180.51 176.74 180.81 175.31 177.98	(mbtop) 2.21 5.78 2.05 7.02 5.47	Depth to Water (mbgs) 1.26 4.83 1.07 6.03 4.47	Elevation (masl) 180.65 177.14 180.80 175.62 177.58
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D	Elevation 182.86 182.92 182.85 182.64 183.05 183.00	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99	0.95 0.95 0.98 0.99 1.00 0.94	(mbtop) 2.14 6.58 2.11 7.62 4.64 7.31	Depth to Water (mbgs) 1.19 5.63 1.13 6.63 3.64 6.37	Elevation (masl) 180.72 176.34 180.74 175.02 178.41 175.69	(mbtop) 2.26 6.54 2.05 7.58 4.83 7.35	Depth to Water (mbgs) 1.31 5.59 1.07 6.59 3.83 6.41	Elevation (masl) 180.60 176.38 180.80 175.06 178.22 175.65	(mbtop) 2.35 6.18 2.04 7.33 5.07 7.18	Depth to Water (mbgs) 1.40 5.23 1.06 6.34 4.07 6.24	Elevation (masl) 180.51 176.74 180.81 175.31 177.98 175.82	(mbtop) 2.21 5.78 2.05 7.02 5.47 6.99	Depth to Water (mbgs) 1.26 4.83 1.07 6.03 4.47 6.05	Elevation (masl) 180.65 177.14 180.80 175.62 177.58 176.01
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S	Elevation 182.86 182.92 182.85 182.64 183.05 183.00 183.47	Surface Elevation 182.07 181.99 181.70 181.70 182.06 182.06 181.99 182.53	0.95 0.95 0.98 0.99 1.00 0.94 0.92	(mbtop) 2.14 6.58 2.11 7.62 4.64 7.31 6.14	Depth to Water (mbgs) 1.19 5.63 1.13 6.63 3.64 6.37 5.22	Elevation (masl) 180.72 176.34 180.74 175.02 178.41 175.69 177.33	(mbtop) 2.26 6.54 2.05 7.58 4.83 7.35 6.14	Depth to Water (mbgs) 1.31 5.59 1.07 6.59 3.83 6.41 5.22	Elevation (masl) 180.60 176.38 180.80 175.06 178.22 175.65 177.33	(mbtop) 2.35 6.18 2.04 7.33 5.07 7.18 6.17	Depth to Water (mbgs) 1.40 5.23 1.06 6.34 4.07 6.24 5.25	Elevation (masl) 180.51 176.74 180.81 175.31 177.98 175.82 177.30	(mbtop) 2.21 5.78 2.05 7.02 5.47 6.99 6.13	Depth to Water (mbgs) 1.26 4.83 1.07 6.03 4.47 6.05 5.21	Elevation (masl) 180.65 177.14 180.80 175.62 177.58 176.01 177.34
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3S MW17-4S MW17-4D	Elevation 182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91	(mbtop) 2.14 6.58 2.11 7.62 4.64 7.31 6.14 9.20	Depth to Water (mbgs) 1.19 5.63 1.13 6.63 3.64 6.37 5.22 8.29	Elevation (masl) 180.72 176.34 180.74 175.02 178.41 175.69 177.33 174.20	(mbtop) 2.26 6.54 2.05 7.58 4.83 7.35 6.14 9.43	Depth to Water (mbgs) 1.31 5.59 1.07 6.59 3.83 6.41 5.22 8.52	Elevation (masl) 180.60 176.38 180.80 175.06 178.22 175.65 177.33 173.97	(mbtop) 2.35 6.18 2.04 7.33 5.07 7.18 6.17 9.17	Depth to Water (mbgs) 1.40 5.23 1.06 6.34 4.07 6.24 5.25 8.26	Elevation (masl) 180.51 176.74 180.81 175.31 177.98 175.82 177.30 174.23 	(mbtop) 2.21 5.78 2.05 7.02 5.47 6.99 6.13 8.84	Depth to Water (mbgs) 1.26 4.83 1.07 6.03 4.47 6.05 5.21 7.93	Elevation (masl) 180.65 177.14 180.80 175.62 177.58 176.01 177.34 174.56
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4S MW17-4D MW17-5S	Elevation 182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98	(mbtop) 2.14 6.58 2.11 7.62 4.64 7.31 6.14 9.20 8.85	Depth to Water (mbgs) 1.19 5.63 1.13 6.63 3.64 6.37 5.22 8.29 7.87	Elevation (masl) 180.72 176.34 180.74 175.02 178.41 175.69 177.33 174.20 174.78	(mbtop) 2.26 6.54 2.05 7.58 4.83 7.35 6.14 9.43 8.79	Depth to Water (mbgs) 1.31 5.59 1.07 6.59 3.83 6.41 5.22 8.52 7.81	Elevation (masl) 180.60 176.38 180.80 175.06 178.22 175.65 177.33 173.97 174.84 	(mbtop) 2.35 6.18 2.04 7.33 5.07 7.18 6.17 9.17 8.33	Depth to Water (mbgs) 1.40 5.23 1.06 6.34 4.07 6.24 5.25 8.26 7.35	Elevation (masl) 180.51 176.74 180.81 175.31 177.98 175.82 177.30 174.23 175.30	(mbtop) 2.21 5.78 2.05 7.02 5.47 6.99 6.13 8.84 8.52	Depth to Water (mbgs) 1.26 4.83 1.07 6.03 4.47 6.05 5.21 7.93 7.54	Elevation (masl) 180.65 177.14 180.80 175.62 177.58 176.01 177.34 175.11
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3S MW17-4S MW17-4S MW17-5S MW17-5D	Elevation	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00	(mbtop) 2.14 6.58 2.11 7.62 4.64 7.31 6.14 9.20 8.85 14.95	Depth to Water (mbgs) 1.19 5.63 1.13 6.63 3.64 6.37 5.22 8.29 7.87 13.95	Elevation (masl) 180.72 176.34 180.74 175.02 178.41 175.69 177.33 174.20 174.78 168.69	(mbtop) 2.26 6.54 2.05 7.58 4.83 7.35 6.14 9.43 8.79 15.17	Depth to Water (mbgs) 1.31 5.59 1.07 6.59 3.83 6.41 5.22 8.52 7.81 14.17	Elevation (masl) 180.60 176.38 180.80 175.06 178.22 175.65 177.33 173.97 174.84 168.47	(mbtop) 2.35 6.18 2.04 7.33 5.07 7.18 6.17 9.17 8.33 15.22	Depth to Water (mbgs) 1.40 5.23 1.06 6.34 4.07 6.24 5.25 8.26 7.35 14.22	Elevation (masl) 180.51 176.74 180.81 175.31 177.98 175.82 177.30 174.23 175.30 168.42 	(mbtop) 2.21 5.78 2.05 7.02 5.47 6.99 6.13 8.84 8.52 15.35	Depth to Water (mbgs) 1.26 4.83 1.07 6.03 4.47 6.05 5.21 7.93 7.54 14.35	Elevation (masl) 180.65 177.14 180.80 175.62 177.58 176.01 177.34 174.56 175.11 168.29
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3D MW17-3D MW17-4S MW17-4D MW17-5D MW17-6S	Elevation 182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92	(mbtop) 2.14 6.58 2.11 7.62 4.64 7.31 6.14 9.20 8.85 14.95 9.97	Depth to Water (mbgs) 1.19 5.63 1.13 6.63 3.64 6.37 5.22 8.29 7.87 13.95 9.05	Elevation (masl) 180.72 176.34 180.74 175.02 178.41 175.69 177.33 174.20 174.78 168.69 172.80	(mbtop) 2.26 6.54 2.05 7.58 4.83 7.35 6.14 9.43 8.79 15.17 10.00	Depth to Water (mbgs) 1.31 5.59 1.07 6.59 3.83 6.41 5.22 8.52 7.81 14.17 9.08	Elevation (masl) 180.60 176.38 180.80 175.06 178.22 175.65 177.33 173.97 174.84 168.47 172.77	(mbtop) 2.35 6.18 2.04 7.33 5.07 7.18 6.17 9.17 8.33 15.22 9.99	Depth to Water (mbgs) 1.40 5.23 1.06 6.34 4.07 6.24 5.25 8.26 7.35 14.22 9.07	Elevation (masl) 180.51 176.74 180.81 175.31 177.98 175.82 177.30 174.23 175.30 168.42 172.78 	(mbtop) 2.21 5.78 2.05 7.02 5.47 6.99 6.13 8.84 8.52 15.35 9.97	Depth to Water (mbgs) 1.26 4.83 1.07 6.03 4.47 6.05 5.21 7.93 7.54 14.35 9.05	Elevation (masl) 180.65 177.14 180.80 175.62 177.58 176.01 177.34 174.56 175.11 168.29 172.80
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4D MW17-4D MW17-5S MW17-5D MW17-6S MW17-6D	Elevation	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04	(mbtop) 2.14 6.58 2.11 7.62 4.64 7.31 6.14 9.20 8.85 14.95 9.97 7.72	Depth to Water (mbgs) 1.19 5.63 1.13 6.63 3.64 6.37 5.22 8.29 7.87 13.95 9.05 6.68	Elevation (masl) 180.72 176.34 180.74 175.02 178.41 175.69 177.33 174.20 174.78 168.69 172.80 175.12	(mbtop) 2.26 6.54 2.05 7.58 4.83 7.35 6.14 9.43 8.79 15.17 10.00 7.84	Depth to Water (mbgs) 1.31 5.59 1.07 6.59 3.83 6.41 5.22 8.52 7.81 14.17 9.08 6.80	Elevation (masl) 180.60 176.38 180.80 175.06 178.22 175.65 177.33 173.97 174.84 168.47 172.77 175.00	(mbtop) 2.35 6.18 2.04 7.33 5.07 7.18 6.17 9.17 8.33 15.22 9.99 7.61	Depth to Water (mbgs) 1.40 5.23 1.06 6.34 4.07 6.24 5.25 8.26 7.35 14.22 9.07 6.57	Elevation (masl) 180.51 176.74 180.81 175.31 177.98 175.82 177.30 174.23 175.30 168.42 172.78 175.23	(mbtop) 2.21 5.78 2.05 7.02 5.47 6.99 6.13 8.84 8.52 15.35 9.97 7.26	Depth to Water (mbgs) 1.26 4.83 1.07 6.03 4.47 6.05 5.21 7.93 7.54 14.35 9.05 6.22	Elevation (masl) 180.65 177.14 180.80 175.62 177.58 176.01 177.34 175.11 168.29 175.58
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3S MW17-4D MW17-5S MW17-6D MW17-7S	Elevation 182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.55 182.56 182.56 181.79 181.83 181.37	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.91 0.98 1.00 0.92 1.04 0.98	(mbtop) 2.14 6.58 2.11 7.62 4.64 7.31 6.14 9.20 8.85 14.95 9.97 7.72 7.19	Depth to Water (mbgs) 1.19 5.63 1.13 6.63 3.64 6.37 5.22 8.29 7.87 13.95 9.05 6.68 6.21	Elevation (masl) 180.72 176.34 180.74 175.02 178.41 175.69 177.33 174.20 174.78 168.69 172.80 175.12 175.17	(mbtop) 2.26 6.54 2.05 7.58 4.83 7.35 6.14 9.43 8.79 15.17 10.00 7.84 6.93	Depth to Water (mbgs) 1.31 5.59 1.07 6.59 3.83 6.41 5.22 8.52 7.81 14.17 9.08 6.80 5.95	Elevation (masl) 180.60 176.38 180.80 175.06 178.22 175.65 177.33 173.97 174.84 168.47 172.77 175.00 175.43 	(mbtop) 2.35 6.18 2.04 7.33 5.07 7.18 6.17 9.17 8.33 15.22 9.99 7.61 6.49	Depth to Water (mbgs) 1.40 5.23 1.06 6.34 4.07 6.24 5.25 8.26 7.35 14.22 9.07 6.57 5.51	Elevation (masl) 180.51 176.74 180.81 175.31 177.98 175.82 177.30 174.23 175.30 168.42 172.78 175.23 175.87 	(mbtop) 2.21 5.78 2.05 7.02 5.47 6.99 6.13 8.84 8.52 15.35 9.97 7.26 6.60	Depth to Water (mbgs) 1.26 4.83 1.07 6.03 4.47 6.05 5.21 7.93 7.54 14.35 9.05 6.22 5.62	Elevation (masl) 180.65 177.14 180.80 175.62 177.58 176.01 177.34 174.56 175.11 168.29 172.80 175.58 175.76
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3D MW17-3D MW17-4S MW17-5S MW17-6S MW17-7D	Elevation 182.86 182.92 182.85 182.64 183.05 183.47 183.63 183.63 182.77 182.84 182.36 182.36	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04	(mbtop) 2.14 6.58 2.11 7.62 4.64 7.31 6.14 9.20 8.85 14.95 9.97 7.72 7.19 10.46	Depth to Water (mbgs) 1.19 5.63 1.13 6.63 3.64 6.37 5.22 8.29 7.87 13.95 9.05 6.68 6.21 9.42	Elevation (masl) 180.72 176.34 180.74 175.02 178.41 175.69 177.33 174.20 174.78 168.69 172.80 175.12 175.17 171.97	(mbtop) 2.26 6.54 2.05 7.58 4.83 7.35 6.14 9.43 8.79 15.17 10.00 7.84 6.93 10.47	Depth to Water (mbgs) 1.31 5.59 1.07 6.59 3.83 6.41 5.22 8.52 7.81 14.17 9.08 6.80 5.95 9.43	Elevation (masl) 180.60 176.38 180.80 175.06 178.22 175.65 177.33 173.97 174.84 168.47 172.77 175.00 175.43 171.96	(mbtop) 2.35 6.18 2.04 7.33 5.07 7.18 6.17 9.17 8.33 15.22 9.99 7.61 6.49 10.37	Depth to Water (mbgs) 1.40 5.23 1.06 6.34 4.07 6.24 5.25 8.26 7.35 14.22 9.07 6.57 5.51 9.33	Elevation (masl) 180.51 176.74 180.81 175.31 177.98 175.82 177.30 174.23 175.30 168.42 172.78 175.23 175.87 172.06 	(mbtop) 2.21 5.78 2.05 7.02 5.47 6.99 6.13 8.84 8.52 15.35 9.97 7.26 6.60 10.35	Depth to Water (mbgs) 1.26 4.83 1.07 6.03 4.47 6.05 5.21 7.93 7.54 14.35 9.05 6.22 5.62 9.31	Elevation (masl) 180.65 177.14 180.80 175.62 177.58 176.01 177.34 175.11 168.29 175.58 175.76 175.76 172.08
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3D MW17-3D MW17-4D MW17-5S MW17-5D MW17-6S MW17-7D MW17-7D	Elevation	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.53 182.51 182.56 181.79 181.83 181.37 181.39 181.46	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 1.04 0.98	(mbtop) 2.14 6.58 2.11 7.62 4.64 7.31 6.14 9.20 8.85 14.95 9.97 7.72 7.19 10.46 5.95	Depth to Water (mbgs) 1.19 5.63 1.13 6.63 3.64 6.37 5.22 8.29 7.87 13.95 9.05 6.68 6.21 9.42 4.84	Elevation (masl) 180.72 176.34 180.74 175.02 178.41 175.69 177.33 174.20 174.78 168.69 175.12 175.17 171.97 176.64	(mbtop) 2.26 6.54 2.05 7.58 4.83 7.35 6.14 9.43 8.79 15.17 10.00 7.84 6.93 10.47 5.72	Depth to Water (mbgs) 1.31 5.59 1.07 6.59 3.83 6.41 5.22 8.52 7.81 14.17 9.08 6.80 5.95 9.43 4.61	Elevation (masl) 180.60 176.38 180.80 175.06 175.22 175.65 177.33 173.97 174.84 168.47 172.77 175.00 175.43 171.96 176.87 	(mbtop) 2.35 6.18 2.04 7.33 5.07 7.18 6.17 9.17 8.33 15.22 9.99 7.61 6.49 10.37 5.37	Depth to Water (mbgs) 1.40 5.23 1.06 6.34 4.07 6.24 5.25 8.26 7.35 14.22 9.07 6.57 5.51 9.33 4.26	Elevation (masl) 180.51 176.74 180.81 175.31 177.98 175.82 177.30 174.23 175.30 168.42 175.23 175.23 175.23 175.23 175.87 172.06 177.22	(mbtop) 2.21 5.78 2.05 7.02 5.47 6.99 6.13 8.84 8.52 15.35 9.97 7.26 6.60 10.35 5.31	Depth to Water (mbgs) 1.26 4.83 1.07 6.03 4.47 6.05 5.21 7.93 7.54 14.35 9.05 6.22 5.62 9.31 4.20	Elevation (masl) 180.65 177.14 180.80 175.62 177.58 176.01 177.34 174.56 175.11 168.29 175.58 175.76 172.08 177.28
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3D MW17-3D MW17-4D MW17-5S MW17-6S MW17-7S MW17-7D MW17-8S MW17-8D	Elevation	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39 181.46 181.39	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98 1.04	(mbtop) 2.14 6.58 2.11 7.62 4.64 7.31 6.14 9.20 8.85 14.95 9.97 7.72 7.19 10.46 5.95 10.40	Depth to Water (mbgs) 1.19 5.63 1.13 6.63 3.64 6.37 5.22 8.29 7.87 13.95 9.05 6.68 6.21 9.42 4.84 9.40	Elevation (masl) 180.72 176.34 180.74 175.02 178.41 175.69 177.33 174.20 174.78 168.69 175.12 175.17 171.97 176.64 172.09	(mbtop) 2.26 6.54 2.05 7.58 4.83 7.35 6.14 9.43 8.79 15.17 10.00 7.84 6.93 10.47 5.72 10.37	Depth to Water (mbgs) 1.31 5.59 1.07 6.59 3.83 6.41 5.22 8.52 7.81 14.17 9.08 6.80 5.95 9.43 4.61 9.37	Elevation (masl) 180.60 176.38 180.80 175.06 178.22 175.65 177.33 173.97 174.84 168.47 172.77 175.00 175.43 171.96 176.87 172.12 	(mbtop) 2.35 6.18 2.04 7.33 5.07 7.18 6.17 9.17 8.33 15.22 9.99 7.61 6.49 10.37 5.37 10.23	Depth to Water (mbgs) 1.40 5.23 1.06 6.34 4.07 6.24 5.25 8.26 7.35 14.22 9.07 6.57 5.51 9.33 4.26 9.23	Elevation (masl) 180.51 176.74 180.81 175.31 177.98 175.82 177.30 174.23 175.30 168.42 175.23 175.87 175.87 175.87 172.26	(mbtop) 2.21 5.78 2.05 7.02 5.47 6.99 6.13 8.84 8.52 15.35 9.97 7.26 6.60 10.35 5.31 10.26	Depth to Water (mbgs) 1.26 4.83 1.07 6.03 4.47 6.05 5.21 7.93 7.54 14.35 9.05 6.22 5.62 9.31 4.20 9.26	Elevation (masl) 180.65 177.14 180.80 175.62 177.58 176.01 177.34 174.56 175.11 168.29 175.58 175.76 172.08 177.28 172.23
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-4D MW17-4S MW17-5S MW17-6S MW17-6D MW17-7D MW17-8S MW17-8D MW17-8S MW17-8S MW17-8S	Elevation 182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.63 183.63 182.84 182.77 182.84 182.36 182.43 182.43 182.49 181.71	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39 181.46 181.39 180.71	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 0.98 1.04 1.11 1.00 0.94	(mbtop) 2.14 6.58 2.11 7.62 4.64 7.31 6.14 9.20 8.85 14.95 9.97 7.72 7.19 10.46 5.95 10.40 4.45	Depth to Water (mbgs) 1.19 5.63 1.13 6.63 3.64 6.37 5.22 8.29 7.87 13.95 9.05 6.68 6.21 9.42 4.84 9.40 3.51	Elevation (masl) 180.72 176.34 180.74 175.02 178.41 175.69 177.33 174.20 174.78 168.69 175.12 175.17 171.97 176.64 172.09 177.26	(mbtop) 2.26 6.54 2.05 7.58 4.83 7.35 6.14 9.43 8.79 15.17 10.00 7.84 6.93 10.47 5.72 10.37 4.20	Depth to Water (mbgs) 1.31 5.59 1.07 6.59 3.83 6.41 5.22 8.52 7.81 14.17 9.08 6.80 5.95 9.43 4.61 9.37 3.26	Elevation (masl) 180.60 176.38 180.80 175.06 178.22 175.65 177.33 173.97 174.84 168.47 172.77 175.00 175.43 171.96 176.87 172.12 177.51 	(mbtop) 2.35 6.18 2.04 7.33 5.07 7.18 6.17 9.17 8.33 15.22 9.99 7.61 6.49 10.37 5.37 10.23 3.83	Depth to Water (mbgs) 1.40 5.23 1.06 6.34 4.07 6.24 5.25 8.26 7.35 14.22 9.07 6.57 5.51 9.33 4.26 9.23 2.89	Elevation (masl) 180.51 176.74 180.81 175.31 177.98 175.82 177.30 174.23 175.30 168.42 175.23 175.23 175.23 175.87 172.06 177.22 177.88	(mbtop) 2.21 5.78 2.05 7.02 5.47 6.99 6.13 8.84 8.52 15.35 9.97 7.26 6.60 10.35 5.31 10.26 3.77	Depth to Water (mbgs) 1.26 4.83 1.07 6.03 4.47 6.05 5.21 7.93 7.54 14.35 9.05 6.22 5.62 9.31 4.20 9.26 2.83	Elevation (masl) 180.65 177.14 180.80 175.62 177.58 176.01 177.34 176.56 177.34 175.58 175.76 172.08 177.28 177.94
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3D MW17-3D MW17-4D MW17-4S MW17-5S MW17-6D MW17-7S MW17-7S MW17-7D MW17-8S MW17-9S MW17-9D	Elevation 182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36 182.43 182.59 182.49 181.71 181.73	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.53 182.51 182.56 181.79 181.83 181.37 181.39 181.46 181.39 180.71 180.75	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 1.04 0.98 1.04 0.98 1.04 0.98 0.98 0.98 0.98	(mbtop) 2.14 6.58 2.11 7.62 4.64 7.31 6.14 9.20 8.85 14.95 9.97 7.72 7.19 10.46 5.95 10.40 4.45 8.38	Depth to Water (mbgs) 1.19 5.63 1.13 6.63 3.64 6.37 5.22 8.29 7.87 13.95 9.05 6.68 6.21 9.42 4.84 9.40 3.51 7.42	Elevation (masl) 180.72 176.34 180.74 175.02 178.41 175.69 177.33 174.20 174.78 168.69 175.12 175.17 171.97 176.64 177.26 173.35	(mbtop) 2.26 6.54 2.05 7.58 4.83 7.35 6.14 9.43 8.79 15.17 10.00 7.84 6.93 10.47 5.72 10.37 4.20 8.30	Depth to Water (mbgs) 1.31 5.59 1.07 6.59 3.83 6.41 5.22 8.52 7.81 14.17 9.08 6.80 5.95 9.43 4.61 9.37 3.26 7.34	Elevation (masl) 180.60 176.38 180.80 175.06 178.22 175.65 177.33 173.97 174.84 168.47 172.77 175.00 175.43 171.96 176.87 172.12 177.51 173.43 	(mbtop) 2.35 6.18 2.04 7.33 5.07 7.18 6.17 9.17 8.33 15.22 9.99 7.61 6.49 10.37 5.37 10.23 3.83 8.10	Depth to Water (mbgs) 1.40 5.23 1.06 6.34 4.07 6.24 5.25 8.26 7.35 14.22 9.07 6.57 5.51 9.33 4.26 9.23 2.89 7.14	Elevation (masl) 180.51 176.74 180.81 175.31 177.98 175.82 177.30 174.23 175.30 168.42 175.23 175.23 175.87 175.87 172.06 177.22 172.26 177.88 173.63 	(mbtop) 2.21 5.78 2.05 7.02 5.47 6.99 6.13 8.84 8.52 15.35 9.97 7.26 6.60 10.35 5.31 10.26 3.77 8.06	Depth to Water (mbgs) 1.26 4.83 1.07 6.03 4.47 6.05 5.21 7.93 7.54 14.35 9.05 6.22 5.62 9.31 4.20 9.26 2.83 7.10	Elevation (masl) 180.65 177.14 180.80 175.62 177.58 176.01 177.34 174.56 175.11 168.29 175.58 175.76 177.28 177.94 173.67
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3S MW17-3D MW17-3D MW17-4D MW17-5S MW17-6S MW17-6S MW17-7D MW17-8S MW17-8D MW17-8D MW17-9D MW17-9D	Elevation 182.86 182.92 182.85 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36 182.43 182.43 182.49 181.71 181.73 182.86	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.53 182.51 182.58 182.56 181.79 181.83 181.37 181.39 181.46 181.39 180.71 180.75 181.94	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.98 1.00 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98 1.04 0.98 0.96	(mbtop) 2.14 6.58 2.11 7.62 4.64 7.31 6.14 9.20 8.85 14.95 9.97 7.72 7.19 10.46 5.95 10.40 4.45 8.38 5.47	Depth to Water (mbgs) 1.19 5.63 1.13 6.63 3.64 6.37 5.22 8.29 7.87 13.95 9.05 6.68 6.21 9.42 4.84 9.40 3.51 7.42 4.51	Elevation (masl) 180.72 176.34 180.74 175.02 178.41 175.69 177.33 174.20 174.78 168.69 172.80 175.12 175.17 171.97 176.64 172.09 177.26 173.35 177.39	(mbtop) 2.26 6.54 2.05 7.58 4.83 7.35 6.14 9.43 8.79 15.17 10.00 7.84 6.93 10.47 5.72 10.37 4.20 8.30 5.51	Depth to Water (mbgs) 1.31 5.59 1.07 6.59 3.83 6.41 5.22 8.52 7.81 14.17 9.08 6.80 5.95 9.43 4.61 9.37 3.26 7.34 4.55	Elevation (masl) 180.60 176.38 180.80 175.06 178.22 175.65 177.33 173.97 174.84 168.47 172.77 175.00 175.43 171.96 176.87 172.12 177.51 173.43 177.35 	(mbtop) 2.35 6.18 2.04 7.33 5.07 7.18 6.17 9.17 8.33 15.22 9.99 7.61 6.49 10.37 5.37 10.23 3.83 8.10 5.53	Depth to Water (mbgs) 1.40 5.23 1.06 6.34 4.07 6.24 5.25 8.26 7.35 14.22 9.07 6.57 5.51 9.33 4.26 9.23 2.89 7.14 4.57	Elevation (masl) 180.51 176.74 180.81 175.31 177.98 175.82 177.30 174.23 175.30 168.42 172.78 175.23 175.87 175.87 172.06 177.22 177.26 177.88 173.63 177.33 	(mbtop) 2.21 5.78 2.05 7.02 5.47 6.99 6.13 8.84 8.52 15.35 9.97 7.26 6.60 10.35 5.31 10.26 3.77 8.06 5.59	Depth to Water (mbgs) 1.26 4.83 1.07 6.03 4.47 6.05 5.21 7.93 7.54 14.35 9.05 6.22 5.62 9.31 4.20 9.26 2.83 7.10 4.63	Elevation (masl) 180.65 177.14 180.80 175.62 177.58 176.01 177.34 174.56 175.11 168.29 175.58 175.76 172.80 177.28 177.28 177.28 177.94 173.67 177.27
MW17-1S MW17-1D MW17-2S MW17-2D MW17-3D MW17-3D MW17-4D MW17-4S MW17-5S MW17-6S MW17-7S MW17-8S MW17-7D MW17-8S MW17-9S MW17-9D	Elevation 182.86 182.92 182.85 182.64 183.05 183.00 183.47 183.40 183.63 183.64 182.77 182.84 182.36 182.43 182.59 182.49 181.71 181.73	Surface Elevation 182.07 181.99 181.70 181.70 182.06 181.99 182.53 182.51 182.53 182.51 182.56 181.79 181.83 181.37 181.39 181.46 181.39 180.71 180.75	0.95 0.95 0.98 0.99 1.00 0.94 0.92 0.91 0.92 0.91 0.98 1.00 0.92 1.04 0.98 1.04 1.04 0.98 1.04 0.98 1.04 0.98 0.98 0.98 0.98	(mbtop) 2.14 6.58 2.11 7.62 4.64 7.31 6.14 9.20 8.85 14.95 9.97 7.72 7.19 10.46 5.95 10.40 4.45 8.38	Depth to Water (mbgs) 1.19 5.63 1.13 6.63 3.64 6.37 5.22 8.29 7.87 13.95 9.05 6.68 6.21 9.42 4.84 9.40 3.51 7.42	Elevation (masl) 180.72 176.34 180.74 175.02 178.41 175.69 177.33 174.20 174.78 168.69 175.12 175.17 171.97 176.64 177.26 173.35	(mbtop) 2.26 6.54 2.05 7.58 4.83 7.35 6.14 9.43 8.79 15.17 10.00 7.84 6.93 10.47 5.72 10.37 4.20 8.30	Depth to Water (mbgs) 1.31 5.59 1.07 6.59 3.83 6.41 5.22 8.52 7.81 14.17 9.08 6.80 5.95 9.43 4.61 9.37 3.26 7.34	Elevation (masl) 180.60 176.38 180.80 175.06 178.22 175.65 177.33 173.97 174.84 168.47 172.77 175.00 175.43 171.96 176.87 172.12 177.51 173.43 	(mbtop) 2.35 6.18 2.04 7.33 5.07 7.18 6.17 9.17 8.33 15.22 9.99 7.61 6.49 10.37 5.37 10.23 3.83 8.10	Depth to Water (mbgs) 1.40 5.23 1.06 6.34 4.07 6.24 5.25 8.26 7.35 14.22 9.07 6.57 5.51 9.33 4.26 9.23 2.89 7.14	Elevation (masl) 180.51 176.74 180.81 175.31 177.98 175.82 177.30 174.23 175.30 168.42 175.23 175.23 175.87 175.87 172.06 177.22 172.26 177.88 173.63 	(mbtop) 2.21 5.78 2.05 7.02 5.47 6.99 6.13 8.84 8.52 15.35 9.97 7.26 6.60 10.35 5.31 10.26 3.77 8.06	Depth to Water (mbgs) 1.26 4.83 1.07 6.03 4.47 6.05 5.21 7.93 7.54 14.35 9.05 6.22 5.62 9.31 4.20 9.26 2.83 7.10	Elevation (masl) 180.65 177.14 180.80 175.62 177.58 176.01 177.34 174.56 175.11 168.29 175.58 175.76 177.28 177.94 173.67

					13-Jan-20			13-Feb-20			29-May-20	
Well ID	Top of Pipe Elevation	Ground Surface Elevation	Well Stick Up (m)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbtop)	Depth to Water (mbgs)	Groundwater Elevation (masl)
MW17-1S	182.86	182.07	0.95	1.97	1.02	180.89	1.65	0.70	181.21	1.48	0.53	181.38
MW17-1D	182.92	181.99	0.95	5.56	4.61	177.36	5.50	4.55	177.42	5.97	5.02	176.95
MW17-2S	182.85	181.70	0.98	2.06	1.08	180.79	2.11	1.13	180.74	2.06	1.08	180.79
MW17-2D	182.64	181.70	0.99	6.85	5.86	175.79	6.79	5.80	175.85	7.24	6.25	175.40
MW17-3S	183.05	182.06	1.00	5.53	4.53	177.52	5.29	4.29	177.76	4.15	3.15	178.90
MW17-3D	183.00	181.99	0.94	6.90	5.96	176.10	6.89	5.95	176.11	7.34	6.40	175.66
MW17-4S	183.47	182.53	0.92	6.13	5.21	177.34	6.11	5.19	177.36	6.11	5.19	177.36
MW17-4D	183.40	182.51	0.91	8.65	7.74	174.75	8.57	7.66	174.83	9.21	8.30	174.19
MW17-5S	183.63	182.58	0.98	8.35	7.37	175.28	8.33	7.35	175.30	8.83	7.85	174.80
MW17-5D	183.64	182.56	1.00	15.19	14.19	168.45	15.18	14.18	168.46	16.40	15.40	167.24
MW17-6S	182.77	181.79	0.92	9.97	9.05	172.80	9.91	8.99	172.86	9.98	9.06	172.79
MW17-6D	182.84	181.83	1.04	7.04	6.00	175.80	6.91	5.87	175.93	7.50	6.46	175.34
MW17-7S	182.36	181.37	0.98	6.48	5.50	175.88	6.45	5.47	175.91	7.01	6.03	175.35
MW17-7D	182.43	181.39	1.04	10.25	9.21	172.18	10.18	9.14	172.25	10.84	9.80	171.59
MW17-8S	182.59	181.46	1.11	5.17	4.06	177.42	5.05	3.94	177.54	5.60	4.49	176.99
MW17-8D	182.49	181.39	1.00	10.15	9.15	172.34	10.08	9.08	172.41	10.66	9.66	171.83
MW17-9S	181.71	180.71	0.94	3.47	2.53	178.24	3.32	2.38	178.39	3.95	3.01	177.76
MW17-9D	181.73	180.75	0.96	7.90	6.94	173.83	7.83	6.87	173.90	8.54	7.58	173.19
MW17-10S	182.86	181.94	0.96	5.54	4.58	177.32	5.12	4.16	177.74	5.51	4.55	177.35
MW17-10D	183.04	181.96	1.05	6.61	5.56	176.43	5.54	4.49	177.50	5.79	4.74	177.25
Race Track	NA	NA	0.67	3.75	3.08	-	3.51	2.84	-	3.88	3.21	-

	Ontario) Drinki	ing Water	Location	Overburden Mo	onitoring Wells		Shallow Bedrock	Monitoring Wells	;			Deep Bedrock I	Aonitoring Wells		
Parameters	\$	Standar	rds	Location	MW17-1S	MW17-2S	MW17-4S	MW17-6S	MW17-8S	MW17-9S	MW17-1D	MW17-3D	MW17-6D	MW17-8D	MW17-9D	MW17-10D
	Health	AO	OG	Units	10-Apr-17	11-Apr-17	10-Apr-17	10-Apr-17	10-Apr-17	10-Apr-17	10-Apr-17	10-Apr-17	10-Apr-17	10-Apr-17	10-Apr-17	10-Apr-17
General Parameters																
рН			6.5 to 8.5	pН	8.15	8.04	7.8	7.82	7.81	7.85	7.58	7.77	7.79	7.65	7.78	7.51
Conductivity				umho/cm	1200	960	1200	1200	1000	1800	2100	1200	980	2800	2900	2000
Total Suspended Solids				mg/L	9000	1900	1300	1900	1900	270	630	970	2100	170	38	240
Total Dissolved Solids		500		mg/L	670	590	740	740	590	980	1500	680	600	2300	2200	1600
Hardness (CaCO3)			100	mg/L	220	410	650	540	470	730	1200	560	450	1500	1200	1200
Nutrients/Organic Indicators	;															
Total Ammonia				mg/L	0.43	0.25	0.093	0.5	0.44	0.14	1.3	0.5	0.96	2.5	3.7	0.58
Nitrite	1			mg/L	<0.050	<0.010	0.39	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Nitrate	10			mg/L	0.58	<0.10	1.46	<0.10	<0.10	1.34	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Nitrate + Nitrite	10			mg/L	0.58	<0.10	1.85	<0.10	<0.10	1.34	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Dissolved Organic Carbon		5		mg/L	4.7	5.9	1.8	1.9	2.9	2.1	0.46	1.7	0.57	1.8	1	1
Orthophosphate				mg/L	0.017	<0.010	<0.010	<0.010	0.015	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Major and Minor lons										·		- 	·	·		
Alkalinity (Total as CaCO3)			500	mg/L	200	320	410	310	340	410	290	380	270	320	310	310
Calcium				mg/L	49	79	110	120	91	110	320	120	120	440	350	360
Chloride		250		mg/L	19	18	18	62	40	200	20	36	28	36	98	21
Magnesium				mg/L	25	51	90	57	59	110	84	61	39	100	88	81
Potassium				mg/L	4	3.4	3	5.3	2.9	3.1	11	5	7.8	17	22	5.8
Sodium		200		mg/L	160	46	18	31	28	79	36	19	13	83	170	19
Sulphate		500		mg/L	280	190	240	270	160	220	880	190	220	1400	1200	910
Anion Sum				me/L	10.4	10.8	13.9	13.5	11.3	18.5	24.7	12.5	10.8	36.8	34.2	25.6
Cation Sum				me/L	11.7	10.3	13.8	12.4	10.7	18	25	12.2	9.81	34.7	33.3	25.6
Dissolved Metals																
Aluminum			0.1	mg/L	0.018	0.0065	0.0094	0.0069	0.0077	0.0059	0.0059	0.0057	0.0078	0.0078	0.016	<0.0050
Antimony	0.006		0.1	mg/L	0.0017	< 0.00050	<0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	<0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050
Arsenic	0.025			mg/L	0.0028	< 0.0010	< 0.0010	< 0.0010	0.001	< 0.0010	<0.0010	<0.0010	< 0.0010	0.001	<0.0010	< 0.0010
Barium	1			mg/L	0.076	0.065	0.071	0.019	0.023	0.023	0.016	0.01	0.0051	0.015	0.0094	0.0073
Beryllium				mg/L	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	<0.00050	<0.00050	< 0.00050	< 0.00050	<0.00050	< 0.00050
Boron	5			mg/L	0.19	0.28	0.11	0.38	0.22	0.096	1.6	0.2	0.5	2.4	3.9	0.39
Cadmium	0.005			mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Chromium	0.05			mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cobalt	0.00			mg/L	< 0.00050	< 0.00050	0.00075	< 0.00050	< 0.00050	0.0012	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050
Copper	1			mg/L	0.003	0.0021	0.0011	< 0.0010	< 0.0010	< 0.0012	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	< 0.0010
Iron	0.3			mg/L	<0.10	<0.10	<0.10	<0.10	0.13	<0.10	0.13	<0.10	<0.10	<0.10	<0.10	<0.10
Lead	0.01			mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	<0.00050	< 0.00050
Manganese	0.01	0.05		mg/L	0.017	0.094	0.061	0.012	0.021	0.031	0.011	0.0038	0.003	0.019	0.0084	0.0055
Molybdenum				mg/L	0.082	0.03	0.016	< 0.00050	0.0019	0.0007	<0.00050	0.0014	< 0.00050	< 0.00050	<0.00050	< 0.00050
Nickel				mg/L	0.0016	0.004	0.0067	< 0.0010	0.0014	0.0022	<0.0010	<0.0010	< 0.0010	<0.0010	<0.0010	< 0.0010
Phosphorus		\vdash		mg/L	<0.10	<0.10	<0.10	<0.10	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Selenium	0.01		Oct-17	mg/L	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.002	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
Silicon	5.01		0.0011	mg/L	2.8	3.3	3.9	5.6	3.9	4.4	7	10	7.5	3.9	4.1	8.1
Silver				mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Strontium				mg/L	1.8	5.1	2.2	7	3.2	3.5	12	15	14	10	8.1	11
Thallium				mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Titanium				mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Uranium	0.02	┝──┤		mg/L	0.011	0.0058	0.026	0.0006	0.0007	0.0036	<0.00010	0.00019	<0.00010	0.00054	0.00033	0.00011
Vanadium	0.02	\vdash		mg/L	0.0021	0.00086	0.0012	<0.00050	0.00066	<0.00050	<0.00010	< 0.00019	<0.00050	<0.00054	<0.00050	<0.00050
Zinc		5		mg/L	< 0.0050	< 0.0050	< 0.0050	<0.00050	< 0.0050	<0.00000	<0.00050	<0.00050	< 0.0050	<0.00000	<0.00050	<0.00050
Notes:		5		ing/L	-0.0000	·0.0000	·0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000

Notes:

ODWS-AO - Ontario Drinking Water Objectives - Aesthetic Objectives

ODWS-OG - Ontario Drinking Water Standards - Operational Guidelines

ODWS-Health - Ontario Drinking Water Standards - Health

Bold denotes an exceedance of the applicable ODWS - AO

Italicized denotes an exceedance of the applicable ODWS - OG

Underlined indicates an exceedance of the applicable ODWS - Health

1771	656
------	-----

Table 5 - Quarry Sump Quality Sample ResultsPort Colborne Quarries

Parameters	Provincial Water Quality	Location	Quarry Sump
	Objectives	Units	11-Apr-17
General Parameters			
рН		рН	7.93
Conductivity		umho/cm	1300
Turbidity		NTU	1.5
Total Dissolved Solids		mg/L	870
Total Suspended Solids		mg/L	<3
Hardness (CaCO3)		mg/L	670
Nutrients/Organic Indicators			
Total Ammonia-N		mg/L	<0.050
Nitrite (N)		mg/L	<0.010
Nitrate (N)		mg/L	0.73
Nitrate + Nitrite (N)		mg/L	0.73
Total Organic Carbon (TOC)		mg/L	2.1
Orthophosphate (P)		mg/L	<0.010
Total Phosphorus	0.01	mg/L	0.005
Major and Minor Ions			
Alkalinity (Total as CaCO3)		mg/L	140
Calcium		mg/L	170
Chloride (CI)		mg/L	45
Magnesium		mg/L	52
Potassium		mg/L	5.4
Sodium		mg/L	32
Sulphate (SO4)		mg/L	460
Total Metals			
Aluminum	0.075	mg/L	0.047
Antimony	0.02	mg/L	<0.00050
Arsenic	0.1	mg/L	<0.0010
Barium		mg/L	0.038
Beryllium	0.011	mg/L	<0.00050
Boron	0.2	mg/L	0.24
Cadmium	0.0002	mg/L	<0.00010
Chromium	0.0089	mg/L	<0.0050
Cobalt	0.0009	mg/L	<0.00050
Copper	0.005	mg/L	0.0014
Iron	0.3	mg/L	<0.10
Lead	0.005	mg/L	<0.00050
Manganese		mg/L	0.0046
Molybdenum	0.04	mg/L	0.0085
Nickel	0.025	mg/L	0.0049
Selenium	0.1	mg/L	<0.0020
Silicon		mg/L	1.5
Silver	0.0001	mg/L	<0.00010
Strontium		mg/L	4.8
Thallium	0.0003	mg/L	<0.000050
Titanium		mg/L	<0.0050
Vanadium	0.006	mg/L	<0.00050
Zinc	0.02	mg/L	<0.0050

Length Length Image models 1286 Hay 3 2 1 No 207 Irun Sharing Deer not dirink water due to quality, has second well in burn which produce tack water 1287 Kilaly Street 1 No - Well on property not connected 1287 Kilaly Street 1 - No - Subprava Deer not dirink water due to quality 1288 Kilaly Street 1 - No - Subprava Deer not dirink water due to quality 1280 Kilaly Street 1 - No - Subprava Deer not dirink water due to quality 1280 Kilaly Street 1 - No - Subprava Produce tabuets with wat due to must in connected 1280 Kilaly Street 1 - No - Subprava Dart tase water from dirink quite to due tabute Produce tabute with wat due to must in connected 1280 Kilaly Street 1 - No - Hard & Subprava Dart tase water from dinring due to quality, due tabute produce tabuet ab				Water Supply	/	١	Nell Details	
Part Concession 2 Yes . Support On ally water, thut are well value for charters, more well testing dermannum 2281 2nd Concession 1 Yes 45° Hard On ally water, thut are well value for charters, more well testing dermannum 2281 2nd Concession - Yes - - - 2281 Part Concession - Yes - - - 2281 Part Concession - Yes - - - - 2283 Part Concession - 1 No - <th></th> <th>Address</th> <th></th> <th></th> <th></th> <th></th> <th>Water Description</th> <th>Other Groundwater Related Issues/Complaints/Notes</th>		Address					Water Description	Other Groundwater Related Issues/Complaints/Notes
International Action 2 - Yes Adv Supplicities Park/s 281 2nd Concession 1 - Yes 45 Hand On Dy water Luture well water for cubcor use and back-up, indicated provide actions from neighbouring sheep fram poonly which the target action from neighbouring sheep fram poonly which the target actions from neighbouring sheep fram poonly which the target actions from neighbouring sheep fram poonly which the target actions from neighbouring sheep fram poonly which the target actions from neighbouring sheep fram poonly which target actions from neighbouring sheep fram poonly which target actions from the target actions from target action target actions from the target actions from the target action	1645	2nd Concession	-	-	Yes	-	-	
2211 2m1 Concession 1 - Vms 457 Hand built of the water due to quality, has second well in carn which produce back water due to quality, has second well in carn which produce back water due to quality, has second well in carn which produce back water due to quality. Test second well in carn which produce back water due to quality. Test second well in carn which produce back water due to quality. Test second well in carn which produce back water due to quality. Test second well in carn which produce back water due to quality. Test second well in carn which produce back water due to quality. Test second well in carn which produce the second carn which produce the second reglaced. 1284 Kilaly Street 1 No - Statipurous hard Stating Statist Dees not drive well water due to quality. Test second well in carn which produce reglaced. 1284 Kilaly Street 1 - No - - 1284 Kilaly Street 1 - No - - 1284 Kilaly Street 1 - No 2 Test Stating Statist Previous issues with well due to rule in cotron of wall 1285 Kilaly Street 1 - No 2 Test Stating Statist Do not use well water for driving due to quality, due to rule in driving due to quality, due to rule in driving due to quality, due to rule in dri	2146	2nd Concession	2	-	Yes	-	Sulphurous	Pinty's
Instructionession - Yete -	2261	2nd Concession	1	-	Yes	45'	Hard	previous E.coli contamination from neighbouring sheep farm property which no
International state International state International state International state International state 1 No - Well on property not connected International state 1 No - Well on property not connected International state 1 No - Supplurous & Hard Well on property not connected International state 1 No - Supplurous & Hard Well on property not connected International state - 1 No - Supplurous & Hard Well on property not connected International state - 1 No - Supplurous & Hard Well on the model in bottom of well International state 1 - No - State Supplurous & Hard Newly installed well, approximately 3 years ago International state 1 - No - Hard & Supplurous & Hard Newly installed well approximately 3 years ago International state 1 - No - Hard & Supplurous & Hard Newly installed well in the town in the state state in the town in	2276	2nd Concession	-	-	Yes	-	-	
1979 Killay Street 1 No - Well on property not connected 1384 Killay Street 1 - No - Sulphurous & Hard Well well well well well used for dinking, no problems, Culligan treatment, testad when sait rescinced 1430 Killay Street - 1 No - - 1430 Killay Street - 1 No - - 1430 Killay Street 1 No - - Sulphurous Previous beween well well on use water for drinking a test test on the set of drinking a test on test on test on test on the set on test on tes	1326	Hwy 3	2	1	No	20'	Iron Staining	
1934 Kilay Steet 1 - No - Suphrous Des nd dink will will will will will make the upaility 1408 Kilay Steet 1 No - Suphrous & Had Mater used for dinking, no problems, Cullian treatment, lested wine sait 1436 Kilay Steet - 1 No - - 1436 Kilay Steet 1 No - - - 1437 Kilay Steet 1 - No 2 Suphrous For steering particinate of main steering particinate of main steering particinate of main steering particinate of main steering and		,	-	•		-	-	
Hale Kilaly Street 1 No - Sulphnous & Hard Water used for drinking, no problems, Culligan treatment, tested when sate reglaced 1430 Kilaly Street - 1 No - - 1430 Kilaly Street 1 No - - Sulphnous & Hard - 1739 Kilaly Street 1 - No 25 Hard & Sulphurous, Free roomly purchased proprint purchased proprint purchased proprint in bottom of well 1740 Kilaly Street 1 - No 21 Fraining & Salphurous, Fro Owners recently purchased proprint purchased proprint purchased proprint in bottom of well 1750 Kilaly Street 1 - No - Hard & Sulphurous, Fro Owners recently purchased proprint		,		1		-	-	
Hale Nullay Street I No Supprove and street of the second street	1384	Killaly Street	1	-	No	-	Sulphurous	
1446 Killaly Street - Image: Street Stre		-	1	-		-	Sulphurous & Hard	
1739 Kilaly Street 1 - No 25 Hard & Sulphurous, Iron Staining & Salty. Previous issues wine well due to mud in hotom of well 1740 Kilaly Street 1 - No 211 Iron Staining & Hard Auet to quality. 1750 Kilaly Street 1 - No 211 Iron Staining & Hard Newly installed well, approximately 3 years ago 1750 Kilaly Street 1 - No 55 Iron Staining & Don't Use water from dinking due to taste, perxide treatment in house for water, on coassion use well water for dinking due to quality, dut as it for its states 1580 Miler Road 1 - No - Hard & Sulphurous, from Staining Do not use well water for dinking due to quality, drilled well most likely buri staining a Hard Sulphurous, from Staining a Hard Do not use well water for dinking due to quality, drilled well most likely buri staining a Hard Sulphurous, from Staining a Hard Do not use well water for dinking due to quality, drilled well most likely buri staining a Hard Sulphurous, from Staining a Hard Sulphurous, from Staining a Hard No - - Possible well on property, owner user of wowells on property that are there as a sulphurous, from dinking due to quality, drilled well most likely b			-	•		-	-	
1740 Kilaly Street 1 . No 2 Sulphurous, Iron Staining & Sulv. due to unaity. Owners recently purchased properly 1 year ago, do not use water for drink Staining & Sulv. due to unaity. 1750 Kilaly Street 1 . No 211 Iron Staining & Hard Staining & Sulv. due to unaity. Newly installed well, approximately 3 years ago. 1755 Kilaly Street 1 . No . Hard & Sulphurous. Don't use water for drinking due to taske, peroxide treatment in house for sulphurous. 1580 Miller Road 1 . No . Hard & Sulphurous. Don't use water for drinking due to small and floating black particles. 1580 Miller Road 1 . No . Sulphurous. Don or use well water for drinking due to quality, drilled well more tikery buri Staining & Hard Don rot use well water for drinking due to quality, drilled well more tikery buri Staining & Hard No . . Possible well on prophers, water is tested 3 to 4 times per year. 1225 Miller Road 1 . No . . Reading and times. 			-	1		-	-	
1740 Kitaly Street 1 - No - Staining & Saltv due to quality - - No 1750 Kitaly Street 1 - No - Hard & Sulphurous Newly installed well approximately 3 years ago 2115 Kitaly Street 1 - No - Hard & Sulphurous No Newly installed well approximately 3 years ago 1395 Miller Road 1 - No - Hard & Sulphurous No No Sulphurous & Ion Do not use well water for drinking due to taste, peroxide treatment in house for water, on cossion to drinking due to quality, but use it for livestock 1706 Miller Road 1 - No - Sulphurous, Ion Do not use well water for drinking due to quality, drilled well most likely bur use for maining due to quality, drilled well most likely bur use for maxer use of the drinking due to quality, drilled well most likely bur use for maxer water and filters 1228 Miller Road 1 - No - Possible well on property oner unser, use claftern 1228 Miller Road 1 - No - Sulphurous, Ion </td <td>1739</td> <td>Killaly Street</td> <td>1</td> <td>-</td> <td>No</td> <td>25'</td> <td></td> <td></td>	1739	Killaly Street	1	-	No	25'		
2015 Killay Street 1 - No - Hard & Sulphurous water, on occasion will dry out well due to high use 1359 Miler Road 1 - No 55 Sulphurous Sulphurous Don't use water from drinking due to brait, paroxide treatment in house for water, on occasion will dry out well due to high use 1360 Miler Road 1 - No - Hard & Sulphurous, Fon Sulphurous, Sulphurous, Su	1740	Killaly Street	1	-	No	-	•	
Allel y Street 1 - No - Part & Supplurous Supplurous Water, on coscient will dry out well due to high use 1359 Miller Road 1 - No 55' Iron Staining Supplurous, iron Do not use well water for drinking due to smell and floating black particles 1580 Miller Road 1 - No - Hard & Iron Staining Supplurous, Iron Do not use well water for drinking due to quality, dui use it for livestock 1788 Miller Road 1 - No - Supplurous, Iron Do not use well water for drinking due to quality, dui use it for livestock 1788 Miller Road 1 - No - - Possible well on property, owner unsure, use cistern 1003 Miller Road 1 - No 40' Sulphurous & Iron Water used of drinking, no problems, water is tested 3 to 4 times per year, reverse esmosis, softener and filters 2226 Miller Road 1 - No - - Possible well on property, owner unsure, use cistern 2231 Miller Road 1 - No - - <td>1750</td> <td>Killaly Street</td> <td>1</td> <td>-</td> <td>No</td> <td>21'</td> <td>Iron Staining & Hard</td> <td></td>	1750	Killaly Street	1	-	No	21'	Iron Staining & Hard	
1359 Miller Road 1 . No 55' Iron Staining & John Use well water for drinking due to smell and floating black particles 1800 Miller Road 1 . No . Hard & Iron Staining Old well on site was decommissioned previously 1830 Miller Road 1 . No . Suphurous & Iron Do not use well water for drinking due to quality, but use it for livestock 1778 Miller Road 1 . No . Suphurous, Iron Do not use well water for drinking due to quality, united well most likely buri adacyard somewhere 1826 Miller Road 1 . No . . Possible woll water for drinking due to quality, united well most likely buri adacyard somewhere communits, no recollems, water is tosted 3 to 4 times per year, reverse comosis, softener and filters 2225 Miller Road 1 . No . . . 2281 Miller Road 1 . No . . . Owners recently purchased home 2 years ago, homeowner indicatel suse with significant water loss in surface water pond at back of property 2391 Miller Road 1 . No . . . Recently constructed home, <1 year	2015	Killaly Street	1	-	No	-	Hard & Sulphurous	Don`t use water from drinking due to taste, peroxide treatment in house for water, on occasion will dry out well due to high use
Miler Road 1 No Sulphurous & Iron Staining Do not use well water for drinking due to quality, but use it for livestock 1778 Miler Road 1 No - Sulphurous, Iron Staining & Hard Do not use well water for drinking due to quality, drilled well most likely buri backyard somewhere 1820 Miler Road 1 No - Possible well on property, owner unsure, use cistern 1903 Miler Road 1 - No - Possible well on property, owner unsure, use cistern 2225 Miler Road 1 - No 40° Sulphurous, Iron Staining & Hard Water used for drinking, no problems, water is tested 3 to 4 times per year, staining & Hard 2282 Miler Road 1 - No 65° Hard New yoonsit, softener and filters 2391 Miler Road 1 - No 65° Hard New yoonsit, softener and filters 2478 Miler Road 1 - No - Iron Staining Do not use well water for drinking due to quality 1080 Weaver Road 1 1 No	1359	Miller Road	1	-	No	55'		Do not use well water for drinking due to smell and floating black particles
1030 Miller Road 1 - No - Staining Staining & Hard Do not use will water for drinking due to quality, but use into investors 1778 Miller Road 1 - No - Staining & Hard Do not use will water for drinking due to quality, but use into investors 1826 Miller Road - 1 No - Possible will on property, owner unsure, use cistern 2225 Miller Road 1 - No 40° Staining & Hard reverse comosis, softener and filters 2282 Miller Road 1 - No 40° Staining & Hard Owners recently purchased home 2 years ago, homeowner indicated issue with significant water loss in surface water pond at back of property 2391 Miller Road 1 - No - Recently constructed home, <nmer are="" aware="" connect="" drinking="" due="" for="" in="" may="" of="" on="" property="" quality.<="" td="" that="" them="" to="" two="" use,="" wells=""> 2439 Miller Road 1 - No - Recently constructed home, <nmer are="" aware="" connect="" drinking="" due="" for="" in="" may="" of="" on="" property="" quality.<="" td="" that="" them="" to="" two="" use,="" wells=""> 1030 Weaver Road 1 - No</nmer></nmer>	1580	Miller Road	1	-	No	-	Hard & Iron Staining	Old well on site was decommissioned previously
Niller Road 1 - No - Staining & Hard Backward somewhere 1826 Miller Road - 1 No - - Possible will on property, owner unsure, use cistern 1030 Miller Road 1 - No 40' Sulphurous, Iron Staining & Hard Water used for drinking, no problems, water is tested 3 to 4 times per year, Sulphurous, Iron Water used for drinking, no problems, water is tested 3 to 4 times per year, Sulphurous, Iron Water used for drinking, no problems, water is tested 3 to 4 times per year, Sulphurous, Iron Water used for drinking, no problems, water is tested 3 to 4 times per year, Sulphurous, Iron Water used for drinking, no problems, water is tested 3 to 4 times per year, Sulphurous, Iron Water used for drinking, on problems, water is tested 3 to 4 times per year, Sulphurous, Iron Water secontly purchased home 2 years ago, homeowner indicated issue with significant water loss in surface water pond at back of property with are in use, may connect to them for future outdoor use 2478 Miller Road 1 - No - Iron Staining Owners recently purchased property 1 year ago 2478 Miller Road 1 No - Iron Staining Owners recently purchased property 1 year ago 2478 Miller Road 1 No - Iron Staining Owners recentity ourdoor use <td>1630</td> <td>Miller Road</td> <td>1</td> <td>-</td> <td>No</td> <td>-</td> <td>•</td> <td>Do not use well water for drinking due to quality, but use it for livestock</td>	1630	Miller Road	1	-	No	-	•	Do not use well water for drinking due to quality, but use it for livestock
1226 Miller Road - 1 No - - Possible well on property, owner unsure, use cistem 1903 Miller Road 1 - No 40° Sulphurous, Iron Water used for drinking, no problems, water is tested 3 to 4 times per year, reverse osmosis, softener and filters 2225 Miller Road 1 - No - <td>1778</td> <td>Miller Road</td> <td>1</td> <td>-</td> <td>No</td> <td>-</td> <td></td> <td>Do not use well water for drinking due to quality, drilled well most likely buried in backvard somewhere</td>	1778	Miller Road	1	-	No	-		Do not use well water for drinking due to quality, drilled well most likely buried in backvard somewhere
1903 Miller Road 1 - No 40' Staining & Hard reverse osmosis, softener and filters 2225 Miller Road 1 No - - - Owners recently purchased home 2 years ago, homeowner indicated issue with significant water loss in surface water pond at back of property 2391 Miller Road 1 - No 65' Hard Newly constructed home, <1 year	1826	Miller Road	-	1	No	-	-	
Line Staining & Hard Freese esmosis, softener and tilters 2225 Miller Road 1 No - - 2282 Miller Road 1 - No 40' Sulphurous & Hard Owners recently purchased home 2 years ago, homeowner indicated issue with significant water loss in surface water pond at back of property 2391 Miller Road 1 - No 65' Hard Newly constructed home, owner aware of two wells on property that are in use, may connect to them for future outdoor use 2478 Miller Road 1 - No - Inos Staining & Hard Doen or use well water for drinking due to wells on property that are in use, may connect to them for future outdoor use 974 Weaver Road 1 1 No - - No 1080 Weaver Road 1 1 No - - No 1182 Weaver Road 1 - No - - No 1182 Weaver Road 1 - No - - No 1184 Nilly Stre	1903	Miller Road	1	_	No	40'	•	Water used for drinking, no problems, water is tested 3 to 4 times per year,
2282 Miller Road 1 - No 40' Sulphurous & Hard With significant water loss in surface water pond at back of property 2391 Miller Road 1 - No 65' Hard Newly constructed home, 2 years ago, homeowner indicated issue with significant water loss in surface water pond at back of property 2439 Miller Road 2 1 No - Recently constructed home, owner aware of two wells on property that are in use, may connect to them for future outdoor use 2478 Miller Road 1 - No - Iron Staining Owners recently purchased property 1 year ago 974 Weaver Road 1 1 No 15' Sulphurous & Hard Do not use well water for drinking due to quality 1080 Weaver Road 1 - No - - 1082 Weaver Road 1 - No - - 1084 Weaver Road 1 - No - Fresh Not Participating 1182 Weaver Road 1 - No - Not				1			Staining & Hard -	reverse osmosis, softener and filters
2439 Miller Road 2 1 No - Recently constructed home, owner aware of two wells on property that are in use, may connect to them for future outdoor use 2478 Miller Road 1 - No - Iron Staining Owners recently purchased property 1 year ago 974 Weaver Road 1 1 No - Iron Staining Do not use well water for drinking due to quality 1080 Weaver Road - 1 No - - 1162 Weaver Road - 1 No - - 1162 Weaver Road 1 - No - Fresh No treatment 1030 Weaver Road 1 - No - Fresh Not Participating 1458 Killaly Street Not Participating Not Participating 1474 1374 Killaly Street Not Response Not Response 2317 1374 Killaly Street No Response No Response 234			1	-		40'	Sulphurous & Hard	Owners recently purchased home 2 years ago, homeowner indicated issue with significant water loss in surface water pond at back of property
2439 Miller Road 2 1 No - Recently constructed home, owner aware of two wells on property that are in use, may connect to them for future outdoor use 2478 Miller Road 1 - No - Iron Staining Owners recently purchased property 1 year ago 974 Weaver Road 1 1 No - Iron Staining Do not use well water for drinking due to quality 1080 Weaver Road - 1 No - - - 1081 Weaver Road - 1 No - - - 1082 Weaver Road - 1 No - - - 1182 Weaver Road - 1 No - - - 1030 Weaver Road - No - Fresh Not tranticipating 1030 Weaver Road - No - Not Participating 1458 Killaly Street Not Participating - Not Participating 1374 Killaly Street Not Response No Response <td< td=""><td>2391</td><td>Miller Road</td><td>1</td><td>_</td><td>No</td><td>65'</td><td>Hard</td><td>Newly constructed home, < 1 year</td></td<>	2391	Miller Road	1	_	No	65'	Hard	Newly constructed home, < 1 year
2478Miller Road1-No-Iron StainingOwners recently purchased property 1 year ago974Weaver Road11No15'Sulphurous & HardDo not use well water for drinking due to quality1080Weaver Road11No15'Sulphurous & HardDug well used for outdoor use1094Weaver Road11No1162Weaver Road1-No1030Weaver Road1-No1030Weaver RoadNot Participating2506Miller RoadNot Participating1458Killaly StreetNot Participating1394Killaly StreetNot Participating17402nd ConcessionNot Participating2317Miller RoadNo Response2318Miller RoadNo Response2324Miller RoadNo Response2348Miller RoadNo Response110Weaver RoadNo Response1732Miller RoadNo Response1732Miller RoadNo Response1732Miller RoadNo Response1734Miller RoadNo Response1732Miller RoadNo Response<			2	1	No		-	Recently constructed home, owner aware of two wells on property that are not
974 Weaver Road 1 - No - Iron Staining & Hard Do not use well water for drinking due to quality 1080 Weaver Road 1 1 No 15' Sulphurous & Hard Dug well used for outdoor use 1094 Weaver Road - 1 No - - 1162 Weaver Road 1 - No - Fresh Not reatment 1030 Weaver Road 1 - No - Fresh Not Participating 1030 Weaver Road 1 - No - Fresh Not Participating 1030 Weaver Road 1 - No - Not Participating 1458 Killaly Street 1 - Not Participating Not Participating 1374 Killaly Street 1 Not Response Not Response Not Response 2322 Miller Road 1 No Response No Response No Response 2334 Miller Road 1 No Response No Response No Response 110 <	2478	Miller Road	1	-	No	-	Iron Staining	
1094 Weaver Road - 1 No - Fresh No treatment 1162 Weaver Road 1 - No - Fresh No treatment 1030 Weaver Road 1 - No - Fresh No treatment 1030 Weaver Road 1 - No - Fresh Not Participating 2506 Miller Road 1 - 0 Not Participating 1470 Killaly Street 1 0 Not Participating 1374 Killaly Street 1 0 Not Participating 1374 Killaly Street 1 No Response 2317 Miller Road 1 No Response 2322 Miller Road 1 No Response 2333 Miller Road 1 No Response 2346 Miller Road 1 No Response 2187 Miller Road 1 No Response 110 Weaver Road 1 </td <td></td> <td></td> <td>1</td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td>			1	-		-		
1094 Weaver Road - 1 No - Fresh No treatment 1162 Weaver Road 1 - No - Fresh No treatment 1030 Weaver Road 1 - No - Fresh No treatment 1030 Weaver Road 1 - No - Fresh No treatment 1030 Weaver Road 1 - No - Fresh No treatment 1030 Weaver Road 1 - No Participating Not Participating 1470 Killaly Street 1 No treatment Not Participating Not Participating 1374 Killaly Street 1 No Response No Response No Response 2317 Miller Road 1 No Response No Response No Response 2322 Miller Road 1 No Response No Response No Response 2333 Miller Road 1 No Response No Resp	1080	Weaver Road	1	1	No	15'	Sulphurous & Hard	Dug well used for outdoor use
1162Weaver Road1-No-FreshNo treatment1030Weaver RoadNot Participating2506Miller RoadNot Participating1458Killaly StreetNot Participating1470Killaly StreetNot Participating1394Killaly StreetNot Participating1374Killaly StreetNot Participating1374Killaly StreetNot Participating17402nd ConcessionNot Response2317Miller RoadNo Response2322Miller RoadNo Response2334Miller RoadNo Response2186Miller RoadNo Response110Weaver RoadNo Response1732Miller RoadNo Response1734Killaly StreetNo Response1735Killer RoadNo Response1736Miller RoadNo Response1738Killaly StreetNo Response1738Killaly StreetNo Response1738Killaly StreetNo Response1738Killaly StreetNo Response1738Killaly StreetNo Response1738Killaly StreetNo Response				1			-	
2506Miller RoadNot Participating1458Killaly StreetNot Participating1470Killaly StreetNot Participating1394Killaly StreetNot Participating1374Killaly StreetNot Participating1374Killaly StreetNot Participating1374Killaly StreetNot Participating1374Killaly StreetNot Participating1374Killaly StreetNot Participating1374Killaly StreetNot Participating17402nd ConcessionNot Response2317Miller RoadNot Response2322Miller RoadNot Response2363Miller RoadNot Response2394Miller RoadNot Response2187Miller RoadNot Response2187Miller RoadNot Response1110Weaver RoadNot Response1732Miller RoadNot Response1738Killaly StreetNot Response1728Killaly StreetNot Response	1162	Weaver Road	1	-	No	-	Fresh	No treatment
1458Killaly StreetNot Participating1470Killaly StreetNot Participating1394Killaly StreetNot Participating1374Killaly StreetNot Participating1374Killaly StreetNot Participating17402nd ConcessionNo Response2317Miller RoadNo Response2322Miller RoadNo Response2333Miller RoadNo Response2344Miller RoadNo Response2353Miller RoadNo Response2364Miller RoadNo Response2375Miller RoadNo Response2384Miller RoadNo Response2395Miller RoadNo Response2396Miller RoadNo Response2187Miller RoadNo Response2187Miller RoadNo Response1100Weaver RoadNo Response1732Miller RoadNo Response1498Miller RoadNo Response1591Miller RoadNo Response1728Killaly StreetNo Response	1030	Weaver Road						Not Participating
1470Killaly StreetNot Participating1394Killaly StreetNot Participating1374Killaly StreetNot Participating1374Killaly StreetNot Participating17402nd ConcessionNo Response2317Miller RoadNo Response2322Miller RoadNo Response2363Miller RoadNo Response2394Miller RoadNo Response2187Miller RoadNo Response2187Miller RoadNo Response2187Miller RoadNo Response1110Weaver RoadNo Response1732Miller RoadNo Response1738Miller RoadNo Response1728Killaly StreetNo Response	2506	Miller Road						Not Participating
1394Killaly StreetNot Participating1374Killaly StreetNot Participating1374Killaly StreetNot Participating17402nd ConcessionNo Response2317Miller RoadNo Response2322Miller RoadNo Response2363Miller RoadNo Response2394Miller RoadNo Response2168Miller RoadNo Response2177Miller RoadNo Response2187Miller RoadNo Response2187Miller RoadNo Response1110Weaver RoadNo Response1120Miller RoadNo Response1132Miller RoadNo Response1148Miller RoadNo Response11591Miller RoadNo Response11728Killaly StreetNo Response	1458	Killaly Street						Not Participating
1374Killaly StreetNot Participating17402nd ConcessionNo Response2317Miller RoadNo Response2322Miller RoadNo Response2363Miller RoadNo Response2394Miller RoadNo Response2168Miller RoadNo Response2177Miller RoadNo Response2187Miller RoadNo Response2187Miller RoadNo Response1110Weaver RoadNo Response1124Miller RoadNo Response1132Miller RoadNo Response1148Miller RoadNo Response11591Miller RoadNo Response1728Killaly StreetNo Response	1470	Killaly Street						Not Participating
17402nd ConcessionNoNoNoResponse2317Miller RoadNoNoResponse2322Miller RoadNoNoNoResponse2363Miller RoadNoNoNoResponse2394Miller RoadNoNoNoResponse2168Miller RoadNoNoNoResponse2177Miller RoadNoNoNoResponse2187Miller RoadNoNoNoResponse1110Weaver RoadNoNoNoResponse1732Miller RoadNoNoNoResponse1498Miller RoadNoNoResponse1591Miller RoadNoNoResponse1728Killaly StreetNoNoResponse								
2317Miller RoadMiller RoadNo Response2322Miller RoadMiller RoadNo Response2363Miller RoadNo Response2394Miller RoadNo Response2168Miller RoadNo Response2177Miller RoadNo Response2188Miller RoadNo Response2187Miller RoadNo Response2188Miller RoadNo Response2189Miller RoadNo Response1110Weaver RoadNo Response1120Miller RoadNo Response1531Miller RoadNo Response1591Miller RoadNo Response1728Killaly StreetNo Response						ļ		
2322Miller RoadImage: Constraint of the systemNo Response2363Miller RoadImage: Constraint of the systemNo Response2394Miller RoadImage: Constraint of the systemNo Response2168Miller RoadImage: Constraint of the systemNo Response2187Miller RoadImage: Constraint of the systemNo Response2187Miller RoadImage: Constraint of the systemNo Response110Weaver RoadImage: Constraint of the systemNo Response1732Miller RoadImage: Constraint of the systemNo Response1498Miller RoadImage: Constraint of the systemNo Response1591Miller RoadImage: Constraint of the systemNo Response1728Killaly StreetImage: Constraint of the systemNo Response								
2363Miller RoadImage: Constraint of the systemNo Response2394Miller RoadImage: Constraint of the systemNo Response2168Miller RoadImage: Constraint of the systemNo Response2187Miller RoadImage: Constraint of the systemNo Response2187Miller RoadImage: Constraint of the systemNo Response110Weaver RoadImage: Constraint of the systemNo Response1732Miller RoadImage: Constraint of the systemNo Response1498Miller RoadImage: Constraint of the systemNo Response1591Miller RoadImage: Constraint of the systemNo Response1728Killaly StreetImage: Constraint of the systemNo Response								
2394Miller RoadImage: Constraint of the system2168Miller RoadImage: Constraint of the system2168Miller RoadImage: Constraint of the system2187Miller RoadImage: Constraint of the system2187Miller RoadImage: Constraint of the system110Weaver RoadImage: Constraint of the system1110Weaver RoadImage: Constraint of the system1732Miller RoadImage: Constraint of the system1498Miller RoadImage: Constraint of the system1591Miller RoadImage: Constraint of the system1728Killaly StreetImage: Constraint of the system								
2168Miller RoadImage: Constraint of the second secon								
2187Miller RoadImage: Constraint of the systemNo Response1110Weaver RoadImage: Constraint of the systemNo Response1732Miller RoadImage: Constraint of the systemNo Response1498Miller RoadImage: Constraint of the systemNo Response1591Miller RoadImage: Constraint of the systemNo Response1728Killaly StreetImage: Constraint of the systemNo Response								
1110Weaver RoadNoNo Response1732Miller RoadMiller RoadNoNo Response1498Miller RoadMiller RoadNoNo Response1591Miller RoadMoNoNo Response1728Killaly StreetNoNo Response								· · · · · · · · · · · · · · · · · · ·
1732Miller RoadImage: Constraint of the systemNo Response1498Miller RoadImage: Constraint of the systemNo Response1591Miller RoadImage: Constraint of the systemNo Response1728Killaly StreetImage: Constraint of the systemNo Response								
1498Miller RoadNo Response1591Miller RoadImage: Constraint of the second								
1591 Miller Road No Response 1728 Killaly Street No Response								
1728 Killaly Street No Response								· · ·
	1716	Hwy 3						No Response

Totals

49 Surveys

49 Delivered

29 Responses

6 Not Participating

13 No Response

59% Response Rate

Table 7 - MECP Wells within 1 km of Extraction Area Port Colborne Quarries

Borehole ID	Well ID	Date Completed	Depth (m)	Depth to Bedrock (m)	Static Water Level (r
1004120689	7185637	2012-07-20	0.00	0.00	0.00
1004120686	7185636	2012-07-15	18.90	0.00	3.00
11767154	7044668	2007-05-18	0.00	0.00	0.00
10460615	6600881	1960-09-23	4.90	1.80	1.50
10460604	6600870	1967-06-27	15.20	3.00	0.00
10460605 10463804	<u>6600871</u> 6604207	1967-11-30 1995-06-28	17.40 7.60	7.30	0.30 3.40
10463849	6603234	1995-06-28	7.60	2.40	0.60
1007456541	7333353	2019-04-28	9.10	0.00	2.10
10460712	6600978	1957-07-01	6.40	2.40	2.10
10462804	6603188	1976-12-14	6.10	2.10	0.90
10460719	6600985	1953-07-18	11.90	3.40	8.20
10460717	6600983	1952-05-13	4.60	2.40	0.60
10460713	6600979	1959-01-12	6.40	2.10	1.80
10462510	6602787	1973-10-10	7.30	0.60	1.50
1005035417	7225195	2014-07-11	6.40	0.00	2.10
10460705	6600971	1948-07-29	8.80	2.70	0.60
10460701	6600967	1966-11-09	9.10	4.60	1.80
10460704	6600970	1963-10-23	16.80	13.70	10.70
10460714	6600980	1961-06-19	6.10	0.60	0.90
10460718	6600984	1952-07-26	6.40	3.00	1.20
10536270	6604662	2002-06-09	10.10	3.00	0.60
10463391	6603793	1988-01-25	10.70	5.80	0.90
10460711	6600977	1951-11-20	19.20 8.50	1.80 3.70	5.20 0.60
10460700 10460699	<u>6600966</u> 6600965	1965-05-20 1956-06-06	6.70	2.40	1.50
10460708	6600974	1958-05-27	12.20	7.90	2.40
1006223490	7269706	2016-08-05	18.90	0.00	5.20
10460710	6600976	1951-07-12	9.10	0.90	2.40
10460709	6600975	1949-09-25	9.10	0.90	3.70
10463253	6603653	1985-07-09	6.10	4.00	2.70
10462509	6602786	1973-10-13	10.10	4.30	1.20
10460706	6600972	1952-03-21	9.10	5.80	2.40
10462508	6602785	1973-09-18	18.30	4.00	3.00
10462432	6602706	1972-09-19	7.00	2.10	2.40
10463936	6604339	1999-03-01	6.70	2.40	0.90
10463921	6604324	1998-08-22	14.60	1.20	6.10
10463656	6604059	1992-01-04	13.40	11.30	4.90
10463676	6604079	1992-08-24	90.80	10.10	0.00
10463675	6604078	1992-08-21	90.80	14.00	12.80
10463103	6603494	1981-07-23	30.80	7.30	7.00
10463104	6603495	1982-01-22	24.40	11.90	10.70
10463101	6603492	1070 10 00	24.40	11.90	10.70
10462512 10462612	6602789	1973-10-20	11.60	3.40 8.20	4.90
10462394	6602990 6602667	1974-09-05 1972-05-27	12.20 13.70	6.40	<u>4.90</u> 2.10
10462286	6602558	1970-10-28	13.70	5.80	2.10
10460707	6600973	1954-08-14	7.30	6.40	3.00
10462513	6602790	1973-10-17	16.10	8.50	4.00
10460703	6600969	1954-05-21	9.40	7.60	2.40
1004060730	7184673	2012-07-04	0.00	0.00	7.60
10460702	6600968	1949-08-28	13.70	9.10	7.60
10460828	6601094	1947-08-06	8.50	4.30	8.50
10464119	6604522	2000-09-07	12.80	0.90	0.00
10460826	6601092	1965-11-13	12.80	8.80	6.10
10460834	6601100	1959-03-11	10.10	5.80	3.70
10460827	6601093	1966-10-06	12.50	8.20	6.70
10464118	6604521	2000-09-09	14.30	0.90	0.00
1006991669	7306395	2018-01-26	0.00	0.00	0.00
10462705	6603087	1975-06-16	22.60	10.70	6.70
10463270	6603670	1985-10-17	19.50	0.00 5.20	8.20 3.00
10460833 10462992	<u>6601099</u> 6603379	1959-03-06 1979-09-26	9.40 16.80	0.00	8.50
10462992	6601102	1979-09-26	8.80	4.90	2.40
10463603	6604006	1991-07-08	6.40	1.20	0.00
10462916	6603301	1978-05-11	17.40	9.80	6.70
10460825	6601091	1958-05-29	7.90	3.70	2.40
10463604	6604007	1991-07-09	7.90	1.80	0.00
10463605	6604008	1991-07-08	7.00	0.00	0.00
10462805	6603189	1976-12-15	7.60	3.40	1.20
10460837	6601103	1962-04-04	8.20	3.70	1.20
1006081749	7265731	2016-06-14	18.90	0.00	3.40
10460838	6601104	1965-09-04	9.40	2.40	3.70
10462708	6603090	1975-08-07	9.10	2.40	1.80

1

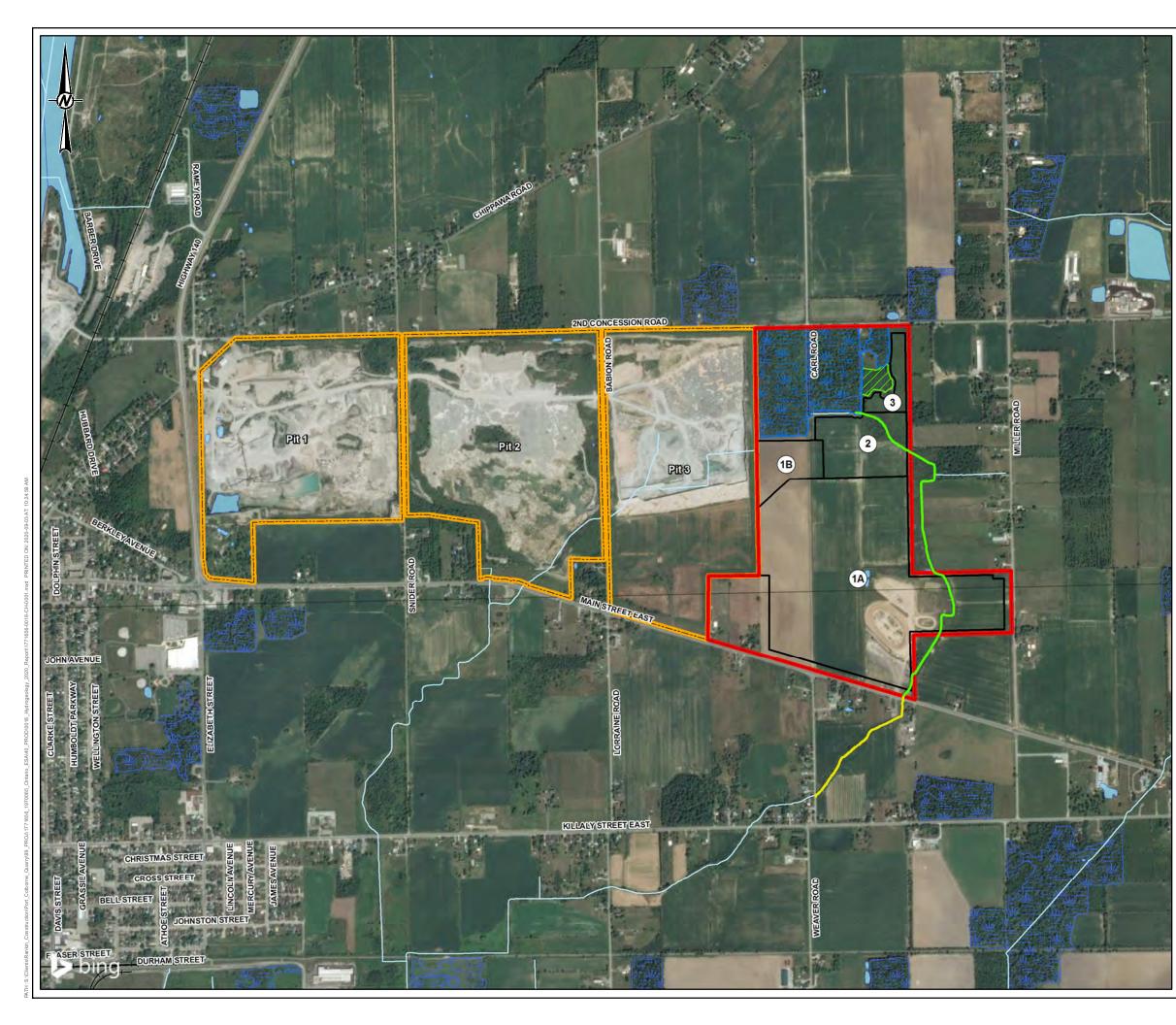
Notes All depths recorded in metres

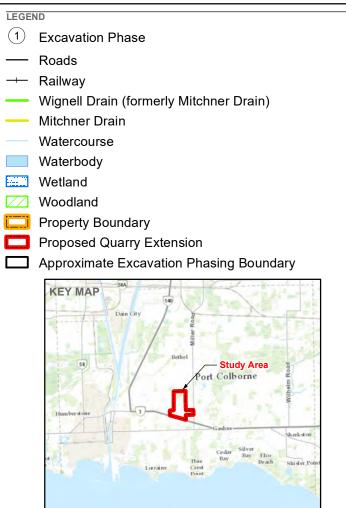
Table 8 - Proposed Extension Monitoring Locations Port Colborne Quarries

Monitoring Well ID	Groundwater Level Monitoring	Groundwater Sampling	Analytical Parameters
MW17-1S	Х	Х	
MW17-1D	Х	Х	
MW17-2S	Х	Х	
MW17-2D	Х	Х	General Chemistry
MW17-3S	Х	Х	pH, EC, TSS, TDS, Hardness
MW17-3D	Х	Х	
MW17-4S	Х	Х	Nutrients/Organic Indicators
MW17-4D	Х	Х	Total ammonia, Nitrate, Nitrite, DOC,
MW17-5S	Х	Х	Orthophosphate
MW17-5D	Х	Х	
MW17-6S	Х	Х	Major and Minor Ions
MW17-6D	Х	Х	Akalinity, calcium, chloride, magnesium,
MW17-7S	Х	Х	potassium, sodium, sulphate, hydrogen
MW17-7D	Х	Х	sulphide, anion sum, cation sum
MW17-8S	Х	Х	
MW17-8D	Х	Х	Dissolved Metals
MW17-9S	Х	Х	aluminum, antimony, arsenic, barium,
MW17-9D	Х	Х	beryllium, boron, cadmium, chromium,
MW17-10S	Х	Х	cobalt, copper, iron, lead, manganese,
MW17-10D	Х	Х	molybdenum, nickel, phosphorous,
New Monitoring Well A	Х	Х	selenium, silicon, silver, strontium,
New Monitoring Well B	Х	Х	thallium, titanium, uranium, vanadium,
New Monitoring Well C	Х	Х	zinc

Notes:

Groundwater levels measured on a monthly basis


Groundwater quality monitoring conducted every five years


Three new monitoring wells will be installed along eastern property boundary

FIGURES

NOTE(S)

REFERENCE(S) 1. BASE DATA: MNRF LIO 2016 2. IMAGERY: SOURCES: ESRI, HERE, GARMIN, INTERMAP, INCREMENT P CORP., GEBCO, USGS, FAO, NPS, NRCAN, GEOBASE, IGN, KADASTER NL, ORDNANCE SURVEY, ESRI JAPAN, METI, ESRI CHINA (HONG KONG), (C) OPENSTREETMAP CONTRIBUTORS, AND THE GIS USER COMMUNITY © 2020 MICROSOFT CORPORATION © 2020 MAXAR ©CNES (2020) DISTRIBUTION AIRBUS DS 3. PROJECTION: TRANSVERSE MERCATOR NAD 1983 UTM ZONE 17N

CLIENT RANKIN CONSTRUCTION

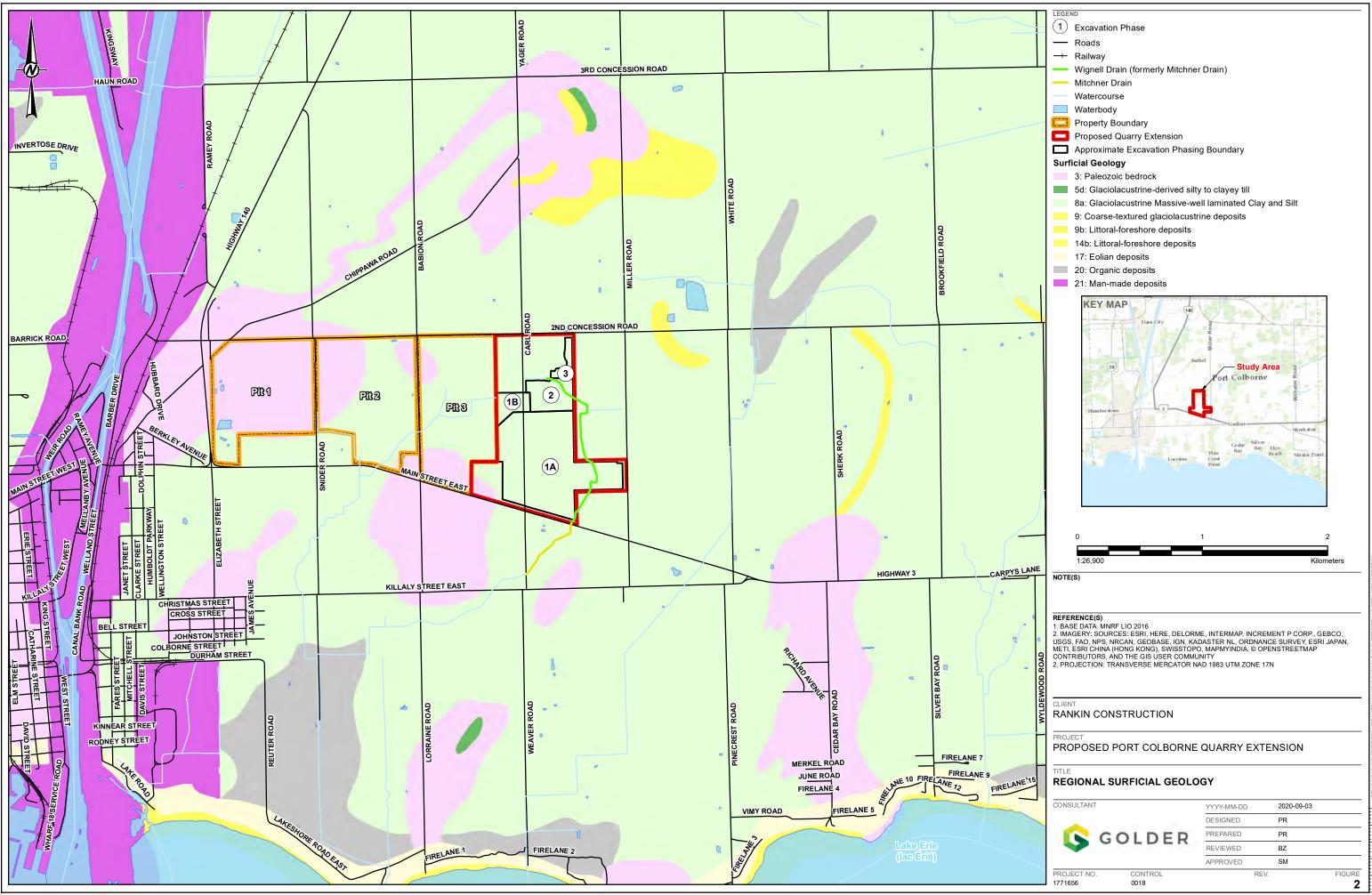
PROJECT PROPOSED PORT COLBORNE QUARRY EXTENSION

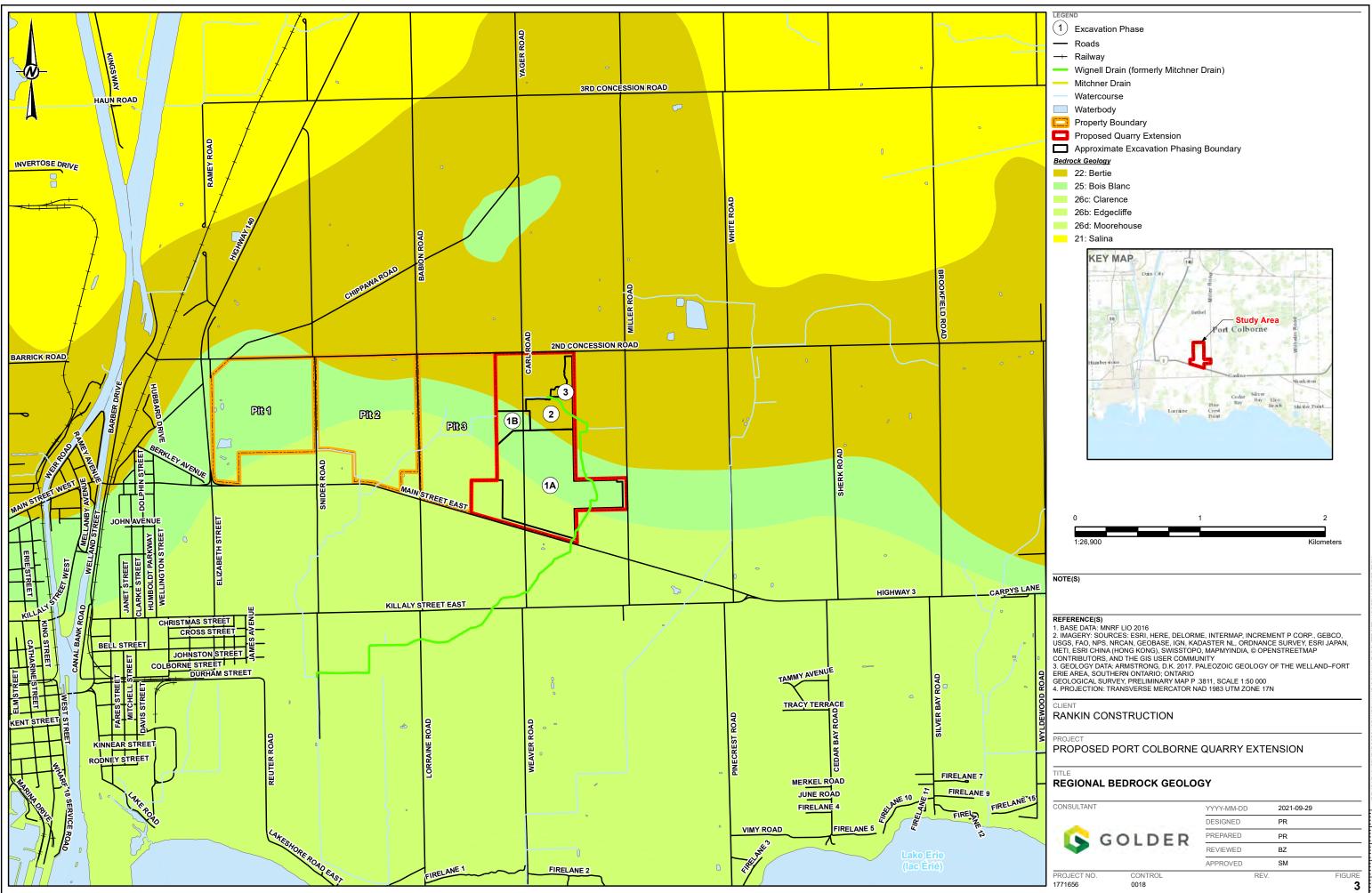
TITLE

SITE LOCATION PLAN

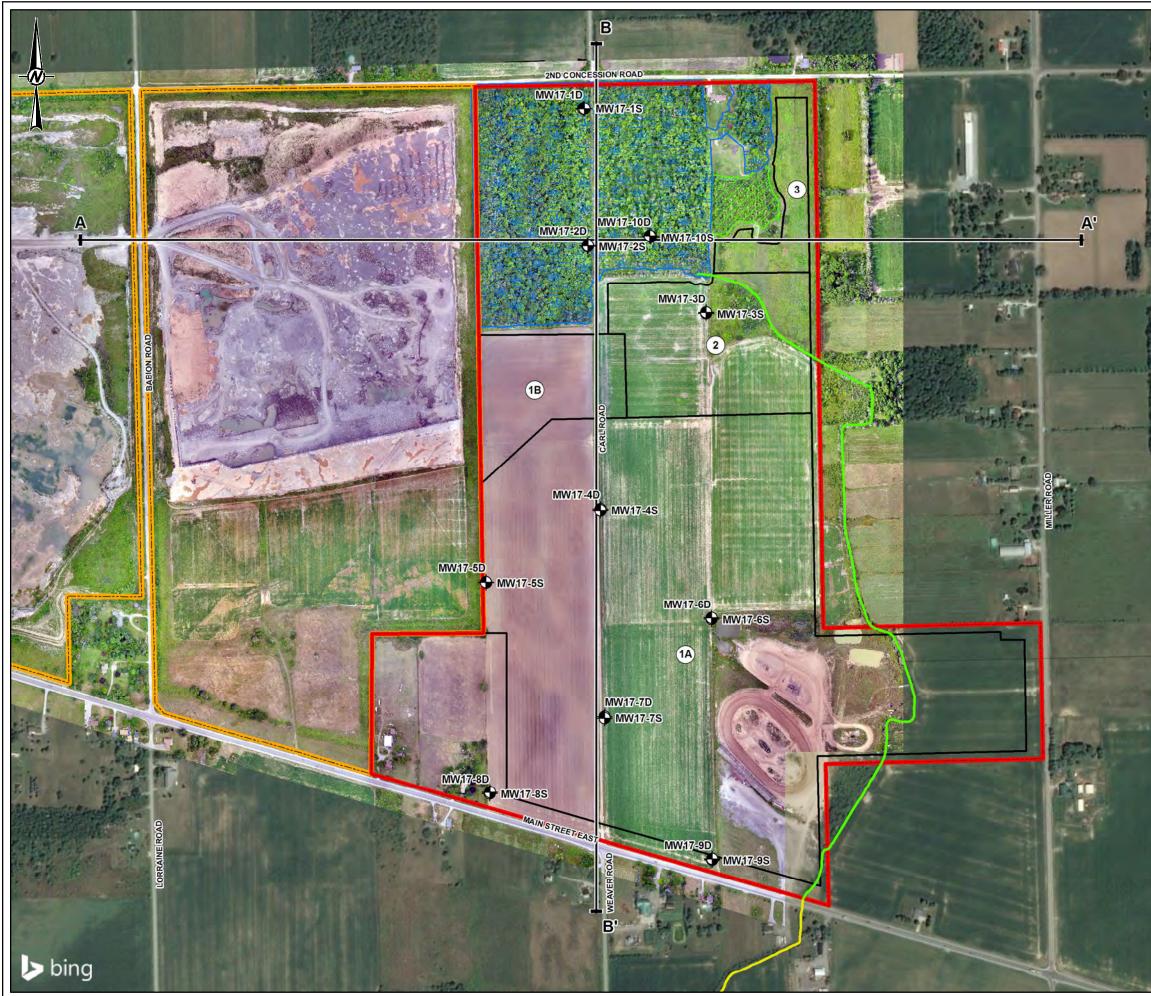
CONSULTANT

PROJECT NO.


1771656


CONTROL

0018


YYYY-MM-DD	2020-09-03
DESIGNED	PR
PREPARED	PR
REVIEWED	BZ
APPROVED	SM
REV.	FIGURE
	1

26000 IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SI

25mm IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEE

- (1) Excavation Phase
- Monitoring Well
- H Cross Sections
- Wignell Drain (formerly Mitchner Drain)
- Mitchner Drain
- Wetland
- Woodland
- Property Boundary
- Proposed Quarry Extension
- Approximate Excavation Phasing Boundary

NOTE(S)

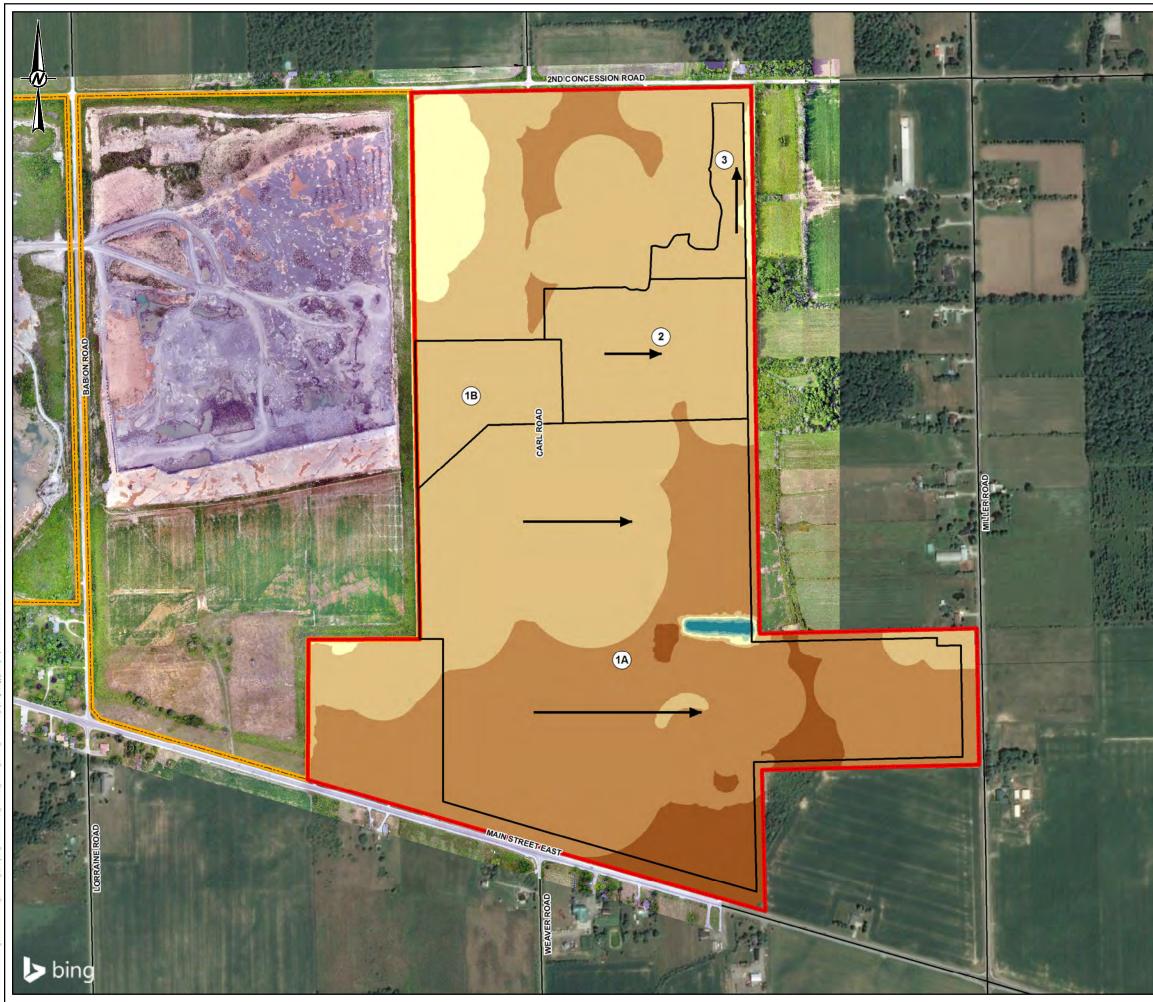
REFERENCE(S) 1.BASE DATA: MNRF LIO 2016 2. IMAGERY: ORTHOIMAGE PROVIDED BY IBI GROUP. SITE FLOWN JULY 29TH, 2018 3. ADDITIONAL IMAGERY FROM SOURCES: ESRI, HERE, GARMIN, INTERMAP, INCREMENT P CORP., GEBCO, USGS, FAO, NPS, NRCAN, GEOBASE, IGN, KADASTER NL, ORDNANCE SURVEY, ESRI JAPAN, METI, ESRI CHINA (HONG KONG), (C) OPENSTREETMAP CONTRIBUTORS, AND THE GIS

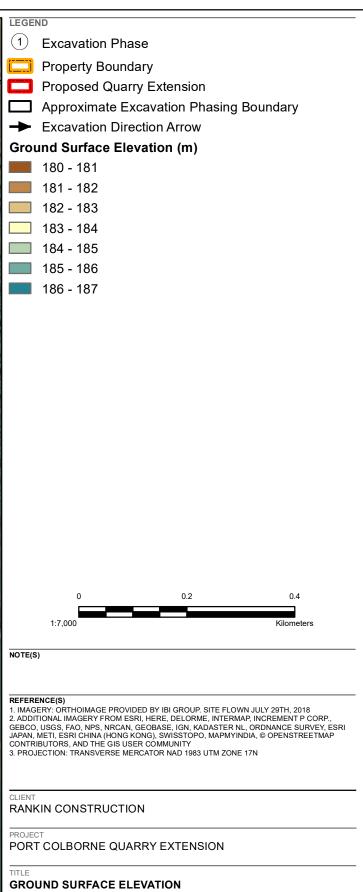
USER COMMUNITY © 2020 MICROSOFT CORPORATION © 2020 MAXAR ©CNES (2020) DISTRIBUTION AIRBUS DS 4. PROJECTION: TRANSVERSE MERCATOR NAD 1983 UTM ZONE 17N

CLIENT RANKIN CONSTRUCTION

PROJECT PORT COLBORNE QUARRY EXTENSION

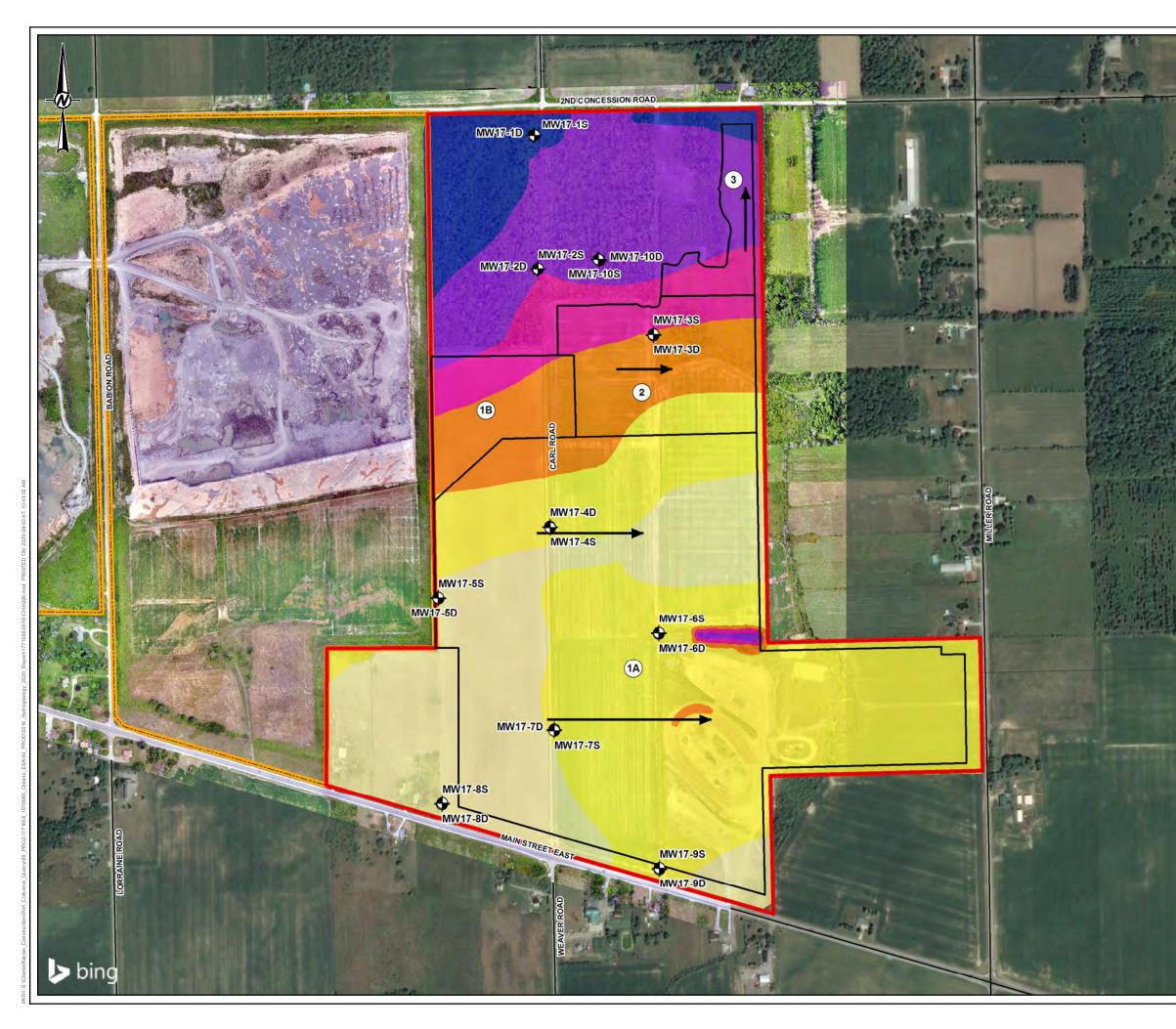
TITLE

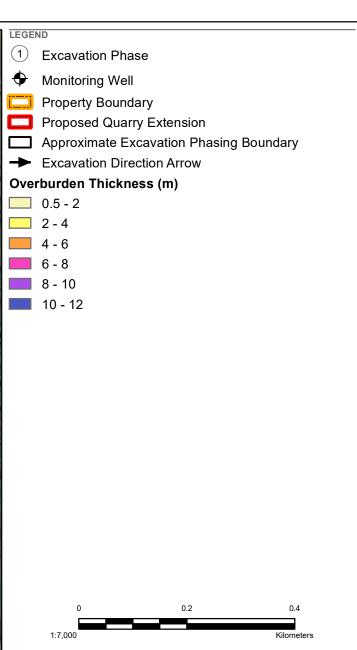

BOREHOLE LOCATION PLAN


CONSULTANT

YYYY-MM-DD	2020-09-03
DESIGNED	PR
PREPARED	PR
REVIEWED	BZ
APPROVED	SM
REV.	FIGURE

PROJECT NO. 1771656





CONSULTANT

YYYY-MM-DD	2020-09-03	3
DESIGNED	PR	
PREPARED	PR	
REVIEWED	BZ	
APPROVED	SM	
RE	EV.	FIGURE
		_

NOTE(S)

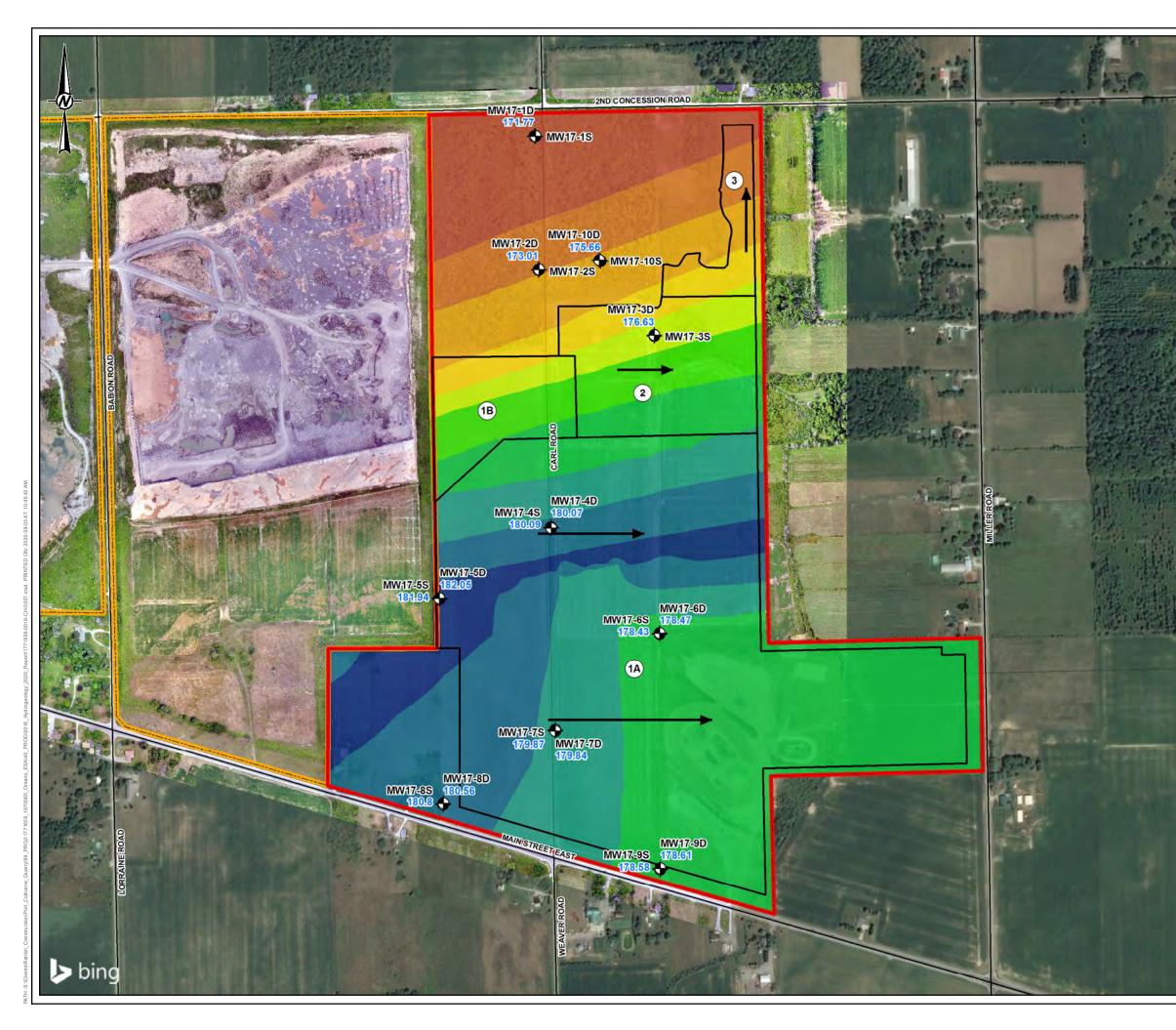
1. CONTOURS WERE GENERATED BY EXTRAPOLATION FROM DATA POINTS ACROSS THE SITE AREA.

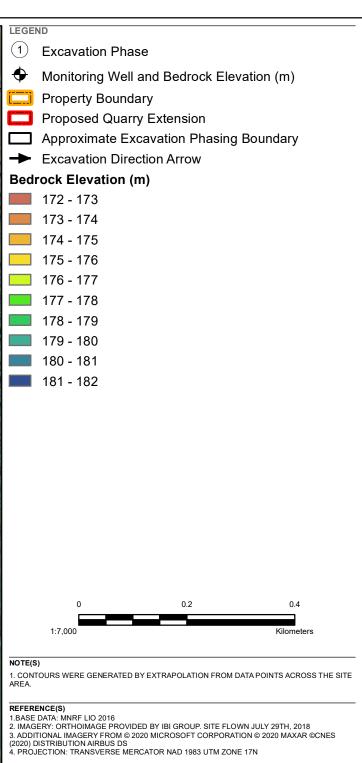
REFERENCE(S) 1. IMAGERY: ORTHOIMAGE PROVIDED BY IBI GROUP. SITE FLOWN JULY 29TH, 2018 2. ADDITIONAL IMAGERY FROM © 2020 MICROSOFT CORPORATION © 2020 MAXAR ©CNES (2020) DISTRIBUTION AIRBUS DS 3. PROJECTION: TRANSVERSE MERCATOR NAD 1983 UTM ZONE 17N

CLIENT RANKIN CONSTRUCTION

PROJECT PORT COLBORNE QUARRY EXTENSION

TITLE


OVERBURDEN THICKNESS


CONSULTANT

PROJECT NO. 1771656

YYYY-MM-DD	2020-09-03
DESIGNED	PR
PREPARED	PR
REVIEWED	BZ
APPROVED	SM
REV.	FIGURE
	6

CLIENT RANKIN CONSTRUCTION

PROJECT PORT COLBORNE QUARRY EXTENSION

TITLE

BEDROCK SURFACE TOPOGRAPHY

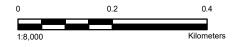
CONTROL

0018

CONSULTANT

PROJECT NO.

1771656



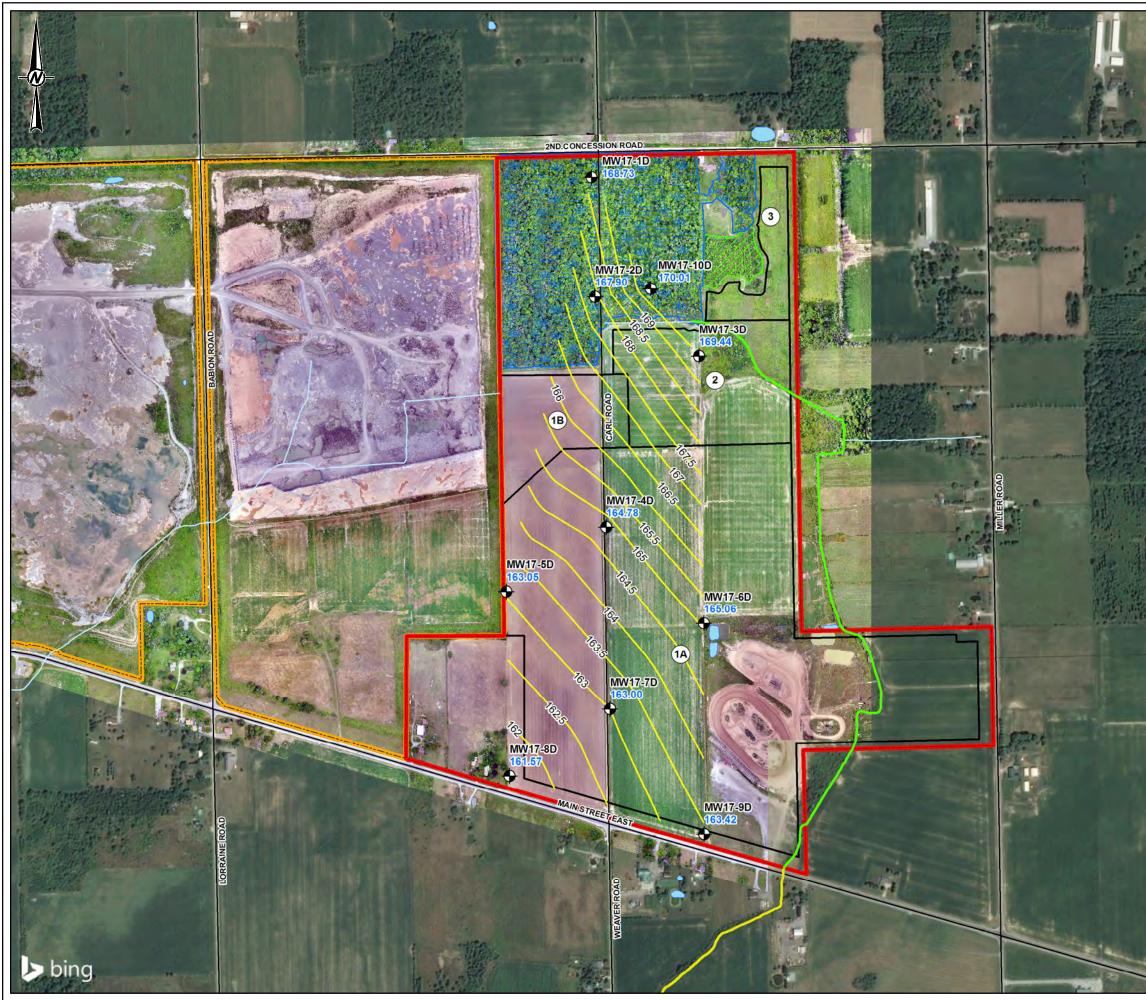
YYYY-MM-DD	2020-09-03
DESIGNED	PR
PREPARED	PR
REVIEWED	BZ
APPROVED	SM
REV.	FIGURE

- Monitoring Well
- Contours
- Roads
- Wignell Drain (formerly Mitchner Drain)
- Mitchner Drain
- Watercourse
- Waterbody
- Wetland
- Woodland
- Property Boundary
- Proposed Quarry Extension
- Approximate Excavation Phasing Boundary

NOTE(S)

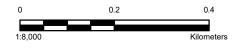
REFERENCE(S) 1.BASE DATA: MNRF LIO 2016 2. IMAGERY: ORTHOIMAGE PROVIDED BY IBI GROUP. SITE FLOWN JULY 29TH, 2018 3. ADDITIONAL IMAGERY FROM © 2020 MICROSOFT CORPORATION © 2020 MAXAR ©CNES (2020) DISTRIBUTION AIRBUS DS 4. PROJECTION: TRANSVERSE MERCATOR NAD 1983 UTM ZONE 17N

CLIENT RANKIN CONSTRUCTION


PROJECT PORT COLBORNE QUARRY EXTENSION

TITLE BASE OF WILLIAMSVILLE UNIT

CONSULTANT



YYYY-MM-DD	2020-09-03
DESIGNED	PR
PREPARED	PR
REVIEWED	BZ
APPROVED	SM
REV.	FIGURE
	Q

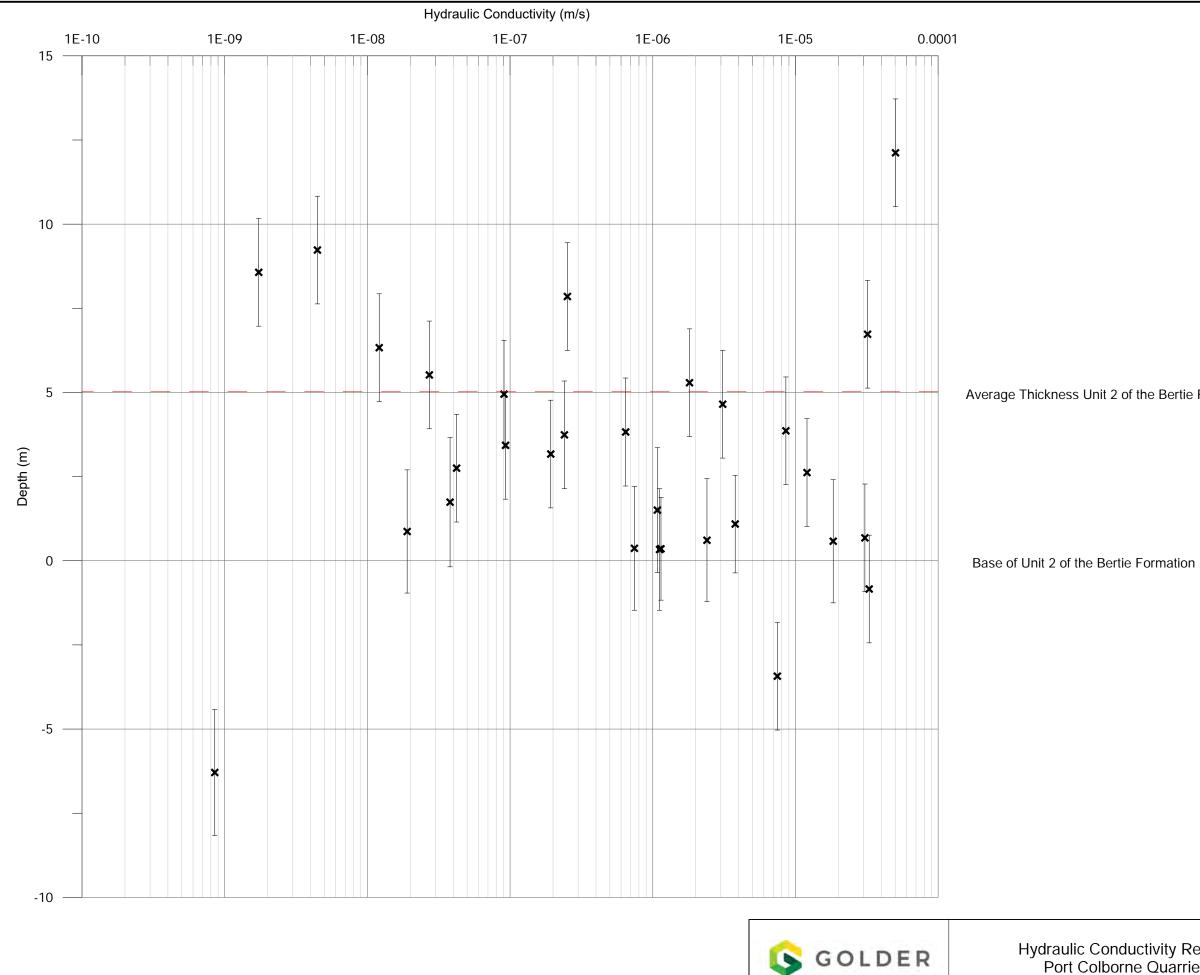
- (1)Excavation Phase
- Monitoring Well
- Contours
- Roads
- Wignell Drain (formerly Mitchner Drain)
- Mitchner Drain
- Watercourse
- Waterbody
- Wetland
- Woodland
- Property Boundary
- Proposed Quarry Extension
- Approximate Excavation Phasing Boundary

NOTE(S)

REFERENCE(S) 1.BASE DATA: MNRF LIO 2016 2. IMAGERY: ORTHOIMAGE PROVIDED BY IBI GROUP. SITE FLOWN JULY 29TH, 2018 3. ADDITIONAL IMAGERY FROM © 2020 MICROSOFT CORPORATION © 2020 MAXAR ©CNES (2020) DISTRIBUTION AIRBUS DS 4. PROJECTION: TRANSVERSE MERCATOR NAD 1983 UTM ZONE 17N

CLIENT RANKIN CONSTRUCTION

PROJECT PORT COLBORNE QUARRY EXTENSION


TITLE BASE OF FALKIRK UNIT

CONSULTANT

PROJECT NO. 1771656 CONTROL 0018

2020-09-03 YYYY-MM-DD DESIGNED PR PREPARED PR REVIEWED ΒZ APPROVED SM FIGURE REV. 9

Average Thickness Unit 2 of the Bertie Formation (5.02 m)

	FIGURE 10	
ductivity Results	PROJECT NO: 1771656	
orne Quarries	DATE: October 20, 2017	
	DRAWN: TP APPROVED: SM	

- (1)Excavation Phase
- Monitoring Well
- Wignell Drain (formerly Mitchner Drain)
- Mitchner Drain
- Roads
- Watercourse
- Waterbody
- Wetland
- Woodland
- Property Boundary
- Proposed Quarry Extension
- Approximate Excavation Phasing Boundary
- 178.46 Metres Above Sea Level
- 3.45 Metres Below Ground Surface

NOTE(S)
1. GROUNDWATER ELEVATIONS MEASURED ON MAY 15, 2017
2. OVERBURDEN GROUND WATER LEVELS ARE CONTINUING TO RECOVER FOLLOWING THE
MONITORING WELL INSTALLATIONS AND GROUNDWATER SAMPLING/DEVELOPMENT

REFERENCE(S)

REFERENCE(S) 1.BASE DATA: MNRF LIO 2016 2. IMAGERY: ORTHOIMAGE PROVIDED BY IBI GROUP. SITE FLOWN JULY 29TH, 2018 3. ADDITIONAL IMAGERY FROM © 2020 MICROSOFT CORPORATION © 2020 MAXAR ©CNES (2020) DISTRIBUTION AIRBUS DS 4. PROJECTION: TRANSVERSE MERCATOR NAD 1983 UTM ZONE 17N

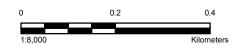
CLIENT RANKIN CONSTRUCTION

PROJECT PORT COLBORNE QUARRY EXTENSION

TITLE

GROUNDWATER ELEVATIONS – OVERBURDEN – MAY 2017

CONSULTANT



YYYY-MM-DD	2020-09-03	2
YYYY-MIN-DD	2020-09-03	
DESIGNED	PR	
PREPARED	PR	
REVIEWED	BZ	
APPROVED	SM	
RI	EV.	FIGURE
		11A

PROJECT NO. 1771656

- (1)Excavation Phase
- Monitoring Well
- Wignell Drain (formerly Mitchner Drain)
- Mitchner Drain
- Roads
- → Railway
- Watercourse
- Waterbody
- Wetland
- Woodland
- Property Boundary
- Proposed Quarry Extension
- Approximate Excavation Phasing Boundary
- 178.46 Metres Above Sea Level
- 3.45 Metres Below Ground Surface

NOTE(S)
1. GROUNDWATER ELEVATIONS MEASURED ON MAY 15, 2018
2. OVERBURDEN GROUND WATER LEVELS ARE CONTINUING TO RECOVER FOLLOWING THE
MONITORING WELL INSTALLATIONS AND GROUNDWATER SAMPLING/DEVELOPMENT

REFERENCE(S)

REFERENCE(S) 1.BASE DATA: MNRF LIO 2016 2. IMAGERY: ORTHOIMAGE PROVIDED BY IBI GROUP. SITE FLOWN JULY 29TH, 2018 3. ADDITIONAL IMAGERY FROM © 2020 MICROSOFT CORPORATION © 2020 MAXAR ©CNES (2020) DISTRIBUTION AIRBUS DS 4. PROJECTION: TRANSVERSE MERCATOR NAD 1983 UTM ZONE 17N

CLIENT RANKIN CONSTRUCTION

PROJECT PORT COLBORNE QUARRY EXTENSION

CONTROL

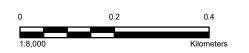
0011

TITLE

GROUNDWATER ELEVATIONS – OVERBURDEN – MAY 2018

CONSULTANT

PROJECT NO.


1771656

YYYY-MM-DD	2020-09-03	
	2020 00 00	
DESIGNED	PR	
PREPARED	PR	
REVIEWED	BZ	
APPROVED	SM	
RE	V.	FIGURE
		11B

- (1)Excavation Phase
- Monitoring Well
- Wignell Drain (formerly Mitchner Drain)
- Mitchner Drain
- Roads
- Watercourse
- Waterbody
- Wetland
- Woodland
- Property Boundary
- Proposed Quarry Extension
- Approximate Excavation Phasing Boundary
- 181.18 Metres Above Sea Level
- 0.89 Metres Below Ground Surface

NOTE(S)
1. GROUNDWATER ELEVATIONS MEASURED ON MAY 15, 2017
2. OVERBURDEN GROUND WATER LEVELS ARE CONTINUING TO RECOVER FOLLOWING THE
MONITORING WELL INSTALLATIONS AND GROUNDWATER SAMPLING/DEVELOPMENT

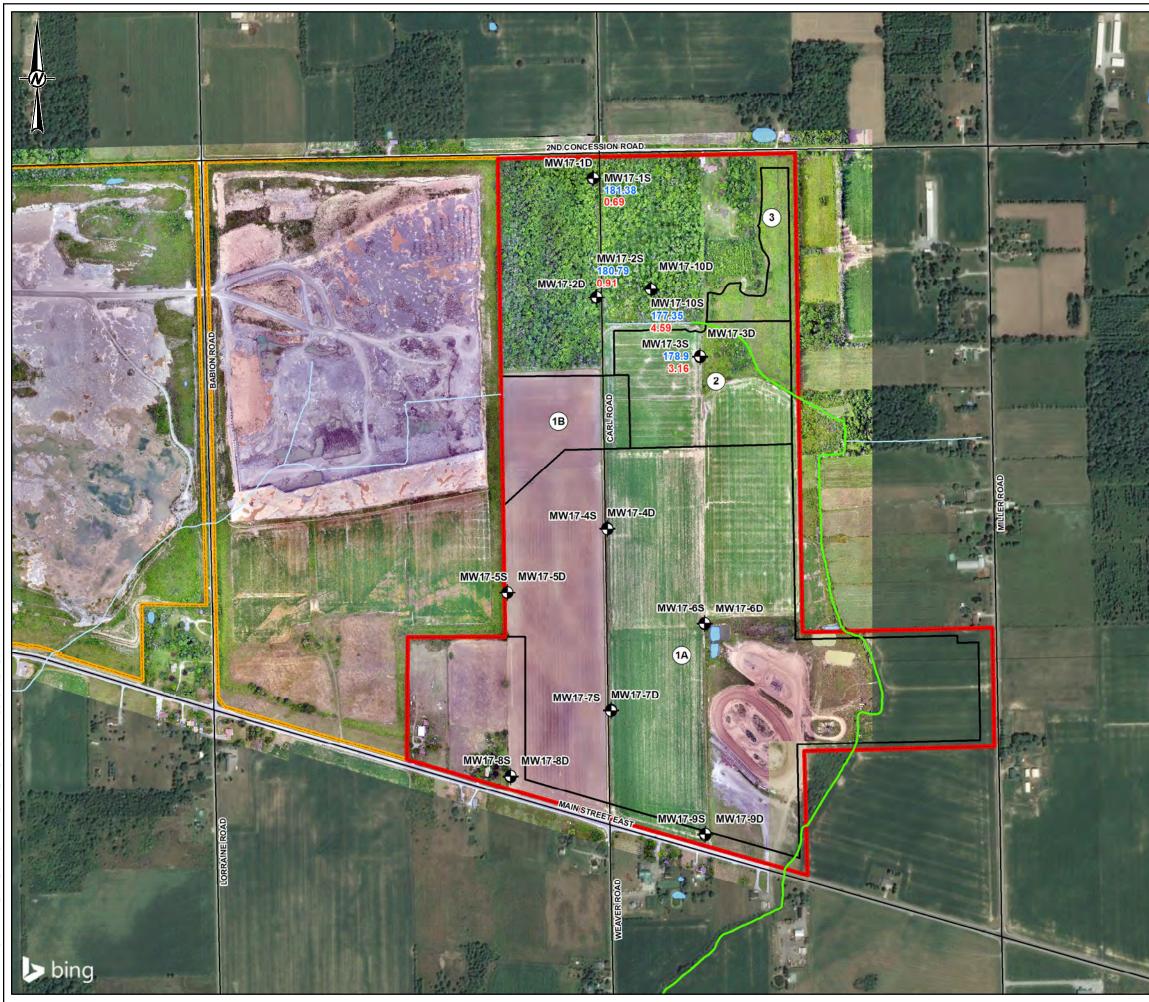
REFERENCE(S)

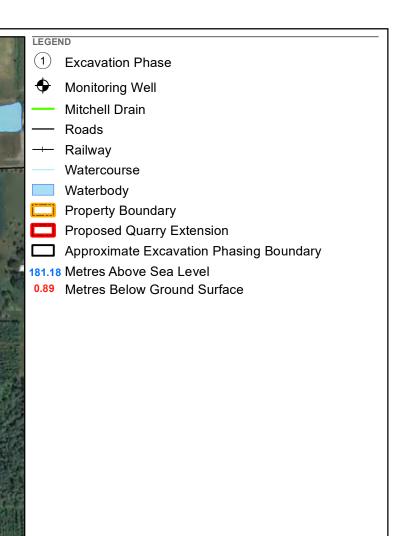
REFERENCE(S) 1.BASE DATA: MNRF LIO 2016 2. IMAGERY: ORTHOIMAGE PROVIDED BY IBI GROUP. SITE FLOWN JULY 29TH, 2018 3. ADDITIONAL IMAGERY FROM © 2020 MICROSOFT CORPORATION © 2020 MAXAR ©CNES (2020) DISTRIBUTION AIRBUS DS 4. PROJECTION: TRANSVERSE MERCATOR NAD 1983 UTM ZONE 17N

CLIENT RANKIN CONSTRUCTION

PROJECT PORT COLBORNE QUARRY EXTENSION

TITLE


GROUNDWATER ELEVATIONS – OVERBURDEN – MAY 2019


CONSULTANT

YYYY-MM-DD		2020-09-03	
DESIGNED		PR	
PREPARED		PR	
REVIEWED		BZ	
APPROVED		SM	
	REV.		FIGURE
			11C

PROJECT NO. 1771656

NOTE(S)
1. GROUNDWATER ELEVATIONS MEASURED ON MAY 29, 2019
2. OVERBURDEN GROUND WATER LEVELS ARE CONTINUING TO RECOVER FOLLOWING THE
MONITORING WELL INSTALLATIONS AND GROUNDWATER SAMPLING/DEVELOPMENT

REFERENCE(S) 1.BASE DATA: MNRF LIO 2016 2. IMAGERY: ORTHOIMAGE PROVIDED BY IBI GROUP. SITE FLOWN JULY 29TH, 2018 3. ADDITIONAL IMAGERY FROM © 2020 MICROSOFT CORPORATION © 2020 MAXAR ©CNES (2020) DISTRIBUTION AIRBUS DS 4. PROJECTION: TRANSVERSE MERCATOR NAD 1983 UTM ZONE 17N

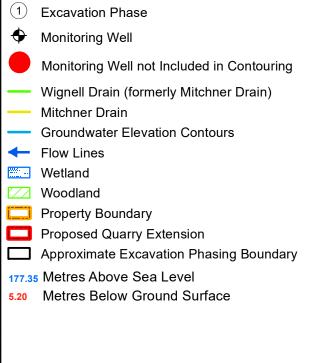
CLIENT RANKIN CONSTRUCTION

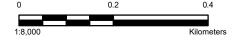
PROJECT PORT COLBORNE QUARRY EXTENSION

TITLE

GROUNDWATER ELEVATIONS – OVERBURDEN – MAY 2020

CONSULTANT


PROJECT NO. 1771656



YYYY-MM-DD		2020-09-03	
DESIGNED		PR	
PREPARED		PR	
REVIEWED		BZ	
APPROVED		SM	
	REV.		FIGURE
	0		11D

NOTE(S) 1. * GROUNDWATER ELEVATION AT MW17-6S NOT INCLUDED IN CONTOURING. DATA IS ANOMALOUS. 2. GROUNDWATER ELEVATIONS MEASURED ON MAY 15, 2017

REFERENCE(S) 1.BASE DATA: MNRF LIO 2016 2. IMAGERY: ORTHOIMAGE PROVIDED BY IBI GROUP. SITE FLOWN JULY 29TH, 2018 3. ADDITIONAL IMAGERY FROM © 2020 MICROSOFT CORPORATION © 2020 MAXAR ©CNES (2020) DISTRIBUTION AIRBUS DS 4. PROJECTION: TRANSVERSE MERCATOR NAD 1983 UTM ZONE 17N

CLIENT RANKIN CONSTRUCTION

PROJECT PORT COLBORNE QUARRY EXTENSION

TITLE

GROUNDWATER FLOW MAP – SHALLOW BEDROCK – MAY 2017

CONSULTANT

YYYY-MM-DD	2020-09-03
DESIGNED	ММ
PREPARED	PR
REVIEWED	BZ
APPROVED	SM
REV.	FIGURE
	12A

NOTE(S) 1. * GROUNDWATER ELEVATION AT MW17-6S NOT INCLUDED IN CONTOURING. DATA IS ANOMALOUS. 2. GROUNDWATER ELEVATIONS MEASURED ON MAY 15, 2018

REFERENCE(S) 1.BASE DATA: MNRF LIO 2016 2. IMAGERY: ORTHOIMAGE PROVIDED BY IBI GROUP. SITE FLOWN JULY 29TH, 2018 3. ADDITIONAL IMAGERY FROM © 2020 MICROSOFT CORPORATION © 2020 MAXAR ©CNES (2020) DISTRIBUTION AIRBUS DS 4. PROJECTION: TRANSVERSE MERCATOR NAD 1983 UTM ZONE 17N

CLIENT RANKIN CONSTRUCTION

PROJECT PORT COLBORNE QUARRY EXTENSION

TITLE

GROUNDWATER FLOW MAP – SHALLOW BEDROCK – MAY 2018


CONSULTANT

YYYY-MM-DD	2020-09-03	
DESIGNED	PR	
PREPARED	PR	
REVIEWED	BZ	
APPROVED	SM	
RI	EV.	FIGURE
		12B

NOTE(S) 1. GROUNDWATER ELEVATIONS MEASURED ON MAY 27, 2019 2. GROUNDWATER ELEVATION AT MW17-6S NOT INCLUDED IN CONTOURING. DATA IS ANOMALOUS

REFERENCE(S)

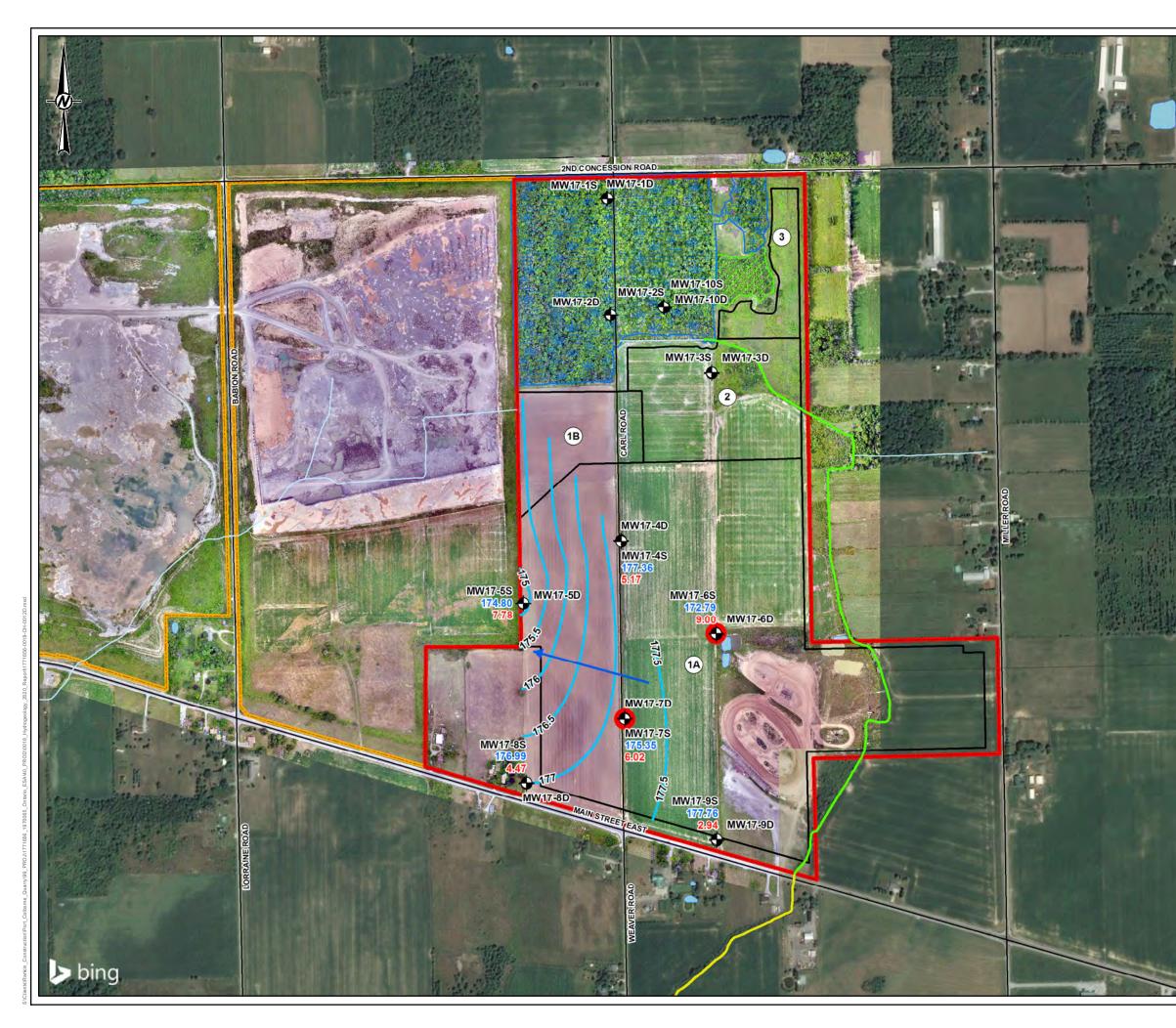
REFERENCE(S) 1.BASE DATA: MNRF LIO 2016 2. IMAGERY: ORTHOIMAGE PROVIDED BY IBI GROUP. SITE FLOWN JULY 29TH, 2018 3. ADDITIONAL IMAGERY FROM © 2020 MICROSOFT CORPORATION © 2020 MAXAR ©CNES (2020) DISTRIBUTION AIRBUS DS 4. PROJECTION: TRANSVERSE MERCATOR NAD 1983 UTM ZONE 17N

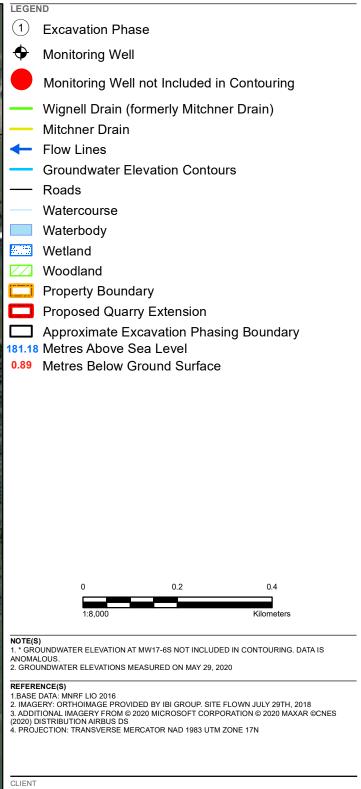
CLIENT RANKIN CONSTRUCTION

PROJECT PORT COLBORNE QUARRY EXTENSION

TITLE

GROUNDWATER FLOW MAP – SHALLOW BEDROCK – MAY 2019


CONSULTANT



CONTROL

0018

YYYY-MM-DD	2020-09-03	
DESIGNED	PR	
PREPARED	PR	
REVIEWED	BZ	
APPROVED	SM	
	REV.	FIGURE
		12C

RANKIN CONSTRUCTION

PROJECT

PORT COLBORNE QUARRY EXTENSION

TITLE

GROUNDWATER FLOW MAP - SHALLOW BEDROCK - MAY 2020

CONSULTANT

YYYY-MM-DD	2020-09-	03
DESIGNED	PR	
PREPARED	PR	
REVIEWED	BZ	
APPROVED	SM	
	REV.	FIGURE
		120

CONTROL 0018

12D

NOTE(S) 1. GROUNDWATER ELEVATIONS MEASURED ON MAY 15, 2017

REFERENCE(S) 1.BASE DATA: MNRF LIO 2016 2. IMAGERY: ORTHOIMAGE PROVIDED BY IBI GROUP. SITE FLOWN JULY 29TH, 2018 3. ADDITIONAL IMAGERY FROM © 2020 MICROSOFT CORPORATION © 2020 MAXAR ©CNES (2020) DISTRIBUTION AIRBUS DS 4. PROJECTION: TRANSVERSE MERCATOR NAD 1983 UTM ZONE 17N

CLIENT RANKIN CONSTRUCTION

PROJECT PORT COLBORNE QUARRY EXTENSION

TITLE

GROUNDWATER FLOW MAP - DEEP BEDROCK - MAY 2017


CONSULTANT



YYYY-MM-DD		2020-09-03	
DESIGNED		PR	
PREPARED		PR	
REVIEWED		BZ	
APPROVED		SM	
	REV.		FIGURE
			13A

PROJECT NO. 1771656

NOTE(S) 1. GROUNDWATER ELEVATIONS MEASURED ON MAY 15, 2018

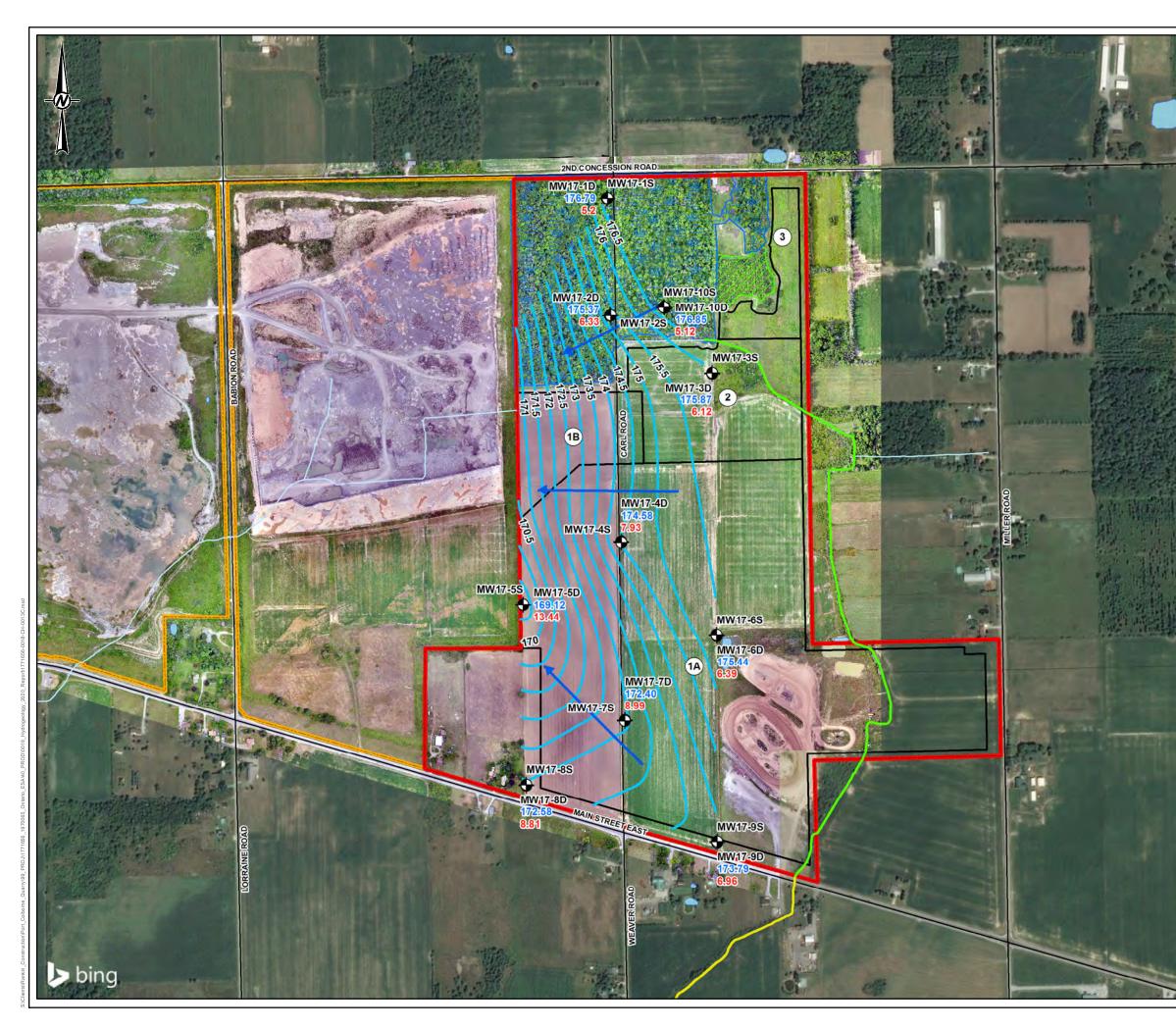
REFERENCE(S)

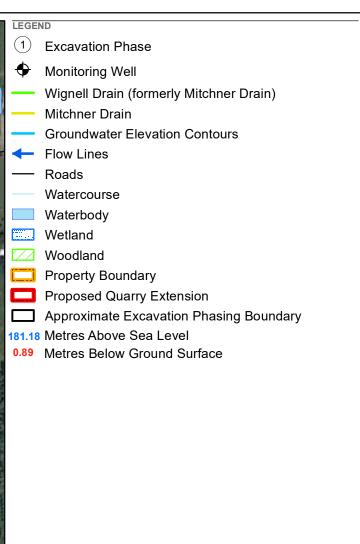
REFERENCE(S) 1.BASE DATA: MNRF LIO 2016 2. IMAGERY: ORTHOIMAGE PROVIDED BY IBI GROUP. SITE FLOWN JULY 29TH, 2018 3. ADDITIONAL IMAGERY FROM © 2020 MICROSOFT CORPORATION © 2020 MAXAR ©CNES (2020) DISTRIBUTION AIRBUS DS 4. PROJECTION: TRANSVERSE MERCATOR NAD 1983 UTM ZONE 17N

CLIENT RANKIN CONSTRUCTION

PROJECT PORT COLBORNE QUARRY EXTENSION

TITLE


GROUNDWATER FLOW MAP - DEEP BEDROCK – MAY 2018


CONSULTANT

YYYY-MM-DD	2020-09-03	
DESIGNED	PR	
PREPARED	PR	
REVIEWED	BZ	
APPROVED	SM	
	REV.	FIGURE
		13B

PROJECT NO. 1771656

NOTE(S) 1. GROUNDWATER ELEVATIONS MEASURED ON MAY 27, 2019

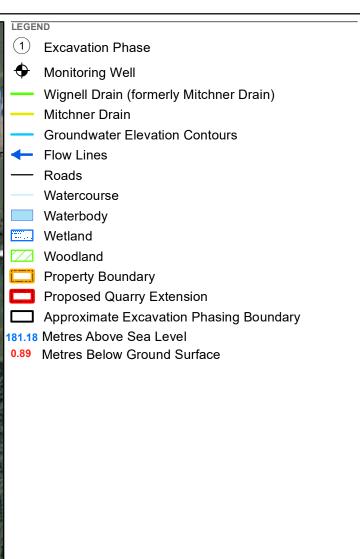
REFERENCE(S) 1.BASE DATA: MNRF LIO 2016 2. IMAGERY: ORTHOIMAGE PROVIDED BY IBI GROUP. SITE FLOWN JULY 29TH, 2018 3. ADDITIONAL IMAGERY FROM ESRI, HERE, DELORME, INTERMAP, INCREMENT P CORP., GEBCO, USGS, FAO, NPS, NRCAN, GEOBASE, IGN, KADASTER NL, ORDNANCE SURVEY, ESRI JAPAN, METI, ESRI CHINA (HONG KONG), SWISSTOPO, MAPMYINDIA, © OPENSTREETMAP CONTRIBUTORS, AND THE GIS USER COMMUNITY 4. PROJECTION: TRANSVERSE MERCATOR NAD 1983 UTM ZONE 17N

CLIENT RANKIN CONSTRUCTION

PROJECT PORT COLBORNE QUARRY EXTENSION

TITLE

GROUNDWATER FLOW MAP – DEEP BEDROCK – MAY 2019


CONSULTANT

YYYY-MM-DD		2020-09-03	
DESIGNED		PR	
PREPARED		PR	
REVIEWED		BZ	
APPROVED		SM	
	REV.		FIGURE
			13C

PROJECT NO. 1771656

NOTE(S) 1. GROUNDWATER ELEVATIONS MEASURED ON MAY 29, 2020

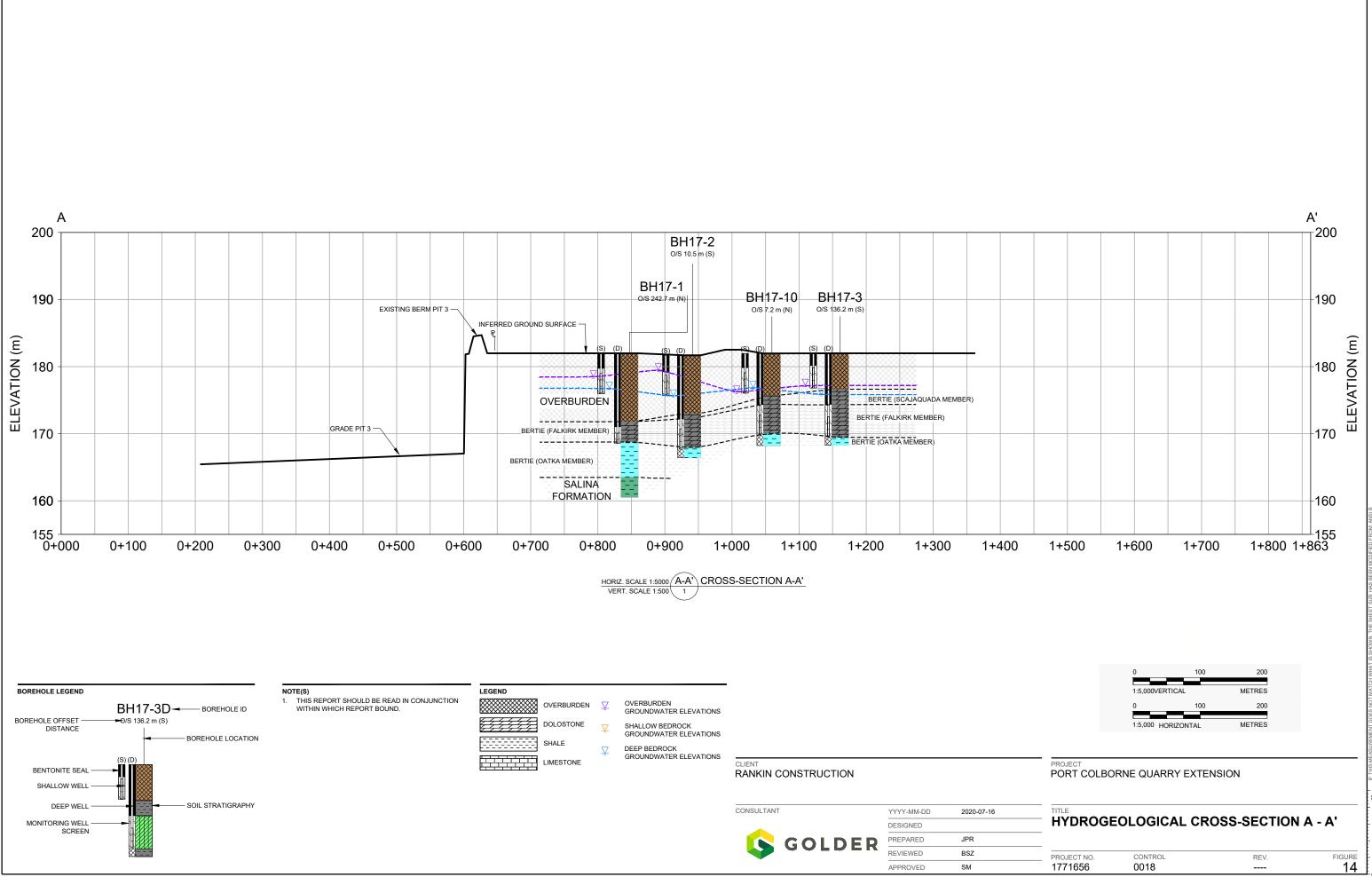
REFERENCE(S)

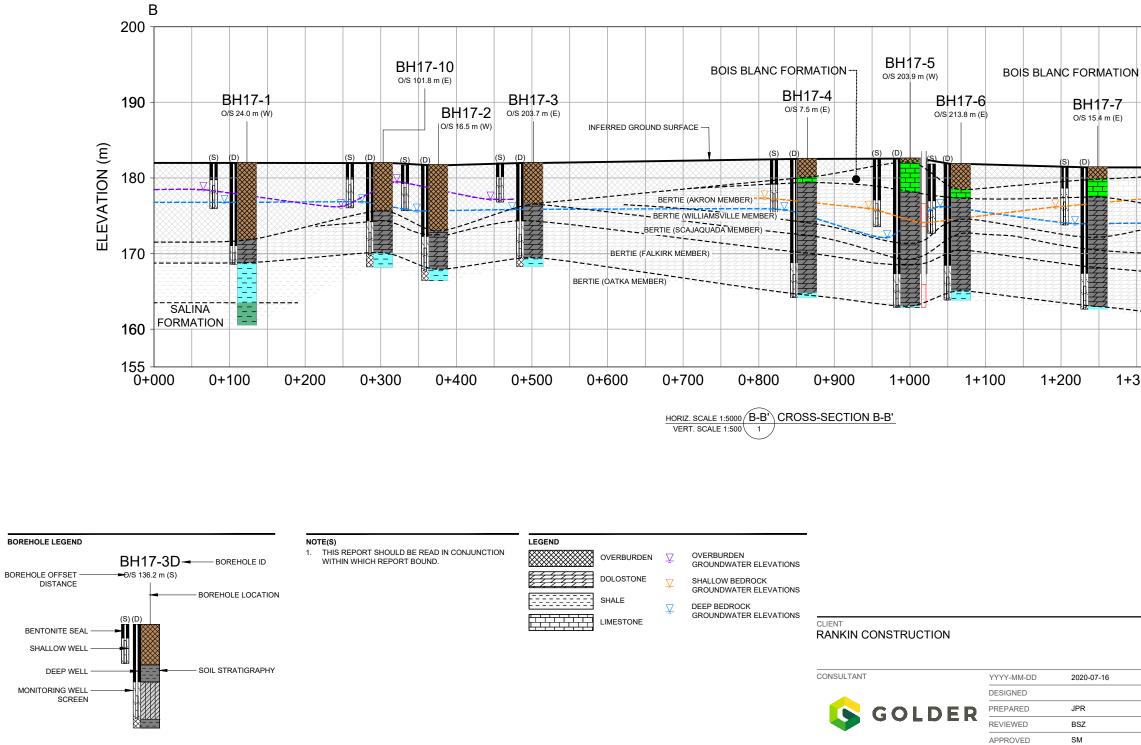
REFERENCE(S) 1.BASE DATA: MNRF LIO 2016 2. IMAGERY: ORTHOIMAGE PROVIDED BY IBI GROUP. SITE FLOWN JULY 29TH, 2018 3. ADDITIONAL IMAGERY FROM © 2020 MICROSOFT CORPORATION © 2020 MAXAR ©CNES (2020) DISTRIBUTION AIRBUS DS 4. PROJECTION: TRANSVERSE MERCATOR NAD 1983 UTM ZONE 17N

CLIENT RANKIN CONSTRUCTION

PROJECT PORT COLBORNE QUARRY EXTENSION

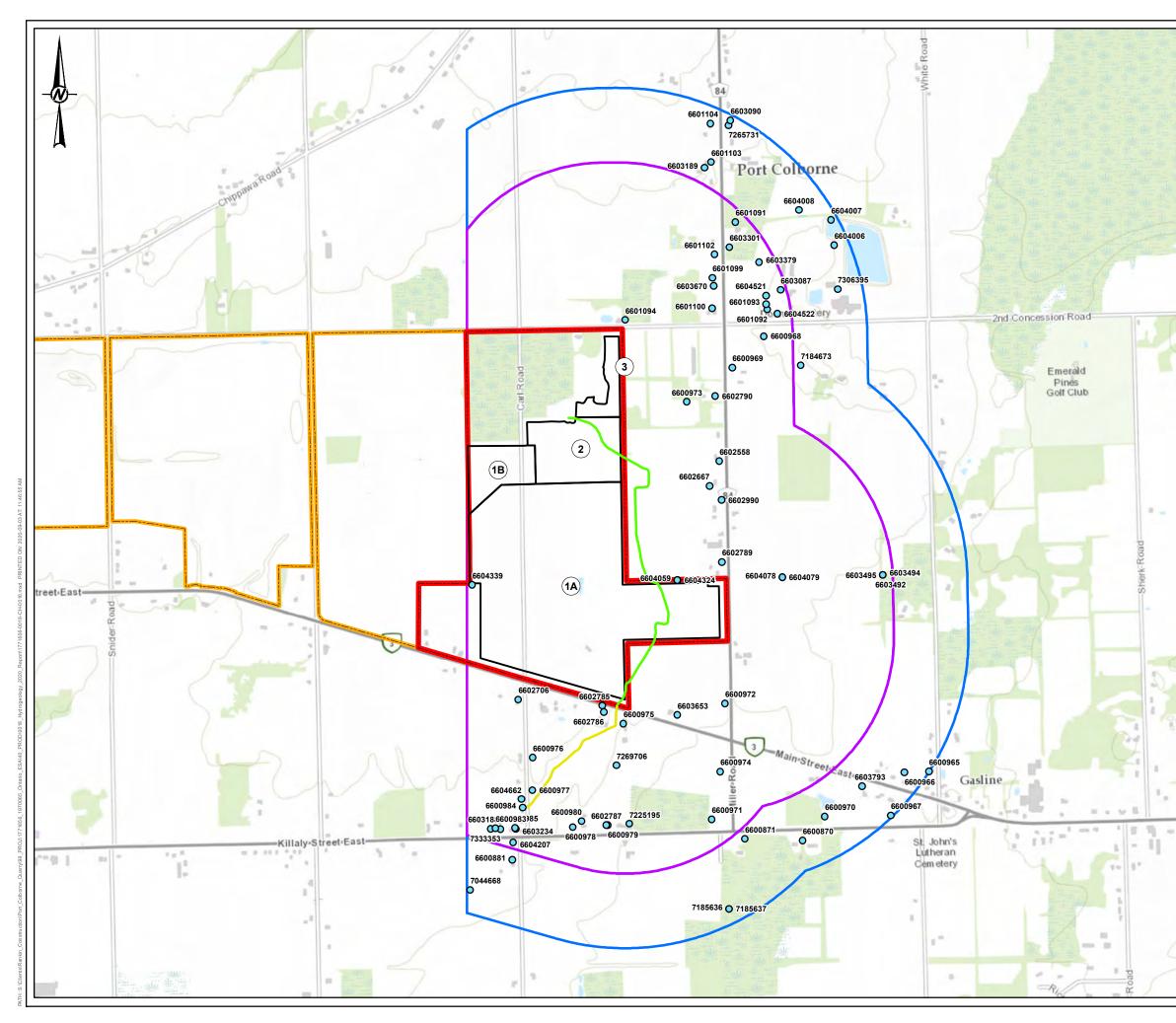
TITLE


GROUNDWATER FLOW MAP – DEEP BEDROCK – MAY 2020

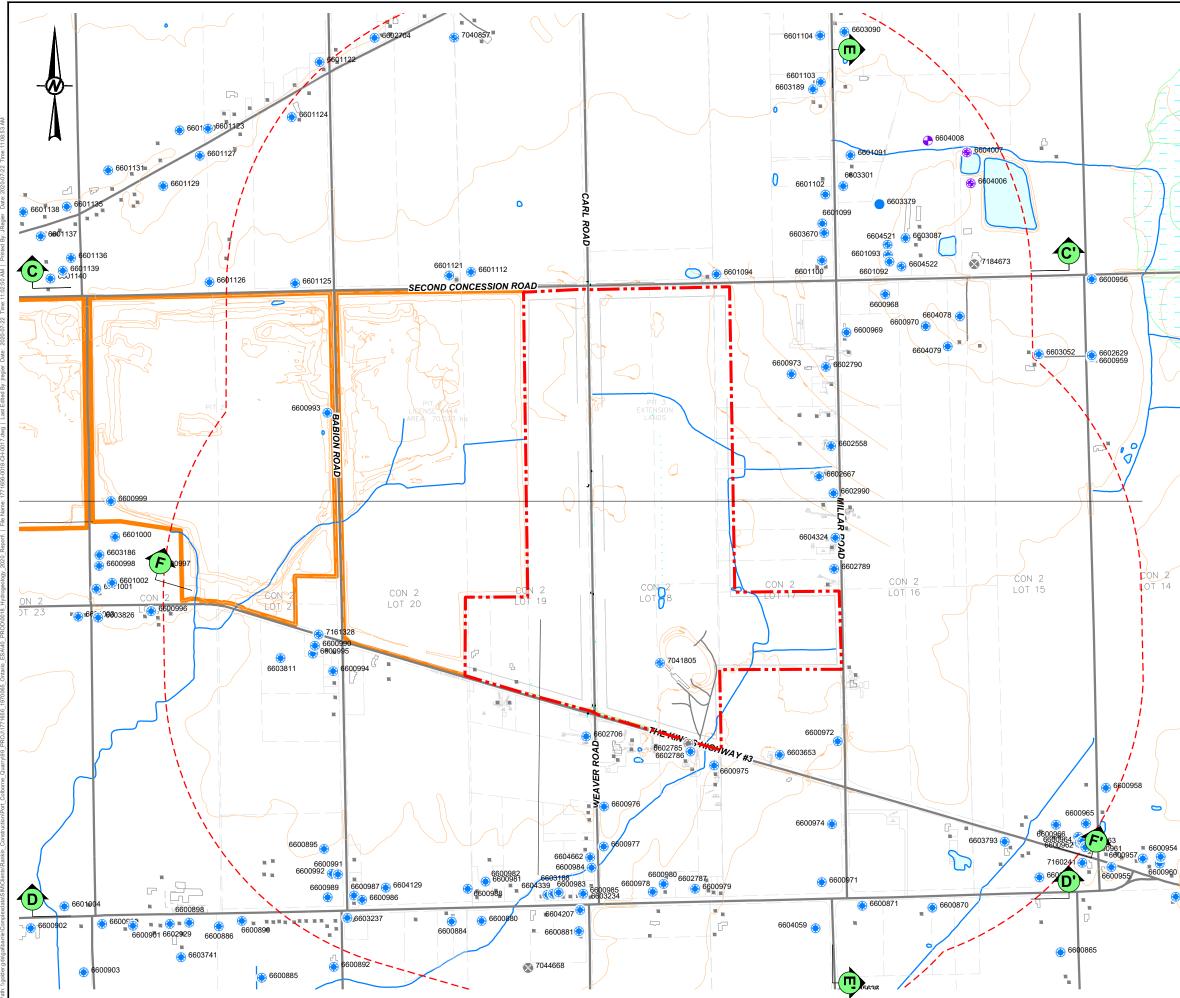

CONSULTANT

YYYY-MM-DD	2020-0	9-03
DESIGNED	PR	
PREPARED	PR	
REVIEWED	BZ	
APPROVED	SM	
	REV.	FIGURE
		13D

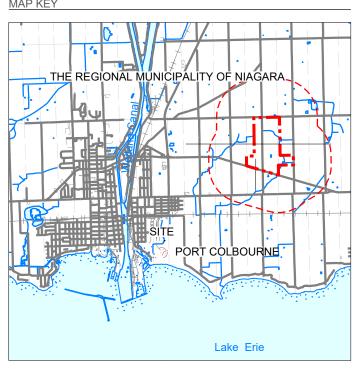
PROJECT NO. 1771656



BH17-8 O/S 197.1 m (W)	BH17-9 O/S 214.7 m (E)		
(S) (D)		ELEVATION (m)	
		160	
1+400	1+500	155 1+615	
	0 100 1:5,000VERTICAL	200 METRES	
	0 100 1:5,000 HORIZONTAL	200 METRES	
		ISION	
PROJECT PORT COLBO	ORNE QUARRY EXTEN		
	EOLOGICAL CR		B - B'

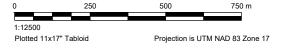

B'

T200



LLOL	ND		
(1)	Excavation Phase		
0	MECP Water Well		
	Wignell Drain (formerl	v Mitchner Di	rain)
	U	y Miller Di	iain)
	Mitchner Drain		
	Property Boundary		
	Proposed Quarry Exte	ension	
	Approximate Excavati	on Phasing E	Boundary
	Potential Zone of Influ	ence – 700 n	n Radius
	Water Well Survey Are of Influence – 1000 m		tial Zone
	0	0.5	1
		0.5	
	0 1:15,000	0.5	1 Kilometers
		0.5	
		0.5	
NOTE(S	1:15,000	0.5	
NOTE(S	1:15,000	0.5	
	1:15,000	0.5	
REFER 1. IMAG USGS,	1:15,000 1:15,000 S) ENCE(S) JERY: SOURCES: ESRI, HERE, DELORI FAO, NPS, NRCAN, GEOBASE, IGN, KA	ME, INTERMAP, INCRE DASTER NL, ORDNAM	Kilometers MENT P CORP., GEBCO, VCE SURVEY, ESRI JAPAN,
REFER 1. IMAG USGS, METI, E CONTR	ENCE(S) ENCE(S) ERY: SOURCES: ESRI, HERE, DELORI FAO, NPS, NRCAN, GEOBASE, IGN, KA SRI CHINA (HONG KONG), SWISSTOP IBUTORS, AND THE GIS USER COMMI	ME, INTERMAP, INCRE DASTER NL, ORDNAN O, MAPMYINDIA, © OF JNITY	Kilometers EMENT P CORP., GEBCO, NOE SURVEY, ESRI JAPAN, PENSTREETMAP
REFER 1. IMAG USGS, METI, E CONTR 2. WATE CONSE CLIMAT	ENCE(S) ENCE(S) ERY: SOURCES: ESRI, HERE, DELORI FAO, NPS, NRCAN, GEOBASE, IGN, KA SRI CHINA (HONG KONG), SWISSTOP BUTORS, AND THE GIS USER COMMI ER WELL LOCATIONS OBTAINED FROM RVATION AND PARKS) FORMERLY MO RVATION AND PARKS) FORMERLY MO E CHANGE). WATER WELL INFORMAT	ME, INTERMAP, INCRE DASTER NL, ORDNAM O, MAPMYINDIA, © OF JNITY MECP (MINISTRY OF ECC (MINISTRY OF	Kilometers EMENT P CORP., GEBCO, NCE SURVEY, ESRI JAPAN, PENSTREETMAP F THE ENVIRONMENT, HE ENVIRONMENT AND
REFER 1. IMAG USGS, METI, E CONTR 2. WATI CONSE CLIMAT 21, 2019	ENCE(S) ENCE(S) ERY: SOURCES: ESRI, HERE, DELORI FAO, NPS, NRCAN, GEOBASE, IGN, KA SRI CHINA (HONG KONG), SWISSTOP BUTORS, AND THE GIS USER COMMI ER WELL LOCATIONS OBTAINED FROM RVATION AND PARKS) FORMERLY MO RVATION AND PARKS) FORMERLY MO E CHANGE). WATER WELL INFORMAT	ME, INTERMAP, INCRE DASTER NL, ORDNAN O, MAPMYINDIA, © OF INITY A MECP (MINISTRY OF TI ION SYSTEM (WWIS).	Kilometers EMENT P CORP., GEBCO, VCE SURVEY, ESRI JAPAN, PENSTREETMAP F THE ENVIRONMENT, HE ENVIRONMENT AND DATA PUBLISHED ON MARCH
REFER 1. IMAG USGS, METI, E CONTR 2. WATI CONSE CLIMAT 21, 2011 3. PRO. CLIENT	1:15,000 1:15,000 ENCE(S) ERY: SOURCES: ESRI, HERE, DELORI FAO, NPS, NRCAN, GEOBASE, IGN, KA SRI CHINA (HONG KONG), SWISSTOP IBUTORS, AND THE GIS USER COMMI RVATION AND PARKS) FORMERLY MO E CHANGE). WATER WELL INFORMAT 9. JECTION: TRANSVERSE MERCATOR N	ME, INTERMAP, INCRE DASTER NL, ORDNAN O, MAPMYINDIA, © OF INITY A MECP (MINISTRY OF TI ION SYSTEM (WWIS).	Kilometers EMENT P CORP., GEBCO, VCE SURVEY, ESRI JAPAN, PENSTREETMAP F THE ENVIRONMENT, HE ENVIRONMENT AND DATA PUBLISHED ON MARCH
REFER 1. IMAG USGS, METI, E CONTR 2. WATI CONSE CLIMAT 21, 2011 3. PRO. CLIENT	1:15,000 1:15,000 ENCE(S) ERCY: SOURCES: ESRI, HERE, DELORI FAO, NPS, NRCAN, GEOBASE, IGN, KA SRI CHINA (HONG KONG), SWISSTOP BUTORS, AND THE GIS USER COMMI ER WELL LOCATIONS OBTAINED FROM RVATION AND PARKS) FORMERLY MO RVATION AND PARKS) FORMERLY MO E CHANGE). WATER WELL INFORMAT 3. JECTION: TRANSVERSE MERCATOR N	ME, INTERMAP, INCRE DASTER NL, ORDNAN O, MAPMYINDIA, © OF INITY A MECP (MINISTRY OF TI ION SYSTEM (WWIS).	Kilometers EMENT P CORP., GEBCO, VCE SURVEY, ESRI JAPAN, PENSTREETMAP F THE ENVIRONMENT, HE ENVIRONMENT AND DATA PUBLISHED ON MARCH
REFER 1. IMAG USGS, METI, E CONSE CONSE CLIMAT 21, 2019 3. PRO. CLIENT RANH PROJEI	1:15,000 ENCE(S) EERY: SOURCES: ESRI, HERE, DELORI FAO, NPS, NRCAN, GEOBASE, IGN, KA SRI CHINA (HONG KONG), SWISSTOP IBUTORS, AND THE GIS USER COMMI RVATION AND PARKS) FORMERLY MO E CHANGE). WATER WELL INFORMAT J. JECTION: TRANSVERSE MERCATOR N KIN CONSTRUCTION	ME, INTERMAP, INCRE DASTER NL, ORDNAN O, MAPMYINDIA, © OF JNITY A MECP (MINISTRY OF ECC (MINISTRY OF TI ION SYSTEM (WWIS). IAD 1983 UTM ZONE 1	Kilometers EMENT P CORP., GEBCO, VCE SURVEY, ESRI JAPAN, PENSTREETMAP F THE ENVIRONMENT, HE ENVIRONMENT AND DATA PUBLISHED ON MARCH
REFER 1. IMAG USGS, METI, E CONTR 2. WATH CONSE CLIMAT 21, 2019 3. PRO. CLIENT RANH PROJE POR	1:15,000 1:15,000 ENCE(S) E	ME, INTERMAP, INCRE DASTER NL, ORDNAN O, MAPMYINDIA, © OF JNITY A MECP (MINISTRY OF ECC (MINISTRY OF TI ION SYSTEM (WWIS). IAD 1983 UTM ZONE 1	Kilometers EMENT P CORP., GEBCO, VCE SURVEY, ESRI JAPAN, PENSTREETMAP F THE ENVIRONMENT, HE ENVIRONMENT AND DATA PUBLISHED ON MARCH
REFER 1. IMAG USGS, METI, E CONTR 2. WATI CONSE CLIMAT 21, 2019 3. PRO. CLIENT RANI PROJE POR TITLE	1:15,000 1:15,000 ENCE(S) E	ME, INTERMAP, INCRE DASTER NL, ORDNAN O, MAPMYINDIA, © OF JNITY 4 MECP (MINISTRY OF ECC (MINISTRY OF I ECC (MINISTRY OF I ION SYSTEM (WWIS). AD 1983 UTM ZONE 1	Kilometers EMENT P CORP., GEBCO, VOE SURVEY, ESRI JAPAN, PENSTREETMAP F THE ENVIRONMENT AND DATA PUBLISHED ON MARCH 7N
REFER 1. IMAG USGS, METI, E CONTR 2. WATT 2. WATT 2. WATT 2. WATT 2. WATT PROJE POR TITLE	ENCE(S) ENCE(S) ERCE(S) ERCE (S) ERCE (S)	ME, INTERMAP, INCRE DASTER NL, ORDNAN O, MAPMYINDIA, © OF INITY A MECP (MINISTRY OF ECC (MINISTRY OF I ION SYSTEM (WWIS). IAD 1983 UTM ZONE 1 (TENSION MD ZONE OF II	Kilometers
REFER 1. IMAG USGS, METI, E CONTR 2. WATI CONSE CLIMAT 21, 2019 3. PRO. CLIENT RANI PROJE POR TITLE	ENCE(S) ENCE(S) ERCE(S) ERCE (S) ERCE (S)	ME, INTERMAP, INCRE DASTER NL, ORDNAN O, MAPMYINDIA, © OF JNITY 4 MECP (MINISTRY OF ECC (MINISTRY OF I ECC (MINISTRY OF I ION SYSTEM (WWIS). AD 1983 UTM ZONE 1	Kilometers EMENT P CORP., GEBCO, VOE SURVEY, ESRI JAPAN, PENSTREETMAP F THE ENVIRONMENT AND DATA PUBLISHED ON MARCH 7N
REFER 1. IMAG USGS, METI, E CONTR 2. WATT 2. WATT 2. WATT 2. WATT 2. WATT PROJE POR TITLE	1:15,000 1:15,000 ENCE(S) EFERY: SOURCES: ESRI, HERE, DELORI FAO, NPS, NRCAN, GEOBASE, IGN, KA SRI CHINA (HONG KONG), SWISSTOP IBUTORS, AND THE GIS USER COMMI RVATION AND PARKS) FORMERLY MO E CHANGE). WATER WELL INFORMAT JUNCTION: TRANSVERSE MERCATOR N KIN CONSTRUCTION CT T COLBORNE QUARRY ES ER WELLS LOCATIONS A ITANT	ME, INTERMAP, INCRE DASTER NL, ORDNAN O, MAPMYINDIA, © OF JNITY A MECP (MINISTRY OF ECC (MINISTRY OF TI ION SYSTEM (WWIS). AD 1983 UTM ZONE 1 (TENSION ND ZONE OF II	Kilometers EMENT P CORP., GEBCO, VCE SURVEY, ESRI JAPAN, PENSTREETMAP F THE ENVIRONMENT, HE ENVIRONMENT AND DATA PUBLISHED ON MARCH 7N NFLUENCE 2020-09-03
REFER 1. IMAG USGS, METI, E CONTR 2. WATT 2. WATT 2. WATT 2. WATT 2. WATT PROJE POR TITLE	ENCE(S) ENCE(S) ERCE(S) ERCE (S) ERCE (S)	ME, INTERMAP, INCRE DASTER NL, ORDNAN O, MAPMYINDIA, © OF JNITY MECP (MINISTRY OF ECC (MINISTRY OF TI ION SYSTEM (WWIS). IAD 1983 UTM ZONE 1 (TENSION ND ZONE OF II YYYY-MM-DD DESIGNED	Kilometers
REFER 1. IMAG USGS, METI, E CONTR 2. WATT 2. WATT 2. WATT 2. WATT 2. WATT PROJE POR TITLE	1:15,000 ENCE(S) ENCE(S) EVERY: SOURCES: ESRI, HERE, DELORI FAO, NPS, NRCAN, GEOBASE, IGN, KA SRI CHINA (HONG KONG), SWISSTOP IBUTORS, AND THE GIS USER COMMU ER WELL LOCATIONS OBTAINED FROM RVATION AND PARKS) FORMERLY MO ECTANGE). WATER WELL INFORMAT 3. IECTION: TRANSVERSE MERCATOR N (IN CONSTRUCTION CT T COLBORNE QUARRY E) ER WELLS LOCATIONS A ILTANT GOLDER	ME, INTERMAP, INCRE DASTER NL, ORDNAI O, MAPMYINDIA, © OF MECP (MINISTRY OF ECC (MINISTRY OF TI ION SYSTEM (WWIS). IAD 1983 UTM ZONE 1 (TENSION ND ZONE OF II YYYY-MM-DD DESIGNED PREPARED	Kilometers

25mm IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEE



MAP KEY

PLAN LEGEND

	Property Boundary (Expansion)
	————— 1000 m Offset from Expansion Boundary
	Existing Operations
	Record of Abandonment
	Drilled Overburden Well
	Test or Observation Well
	Drilled Bedrock Well
5	Site Monitoring Well
4	
	Line of Section
	REFERENCES
	Orthoimage from Niagara Navigator, 2010

CLIENT RANKIN CONSTRUCTION

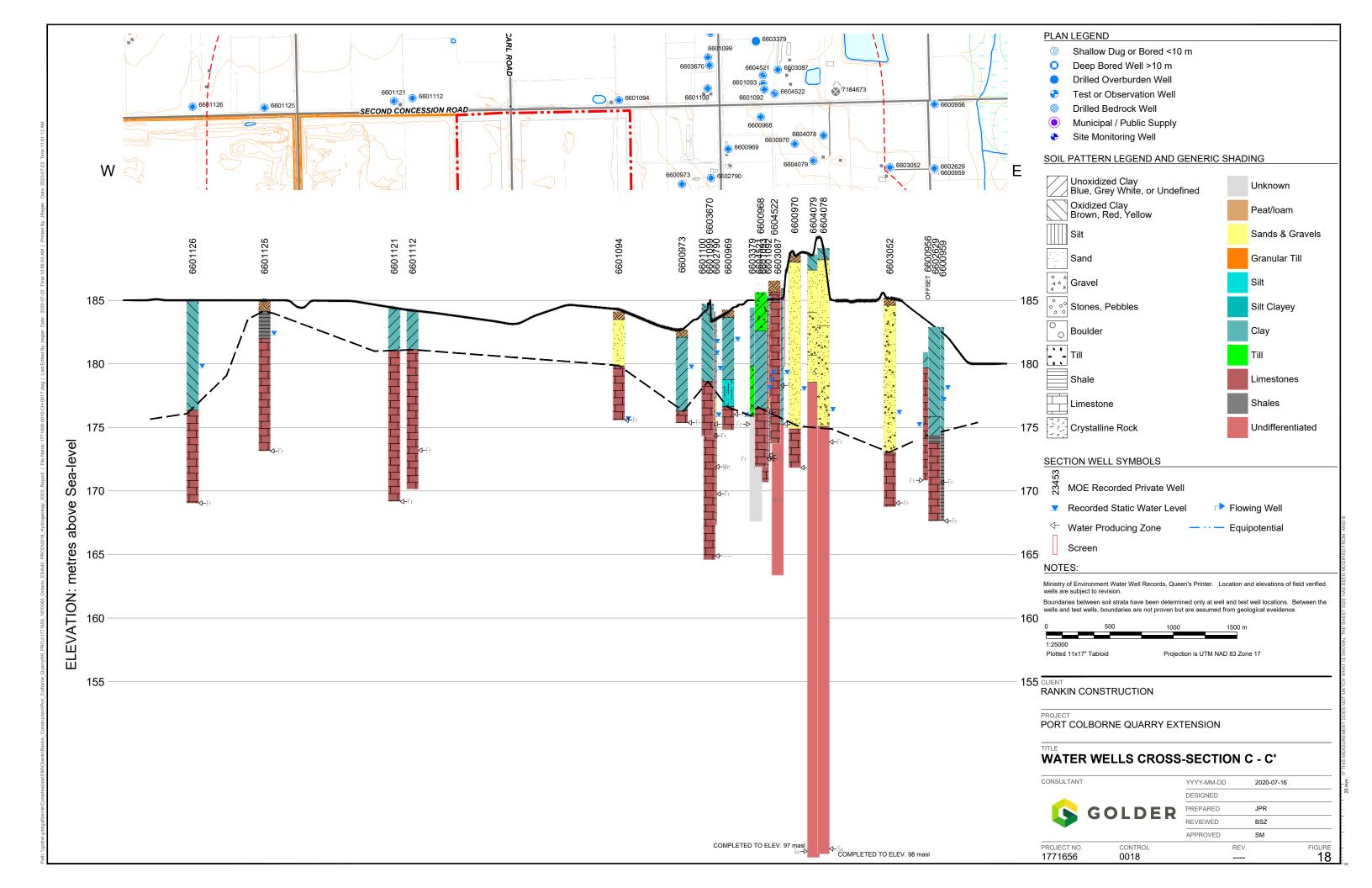
PROJECT

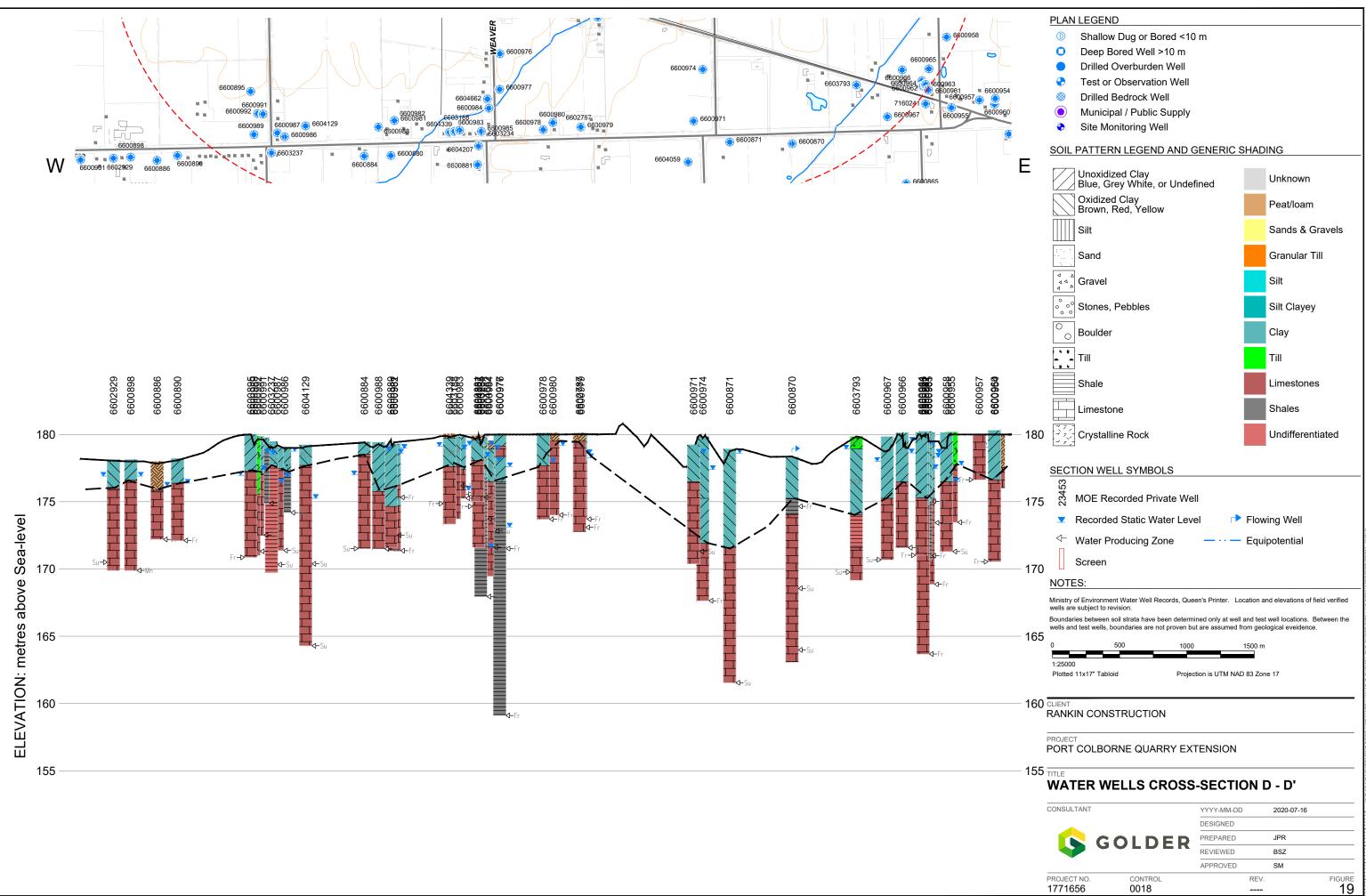
PORT COLBORNE QUARRY EXTENSION

TITI F **MECP RECORDED WELLS & SECTION KEY**

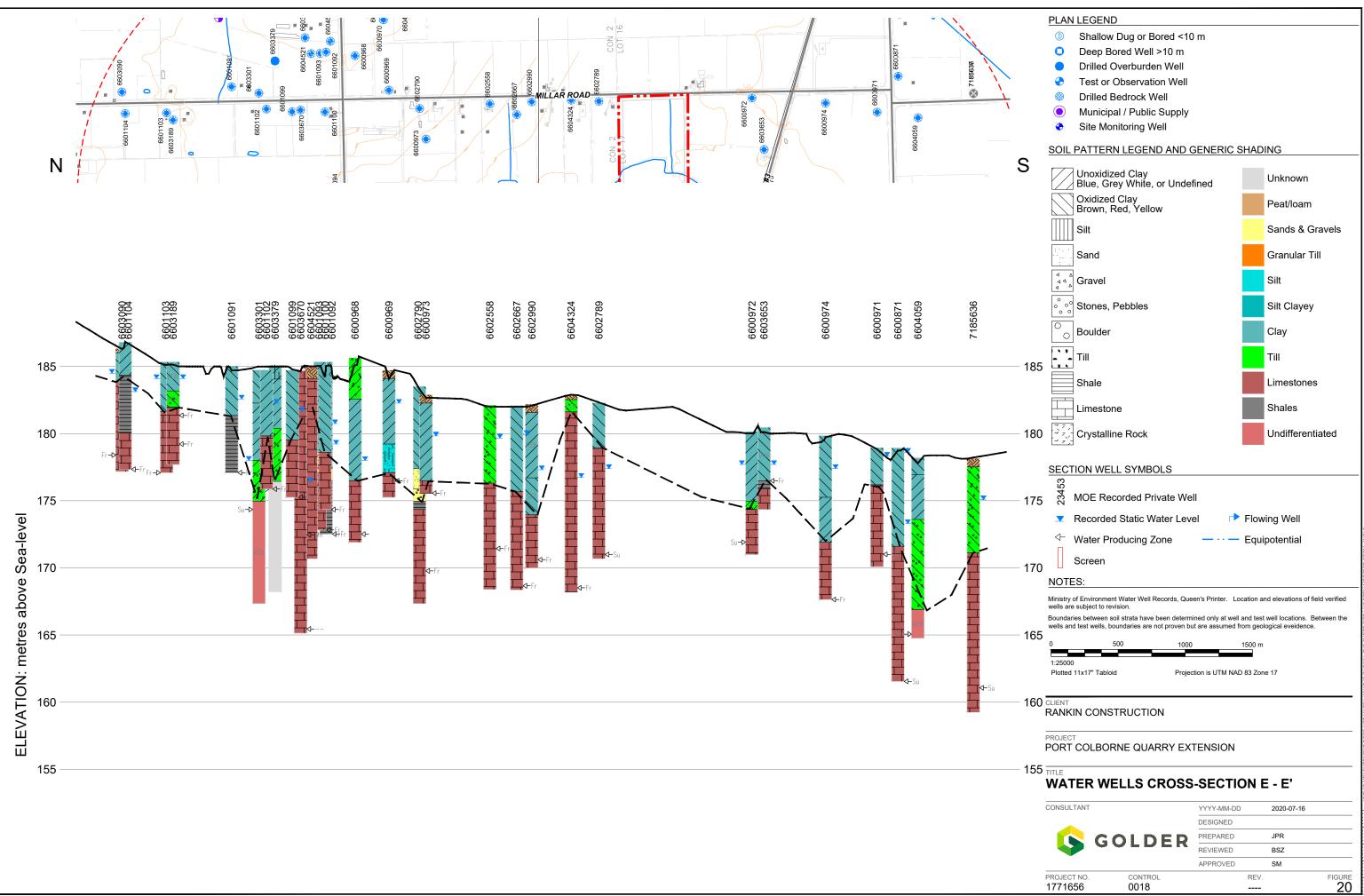
CONSULTANT

PROJECT NO.

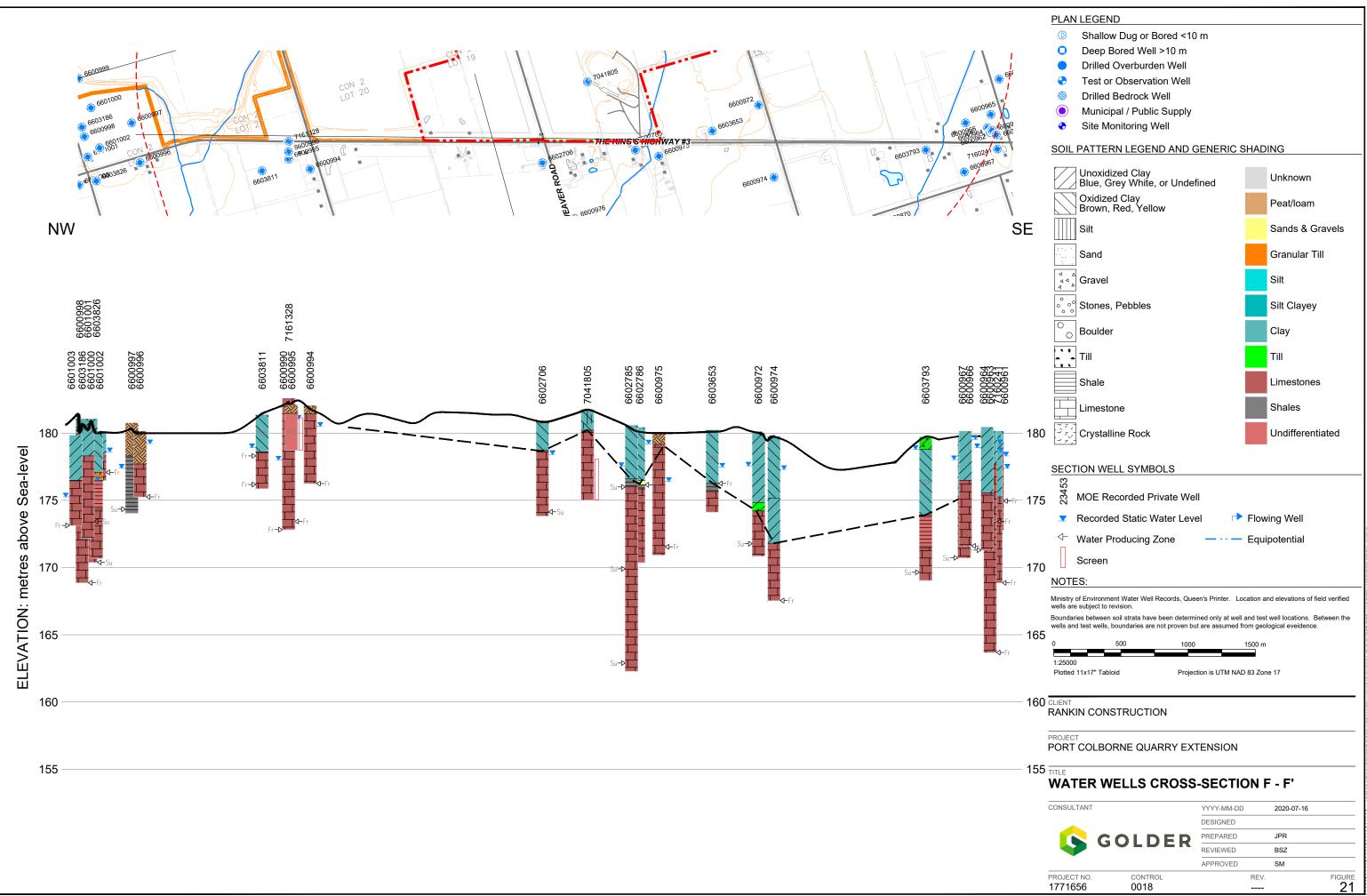

1771656

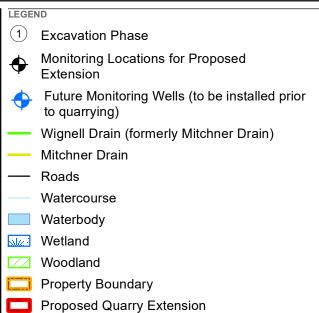

	DESIG
GOLDER	PREPA
OVEDER	REVIE
	APPR

CONTROL


0018

YYYY-MM-DD		2020-07-16	
DESIGNED			
PREPARED		JPR	
REVIEWED		BSZ	
APPROVED		SM	
	REV.		FIGURE
			17




25 mm IFTHIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MOI

25 mm IFTHIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODIFIED FR

Approximate Excavation Phasing Boundary

NOTE(S) 1. GROUNDWATER ELEVATIONS MEASURED ON MAY 15, 2017 2. OVERBURDEN GROUND WATER LEVELS ARE CONTINUING TO RECOVER FOLLOWING THE MONITORING WELL INSTALLATIONS AND GROUNDWATER SAMPLING/DEVELOPMENT ______

REFERENCE(S)

REFERENCE(S) 1.BASE DATA: MNRF LIO 2016 2. IMAGERY: ORTHOIMAGE PROVIDED BY IBI GROUP. SITE FLOWN JULY 29TH, 2018 3. ADDITIONAL IMAGERY FROM © 2020 MICROSOFT CORPORATION © 2020 MAXAR ©CNES (2020) DISTRIBUTION AIRBUS DS 4. PROJECTION: TRANSVERSE MERCATOR NAD 1983 UTM ZONE 17N

CLIENT RANKIN CONSTRUCTION

PROJECT

PORT COLBORNE QUARRY EXTENSION

TITLE

MONITORING LOCATIONS FOR PROPOSED EXTENSION

CONSULTANT

YYYY-MM-DD	2020-09-03	
DESIGNED	PR	
PREPARED	PR	
REVIEWED	BZ	
APPROVED	SM	
	REV.	FIGURE

PROJECT NO. 1771656

CONTROL 0018

APPENDIX A

Borehole Logs

	T: 1771656 DN: N 4752127.19; E 646721.25	RECO		PF BOREHOLE: RING DATE: April 3, 2017	BH17-10D	SHEET 1 OF 2 DATUM: Geodetic
SPT/DCP	PT HAMMER: MASS, 64kg; DROP, 760mm					HAMMER TYPE: AUTOMATIC
9	SOIL PROFILE		SAMPLES	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVIT	Y, T, 0
METRES BORING METHOD	DESCRIPTION	ELEV. (m)	NUMBER TYPE BLOWS/0.3m		80 10 ⁻⁹ 10 ⁻⁸ 10 ⁻⁷	
C C C C C C C C C C C C C C C C C C C	GROUND SURFACE OVERBURDEN - TOPSOIL , over SILTY CLAY ; reddish brown					
	CONTINUED NEXT PAGE					
DEPTH S 1 : 25	GCALE			GOLDE	R	LOGGED: TP CHECKED: SM

		CT: 1771656 DN: N 4752127.19; E 646721.25	F	RECO	DR	D	O	F BORE	HOL	E: E	BH17-1	0D					EET 2 OF 2
						В	ORI	NG DATE: Ap	ril 3, 2017								TUM: Geodetic
-	-	PT HAMMER: MASS, 64kg; DROP, 760mm SOIL PROFILE			64	MPLE	-0	DYNAMIC PEI	IETRATIO	N		RAULIC C	ONDUCTI		-		PE: AUTOMATIC
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER		BLOWS/0.3m	SHEAR STRE Cu, kPa	40 60) 80 htV. + C mV.⊕ L	2- • V	k, cm/s 10 ⁻⁹ 1 WATER C Vp 	0 ⁻⁸ 10 DNTENT F <u>OW</u> 20 30	7 10 ⁴ PERCENT		ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
		CONTINUED FROM PREVIOUS PAGE OVERBURDEN - TOPSOIL , over SILTY CLAY ; reddish brown END OF BOREHOLE - AUGER REFUSAL - For Bedrock coring details, refer to Record of Drillhole BH17-10D		175.66													
Ĭ	DEPTH SCALE LOGGED: TP 1:25 CHECKED: SM																

		CT: 1771656 DN: N 4752127.45; E 646718.75	RE	CO	RD	0	F BO	REHC	LE:	BH	17-1(DS					HEET 1 OF 2
					I	BORI	NG DATE	: April 5, 2	2017								ATUM: Geodetic
		PT HAMMER: MASS, 64kg; DROP, 760mm						C PENETRA		<u></u>	HYDRA		ONDUCT		HAM	ИER Т` I	PE: AUTOMATIC
METRES	BORING METHOD	SOIL PROFILE	ATA DE	LEV. EPTH (m)	TYPE	ш	RESISTA 20	ANCE, BLOV 40 5TRENGTH 40	VS/0.3m 60 I nat V rem V. (80	10 W/	k, cm/s) ⁻⁹ 1(ATER CO	0 ³⁸ 10 DNTENT 0W) ⁻⁷ 1(PERCEN	NT WI	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
0		GROUND SURFACE TOPSOIL		181.94													
1	Acker SollMax Hollow Stern Auders	SILTY CLAY; light brown;		180.42													Sand
		CONTINUED NEXT PAGE															
DEF 1:2		SCALE						GOL	DE	R							DGGED: TP ECKED: SM

	PF	roj	JECT: 1771656	F	RECO	DR	D	OF	F BC	DRE	HOL	E:	BH	17-1	0S				SH	HEET 2 OF 2	
	LC	CA	ATION: N 4752127.45; E 646718.75				B	ORII	NG DAT	E: Apr	il 5, 201	7							DA	ATUM: Geodetic	
	SF	PT/C	DCPT HAMMER: MASS, 64kg; DROP, 760mm															HAM	/IER TY	PE: AUTOMATIC	
	ш		SOIL PROFILE		1	SA	MPLE	s	DYNAN RESIS	IC PEN	ETRATIO BLOWS/	0N 0.3m	~	HYDR/	AULIC Co k, cm/s	ONDUCT	FIVITY,	T	ĞĽ	PIEZOMETER	
	DEPTH SCALE METRES		SOIL PROFILE 9 9 9 9 10 10 11 12	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	2 SHEAF Cu, kPa 2	STREN	IGTH r r	∟ atV.+ emV.⊕	30 Q - ● U - ○ 30	w w	0 ⁻⁹ 10 ATER CO		PERCE		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION	
	- 5		CONTINUED FROM PREVIOUS PAGE SILTY CLAY; light brown;				4													1.2	
-	- 6		END OF BOREHOLE		176.02 5.92															Screen and Sand	<u>NENENENENENENENENE</u>
LIENTS/RANKIN_CONSTRUCTION/POF	- 7 - 8		TH SCALE							G0			8							DGGED: TP	
¥ و	1:	DEPTH SCALE LOGGED: TP 1:25 CHECKED: SM																	СН	ECKED: SM	

		T: 1771656 DN: N 4752362.64; E 646595.40	I	REC	OI			ING DATE:			H17-1D			HEET 1 OF 3 ATUM: Geodetic
SF	PT/DCF	PT HAMMER: MASS, 64kg; DROP, 760mm										HAMM	/IER T)	YPE: AUTOMATIC
Щ	Ð	SOIL PROFILE			SA	AMPL	ES	DYNAMIC PE RESISTANCE	ENETRATION E, BLOWS/0.3	3m <	HYDRAULIC CONDUC k, cm/s		ں 19	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	20 I SHEAR STRE Cu, kPa 20	40 60 ENGTH nat rem 40 60	80 V. + Q- ● nV. ⊕ U- C 80	WATER CONTEN	10 ⁻⁷ 10 ⁻⁶ ⊥ T PERCENT /I WI 30 40	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
		GROUND SURFACE OVERBURDEN - TOPSOIL over SILTY CLAY ; reddish brown		181.99										$a_{1} \times a_{2} \times a_{3} \times a_{3$
	EPTHS	SCALE		•		•						- I		OGGED: TP
	: 25							G		ER				ECKED: SM

		T: 1771656	RECO	ORE) C	of Bor	EHOLE:	BH	117-1D		SH	IEET 2 OF 3
LO	CATIC	DN: N 4752362.64; E 646595.40			BOR	ING DATE: F	ebruary 6, 2017				DA	ATUM: Geodetic
SP	T/DCF	PT HAMMER: MASS, 64kg; DROP, 760mm							1			PE: AUTOMATIC
are	THOD	SOIL PROFILE		SAMP	_	1	E, BLOWS/0.3m	Ì,	HYDRAULIC CONDUCTIVITY k, cm/s	΄, Ι	ING ING	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	(m) (m) (m)	NUMBER	BLOWS/0.3m	20 SHEAR STRI Cu, kPa 20	ENGTH nat V. + rem V.	80 - Q - ● ∋ U - ○ 80		10 ⁻⁶ CENT - WI 40	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
		CONTINUED FROM PREVIOUS PAGE OVERBURDEN - TOPSOIL over SILTY CLAY ; reddish brown										
DE 1 :												
	DEPTH SCALE LOGGED: TP 1:25 CHECKED: SM											

PF	ROJEC	CT: 1771656	R	ECO	ORI	DC)F B	ORE	HOI	.E:	BH	17-1	D				SH	HEET 3 OF 3
LC	CATIO	DN: N 4752362.64; E 646595.40				BOR	ING DA	TE: Feb	oruary 6,	2017							DA	ATUM: Geodetic
SF	PT/DCI	PT HAMMER: MASS, 64kg; DROP, 760mm														HAMM	IER T	PE: AUTOMATIC
ΤE	ДОН	SOIL PROFILE			SAMF	PLES	DYNA RESIS	MIC PEN TANCE,	ETRATIO BLOWS/	DN 0.3m	~		AULIC Co k, cm/s	ONDUC	FIVITY,	T	٨L NG	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	TA □	ELEV. DEPTH (m)	NUMBER	BLOWS/0.3m	SHEAI Cu, kP	L R STREN a	IGTH r r		U- O		ATER CO				ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
10		CONTINUED FROM PREVIOUS PAGE																
		OVERBURDEN - TOPSOIL over SILTY CLAY ; reddish brown END OF BOREHOLE - AUGER REFUSAL - For Bedrock coring details, refer to Record of Drillhole BH17-1D		<u>171.78</u> 10.21														
- - - 11 - -																		
																		-
																		- - - - -
																		- - - - -
		SCALE					>	GO		EF	2							DGGED: TP ECKED: SM

		CT: 1771656 DN: N 4752362.66; E 646597.97	RI	ECO				REHC March 29		BH	17-1	S					HEET 1 OF 2 ATUM: Geodetic
SF	T/DCF	PT HAMMER: MASS, 64kg; DROP, 760mm													HAMN	/IER T	YPE: AUTOMATIC
щ	DO	SOIL PROFILE		5	Sampl	.ES	DYNAMIC	PENETRA	ION S/0.3m	ì		AULIC C k, cm/s	ONDUCT	TVITY,	Т	, U	
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	TA DE	LEV. EPTH (m)	TYPE	BLOWS/0.3m	20	40 TRENGTH 40	60 a nat V. + rem V. ∉	B0 - Q - ● 9 U - O B0	10 W/) ⁻⁹ 1 ATER C	0 ⁻⁸ 10 DNTENT ONTENT	PERCEN		ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
— o		GROUND SURFACE	1	182.07											•		
	Acker SoilMax Hollow Stem Auges	TOPSOIL SILTY CLAY; reddish brown;		180.55 1.52													Bentonite Seal
		CONTINUED NEXT PAGE															
DE 1 :	:PTH \$ 25	SCALE					G	OL	DEI	R							DGGED: TP ECKED: SM

				⊡ 1771656 N: N 4752362.66; E 646597.97	I	REC	OF			F B				BH	17-1	S					IEET 2 OF 2 .TUM: Geodetic
	SF	PT/D	DCP	T HAMMER: MASS, 64kg; DROP, 760mm															HAMN	IER T	PE: AUTOMATIC
	Ш	0	Q H	SOIL PROFILE			SAI	MPL	ES	DYNAM RESIST	IIC PEN	ETRATIC BLOWS/	N).3m	\mathbf{i}	HYDR	AULIC Co k, cm/s	ONDUCT	rivity,	T	Ğŕ	PIEZOMETER
	DEPTH SCALE METRES		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	21 SHEAR Cu, kPa 21	R STREN	0 6 GTH n r 0 6	atV. + emV.⊕	Q - • U - O	Wp			PERCE		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
	- 5	Acker SoilMax	Hollow Stem Augers	CONTINUED FROM PREVIOUS PAGE SILTY CLAY; reddish brown;		<u>176.02</u> 6.05															Screen and Sand
IS 001 S//CLIENTS/RANKIN_CONSTRUCTION/PORT_COLBORNE_QUARRY/02_DATA/GIN1/17/1666.GPJ_GAL-MIS.GDT_7/27/20	- 7 - 8 - 10																				
GTA-BHS 001		EPT : 25		CALE							GO	LD	E	2							DGGED: TP ECKED: SM

		T: 1771656 DN: N 4752109.43; E 646602.90	I	REC	OI			OF BORI ING DATE: M			117-2D			HEET 1 OF 2 ATUM: Geodetic
SF	PT/DCF	PT HAMMER: MASS, 64kg; DROP, 760mm							-, -			HAMM	IER TY	YPE: AUTOMATIC
Щ	Q	SOIL PROFILE	_		SÆ	AMPL	ES	DYNAMIC PE RESISTANCE	NETRATION , BLOWS/0.3n		HYDRAULIC CONDUCTIV k, cm/s	ITY, T	Q'L	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	SHEAR STRE Cu, kPa	40 60 NGTH nat V rem V	80 7. + Q- ● 7. ⊕ U- O 80	10 ⁻⁹ 10 ⁻⁸ 10 ⁻⁷ WATER CONTENT PE Wp I OW 10 20 30	10 ⁻⁶ ⊥ ERCENT → WI 40	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
		GROUND SURFACE OVERBURDEN - TOPSOIL, over SILTY CLAY ; reddish brown		181.70										17. W.F. W.F. W.F. W.F. W.F. W.F. W.F. W.
	EPTH S	SCALE		•					, , , , , , , , , , , , , , , , , , ,			I		OGGED: TP
	: 25							GC		- K				ECKED: SM

F	PRO	JECT	F: 1771656		REC	OF	RD	0	F B(ORE	HOI	_E:	BH	17-2	D				Sł	HEET 2 OF 2
L	.004	ATIO	N: N 4752109.43; E 646602.90				В	ORIN		ГЕ: Ма	rch 29, 2	2017							DA	ATUM: Geodetic
5	SPT/I	DCP	T HAMMER: MASS, 64kg; DROP, 760mm															HAM		PE: AUTOMATIC
ΓE		НОВ	SOIL PROFILE			SAI	MPLE	s	DYNAM RESIS	VIC PEN TANCE,	ETRATIO BLOWS/	0N 0.3m	~		AULIC C k, cm/s	ONDUC	TIVITY,	T	٨L NG	PIEZOMETER
DEPTH SCALE		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	SHEAF Cu, kPa	I R STREN a	IGTH r r	∟ atV. + emV.⊕	Q - • U - O	Wp	ATER CO		PERCE		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
			CONTINUED FROM PREVIOUS PAGE OVERBURDEN - TOPSOIL, over SILTY CLAY ; reddish brown END OF BOREHOLE - AUGER REFUSAL - For Bedrock coring details, refer to Record of Drillhole BH17-2D		173.01 8.69															
4)EP		VALE					Ľ	<u>></u>	GO) E F	२							DGGED: TP ECKED: SM

		T: 1771656 N: N 4752108.56; E 646604.84	F	REC	OF							BH	17-2	2S					HEET 1 OF 2 ATUM: Geodetic
SPT/[DCP	T HAMMER: MASS, 64kg; DROP, 760mm															HAM	MER T	YPE: AUTOMATIC
		SOIL PROFILE			SA	MPL	ES	DYNA		ETRATIC BLOWS/	N 0.2m	>	HYDR	AULIC C	ONDUCI	FIVITY,	T		
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	2	0 4 R STREN a	0 6 L GTH n	0 8 at V. + em V. ⊕	Q - • U - •	w w	ATER C		PERCE		ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
0	_	GROUND SURFACE		181.70															
1	Holiow Stem Augers	TOPSOIL SILTY CLAY; reddish brown;		0.00 180.18 1.52															Bentonite Seal
		CONTINUED NEXT PAGE																	
DEP1 1 : 25		CALE							GO	LC	E	2							DGGED: TP ECKED: SM

			T: 1771656	I	REC	OF	RD	0	F BO	REF	IOL	.E:	BH	17-2	S				SF	IEET 2 OF 2
	LO	CATIO	N: N 4752108.56; E 646604.84				В	ORII	NG DATE:	March	n 30, 20	017							DA	ATUM: Geodetic
	SP		T HAMMER: MASS, 64kg; DROP, 760mm			1			DIALANIC				<u> </u>					HAMN		(PE: AUTOMATIC
l	SALE	THOD	SOIL PROFILE	L.		SAI	MPLE		DYNAMIC RESISTAN	NCE, BL	OWS/0	.3m	``		k, cm/s				AAL ING	PIEZOMETER
	UEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	20 SHEAR S Cu, kPa 20	40 TRENGT 40	60 TH na re 60	at V. + m V. ⊕	Q - ● U - O	Wp	ATER CO	I DNTENT O ^W	PERCE		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
S:CLIENTSIRANKIN_CONSTRUCTIONIPORT_COLBORNE_QUARRY/02_DATA/GIN17/1656.GPJ_GAL-MIS.GDT_7/27/20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	M 5 6 6 7 7 8 8 9 9 10	Acker SoliMax BORIN Hollow Stem Augers BORIN	CONTINUED FROM PREVIOUS PAGE SILTY CLAY; reddish brown; END OF BOREHOLE	STRAT				BLOW												Screen and Sand
GIA-BHS 001 S	DE 1 :	PTH S 25	CALE		<u> </u>				G	i 0 I	LD	EF	2							DGGED: TP ECKED: SM

		T: 1771656 N: N 4751983.70; E 646823.07	I	REC	OI				REHO		BH	17-3D				HEET 1 OF 2 ATUM: Geodetic
SF	T/DCF	T HAMMER: MASS, 64kg; DROP, 760mm							. Maron 20,	2011				HAI	MER T	YPE: AUTOMATIC
	<u> </u>	SOIL PROFILE			SÆ	MPL	.ES		C PENETRATI	ON /0.3m	2	HYDRAULIC CC k, cm/s	NDUCTIVI		_	
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	20	40 I STRENGTH	60 8 ⊥ nat V. + rem V. ⊕	30 Q - ● U - O 30	10 ⁹ 10 WATER CC Wp I 10 20			ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
		GROUND SURFACE OVERBURDEN - TOPSOIL, over SILTY CLAY; reddish brown		181.99												
	PTH S	CALE											·		L	OGGED: TP
د 1:	25								GOL		ĸ					ECKED: SM

			Г: 1771656		REC	OF	RD	0	FΒ	ORE	HO	-E:	BH	17-3	D				Sł	IEET 2 OF 2
	LO	CATIO	N: N 4751983.70; E 646823.07				В	OR	NG DA	ГЕ: Ма	rch 23, 2	2017							DA	ATUM: Geodetic
	SP	T/DCP	T HAMMER: MASS, 64kg; DROP, 760mm															HAMM	MER TY	PE: AUTOMATIC
	LE	ЧОР	SOIL PROFILE			SA	MPL	ES	DYNA RESIS	VIC PEN TANCE,	ETRATIO BLOWS/	DN 0.3m) \	HYDR/	AULIC C k, cm/s	ONDUCT	TIVITY,	T	lG L	PIEZOMETER
	DEPTH SCALE METRES	BORING METHOD		PLOT	ELEV.	ER	ш	0.3m		1	1	1	80			0 ⁻⁸ 10	I	0 ⁻⁶ ⊥	ADDITIONAL LAB. TESTING	OR STANDPIPE
	DEPTH ME	DRING	DESCRIPTION	STRATA PLOT	DEPTH	NUMBER	ТҮРЕ	BLOWS/0.3m	SHEAI Cu, kP	R STREM a	IGTH r	atV. + emV.⊕	Q - ● U - O			ONTENT			ADDI ⁻ LAB. T	INSTALLATION
	-	BC		STF	(m)	~		BL	2	20 4	10 E	іо в	80					0	_	
ŀ	- 5		CONTINUED FROM PREVIOUS PAGE OVERBURDEN - TOPSOIL , over SILTY	***																â-â
			CLAY ; reddish brown																	
╞					176.63															-
t			END OF BOREHOLE - AUGER REFUSAL		5.36															
			- For Bedrock coring details, refer to Record of Drillhole BH17-3D																	-
┢																				-
ľ																				-
	- 6																			-
ŀ																				-
																				-
ŀ																				-
ľ																				
ŀ																				
t																				
╞	- 7																			
27/20																				-
DT 7																				-
AIS.G	-																			-
GAL-N																				-
656.GPJ GAL-MIS.GDT 7/27/20																				-
1656.																				-
17177	- 8																			-
A/GIN																				-
																				-
RY/02																				-
QUAR																				-
L NE																				-
																				-
Ŭ	- 9																			-
																				-
																				-
SIR(-
0																				-
																				-
IS/R/																				-
	10																			-
)1 S:\	10																			
HS 00	DF	DEPTH SCALE LOGGED: TP 1:25 CHECKED: SM																		
GTA-BHS 001 S:/CLIENTS\RANKIN_CONSTRUCTION\PORT_COLBORNE_QUARRY\02_DATA\GINT\1771	1:									G ()	' L L		≺							ECKED: SM

			T: 1771656	I	REC	OF	RD	0	F B(ORE	HOI	.E:	BH	17-3	BS					HEET 1 OF 2
LO	CAI	noi	N: N 4751985.67; E 646822.97				В	ORI	NG DAT	'E: Mar	rch 27, 2	2017							D	ATUM: Geodetic
SP	T/D	CP	THAMMER: MASS, 64kg; DROP, 760mm															HAM	MER T	YPE: AUTOMATIC
ALE	HOD		SOIL PROFILE			SA	MPL		DYNAM RESIST	/IC PENI TANCE, I	ETRATIO BLOWS/	0N 0.3m	λ,		k, cm/s	ONDUC		T	AL	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	2(SHEAR Cu, kPa 2(R STREN	IGTH r r	∟ atV.+ emV.⊕	Q - • U - O	w wr					ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
- 0			GROUND SURFACE	555	182.06												Ĩ	Ĭ		
- 1 - 2	Acker SoliMax	Holiow Stem Augers	SILTY CLAY; reddish brown;		180.54															Sand
- 5																				
DE 1 : :		 + S(CALE	1	I	1			>	GO		EF	2	I	I	I	1	<u> </u>		OGGED: TP ECKED: SM

Р	ROJE	CT: 1771656		REC	OF	RD	0)F B	ORE	HOI	.E:	BH	17-3	S				SH	HEET 2 OF 2	
Ŀ	CAT	ION: N 4751985.67; E 646822.97				E	BORI	ING DA	re: Ma	rch 27, 2	017							DA	ATUM: Geodetic	
s	PT/D	CPT HAMMER: MASS, 64kg; DROP, 760mm															HAM	/IER T)	PE: AUTOMATIC	
щ	Q	SOIL PROFILE	_		SA	MPL	ES	DYNAI RESIS	VIC PEN TANCE,	ETRATIO	0N 0.3m	$\sum_{i=1}^{n}$	HYDRA	AULIC C k, cm/s	ONDUCT	IVITY,	Т	ں _	DIEZONIETE	-5
SCAL	METH		гот		R		0.3m		1	1		0	10	0 ⁻⁹ 1	0 ⁻⁸ 10	0 ⁻⁷ 1	0 ⁻⁶ ⊥	TIONA	PIEZOMETE OR STANDPIPI	
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	ТҮРЕ	BLOWS/0.3m	SHEAF Cu, kP	R STREN a	GTH r	at V. + em V. ⊕	Q - ● U - O			ONTENT		NT	ADDITIONAL LAB. TESTING	INSTALLATIO	
	B		STF	(m)	2		BL	2	0 4	06	0 8	0					0			
	;	CONTINUED FROM PREVIOUS PAGE SILTY CLAY; reddish brown;																		<u>a</u> -a-
Ē				176.88 5.18															Screen and Sand	
-		END OF BOREHOLE		5.16																-
-																				-
È																				-
-																				-
-																				-
Ē,	5																			
-																				-
ŀ																				-
F																				-
-																				
Ē																				
-																				
-																				
1711	7																			
- פָּר																				-
																				-
																				-
																				-
																				-
	3																			-
																				-
																				-
																				-
																				-
																				-
																				-
)- 	,																			_
																				-
																				-
																				-
3-																				-
																				-
																				-
																				-
0 0 0)																			_
200																				
-		ISCALE					Ĭ	S	GΟ	LC	EF	2								
<u>1</u>	: 25		DEPTH SCALE LOGGED: TP 1:25 CHECKED: SM																	

		T: 1771656	I	REC	OF	RD	0	F BOR	EHOI	_E:	BH	17-4	D				SH	IEET 1 OF 1
LC	OCATIC	DN: N 4751621.30; E 646626.89				В	ORI	NG DATE: Fe	bruary 27	7, 2017							DA	ATUM: Geodetic
SI	1	PT HAMMER: MASS, 64kg; DROP, 760mm						D)4/11/2 -			<u> </u>	10.07 -		0.15		HAMM	IER T) ۱	PE: AUTOMATIC
ALE	THOD	SOIL PROFILE	-		SA	MPLI		DYNAMIC PEI RESISTANCE			ζ,		k, cm/s	ONDUCT		.]	ING	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	SHEAR STRE Cu, kPa	J NGTH r r	∟ natV. + emV.⊕		Wp			PERCE	WI	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
		DESCRIPTION GROUND SURFACE OVERBURDEN - TOPSOIL , over SILTY CLAY ; reddish brown For Bore dish brown END OF BOREHOLE - AUGER REFUSAL - For Bedrock coring details, refer to Record of Drillhole BH17-4D		DEPTH		TYPE	BLOWS00	Cu, kPa		aat V. + em V. ⊕ :0 8			I		I`		ADDITI LAB.TE	
T T	EPTH S	SCALE			•			GC	LC	EF	2					·		DGGED: TP ECKED: SM

		T: 1771656	l	REC	OF	D	0	FB	ORE	HOI	.E:	BH	17-4	S				SH	IEET 1 OF 1
LOC	CATIO	N: N 4751619.19; E 646627.13				В	ORII	NG DAT	E: Feb	oruary 28	8, 2017							DA	ATUM: Geodetic
SPT	T/DCP	T HAMMER: MASS, 64kg; DROP, 760mm															HAMN	IER T	PE: AUTOMATIC
ALE	гнор	SOIL PROFILE	F		SAM	/IPLE		RESIS	TANCE,	ETRATIC BLOWS/	0.3m	Ì,		AULIC C k, cm/s			. T	AL	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	2 SHEAF Cu, kPa 2	R STREN	IGTH n r	∟ atV.+ emV.⊕	Q - • U - O	W. Wr	0 ⁻⁹ 10 ATER CO		PERCE	NT WI	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
- 0-		GROUND SURFACE	~~~~	182.53					4						.0 3	4	0		
		END OF BOREHOLE - AUGER REFUSAL - For Bedrock coring details, refer to Record of Drillhole BH17-4S		0.00															Bentonite Seal
	PTH S 25	CALE							GO	LD	E	2							DGGED: TP ECKED: SM

PROJECT:	1771656
LOCATION:	N 4751485.26; E 646415.54

RECORD OF BOREHOLE: BH17-5D

SHEET 1 OF 1 DATUM: Geodetic

BORING DATE: March 20, 2017

HAMMER TYPE: AUTOMATIC

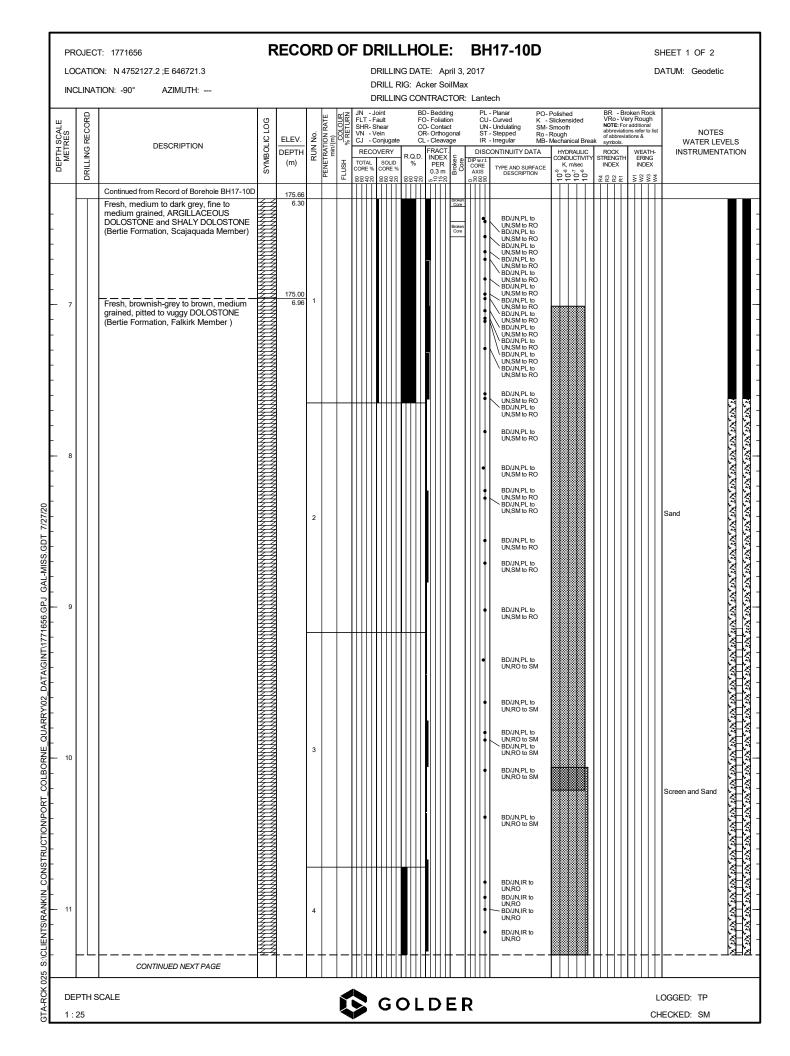
	SF	PT/DC	CPT HAMMER: MASS, 64kg; DROP, 760mm										HAMMER 1	TYPE: AUTOMATIC
	ΞŢ	ДQ	SOIL PROFILE			SA	MPL	.ES	DYNAMIC PENETR RESISTANCE, BLC		HYDRAULI k, cr	C CONDUCTIVITY, m/s	ة ال	PIEZOMETER
	DEPTH SCALE METRES	BORING METHOD		STRATA PLOT		Ř		0.3m	20 40	60 80	10 ⁻⁹	10 ⁻⁸ 10 ⁻⁷ 1	ADDITIONAL LAB. TESTING	OR
	MET	SING	DESCRIPTION	ATA F	ELEV.	NUMBER	ТҮРЕ	BLOWS/0.3m	SHEAR STRENGT Cu, kPa	TH nat V. + Q - ● rem V. ⊕ U - O	WATE	R CONTENT PERCE	TI DE LE	STANDPIPE INSTALLATION
	B	BOR		STR	(m)	٦	[BLO	20 40	60 80	Wp		wi ₹⊴ ю	
			GROUND SURFACE		182.56									
	- 0		OVERBURDEN - TOPSOIL		0.00									
	_				X									
	_				<u>x</u>									
	_				X									
	-			_ <u></u>	182.05									
	-		END OF BOREHOLE - AUGER REFUSAL		0.51									
	-		- For Bedrock coring details, refer to Record of Drillhole BH17-5D											
	-		Record of Drillhole BH17-5D											
	-													
	- 1													_
	_													
	_													
	-													
	-													
	-													
	-													
	-													
	- - 2													
20														_
7/27/	_													
Ц	-													
DATA/GINT/1771656.GPJ GAL-MIS.GDT 7/27/20	-													
AL-N	-													
Э Г	-													
6.GF	-													
7165	-													
T17	- 3													
\GIN	-													
ATA	_													
RY	-													
QUAF	-													
Щ	-													
30R	_													
COLE	_													
RT_	- 4													-
N/PO	-													
TIO	-													
RUC	-													
NST	-													
2	-													
NKIN	-													
S/RA	_													
ENT	-													
:/CLI	5													-
01 S.														
GTA-BHS 001 S:\CLIENTS\RANKIN_CONSTRUCTION\PORT_COLBORNE_QUARRY\02	DF	ЕРТН	SCALE										I	LOGGED: TP
TA-E	1 ·	25							🕏 GOL	DER				HECKED: SM
Ċ		-												

				T: 1771656	F	REC	OF	RD	0	F BOR	EHO	.E:	BH	117-5	S					HEET 1 OF 1
Image: Properties Solution Solution Solution Provide and an and and and and and and and and		LOU	JAHO	N. N 4751460.30, E 646415.35				B	ORI	NG DATE: I	/larch 23, 2	2017							D/	ATUM: Geodetic
UND OF ION LL. Other Cold Restance E, ROWSDam K.mms K.mms K.mms K.mms K.mms K.mms K.mms Fille PEZORATER PEZORATER PEZORATER Restance E, ROWSDam K.mms K.mms K.mms K.mms K.mms K.mms Fille PEZORATER Restance E, ROWSDam K.mms K.mms Fille PEZORATER Restance E, ROWSDam K.mms K.mms Fille F		SP	r/dcp	T HAMMER: MASS, 64kg; DROP, 760mm														HAMM	IER T	YPE: AUTOMATIC
O GROUND SURFACE Image: Constraint of the second of the s	Ц		DOH	SOIL PROFILE			SAI			DYNAMIC P RESISTANC	ENETRATIC E, BLOWS/	0N 0.3m	Ì,		k, cm/s			Ţ	AL	PIEZOMETER
O GROUND SURFACE Image: Constraint of the second of the s	DEPTH SC.	METRES	BORING MET	DESCRIPTION	TRATA PLO	DEPTH	NUMBER	ТҮРЕ	3LOWS/0.3m	SHEAR STR Cu, kPa	ENGTH r	ı atV. + emV.⊕	Q - ● U - O	w w				NT WI	ADDITION LAB. TEST	STANDPIPE
	-	_	-	GROUND SURFACE	S	182.58				20	<u>40 6</u>	<u>8 0</u>	0	1	0 2	0 3	0 4	0		
	656.GPJ GAL-MIS.GDT 7/27/20	0.		OVERBURDEN - TOPSOIL END OF BOREHOLE - AUGER REFUSAL		<u>182.58</u> 0.00												0		Bentonite Seal
	A-BHS 001 S:\CLIENT		PTH S	CALE						G			 ז							

	PR	OJEC	T: 1771656		REC	OF	RD	0	F BC	ORE	HOL	_E:	BH	17-6	D				SH	HEET 1 OF 1	
	LO	CATIC	DN: N 4751418.07; E 646833.18				В	ORI	NG DAT	E: Feb	oruary 22	2, 2017							DA	ATUM: Geodetic	
	SP	T/DCF	PT HAMMER: MASS, 64kg; DROP, 760mm															HAM		PE: AUTOMATIC	
	L L	ДОН	SOIL PROFILE	1.		SAI	MPLE		DYNAM RESIST	IIC PEN ANCE,	ETRATIC BLOWS/	0N 0.3m	λ.	HYDR/	AULIC C k, cm/s	ONDUCI	TIVITY,	T	NG	PIEZOMETE	R
	DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	20 SHEAR Cu, kPa	STREN	IGTH n r	∟ latV. + emV.⊕	U- O	w wr			PERCE	WI	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATIC	
	- 0 - 1 - 2 - 3		GROUND SURFACE OVERBURDEN - TOPSOIL, over SILTY CLAY; reddish brown END OF BOREHOLE - AUGER REFUSAL - For Bedrock coring details, refer to Record of Drillhole BH17-6D		(m) 181.83 0.00 178.48 3.35													0			
GIA-BH	DE 1 :		SCALE							GO	LD	E	2							DGGED: TP ECKED: SM	

		JECT: 1771656 ATION: N 4751420.19; E 646833.02	RECOF		ING DATE: February 23, 2017	BH17-6S	SHEET 1 OF 1 DATUM: Geodetic
5	SPT/D	DCPT HAMMER: MASS, 64kg; DROP, 760mm					HAMMER TYPE: AUTOMATIC
щ	E	SOIL PROFILE	SA	MPLES	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	
DEPTH SCALE	RORING METH	G SOIL PROFILE	STRATA PLOT (m) HLdad 'A 'A 'A 'A 'A 'A 'A 'A 'A 'A 'A 'A 'A	TYPE BLOWS/0.3m	20 40 60 8 SHEAR STRENGTH nat V. + Cu, kPa rem V. ⊕	Q - • WATER CONTENT PERCE	
	0 xeWloSJayby 3 4	GROUND SURFACE OVERBURDEN - TOPSOIL , over SILTY CLAY ; reddish brown END OF BOREHOLE - AUGER REFUSAL - For Bedrock coring details, refer to Record of Drillhole BH17-6S					Bentonite Seal
4	DEPTH	TH SCALE			GOLDEF	2	LOGGED: TP CHECKED: SM

PR	OJEC	T: 1771656		REC	OF	RD	0	F BO	REH	OLE	E: E	3H17-	-7D				SH	HEET 1 OF 1
LO	CATIC	N: N 4751237.03; E 646634.77				В	ORI	NG DATE:	March	1, 2017							DA	ATUM: Geodetic
SP	T/DCP	PT HAMMER: MASS, 64kg; DROP, 760mm														HAMN	IER T	PE: AUTOMATIC
ΤE	дон	SOIL PROFILE			SAI	MPLE	S	DYNAMIC RESISTA	PENETR	ATION WS/0.3r	n \	HYE	RAULIC C k, cm/s	ONDUCT	TIVITY,	T	Ğŕ	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	20 SHEAR S Cu, kPa 20		rem	V.⊕ U-		10 ⁻⁹ 1 WATER C Wp			wi	ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
		GROUND SURFACE OVERBURDEN - TOPSOIL , over SILTY CLAY ; reddish brown END OF BOREHOLE - AUGER REFUSAL - For Bedrock coring details, refer to Record of Drillhole BH17-7D					1910 B											
2:0 DE DE 1:		CALE						G G	OL	. D I	ER							- DGGED: TP ECKED: SM


	PR	OJEC-	T: 1771656		REC	OF	RD	0	F BC	ORE	HOL	_E:	BH	17-7	'S				Sł	IEET 1 OF 1
	LOC	CATIO	N: N 4751234.36; E 646634.86				В	ORI	NG DATI	E: Mar	ch 7, 20)17							D	ATUM: Geodetic
	SP	r/DCP	T HAMMER: MASS, 64kg; DROP, 760mm															HAMN	/IER T	PE: AUTOMATIC
Ш		нор	SOIL PROFILE			SA	MPL	ES	DYNAM RESIST	IC PENE ANCE, E	ETRATIC BLOWS/	0N 0.3m	~	HYDRA	AULIC Co k, cm/s	ONDUCT	IVITY,	T	AL NG	PIEZOMETER
DEPTH SCALE	METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	20 SHEAR Cu, kPa 20	STREN	GTH n	0 8 LatV. + emV.⊕	Q - ● U - O	Wp			PERCEN	wi	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
	1	Acker SolMax Hollow Stern Augers Hollow Stern Augers	GROUND SURFACE OVERBURDEN - TOPSOIL , over SILTY CLAY ; reddish brown END OF BOREHOLE - AUGER REFUSAL - For Bedrock coring details, refer to Record of Drillhole BH17-7S		DEPTH		TYP TYP	SMOTA BOOK SMOTA			n		U- O				I \			Bentonite Seal
	5																			- -
	DEF 1 : 2		CALE							G 0	LC) E F	2							DGGED: TP ECKED: SM

						00	// \// \		arch 8, 2	• • •								
SP	T/DCP	T HAMMER: MASS, 64kg; DROP, 760mm														HAMN		PE: AUTOMATIC
	DOH.	SOIL PROFILE			SAN	IPLE:	_	DYNAMIC PE RESISTANCE	NETRATI , BLOWS	ON /0.3m	Ì.		AULIC CO k, cm/s		FIVITY,	T	NG ^A L	PIEZOMETER
	BORING METHOD		STRATA PLOT	ELEV.	BER	ш	BLUWS/U.3M	20 SHEAR STRE		1	30		0 ⁻⁹ 10 L ATER C0		1	0 ⁻⁶	ADDITIONAL LAB. TESTING	OR STANDPIPE
MEIKES	ORING	DESCRIPTION	RATA	DEPTH	NUMBER	TYPE		Cu, kPa	INGTH	nat V. + rem V. ⊕	U- O					WI	ADD	INSTALLATION
_	ă	GROUND SURFACE	ST	(m)		i	ñ	20	40	60 E	30					0		
0		OVERBURDEN - TOPSOIL	- 	181.39 0.00		+												
		END OF BOREHOLE - AUGER		180.55 0.84														
1		REFUSAL																
		- For Bedrock coring details, refer to Record of Drillhole BH17-8D																
2																		
3																		
4																		
5																		

		T: 1771656	R	ECC	DR	DC)F B	ORE	HOI	.E:	BH	17-8	ß			SF	HEET 1 OF 1
LO	CATIO	N: N 4751097.20; E 646422.56				BOR	ING DAT	TE: Ma	rch 17, 2	017						DA	ATUM: Geodetic
SP	T/DCP	T HAMMER: MASS, 64kg; DROP, 760mm													HAMN	IER T	PE: AUTOMATIC
are	THOD	SOIL PROFILE			SAM	PLES	RESIS	TANCE,	ETRATIC BLOWS/	0.3m	λ,		k, cm/s	ONDUC	I	ING	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	D	ELEV. EPTH (m)	NUMBER	BLOWS/0.3m	2 SHEAF Cu, kPa 2	L R STREN a	40 6 1 IGTH n r 40 6	atV. + emV.⊕	Q - • U - •	w wr			0 ⁶	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
— o		GROUND SURFACE		181.46	_	\mp											
	Acker SoliMax Holiow Stem Augers	OVERBURDEN - TOPSOIL END OF BOREHOLE - AUGER REFUSAL - For Bedrock coring details, refer to Record of Drillhole BH17-8S		181.46 0.00													Bentonite Seal
2 5 0 0 0 0 0																	
	PTH S 25	CALE						GO	LD	EF	R						DGGED: TP ECKED: SM

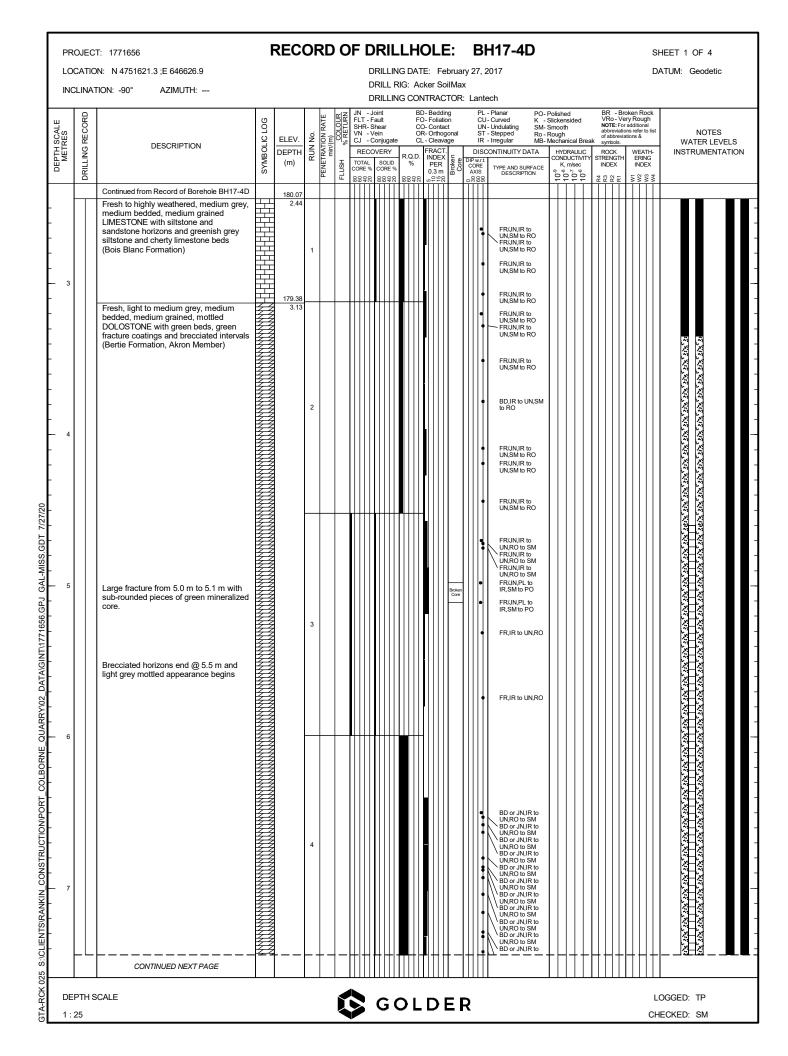
			: 1771656	I	REC	OF	RD	0	F BOF	REHOL	.E:	BH	17-9D				SF	IEET 1 OF 1
l	_OC/	ATIOI	N: N 4750972.13; E 646834.09				E	BORI	NG DATE:	February 14	, 2017						DA	TUM: Geodetic
:	_		THAMMER: MASS, 64kg; DROP, 760mm			_			DIALANIO						-11 (175) (HAMN		PE: AUTOMATIC
SALE	0	THOD	SOIL PROFILE	F		SA	MPL		RESISTAN	PENETRATIC	0.3m	ζ,	HYDRAULIC k, cm	s		Ĩ		PIEZOMETER
DEPTH SCALE		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	Cu, kPa	RENGTH n	em V. 🕀	Q - ● U - O	Wp 🛏	10 ⁻⁸ 10 CONTENT	PERCEN		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
	0 - 1 3 4		GROUND SURFACE OVERBURDEN - TOPSOIL , over SILTY CLAY ; reddish brown END OF BOREHOLE - AUGER REFUSAL - For Bedrock coring details, refer to Record of Drillhole BH17-9D		(m) 180.75 0.00 178.62 2.13													
4	DEP ⁻ 1 : 2{		CALE						G	OLD	EF	2						DGGED: TP ECKED: SM

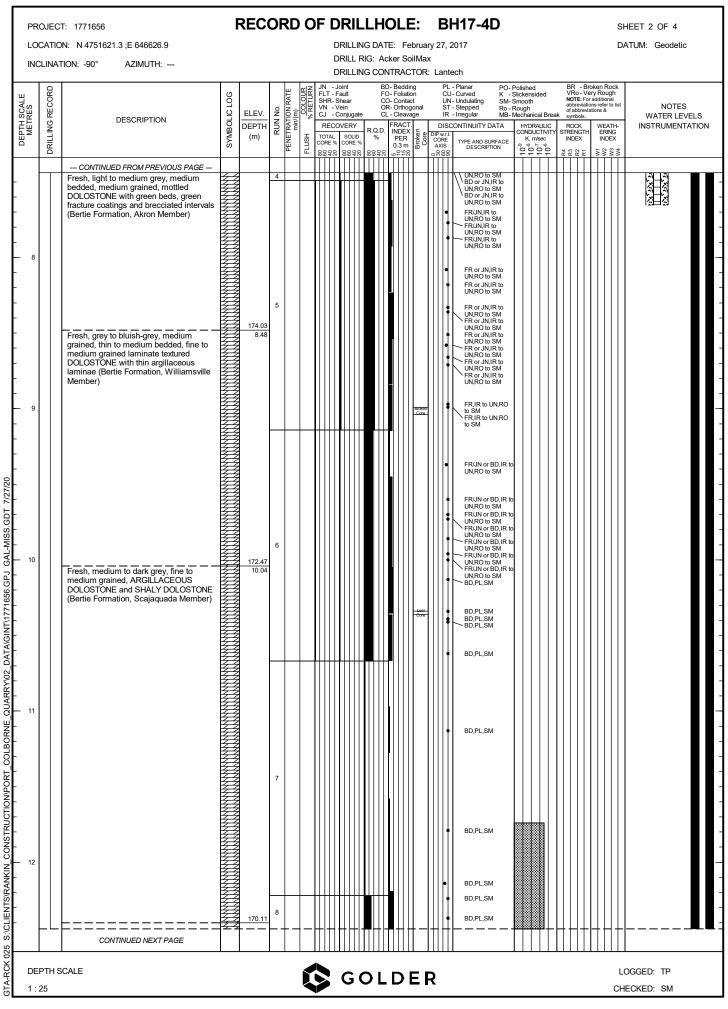
		T: 1771656 N: N 4750974.29; E 646834.03	I	REC	OF			F BORE			17-9S				IEET 1 OF 1 ITUM: Geodetic
SF	T/DCP	T HAMMER: MASS, 64kg; DROP, 760mm											HAM	MER TY	PE: AUTOMATIC
ILE	нор	SOIL PROFILE		1	SA	MPL		DYNAMIC PEN RESISTANCE,	IETRATION BLOWS/0.3r	ے بر	HYDRAULIC (k, cm/s	CONDUCTIVITY	T	NG	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	SHEAR STREI Cu, kPa	40 60 I I NGTH nat V rem 40 60	80 V. + Q- ● V. ⊕ U- O 80	WATER C	$\frac{10^8 10^7}{0}$ CONTENT PERC $\frac{0}{0}$ 20 30		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
	Acker SoliMax Hollow Stem Augers			180.71 0.00											Bentonite Seal
Ĩ	PTH S 25	CALE						GC	LDI	ER					DGGED: TP ECKED: SM

L	CA	ECT: 1771656 TION: N 4752127.2 ;E 646721.3 NATION: -90° AZIMUTH:	RE	COR	RD (OF	D	RILL	ING I RIG:	DAT : Ac	E: A ker S	pril 3 oilMa	2017	117-10	D				SHEET 2 OF 2 DATUM: Geodetic	
DEPTH SCALE METRES		DESCRIPTION		LEV. PTH (m)	PENETRATION RATE min/(m)	FLUSH & COLOON 80 0 - 0 / 0 - 0 - 0 - 0 - 0 - 0		hear	/ R.	FO CC OR	- Bedd - Folia - Conth - Ortho - Clear FRAC INDE PER 0.3 n	tion act logonal /age T. up X up You	CU UN ST IR DISC	- Planar - Curved - Undulating - Stepped - Irregular CONTINUITY DA TYPE AND SUF DESCRIPTI	SM- Sn Ro - Ro MB- Me	ckensided	NOTE: F	H ERING INDEX	st NOTES WATER LEVEL	
- - - - - 12 - -	2	CONTINUED FROM PREVIOUS PAGE Fresh, brownish-grey to brown, medium grained, pitted to vuggy DOLOSTONE (Bertie Formation, Falkirk Member)		4									•	BD/JN,IR tr UN,RO BD/JN,IR tr UN,RO BD/JN,IR tr UN,RO BD/JN,R tr BD/JN,PL,	o o SM				Screen and Sand	21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	5	Fresh, dark bluish grey to black argillaceous DOLOSTONE and SHALE (Bertie Formation, Oatka Member)		6 <u>9</u> .4 <u>9</u> 12.47 5									•	BD/JN,PL; BD/JN,PL; BD/JN,PL; BD/JN,PL; BD/JN,PL; BD/JN,PL;	SM SM SM SM				Backfill	
- 14		END OF DRILLHOLE		13.72																
	5																			- - - - - - - - - - - -
	EPT : 25	H SCALE						G	0	L	D	E	R						LOGGED: TP CHECKED: SM	

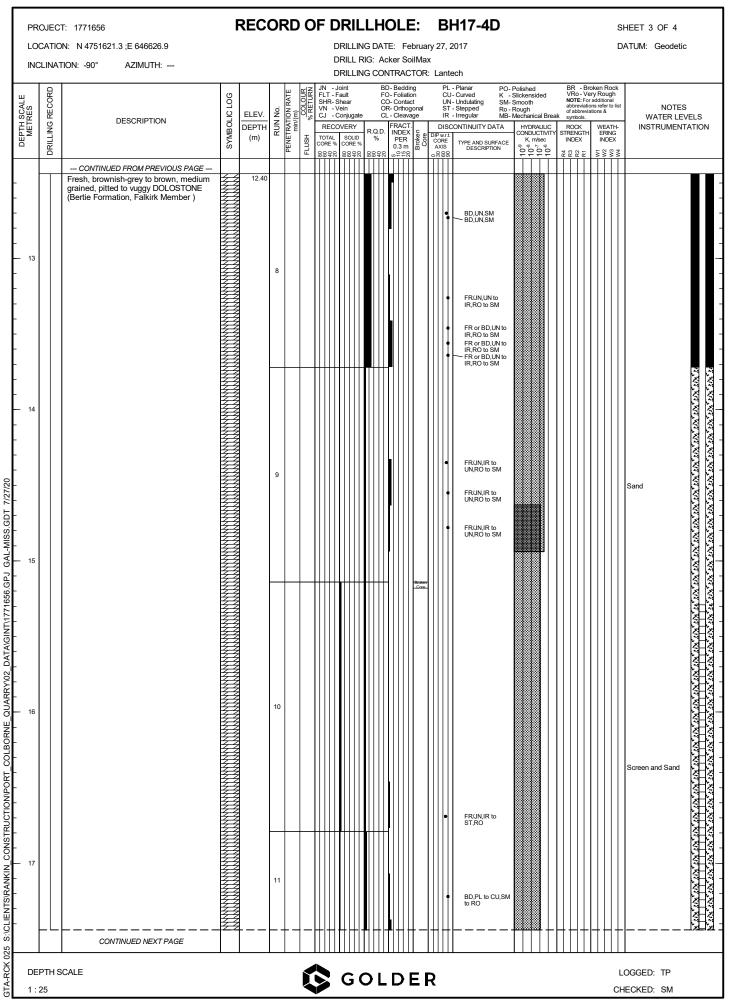
LOCATIO	T: 1771656 DN: N 4752362.6 ;E 646595.4 TION: -90° AZIMUTH:	F	REC	OF	RD	0		DR DR	ILLI ILL	NG RIG	DAT : Ac	OL E: ker	Feb Soil	ruar <u>.</u> Max	y 6,	20 ⁻		D								HEET 1 OF 3 ATUM: Geodetic
DEPTH SCALE METRES DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)		PENETRATION RATE min/(m)	FLUSH COLOUR % RETURN	JN - FLT - SHR- VN - CJ - REC TOTAL CORE 9 88949	She Veir Cor COVI	ear n njugat	- R	F(C(OI	FRA FRA FRA FRA FRA FRA FRA FRA FRA FRA	ation ntact nogo avag CT. EX R m	nal e Core	U S I	CU- JN- ST- R - SCC	Planar Curved Undulating Stepped Irregular DNTINUITY D/ TYPE AND SUF DESCRIPTI	SM- : Ro - I MB- I ATA	Slicke Smoo Roug Mech HY CON	ensided	ak s STF	AR - E /Ro - V IOTE: F Ibbrevia f abbre ymbols ROCK RENGT NDEX	For ad ations wiation	ditiona refer to	II Diist TH- IG EX	NOTES WATER LEVELS INSTRUMENTATION
	Continued from Record of Borehole BH17-1D Fresh, brownish-grey to brown, medium grained, pitted to vuggy DOLOSTONE (Bertie Formation, Falkirk Member) Fresh, dark bluish grey to black argillaceous DOLOSTONE and SHALE (Bertie Formation, Oatka Member)		<u>171.78</u> 10.21	2												•	BD,PL,SM BD,PL,SM BD,PL,SM BD,PL,SM BD,PL,SM BD,PL,SM BD,PL,SM FR/BC,PL FR/BC,PL	SM								Sand
 13 14 14 14 14 14 14 15 16 <	CONTINUED NEXT PAGE			3												•	BD,PL,SM BD,PL,SM						-			

LO	CATIC	T: 1771656 N: N 4752362.6 ;E 646595.4 FION: -90° AZIMUTH:	F	REC	OF	RD	0	F	DF DF	RILL RILL	ING RIG	DAT B: A	TE: cker	Feb Soil	oruar IMax	y 6, 2								HEET 2 OF 3 ATUM: Geodetic
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	PENETRATION RATE min/(m)	FLUSH COLOUR <u> <u> <u> <u> </u> </u></u></u>	FLT SHF VN CJ	R-Sh -Ve -Co ECO\ AL =%	ult iear	R 0 %	F C O	PE 0.3	iatior ntact hogo avag CT. EX R m	n onal je	CU UN ST IR	- Curved - Undulating - Stepped	K, I	sided	ak sy AK Sy AK STRI	OTE: Fo	H EF IN	onal er to list	NOTES WATER LEVELS INSTRUMENTATION
1	L	CONTINUED FROM PREVIOUS PAGE						$\parallel \mid$	$\parallel \mid$	Ш		$\parallel \mid$	$\parallel \mid$	Ш		Ш						$\parallel \mid$		
- - - - - 16 - - -		Fresh, dark bluish grey to black argillaceous DOLOSTONE and SHALE (Bertie Formation, Oatka Member)			4											•	BD,PL,SM FR,PL,PO BD,PL,SM BD,PL,SM							
					5											•	BD,PL,SM							
		fresh, fine to medium grained, thin to medium bedded, medium to dark grey, SHALE, with increasing gypsum horizons (Salina Formation)		<u>163.49</u> 18.50	6											• • • •	BD,PL,SM BD,PL,SM BD,PL,SM BD,PL,SM BD,PL,SM FR,PL,SM BD,PL,SM	~<						
-	μL				L-		_	$\downarrow \downarrow \downarrow$	ЦĻ			ЦI.		╎╢		ЦЦ	L		$\downarrow\downarrow$	╟╢		.	$ \downarrow$	
		CONTINUED NEXT PAGE						$\ $	$\left \right \right $				$\left \right \right $	[$\left \right \right $		
DE	PTH S	SCALE								G	0	L	. D	• E	E F	2								OGGED: TP IECKED: SM


LC	OCATIO	T: 1771656 DN: N 4752362.6 ;E 646595.4 TION: -90° AZIMUTH:	F	REC	OF	RD	OF	[ORIL	LING	G DA	TE:	Fel	bruary ilMax		H17-1	D								HEET 3 OF 3 ATUM: Geodetic
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	ENETRATION RATE min/(m) COLOLIP		IN FLT SHR VN CJ RECO TOTAL CORE %	Joint Fault Shear Vein Conju OVEF	r ugate	E F (BD-Be FO-Fo CO-Co OR-Or CL-Cl FR/ D. INE PI	eddin liatio ontac thog eava	t onal ge u au	PL CU UN ST IR	- Planar - Curved - Undulating - Stepped - Irregular CONTINUITY D TYPE AND SU DESCRIPT	K - S SM- S Ro - F MB- M	Rough Nechar HYD COND K,	ical Br RAULIC UCTIVI m/sec	eak ; ry s1	BR VRo NOTE abbres of abb symbo ROCK RENG	reviation ols. GTH	WEA ERI IND	ATH- NG NEX	NOTES WATER LEVELS INSTRUMENTATION
- - - - - - - - - - 21		CONTINUED FROM PREVIOUS PAGE fresh, fine to medium grained, thin to medium bedded, medium to dark grey, SHALE, with increasing gypsum horizons (Salina Formation)					EL EL		888	20			15		•	BD.PL,SM BD.PL,SM BD.PL,SM BD.PL,SM	1			25	R3	R1	W1	W3	
		END OF DRILLHOLE		<u>160.57</u> 21.42											•	FR,PL,SM	1								- - - - - - - - - - - - - - - - - - -
																									- - - - - - - - - - - - - - - - - - -
	EPTH \$: 25	SCALE				ļ			G	60		_ C) E	ER	2										OGGED: TP IECKED: SM

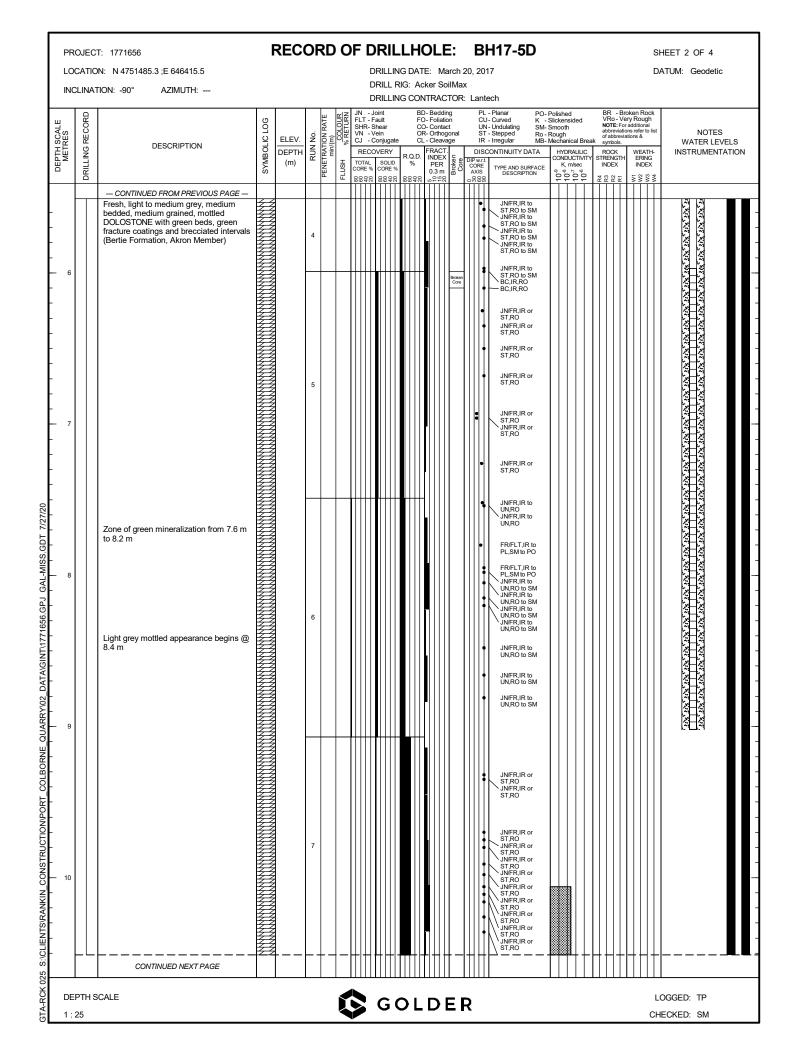

LOC	CATIC	T: 1771656 N: N 4752109.4 ;E 646602.9		REC	OF	RD	0	FI	DR	ILLI	NG [DAT	DL E: M ker S	larch	ו 29		H17-2I	כ								IEET 1 OF 2 ATUM: Geodetic	
DEPTH SCALE METRES		TION: -90° AZIMUTH: DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	PENETRATION RATE min/(m)	COLC % RETU	JN FLT SHR VN CJ REI TOTA CORE	- Joir - Fau - She - Veii - Cor	t ILLII nt ilt ear n			- Bedo - Folia - Cont - Ortho - Clear FRAC INDE PER	CTO ding tion act ogonal vage T.	R: I	PL CU UN ST IR	- Planar J- Curved I- Undulating - Stepped - Irregular CONTINUITY D.	SM-S Ro-F MB-N	Slicker Smoot Rough Mecha HYI CONI K	nsided nical B DRAULI DUCTIV , m/sec	reak C ITY S	VRo NOTE abbrev	- Very For ac viations reviatio ls.	en Rougi ditional refer to ons & WEAT ERING	h list H- G	NOTES WATER LEV INSTRUMENT.	
9	DRI	Continued from Record of Borehole BH17-2D Fresh, medium to dark grey, fine to medium grained, ARGILLACEOUS DOLOSTONE and SHALY DOLOSTONE (Bertie Formation, Scajaquada Member)		173.01 8.69		PEI	FLUSH	884		0.045		20	0.3 n		en o		TYPE AND SUI DESCRIPT BD/JN,PL, BD/JN,PL, BD/JN,PL, BD/JN,PL,	SM SM SM SM SM	10-9	10-	0	R2 R2	R1	W1 W2 W3	W4		
- - - - - - - - - - - -		Fresh, brownish-grey to brown, medium grained, pitted to vuggy DOLOSTONE (Bertie Formation, Falkirk Member)		172.40										Brok	ven	•	BC,IR,RO FR/JN,PL UN,SM FR/JN,PL UN,SM FR/JN,PL UN,SM FR/JN,PL UN,SM FR/JN,PL UN,SM FR/JN,PL UN,SM	0 0 0 0								Sand	and ind ind ind ind ind ind ind ind ind i
- 11 - 11 					3											•	JN/BD,PL IR,RO to 5 JN/BD,PL IR,RO to 5 JN/BD,PL IR,RO to 5 JN/BD,PL IR,RO to 5	м омом омом									a tan'na an' an' an' an' an' an' an' an' an
- - - - - - - - - - - -	4 Concentration and frequency of vugs reduce @13.1 m															Screen and Sand											
	_ L_	CONTINUED NEXT PAGE		<u>+</u>			_				#	+-		++ -						-					+		1/3 1 2
DEF 1 : 2		SCALE							(G	0	L	D	Е	R											DGGED: TP ECKED: SM	

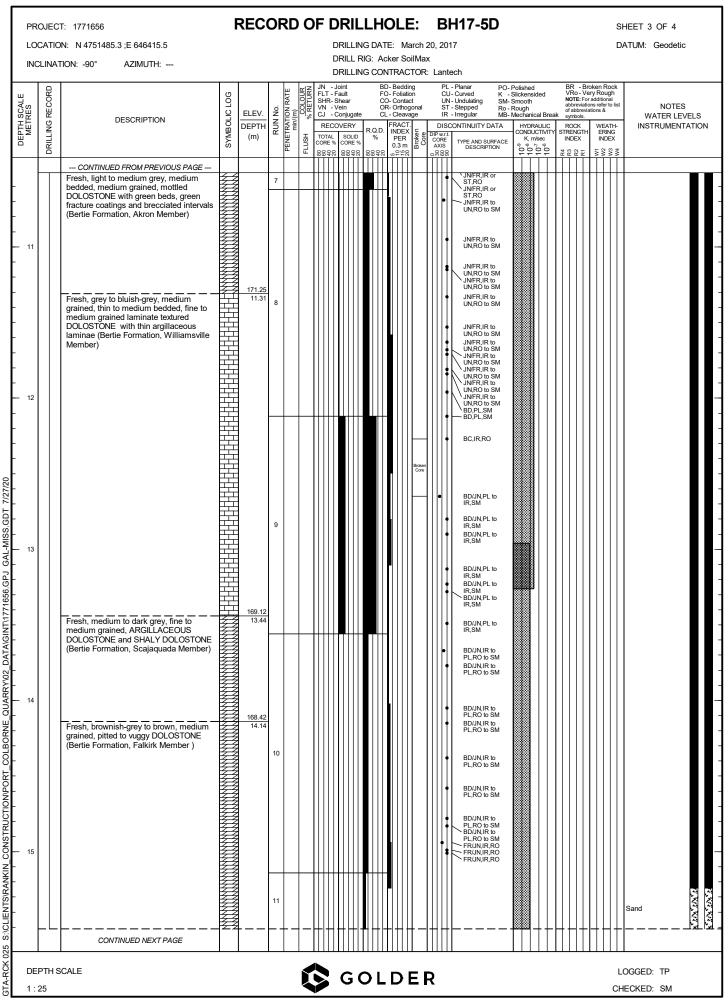
		T: 1771656 N: N 4752109.4 ;E 646602.9	F	REC	OF	RD	OF						E: arch			117-2D)									IEET 2 OF 2 TUM: Geodetic
INC	CLINA	FION: -90° AZIMUTH:											oilMa CTOR		nteo	ch										
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	PENETRATION RATE min/(m) COLOUR	FLUSH % RETURN 80 2 - 1 O < 00 - 1 C	N LT - F HR- S N - N J - (REC(OTAL DRE % 8988	ault Shear /ein Conju	gate RY LID RE %	D. IN F	oliati Conta Orthog	ion ict gonal age 	(5 1	CU-(UN-I ST-: IR-I ISCC	Stepped	K -S SM-S Ro-F MB-N TA	Rough Mechan HYD COND	sided n nical B RAULI UCTIV m/sec	reak C ITY S	abb	reviatio bbrevia bols. CK NGTH EX	ons re ations	I Roci lough tional fer to I & /EATH ERING NDEX	H-	NOTES WATER LEVELS INSTRUMENTATION
- 14 - 14 		CONTINUED FROM PREVIOUS PAGE Fresh, dark bluish grey to black argillaceous DOLOSTONE and SHALE (Bertie Formation, Oatka Member) Clay Seam from 14.1 m to 14.2 m		167.90 13.80	5		Ť	04							•	BD/JN,PL,S BD/JN,PL,S BD/JN,PL,S BD/JN,PL,S BD/JN,PL,S BD/JN,PL,S BD/JN,PL,S BD/JN,PL,S	M M M M M M									Screen and Sand
- - - - - - - - - - - - - - - - - - -		END OF DRILLHOLE		<u>166.43</u> 15.27																						
- 17 - 17 - 17 - 17 - 17 - 17 - 18 - 18 - 18 - 18 - 18 - 18 - 18 - 18																										-
) - - - - - - - - - - - - - - - - - - -		CALE				Į			G				EI	R												- - - - - - - - - - - - - - - - - - -


LOCATIC	2T: 1771656 DN: N 4751983.7 ;E 646823.1 TION: -90° AZIMUTH:	RECOR	D	DRILLHOLE: DRILLING DATE: March 2: DRILL RIG: Acker SoilMax DRILLING CONTRACTOR:	3, 2017		T 1 OF 2 IM: Geodetic
DEPTH SCALE METRES DRILLING RECORD		SYMBOLIC LOG SYMBOLIC LOG () HLdat A RUN No. PENETRATION RATE	Min(m) FLUSH COLOUR % 2800 % 2000 % 2	Fault FO-Foliation Shear CC-Contact OR-Orthogonal C-Cleavage CC-Cleavage CC-Cleavage CC-Cleavage CC-Cleavage CC-Cleavage	PL - Planar PO - Polished CU-Curved K - Slickensided UN - Unduking SM-Smooth ST - Stepped Ro - Rough IR - Irregular MB- Mechanical Bread DISCONTINUITY DATA HYDRAULC DISCONTINUITY DATA K msec 2000 CONDUCTIVITY CORE TYPE AND SURFACE DESCRIPTION		NOTES WATER LEVELS INSTRUMENTATION
	Continued from Record of Borehole BH17-3D Fresh, medium to dark grey, fine to medium grained, ARGILLACEOUS DOLOSTONE and SHALY DOLOSTONE (Bertie Formation, Scajaquada Member) Fresh, brownish-grey to brown, medium grained, pitted to vuggy DOLOSTONE (Bertie Formation, Falkirk Member) Fresh, brownish-grey to brown, medium grained, pitted to vuggy DOLOSTONE (Bertie Formation, Falkirk Member)	176.63 5.30 1 1 1 1 1 7.62 7.62 7.62			FR/BD,PL,SM ,PL,SM ,PL,SM ,PL,SM ,PL,SM ,FR/BD,PL,SM FR/BD,PL,SM FR/IN,IR to UN,RO FR/IN,IR to <td>Sar</td> <td>nd een and Sand</td>	Sar	nd een and Sand
	CONTINUED NEXT PAGE						
DEPTH \$ 1 : 25	SCALE		₿	GOLDER	2		GED: TP KED: SM

		T: 1771656 N: N 4751983.7 ;E 646823.1	I	REC	OF	RD	0	F	DF	RILLI	NG	DAT	OL E: M	/larc	h 23		H17-3	D							⊺2 OF 2 ∕I: Geodetic
DEPTH SCALE METRES		non: -90° Azimuth: description	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	PENETRATION RATE min/(m)	H <u>COLO</u>		DF - Joi - Fai - Ve - Ve - Co	RILLI nt ult ear in njugal		CON BE FC OF	FRAC	ding ation tact vage		PL CL UN ST IR DIS(Planar J- Curved N- Undulating F - Stepped E - Irregular CONTINUITY D	K - S SM- S Ro - F MB- F	Polished Slickensided Smooth Rough Mechanical Bre HYDRAULIC CONDUCTIVIT K, m/sec	eak Y S1	BR - VRo - NOTE: F abbrevia of abbre symbols ROCK RENGT INDEX	For add ations r viation	litional efer to li:	st - II	NOTES WATER LEVELS NSTRUMENTATION
-	DR	CONTINUED FROM PREVIOUS PAGE Fresh, brownish-grey to brown, medium grained, pitted to vuggy DOLOSTONE (Bertie Formation, Falkirk Member)			4		FLI	000		88648		20	0.3 I	50 I	0		FR/JN,IR FR/JN,IR FR/JN,IR FR/JN,IR FR/JN,IR	to	10 ⁰	R4	R2 8	ž	W3	W4	1. N.
- 11 - 11 					5											•	FR/JNJR PFR/JNJR FR/JNJR FR/JNJR FR/JNJR FR/JNJR	to to to						Scre	en and Sand
		Fresh, dark bluish grey to black argillaceous DOLOSTONE and SHALE (Bertie Formation, Oatka Member)		<u>169.44</u> 12.55	6												 FR/IN,IR UN,RO FR/IN,IR UN,RO BD,PL,SA <	to 1 1 1 1						Back	fil
		END OF DRILLHOLE		<u>168.27</u> 13.72																					
		SCALE								G	0	L	D	E	R										ED: TP ED: SM

S:\CLIENTS\RANKIN_CONSTRUCTION\PORT_COLBORNE_

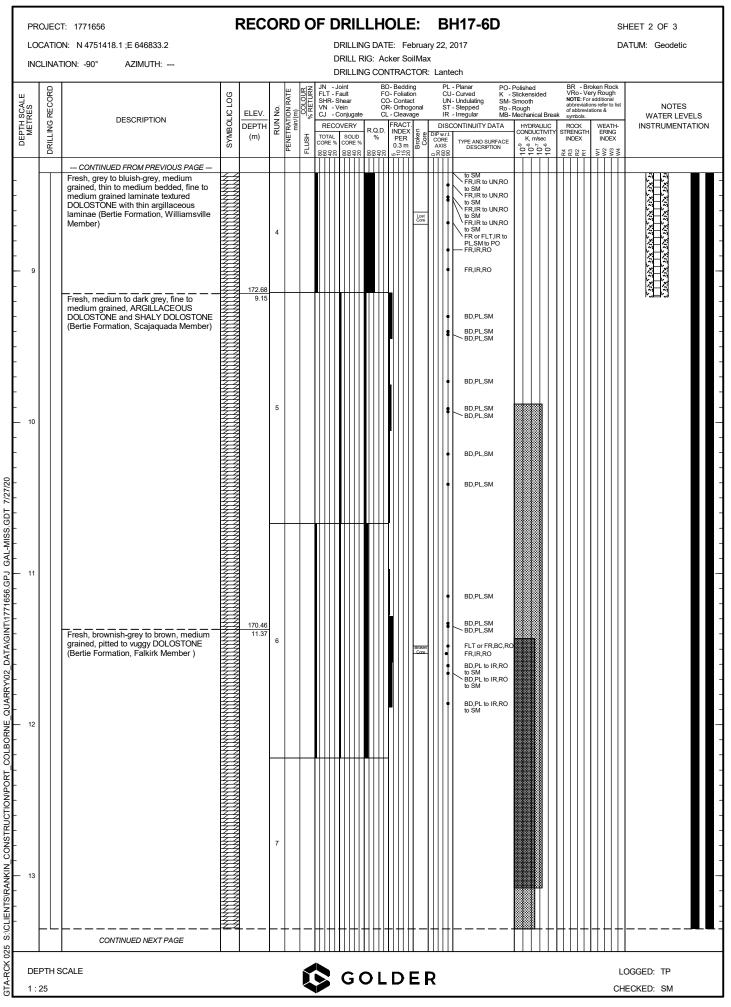



	LOC	ATIO	Г: 1771656 N: N 4751621.3 ;E 646626.9 ЮN: -90° АZIMUTH:	I	REC	O	RD	00)F	D D	RIL	LIN L R	g d Ig:	ATE Acł	E: F ker S	-ebi Soill	uary Max	27,	H17-4 2017	D								HEET 4 OF 4 ATUM: Geodetic	
DEPTH SCALE	MEIKES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	PENETRATION RATE min/(m)	FLUSH <u>COLOUR</u> %	JN FL SV CJ R PC 08	- Ji T - F IR- S I - V - C ECC	oint ault hear 'ein Conju	gate RY		BD FO CO OR CL	- Bed - Folia - Con - Orth - Clea FRAC INDE PEF 0.3 I	ding ation tact ogor avage CT. CX. CX. CX. CX. CX. CX. CX. CX. CX. CX		CL UN ST IR	- Planar J- Curved N- Undulating F - Stepped - Irregular CONTINUITY D L TYPE AND SU DESCRIPT	SM- S Ro - F MB- N ATA RFACE	Slicken: Smooth Rough Aechan HYD COND K,	sided	eak ; TY ST	abbre	breviat ols. K GTH X	additions & tions & WE ER	nal r to list	NOTES WATER LEVELS INSTRUMENTATIO	
			CONTINUED FROM PREVIOUS PAGE																										
			Fresh, brownish-grey to brown, medium grained, pitted to vuggy DOLOSTONE (Bertie Formation, Falkirk Member)		164.78													•	BD,PL to 0 to RO BD,PL to 0									1. N. N. N.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
- - -	18		Fresh, dark bluish grey to black argillaceous DOLOSTONE and SHALE (Bertie Formation, Oatka Member)		17.73													•	b RO BD,PL to 0 to RO BD,PL,SM									Screen and Sand	
-			END OF DRILLHOLE		164.17 18.34																							No.	- 3
CONSTRUCTION PORT_COLBORNE_QUARYY02_DATAIGINT/1771656.GPJ GAL-MISS.GDT 7/27/20	19 20 21																												
3TA-RUK UZD	DEP 1 : 2		CALE		<u> </u>	<u> </u>					Ш G))) ; () 	<u> </u>	D	E	E R	LIII 2	1									.OGGED: TP IECKED: SM	

PROJECT: 1771656 LOCATION: N 4751619.2 ;E 64662 INCLINATION: -90° AZIMUTH	7.1	RD OF DRILLHOLE: DRILLING DATE: February DRILL RIG: Acker SoilMax		SHEET 1 OF 2 DATUM: Geodetic
			PL - Planar PO - Polished BR - Broken CU - Curved K - Slickensided VRO - Very R NOTE: For addu IR - Irregular MB- Mechanical Break symbols. DISCONTINUITY DATA HYDRAULIC ROCK WI PWrt1 TOPE AND SUPRACE NONDUCTINTY STREMSTIN I ORE TO ADD SUPRACE NONDUCTINTY STREMSTIN I NDEX IN PROVIDENT OF THE STREMSTIN I ND	
Continued from Record of Bi Fresh to highly weathered medium bedded, medium LIMESTONE with siltstom sandstone horizons and g siltstone and cherty limes (Bois Blanc Formation) Bedded, medium grained, DOLOSTONE with green fracture coatings and bree (Bertie Formation, Akron 1	orehole BH17-4S 1, medium grey, 1 grained e and reenish grey tone beds 179.68 179.68 179.68 2.85 1 2.85 1 2.85		BC,IR,RO FRUN,IR,RO FRUN,IR,RO FRUN,IR,RO FRUN,IR,RO BC,IR,RO	Bentonite Seal
- 4 - 4			 FR/JW,IR,R0 FR/JW,IR,R0 FR/JW,IR,R0 FR/JW,IR,R0 FR/JW,IR,R0 FR/JW,IR,R0 FR/JW,IR,R0 	Sand
S sub-rounded pieces of gre	een mineralized	Brown Core	BC,IR to PL,RO to SM JNFR,IR,RO JNFR,IR,RO JNFR,IR,RO	
Brecciated horizons end (Brecciated horizons end (Light grey mottled appear beginning of run (6.1)	ance begins @		 JN/FR,IR,RO FR/JN,IR,RO FR/JN,IR,RO FR/JN,IR,RO FR/JN,IR,RO 	Screen and Sand
DEPTH SCALE	TPAGE	GOLDER		Logged: TP Checked: SM

	-OCA	DJECT: 1771656 ATION: N 4751619.2 ;E 646627.1 INATION: -90° AZIMUTH:	RECOF	rd C	DF DF	rilling i Rill Rig:	DATE: Febru Acker SoilM		S		HEET 2 OF 2 ATUM: Geodetic
DEPTH SCALE		DESCRIPTION		PENETRATION RATE min/(m) FLUSH <u>COLOUR</u>		int ult in njugate /ERY SOLID CORE %	CONTRACTC BD- Bedding FO- Foliation CO- Contact OR- Orthogona CL - Cleavage INDEX % PER 0.3 m 0.3 m 0.2 m 0.3 m	PL - Planar CU - Curved UN - Undulating al ST - Stepped IR - Irregular	CONDUCTIVITY	BR - Broken Rock VRo Very Rough NOTE: For additional abbreviations after to list of abbreviations & symbols. ROCK WEATH- ERING INDEX ROCK WEATH- ERING INDEX INDEX	NOTES WATER LEVELS INSTRUMENTATION
-		CONTINUED FROM PREVIOUS PAG	E 4 4 7 174.88								Screen and Sand
	9 9 10	END OF DRILLHOLE	7.65								
GIA-KUK UZ	DEPT	TH SCALE 5				GO	LDE	R			ogged: TP Iecked: SM

LOCAT	CT: 1771656 ION: N 4751485.3 ;E 646415.5 ATION: -90° AZIMUTH:	RECORD OF DRILLHOLE: DRILLING DATE: March 20, DRILL RIG: Acker SoilMax DRILLING CONTRACTOR: La	2017 DATUM: Geodetic
DEPTH SCALE METRES DRILLING RECORD		BOD ELEV. No Image: Signal system Image: Signal system<	PL - Planar PO - Polished BR - Broken Rock CU - Curved K - Slickensided VRo - Very Rough UN - Undulaing SM Smooth MOTE: For additional ST - Slepped Ro - Rough abbreviations refer to list IR - Irregular MB-Mechanical Break syncols. DISCONTINUITY DATA HYDRAULIC ROCK WEATH-
	Continued from Record of Borehole BH17-5D Fresh to highly weathered, medium grained LIMESTONE with sittstone and sandstone horizons and greenish grey siltstone and cherty limestone beds (Bois Blanc Formation) Fresh, light to medium grey, medium bedded, medium grained, mottled DOLOSTONE with gree beds, green fracture coatings and brecciated intervals (Bertie Formation, Akron Member) CONTINUED NEXT PAGE		BUR & UNRO B
DEPTH	ISCALE	💽 GOLDER	LOGGED: TP CHECKED: SM

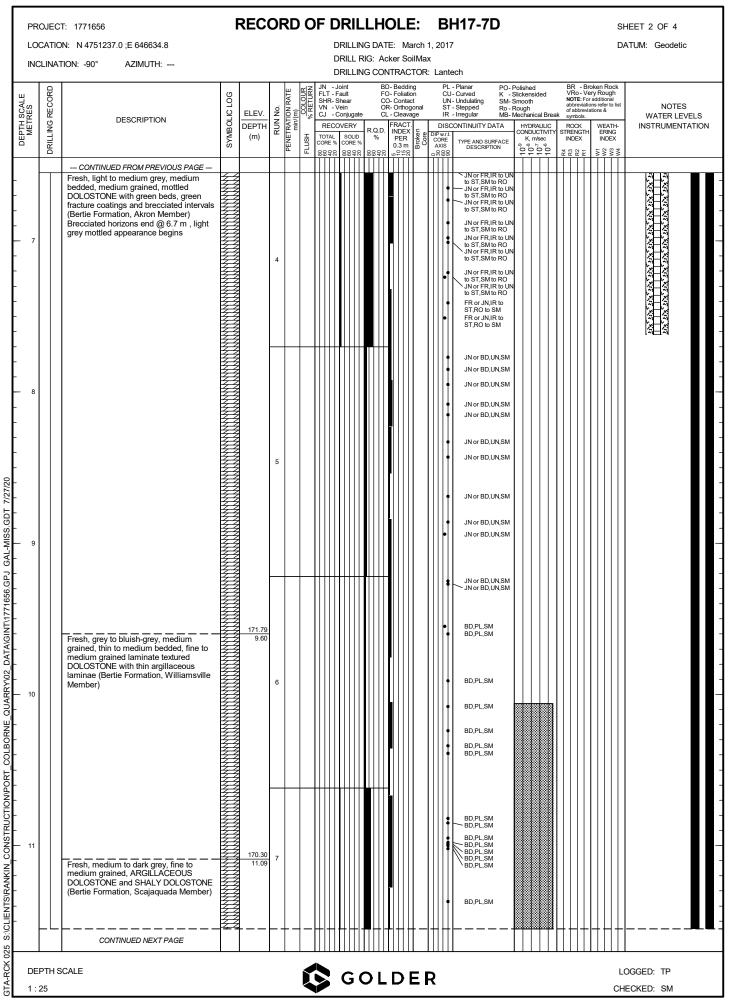

QUARRY/02_DATA\GINT\1771656.GPJ GAL-MISS.GDT 7/27/20 COLBORNE S:\CLIENTS\RANKIN CONSTRUCTION\PORT

AZIMUTH: DESCRIPTION DESCRIPTION DESCRIPTION DEFTH (m) DEFTM (m) DEFTN (F - ^ ^	FLT - Fault FO- Foliation CU- Curved SHR-Shear CO- Contact UN- Unduking S W NV - Vein OR- Orthogonal ST- Stepped R & CJ - Conjugate CI- Cleavage IR - Irregular N RECOVERY R OD FRACT DISCONTINUITY DATA	CONDUCTIVITY STRENGTH ERING
ish-grey to brown, medium d to vuggy DOLOSTONE ation, Falkirk Member)		FR/JN/R,RO	
d to vuggy DOLOSTONE ation, Falkirk Member)			
alcite infilling		FRJN,IR,RO	
	11	 FR/INIR.RO FR/INIR.RO FR/INIR.RO 	Sand Sand Sand Sand Sand Sand Sand Sand
luish grey to black DOLOSTONE and SHALE ation, Oatka Member)	7	 BD/JN/R to UNRO BD/L/SM BD/L/SM 	Screen and Sand
LLHOLE 19.69	9		
DC atio	sh grey to black 19.5 DLOSTONE and SHALE on, Oatka Member) 162.8	sh grey to black 163.05 JLOSTONE and SHALE 19.51 pon, Oatka Member)	13 BD/JN IR to UNRO 13 BD/JN IR to UNRO 163.05 BD/JN IR to UNRO 163.05 BD/JN IR to UNRO 10.10 IR to UNRO BD/JN IR to UNRO 163.05 BD/JN IR to UNRO 10.05 TONE and SHALE 19.51 DICOSTONE and SHALE 11.1 162.87

LOCAT	JECT: 1771656 ATION: N 4751486.3 ;E 646415.4 INATION: -90° AZIMUTH:	RECORD OF DRILLHOLE: BH17-5S DRILLING DATE: March 23, 2017 DRILL RIG: Acker SoilMax	SHEET 1 OF 2 DATUM: Geodetic
DEPTH SCALE METRES DRILLING RECORD	DESCRIPTION	O T ELEV. SM-Smooth SM-Smooth M O B VIA Vein OB-Orthogonal SI-Stepped SM-Smooth M O B VIA Vein OB-Orthogonal SI-Stepped Ro. Orthogonal SI-Stepped SI-Stepped Ro. Orthogonal SI-Stepped SI-Stepped	BR Broken Rock VRo. Very Rough WOTE: For additional abbreviations refer to list of abbreviations refer to list abbreviations refer to list water Levels NOTES Weath- ENRTH INDEX 22 22 25 25 25 25
	Continued from Record of Borehole BH17-5S Fresh to highly weathered, medium grained LIMESTONE with siltstone and sandstone horizons and greenish grey siltstone and cherty limestone beds (Bois Blanc Formation) Fresh, light to medium grey, medium bedded, medium grained DOLOSTONE with green beds, green fracture coatings and brecciated intervals (Bertie Formation, Akron Member)	10:82 0.76 1	Bentonite Seal
1	TH SCALE	GOLDER	LOGGED: TP CHECKED: SM

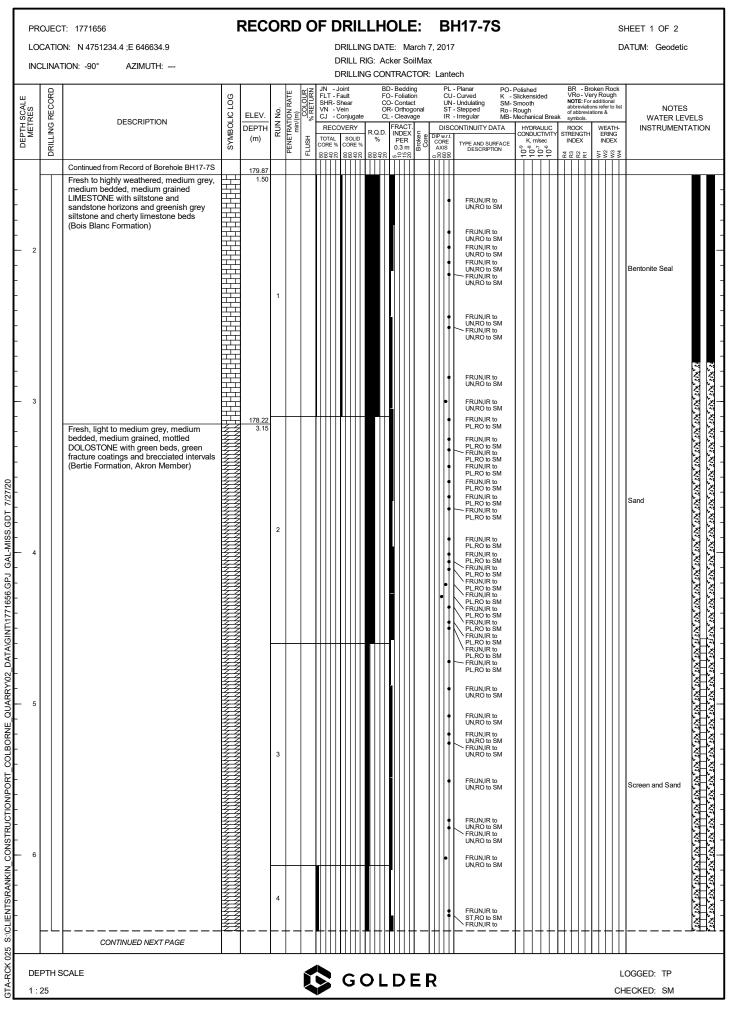
L	OCA	JECT: 177 ATION: N NATION: -	4751486.3 ;E 646415.4		REC	OF	RD	0		DRI	ILLI	NG I	DAT	E:	Ma	rch 2	23, 2		-117-58 7	5							SHEET 2 OF 2 DATUM: Geodetic	
DEPTH SCALE METRES			DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	₹ <u>E</u>	LUSH CULUT	JN · FLT · SHR· VN · CJ ·	- Join - Faul - She - Veir - Con COVE	nt Ilt ear n njugat	R.	BI FC CC	D-Be D-Fol D-Co R-Ort L-Cle FRA IND PE 0.3 92	ddin itatio ntac hogo avag CT. EX R m	n t onal		PL - CU- UN- ST - IR - ISCO	ch Planar Curved Undulating Stepped Irregular ONTINUITY DA TYPE AND SUR DESCRIPTIC	K - S SM- S Ro - R MB- N TA	olished lickensi mooth cough lechanic HYDR CONDU K, rr	ded cal Brea AULIC CTIVITY /sec	V at of ak sy STRI	R - B Ro - V OTE: Fo obreviati abbreviati mbols. OCK ENGTH DEX	ery Ro or addit ions rel iations H E I	ough ional fer to list	WATER LEVELS	
		Fresi bedd DOL fractu (Bert	ONTINUED FROM PREVIOUS PAGE — n, light to medium grained, motiled DSTONE with green beds, green re coatings and brecciated intervals ie Formation, Akron Member) of green mineralization from 7.8 m			5													JNFR,IR IC UNRO JNFR,IR IC								Sand Screen and Sand	
GAL-MISS.GD1	3	to 8.2 Light 8.2 n	? m grey mottled appearace begins @ 1		173.56 9.02	6										Broken Core	•	• • • •	UNRO JNFRJR to UNRO FLTFRJR ST,RO JNFRJR to UNRO JNFRJR to UNRO JNFRJR to UNRO JNFRJR to UNRO JNFRJR to UNRO	to to ,								
S:CLIENTSHANKIN CONSTRUCTIONPORT COLBORNE QUARKYUZ		END	OF DRILLHOLE		9.02																							
4	EPT : 25	TH SCALE								(G	0	L	D	E	EF	2										LOGGED: TP HECKED: SM	

		T: 1771656 DN: N 4751418.1 ;E 646833.2	RECORD OF DRILLHOLE: BH17-6D DRILLING DATE: February 22, 2017	SHEET 1 OF 3 DATUM: Geodetic
IN		TION: -90° AZIMUTH:	DRILL RIG: Acker SoilMax DRILLING CONTRACTOR: Lantech	DD Decker Deck
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	(m)	xensided VRo - Very Rough both NOTE: For additional
- - - - - - - - - -		Continued from Record of Borehole BH17-6D Fresh to highly weathered, medium grey, medium bedded, medium grained LIMESTONE with siltstone and sandstone horizons and greenish grey siltstone and cherty limestone beds (Bois Blanc Formation)	178.48 3.35	
5		Brecciated horizons end @ 4.6 m , light grey mottled appearance begins Fresh, light to medium grey, medium bedded, medium grained, mottled DOLOSTONE with green beds, green fracture coatings and brecciated intervals (Bertie Formation, Akron Member)	177.22 4.61 2 2 4.61 4.61 4.61 4.61 4.61 4.61 4.61 4.61	
			FR,IR,R0 FR,	
		Fresh, grey to bluish-grey, medium grained, thin to medium bedded, fine to medium grained laminate textured DOLOSTONE with thin argillaceous laminae (Bertie Formation, Williamsville Member)	3 FR,IR to UNRO 174.58 FR,IR to UNRO 7.25 FR,IR to UNRO 6 FR,IR to UNRO 7.25 FR,IR to UNRO	
		, 	4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
DE		SCALE	GOLDER	LOGGED: TP CHECKED: SM

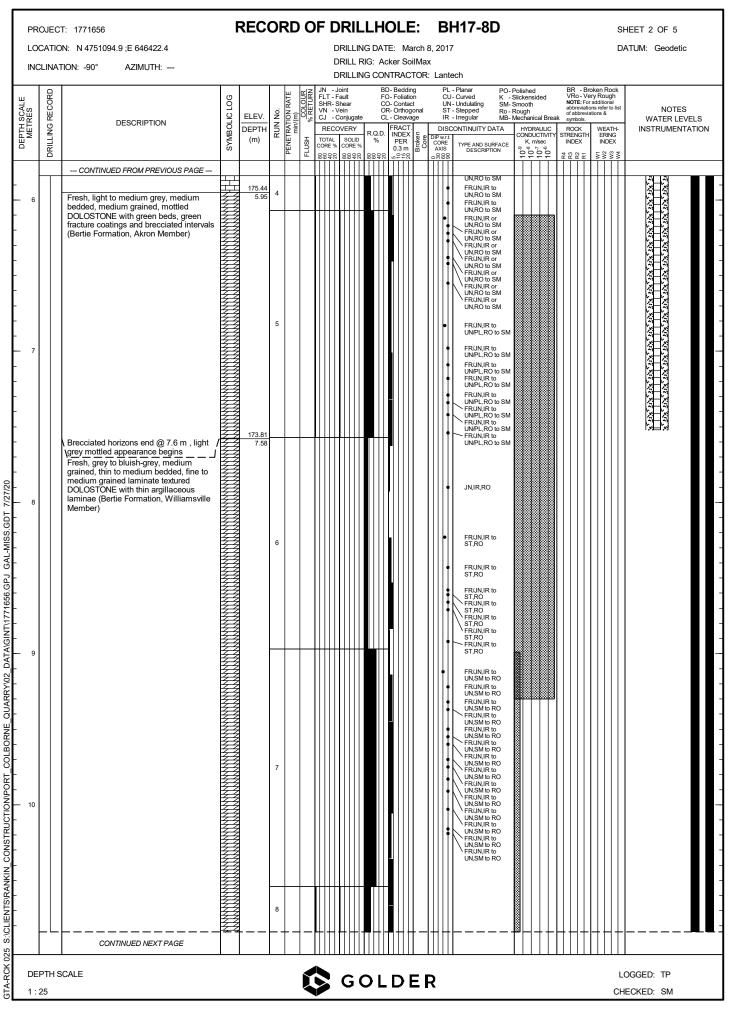

S:/CLIENTS/RANKIN_CONSTRUCTION/PORT_COLBORNE_QUARRY/02_DATA/GINT/1771656.GPJ_GAL-MISS.GDT_7/2720

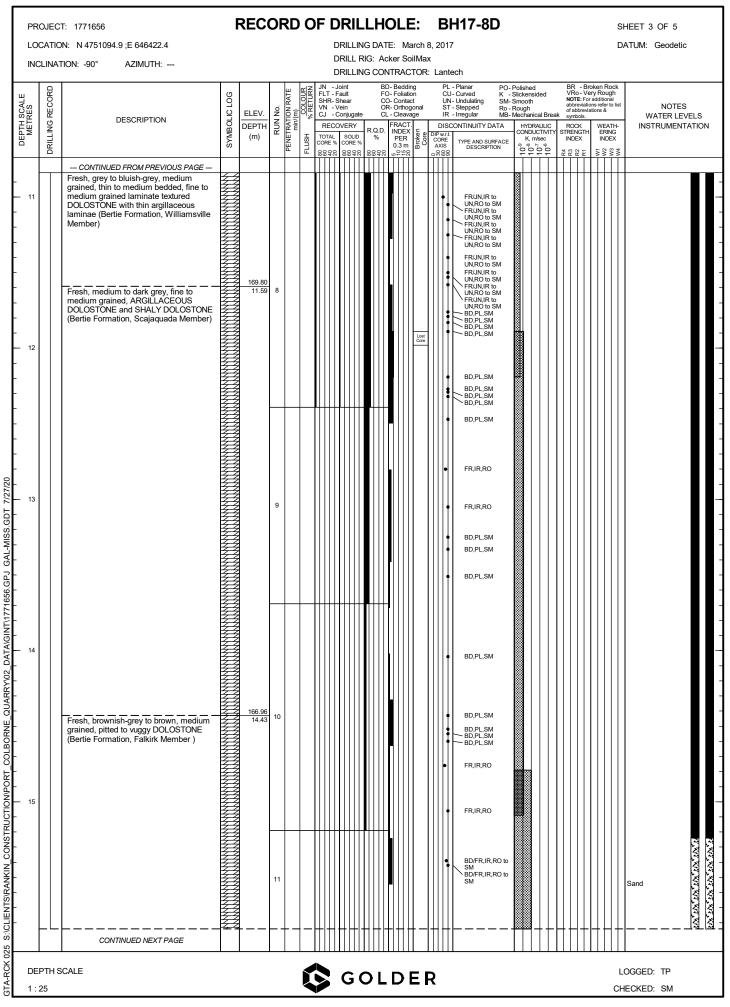
LOCA	JECT: 1771656 ATION: N 4751418.1 ;E 646833.2 INATION: -90° AZIMUTH:	RECORD OF DRILLHOLE: BH17-6D DRILLING DATE: February 22, 2017 DRILL RIG: Acker SoilMax DRILLING CONTRACTOR: Lantech	SHEET 3 OF 3 DATUM: Geodetic
DEPTH SCALE METRES	DESCRIPTION	O D Dir SHR-Shear CO-Contact UN-Undulating SM-Smooth 0	BR - Broken Rock VR0- Very Rough NOTE: For additional abbreviations et ar to symbols. NOTES of abbreviations & symbols. NOTES ROCK INDEX WEATH- ERING INDEX INSTRUMENTATION INDEX X X X X
- 14 - 14 	CONTINUED FROM PREVIOUS PAGE Fresh, brownish-grey to brown, medium grained, pitted to vuggy DOLOSTONE (Bertie Formation, Falkirk Member)	9 0	INDEX INDEX
- 16 	END OF DRILLHOLE	10 10 10 10 10 10 10 10 10 10	
DEPTH 1 : 25	TH SCALE		LOGGED: TP CHECKED: SM

LC	CATIC	T: 1771656 IN: N 4751420.2 ;E 646833.0 FION: -90° AZIMUTH:	I	REC	OR	D	O	[oril Oril	LING	LH G DAT G: AC	ΓE: cker	Fet Soi	oruar IMax	y 23	, 20		;								HEET 1 OF 2 ATUM: Geodetic
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	min/(m)	FLUSH & RETURN	JN FLT SHR CJ REC REC TOTAL CORE %	Fault Shear Vein Conju OVEF	r ugate RY DLID RE %	F C O	D-Be O-Fol O-Co R-Ort L-Cle FRA IND PE 0.3	iation ntact hogo avaç CT. EX R m	n onal je	U S	SCO	Curved Undulating	ACE	licken mooth tough lechar HYD COND K,	sided	TY S	BR VRo NOTE abbrev of abb symbo ROCK TRENG	: For a viation: reviations ls.	WEAT	al to list TH- NG EX	NOTES WATER LEVELS INSTRUMENTATION
- - - - - - - - - - -		Continued from Record of Borehole BH17-6S Fresh to highly weathered, medium grey, medium bedded, medium grained LIMESTONE with siltstone and sandstone horizons and greenish grey siltstone and cherty limestone beds (Bois Blanc Formation)		178.44 3.35	1									Broken Core		•	BC,IR,RO BC,IR,RO BC,IR,RO FR,JR,RO									- - Bentonite Seal - -
		Fresh, light to medium grey, medium bedded, medium grained, mottled DOLOSTONE with green beds, green fracture coatings and brecciated intervals (Bertie Formation, Akron Member) Brecciated horizons end @ 4.6 m, light grey mottled appearrance begins		177.25	2										•	•	FR,IR,RO FR,IR,RO FR,IR,RO FR,IR,RO FR,IR,RO FR,IR,RO FR,IR,RO FR,IR,RO FR,IR,RO FR,IR,RO FR,IR,RO FR,IR,RO FR,IR,RO	I								
		Large green tinged sediment filled vertical fracture from 7.9 m to 8.6 m			3										•		FR,IR to UN to SM FR,IR to UN to SM FR,IR to UN to SM FR,IR to UN FR,IR to UN to SM FR,IR to UN to SM	RO RO RO RO RO RO RO RO RO								Screen and Sand
		CONTINUED NEXT PAGE													•	•	FR,PL,SM									
1	:PTH S 25	SCALE							G	GC) L	. D	E	E F	2											DGGED: TP ECKED: SM


LC	CATIC	T: 1771656 IN: N 4751420.2 ;E 646833.0 FION: -90° AZIMUTH:	REC	ORD	DRILLING DRILL RI	LHOLE: DATE: Februa G: Acker SoilMa CONTRACTOR	ax	S		SHEET 2 OF 2 DATUM: Geodetic
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	VBDFC COC DEPTI- (m)	min/(- Joint - Fault - Shear - Vein - Conjugate COVERY L SOLID % CORE %	BD-Bedding FO-Foliation CO-Contact OR-Orthogonal CL-Cleavage R.Q.D. PER 0.3 m PER 0.3 m 0.5 m 0	PL - Planar CU- Curved UN- Undulating ST - Stepped IR - Irregular	CONDUCTIVITY	BR - Broken Rr VRo - Very Roug NOTE: For addition abbreviations after abbreviations & symbols. ROCK VEA STRENGTH ERI INDEX INDI	WATER LEVELS INSTRUMENTATION EX
- - - - - 9		Fresh, light to medium grey, medium bedded, medium grained, mottled DOLOSTONE with green beds, green fracture coatings and brecciated intervals (Bertie Formation, Akron Member) Fresh, grey to bluish-grey, medium grained, thin to medium bedded, fine to medium grained laminate textured DOLOSTONE with thin argillaceous	172.9 8.8				FR.PL.SA FR.PL.SN BD.PL.SN BD.PL.SN BD.PL.SN BD.PL.SN			Screen and Sand
1 GAL-MISS.GDI //2//20		laminae (Bertie Formation, Williamsville Member) END OF DRILLHOLE	9.1							- <u>19</u> - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19
GIA-RCK 025 S:/CLIENI	PTH S	CALE		 	GC		 R			LOGGED: TP CHECKED: SM

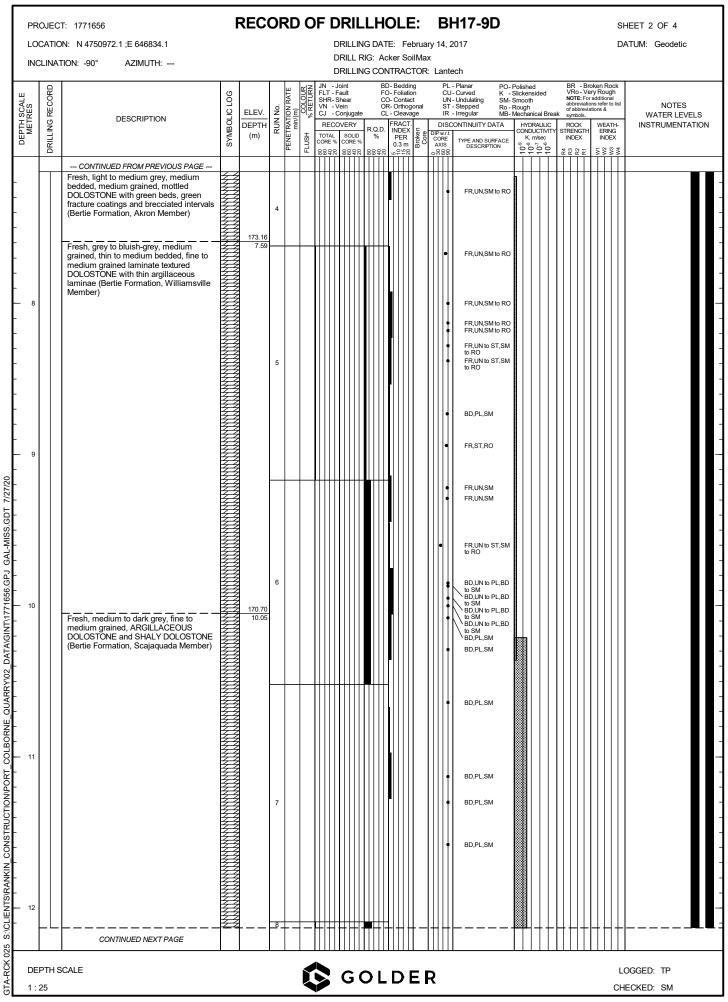
PROJECT: 1771656 LOCATION: N 4751237.0 ;E 646634.8 INCLINATION: -90° AZIMUTH:	RECORD OF DRILLHOLE: BH17-7D DRILLING DATE: March 1, 2017 DRILL RIG: Acker SoilMax DRILLING CONTRACTOR: Lantech	SHEET 1 OF 4 DATUM: Geodetic
DESCALE METRES DESCLILING RECORD DRILLING RECORD	の FLT - Fault FO- Foliation CU- Curved K - Slickensided VRo - Ve	WATER LEVELS WEATH- I ERING INDEX
Continued from Record of Borehole BH17-7D Fresh to highly weathered, medium grained LIMESTONE with siltstone and sandstone horizons and greenish grey siltstone and cherty limestone beds (Bois Blanc Formation) Continued from Record of Borehole BH17-7D Continued from Record of Borehole BH17-7D Fresh to highly weathered, medium grained LIMESTONE with siltstone and sandstone horizons and greenish grey siltstone and cherty limestone beds (Bois Blanc Formation) Fresh, light to medium grey, medium bedded, medium grained, motiled DOLOSTONE with spire heds, green fracture coatings and brecciated intervals (Bertie Formation, Akron Member) Fresh fresh fresh and bedded intervals (Bertie Formation, Akron Member) Fresh	179.64 170.64<	
DEPTH SCALE	GOLDER	LOGGED: TP CHECKED: SM


LOCATIC	T: 1771656 DN: N 4751237.0 ;E 646634.8	REC	ORD	DRILLI	LHOLE: NG DATE: March RIG: Acker SoilMa			HEET 3 OF 4 ATUM: Geodetic
DEPTH SCALE METRES DRILLING RECORD	TION: -90° AZIMUTH: DESCRIPTION	UELEV. DEPTH (m)	비짓절	DRILLI JN - Joint FLT - Fault SHR-Shear CJ - Conjugat RECOVERY HO CORE & CORE 82988 82988	R.Q.D. % FRACT. INDEX PER 0.3 m	PL - Planar PO - Poli CU - Curved K - Slici UN - Undulating SM - Smu ST - Stepped Ro - Rou IR - Irregular MB - Mec DISCONTINUITY DATA F DIPW/L DIPW/L DESCRIPTOR DURFACE AXIS DESCRIPTOR	kensided VRo - Very Rough	NOTES WATER LEVELS INSTRUMENTATION
	CONTINUED FROM PREVIOUS PAGE Fresh, medium to dark grey, fine to medium grained, ARGILLACEOUS DOLOSTONE and SHALY DOLOSTONE (Bertie Formation, Scajaquada Member) Fresh, brownish-grey to brown, medium grained, pitted to vuggy DOLOSTONE (Bertie Formation, Falkirk Member)		8			BD,PL,SM BD,PL,SM FR/JNJIR to ST,RO BD,PL,SM BD,PL,SM FR/JNJIR to ST,RO BD,PL,bu IR,SM BD,PL,bu IR,SM BD,PL,bu IR,SM BD,PL,bu IR,SM		Sand
	CONTINUED NEXT PAGE				₽\++\₽\++\+ <u> </u>			MAA
DEPTH S 1 : 25	SCALE			() G	OLDE	R		.OGGED: TP HECKED: SM

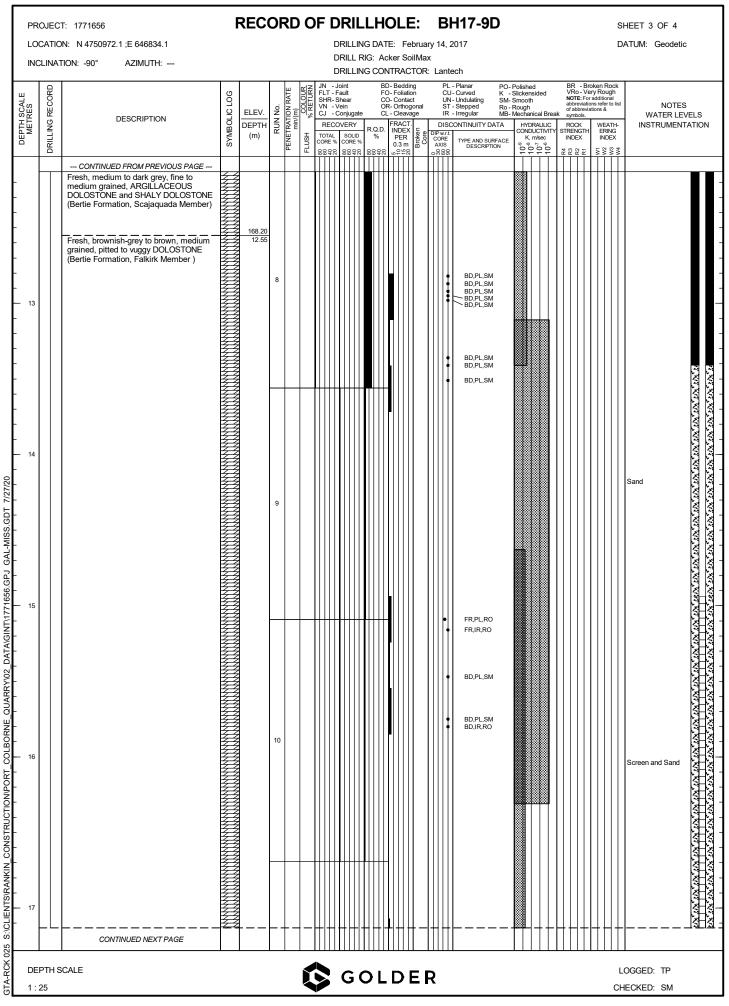

	LO	CATIO	T: 1771656 DN: N 4751237.0 ;E 646634.8 TION: -90° AZIMUTH:	I	REC	OF	RD	0		DR DR	RILLI RILL	NG RIG	DA1 : Ad	ΓE: cker	Ma Soi	irch 1 ilMax	, 20 ⁻		7D								HEET 4 (ATUM: G		
	DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	PENETRATION RATE min/(m)	FLUSH COLOUN	JN FLT SHR VN CJ	- Joir - Fau - She - Cor COV	nt ult ear	te R.	BI F(C	D-Be O-Fo O-Co R-Or L-Cle FRA INE 0.3 0.2	ddin liatio ntac hog ava CT. EX R m	n t onal ge	P C U S IF	L - Planar U- Curved N- Undulating T - Stepped R - Irregular	K SM Ro MB	I K	nsided th	Break IC /ITY S	NOT	E: For eviation obrevial cols. XK IGTH EX	oken R ry Rou addition s refer tions & ERI IND	ATH- ING DEX		NOTES FER LEVELS SUMENTATIO	
	- 17		CONTINUED FROM PREVIOUS PAGE Fresh, brownish-grey to brown, medium grained, pitted to vuggy DOLOSTONE (Bertie Formation, Falkirk Member)			11												BD,PL,	PL,SM PL,SM								Screen an	1 Sand	tastastastastastastastastastastastasta
GAL-MISS.GDI 7/2//20	- 19		Fresh, dark bluish grey to black argillaceous DOLOSTONE and SHALE (Bertie Formation, Oatka Member) END OF DRILLHOLE		<u>163.00</u> 18.39 <u>162.64</u> 18.75													BD,PL, BD,PL, BD,PL,	SM										25425425425425425425
56.GPJ	- 20																												
	- 21																												- - - - - - - - - - - - - - - - - - -
	DE 1 :		SCALE								ull G	0 0	 • L	. D) [EF	s										OGGED: IECKED:		

	ROJEC	RECORD OF DRILLHOLE: BH17-7S DRILLING DATE: March 7, 2017													SHEET 2 OF 2 DATUM: Geodetic												
IN	CLINA	TION: -90° AZIMUTH:							DR	ILLI		CON	ITR/	AC1			ntech										
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	PENETRATION RATE min/(m)	-USH COLC	JN · FLT · SHR· CJ · CJ · REC TOTAL CORE	She Veir Cor COVI	ar 1 njugat	R.	C(OF	FRA FRA IND PE 0.3	ntact nogo avaç CT. EX R m	Broken Be Core	C U S IF	DESCRIP	DATA	Slicker Smoot Rough Mecha HYE CONE K,	nsided h	reak C ITY S	BR VRc abbr of ab symb symb ROC TREN INDE	brevia cols. XK JGTH EX	WE EF IN	Rock ugh onal er to list ATH- RING DEX	WATER LEV	
- - - - - -		CONTINUED FROM PREVIOUS PAGE Fresh, light to medium gray, medium bedded, medium grained, mottled DOLOSTONE with green beds, green fracture coatings and brecciated intervals (Bertie Formation, Akron Member) Breciated horizons end @ 6.7 m light grey mottled apperance begins 0.1 m fracture infilled with cemerited sand @ 7.2 m		173.75	4										Lost Core		ST RO IV FRIR IO IN SM FRIR IO IN SM FRIR IO IN SM FRIR IO IN SM FRIR IO IN SM	ST,RO ST,RO ST,RO								Screen and Sand	1.01.01.01.01.01.01.01.01.01.01.01.01.01
		END OF DRILLHOLE		7.62																							
Ē	EPTH 8 : 25	I	I	I	L				[]] [G	0	L	D	• E	ER	2										LOGGED: TP HECKED: SM	

PROJECT: 1771656 RECORD OF DRILLHOLE: BH17-8D SHEET 1 OF 5 LOCATION: N 4751094.9 ;E 646422.4 DRILLING DATE: March 8, 2017 DATUM: Geodetic INCLINATION: -90° AZIMUTH: DRILL RIG: Acker SoilMax DATUM: Content of the sould be and the sould be an																							
	I: -90° AZIMUTH:						RILL	ING C	CONT		CTOF			ech	0.0	Polished	1		BR - F	Broke	n Rock	.	
DEPTH SCALE METRES DRILLING RECORD	DESCRIPTION	SAWBOLIC LOG DEDLF (m)	RUN No.	PENETRATION RATE min/(m) COLOUD	FLUSH <u>% RETURN</u> 80 8 a a 0 ≤ 2 a s	LT - F HR-S N - V J - C RECO	ault hear	R.C	FO- CO- OR- CL -	Foliat Conta	tion act gonal /age T.		CU UN ST IR	J - Curved N - Undulating - Stepped - Irregular CONTINUITY D/	K - S SM- S Ro - F MB- F	Slickens Smooth Rough Mechanio HYDR CONDL K, n	ided cal Bre AULIC ICTIVIT 1/sec	ak s	/Ro-\ NOTE:F	Very F For add ations r viation	Rough ditional refer to lis	st	NOTES WATER LEVELS INSTRUMENTATION
	ntinued from Record of Borehole BH17-8D			E.	로 0%	346	8094	88		222				BESCRIPTI	ION	10 [%]	<u>55</u>	R4	<u> </u>	<u>}</u>	W3 W3	V4	
_ Free _ 1 LIN _ 1 sait	esh to highly weathered, medium grey, edium bedded, medium grained WESTONE with siltstone and notstone horizons and greenish grey tstone and cherty limestone beds ois Blanc Formation)										Broker Erster Erster Core			FRUINIR F FRUINIR F SM FRUINIR F SM FRUINIR F SM FRUINIR F SM FRUINIR F SM FRUINIR F SM FRUINIR F SM FRUINIR F FRUINIR F FRUINIR F UNRO 10 FRUINIR F	RO to								er, ver, ver, ver, ver, ver, ver, ver, v
			4		_							_	•	FR/JN,IR t UN,RO to 5 FR/JN,IR t UN,RO to 5 FR/JN,IR t UN,RO to 5 FR,JN,IR t ER/JN,IR t	o SM o SM SM								
	CONTINUED NEXT PAGE																						
DEPTH SCALE 1:25 GOLDER												LOGGED: TP CHECKED: SM											


PROJECT: LOCATION	: N 4751094.9 ;E 646422.4	RE	COF	RD (OF	D	RILL	.ING	DAT	OL TE: N oker S	1arch	n 8, 20		117-8	D							⁻ 4 OF 5 <i>I</i> : Geodetic
DEPTH SCALE METRES DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG m m m	EV. NO. HTT)	PENETRATION RATE min/(m) crc., COLOUR	-USH % RETU Ω∃ _ O < Ø	N - Je LT - F HR- S N - V J - C RECO	oint ault hear ein onjug	ate / R	BI FC CI	D-Bed D-Folia D-Cont R-Ortho - Clea FRAC INDE PEF 0.3 n	ting tion act ogonal vage T. X		PL - I CU- (UN- I ST - S IR - I DISCO	ch Planar Curved Undulating Stepped Irregular INTINUITY TYPE AND S DESCRII	K - S SM- S Ro - F MB- N DATA	Polished Slickensided mooth Rough Mechanical I HYDRAUI CONDUCTI K, m/sec	Break LIC VITY S 9_	NOTE:	For add ations eviation s.	en Rock Rough ditional refer to list 15 & WEATH- ERING INDEX	_	NOTES WATER LEVELS NSTRUMENTATION
-	CONTINUED FROM PREVIOUS PAGE Fresh, brownish-grey to brown, medium grained, pitted to vuggy DOLOSTONE (Bertie Formation, Falkirk Member)		11			2							•	BD/FR,I	R,RO						Sand	a ya ya ya ya ya ya ya ya
6.GDT 7/27/20 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			12										•	BD/FR,I								
GTA-RCK 025 S:CLIENTSIRANKIN_CONSTRUCTIONIPORT_COLBORNE_QUARRY/02_DATAIGINT/1771656.GPJ_GAL-MISS.GDT_7/27/20 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d			13										•	BD/FR,II BD/FR,II							Scre	en and Sand
S:\CLIENTS\RANKIN_CONSTRUCTIONPORT_C	Fresh, dark bluish grey to black argillaceous DOLOSTONE and SHALE (Bertie Formation, Oatka Member)		1.57 9.82 14									- ++	k	BD,PL,S BD,PL,S BD,PL,S BD,PL,S BD,PL,S BD,PL,S	SM SM SM							
об 970 970 970 970 0 0 0 0 0 0 0 0 0 0 0 0 0	CONTINUED NEXT PAGE						G	0) L	D	E	 R										ED: TP ED: SM

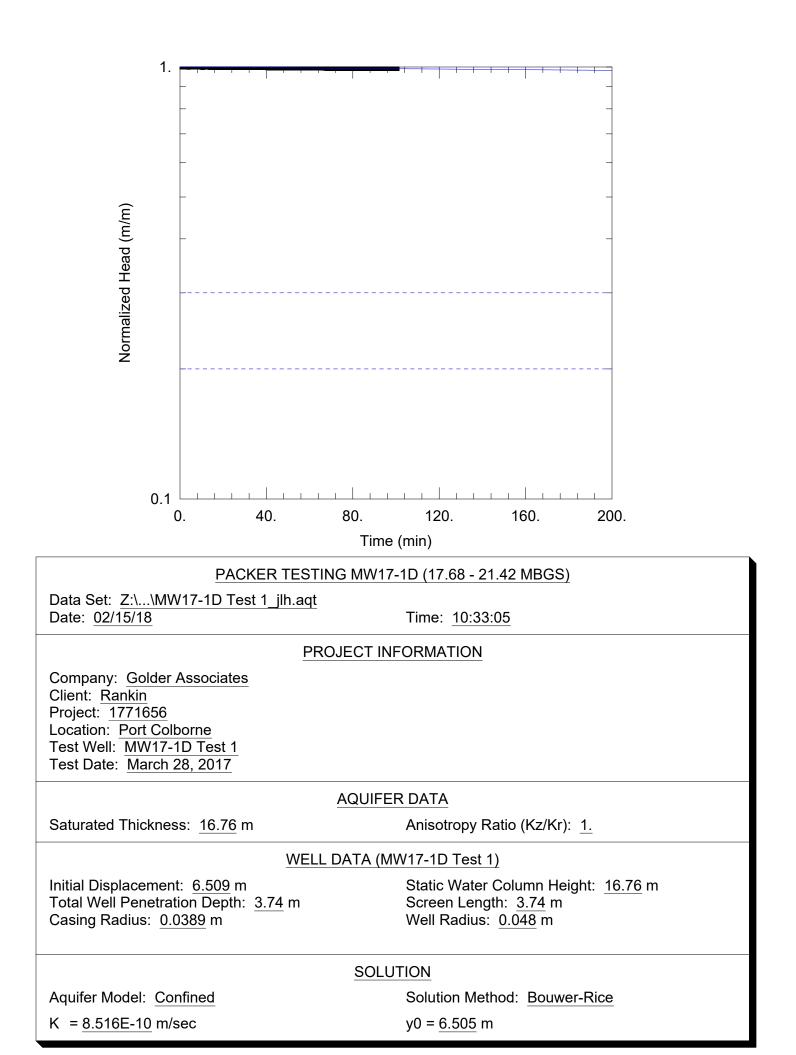
LC	CATIC	T: 1771656 N: N 4751094.9 ;E 646422.4 'ION: -90° AZIMUTH:	RE	COF	rd (DF	DR		G DA	TE:	Marc	ch 8, 20 ⁻	8H17- 17	8D							IEET 5 OF 5 NTUM: Geodetic
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION		EV. PTH m)	PENETRATION RATE min/(m) FLUSH <u>COLOUR</u>	NYN JN FLT SHF VN CJ RE TOT, CORE	- Joir - Fau - She - Vei - Cor COV	nt ilt ear njugate ERY SOLID :ORE %	E F (BD-Be FO-Fo CO-Co OR-Or CL-Cle FRA N. FRA 0.3	dding liation ntact thogor avage CT. EX ER	C U Nal S P IF	L - Planar U- Curved N- Undulatin T - Stepped R - Irregular SCONTINUIT	g SM- Ro- MB-	Polished Slickensid Smooth Rough Mechanica HYDRA CONDUC K, m/s	ll Break ULIC TIVITY ec	NOT	E: For a eviation breviati ols. K IGTH X	ken Ro y Roug Idditiona is refer to ons & WEAT ERIN INDE	TH- IG X	NOTES WATER LEVELS INSTRUMENTATION
- 21 -		CONTINUED FROM PREVIOUS PAGE Fresh, dark bluish grey to black argiilaceous DOLOSTONE and SHALE (Bertie Formation, Oatka Member)		14			5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	946	004	-0.0	5		BD,PL						>>>	>>	
- - - - - - - - - - - - -		END OF DRILLHOLE		30.10 21.29																	
																					- - - - - - - - - - - - - - - - - - -
																					- - - - - - - - - - - - - - -
1	EPTH S 25	CALE						GC		_ C) E	 									- - - - - - - - - - - - - - - - - - -

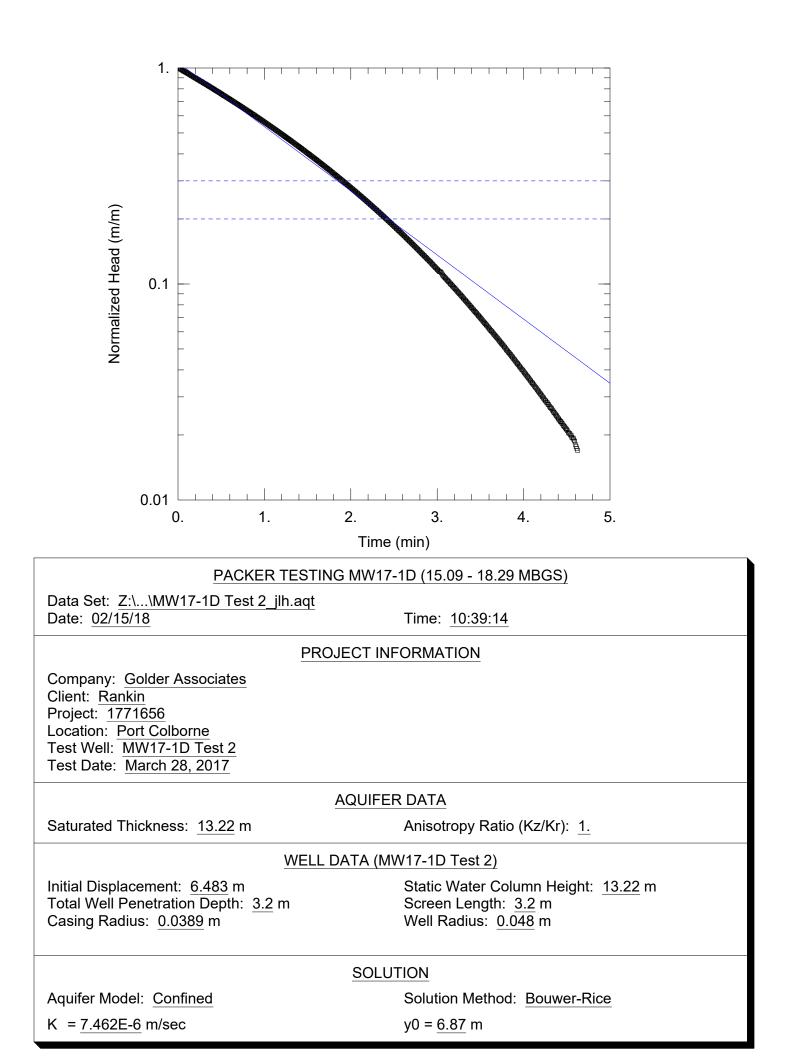

LOCAT	ECT: 1771656 TION: N 4751097.2 ;E 646422.6 JATION: -90° AZIMUTH:	RECORD	OF DRILLHOLE: DRILLING DATE: March 17, DRILL RIG: Acker SoilMax	2017	SHEET 1 OF 2 DATUM: Geodetic
DEPTH SCALE METRES DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG (a) AD (b) AD (c) AD (RECOVERY TOTAL SOLID CORE % CORE % R.Q.D. % FRACT. NDEX 5 % PER 800 4	PL - Planar PO- Polished CU- Curved K - Slickensided UN - Undulating SM-Smooth ST - Stepped Ro - Rough IR - Irregular MB- Mechanical Break DISCONTINUITY DATA CODUCTIVITY ORE Vart. UNF OR SUFFOR K m ^{bacc} ORE Vart. VISEDESCEPTION Conductive Co	BR - Broken Rock VR0: Very Rough NOTE: For additional of abbreviators & symbols: NDEX INDEX INDEX INDEX SST 55 55
	Continued from Record of Borehole BH17-8S Fresh to highly weathered, medium gray, medium bedded, medium grained LIMESTONE with siltstone and sandstone horizons and greenish grey siltstone and cherty limestone beds (Bois Blanc Formation) Some DOLOSTONE interbed ; between 1.4 m to 2.9 m.			DESCRIPTION 0,0,0,0,1 0,0,0,0,1 0,0,0,0,1 0,0,0,0,1 0,0,0,0,1 0,0,0,0,0,1 0,0,0,0,1 0,0,0,0,0,1 0,0,0,0,1 0,0,0,0,0,0,0 0,0,0,0,0 0,0,0,0,0,0,0 0,0,0,0,0 0,0,0,0,0,0,0 0,0,0,0,0 0,0,0,0,0,0,0 0,0,0,0,0 0,0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0,0,0,0 0,0,0,0,0,0,0 0,0,0,0,0,0,0,0,0,0 0,0,0,0,0,0,0 0,0,0,0,0,0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	2 22 22 22 22 22 2 3 3 - -
				BD/JN,IR,RO BD/JN,IR,RO BD/JN,IR,RO BD/JN,IR,RO BD/JN,IR,RO BD/JN,IR,RO BD/JN,PL to IR,RO to SM	Sand
- 4 - 4 - 5 - 5 - 5 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	Fresh, light to medium grey, medium bedded, medium grained, mottled DOLOSTONE with green beds, green fracture coatings and brecciated intervals (Bertie Formation, Akron Member)	176.59 4.87 4		BD/IN PFL to IR, RO to SM BD/IR, PL to IR, RO to SM	Screen and Sand
DEPTH 1 : 25	H SCALE	ĺ	🕃 GOLDER		LOGGED: TP CHECKED: SM

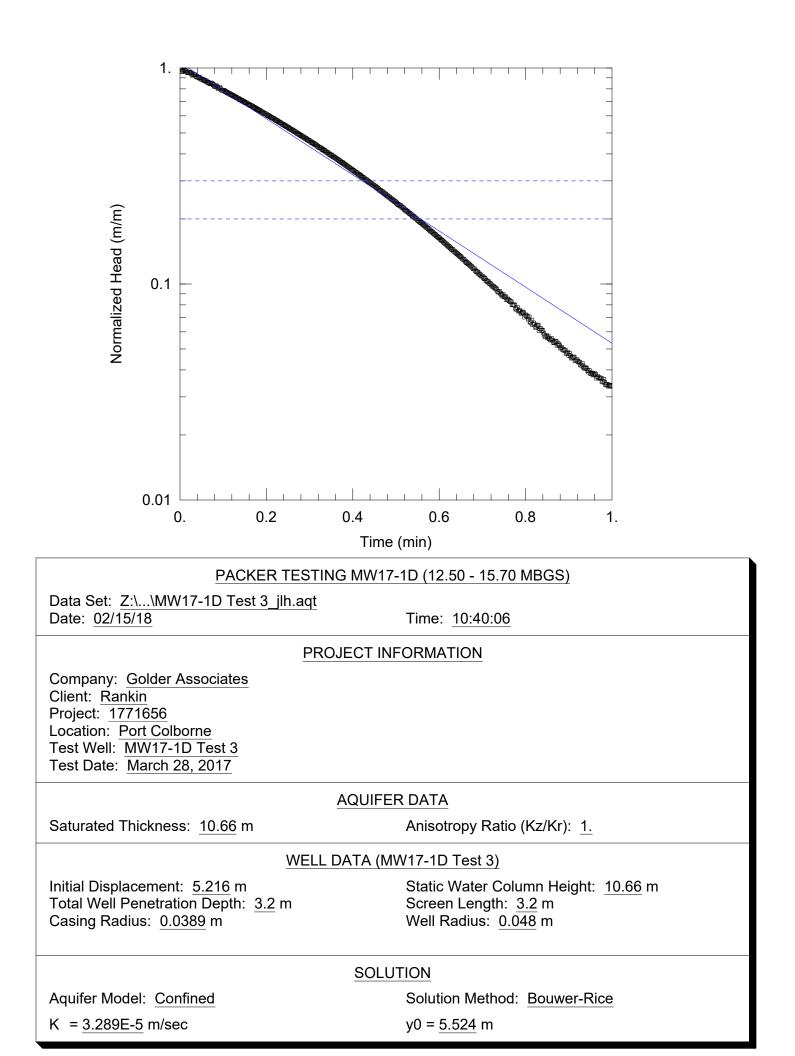
ſ			T: 1771656 N: N 4751097.2 ;E 646422.6	I	REC	OF	RD	0		DR	ILLI	ING	DA	TE:	Ma	arch	17, 2		117-85	\$									ET 2 OF 2 UM: Geodetic
	INC	CLINAT	TON: -90° AZIMUTH:													ilMa: TOR		nteo	ch										
	DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	PENETRATION RATE min/(m)	USH COLO	JN FLT SHR VN CJ RE TOTA CORE	- Fau - She - Vei - Cor COV	ult ear n	R	F C O	PE 0.3	liatic intac thog ava ACT. DEX ER	on t onal	(5 1	CU- UN- ST- IR - ISCC	Planar Curved Undulating Stepped Irregular DNTINUITY DA TYPE AND SURI DESCRIPTIC	TA	Slicken Smooth Rough Aechar HYD COND K,	sided	TY S	abbre	eviation breviation ols. K IGTH X	WE WE EF	Rock onal er to list EATH- RING IDEX	t	NOTES WATER LEVELS INSTRUMENTATION
	- 6		CONTINUED FROM PREVIOUS PAGE Fresh, light to medium grey, medium bedded, medium grained, mottled DOLOSTONE with green beds, green fracture coatings and brecciated intervals (Bertie Formation, Akron Member)			5													BD/IR.PL to IR.RO to SI BD/IR.PL to IR.RO to SI JN.PL_SM FR.PL_SM FR.PL_SM FR.PL_SM FR.PL_SM FR.PL_SM JN/FR.IR to W.RO to SI JN/FR.IR to W.RO to SI									Sc	reen and Sand
225 SI/CLENTSKANKIN CONSTRUCTION/PORT COLBORNE QUARKY02 DATAGINTIT/1956.GPJ GAL-MISS.GDT //2//20	- 8		END OF DRILLHOLE		173.94													***	JUFFR IR to WRO to SN JUFFR IR TO WRO to SN JUFFR IR TO WRO to SN	N									
	DE 1 :	PTH S 25	CALE							(G	0	L	. D		EI	2												GGED: TP CKED: SM

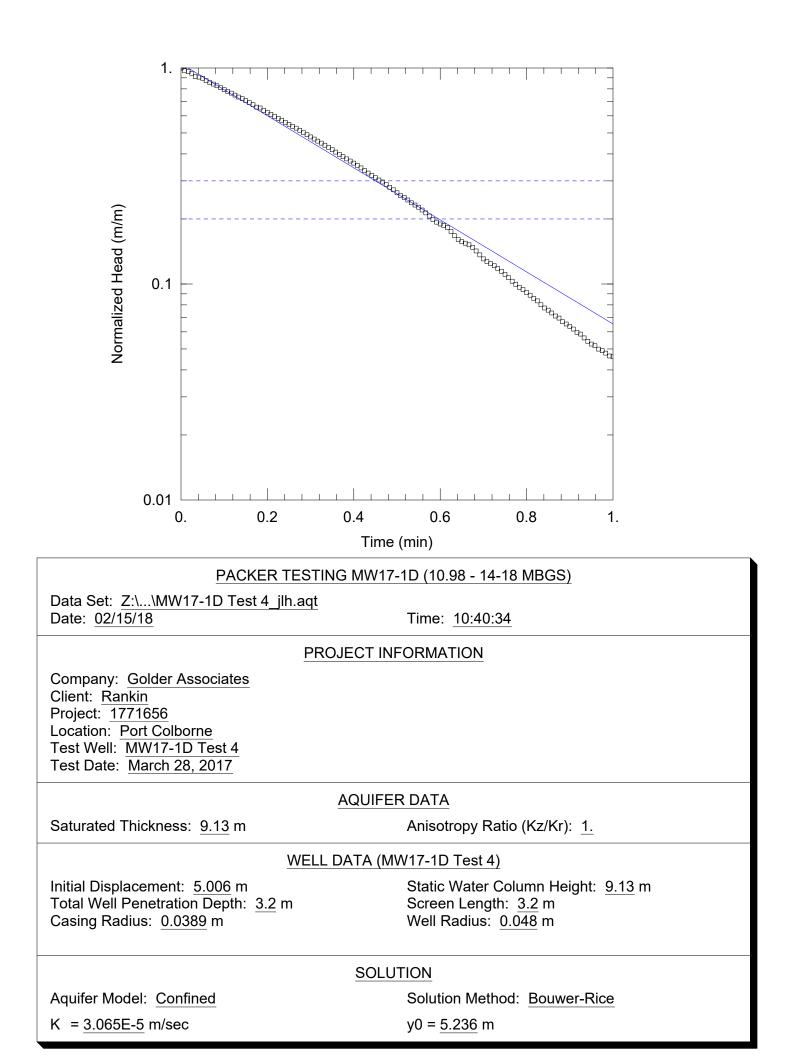
Eth O DESIGN FILM O POCT (STR) CODE (Not Colse) (STR) Code (STR) Code (STR) <th< th=""><th></th><th>CT: 1771656 CN: N 4750972.1 ;E 646834.1</th><th></th><th>DRILLHOLE: BH17-9E</th><th></th><th>ET 1 OF 4 JM: Geodetic</th></th<>		CT: 1771656 CN: N 4750972.1 ;E 646834.1		DRILLHOLE: BH17-9E		ET 1 OF 4 JM: Geodetic
B B DESCRIPTION B B B DESCRIPTION B B DESCRIPTION B B DESCRIPTION DESCRIPION DESCRIPTION <thd< th=""><th>INCLINA</th><th>TION: -90° AZIMUTH:</th><th></th><th></th><th></th><th></th></thd<>	INCLINA	TION: -90° AZIMUTH:				
Fresh to highly weathered, medium garey, medium badder, medium garey, medium ga	DEPTH SCALE METRES DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG SYMBOLIC LOG (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)	Fault FO-Foliation CU-Curved Shear CO-Contact UN-Indulating OR-Orthogonal ST - Stepped Conjugate CL - Cleavage IR - Irregular DVERY ROLD INDEXT C SOLD R. M. PER S CORE S CORE 0.3 m C CORE S CORE S CORE	SM- Smooth NOTE: For additional abbreviations refer to list of abbreviations & Ro- Rough abbreviations & MB- Mechanical Break Smooth symbols. TA HYDRAULIC CONDUCTIVITY STRENGTH ERING CONDUCTIVITY STRENGTH ERING Nese ROCK WEATH- ERING SMOOTH	NOTES WATER LEVELS INSTRUMENTATION
3.07 Fresh, light to medium gray, medium 3.07 FRUNSM FRUNSM DoUC STORM with green best, green fracture coatings and brecciated intervals (Bertie Formation, Akron Member) 3.07 FRUNSM FRUNSM 2 4 BDUNSM FRUNSM FRUNSM FRUNSM 4 BDUNSM FRUNSM FRUNSM 6 BDUNSM FRUNSM FRUNSM 6 BDUNSM FRUNSM FRUNSM 7 6 FRUNSM FRUNSM	-	Fresh to highly weathered, medium grey, medium bedded, medium grained LIMESTONE with siltstone and sandstone horizons and greenish grey siltstone and cherty limestone beds	2.13	to R0 bopt to C	J,SM J,SM J,SM J,SM	
2 4 4 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7	- 3 - 3 	bedded, medium grained, mottled DOLOSTONE with green beds, green fracture coatings and brecciated intervals	177.68 3.07	to R0 BD,PL to C to R0 BD,PL to C to R0 FR,UN,SM FR,UN,SM FR,UN,SM	U,SM	, NG, NGG, NG, NG, NG, NG, NG, NG, NG, N
	-	laminated , dark grey to black , soft ,		 BD,UN,SM BD,UN,SM BD,UN,SM BD,UN,SM BD,UN,SM BD,UN,SM 		E NAL
Free of the second provide appearance begins	- 5 			• FR.UN.SMI	o RO	
4 + - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	-	CONTINUED NEXT PAGE				
DEPTH SCALE LOGGED: TP 1:25 GOLDER CHECKED: SM	DEPTHS	SCALE		GOLDER		

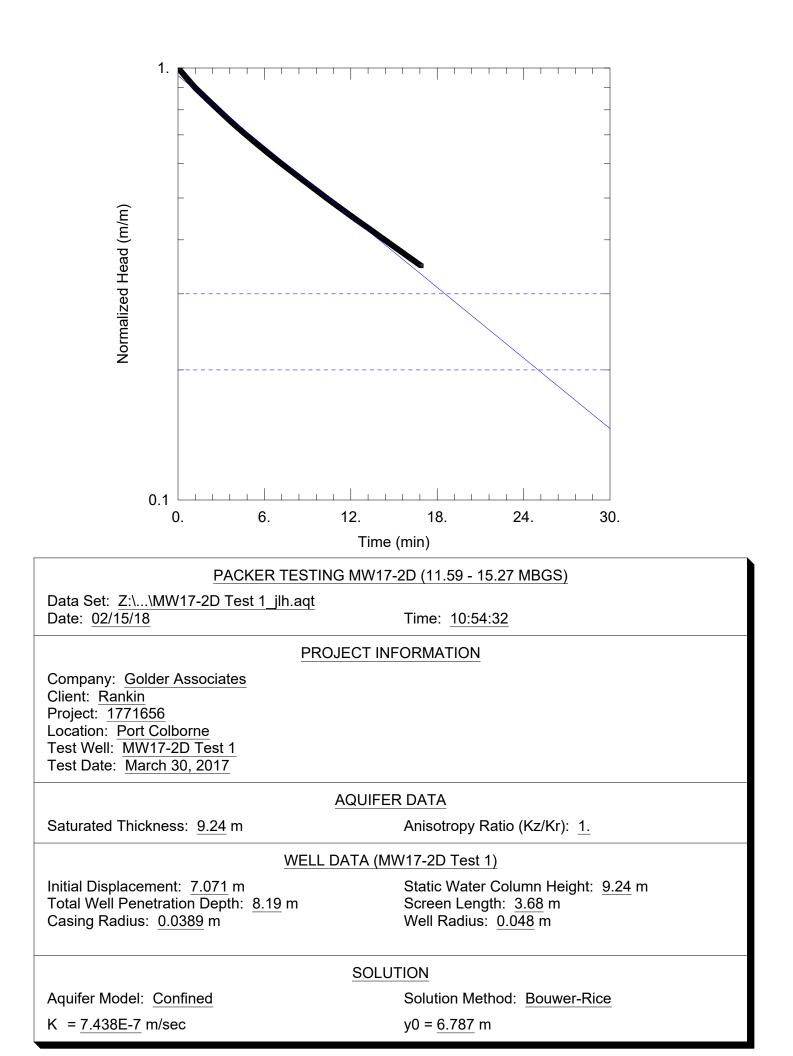
S:\CLIENTS\RANKIN_CONSTRUCTION\PORT_

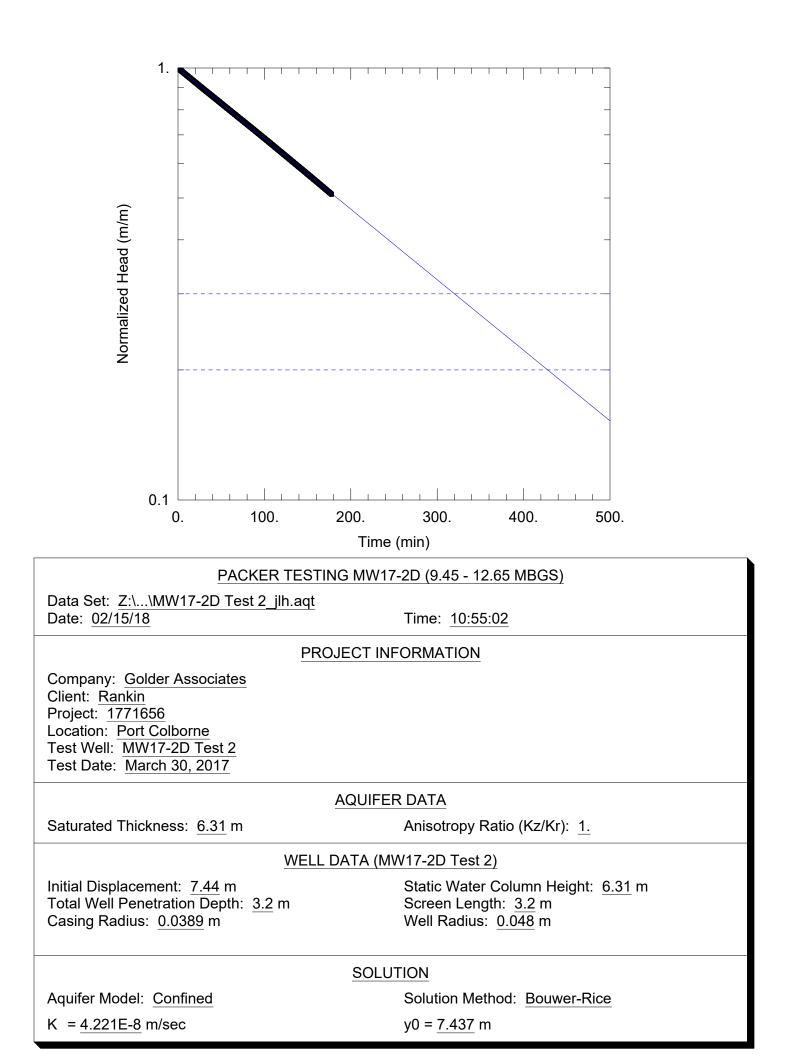


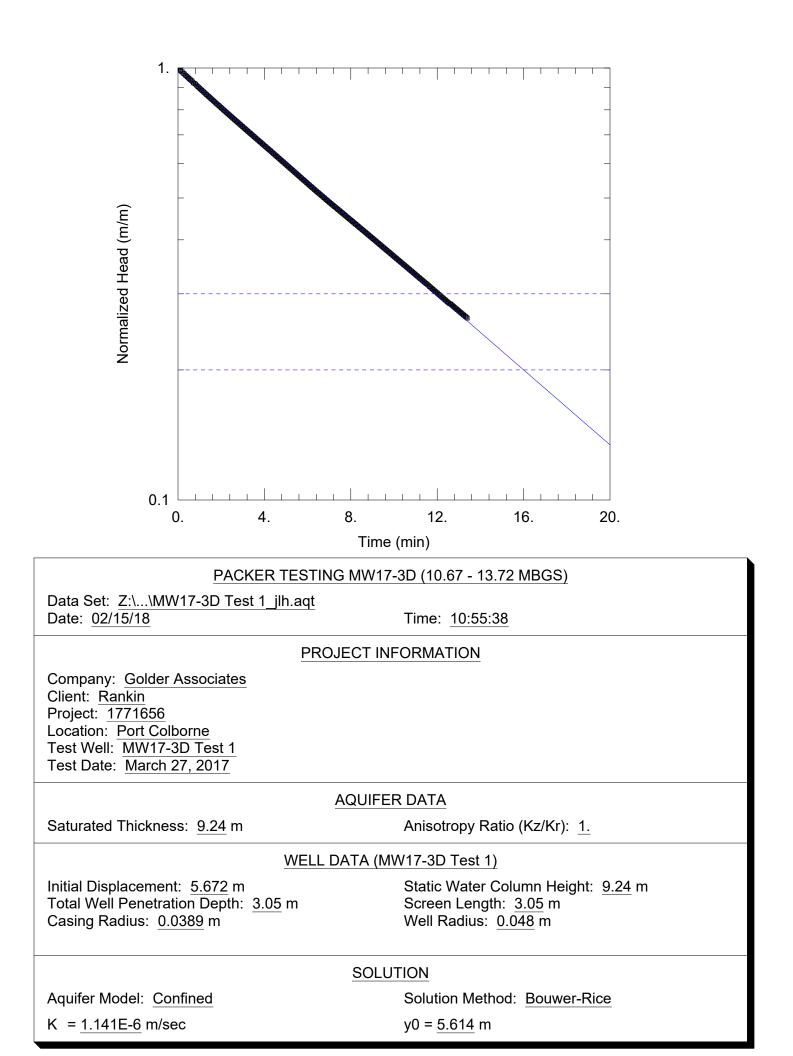

LC	CATIO	CT: 1771656 DN: N 4750972.1 ;E 646834.1 TION: -90° AZIMUTH:	R	REC	OF	RD	0	F	DR DR	RILL	ING RIC	DA B: A	TE: Acke	Fe r So	ebrua bilMa:	ry 14 K	, 201 ⁻)									HEET 4 OF 4 ATUM: Geodetic	
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION		ELEV. DEPTH (m)	RUN No.	PENETRATION RATE min/(m)	-USH COLC	JN FLT SHF VN CJ RE TOTA	- Joi - Fau - She - Vei - Col COV	nt ult ear in njuga	ate , D %	E F ()	BD-B FO-F CO-C DR-C CL-C CL-C FR 0. IN F 0. 0	eddi oliati onta rthog	ct gonal age Core	F C L S	PL - Pla CU - Cu IN - Un ST - Ste R - Irre SCONT	anar rved dulating	ACE	licker moot ough lecha HYE CONE K,	nside h	Breal LIC IVITY c	k sy R(STRI IN	R - E Ro - V DTE: F brevia abbre mbols DCK ENGT DEX	-or ac ations wiatio	WEA ERII IND	to list	NOTES WATER LEVEL INSTRUMENTAT	
- - - - - - - - - 18		CONTINUED FROM PREVIOUS PAGE Fresh, brownish-grey to brown, medium grained, pitted to vuggy DOLOSTONE (Bertie Formation, Falkirk Member) Fresh, dark bluish grey to black argillaceous DOLOSTONE and SHALE (Bertie Formation, Oatka Member)		<u>163.42</u> 17.33																								Screen and Sand	
		END OF DRILLHOLE		<u>162.46</u> 18.29																									
																													-
		SCALE								G					EI	1												OGGED: TP IECKED: SM	-

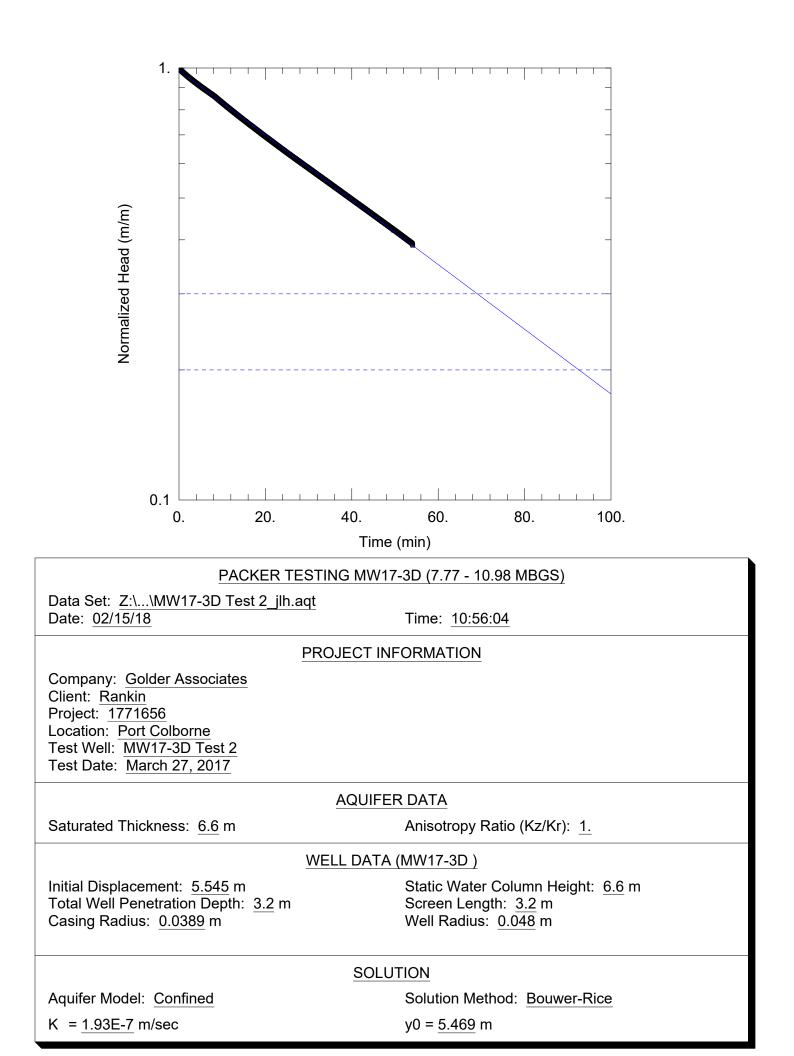

L	.00	ATIO	T: 1771656 N: N 4750974.3 ;E 646834.0		REC	OF	RD	0)F	D	RILL	.ING	DA	TE:	Fe	brua ilMax	ry 21		H17-9 \$	5								IEET 1 OF 1 ATUM: Geodetic	
DEPTH SCALE	-		ION: -90° AZIMUTH: DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	PENETRATION RATE min/(m)	FLUSH COLOUR % RETURN	FL SH CJ R TO	DI - Jo T - Fa IR- SH J - Ve - Co ECO	RILL ault near ein onjug:	ate	ECO B F C O	D-Be O-Fo O-Co R-OI L-CI FR/ INE PI	AC eddir oliatio ontao thog	TOR:	: La	PL - CU - UN - ST - IR -	- Planar - Curved - Undulating - Stepped - Irregular CONTINUITY D/ TYPE AND SUF DESCRIPTI	SM-S Ro-F MB-N	lickens mooth lough lechan HYD COND K,	sided ical Bre RAULIC UCTIVII m/sec	eak ; TY S	NOTE:	For a iation: reviations ls.	s refer to	il o list TH- IG	NOTES WATER LEVELS INSTRUMENTATION	N
-		DF	Continued from Record of Borehole BH17-9S Fresh to highly weathered, medium grey, medium bedded, medium grained LIMESTONE with siltstone and sandstone horizons and greenish grey siltstone and cherty limestone beds (Bois Blanc Formation)		178.63			ELI			80		0000		10				FR,IR to U FR,IR to U FR,IR to U FR,IR to U FR,IR to U	N,RO N,RO N,RO N,RO N,RO	10	10	R4	R3	R1	W1 W2 W3		Bentonite Seal	
	3		Fresh, light to medium grey, medium bedded, medium grained, mottled DOLOSTONE with green beds, green fracture coatings and brecciated intervals (Bertie Formation, Akron Member)		<u>177.71</u> 3.00	2													FRJR to U FRJR to U FRJR to U FRJR to U FRJR to U FRJR RO FRJR RO FRJR RO FRJR RO FRJR RO FRJR RO	N,RO N,RO N,RO								Sand	528528528528528538538538538538538538538538538538538538
GAL-MISS.GDT 7/27/20	5															Löst		• • • •	FRJR.RO FRJR.RO FRJR.RO FRJR.RO									Screen and Sand	VININININININININININININININI VININININ
	6		Weathered to fresh, thinly bedded to laminated , dark grey to black , soft , SHALE interval from 5.1 m to 5.3 m		174.69	3												• • •	FR,IR,RO HD,PL,SM BD,PL,SM BD,PL,SM BD,PL,SM FR,IR,RO FR,IR,RO FR,IR,RO										INTRANANANANANANANANAN
	7		END OF DRILLHOLE		6.02																								
)EP : 2		CALE				1				G	С) L	. C)	EF	2	11						_ 1]	- 1			DGGED: TP ECKED: SM	

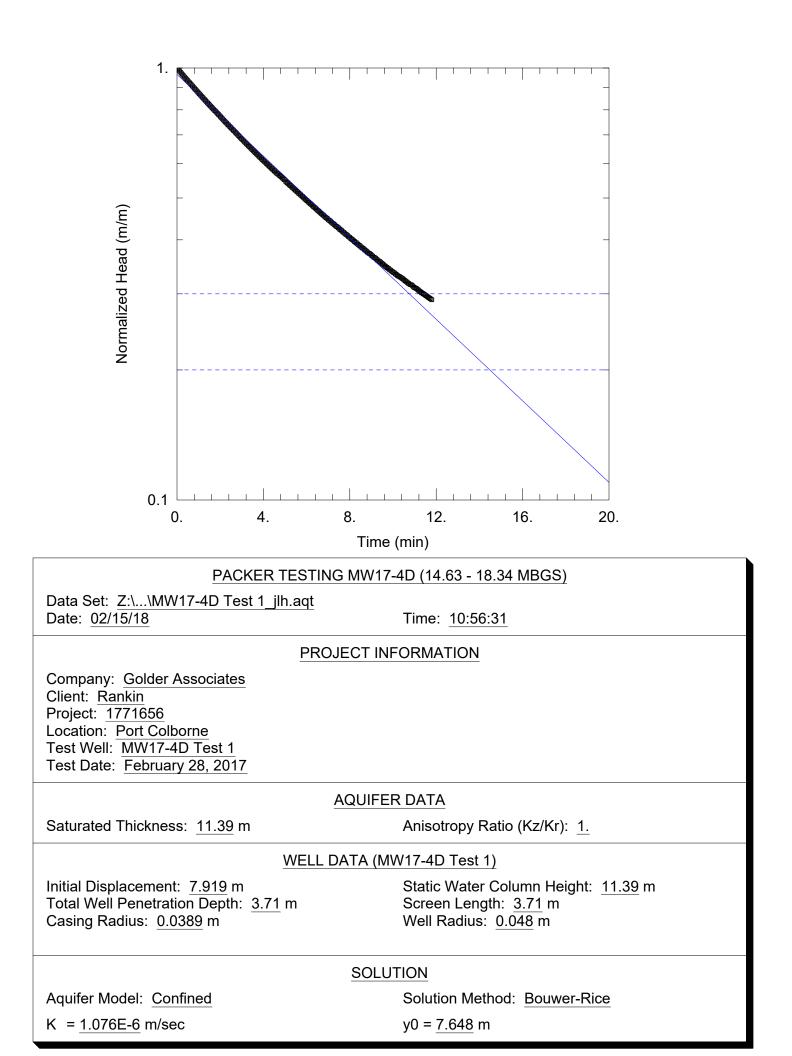

APPENDIX B

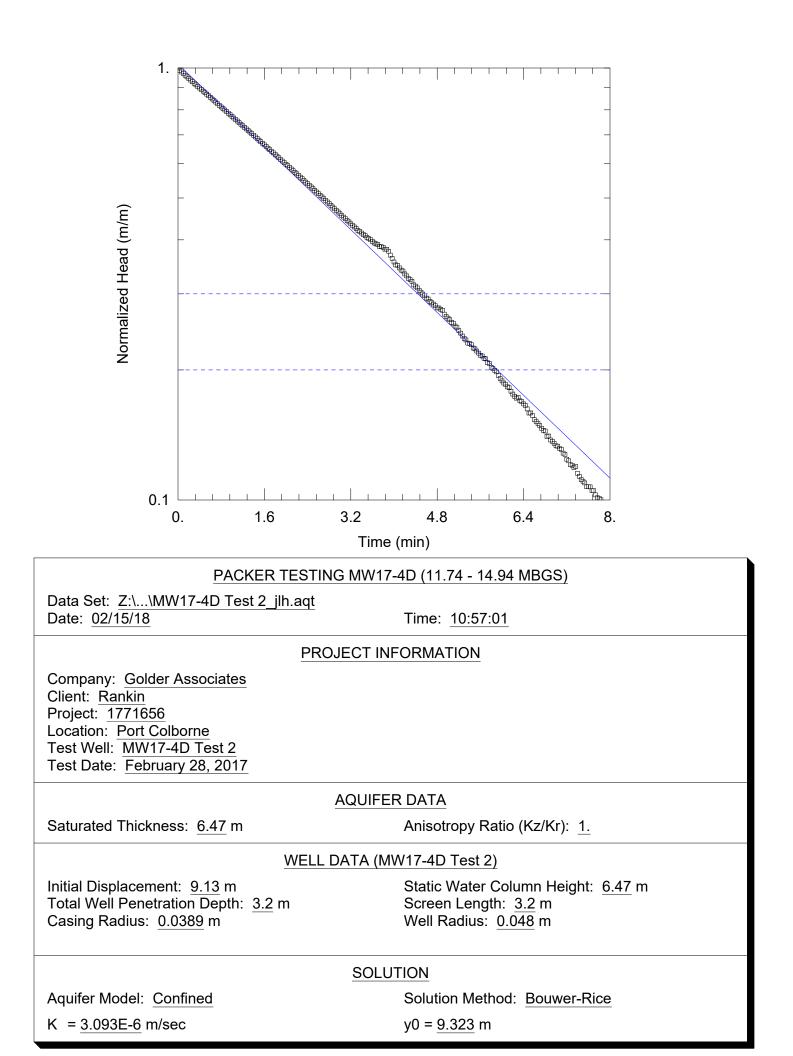

Hydraulic Conductivity Testing Results

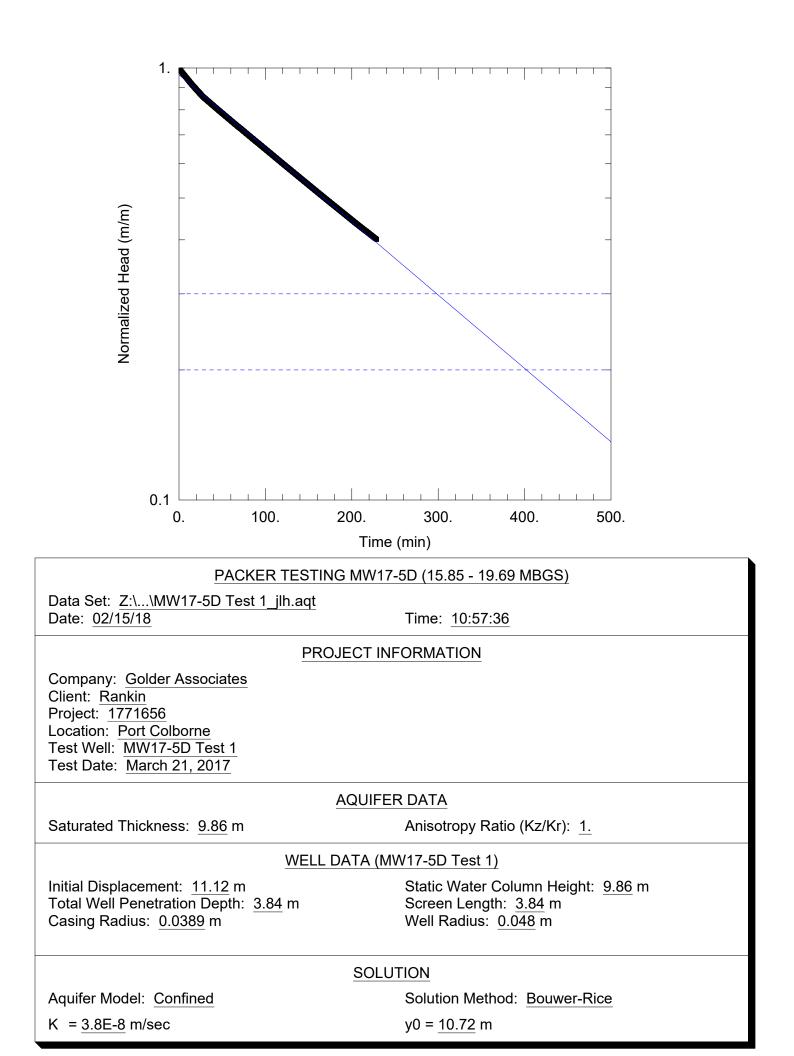


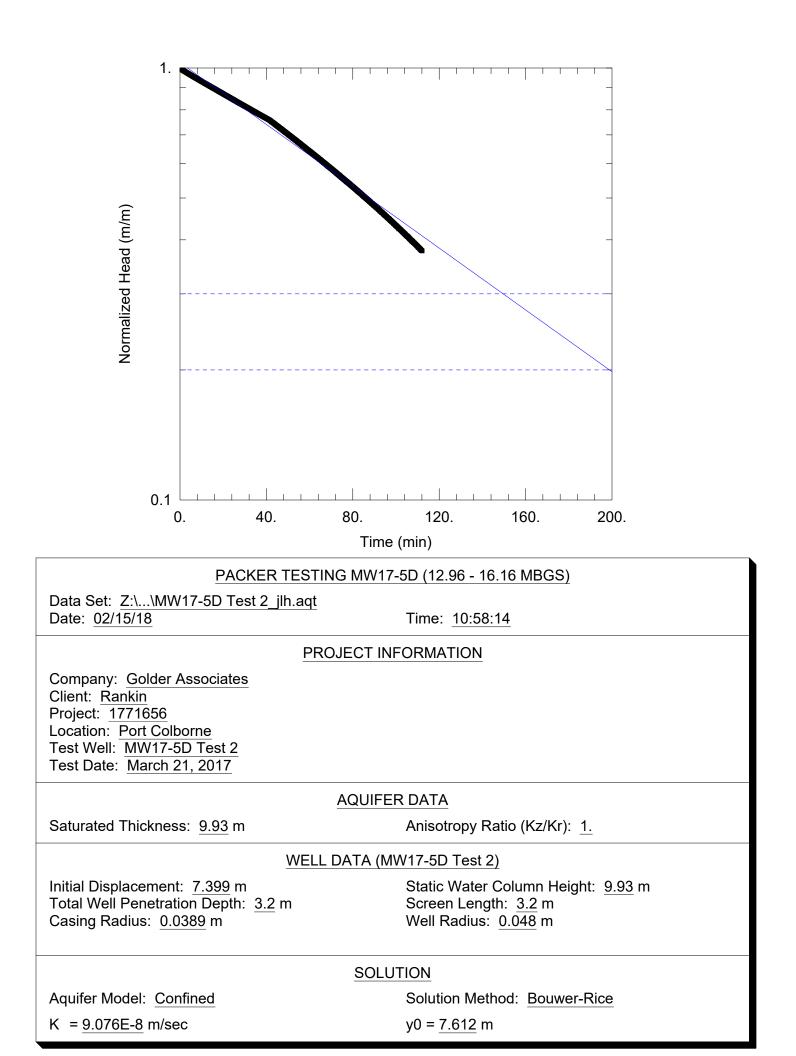


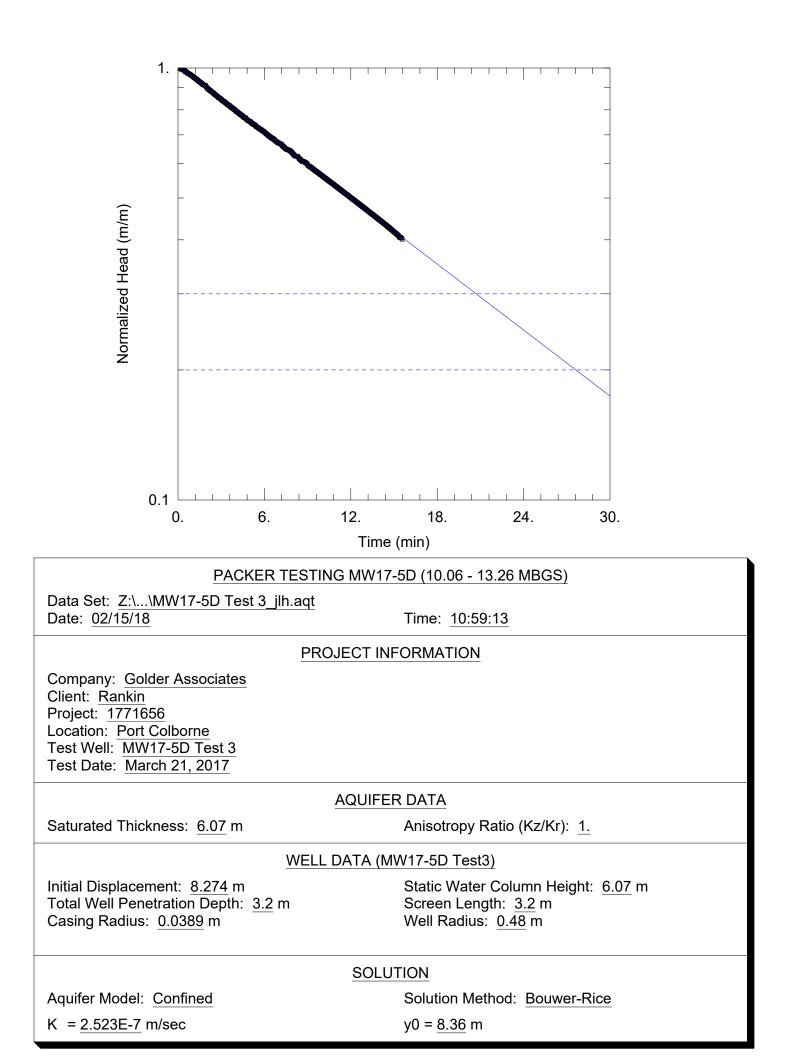


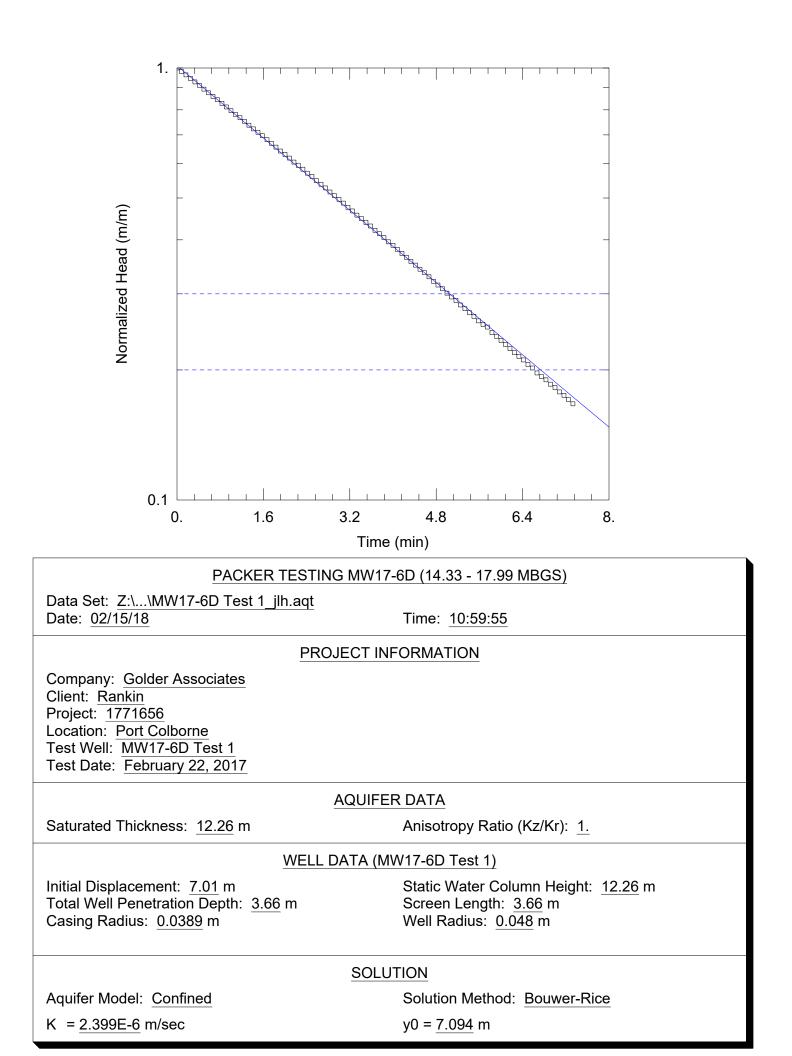


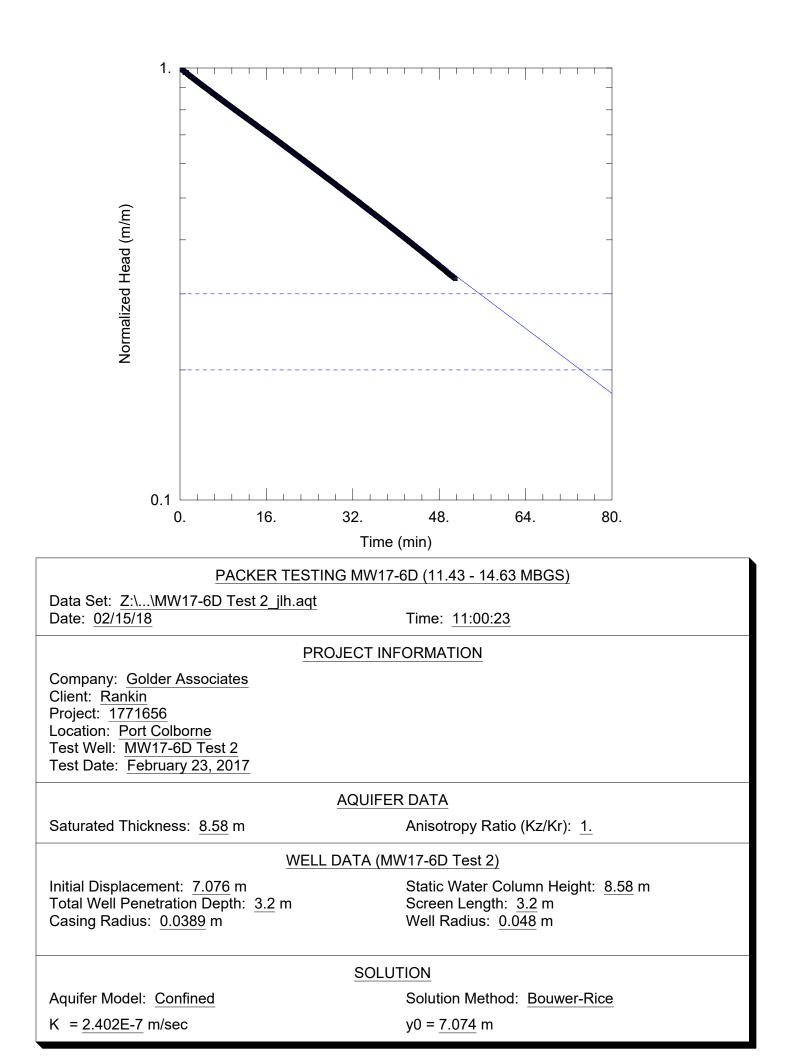


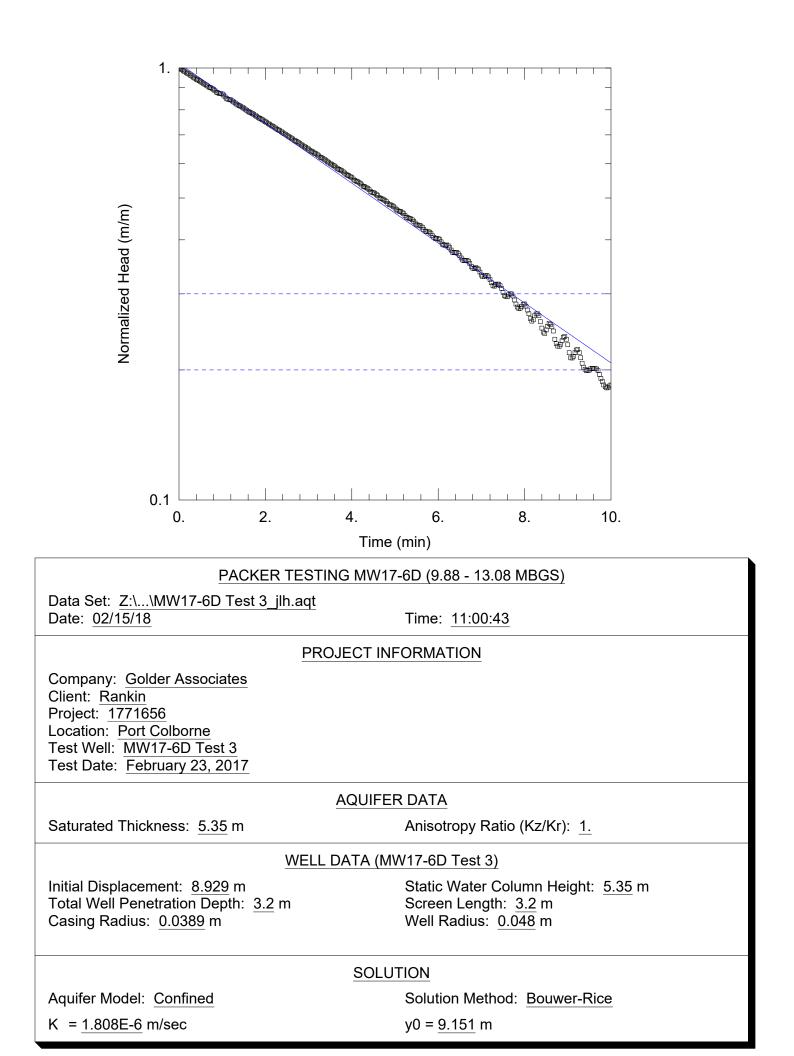


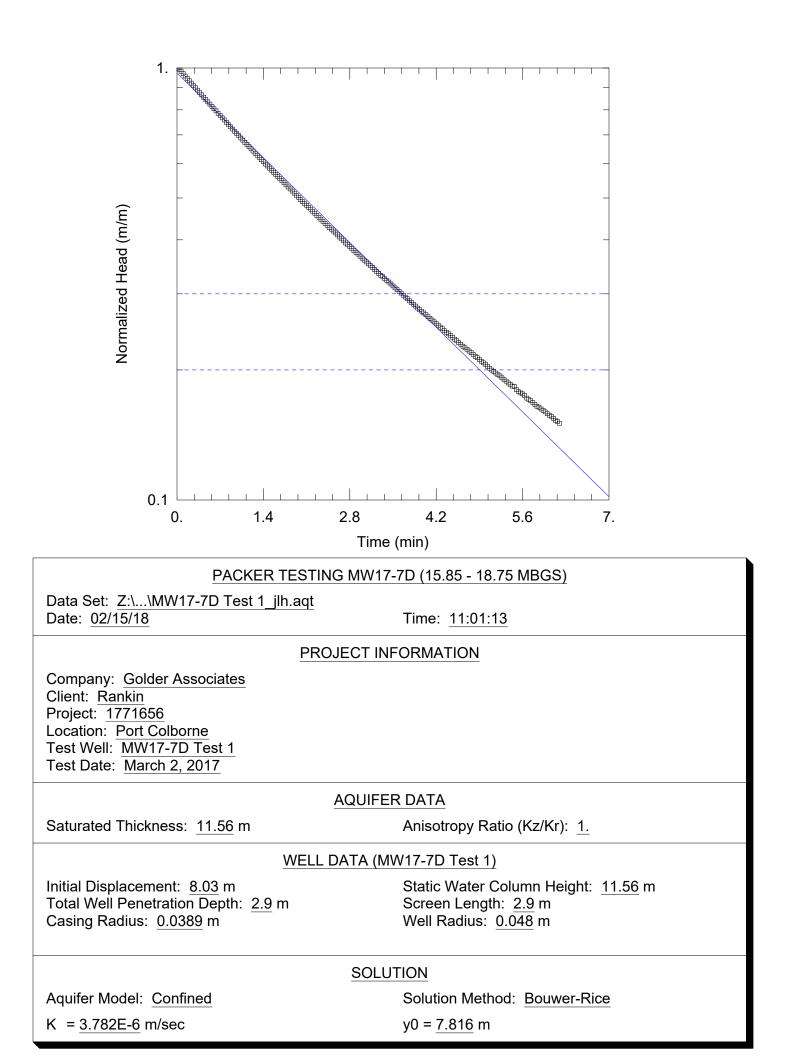


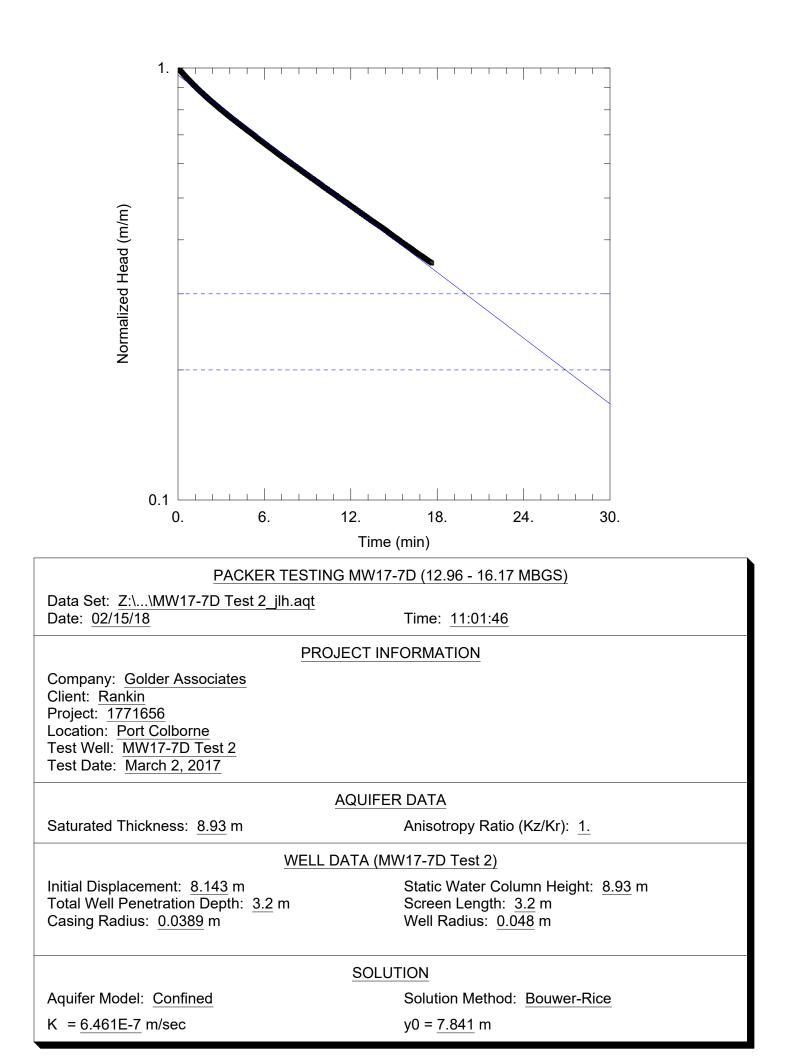


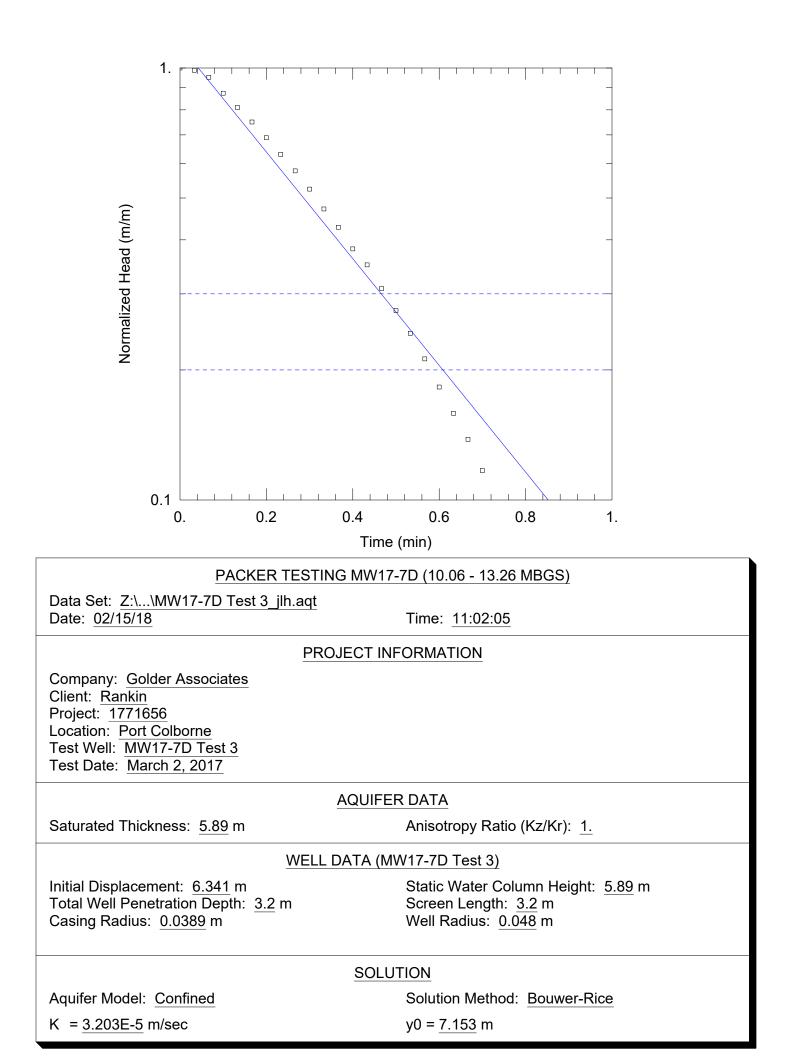


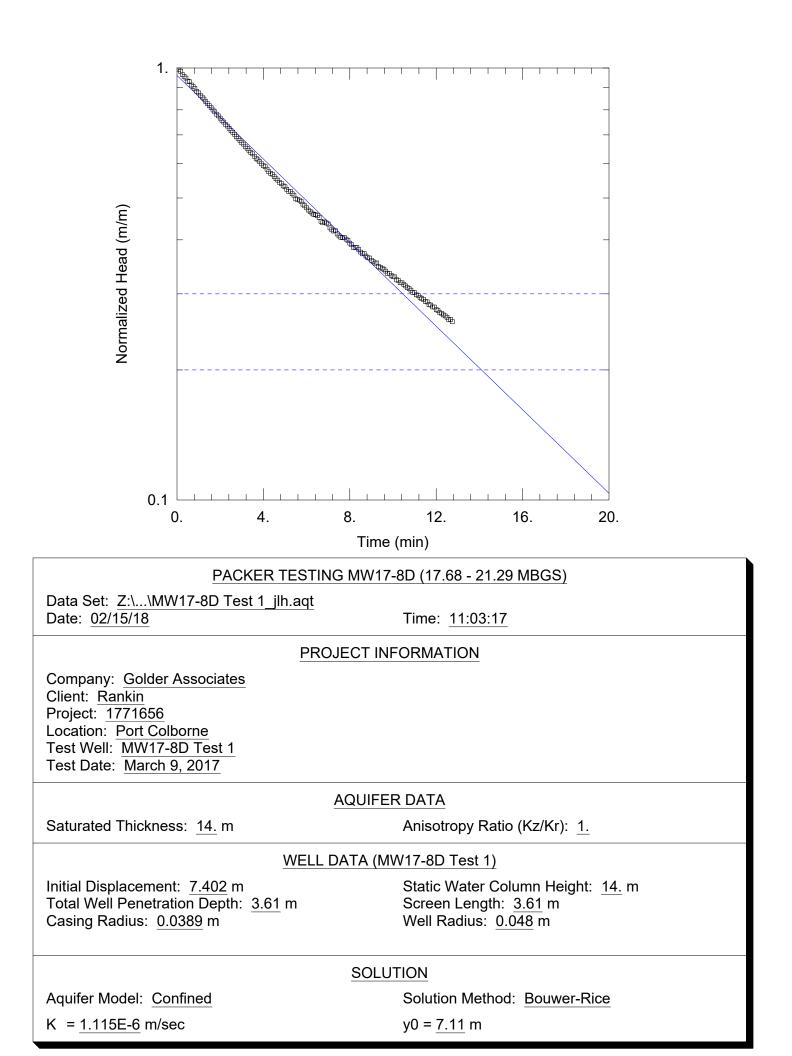


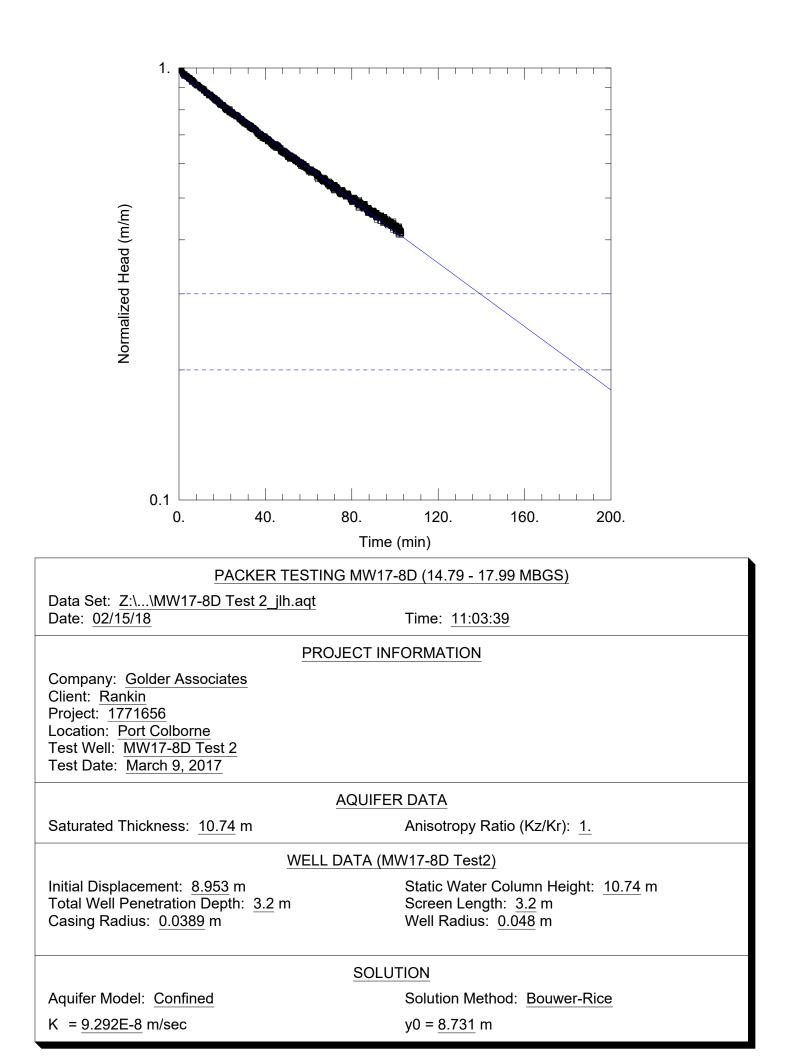


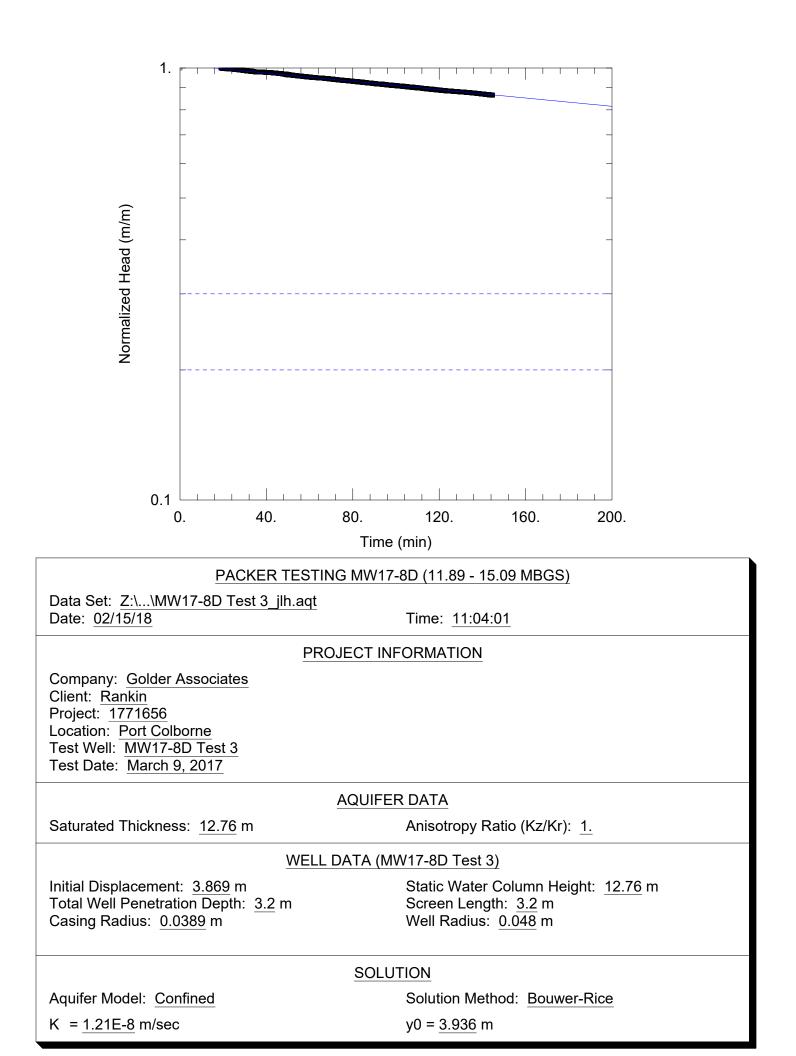


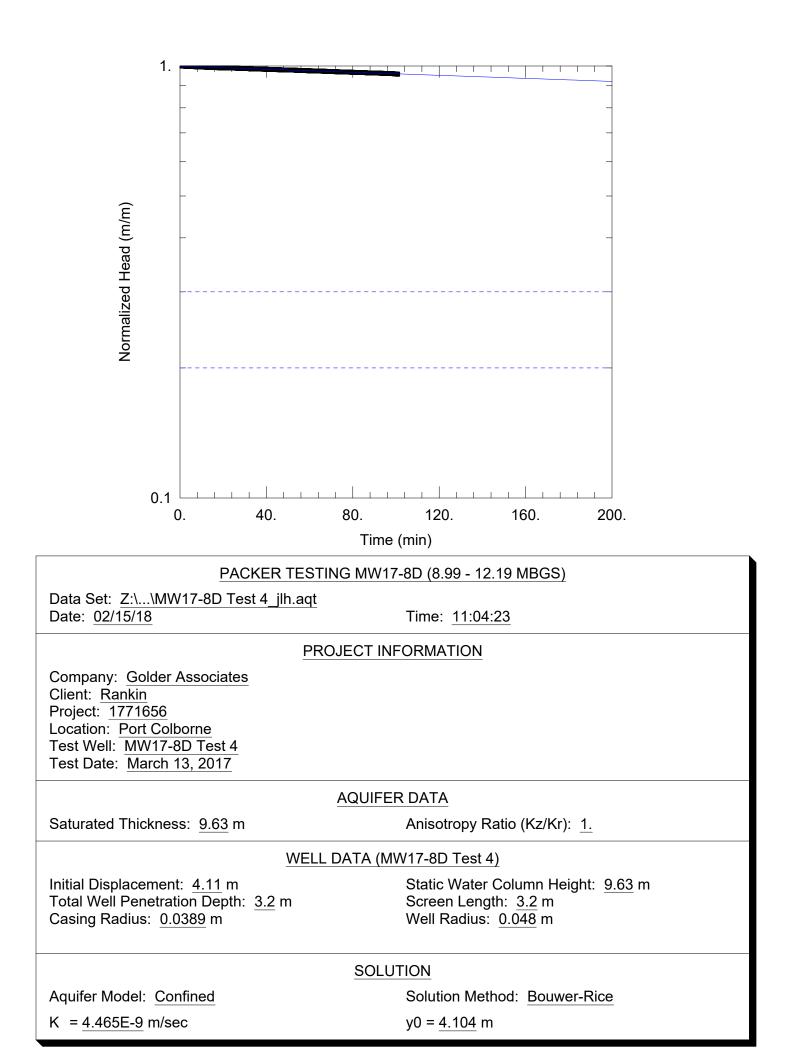


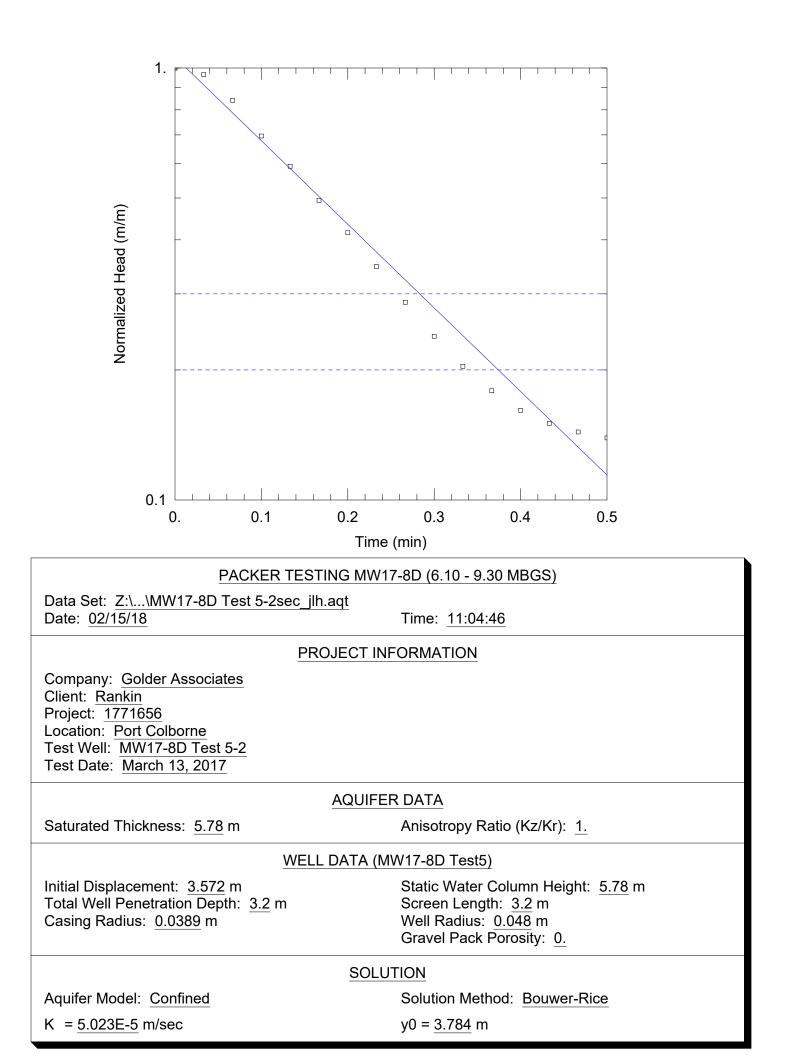


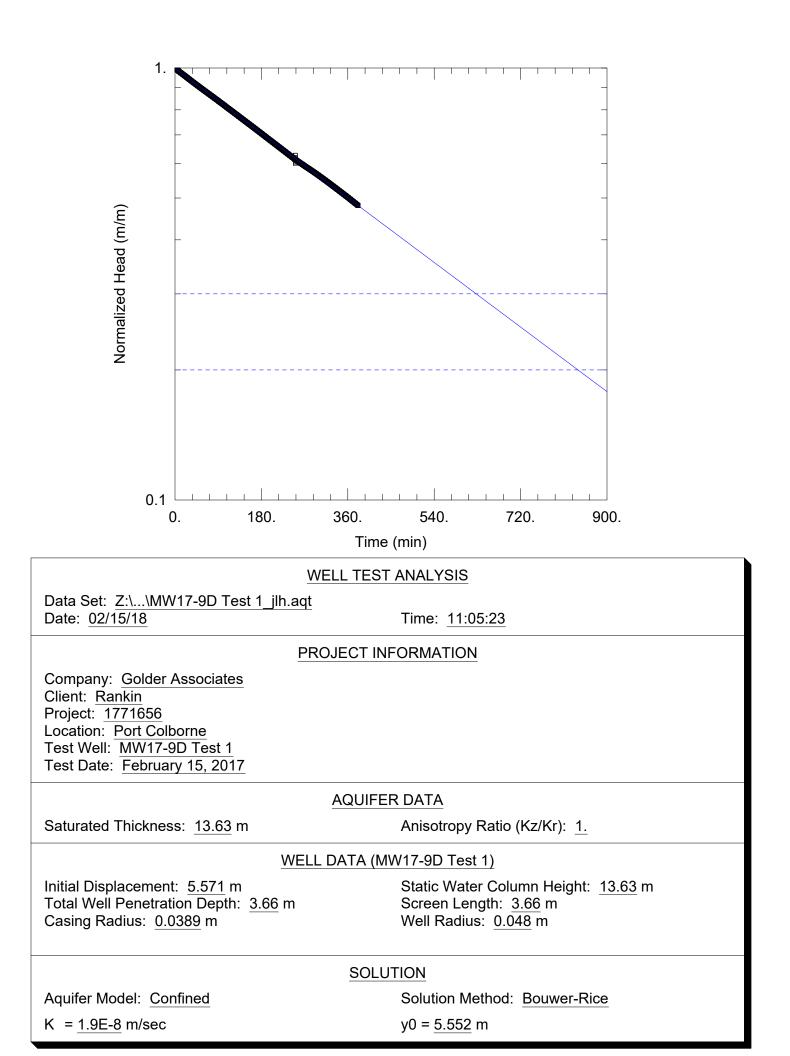


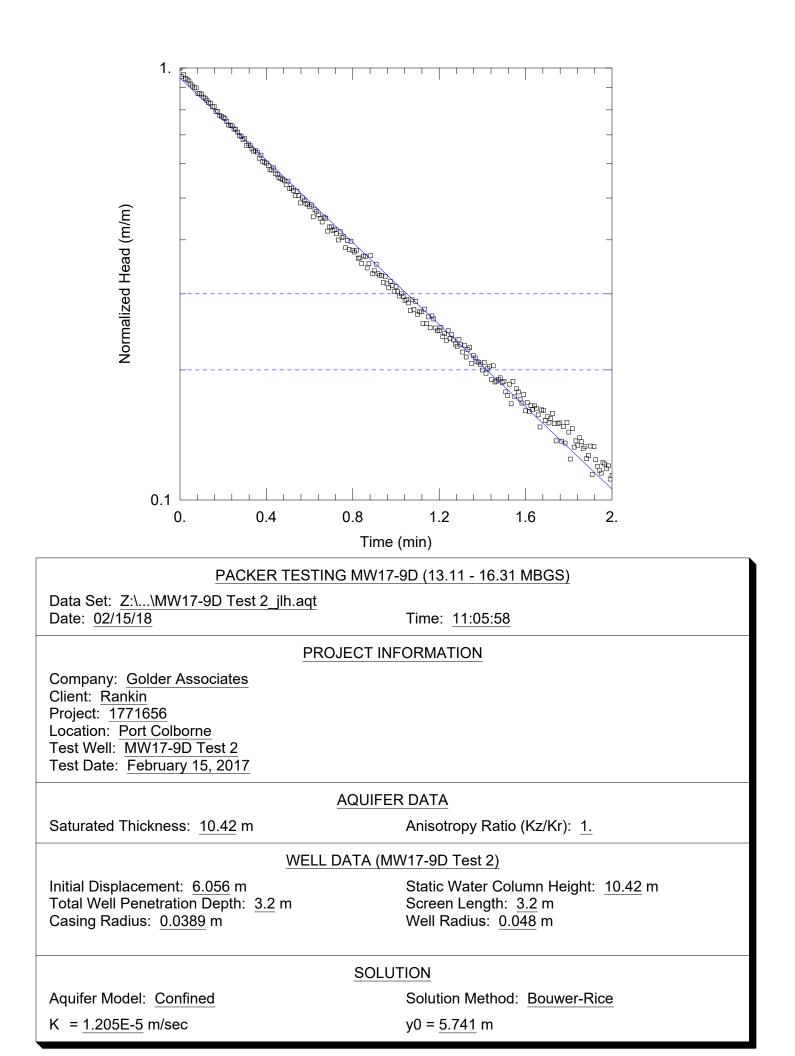


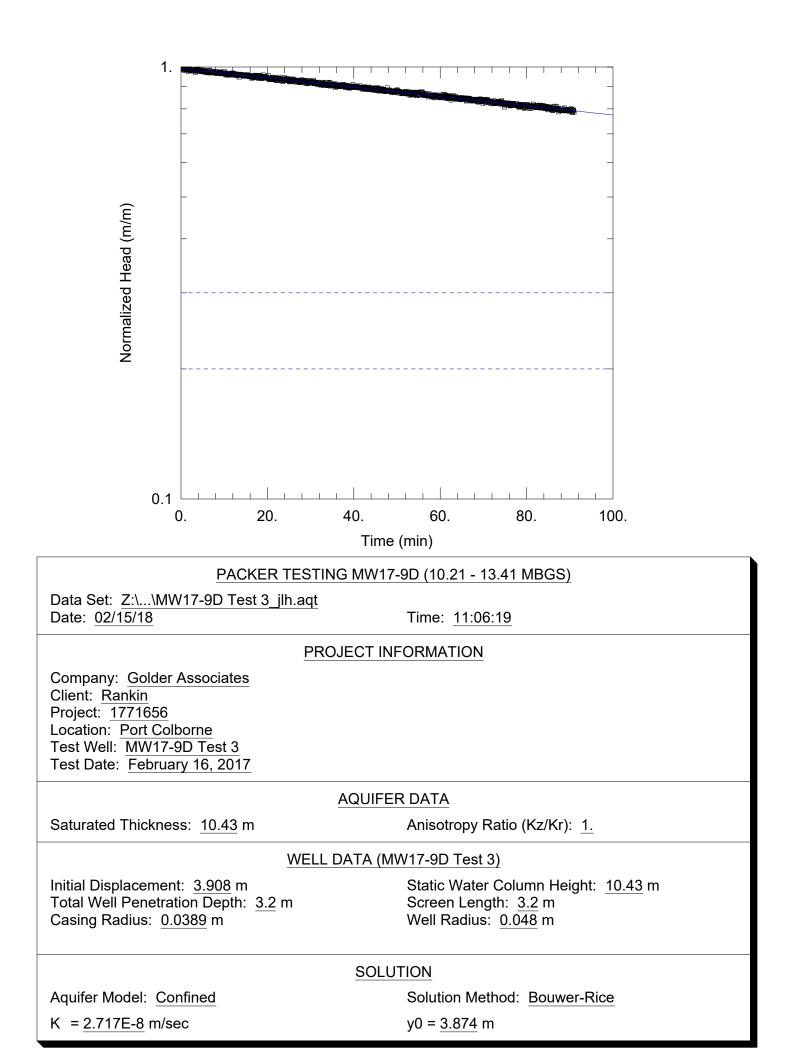


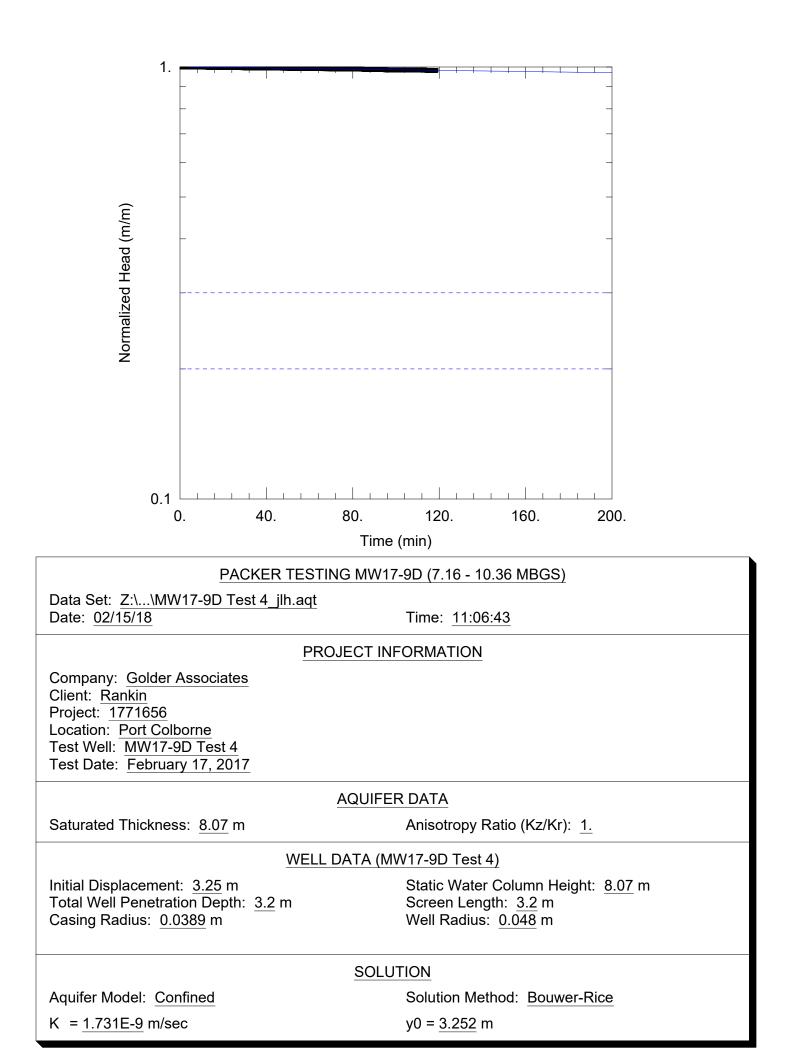


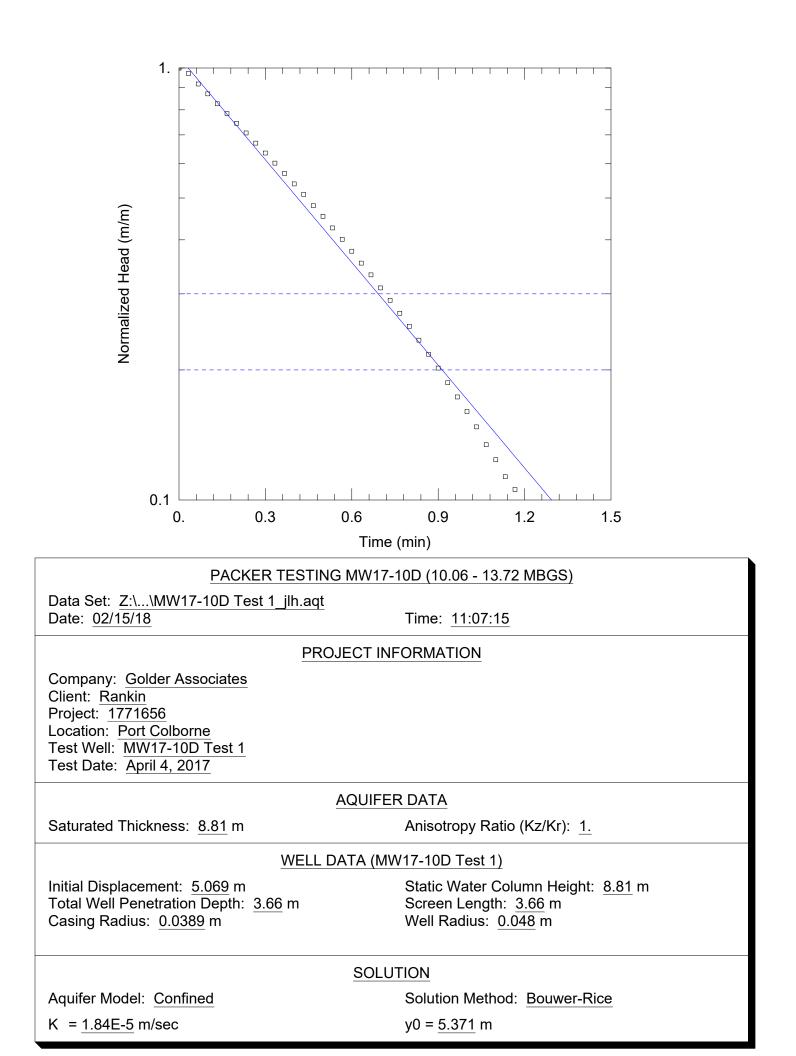


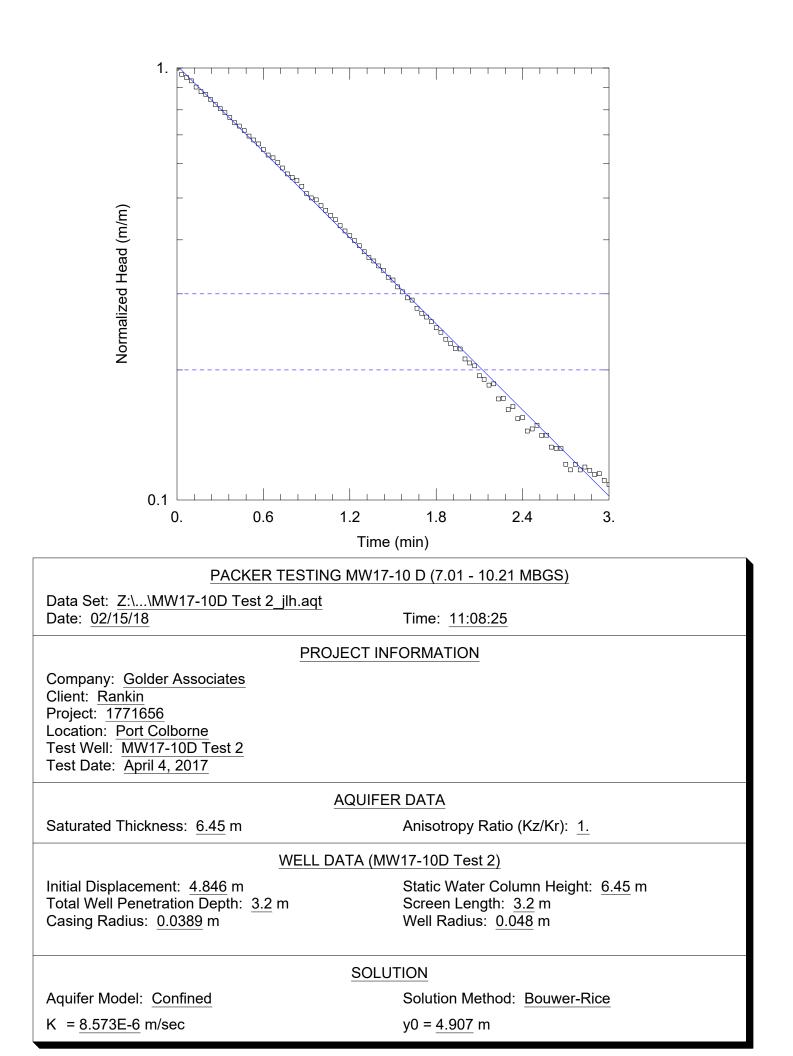












APPENDIX C

Groundwater Quality Analytical Results

Your Project #: 1771656 (1000/1003) Your C.O.C. #: 605301-01-01, 605301-02-01

Attention:Byron Zwiep

Golder Associates Ltd St. Catharines 110 Hanover Dr Building A, Suite 203 St.Catharines, ON CANADA L2W 1A4

> Report Date: 2017/04/20 Report #: R4432611 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B772423 Received: 2017/04/11, 15:30

Sample Matrix: Water # Samples Received: 14

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Alkalinity	13	N/A	2017/04/13	CAM SOP-00448	SM 22 2320 B m
Alkalinity	1	N/A	2017/04/20	CAM SOP-00448	SM 22 2320 B m
Carbonate, Bicarbonate and Hydroxide	1	N/A	2017/04/13	CAM SOP-00102	APHA 4500-CO2 D
Carbonate, Bicarbonate and Hydroxide	13	N/A	2017/04/17	CAM SOP-00102	APHA 4500-CO2 D
Chloride by Automated Colourimetry	1	N/A	2017/04/13	CAM SOP-00463	EPA 325.2 m
Chloride by Automated Colourimetry	12	N/A	2017/04/17	CAM SOP-00463	EPA 325.2 m
Chloride by Automated Colourimetry	1	N/A	2017/04/20	CAM SOP-00463	EPA 325.2 m
Conductivity	14	N/A	2017/04/13	CAM SOP-00414	SM 22 2510 m
Dissolved Organic Carbon (DOC) (1)	13	N/A	2017/04/13	CAM SOP-00446	SM 22 5310 B m
Hardness (calculated as CaCO3)	7	N/A	2017/04/13	CAM SOP 00102/00408/00447	SM 2340 B
Hardness (calculated as CaCO3)	6	N/A	2017/04/17	CAM SOP 00102/00408/00447	SM 2340 B
Hardness (calculated as CaCO3)	1	N/A	2017/04/19	CAM SOP 00102/00408/00447	SM 2340 B
Lab Filtered Metals Analysis by ICP	1	2017/04/17	2017/04/18	CAM SOP-00408	EPA 6010C m
Dissolved Metals by ICPMS	6	N/A	2017/04/13	CAM SOP-00447	EPA 6020B m
Dissolved Metals by ICPMS	6	N/A	2017/04/17	CAM SOP-00447	EPA 6020B m
Dissolved Metals by ICPMS	1	N/A	2017/04/20	CAM SOP-00447	EPA 6020B m
Total Metals Analysis by ICPMS	1	N/A	2017/04/17	CAM SOP-00447	EPA 6020B m
Ion Balance (% Difference)	13	N/A	2017/04/18		
Anion and Cation Sum	13	N/A	2017/04/17		
Total Ammonia-N	10	N/A	2017/04/17	CAM SOP-00441	EPA GS I-2522-90 m
Total Ammonia-N	4	N/A	2017/04/18	CAM SOP-00441	EPA GS I-2522-90 m
Nitrate (NO3) and Nitrite (NO2) in Water (2)	14	N/A	2017/04/13	CAM SOP-00440	SM 22 4500-NO3I/NO2B
рН	14	N/A	2017/04/13	CAM SOP-00413	SM 4500H+ B m
Orthophosphate	1	N/A	2017/04/13	CAM SOP-00461	EPA 365.1 m
Orthophosphate	13	N/A	2017/04/17	CAM SOP-00461	EPA 365.1 m
Sat. pH and Langelier Index (@ 20C)	13	N/A	2017/04/18		

Your Project #: 1771656 (1000/1003) Your C.O.C. #: 605301-01-01, 605301-02-01

Attention:Byron Zwiep

Golder Associates Ltd St. Catharines 110 Hanover Dr Building A, Suite 203 St.Catharines, ON CANADA L2W 1A4

> Report Date: 2017/04/20 Report #: R4432611 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B772423 Received: 2017/04/11, 15:30

Sample Matrix: Water # Samples Received: 14

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Sat. pH and Langelier Index (@ 20C)	1	N/A	2017/04/19		
Sat. pH and Langelier Index (@ 4C)	13	N/A	2017/04/18		
Sat. pH and Langelier Index (@ 4C)	1	N/A	2017/04/19		
Sulphate by Automated Colourimetry	1	N/A	2017/04/13	CAM SOP-00464	EPA 375.4 m
Sulphate by Automated Colourimetry	12	N/A	2017/04/17	CAM SOP-00464	EPA 375.4 m
Sulphate by Automated Colourimetry	1	N/A	2017/04/20	CAM SOP-00464	EPA 375.4 m
Total Dissolved Solids (TDS calc)	13	N/A	2017/04/18		
Total Dissolved Solids (TDS calc)	1	N/A	2017/04/19		
Total Organic Carbon (TOC) (3)	1	N/A	2017/04/13	CAM SOP-00446	SM 22 5310B m
Total Phosphorus (Colourimetric)	1	2017/04/13	2017/04/13	CAM SOP-00407	SM 22 4500 P B H m
Total Suspended Solids	2	2017/04/12	2017/04/12	CAM SOP-00428	SM 22 2540D m
Total Suspended Solids	2	2017/04/13	2017/04/13	CAM SOP-00428	SM 22 2540D m
Low Level Total Suspended Solids	3	2017/04/12	2017/04/12	CAM SOP-00428	SM 22 2540D m
Low Level Total Suspended Solids	2	2017/04/12	2017/04/13	CAM SOP-00428	SM 22 2540D m
Low Level Total Suspended Solids	5	2017/04/13	2017/04/13	CAM SOP-00428	SM 22 2540D m
Turbidity	1	N/A	2017/04/12	CAM SOP-00417	SM 22 2130 B m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Your Project #: 1771656 (1000/1003) Your C.O.C. #: 605301-01-01, 605301-02-01

Attention:Byron Zwiep

Golder Associates Ltd St. Catharines 110 Hanover Dr Building A, Suite 203 St.Catharines, ON CANADA L2W 1A4

> Report Date: 2017/04/20 Report #: R4432611 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B772423

Received: 2017/04/11, 15:30

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

(3) Total Organic Carbon (TOC) present in the sample should be considered as non-purgeable TOC.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: EGitej@maxxam.ca Phone# (905)817-5829

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF WATER

Maxxam ID		EEV132			EEV133			EEV134		
Sampling Date		2017/04/10 14:45			2017/04/10 14:42			2017/04/10 16:30		
COC Number		605301-01-01			605301-01-01			605301-01-01		
	UNITS	MW17-1D	RDL	QC Batch	MW17-1S	RDL	QC Batch	MW17-4S	RDL	QC Batch
Calculated Parameters										
Anion Sum	me/L	24.7	N/A	4936806	10.4	N/A	4936806	13.9	N/A	4936806
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	290	1.0	4936801	200	1.0	4936801	410	1.0	4936801
Calculated TDS	mg/L	1500	1.0	4936813	670	1.0	4936813	740	1.0	4936813
Carb. Alkalinity (calc. as CaCO3)	mg/L	1.0	1.0	4936801	2.7	1.0	4936801	2.5	1.0	4936801
Cation Sum	me/L	25.0	N/A	4936806	11.7	N/A	4936806	13.8	N/A	4936806
Hardness (CaCO3)	mg/L	1200	1.0	4936804	220	1.0	4936804	650	1.0	4936804
Ion Balance (% Difference)	%	0.540	N/A	4936805	5.94	N/A	4936805	0.370	N/A	4936805
Langelier Index (@ 20C)	N/A	0.933	N/A	4936811	0.643	N/A	4936811	0.954	N/A	4936811
Langelier Index (@ 4C)	N/A	0.689	N/A	4936812	0.396	N/A	4936812	0.708	N/A	4936812
Saturation pH (@ 20C)	N/A	6.64	N/A	4936811	7.51	N/A	4936811	6.85	N/A	4936811
Saturation pH (@ 4C)	N/A	6.89	N/A	4936812	7.76	N/A	4936812	7.10	N/A	4936812
Inorganics			•		•	•		•		
Total Ammonia-N	mg/L	1.3	0.050	4938710	0.43	0.050	4938710	0.093	0.050	4938710
Conductivity	umho/cm	2100	1.0	4937827	1200	1.0	4937809	1200	1.0	4937809
Dissolved Organic Carbon	mg/L	0.46	0.20	4937584	4.7	0.20	4938932	1.8	0.20	4937584
Orthophosphate (P)	mg/L	<0.010	0.010	4938098	0.017	0.010	4938098	<0.010	0.010	4938098
рН	рН	7.58	N/A	4937828	8.15	N/A	4937811	7.80	N/A	4937811
Total Suspended Solids	mg/L	630	5	4939006	9000	500	4937582	1300	5	4939006
Dissolved Sulphate (SO4)	mg/L	880	5.0	4938104	280	1.0	4938104	240	1.0	4938104
Alkalinity (Total as CaCO3)	mg/L	290	1.0	4937823	200	1.0	4937613	410	1.0	4937613
Dissolved Chloride (Cl)	mg/L	20	1.0	4938093	19	1.0	4938093	18	1.0	4938093
Nitrite (N)	mg/L	<0.010	0.010	4939014	<0.050	0.050	4937672	0.390	0.010	4937642
Nitrate (N)	mg/L	<0.10	0.10	4939014	0.58	0.50	4937672	1.46	0.10	4937642
Nitrate + Nitrite (N)	mg/L	<0.10	0.10	4939014	0.58	0.50	4937672	1.85	0.10	4937642
RDL = Reportable Detection Limit QC Batch = Quality Control Batch N/A = Not Applicable										

RESULTS OF ANALYSES OF WATER

Maxxam ID		EEV135			EEV136	EEV136		
Sampling Date		2017/04/11 08:45			2017/04/10 15:14	2017/04/10 15:14		
COC Number		605301-01-01			605301-01-01	605301-01-01		
	UNITS	MW17-2S	RDL	QC Batch	MW17-3D	MW17-3D Lab-Dup	RDL	QC Batch
Calculated Parameters								
Anion Sum	me/L	10.8	N/A	4936806	12.5	N/A	N/A	4936806
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	310	1.0	4936801	370	N/A	1.0	4936801
Calculated TDS	mg/L	590	1.0	4936813	680	N/A	1.0	4936813
Carb. Alkalinity (calc. as CaCO3)	mg/L	3.2	1.0	4936801	2.1	N/A	1.0	4936801
Cation Sum	me/L	10.3	N/A	4936806	12.2	N/A	N/A	4936806
Hardness (CaCO3)	mg/L	410	1.0	4936804	560	N/A	1.0	4936804
Ion Balance (% Difference)	%	2.57	N/A	4936805	1.41	N/A	N/A	4936805
Langelier Index (@ 20C)	N/A	0.952	N/A	4936811	0.935	N/A	N/A	4936811
Langelier Index (@ 4C)	N/A	0.705	N/A	4936812	0.688	N/A	N/A	4936812
Saturation pH (@ 20C)	N/A	7.08	N/A	4936811	6.84	N/A	N/A	4936811
Saturation pH (@ 4C)	N/A	7.33	N/A	4936812	7.08	N/A	N/A	4936812
Inorganics					•	•		
Total Ammonia-N	mg/L	0.25	0.050	4938710	0.50	N/A	0.050	4938715
Conductivity	umho/cm	960	1.0	4937809	1200	N/A	1.0	4937809
Dissolved Organic Carbon	mg/L	5.9	0.20	4937584	1.7	N/A	0.20	4937584
Orthophosphate (P)	mg/L	<0.010	0.010	4938098	<0.010	N/A	0.010	4938098
рН	рН	8.04	N/A	4937811	7.77	N/A	N/A	4937811
Total Suspended Solids	mg/L	1900	50	4937582	970	N/A	5	4939006
Dissolved Sulphate (SO4)	mg/L	190	1.0	4938104	190	N/A	1.0	4938104
Alkalinity (Total as CaCO3)	mg/L	320	1.0	4937613	380	N/A	1.0	4937613
Dissolved Chloride (Cl)	mg/L	18	1.0	4938093	36	N/A	1.0	4938093
Nitrite (N)	mg/L	<0.010	0.010	4937672	<0.010	<0.010	0.010	4939014
Nitrate (N)	mg/L	<0.10	0.10	4937672	<0.10	<0.10	0.10	4939014
Nitrate + Nitrite (N)	mg/L	<0.10	0.10	4937672	<0.10	<0.10	0.10	4939014
RDL = Reportable Detection Limit					-	-	-	

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

RESULTS OF ANALYSES OF WATER

Maxxam ID		EEV137			EEV138			EEV139		
Sampling Date		2017/04/10 13:28			2017/04/10 13:28			2017/04/10 13:00		
COC Number		605301-01-01			605301-01-01			605301-01-01		
	UNITS	MW17-6D	RDL	QC Batch	MW17-6S	RDL	QC Batch	MW17-9S	RDL	QC Batch
Calculated Parameters										
Anion Sum	me/L	10.8	N/A	4936806	13.5	N/A	4936806	18.5	N/A	4936806
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	270	1.0	4936801	300	1.0	4936801	410	1.0	4936801
Calculated TDS	mg/L	600	1.0	4936813	740	1.0	4936813	980	1.0	4936813
Carb. Alkalinity (calc. as CaCO3)	mg/L	1.6	1.0	4936801	1.9	1.0	4936801	2.8	1.0	4936801
Cation Sum	me/L	9.81	N/A	4936806	12.4	N/A	4936806	18.0	N/A	4936806
Hardness (CaCO3)	mg/L	450	1.0	4936804	540	1.0	4936804	730	1.0	4936804
Ion Balance (% Difference)	%	4.62	N/A	4936805	4.21	N/A	4936805	1.25	N/A	4936805
Langelier Index (@ 20C)	N/A	0.800	N/A	4936811	0.880	N/A	4936811	0.956	N/A	4936811
Langelier Index (@ 4C)	N/A	0.553	N/A	4936812	0.633	N/A	4936812	0.710	N/A	4936812
Saturation pH (@ 20C)	N/A	6.99	N/A	4936811	6.94	N/A	4936811	6.90	N/A	4936811
Saturation pH (@ 4C)	N/A	7.24	N/A	4936812	7.18	N/A	4936812	7.14	N/A	4936812
Inorganics										
Total Ammonia-N	mg/L	0.96	0.050	4938715	0.50	0.050	4938715	0.14	0.050	4938715
Conductivity	umho/cm	980	1.0	4937809	1200	1.0	4937809	1800	1.0	4937809
Dissolved Organic Carbon	mg/L	0.57	0.20	4937584	1.9	0.20	4937584	2.1	0.20	4937584
Orthophosphate (P)	mg/L	<0.010	0.010	4938098	<0.010	0.010	4938098	<0.010	0.010	4938098
рН	рН	7.79	N/A	4937811	7.82	N/A	4937811	7.85	N/A	4937811
Total Suspended Solids	mg/L	2100	50	4939754	1900	5	4937462	270	3	4937540
Dissolved Sulphate (SO4)	mg/L	220	1.0	4938104	270	1.0	4938104	220	1.0	4938104
Alkalinity (Total as CaCO3)	mg/L	270	1.0	4937613	310	1.0	4937613	410	1.0	4937613
Dissolved Chloride (Cl)	mg/L	28	1.0	4938093	62	1.0	4938093	200	2.0	4938093
Nitrite (N)	mg/L	<0.010	0.010	4937672	<0.010	0.010	4937642	<0.010	0.010	4937642
Nitrate (N)	mg/L	<0.10	0.10	4937672	<0.10	0.10	4937642	1.34	0.10	4937642
Nitrate + Nitrite (N)	mg/L	<0.10	0.10	4937672	<0.10	0.10	4937642	1.34	0.10	4937642
RDL = Reportable Detection Limit QC Batch = Quality Control Batch N/A = Not Applicable										

RESULTS OF ANALYSES OF WATER

Maxxam ID		EEV140	EEV140		EEV141		
Sampling Date		2017/04/10 12:53	2017/04/10 12:53		2017/04/10 12:53		
COC Number		605301-01-01	605301-01-01		605301-01-01		
	UNITS	MW17-9D	MW17-9D Lab-Dup	QC Batch	MW17-99D	RDL	QC Batch
Calculated Parameters							
Anion Sum	me/L	34.2	N/A	4936806	34.0	N/A	4936806
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	300	N/A	4936801	310	1.0	4936801
Calculated TDS	mg/L	2200	N/A	4936813	2100	1.0	4936813
Carb. Alkalinity (calc. as CaCO3)	mg/L	1.7	N/A	4936801	1.8	1.0	4936801
Cation Sum	me/L	33.3	N/A	4936806	33.3	N/A	4936806
Hardness (CaCO3)	mg/L	1200	N/A	4936804	1200	1.0	4936804
Ion Balance (% Difference)	%	1.37	N/A	4936805	1.07	N/A	4936805
Langelier Index (@ 20C)	N/A	1.15	N/A	4936811	1.17	N/A	4936811
Langelier Index (@ 4C)	N/A	0.909	N/A	4936812	0.925	N/A	4936812
Saturation pH (@ 20C)	N/A	6.63	N/A	4936811	6.62	N/A	4936811
Saturation pH (@ 4C)	N/A	6.87	N/A	4936812	6.87	N/A	4936812
Inorganics			•				
Total Ammonia-N	mg/L	3.7	3.8	4938715	3.8	0.050	4938715
Conductivity	umho/cm	2900	N/A	4937809	2900	1.0	4937809
Dissolved Organic Carbon	mg/L	1.0	N/A	4937584	1.1	0.20	4937584
Orthophosphate (P)	mg/L	<0.010	<0.010	4938098	<0.010	0.010	4938098
рН	рН	7.78	N/A	4937811	7.79	N/A	4937811
Total Suspended Solids	mg/L	38	N/A	4937540	42	2	4937540
Dissolved Sulphate (SO4)	mg/L	1200	1200	4938104	1200	5.0	4938104
Alkalinity (Total as CaCO3)	mg/L	310	N/A	4937613	310	1.0	4937613
Dissolved Chloride (Cl)	mg/L	98	94	4938093	90	1.0	4938093
Nitrite (N)	mg/L	<0.010	N/A	4937642	<0.010	0.010	4937672
Nitrate (N)	mg/L	<0.10	N/A	4937642	<0.10	0.10	4937672
Nitrate + Nitrite (N)	mg/L	<0.10	N/A	4937642	<0.10	0.10	4937672
RDL = Reportable Detection Limit	-						

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

RESULTS OF ANALYSES OF WATER

Maxxam ID		EEV142			EEV143			EEV144		
Sampling Date		2017/04/10 13:59			2017/04/10 13:56			2017/04/10 15:34		
COC Number		605301-02-01			605301-02-01			605301-02-01		
	UNITS	MW17-8D	RDL	QC Batch	MW17-8S	RDL	QC Batch	MW17-10D	RDL	QC Batch
Calculated Parameters										
Anion Sum	me/L	36.8	N/A	4936806	11.3	N/A	4936806	25.6	N/A	4936806
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	320	1.0	4936801	340	1.0	4936801	310	1.0	4936801
Calculated TDS	mg/L	2300	1.0	4936813	590	1.0	4936813	1600	1.0	4936813
Carb. Alkalinity (calc. as CaCO3)	mg/L	1.3	1.0	4936801	2.1	1.0	4936801	<1.0	1.0	4936801
Cation Sum	me/L	34.7	N/A	4936806	10.7	N/A	4936806	25.6	N/A	4936806
Hardness (CaCO3)	mg/L	1500	1.0	4936804	470	1.0	4936804	1200	1.0	4936804
Ion Balance (% Difference)	%	2.95	N/A	4936805	2.32	N/A	4936805	0.120	N/A	4936805
Langelier Index (@ 20C)	N/A	1.13	N/A	4936811	0.813	N/A	4936811	0.945	N/A	4936811
Langelier Index (@ 4C)	N/A	0.886	N/A	4936812	0.565	N/A	4936812	0.701	N/A	4936812
Saturation pH (@ 20C)	N/A	6.52	N/A	4936811	7.00	N/A	4936811	6.57	N/A	4936811
Saturation pH (@ 4C)	N/A	6.76	N/A	4936812	7.25	N/A	4936812	6.81	N/A	4936812
Inorganics					•	-		•		
Total Ammonia-N	mg/L	2.5	0.050	4938715	0.44	0.050	4938715	0.58	0.050	4938715
Conductivity	umho/cm	2800	1.0	4937827	1000	1.0	4937827	2000	1.0	4937827
Dissolved Organic Carbon	mg/L	1.8	0.20	4937584	2.9	0.20	4937584	1.0	0.20	4937584
Orthophosphate (P)	mg/L	<0.010	0.010	4938098	0.015	0.010	4938098	<0.010	0.010	4938098
рН	рН	7.65	N/A	4937828	7.81	N/A	4937828	7.51	N/A	4937828
Total Suspended Solids	mg/L	170	3	4939006	1900	20	4939754	240	2	4939006
Dissolved Sulphate (SO4)	mg/L	1400	5.0	4938104	160	1.0	4938104	910	5.0	4946383
Alkalinity (Total as CaCO3)	mg/L	320	1.0	4937823	340	1.0	4937823	310	1.0	4946220
Dissolved Chloride (Cl)	mg/L	36	1.0	4938093	40	1.0	4938093	21	1.0	4946377
Nitrite (N)	mg/L	<0.010	0.010	4939014	<0.010	0.010	4939014	<0.010	0.010	4939014
Nitrate (N)	mg/L	<0.10	0.10	4939014	<0.10	0.10	4939014	<0.10	0.10	4939014
Nitrate + Nitrite (N)	mg/L	<0.10	0.10	4939014	<0.10	0.10	4939014	<0.10	0.10	4939014
RDL = Reportable Detection Limit QC Batch = Quality Control Batch N/A = Not Applicable										

RESULTS OF ANALYSES OF WATER

Maxxam ID		EEV144			EEV145	EEV145		
Sampling Date		2017/04/10			2017/04/11	2017/04/11		
		15:34			09:15	09:15		
COC Number		605301-02-01			605301-02-01	605301-02-01		
	UNITS	MW17-10D Lab-Dup	RDL	QC Batch	POND	POND Lab-Dup	RDL	QC Batch
Calculated Parameters								
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	N/A	1.0	4936801	140	N/A	1.0	4936801
Calculated TDS	mg/L	N/A	1.0	4936813	870	N/A	1.0	4936813
Carb. Alkalinity (calc. as CaCO3)	mg/L	N/A	1.0	4936801	1.1	N/A	1.0	4936801
Hardness (CaCO3)	mg/L	N/A	1.0	4936804	670	N/A	1.0	4936804
Langelier Index (@ 20C)	N/A	N/A	N/A	4936811	0.802	N/A	N/A	4936811
Langelier Index (@ 4C)	N/A	N/A	N/A	4936812	0.556	N/A	N/A	4936812
Saturation pH (@ 20C)	N/A	N/A	N/A	4936811	7.13	N/A	N/A	4936811
Saturation pH (@ 4C)	N/A	N/A	N/A	4936812	7.38	N/A	N/A	4936812
Inorganics								
Total Ammonia-N	mg/L	N/A	0.050	4938715	<0.050	N/A	0.050	4938715
Conductivity	umho/cm	2000	1.0	4937827	1300	N/A	1.0	4937260
Total Organic Carbon (TOC)	mg/L	N/A	0.20	N/A	2.1	2.1	0.20	4939254
Orthophosphate (P)	mg/L	N/A	0.010	4938098	<0.010	N/A	0.010	4937417
рН	рН	7.50	N/A	4937828	7.93	N/A	N/A	4937231
Total Phosphorus	mg/L	N/A	0.004	N/A	0.005	N/A	0.004	4938578
Total Suspended Solids	mg/L	N/A	2	4939006	<3	N/A	3	4937462
Dissolved Sulphate (SO4)	mg/L	N/A	5.0	4946383	460	N/A	2.0	4937418
Turbidity	NTU	N/A	N/A	N/A	1.5	N/A	0.1	4937002
Alkalinity (Total as CaCO3)	mg/L	N/A	1.0	4946220	140	N/A	1.0	4937223
Dissolved Chloride (Cl)	mg/L	N/A	1.0	4946377	45	N/A	1.0	4937408
Nitrite (N)	mg/L	N/A	0.010	4939014	<0.010	N/A	0.010	4937451
Nitrate (N)	mg/L	N/A	0.10	4939014	0.73	N/A	0.10	4937451

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		EEV132	EEV132		EEV133	EEV134		
Sampling Date		2017/04/10 14:45	2017/04/10 14:45		2017/04/10 14:42	2017/04/10 16:30		
COC Number		605301-01-01	605301-01-01		605301-01-01	605301-01-01		
	UNITS	MW17-1D	MW17-1D Lab-Dup	RDL	MW17-1S	MW17-4S	RDL	QC Batch
Metals								
Dissolved Calcium (Ca)	mg/L	320	320	1.0	49	110	0.20	4937519
Dissolved Magnesium (Mg)	mg/L	84	81	0.050	25	90	0.050	4937519
Dissolved Potassium (K)	mg/L	11	10	0.20	4.0	3.0	0.20	4937519
Dissolved Sodium (Na)	mg/L	36	35	0.10	160	18	0.10	4937519
Dissolved Aluminum (Al)	mg/L	0.0059	0.0059	0.0050	0.018	0.0094	0.0050	4937519
Dissolved Antimony (Sb)	mg/L	<0.00050	<0.00050	0.00050	0.0017	<0.00050	0.00050	4937519
Dissolved Arsenic (As)	mg/L	<0.0010	<0.0010	0.0010	0.0028	<0.0010	0.0010	4937519
Dissolved Barium (Ba)	mg/L	0.016	0.016	0.0020	0.076	0.071	0.0020	4937519
Dissolved Beryllium (Be)	mg/L	<0.00050	<0.00050	0.00050	<0.00050	<0.00050	0.00050	4937519
Dissolved Boron (B)	mg/L	1.6	1.6	0.010	0.19	0.11	0.010	4937519
Dissolved Cadmium (Cd)	mg/L	<0.00010	<0.00010	0.00010	<0.00010	<0.00010	0.00010	4937519
Dissolved Chromium (Cr)	mg/L	<0.0050	<0.0050	0.0050	<0.0050	<0.0050	0.0050	4937519
Dissolved Cobalt (Co)	mg/L	<0.00050	<0.00050	0.00050	<0.00050	0.00075	0.00050	4937519
Dissolved Copper (Cu)	mg/L	<0.0010	<0.0010	0.0010	0.0030	0.0011	0.0010	4937519
Dissolved Iron (Fe)	mg/L	0.13	0.13	0.10	<0.10	<0.10	0.10	4937519
Dissolved Lead (Pb)	mg/L	<0.00050	<0.00050	0.00050	<0.00050	<0.00050	0.00050	4937519
Dissolved Manganese (Mn)	mg/L	0.011	0.010	0.0020	0.017	0.061	0.0020	4937519
Dissolved Molybdenum (Mo)	mg/L	<0.00050	<0.00050	0.00050	0.082	0.016	0.00050	4937519
Dissolved Nickel (Ni)	mg/L	<0.0010	<0.0010	0.0010	0.0016	0.0067	0.0010	4937519
Dissolved Phosphorus (P)	mg/L	<0.10	<0.10	0.10	<0.10	<0.10	0.10	4937519
Dissolved Selenium (Se)	mg/L	<0.0020	<0.0020	0.0020	<0.0020	<0.0020	0.0020	4937519
Dissolved Silicon (Si)	mg/L	7.0	6.8	0.050	2.8	3.9	0.050	4937519
Dissolved Silver (Ag)	mg/L	<0.00010	<0.00010	0.00010	<0.00010	<0.00010	0.00010	4937519
Dissolved Strontium (Sr)	mg/L	12	12	0.0010	1.8	2.2	0.0010	4937519
Dissolved Thallium (Tl)	mg/L	<0.000050	<0.000050	0.000050	<0.000050	<0.000050	0.000050	4937519
Dissolved Titanium (Ti)	mg/L	<0.0050	<0.0050	0.0050	<0.0050	<0.0050	0.0050	4937519
Dissolved Uranium (U)	mg/L	<0.00010	<0.00010	0.00010	0.011	0.026	0.00010	4937519
Dissolved Vanadium (V)	mg/L	<0.00050	<0.00050	0.00050	0.0021	0.0012	0.00050	4937519
Dissolved Zinc (Zn)	mg/L	<0.0050	<0.0050	0.0050	<0.0050	<0.0050	0.0050	4937519
RDL = Reportable Detection Li	mit		•	•			•	•

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Report Date: 2017/04/20

Golder Associates Ltd Client Project #: 1771656 (1000/1003) Sampler Initials: TP

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		EEV135		EEV136	EEV137		EEV138		
Sampling Date		2017/04/11		2017/04/10	2017/04/10		2017/04/10		
		08:45		15:14	13:28		13:28		
COC Number		605301-01-01		605301-01-01	605301-01-01		605301-01-01		
	UNITS	MW17-2S	RDL	MW17-3D	MW17-6D	RDL	MW17-6S	RDL	QC Batch
Metals									
Dissolved Calcium (Ca)	mg/L	79	0.40	120	120	1.0	120	0.40	4937519
Dissolved Magnesium (Mg)	mg/L	51	0.050	61	39	0.050	57	0.050	4937519
Dissolved Potassium (K)	mg/L	3.4	0.20	5.0	7.8	0.20	5.3	0.20	4937519
Dissolved Sodium (Na)	mg/L	46	0.10	19	13	0.10	31	0.10	4937519
Dissolved Aluminum (Al)	mg/L	0.0065	0.0050	0.0057	0.0078	0.0050	0.0069	0.0050	4937519
Dissolved Antimony (Sb)	mg/L	<0.00050	0.00050	<0.00050	<0.00050	0.00050	<0.00050	0.00050	4937519
Dissolved Arsenic (As)	mg/L	<0.0010	0.0010	<0.0010	<0.0010	0.0010	<0.0010	0.0010	4937519
Dissolved Barium (Ba)	mg/L	0.065	0.0020	0.010	0.0051	0.0020	0.019	0.0020	4937519
Dissolved Beryllium (Be)	mg/L	<0.00050	0.00050	<0.00050	<0.00050	0.00050	<0.00050	0.00050	4937519
Dissolved Boron (B)	mg/L	0.28	0.010	0.20	0.50	0.010	0.38	0.010	4937519
Dissolved Cadmium (Cd)	mg/L	<0.00010	0.00010	<0.00010	<0.00010	0.00010	<0.00010	0.00010	4937519
Dissolved Chromium (Cr)	mg/L	<0.0050	0.0050	<0.0050	<0.0050	0.0050	<0.0050	0.0050	4937519
Dissolved Cobalt (Co)	mg/L	<0.00050	0.00050	<0.00050	<0.00050	0.00050	<0.00050	0.00050	4937519
Dissolved Copper (Cu)	mg/L	0.0021	0.0010	<0.0010	<0.0010	0.0010	<0.0010	0.0010	4937519
Dissolved Iron (Fe)	mg/L	<0.10	0.10	<0.10	<0.10	0.10	<0.10	0.10	4937519
Dissolved Lead (Pb)	mg/L	<0.00050	0.00050	<0.00050	<0.00050	0.00050	<0.00050	0.00050	4937519
Dissolved Manganese (Mn)	mg/L	0.094	0.0020	0.0038	0.0030	0.0020	0.012	0.0020	4937519
Dissolved Molybdenum (Mo)	mg/L	0.030	0.00050	0.0014	<0.00050	0.00050	<0.00050	0.00050	4937519
Dissolved Nickel (Ni)	mg/L	0.0040	0.0010	<0.0010	<0.0010	0.0010	<0.0010	0.0010	4937519
Dissolved Phosphorus (P)	mg/L	<0.10	0.10	<0.10	<0.10	0.10	<0.10	0.10	4937519
Dissolved Selenium (Se)	mg/L	<0.0020	0.0020	<0.0020	<0.0020	0.0020	<0.0020	0.0020	4937519
Dissolved Silicon (Si)	mg/L	3.3	0.050	10	7.5	0.050	5.6	0.050	4937519
Dissolved Silver (Ag)	mg/L	<0.00010	0.00010	<0.00010	<0.00010	0.00010	<0.00010	0.00010	4937519
Dissolved Strontium (Sr)	mg/L	5.1	0.0010	15	14	0.0010	7.0	0.0010	4937519
Dissolved Thallium (TI)	mg/L	<0.000050	0.000050	<0.000050	<0.000050	0.000050	<0.000050	0.000050	4937519
Dissolved Titanium (Ti)	mg/L	<0.0050	0.0050	<0.0050	<0.0050	0.0050	<0.0050	0.0050	4937519
Dissolved Uranium (U)	mg/L	0.0058	0.00010	0.00019	<0.00010	0.00010	0.00060	0.00010	4937519
Dissolved Vanadium (V)	mg/L	0.00086	0.00050	<0.00050	<0.00050	0.00050	<0.00050	0.00050	4937519
Dissolved Zinc (Zn)	mg/L	<0.0050	0.0050	<0.0050	<0.0050	0.0050	<0.0050	0.0050	4937519
RDL = Reportable Detection Lir	nit								
QC Batch = Quality Control Bat	ch								

Report Date: 2017/04/20

Golder Associates Ltd Client Project #: 1771656 (1000/1003) Sampler Initials: TP

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		EEV139		EEV140	EEV141	EEV142		
Sampling Date		2017/04/10		2017/04/10	2017/04/10	2017/04/10		
		13:00		12:53	12:53	13:59		
COC Number		605301-01-01		605301-01-01	605301-01-01	605301-02-01		
	UNITS	MW17-9S	RDL	MW17-9D	MW17-99D	MW17-8D	RDL	QC Batc
Metals								
Dissolved Calcium (Ca)	mg/L	110	0.20	350	350	440	0.40	493751
Dissolved Magnesium (Mg)	mg/L	110	0.050	88	89	100	0.050	493751
Dissolved Potassium (K)	mg/L	3.1	0.20	22	22	17	0.20	493751
Dissolved Sodium (Na)	mg/L	79	0.10	170	170	83	0.10	493751
Dissolved Aluminum (Al)	mg/L	0.0059	0.0050	0.016	0.0077	0.0078	0.0050	493751
Dissolved Antimony (Sb)	mg/L	<0.00050	0.00050	<0.00050	<0.00050	<0.00050	0.00050	493751
Dissolved Arsenic (As)	mg/L	<0.0010	0.0010	<0.0010	<0.0010	0.0010	0.0010	493751
Dissolved Barium (Ba)	mg/L	0.023	0.0020	0.0094	0.010	0.015	0.0020	493751
Dissolved Beryllium (Be)	mg/L	<0.00050	0.00050	<0.00050	<0.00050	<0.00050	0.00050	493751
Dissolved Boron (B)	mg/L	0.096	0.010	3.9	3.9	2.4	0.010	493751
Dissolved Cadmium (Cd)	mg/L	<0.00010	0.00010	<0.00010	<0.00010	<0.00010	0.00010	493751
Dissolved Chromium (Cr)	mg/L	<0.0050	0.0050	<0.0050	<0.0050	<0.0050	0.0050	493751
Dissolved Cobalt (Co)	mg/L	0.0012	0.00050	<0.00050	<0.00050	<0.00050	0.00050	493751
Dissolved Copper (Cu)	mg/L	<0.0010	0.0010	<0.0010	<0.0010	<0.0010	0.0010	493751
Dissolved Iron (Fe)	mg/L	<0.10	0.10	<0.10	<0.10	<0.10	0.10	493751
Dissolved Lead (Pb)	mg/L	<0.00050	0.00050	<0.00050	<0.00050	<0.00050	0.00050	493751
Dissolved Manganese (Mn)	mg/L	0.031	0.0020	0.0084	0.0079	0.019	0.0020	493751
Dissolved Molybdenum (Mo)	mg/L	0.00070	0.00050	<0.00050	<0.00050	<0.00050	0.00050	493751
Dissolved Nickel (Ni)	mg/L	0.0022	0.0010	<0.0010	<0.0010	<0.0010	0.0010	493751
Dissolved Phosphorus (P)	mg/L	<0.10	0.10	<0.10	<0.10	<0.10	0.10	493751
Dissolved Selenium (Se)	mg/L	0.0020	0.0020	<0.0020	<0.0020	<0.0020	0.0020	493751
Dissolved Silicon (Si)	mg/L	4.4	0.050	4.1	4.0	3.9	0.050	493751
Dissolved Silver (Ag)	mg/L	<0.00010	0.00010	<0.00010	<0.00010	<0.00010	0.00010	493751
Dissolved Strontium (Sr)	mg/L	3.5	0.0010	8.1	8.2	10	0.0010	493751
Dissolved Thallium (Tl)	mg/L	<0.000050	0.000050	<0.000050	<0.000050	<0.000050	0.000050	493751
Dissolved Titanium (Ti)	mg/L	<0.0050	0.0050	<0.0050	<0.0050	<0.0050	0.0050	493751
Dissolved Uranium (U)	mg/L	0.0036	0.00010	0.00033	0.00033	0.00054	0.00010	493751
Dissolved Vanadium (V)	mg/L	<0.00050	0.00050	<0.00050	<0.00050	<0.00050	0.00050	493751
Dissolved Zinc (Zn)	mg/L	<0.0050	0.0050	<0.0050	<0.0050	<0.0050	0.0050	493751

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		EEV143			EEV144			EEV145		
		2017/04/10			2017/04/10			2017/04/11		
Sampling Date		13:56			15:34			09:15		
COC Number		605301-02-01			605301-02-01			605301-02-01		
	UNITS	MW17-8S	RDL	QC Batch	MW17-10D	RDL	QC Batch	POND	RDL	QC Batch
Metals										
Dissolved Calcium (Ca)	mg/L	91	0.20	4937519	360	1.0	4946951	180	0.05	4941831
Dissolved Magnesium (Mg)	mg/L	59	0.050	4937519	81	0.050	4946951	53	0.05	4941831
Dissolved Potassium (K)	mg/L	2.9	0.20	4937519	5.8	0.20	4946951	6	1	4941831
Dissolved Sodium (Na)	mg/L	28	0.10	4937519	19	0.10	4946951	36	0.5	4941831
Dissolved Aluminum (Al)	mg/L	0.0077	0.0050	4937519	<0.0050	0.0050	4946951	N/A	N/A	N/A
Total Aluminum (Al)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	0.047	0.0050	4941659
Dissolved Antimony (Sb)	mg/L	<0.00050	0.00050	4937519	<0.00050	0.00050	4946951	N/A	N/A	N/A
Total Antimony (Sb)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	<0.00050	0.00050	4941659
Dissolved Arsenic (As)	mg/L	0.0010	0.0010	4937519	<0.0010	0.0010	4946951	N/A	N/A	N/A
Total Arsenic (As)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	<0.0010	0.0010	4941659
Dissolved Barium (Ba)	mg/L	0.023	0.0020	4937519	0.0073	0.0020	4946951	N/A	N/A	N/A
Total Barium (Ba)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	0.038	0.0020	4941659
Dissolved Beryllium (Be)	mg/L	<0.00050	0.00050	4937519	<0.00050	0.00050	4946951	N/A	N/A	N/A
Total Beryllium (Be)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	<0.00050	0.00050	4941659
Dissolved Boron (B)	mg/L	0.22	0.010	4937519	0.39	0.010	4946951	N/A	N/A	N/A
Total Boron (B)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	0.24	0.010	4941659
Dissolved Cadmium (Cd)	mg/L	<0.00010	0.00010	4937519	<0.00010	0.00010	4946951	N/A	N/A	N/A
Total Cadmium (Cd)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	<0.00010	0.00010	4941659
Total Calcium (Ca)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	170	0.20	4941659
Dissolved Chromium (Cr)	mg/L	<0.0050	0.0050	4937519	<0.0050	0.0050	4946951	N/A	N/A	N/A
Total Chromium (Cr)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	<0.0050	0.0050	4941659
Dissolved Cobalt (Co)	mg/L	<0.00050	0.00050	4937519	<0.00050	0.00050	4946951	N/A	N/A	N/A
Total Cobalt (Co)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	<0.00050	0.00050	4941659
Dissolved Copper (Cu)	mg/L	<0.0010	0.0010	4937519	<0.0010	0.0010	4946951	N/A	N/A	N/A
Total Copper (Cu)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	0.0014	0.0010	4941659
Dissolved Iron (Fe)	mg/L	0.13	0.10	4937519	<0.10	0.10	4946951	N/A	N/A	N/A
Total Iron (Fe)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	<0.10	0.10	4941659
Dissolved Lead (Pb)	mg/L	<0.00050	0.00050	4937519	<0.00050	0.00050	4946951	N/A	N/A	N/A
Total Lead (Pb)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	<0.00050	0.00050	4941659
Total Magnesium (Mg)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	52	0.050	4941659
Dissolved Manganese (Mn)	mg/L	0.021	0.0020	4937519	0.0055	0.0020	4946951	N/A	N/A	N/A
Total Manganese (Mn)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	0.0046	0.0020	4941659
Dissolved Molybdenum (Mo)	mg/L	0.0019	0.00050	4937519	<0.00050	0.00050	4946951	N/A	N/A	N/A
Total Molybdenum (Mo)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	0.0085	0.00050	4941659
RDL = Reportable Detection Li										
QC Batch = Quality Control Bat	tch									

QC Batch = Quality Control Batch

N/A = Not Applicable

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		EEV143			EEV144			EEV145		
Sampling Date		2017/04/10 13:56			2017/04/10 15:34			2017/04/11 09:15		
COC Number		605301-02-01			605301-02-01			605301-02-01		
	UNITS	MW17-8S	RDL	QC Batch	MW17-10D	RDL	QC Batch	POND	RDL	QC Batch
Dissolved Nickel (Ni)	mg/L	0.0014	0.0010	4937519	<0.0010	0.0010	4946951	N/A	N/A	N/A
Total Nickel (Ni)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	0.0049	0.0010	4941659
Dissolved Phosphorus (P)	mg/L	0.10	0.10	4937519	<0.10	0.10	4946951	N/A	N/A	N/A
Total Potassium (K)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	5.4	0.20	4941659
Dissolved Selenium (Se)	mg/L	<0.0020	0.0020	4937519	<0.0020	0.0020	4946951	N/A	N/A	N/A
Total Selenium (Se)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	<0.0020	0.0020	4941659
Dissolved Silicon (Si)	mg/L	3.9	0.050	4937519	8.1	0.050	4946951	N/A	N/A	N/A
Total Silicon (Si)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	1.5	0.050	4941659
Dissolved Silver (Ag)	mg/L	<0.00010	0.00010	4937519	<0.00010	0.00010	4946951	N/A	N/A	N/A
Total Silver (Ag)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	<0.00010	0.00010	4941659
Total Sodium (Na)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	32	0.10	4941659
Dissolved Strontium (Sr)	mg/L	3.2	0.0010	4937519	11	0.0010	4946951	N/A	N/A	N/A
Total Strontium (Sr)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	4.8	0.0010	4941659
Dissolved Thallium (Tl)	mg/L	<0.000050	0.000050	4937519	<0.000050	0.000050	4946951	N/A	N/A	N/A
Total Thallium (Tl)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	<0.000050	0.000050	4941659
Dissolved Titanium (Ti)	mg/L	<0.0050	0.0050	4937519	<0.0050	0.0050	4946951	N/A	N/A	N/A
Total Titanium (Ti)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	<0.0050	0.0050	4941659
Dissolved Uranium (U)	mg/L	0.00070	0.00010	4937519	0.00011	0.00010	4946951	N/A	N/A	N/A
Dissolved Vanadium (V)	mg/L	0.00066	0.00050	4937519	<0.00050	0.00050	4946951	N/A	N/A	N/A
Total Vanadium (V)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	<0.00050	0.00050	4941659
Dissolved Zinc (Zn)	mg/L	<0.0050	0.0050	4937519	<0.0050	0.0050	4946951	N/A	N/A	N/A
Total Zinc (Zn)	mg/L	N/A	N/A	N/A	N/A	N/A	N/A	<0.0050	0.0050	4941659
RDL = Reportable Detection Limit QC Batch = Quality Control Batch N/A = Not Applicable										

TEST SUMMARY

Maxxam ID: Sample ID:	-	Collected: Shipped:	2017/04/10
Matrix:			2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	4937823	N/A	2017/04/13	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	4936801	N/A	2017/04/17	Automated Statchk
Chloride by Automated Colourimetry	KONE	4938093	N/A	2017/04/17	Alina Dobreanu
Conductivity	AT	4937827	N/A	2017/04/13	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	4937584	N/A	2017/04/13	Anastasia Hamanov
Hardness (calculated as CaCO3)		4936804	N/A	2017/04/13	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	4937519	N/A	2017/04/13	Thao Nguyen
Ion Balance (% Difference)	CALC	4936805	N/A	2017/04/18	Automated Statchk
Anion and Cation Sum	CALC	4936806	N/A	2017/04/17	Automated Statchk
Total Ammonia-N	LACH/NH4	4938710	N/A	2017/04/18	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	4939014	N/A	2017/04/13	Chandra Nandlal
рН	AT	4937828	N/A	2017/04/13	Surinder Rai
Orthophosphate	KONE	4938098	N/A	2017/04/17	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	4936811	N/A	2017/04/18	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4936812	N/A	2017/04/18	Automated Statchk
Sulphate by Automated Colourimetry	KONE	4938104	N/A	2017/04/17	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	4936813	N/A	2017/04/18	Automated Statchk
Low Level Total Suspended Solids	BAL	4939006	2017/04/13	2017/04/13	Arpan Shah

Maxxam ID: Sample ID: Matrix:	EEV132 Dup MW17-1D Water					Collected: Shipped: Received:	- , - , -
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Dissolved Metals by ICPN	IS	ICP/MS	4937519	N/A	2017/04/13	Thao Nguy	/en
Maxxam ID: Sample ID: Matrix:	EEV133 MW17-1S Water					Collected: Shipped: Received:	2017/04/10 2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	4937613	N/A	2017/04/13	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	4936801	N/A	2017/04/17	Automated Statchk
Chloride by Automated Colourimetry	KONE	4938093	N/A	2017/04/17	Alina Dobreanu
Conductivity	AT	4937809	N/A	2017/04/13	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	4938932	N/A	2017/04/13	Anastasia Hamanov
Hardness (calculated as CaCO3)		4936804	N/A	2017/04/13	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	4937519	N/A	2017/04/13	Thao Nguyen
Ion Balance (% Difference)	CALC	4936805	N/A	2017/04/18	Automated Statchk
Anion and Cation Sum	CALC	4936806	N/A	2017/04/17	Automated Statchk
Total Ammonia-N	LACH/NH4	4938710	N/A	2017/04/18	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	4937672	N/A	2017/04/13	Chandra Nandlal
рН	AT	4937811	N/A	2017/04/13	Surinder Rai
Orthophosphate	KONE	4938098	N/A	2017/04/17	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	4936811	N/A	2017/04/18	Automated Statchk

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

TEST SUMMARY

Maxxam ID:	EEV133
Sample ID:	MW17-1S
Matrix:	Water

Collected:	2017/04/10
Shipped:	
Received:	2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Sat. pH and Langelier Index (@ 4C)	CALC	4936812	N/A	2017/04/18	Automated Statchk
Sulphate by Automated Colourimetry	KONE	4938104	N/A	2017/04/17	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	4936813	N/A	2017/04/18	Automated Statchk
Total Suspended Solids	BAL	4937582	2017/04/12	2017/04/12	Xue Zheng Li(Scott)

Maxxam ID:	EEV134
Sample ID:	MW17-4S
Matrix:	Water

Collected: 2017/04/10 Shipped: Received: 2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	4937613	N/A	2017/04/13	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	4936801	N/A	2017/04/17	Automated Statchk
Chloride by Automated Colourimetry	KONE	4938093	N/A	2017/04/17	Alina Dobreanu
Conductivity	AT	4937809	N/A	2017/04/13	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	4937584	N/A	2017/04/13	Anastasia Hamanov
Hardness (calculated as CaCO3)		4936804	N/A	2017/04/13	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	4937519	N/A	2017/04/17	Thao Nguyen
Ion Balance (% Difference)	CALC	4936805	N/A	2017/04/18	Automated Statchk
Anion and Cation Sum	CALC	4936806	N/A	2017/04/17	Automated Statchk
Total Ammonia-N	LACH/NH4	4938710	N/A	2017/04/18	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	4937642	N/A	2017/04/13	Chandra Nandlal
рН	AT	4937811	N/A	2017/04/13	Surinder Rai
Orthophosphate	KONE	4938098	N/A	2017/04/17	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	4936811	N/A	2017/04/18	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4936812	N/A	2017/04/18	Automated Statchk
Sulphate by Automated Colourimetry	KONE	4938104	N/A	2017/04/17	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	4936813	N/A	2017/04/18	Automated Statchk
Low Level Total Suspended Solids	BAL	4939006	2017/04/13	2017/04/13	Arpan Shah

Maxxam ID:	EEV135
Sample ID:	MW17-2S
Matrix:	Water

Collected:	2017/04/11
Shipped:	
Received:	2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	4937613	N/A	2017/04/13	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	4936801	N/A	2017/04/17	Automated Statchk
Chloride by Automated Colourimetry	KONE	4938093	N/A	2017/04/17	Alina Dobreanu
Conductivity	AT	4937809	N/A	2017/04/13	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	4937584	N/A	2017/04/13	Anastasia Hamanov
Hardness (calculated as CaCO3)		4936804	N/A	2017/04/13	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	4937519	N/A	2017/04/13	Thao Nguyen
Ion Balance (% Difference)	CALC	4936805	N/A	2017/04/18	Automated Statchk
Anion and Cation Sum	CALC	4936806	N/A	2017/04/17	Automated Statchk
Total Ammonia-N	LACH/NH4	4938710	N/A	2017/04/18	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	4937672	N/A	2017/04/13	Chandra Nandlal

Page 16 of 36

TEST SUMMARY

Maxxam ID:	EEV135	Collected:	2017/04/11
Sample ID:	-	Shipped:	
Matrix:	Water	Received:	2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
рН	AT	4937811	N/A	2017/04/13	Surinder Rai
Orthophosphate	KONE	4938098	N/A	2017/04/17	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	4936811	N/A	2017/04/18	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4936812	N/A	2017/04/18	Automated Statchk
Sulphate by Automated Colourimetry	KONE	4938104	N/A	2017/04/17	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	4936813	N/A	2017/04/18	Automated Statchk
Total Suspended Solids	BAL	4937582	2017/04/12	2017/04/12	Xue Zheng Li(Scott)

Maxxam ID:	EEV136
Sample ID:	MW17-3D
Matrix:	Water

Collected:	2017/04/10
Shipped:	
Received:	2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	4937613	N/A	2017/04/13	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	4936801	N/A	2017/04/17	Automated Statchk
Chloride by Automated Colourimetry	KONE	4938093	N/A	2017/04/17	Alina Dobreanu
Conductivity	AT	4937809	N/A	2017/04/13	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	4937584	N/A	2017/04/13	Anastasia Hamanov
Hardness (calculated as CaCO3)		4936804	N/A	2017/04/13	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	4937519	N/A	2017/04/13	Thao Nguyen
Ion Balance (% Difference)	CALC	4936805	N/A	2017/04/18	Automated Statchk
Anion and Cation Sum	CALC	4936806	N/A	2017/04/17	Automated Statchk
Total Ammonia-N	LACH/NH4	4938715	N/A	2017/04/17	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	4939014	N/A	2017/04/13	Chandra Nandlal
рН	AT	4937811	N/A	2017/04/13	Surinder Rai
Orthophosphate	KONE	4938098	N/A	2017/04/17	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	4936811	N/A	2017/04/18	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4936812	N/A	2017/04/18	Automated Statchk
Sulphate by Automated Colourimetry	KONE	4938104	N/A	2017/04/17	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	4936813	N/A	2017/04/18	Automated Statchk
Low Level Total Suspended Solids	BAL	4939006	2017/04/13	2017/04/13	Arpan Shah

Maxxam ID: Sample ID: Matrix:	EEV136 Dup MW17-3D Water					Collected: Shipped: Received:	2017/04/10 2017/04/11
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Nitrate (NO3) and Nitrite	(NO2) in Water	LACH	4939014	N/A	2017/04/13	Chandra N	andlal
Maxxam ID: Sample ID: Matrix:	EEV137 MW17-6D Water					Collected: Shipped: Received:	2017/04/10 2017/04/11
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Alkalinity		AT	4937613	N/A	2017/04/13	Surinder R	ai
Carbonate, Bicarbonate a	nd Hydroxide	CALC	4936801	N/A	2017/04/17	Automate	d Statchk

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

TEST SUMMARY

Maxxam ID:	EEV137	Collected:	2017/04/10
Sample ID: Matrix:		Shipped: Received:	2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chloride by Automated Colourimetry	KONE	4938093	N/A	2017/04/17	Alina Dobreanu
Conductivity	AT	4937809	N/A	2017/04/13	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	4937584	N/A	2017/04/13	Anastasia Hamanov
Hardness (calculated as CaCO3)		4936804	N/A	2017/04/13	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	4937519	N/A	2017/04/13	Thao Nguyen
Ion Balance (% Difference)	CALC	4936805	N/A	2017/04/18	Automated Statchk
Anion and Cation Sum	CALC	4936806	N/A	2017/04/17	Automated Statchk
Total Ammonia-N	LACH/NH4	4938715	N/A	2017/04/17	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	4937672	N/A	2017/04/13	Chandra Nandlal
рН	AT	4937811	N/A	2017/04/13	Surinder Rai
Orthophosphate	KONE	4938098	N/A	2017/04/17	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	4936811	N/A	2017/04/18	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4936812	N/A	2017/04/18	Automated Statchk
Sulphate by Automated Colourimetry	KONE	4938104	N/A	2017/04/17	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	4936813	N/A	2017/04/18	Automated Statchk
Total Suspended Solids	BAL	4939754	2017/04/13	2017/04/13	Arpan Shah

Maxxam ID: EEV138 Sample ID: MW17-6S Matrix: Water Collected: 2017/04/10 Shipped: Received: 2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	4937613	N/A	2017/04/13	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	4936801	N/A	2017/04/17	Automated Statchk
Chloride by Automated Colourimetry	KONE	4938093	N/A	2017/04/17	Alina Dobreanu
Conductivity	AT	4937809	N/A	2017/04/13	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	4937584	N/A	2017/04/13	Anastasia Hamanov
Hardness (calculated as CaCO3)		4936804	N/A	2017/04/17	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	4937519	N/A	2017/04/17	Thao Nguyen
Ion Balance (% Difference)	CALC	4936805	N/A	2017/04/18	Automated Statchk
Anion and Cation Sum	CALC	4936806	N/A	2017/04/17	Automated Statchk
Total Ammonia-N	LACH/NH4	4938715	N/A	2017/04/17	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	4937642	N/A	2017/04/13	Chandra Nandlal
рН	AT	4937811	N/A	2017/04/13	Surinder Rai
Orthophosphate	KONE	4938098	N/A	2017/04/17	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	4936811	N/A	2017/04/18	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4936812	N/A	2017/04/18	Automated Statchk
Sulphate by Automated Colourimetry	KONE	4938104	N/A	2017/04/17	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	4936813	N/A	2017/04/18	Automated Statchk
Low Level Total Suspended Solids	BAL	4937462	2017/04/12	2017/04/13	Bansari Ray

TEST SUMMARY

Maxxam ID:	EEV139	Collected:	2017/04/10
Sample ID:		Shipped:	2047/04/44
Matrix:	water	Received:	2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	4937613	N/A	2017/04/13	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	4936801	N/A	2017/04/17	Automated Statchk
Chloride by Automated Colourimetry	KONE	4938093	N/A	2017/04/17	Alina Dobreanu
Conductivity	AT	4937809	N/A	2017/04/13	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	4937584	N/A	2017/04/13	Anastasia Hamanov
Hardness (calculated as CaCO3)		4936804	N/A	2017/04/17	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	4937519	N/A	2017/04/17	Thao Nguyen
Ion Balance (% Difference)	CALC	4936805	N/A	2017/04/18	Automated Statchk
Anion and Cation Sum	CALC	4936806	N/A	2017/04/17	Automated Statchk
Total Ammonia-N	LACH/NH4	4938715	N/A	2017/04/17	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	4937642	N/A	2017/04/13	Chandra Nandlal
рН	AT	4937811	N/A	2017/04/13	Surinder Rai
Orthophosphate	KONE	4938098	N/A	2017/04/17	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	4936811	N/A	2017/04/18	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4936812	N/A	2017/04/18	Automated Statchk
Sulphate by Automated Colourimetry	KONE	4938104	N/A	2017/04/17	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	4936813	N/A	2017/04/18	Automated Statchk
Low Level Total Suspended Solids	BAL	4937540	2017/04/12	2017/04/12	Arpan Shah

Maxxam ID:	EEV140
Sample ID:	MW17-9D
Matrix:	Water

Collected: 2017/04/10 Shipped: **Received:** 2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	4937613	N/A	2017/04/13	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	4936801	N/A	2017/04/17	Automated Statchk
Chloride by Automated Colourimetry	KONE	4938093	N/A	2017/04/17	Alina Dobreanu
Conductivity	AT	4937809	N/A	2017/04/13	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	4937584	N/A	2017/04/13	Anastasia Hamanov
Hardness (calculated as CaCO3)		4936804	N/A	2017/04/17	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	4937519	N/A	2017/04/17	Thao Nguyen
Ion Balance (% Difference)	CALC	4936805	N/A	2017/04/18	Automated Statchk
Anion and Cation Sum	CALC	4936806	N/A	2017/04/17	Automated Statchk
Total Ammonia-N	LACH/NH4	4938715	N/A	2017/04/17	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	4937642	N/A	2017/04/13	Chandra Nandlal
рН	AT	4937811	N/A	2017/04/13	Surinder Rai
Orthophosphate	KONE	4938098	N/A	2017/04/17	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	4936811	N/A	2017/04/18	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4936812	N/A	2017/04/18	Automated Statchk
Sulphate by Automated Colourimetry	KONE	4938104	N/A	2017/04/17	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	4936813	N/A	2017/04/18	Automated Statchk
Low Level Total Suspended Solids	BAL	4937540	2017/04/12	2017/04/12	Arpan Shah

TEST SUMMARY

Maxxam ID:	EEV140 Dup	Collected:	2017/04/10
Sample ID: Matrix:		Shipped: Received:	2017/04/11
			,

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chloride by Automated Colourimetry	KONE	4938093	N/A	2017/04/17	Alina Dobreanu
Total Ammonia-N	LACH/NH4	4938715	N/A	2017/04/17	Charles Opoku-Ware
Orthophosphate	KONE	4938098	N/A	2017/04/17	Alina Dobreanu
Sulphate by Automated Colourimetry	KONE	4938104	N/A	2017/04/17	Alina Dobreanu

Maxxam ID: EEV141 Sample ID: MW17-99D Matrix: Water

Received: 2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	4937613	N/A	2017/04/13	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	4936801	N/A	2017/04/17	Automated Statchk
Chloride by Automated Colourimetry	KONE	4938093	N/A	2017/04/17	Alina Dobreanu
Conductivity	AT	4937809	N/A	2017/04/13	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	4937584	N/A	2017/04/13	Anastasia Hamanov
Hardness (calculated as CaCO3)		4936804	N/A	2017/04/17	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	4937519	N/A	2017/04/17	Thao Nguyen
Ion Balance (% Difference)	CALC	4936805	N/A	2017/04/18	Automated Statchk
Anion and Cation Sum	CALC	4936806	N/A	2017/04/17	Automated Statchk
Total Ammonia-N	LACH/NH4	4938715	N/A	2017/04/17	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	4937672	N/A	2017/04/13	Chandra Nandlal
рН	AT	4937811	N/A	2017/04/13	Surinder Rai
Orthophosphate	KONE	4938098	N/A	2017/04/17	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	4936811	N/A	2017/04/18	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4936812	N/A	2017/04/18	Automated Statchk
Sulphate by Automated Colourimetry	KONE	4938104	N/A	2017/04/17	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	4936813	N/A	2017/04/18	Automated Statchk
Low Level Total Suspended Solids	BAL	4937540	2017/04/12	2017/04/12	Arpan Shah

Maxxam ID:	EEV142
Sample ID:	MW17-8D
Matrix:	Water

Collected:	2017/04/10
Shipped:	
Received:	2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	4937823	N/A	2017/04/13	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	4936801	N/A	2017/04/17	Automated Statchk
Chloride by Automated Colourimetry	KONE	4938093	N/A	2017/04/17	Alina Dobreanu
Conductivity	AT	4937827	N/A	2017/04/13	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	4937584	N/A	2017/04/13	Anastasia Hamanov
Hardness (calculated as CaCO3)		4936804	N/A	2017/04/13	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	4937519	N/A	2017/04/13	Thao Nguyen
Ion Balance (% Difference)	CALC	4936805	N/A	2017/04/18	Automated Statchk
Anion and Cation Sum	CALC	4936806	N/A	2017/04/17	Automated Statchk
Total Ammonia-N	LACH/NH4	4938715	N/A	2017/04/17	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	4939014	N/A	2017/04/13	Chandra Nandlal

Page 20 of 36

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Collected: 2017/04/10 Shipped:

Analyst

TEST SUMMARY

Maxxam ID:	EEV142	Collected:	2017/04/10
Sample ID:		Shipped:	2047/04/44
Matrix:	Water	Received:	2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
рН	AT	4937828	N/A	2017/04/13	Surinder Rai
Orthophosphate	KONE	4938098	N/A	2017/04/17	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	4936811	N/A	2017/04/18	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4936812	N/A	2017/04/18	Automated Statchk
Sulphate by Automated Colourimetry	KONE	4938104	N/A	2017/04/17	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	4936813	N/A	2017/04/18	Automated Statchk
Low Level Total Suspended Solids	BAL	4939006	2017/04/13	2017/04/13	Arpan Shah

Maxxam ID:	EEV143
Sample ID:	MW17-8S
Matrix:	Water

Collected:	2017/04/10
Shipped:	
Received:	2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	4937823	N/A	2017/04/13	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	4936801	N/A	2017/04/17	Automated Statchk
Chloride by Automated Colourimetry	KONE	4938093	N/A	2017/04/17	Alina Dobreanu
Conductivity	AT	4937827	N/A	2017/04/13	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	4937584	N/A	2017/04/13	Anastasia Hamanov
Hardness (calculated as CaCO3)		4936804	N/A	2017/04/17	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	4937519	N/A	2017/04/17	Thao Nguyen
Ion Balance (% Difference)	CALC	4936805	N/A	2017/04/18	Automated Statchk
Anion and Cation Sum	CALC	4936806	N/A	2017/04/17	Automated Statchk
Total Ammonia-N	LACH/NH4	4938715	N/A	2017/04/17	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	4939014	N/A	2017/04/13	Chandra Nandlal
рН	AT	4937828	N/A	2017/04/13	Surinder Rai
Orthophosphate	KONE	4938098	N/A	2017/04/17	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	4936811	N/A	2017/04/18	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4936812	N/A	2017/04/18	Automated Statchk
Sulphate by Automated Colourimetry	KONE	4938104	N/A	2017/04/17	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	4936813	N/A	2017/04/18	Automated Statchk
Total Suspended Solids	BAL	4939754	2017/04/13	2017/04/13	Arpan Shah

Maxxam ID:	EEV144
Sample ID:	MW17-10D
Matrix:	Water

Collected: 2017/04/10 Shipped: Received: 2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	4946220	N/A	2017/04/20	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	4936801	N/A	2017/04/17	Automated Statchk
Chloride by Automated Colourimetry	KONE	4946377	N/A	2017/04/20	Alina Dobreanu
Conductivity	AT	4937827	N/A	2017/04/13	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	4937584	N/A	2017/04/13	Anastasia Hamanov
Hardness (calculated as CaCO3)		4936804	N/A	2017/04/17	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	4946951	N/A	2017/04/20	Cristina Petran
Ion Balance (% Difference)	CALC	4936805	N/A	2017/04/18	Automated Statchk

Page 21 of 36

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

TEST SUMMARY

Maxxam ID: Sample ID:		Collected: Shipped:	2017/04/10
Matrix:	-		2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Anion and Cation Sum	CALC	4936806	N/A	2017/04/17	Automated Statchk
Total Ammonia-N	LACH/NH4	4938715	N/A	2017/04/17	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	4939014	N/A	2017/04/13	Chandra Nandlal
рН	AT	4937828	N/A	2017/04/13	Surinder Rai
Orthophosphate	KONE	4938098	N/A	2017/04/17	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	4936811	N/A	2017/04/18	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4936812	N/A	2017/04/18	Automated Statchk
Sulphate by Automated Colourimetry	KONE	4946383	N/A	2017/04/20	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	4936813	N/A	2017/04/18	Automated Statchk
Low Level Total Suspended Solids	BAL	4939006	2017/04/13	2017/04/13	Arpan Shah

Maxxam ID:	EEV144 Dup
Sample ID:	MW17-10D
Matrix:	Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Conductivity	AT	4937827	N/A	2017/04/13	Surinder Rai
рН	AT	4937828	N/A	2017/04/13	Surinder Rai

Maxxam ID:	EEV145
Sample ID:	POND
Matrix:	Water

Collected:	2017/04/11
Shipped:	
Received:	2017/04/11

Collected: 2017/04/10 Shipped: Received: 2017/04/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	4937223	N/A	2017/04/13	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	4936801	N/A	2017/04/13	Automated Statchk
Chloride by Automated Colourimetry	KONE	4937408	N/A	2017/04/13	Alina Dobreanu
Conductivity	AT	4937260	N/A	2017/04/13	Surinder Rai
Hardness (calculated as CaCO3)		4936804	N/A	2017/04/19	Automated Statchk
Lab Filtered Metals Analysis by ICP	ICP	4941831	2017/04/17	2017/04/18	Azita Fazaeli
Total Metals Analysis by ICPMS	ICP/MS	4941659	N/A	2017/04/17	Kevin Comerford
Total Ammonia-N	LACH/NH4	4938715	N/A	2017/04/17	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	4937451	N/A	2017/04/13	Chandra Nandlal
рН	AT	4937231	N/A	2017/04/13	Surinder Rai
Orthophosphate	KONE	4937417	N/A	2017/04/13	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	4936811	N/A	2017/04/19	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	4936812	N/A	2017/04/19	Automated Statchk
Sulphate by Automated Colourimetry	KONE	4937418	N/A	2017/04/13	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	4936813	N/A	2017/04/19	Automated Statchk
Total Organic Carbon (TOC)	TOCV/NDIR	4939254	N/A	2017/04/13	Anastasia Hamanov
Total Phosphorus (Colourimetric)	LACH/P	4938578	2017/04/13	2017/04/13	Sarabjit Raina
Low Level Total Suspended Solids	BAL	4937462	2017/04/12	2017/04/13	Bansari Ray
Turbidity	AT	4937002	N/A	2017/04/12	Tahir Anwar

.

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	EEV145 Dup POND Water					Collected: 2017/04/11 Shipped: Received: 2017/04/11
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Total Organic Carbon (TO	C)	TOCV/NDIR	4939254	N/A	2017/04/13	Anastasia Hamanov

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	0.3°C
Package 2	-0.7°C

Sample EEV133 [MW17-1S] : Nitrite+Nitrate: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly. ortho-Phosphate > Total Phosphorus: Both values fall within the method uncertainty for duplicates and are likely equivalent.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4937002	TA1	Spiked Blank	Turbidity	2017/04/12	Value	99	%	85 - 115
4937002	TA1	Method Blank	Turbidity	2017/04/12	<0.1		NTU	00 110
4937002	TA1	RPD	Turbidity	2017/04/12	5.4		%	20
4937223	SAU	Spiked Blank	Alkalinity (Total as CaCO3)	2017/04/12	5.1	96	%	85 - 115
4937223	SAU	Method Blank	Alkalinity (Total as CaCO3)	2017/04/12	<1.0	50	mg/L	00 110
4937223	SAU	RPD	Alkalinity (Total as CaCO3)	2017/04/12	0.74		%	20
4937231	SAU	Spiked Blank	pH	2017/04/12	017 1	101	%	98 - 103
4937231	SAU	RPD	pH	2017/04/12	0.068	101	%	N/A
4937260	SAU	Spiked Blank	Conductivity	2017/04/12		100	%	85 - 115
4937260	SAU	Method Blank	Conductivity	2017/04/12	<1.0	200	umho/c	
4937260	SAU	RPD	Conductivity	2017/04/12	0.16		%	25
4937408	ADB	Matrix Spike	Dissolved Chloride (Cl)	2017/04/13	0.20	96	%	80 - 120
4937408	ADB	Spiked Blank	Dissolved Chloride (Cl)	2017/04/13		103	%	80 - 120
4937408	ADB	Method Blank	Dissolved Chloride (Cl)	2017/04/13	<1.0	200	mg/L	00 110
4937408	ADB	RPD	Dissolved Chloride (Cl)	2017/04/13	1.2		%	20
4937417	ADB	Matrix Spike	Orthophosphate (P)	2017/04/13		110	%	
4937417	ADB	Spiked Blank	Orthophosphate (P)	2017/04/13		101	%	80 - 120
4937417	ADB	Method Blank	Orthophosphate (P)	2017/04/13	<0.010	101	mg/L	00 110
4937417	ADB	RPD	Orthophosphate (P)	2017/04/13	18		%	25
4937418	ADB	Matrix Spike	Dissolved Sulphate (SO4)	2017/04/13	10	NC	%	
4937418	ADB	Spiked Blank	Dissolved Sulphate (SO4)	2017/04/13		105	%	80 - 120
4937418	ADB	Method Blank	Dissolved Sulphate (SO4)	2017/04/13	<1.0	200	mg/L	00 110
4937418	ADB	RPD	Dissolved Sulphate (SO4)	2017/04/13	0.15		%	20
4937451	C_N	Matrix Spike	Nitrite (N)	2017/04/13	0.10	94	%	80 - 120
1557 151	°	matrix opine	Nitrate (N)	2017/04/13		99	%	80 - 120
4937451	CΝ	Spiked Blank	Nitrite (N)	2017/04/13		94	%	80 - 120
	•	opined blaim	Nitrate (N)	2017/04/13		105	%	80 - 120
4937451	CΝ	Method Blank	Nitrite (N)	2017/04/13	<0.010	200	mg/L	00 110
	•		Nitrate (N)	2017/04/13	<0.10		mg/L	
4937451	C_N	RPD	Nitrite (N)	2017/04/13	NC		%	20
	-		Nitrate (N)	2017/04/13	NC		%	20
4937462	RAY	QC Standard	Total Suspended Solids	2017/04/13	-	96	%	85 - 115
4937462	RAY	Method Blank	Total Suspended Solids	2017/04/13	<1		mg/L	
4937462	RAY	RPD	Total Suspended Solids	2017/04/13	NC		%	25
4937519	TNG	Matrix Spike [EEV132-04]	Dissolved Aluminum (Al)	2017/04/13		99	%	80 - 120
			Dissolved Antimony (Sb)	2017/04/13		105	%	80 - 120
			Dissolved Arsenic (As)	2017/04/13		101	%	80 - 120
			Dissolved Barium (Ba)	2017/04/13		100	%	80 - 120
			Dissolved Beryllium (Be)	2017/04/13		98	%	80 - 120
			Dissolved Boron (B)	2017/04/13		NC	%	80 - 120
			Dissolved Cadmium (Cd)	2017/04/13		102	%	80 - 120
			Dissolved Calcium (Ca)	2017/04/13		NC	%	80 - 120
			Dissolved Chromium (Cr)	2017/04/13		99	%	80 - 120
			Dissolved Cobalt (Co)	2017/04/13		97	%	80 - 120
			Dissolved Copper (Cu)	2017/04/13		99	%	80 - 120
						98	%	80 - 120
			Dissolved Lead (Pb)	2017/04/13		96	%	80 - 120
						NC	%	80 - 120
				2017/04/13			%	80 - 120
			-			105	%	80 - 120
						96	%	80 - 120
			Dissolved Phosphorus (P)	2017/04/13		111	%	80 - 120
			Dissolved Potassium (K)	2017/04/13		97	%	80 - 120
			Dissolved Iron (Fe) Dissolved Lead (Pb) Dissolved Magnesium (Mg) Dissolved Manganese (Mn) Dissolved Molybdenum (Mo) Dissolved Nickel (Ni) Dissolved Phosphorus (P)	2017/04/13 2017/04/13 2017/04/13 2017/04/13 2017/04/13 2017/04/13 2017/04/13		98 96 NC 99 105 96 111	% % % %	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120

Report Date: 2017/04/20

Golder Associates Ltd Client Project #: 1771656 (1000/1003) Sampler Initials: TP

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Selenium (Se)	2017/04/13		82	%	80 - 120
			Dissolved Silicon (Si)	2017/04/13		96	%	80 - 120
			Dissolved Silver (Ag)	2017/04/13		38 (1)	%	80 - 120
			Dissolved Sodium (Na)	2017/04/13		NC	%	80 - 120
			Dissolved Strontium (Sr)	2017/04/13		NC	%	80 - 120
			Dissolved Thallium (Tl)	2017/04/13		96	%	80 - 120
			Dissolved Titanium (Ti)	2017/04/13		99	%	80 - 120
			Dissolved Uranium (U)	2017/04/13		100	%	80 - 120
			Dissolved Vanadium (V)	2017/04/13		99	%	80 - 120
			Dissolved Zinc (Zn)	2017/04/13		95	%	80 - 120
4937519	TNG	Spiked Blank	Dissolved Aluminum (Al)	2017/04/13		100	%	80 - 120
			Dissolved Antimony (Sb)	2017/04/13		103	%	80 - 120
			Dissolved Arsenic (As)	2017/04/13		99	%	80 - 120
			Dissolved Barium (Ba)	2017/04/13		101	%	80 - 120
			Dissolved Beryllium (Be)	2017/04/13		100	%	80 - 120
			Dissolved Boron (B)	2017/04/13		99	%	80 - 120
			Dissolved Cadmium (Cd)	2017/04/13		101	%	80 - 120
			Dissolved Calcium (Ca)	2017/04/13		95	%	80 - 120
			Dissolved Chromium (Cr)	2017/04/13		98	%	80 - 120
			Dissolved Cobalt (Co)	2017/04/13		98	%	80 - 120
			Dissolved Copper (Cu)	2017/04/13		101	%	80 - 120
			Dissolved Iron (Fe)	2017/04/13		98	%	80 - 120
			Dissolved Lead (Pb)	2017/04/13		97	%	80 - 120
			Dissolved Magnesium (Mg)	2017/04/13		98	%	80 - 120
			Dissolved Manganese (Mn)	2017/04/13		98	%	80 - 120
			Dissolved Molybdenum (Mo)	2017/04/13		101	%	80 - 120
			Dissolved Nickel (Ni)	2017/04/13		98	%	80 - 120
			Dissolved Phosphorus (P)	2017/04/13		112	%	80 - 120
			Dissolved Potassium (K)	2017/04/13		98	%	80 - 120
			Dissolved Selenium (Se)	2017/04/13		96	%	80 - 120
			Dissolved Silicon (Si)	2017/04/13		99	%	80 - 120
			Dissolved Silver (Ag)	2017/04/13		98	%	80 - 120
			Dissolved Sodium (Na)	2017/04/13		97	%	80 - 120
			Dissolved Strontium (Sr)	2017/04/13		100	%	80 - 120
			Dissolved Thallium (Tl)	2017/04/13		97	%	80 - 120
			Dissolved Titanium (Ti)	2017/04/13		99	%	80 - 120
			Dissolved Uranium (U)	2017/04/13		98	%	80 - 120
			Dissolved Vanadium (V)	2017/04/13		97	%	80 - 120
			Dissolved Zinc (Zn)	2017/04/13		98	%	80 - 120
4937519	TNG	Method Blank	Dissolved Aluminum (Al)	2017/04/13	<0.0050		mg/L	
			Dissolved Antimony (Sb)	2017/04/13	<0.00050		mg/L	
			Dissolved Arsenic (As)	2017/04/13	<0.0010		mg/L	
			Dissolved Barium (Ba)	2017/04/13	<0.0020		mg/L	
			Dissolved Beryllium (Be)	2017/04/13	<0.00050		mg/L	
			Dissolved Boron (B)	2017/04/13	<0.010		mg/L	
			Dissolved Cadmium (Cd)	2017/04/13	<0.00010		mg/L	
			Dissolved Calcium (Ca)	2017/04/13	<0.20		mg/L	
			Dissolved Chromium (Cr)	2017/04/13	<0.0050		mg/L	
			Dissolved Cobalt (Co)	2017/04/13	<0.00050		mg/L	
			Dissolved Copper (Cu)	2017/04/13	<0.0010		mg/L	
			Dissolved Iron (Fe)	2017/04/13	<0.10		mg/L	
			Dissolved Lead (Pb)	2017/04/13	<0.00050		mg/L	
			Dissolved Magnesium (Mg)	2017/04/13	<0.050		mg/L	

Report Date: 2017/04/20

Golder Associates Ltd Client Project #: 1771656 (1000/1003) Sampler Initials: TP

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Manganese (Mn)	2017/04/13	<0.0020		mg/L	
			Dissolved Molybdenum (Mo)	2017/04/13	<0.00050		mg/L	
			Dissolved Nickel (Ni)	2017/04/13	< 0.0010		mg/L	
			Dissolved Phosphorus (P)	2017/04/13	<0.10		mg/L	
			Dissolved Potassium (K)	2017/04/13	<0.20		mg/L	
			Dissolved Selenium (Se)	2017/04/13	<0.0020		mg/L	
			Dissolved Silicon (Si)	2017/04/13	<0.050		mg/L	
			Dissolved Silver (Ag)	2017/04/13	<0.00010		mg/L	
			Dissolved Sodium (Na)	2017/04/13	<0.10		mg/L	
			Dissolved Strontium (Sr)	2017/04/13	<0.0010		mg/L	
			Dissolved Thallium (TI)	2017/04/13	<0.000050		mg/L	
			Dissolved Titanium (Ti)	2017/04/13	<0.0050		mg/L	
			Dissolved Uranium (U)	2017/04/13	<0.00010		mg/L	
			Dissolved Vanadium (V)	2017/04/13	<0.00050		mg/L	
			Dissolved Zinc (Zn)	2017/04/13	<0.0050		mg/L	
4937519	TNG	RPD [EEV132-04]	Dissolved Aluminum (Al)	2017/04/13	0.24		%	20
			Dissolved Antimony (Sb)	2017/04/13	NC		%	20
			Dissolved Arsenic (As)	2017/04/13	NC		%	20
			Dissolved Barium (Ba)	2017/04/13	0.20		%	20
			Dissolved Beryllium (Be)	2017/04/13	NC		%	20
			Dissolved Boron (B)	2017/04/13	0.70		%	20
			Dissolved Cadmium (Cd)	2017/04/13	NC		%	20
			Dissolved Calcium (Ca)	2017/04/13	1.4		%	20
			Dissolved Chromium (Cr)	2017/04/13	NC		%	20
			Dissolved Cobalt (Co)	2017/04/13	NC		%	20
			Dissolved Copper (Cu)	2017/04/13	NC		%	20
			Dissolved Iron (Fe)	2017/04/13	3.2		%	20
			Dissolved Lead (Pb)	2017/04/13	NC		%	20
			Dissolved Magnesium (Mg)	2017/04/13	3.2		%	20
			Dissolved Manganese (Mn)	2017/04/13	6.0		%	20
			Dissolved Molybdenum (Mo)	2017/04/13	NC		%	20
			Dissolved Nickel (Ni)	2017/04/13	NC		%	20
			Dissolved Phosphorus (P)	2017/04/13	NC		%	20
			Dissolved Potassium (K)	2017/04/13	4.3		%	20
			Dissolved Selenium (Se)	2017/04/13	NC		%	20
			Dissolved Silicon (Si)	2017/04/13	2.2		%	20
			Dissolved Silver (Ag)	2017/04/13	NC		%	20
			Dissolved Sodium (Na)	2017/04/13	2.8		%	20
			Dissolved Strontium (Sr)	2017/04/13	4.2		%	20
			Dissolved Thallium (TI)	2017/04/13	NC		%	20
			Dissolved Titanium (Ti)	2017/04/13	NC		%	20
			Dissolved Uranium (U)	2017/04/13	NC		%	20
			Dissolved Vanadium (V)	2017/04/13	NC		%	20
			Dissolved Zinc (Zn)	2017/04/13	NC		%	20
1937540	AS6	QC Standard	Total Suspended Solids	2017/04/12	i i c	99	%	85 - 115
1937540	AS6	Method Blank	Total Suspended Solids	2017/04/12	<1	55	mg/L	05 115
4937540 4937540	AS6	RPD	Total Suspended Solids	2017/04/12	4.7		111g/L %	25
4937582	XZH	QC Standard	Total Suspended Solids	2017/04/12	7.7	96	%	85 - 115
4937582	XZH	Method Blank	Total Suspended Solids	2017/04/12	<10	50	∽ mg/L	02 - 112
4937582	XZH	RPD	Total Suspended Solids	2017/04/12	4.6		mg/∟ %	25
4937584	AHA	Matrix Spike	Dissolved Organic Carbon	2017/04/12 2017/04/13	4.0	103	%	25 80 - 120
4937584 4937584	АПА АНА	Spiked Blank	Dissolved Organic Carbon	2017/04/13		103	% %	80 - 120 80 - 120
			-		<0.20	104		00 - 120
4937584	AHA	Method Blank	Dissolved Organic Carbon	2017/04/13	<0.20		mg/L	

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4937584	AHA	RPD	Dissolved Organic Carbon	2017/04/13	1.6		%	20
4937613	SAU	Spiked Blank	Alkalinity (Total as CaCO3)	2017/04/13		97	%	85 - 115
4937613	SAU	Method Blank	Alkalinity (Total as CaCO3)	2017/04/13	<1.0	-	mg/L	
4937613	SAU	RPD	Alkalinity (Total as CaCO3)	2017/04/13	1.2		%	20
4937642	C_N	Matrix Spike	Nitrite (N)	2017/04/13		97	%	80 - 120
	-		Nitrate (N)	2017/04/13		102	%	80 - 120
4937642	CΝ	Spiked Blank	Nitrite (N)	2017/04/13		96	%	80 - 120
			Nitrate (N)	2017/04/13		103	%	80 - 120
4937642	C_N	Method Blank	Nitrite (N)	2017/04/13	<0.010		mg/L	
	-		Nitrate (N)	2017/04/13	<0.10		mg/L	
4937642	C_N	RPD	Nitrite (N)	2017/04/13	NC		%	20
			Nitrate (N)	2017/04/13	NC		%	20
4937672	CΝ	Matrix Spike	Nitrite (N)	2017/04/13	-	95	%	80 - 120
	-		Nitrate (N)	2017/04/13		102	%	80 - 120
4937672	CΝ	Spiked Blank	Nitrite (N)	2017/04/13		96	%	80 - 120
			Nitrate (N)	2017/04/13		106	%	80 - 120
4937672	CΝ	Method Blank	Nitrite (N)	2017/04/13	<0.010		mg/L	
			Nitrate (N)	2017/04/13	<0.10		mg/L	
4937672	C_N	RPD	Nitrite (N)	2017/04/13	NC		%	20
			Nitrate (N)	2017/04/13	NC		%	20
4937809	SAU	Spiked Blank	Conductivity	2017/04/13		100	%	85 - 115
4937809	SAU	Method Blank	Conductivity	2017/04/13	<1.0		umho/c	
4937809	SAU	RPD	Conductivity	2017/04/13	0.21		%	25
4937811	SAU	Spiked Blank	pH	2017/04/13	•	101	%	98 - 103
4937811	SAU	RPD	pH	2017/04/13	0.34	101	%	N/A
4937823	SAU	Spiked Blank	Alkalinity (Total as CaCO3)	2017/04/13		96	%	85 - 115
4937823	SAU	Method Blank	Alkalinity (Total as CaCO3)	2017/04/13	<1.0		mg/L	
4937827	SAU	Spiked Blank	Conductivity	2017/04/13		100	%	85 - 115
4937827	SAU	Method Blank	Conductivity	2017/04/13	<1.0		umho/c	
4937827	SAU	RPD [EEV144-01]	Conductivity	2017/04/13	0		%	25
4937828	SAU	Spiked Blank	pH	2017/04/13	-	101	%	98 - 103
4937828	SAU	RPD [EEV144-01]	рН	2017/04/13	0.14		%	N/A
4938093	ADB	Matrix Spike [EEV140-01]	Dissolved Chloride (Cl)	2017/04/17	•	NC	%	80 - 120
4938093	ADB	Spiked Blank	Dissolved Chloride (Cl)	2017/04/17		103	%	80 - 120
4938093	ADB	Method Blank	Dissolved Chloride (Cl)	2017/04/17	<1.0		mg/L	
4938093	ADB	RPD [EEV140-01]	Dissolved Chloride (Cl)	2017/04/17	4.0		%	20
4938098	ADB	Matrix Spike [EEV140-01]	Orthophosphate (P)	2017/04/17		110	%	
4938098	ADB	Spiked Blank	Orthophosphate (P)	2017/04/17		101	%	80 - 120
4938098	ADB	Method Blank	Orthophosphate (P)	2017/04/17	<0.010	-	mg/L	
4938098	ADB	RPD [EEV140-01]	Orthophosphate (P)	2017/04/17	NC		%	25
4938104	ADB	Matrix Spike [EEV140-01]	Dissolved Sulphate (SO4)	2017/04/17		NC	%	75 - 125
4938104	ADB	Spiked Blank	Dissolved Sulphate (SO4)	2017/04/17		105	%	80 - 120
4938104	ADB	Method Blank	Dissolved Sulphate (SO4)	2017/04/17	<1.0		mg/L	
4938104	ADB	RPD [EEV140-01]	Dissolved Sulphate (SO4)	2017/04/17	0.18		%	20
4938578	SNR	Matrix Spike	Total Phosphorus	2017/04/13	•	88	%	80 - 120
4938578	SNR	QC Standard	Total Phosphorus	2017/04/13		91	%	80 - 120
4938578	SNR	Spiked Blank	Total Phosphorus	2017/04/13		92	%	80 - 120
4938578	SNR	Method Blank	Total Phosphorus	2017/04/13	<0.004		mg/L	
4938578	SNR	RPD	Total Phosphorus	2017/04/13	NC		%	20
4938710	COP	Matrix Spike	Total Ammonia-N	2017/04/18		92	%	80 - 120
4938710	COP	Spiked Blank	Total Ammonia-N	2017/04/18		99	%	85 - 115
4938710	COP	Method Blank	Total Ammonia-N	2017/04/18	<0.050		mg/L	
4938710	COP	RPD	Total Ammonia-N	2017/04/18	12		۳۳۵/۲	20
0110264	COF			2017/04/10	14		/0	20

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4938715	COP	Matrix Spike [EEV140-02]	Total Ammonia-N	2017/04/17	Value	NC	%	80 - 120
4938715	COP	Spiked Blank	Total Ammonia-N	2017/04/17		99	%	85 - 115
4938715	COP	Method Blank	Total Ammonia-N	2017/04/17	<0.050	55	mg/L	05 115
4938715	COP	RPD [EEV140-02]	Total Ammonia-N	2017/04/17	0.42		%	20
4938932	AHA	Matrix Spike	Dissolved Organic Carbon	2017/04/13	0.12	103	%	80 - 120
4938932	AHA	Spiked Blank	Dissolved Organic Carbon	2017/04/13		105	%	80 - 120
4938932	AHA	Method Blank	Dissolved Organic Carbon	2017/04/13	<0.20	107	mg/L	00 120
4938932	AHA	RPD	Dissolved Organic Carbon	2017/04/13	0.38		%	20
4939006	AS6	QC Standard	Total Suspended Solids	2017/04/13	0.00	95	%	 85 - 115
4939006	AS6	Method Blank	Total Suspended Solids	2017/04/13	<1	55	mg/L	05 115
4939006	AS6	RPD	Total Suspended Solids	2017/04/13	4.9		%	25
4939014	CN	Matrix Spike [EEV136-01]	Nitrite (N)	2017/04/13	1.5	97	%	80 - 120
	•		Nitrate (N)	2017/04/13		100	%	80 - 120
4939014	CΝ	Spiked Blank	Nitrite (N)	2017/04/13		95	%	80 - 120
1555011	0_11	opineu biann	Nitrate (N)	2017/04/13		100	%	80 - 120
4939014	C_N	Method Blank	Nitrite (N)	2017/04/13	<0.010	100	mg/L	00 120
1555011	0_11	Method Blank	Nitrate (N)	2017/04/13	<0.10		mg/L	
4939014	C_N	RPD [EEV136-01]	Nitrite (N)	2017/04/13	NC		%	20
4555014	<u>c_</u> n		Nitrate (N)	2017/04/13	NC		%	20
4939254	AHA	Matrix Spike [EEV145-02]	Total Organic Carbon (TOC)	2017/04/13	Ne	97	%	80 - 120
4939254	AHA	Spiked Blank	Total Organic Carbon (TOC)	2017/04/13		99	%	80 - 120
4939254	AHA	Method Blank	Total Organic Carbon (TOC)	2017/04/13	<0.20	55	mg/L	00 120
4939254	AHA	RPD [EEV145-02]	Total Organic Carbon (TOC)	2017/04/13	0.96		%	20
4939754	AS6	QC Standard	Total Suspended Solids	2017/04/13	0.50	100	%	85 - 115
4939754	AS6	Method Blank	Total Suspended Solids	2017/04/13	<10	100	mg/L	05 115
4939754	AS6	RPD	Total Suspended Solids	2017/04/13	13		%	25
4941659	КСО	Matrix Spike	Total Aluminum (Al)	2017/04/17	10	NC	%	80 - 120
		ind in opine	Total Antimony (Sb)	2017/04/17		109	%	80 - 120
			Total Arsenic (As)	2017/04/17		106	%	80 - 120
			Total Barium (Ba)	2017/04/17		104	%	80 - 120
			Total Beryllium (Be)	2017/04/17		97	%	80 - 120
			Total Boron (B)	2017/04/17		94	%	80 - 120
			Total Cadmium (Cd)	2017/04/17		106	%	80 - 120
			Total Calcium (Ca)	2017/04/17		NC	%	80 - 120
			Total Chromium (Cr)	2017/04/17		102	%	80 - 120
			Total Cobalt (Co)	2017/04/17		104	%	80 - 120
			Total Copper (Cu)	2017/04/17		106	%	80 - 120
			Total Iron (Fe)	2017/04/17		105	%	80 - 120
			Total Lead (Pb)	2017/04/17		98	%	80 - 120
			Total Magnesium (Mg)	2017/04/17		101	%	80 - 120
			Total Manganese (Mn)	2017/04/17		99	%	80 - 120
			Total Molybdenum (Mo)	2017/04/17		108	%	80 - 120
			Total Nickel (Ni)	2017/04/17		98	%	80 - 120
			Total Potassium (K)	2017/04/17		105	%	80 - 120
			Total Selenium (Se)	2017/04/17		104	%	80 - 120
			Total Silicon (Si)	2017/04/17		103	%	80 - 120
			Total Silver (Ag)	2017/04/17		102	%	80 - 120
			Total Sodium (Na)	2017/04/17		NC	%	80 - 120
			Total Strontium (Sr)	2017/04/17		104	%	80 - 120
			Total Thallium (Tl)	2017/04/17		99	%	80 - 120
			Total Titanium (Ti)	2017/04/17		113	%	80 - 120
			Total Vanadium (V)	2017/04/17		105	%	80 - 120
			Total Zinc (Zn)	2017/04/17		102	%	80 - 120
·				· ·				

Report Date: 2017/04/20

Golder Associates Ltd Client Project #: 1771656 (1000/1003) Sampler Initials: TP

4941659 KCO Spiked Blank Total Aluminum (AI) 2017/04/17 99 % Total Arsimony (Sb) 2017/04/17 103 % Total Arsenic (As) 2017/04/17 103 % Total Barsenic (As) 2017/04/17 99 % Total Bervillum (Ba) 2017/04/17 95 % Total Cadmium (Cd) 2017/04/17 95 % Total Cadmium (Cd) 2017/04/17 97 % Total Cadmium (Cd) 2017/04/17 97 % Total Cadmium (Ca) 2017/04/17 97 % Total Cobert (Co) 2017/04/17 97 % Total Cobert (Co) 2017/04/17 100 % Total Magnaese (Mn) 2017/04/17 99 % Total Magnaese (Mn) 2017/04/17 95 % Total Magnaese (Mn) 2017/04/17 95 % Total Selenium (Se) 2017/04/17 95 % Total Selenium (Sr) 2017/04/17 95 % <	QC Limits 80 - 120 80 - 120
4941659 KCO Spiked Blank Total Aluminum (AI) 2017/04/17 99 % Total Antimony (Sb) 2017/04/17 103 % Total Arsenic (As) 2017/04/17 103 % Total Barylium (Ba) 2017/04/17 99 % Total Barylium (Ba) 2017/04/17 95 % Total Cadmium (Cd) 2017/04/17 97 % Total Boron (B) 2017/04/17 97 % Total Cadmium (Cd) 2017/04/17 97 % Total Cadmium (Cd) 2017/04/17 97 % Total Cobert (Co) 2017/04/17 97 % Total Cobert (Co) 2017/04/17 97 % Total Cobert (Co) 2017/04/17 100 % Total Magnaese (Mn) 2017/04/17 99 % Total Magnaese (Mn) 2017/04/17 95 % Total Nolybdenum (Mo) 2017/04/17 95 % Total Scienium (Se) 2017/04/17 95 %	80 - 120 80 - 120
Total Antimony (Sb) 2017/04/17 103 % Total Arsenic (As) 2017/04/17 101 % Total Brenic (As) 2017/04/17 101 % Total Beryllium (Ba) 2017/04/17 97 % Total Beryllium (Be) 2017/04/17 97 % Total Calcium (Ca) 2017/04/17 102 % Total Calcium (Ca) 2017/04/17 97 % Total Calcium (Ca) 2017/04/17 97 % Total Calcium (Ca) 2017/04/17 102 % Total Cobalt (Co) 2017/04/17 100 % Total Cobalt (Co) 2017/04/17 100 % Total Cobalt (Co) 2017/04/17 100 % Total Cobalt (Co) 2017/04/17 99 % Total Magneses (Mn) 2017/04/17 99 % Total Magneses (Mn) 2017/04/17 99 % Total Mixel (Ni) 2017/04/17 99 % Total Selenium (Se) 2017/04/17 <t< td=""><td>80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120</td></t<>	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120
Total Arsenic (As) 2017/04/17 101 % Total Barium (Ba) 2017/04/17 99 % Total Barium (Be) 2017/04/17 97 % Total Baryllum (Be) 2017/04/17 95 % Total Cadmium (Ca) 2017/04/17 102 % Total Cadmium (Ca) 2017/04/17 97 % Total Cadmium (Cr) 2017/04/17 102 % Total Cobalt (Co) 2017/04/17 100 % Total Cobalt (Co) 2017/04/17 100 % Total Cobalt (Co) 2017/04/17 100 % Total Magnesium (Mg) 2017/04/17 100 % Total Magnesium (Mg) 2017/04/17 99 % Total Magnese (Mn) 2017/04/17 99 % Total Magnese (Mn) 2017/04/17 99 % Total Socium (Ks) 2017/04/17 99 % Total Storetum (Sc) 2017/04/17 99 % Total Storottum (Sr) 2017/04/17 <t< td=""><td>80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120</td></t<>	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120
Total Barium (Ba) 2017/04/17 99 % Total Beryllium (Be) 2017/04/17 97 % Total Boron (B) 2017/04/17 97 % Total Calcium (Cd) 2017/04/17 102 % Total Calcium (Ca) 2017/04/17 97 % Total Chomium (Cr) 2017/04/17 97 % Total Cobalt (Co) 2017/04/17 100 % Total Cobart (Cl) 2017/04/17 100 % Total Copper (Cu) 2017/04/17 100 % Total Magnesium (Mg) 2017/04/17 99 % Total Magnesium (Mg) 2017/04/17 99 % Total Molybdenum (Mo) 2017/04/17 99 % Total Molybdenum (Mo) 2017/04/17 99 % Total Selenium (Se) 2017/04/17 99 % Total Selenium (Se) 2017/04/17 99 % Total Selenium (Se) 2017/04/17 99 % Total Silicon (Si) 2017/04/17	80 - 120 80 - 120 80 - 120 80 - 120 80 - 120
Total Beryllium (Be) 2017/04/17 97 % Total Boron (B) 2017/04/17 95 % Total Cadmium (Cd) 2017/04/17 102 % Total Cadmium (Cd) 2017/04/17 97 % Total Cadmium (Cd) 2017/04/17 97 % Total Cobalt (Co) 2017/04/17 100 % Total Cobalt (Co) 2017/04/17 100 % Total Cobalt (Co) 2017/04/17 100 % Total Magnesium (Mg) 2017/04/17 100 % Total Magnesium (Mg) 2017/04/17 99 % Total Molydenum (Mo) 2017/04/17 99 % Total Molydenum (Mo) 2017/04/17 99 % Total Storen (Ki) 2017/04/17 99 % Total Storen (Ka) 2017/04/17 99 % Total Storen (Ka) 2017/04/17 99 % Total Storen (Ka) 2017/04/17 99 % Total Storentium (Sr) 2017/04/17 <td< td=""><td>80 - 120 80 - 120 80 - 120 80 - 120</td></td<>	80 - 120 80 - 120 80 - 120 80 - 120
Total Boron (B) 2017/04/17 95 % Total Cadmium (Cd) 2017/04/17 102 % Total Calcium (Ca) 2017/04/17 97 % Total Colcium (Ca) 2017/04/17 97 % Total Cobalt (Co) 2017/04/17 97 % Total Cobalt (Co) 2017/04/17 100 % Total Cobalt (Co) 2017/04/17 102 % Total Cobalt (Co) 2017/04/17 99 % Total Magnesium (Mg) 2017/04/17 99 % Total Magnesium (Mg) 2017/04/17 95 % Total Molybdenum (Mo) 2017/04/17 95 % Total Solicen (Si) 2017/04/17 95 % Total Selenium (Se) 2017/04/17 96 % Total Solicen (Si) 2017/04/17 97 % Total Solicen (Si) 2017/04/17 98 % Total Strontium (Sr) 2017/04/17 98 % Total Totalium (Ti) 2017/04/17	80 - 120 80 - 120 80 - 120
Total Cadmium (Cd) 2017/04/17 102 % Total Calcium (Ca) 2017/04/17 97 % Total Chromium (Cr) 2017/04/17 97 % Total Cobalt (Co) 2017/04/17 100 % Total Cobalt (Co) 2017/04/17 100 % Total Copper (Cu) 2017/04/17 100 % Total Lead (Pb) 2017/04/17 99 % Total Lead (Pb) 2017/04/17 99 % Total Magnesium (Mg) 2017/04/17 99 % Total Molybdenum (Mo) 2017/04/17 95 % Total Nickel (Ni) 2017/04/17 95 % Total Solicon (Si) 2017/04/17 95 % Total Solicon (Si) 2017/04/17 99 % Total Solicon (Si) 2017/04/17 99 % Total Solicun (Ka) 2017/04/17 99 % Total Solicun (Na) 2017/04/17 99 % Total Solicun (Cr) 2017/04/17 99	80 - 120 80 - 120
4941659 KCO Method Blank Total Calcium (Ca) 2017/04/17 97 % 4941659 KCO Method Blank Total Cobaut (Ca) 2017/04/17 100 % 4941659 KCO Method Blank Total Coper (Cu) 2017/04/17 100 % 4941659 KCO Method Blank Total Mangum (Al) 2017/04/17 99 % 4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 99 % 4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 99 % 4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 99 % 4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 99 % 4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 99 % 4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 99 % Total Aluminum (Al) 20	80 - 120
4941659 KCO Method Blank Total Arbanic (Cr) 2017/04/17 97 % 4941659 KCO Method Blank Total Cooper (Cu) 2017/04/17 100 % 4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 97 % 4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 99 % 4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 99 % 4941659 KCO Method Blank Total Aluminum (Cr) 2017/04/17 99 % 4941659 KCO Method Blank Total Arbanic (As) 2017/04/17 99 % 4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 99 % 4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 98 % 4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 98 % 4941659 KCO	
4941659 KCO Method Blank Total Cobalt (Co) 2017/04/17 100 % 4941659 KCO Method Blank Total Cong(Sa) 2017/04/17 100 % 4941659 KCO Method Blank Total Antimum (Al) 2017/04/17 99 % 4941659 KCO Method Blank Total Antimum (Al) 2017/04/17 99 % 4941659 KCO Method Blank Total Antimum (Al) 2017/04/17 99 % 4941659 KCO Method Blank Total Antimum (Al) 2017/04/17 99 % 4941659 KCO Method Blank Total Antimum (Al) 2017/04/17 99 % 4941659 KCO Method Blank Total Antimum (Al) 2017/04/17 98 % 4941659 KCO Method Blank Total Antimum (Al) 2017/04/17 98 % 4941659 KCO Method Blank Total Antimum (Al) 2017/04/17 98 % 4941659 KCO	80 - 120
4941659 KCO Method Blank Total Copper (Cu) 2017/04/17 102 % 4941659 KCO Method Blank Total Copper (Cu) 2017/04/17 99 % 4941659 KCO Method Blank Total Aminon (Be) 2017/04/17 99 % 4941659 KCO Method Blank Total Aminon (Sh) 2017/04/17 99 % 4041659 KCO Method Blank Total Aminon (Sh) 2017/04/17 99 % 4041659 KCO Method Blank Total Aminon (Sh) 2017/04/17 99 % 4041659 KCO Method Blank Total Aminon (Sh) 2017/04/17 99 % 4041659 KCO Method Blank Total Aminon (Sh) 2017/04/17 99 % 4041659 KCO Method Blank Total Aminon (Sh) 2017/04/17 99 % 4041659 KCO Method Blank Total Aminon (Sh) 2017/04/17 99 % 4041659 KCO Method	
Total Iron (Fe) 2017/04/17 99 % Total Lead (Pb) 2017/04/17 100 % Total Magnesium (Mg) 2017/04/17 100 % Total Magnesium (Mg) 2017/04/17 99 % Total Magnese (Mn) 2017/04/17 95 % Total Mognese (Mn) 2017/04/17 95 % Total Nickel (Ni) 2017/04/17 95 % Total Potassium (K) 2017/04/17 99 % Total Selenium (Se) 2017/04/17 94 % Total Silver (Ag) 2017/04/17 94 % Total Silver (Ag) 2017/04/17 97 % Total Stontium (Sr) 2017/04/17 97 % Total Stontium (Sr) 2017/04/17 98 % Total Titanium (Ti) 2017/04/17 98 % Total Antimony (Sb) 2017/04/17 98 % Total Aluminum (Al) 2017/04/17 <0.0050	80 - 120 80 - 120
4941659 KCO Method Blank Total Lead (Pb) 2017/04/17 100 % 4941659 KCO Method Blank Total Magnesium (Mg) 2017/04/17 99 % 4941659 KCO Method Blank Total Molgeal 2017/04/17 99 % 4041659 KCO Method Blank Total Solicioum (K) 2017/04/17 99 % 4041659 KCO Method Blank Total Solicioum (Na) 2017/04/17 99 % 4041659 KCO Method Blank Total Solicioum (Na) 2017/04/17 98 % 4041659 KCO Method Blank Total Solicioum (Na) 2017/04/17 98 % 4041659 KCO Method Blank Total Aluminum (Al) 2017/04/17 98 % 4041659 KCO Method Blank Total Aluminum (Al) 2017/04/17 <0.0050	
4941659 KCO Method Blank Total Angenesium (Mg) 2017/04/17 99 % 4941659 KCO Method Blank Total Angenesium (Mg) 2017/04/17 95 % 4941659 KCO Method Blank Total Angenesium (Mg) 2017/04/17 99 % 4941659 KCO Method Blank Total Policy 2017/04/17 99 % Total Soliuru (Cl) 2017/04/17 94 % Total Soliuru (Se) 2017/04/17 99 % Total Soliuru (Se) 2017/04/17 99 % Total Soliuru (Na) 2017/04/17 99 % Total Soliuru (Na) 2017/04/17 99 % Total Titanium (Ti) 2017/04/17 99 % Total Titanium (Ti) 2017/04/17 99 % Total Titanium (Ti) 2017/04/17 98 % Total Anadium (V) 2017/04/17 97 % Total Anadium (X) 2017/04/17 <0.00050	80 - 120
Total Marganese (Mn) 2017/04/17 95 % Total Molybdenum (Mo) 2017/04/17 103 % Total Nickel (Ni) 2017/04/17 95 % Total Potassium (K) 2017/04/17 95 % Total Potassium (Se) 2017/04/17 99 % Total Selenium (Se) 2017/04/17 94 % Total Silicon (Si) 2017/04/17 94 % Total Silicon (Si) 2017/04/17 99 % Total Solium (Na) 2017/04/17 99 % Total Solium (Na) 2017/04/17 97 % Total Titallium (TI) 2017/04/17 99 % Total Total Vanadium (V) 2017/04/17 98 % Total Zinc (Zn) 2017/04/17 98 % 4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 <0.0050	80 - 120
4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 103 % 4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 99 % 4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 98 % 101 Silver (Ag) 2017/04/17 99 % 101 Silver (Ag) 2017/04/17 99 % 101 Silver (Ag) 2017/04/17 99 % 101 Silver (Ag) 2017/04/17 97 % 101 Silver (Ag) 2017/04/17 92 % 101 Silver (Ag) 2017/04/17 98 % 101 Silver (Ag) 2017/04/17 <0.0050	80 - 120
4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 95 % 4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 90 % 4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 97 % Total Total Scienci (As) 2017/04/17 99 % Total Scienci (Ag) 2017/04/17 99 % Total Scienci (Ag) 2017/04/17 99 % Total Scienci (Ag) 2017/04/17 92 % Total Strontium (Sr) 2017/04/17 99 % Total Tranium (Ti) 2017/04/17 98 % Total Zinc (Zn) 2017/04/17 98 % Total Andimony (Sb) 2017/04/17 <0.0050	80 - 120
4941659 KCO Method Blank Total Auminum (Al) 2017/04/17 99 % 4941659 KCO Method Blank Total Auminum (Al) 2017/04/17 99 % Total Solium (Na) 2017/04/17 99 % Total Solium (Na) 2017/04/17 99 % Total Strontium (Sr) 2017/04/17 99 % Total Titanium (Ti) 2017/04/17 99 % Total Titanium (Ti) 2017/04/17 98 % Total Titanium (Ti) 2017/04/17 98 % Total Titanium (Ti) 2017/04/17 98 % Total Zinc (Zn) 2017/04/17 98 % Total Auminum (Al) 2017/04/17 <0.0050	80 - 120
4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 101 % 4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 98 % Total Zilicon (Si) 2017/04/17 99 % Total Solium (Na) 2017/04/17 92 % Total Strontium (Sr) 2017/04/17 99 % Total Thallium (Tl) 2017/04/17 98 % Total Zinc (Zn) 2017/04/17 98 % Total Antimony (Sb) 2017/04/17 98 % Total Antimony (Sb) 2017/04/17 98 % Total Antimony (Sb) 2017/04/17 <0.0050	80 - 120
Total Silicon (Si) 2017/04/17 94 % Total Silver (Ag) 2017/04/17 99 % Total Sodium (Na) 2017/04/17 97 % Total Strontium (Sr) 2017/04/17 92 % Total Strontium (Sr) 2017/04/17 92 % Total Thallium (TI) 2017/04/17 99 % Total Total Titanium (Ti) 2017/04/17 98 % Total Zinc (Zn) 2017/04/17 98 % 4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 98 % 4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 <0.0050	80 - 120
Total Silver (Åg) 2017/04/17 99 % Total Sodium (Na) 2017/04/17 97 % Total Strontium (Sr) 2017/04/17 92 % Total Thallium (TI) 2017/04/17 99 % Total Titanium (Ti) 2017/04/17 99 % Total Titanium (Ti) 2017/04/17 98 % Total Zinc (Zn) 2017/04/17 98 % 4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 <0.0050	80 - 120
Total Sodium (Na) 2017/04/17 97 % Total Strontium (Sr) 2017/04/17 92 % Total Thallium (Tl) 2017/04/17 99 % Total Titanium (Ti) 2017/04/17 98 % Total Vanadium (V) 2017/04/17 97 % 4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 98 % 4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 <0.0050	80 - 120
Total Strontium (Sr) 2017/04/17 92 % Total Thallium (Tl) 2017/04/17 99 % Total Titanium (Ti) 2017/04/17 98 % Total Vanadium (V) 2017/04/17 97 % 4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 90.00050 mg/L Total Antimony (Sb) 2017/04/17 <0.00050	80 - 120
4941659 KCO Method Blank Total Thallium (TI) 2017/04/17 99 % 4941659 KCO Method Blank Total Zinc (Zn) 2017/04/17 98 % 4941659 KCO Method Blank Total Antimony (Al) 2017/04/17 <0.0050	80 - 120
Total Titanium (Ti) 2017/04/17 98 % Total Vanadium (V) 2017/04/17 97 % Total Zinc (Zn) 2017/04/17 98 % 4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 <0.0050	80 - 120
Total Vanadium (V) 2017/04/17 97 % 4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 <0.0050	80 - 120
Total Zinc (Zn) 2017/04/17 98 % 4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 <0.0050	80 - 120
4941659 KCO Method Blank Total Aluminum (Al) 2017/04/17 <0.0050 mg/L Total Antimony (Sb) 2017/04/17 <0.00050	80 - 120
Total Antimony (Sb) 2017/04/17 <0.00050 mg/L Total Arsenic (As) 2017/04/17 <0.0010	80 - 120
Total Arsenic (As) 2017/04/17 <0.0010	
Total Barium (Ba) 2017/04/17 <0.0020 mg/L Total Beryllium (Be) 2017/04/17 <0.00050	
Total Beryllium (Be) 2017/04/17 <0.00050 mg/L Total Boron (B) 2017/04/17 <0.010	
Total Boron (B) 2017/04/17 <0.010 mg/L Total Cadmium (Cd) 2017/04/17 <0.00010	
Total Cadmium (Cd) 2017/04/17 <0.00010 mg/L Total Calcium (Ca) 2017/04/17 <0.20	
Total Calcium (Ca) 2017/04/17 <0.20 mg/L	
Total Chromium (Cr) 2017/04/17 <0.0050 mg/L	
Total Cobalt (Co) 2017/04/17 <0.00050 mg/L	
Total Copper (Cu) 2017/04/17 <0.0010 mg/L	
Total Iron (Fe) 2017/04/17 <0.10 mg/L	
Total Lead (Pb) 2017/04/17 <0.00050 mg/L	
Total Magnesium (Mg) 2017/04/17 <0.050 mg/L	
Total Manganese (Mn) 2017/04/17 <0.0020 mg/L	
Total Molybdenum (Mo) 2017/04/17 <0.00050 mg/L	
Total Nickel (Ni) 2017/04/17 <0.0010 mg/L	
Total Potassium (K) 2017/04/17 <0.20 mg/L	
Total Selenium (Se) 2017/04/17 <0.0020 mg/L	
Total Silicon (Si) 2017/04/17 <0.050 mg/L	
Total Silver (Ag) 2017/04/17 <0.00010 mg/L	
Total Sodium (Na) 2017/04/17 <0.10 mg/L	
Total Strontium (Sr) 2017/04/17 <0.0010 mg/L	
Total Thallium (TI) 2017/04/17 <0.000050 mg/L	
Total Titanium (Ti) 2017/04/17 <0.0050 mg/L	
Total Vanadium (V) 2017/04/17 <0.00050 mg/L	

Report Date: 2017/04/20

Golder Associates Ltd Client Project #: 1771656 (1000/1003) Sampler Initials: TP

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Total Zinc (Zn)	2017/04/17	<0.0050		mg/L	
4941659	ксо	RPD	Total Iron (Fe)	2017/04/17	5.1		%	20
4941831	AFZ	Matrix Spike	Dissolved Calcium (Ca)	2017/04/18		NC	%	80 - 120
			Dissolved Magnesium (Mg)	2017/04/18		NC	%	80 - 120
			Dissolved Potassium (K)	2017/04/18		NC	%	80 - 120
			Dissolved Sodium (Na)	2017/04/18		NC	%	80 - 120
4941831	AFZ	Spiked Blank	Dissolved Calcium (Ca)	2017/04/18		103	%	80 - 120
			Dissolved Magnesium (Mg)	2017/04/18		100	%	80 - 120
			Dissolved Potassium (K)	2017/04/18		102	%	80 - 120
			Dissolved Sodium (Na)	2017/04/18		101	%	80 - 120
4941831	AFZ	Method Blank	Dissolved Calcium (Ca)	2017/04/18	<0.05		mg/L	
			Dissolved Magnesium (Mg)	2017/04/18	<0.05		mg/L	
			Dissolved Potassium (K)	2017/04/18	<1		mg/L	
			Dissolved Sodium (Na)	2017/04/18	<0.5		mg/L	
4946220	SAU	Spiked Blank	Alkalinity (Total as CaCO3)	2017/04/20		96	%	85 - 115
4946220	SAU	Method Blank	Alkalinity (Total as CaCO3)	2017/04/20	<1.0		mg/L	
4946220	SAU	RPD	Alkalinity (Total as CaCO3)	2017/04/20	1.2		%	20
4946377	ADB	Matrix Spike	Dissolved Chloride (Cl)	2017/04/20		NC	%	80 - 120
4946377	ADB	Spiked Blank	Dissolved Chloride (Cl)	2017/04/20		102	%	80 - 120
4946377	ADB	Method Blank	Dissolved Chloride (Cl)	2017/04/20	<1.0		mg/L	
4946377	ADB	RPD	Dissolved Chloride (Cl)	2017/04/20	1.5		%	20
4946383	ADB	Matrix Spike	Dissolved Sulphate (SO4)	2017/04/20		NC	%	75 - 125
4946383	ADB	Spiked Blank	Dissolved Sulphate (SO4)	2017/04/20		104	%	80 - 120
4946383	ADB	Method Blank	Dissolved Sulphate (SO4)	2017/04/20	<1.0		mg/L	
4946383	ADB	RPD	Dissolved Sulphate (SO4)	2017/04/20	1.3		%	20
4946951	CPE	Matrix Spike	Dissolved Aluminum (Al)	2017/04/20		100	%	80 - 120
			Dissolved Antimony (Sb)	2017/04/20		102	%	80 - 120
			Dissolved Arsenic (As)	2017/04/20		99	%	80 - 120
			Dissolved Barium (Ba)	2017/04/20		99	%	80 - 120
			Dissolved Beryllium (Be)	2017/04/20		100	%	80 - 120
			Dissolved Boron (B)	2017/04/20		100	%	80 - 120
			Dissolved Cadmium (Cd)	2017/04/20		100	%	80 - 120
			Dissolved Calcium (Ca)	2017/04/20		NC	%	80 - 120
			Dissolved Chromium (Cr)	2017/04/20		98	%	80 - 120
			Dissolved Cobalt (Co)	2017/04/20		96	%	80 - 120
			Dissolved Copper (Cu)	2017/04/20		98	%	80 - 120
			Dissolved Iron (Fe)	2017/04/20		98	%	80 - 120
			Dissolved Lead (Pb)	2017/04/20		91 NG	%	80 - 120
			Dissolved Magnesium (Mg)	2017/04/20		NC	%	80 - 120
			Dissolved Manganese (Mn)	2017/04/20		97	%	80 - 120
			Dissolved Molybdenum (Mo)	2017/04/20		103	%	80 - 120
			Dissolved Nickel (Ni)	2017/04/20		93	%	80 - 120
			Dissolved Phosphorus (P)	2017/04/20		108	%	80 - 120
			Dissolved Potassium (K)	2017/04/20		99	%	80 - 120
			Dissolved Selenium (Se)	2017/04/20		94	%	80 - 120
			Dissolved Silicon (Si)	2017/04/20		99 74 (1)	%	80 - 120
			Dissolved Silver (Ag)	2017/04/20		74 (1) NC	%	80 - 120
			Dissolved Sodium (Na)	2017/04/20		NC	%	80 - 120
			Dissolved Strontium (Sr)	2017/04/20		NC 01	%	80 - 120
			Dissolved Thallium (TI)	2017/04/20		91	%	80 - 120
			Dissolved Titanium (Ti)	2017/04/20		99 101	%	80 - 120
			Dissolved Uranium (U)	2017/04/20		101	%	80 - 120
			Dissolved Vanadium (V)	2017/04/20		98	%	80 - 120

Report Date: 2017/04/20

Golder Associates Ltd Client Project #: 1771656 (1000/1003) Sampler Initials: TP

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Zinc (Zn)	2017/04/20		95	%	80 - 120
4946951	CPE	Spiked Blank	Dissolved Aluminum (Al)	2017/04/20		99	%	80 - 120
		•	Dissolved Antimony (Sb)	2017/04/20		100	%	80 - 120
			Dissolved Arsenic (As)	2017/04/20		98	%	80 - 120
			Dissolved Barium (Ba)	2017/04/20		98	%	80 - 120
			Dissolved Beryllium (Be)	2017/04/20		100	%	80 - 120
			Dissolved Boron (B)	2017/04/20		101	%	80 - 120
			Dissolved Cadmium (Cd)	2017/04/20		98	%	80 - 120
			Dissolved Calcium (Ca)	2017/04/20		96	%	80 - 120
			Dissolved Chromium (Cr)	2017/04/20		98	%	80 - 120
			Dissolved Cobalt (Co)	2017/04/20		98	%	80 - 120
			Dissolved Copper (Cu)	2017/04/20		99	%	80 - 120
			Dissolved Iron (Fe)	2017/04/20		99	%	80 - 120
			Dissolved Lead (Pb)	2017/04/20		94	%	80 - 120
			Dissolved Magnesium (Mg)	2017/04/20		100	%	80 - 120
			Dissolved Manganese (Mn)	2017/04/20		99	%	80 - 120
			Dissolved Molybdenum (Mo)	2017/04/20		99	%	80 - 120
			Dissolved Nickel (Ni)	2017/04/20		97	%	80 - 120
			Dissolved Phosphorus (P)	2017/04/20		107	%	80 - 120
			Dissolved Potassium (K)	2017/04/20		99	%	80 - 120
			Dissolved Selenium (Se)	2017/04/20		96	%	80 - 120
			Dissolved Silicon (Si)	2017/04/20		98	%	80 - 120
			Dissolved Silver (Ag)	2017/04/20		87	%	80 - 120
			Dissolved Sodium (Na)	2017/04/20		101	%	80 - 120
			Dissolved Strontium (Sr)	2017/04/20		98	%	80 - 120
			Dissolved Thallium (TI)	2017/04/20		93	%	80 - 120
			Dissolved Titanium (Ti)	2017/04/20		100	%	80 - 120
			Dissolved Uranium (U)	2017/04/20		100	%	80 - 120
			Dissolved Vanadium (V)	2017/04/20		97	%	80 - 120
			Dissolved Zinc (Zn)	2017/04/20		99	%	80 - 120
4946951	CPE	Method Blank	Dissolved Aluminum (Al)	2017/04/20	<0.0050		mg/L	
			Dissolved Antimony (Sb)	2017/04/20	<0.00050		mg/L	
			Dissolved Arsenic (As)	2017/04/20	<0.0010		mg/L	
			Dissolved Barium (Ba)	2017/04/20	<0.0020		mg/L	
			Dissolved Beryllium (Be)	2017/04/20	<0.00050		mg/L	
			Dissolved Boron (B)	2017/04/20	<0.010		mg/L	
			Dissolved Cadmium (Cd)	2017/04/20	<0.00010		mg/L	
			Dissolved Calcium (Ca)	2017/04/20	<0.20		mg/L	
			Dissolved Chromium (Cr)	2017/04/20	<0.0050		mg/L	
			Dissolved Cobalt (Co)	2017/04/20	<0.00050		mg/L	
			Dissolved Copper (Cu)	2017/04/20	<0.0010		mg/L	
			Dissolved Iron (Fe)	2017/04/20	<0.10		mg/L	
			Dissolved Lead (Pb)	2017/04/20	<0.00050		mg/L	
			Dissolved Magnesium (Mg)	2017/04/20	<0.050		mg/L	
			Dissolved Manganese (Mn)	2017/04/20	<0.0020		mg/L	
			Dissolved Molybdenum (Mo)	2017/04/20	<0.00050		mg/L	
			Dissolved Nickel (Ni)	2017/04/20	<0.0010		mg/L	
			Dissolved Phosphorus (P)	2017/04/20	<0.10		mg/L	
			Dissolved Potassium (K)	2017/04/20	<0.20		mg/L	
			Dissolved Selenium (Se)	2017/04/20	<0.0020		mg/L	
			Dissolved Silicon (Si)	2017/04/20	<0.050		mg/L	
			Dissolved Silver (Ag)	2017/04/20	<0.00010		mg/L	
			Dissolved Sodium (Na)	2017/04/20	<0.10		mg/L	

Report Date: 2017/04/20

Golder Associates Ltd Client Project #: 1771656 (1000/1003) Sampler Initials: TP

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Strontium (Sr)	2017/04/20	<0.0010		mg/L	
			Dissolved Thallium (TI)	2017/04/20	<0.000050		mg/L	
			Dissolved Titanium (Ti)	2017/04/20	<0.0050		mg/L	
			Dissolved Uranium (U)	2017/04/20	<0.00010		mg/L	
			Dissolved Vanadium (V)	2017/04/20	<0.00050		mg/L	
			Dissolved Zinc (Zn)	2017/04/20	<0.0050		mg/L	
4946951	CPE	RPD	Dissolved Aluminum (Al)	2017/04/20	NC		%	20
			Dissolved Antimony (Sb)	2017/04/20	NC		%	20
			Dissolved Arsenic (As)	2017/04/20	NC		%	20
			Dissolved Barium (Ba)	2017/04/20	1.6		%	20
			Dissolved Beryllium (Be)	2017/04/20	NC		%	20
			Dissolved Boron (B)	2017/04/20	2.0		%	20
			Dissolved Cadmium (Cd)	2017/04/20	NC		%	20
			Dissolved Calcium (Ca)	2017/04/20	1.9		%	20
			Dissolved Chromium (Cr)	2017/04/20	NC		%	20
			Dissolved Cobalt (Co)	2017/04/20	0.16		%	20
			Dissolved Copper (Cu)	2017/04/20	NC		%	20
			Dissolved Iron (Fe)	2017/04/20	0.45		%	20
			Dissolved Lead (Pb)	2017/04/20	NC		%	20
			Dissolved Magnesium (Mg)	2017/04/20	1.1		%	20
			Dissolved Manganese (Mn)	2017/04/20	0.92		%	20
			Dissolved Molybdenum (Mo)	2017/04/20	6.7		%	20
			Dissolved Nickel (Ni)	2017/04/20	0.96		%	20
			Dissolved Phosphorus (P)	2017/04/20	NC		%	20
			Dissolved Potassium (K)	2017/04/20	0.21		%	20
			Dissolved Selenium (Se)	2017/04/20	NC		%	20
			Dissolved Silicon (Si)	2017/04/20	2.3		%	20
			Dissolved Silver (Ag)	2017/04/20	NC		%	20
			Dissolved Sodium (Na)	2017/04/20	1.3		%	20
			Dissolved Strontium (Sr)	2017/04/20	1.7		%	20
			Dissolved Thallium (TI)	2017/04/20	NC		%	20
			Dissolved Titanium (Ti)	2017/04/20	NC		%	20
			Dissolved Uranium (U)	2017/04/20	1.8		%	20
			Dissolved Vanadium (V)	2017/04/20	NC		%	20
			Dissolved Zinc (Zn)	2017/04/20	0.042		%	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Golder Associates Ltd Client Project #: 1771656 (1000/1003) Sampler Initials: TP

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

auistin Camiere

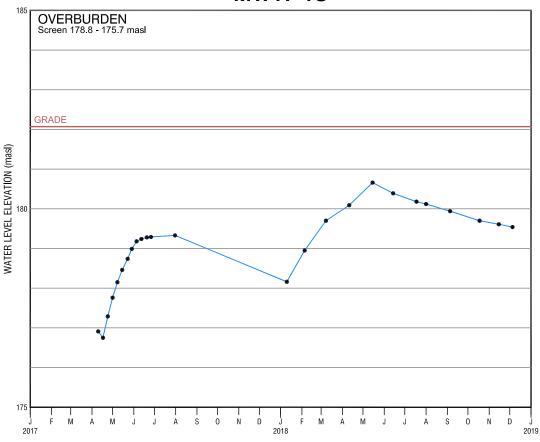
Cristina Carriere, Scientific Services

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

	INVOICE TO:			REPO	RT TO:				PROJECT INFORMATION:					_	1	Laboratory Use Only:			
Corr	mpany Name. #29096 Golder Associates Ltd	Compan	v Name						Quotation # B70916					1	Maxxam Job #:	Bottle Order #:			
	Accounts Payable	Attention	The	Thomas Proks			P.O.#						-			LIVERSEN			
Add	tress. 110 Hanover Dr Building A, Suite 203	Address	-			_			Project		17716	56 / 100	0 / 1003			-	*	605301	
	St.Catharines ON L2W 1A4	-							Project Na	me	-	-					COC #:	Project Manager	
el:	AD O I I O I I O I I I I I I I I I I I I	Tel:		88-8217 x s Proks@go	Fax .		_		Site #		TP	PH.	15	-	-	1 D BU D	C#505301-01-01	Ema Gitej	
ma		Email			Ider.com	-		AN	Sampled B						-		Turnaround Time (TAT)	Required:	
6	MOE REGULATED DRINKING WATER OR WATER INTENDED FOR SUBMITTED ON THE MAXXAM DRINKING WATER (MUSTBE								1	1			-	Please provide advance notice		
	Regulation 153 (2011) Other Regulations		Special In	(elo)	circle)				11-Apr-17 15:30						Regular (Standard) TAT: (will be applied if Rush TAT is not specified): Standard TAT = 5-7 Working days for most leats.				
]7	Table 1 Res/Park Medium/Fine CCME Sonitary Sewer Byla	TW																	
	Table 2 Ind/Comm Coarse Reg 558 Storm Sewer Bylaw					a A	1		Ema	Gitej						Please note: S	Standard TAT for certain lests such as	BOD and Dioxins/Furans ar	
	Table 3 Agri/Other For RSC MISA Municipality				Field Filtered (please Metals)Hg / Cr	suo	Wate							-			your Project Manager for details.		
1,	Fable PWQO .				tals	npræt	face			B7724	123		0		1	Date Required	Rush TAT (if applies to entire su	ime Required.	
_	Include Criteria on Certificate of Analysis (Y/N)?				He We	Co	- Su		-	V-85	0				Rush Confirm	h Confirmation Number(call lab for #)			
-		ate Sampled	Time Sampled	Matrix	- Ē	CAP	CAP		TSP	E	VV-03	0	1			# of Bottles		ments	
7		pr 10,28		GW	V	1	4									4			
	MW17-1S	1		GW	Y	1		-		-		-			-	4	& silly somale	proceed	
		1	14:42		1	-	-	-	-		-	-			-	1	" Still Seriet	with analy	
	MW1745	V	16:30	GW	Y	V			_							4			
	MW17-25 AP	r 11,2017	8:45	GW	Y	1										4		_	
	MW17-3D AP	2017	15:14	GW	- 4	1										4			
	MW17- 6D	2011	13:28	GW	Y	1						-				4			
-	ARAIN7 # 11			GW	V	1		-		-	-			-		11			
_	MW17-# 65	1	13:28	GW	1	v			-	_	-	-	_		_	1			
	. MW1749 95		13:00	GW	Y	~						-			_	4	12		
	MW17 # 9 D		12:53	GW	Y	V								_		4			
Î	- MW1748-99D	W.	12:53	GW	Y											4			
	* RELINQUISHED BY: (Signature/Print) Date: (YY/MM/D	T (0)	Ime	RECEIVED	BY: (Signature/	Print)	T	Date: (YY	/MM/DD)	Т	me		used and	1	_	Laborat	tory Use Only	-	
7	K ITOM ROKS 17/04/11	11:0	20 stu	un -110	RUMA N	LOKH	n	2017)	04/11	15	30.	not si	abmitted	Time Sen	sitive	1 1 1	ure (°C) on Recei Custody Presei	11	
1	ILESS OTHERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CI	UETODALE	IR IECT TO HOUSE	NE CTANDADO T	EDME AND COM	DITIONE	CAUNC AND IN CONTRACT	OF THIS CH	AIN OF OUR	TODY DOG	UMENTIC	_	1		-	001	and an and an and an	Mhite: Maxxa Yellow:	

Maxxam Analytics International Corporation o/a Maxxam Analytics


		INVOICE TO:	ad, Mississauga, Or					ORT TO:				1					_		-		Page 2		
ompany Nam	e #29096 Golde	r Associates Ltd			Compan	u Nama:						-	PROJECT INFORMATION:							Laboratory Use Only:			
ittention:	Accounts Paya				Attention		nas Proks					Quotatio	m#.	B70	916		_		-	Maxxam Job #:	Bottle Order #		
ddress		Building A, Suite 2	3		Address					_		P.O.#				-							
	St.Catharines C (905) 688-8217											Project Project N	dame.	1771656 / 1000 / 1003					-	COC #:	605301		
el mail		Fax (ervice@golder.com	905) 688-4227		Tel		688-8217 x	Fax			_	Site #:	warrieg	-		-	_				Project Manage		
		42.0			Email	Thon	nas_Proks@go	lder.com				Sampled	By:	TP	, PH,	CS				C#605301-02-01	Ema Gitej		
	SUBMITTED	IG WATER OR WATI ON THE MAXXAM D	RINKING WAT	FOR HU ER CHA	MAN C	ONSUMPTIC	N MUST BE		-	-	A	VALYSIS R	EQUESTE	D (PLEASE	BE SPEC	IFIC)				Turnaround Time (TAT)	Required:		
Regula	tion 153 (2011)		Other Regulation	and the second second				9	4								1			Please provide advance notice	for rush projects		
Table 1 [Res/Park Mediu		Sanitary Sewer		-	Special	Instructions	e circle) r VI	COW G										Regular (Standard) TAT: (will be applied if Rush TAT is not specified).				
Table 2	Ind/Comm Coars	e Reg 558	Storm Sewer B					ld Filtered (please c) Metals) Hg / Cr VI Comprehensive G W											T = 5-7 Working days for most tests				
Table 3	Agri/Other For R		Municipality		-			Hg /	BNISL	ater						1		1	Please note	Standard TAT for certain tests such as ct your Project Manager for details.	BOD and Dioxins/Furans ar		
	-	Other						ered	rehe	8								1	ooya - comac	a your Project manager for details.			
_	Include Criter	a on Certificate of An	toole areas	_	-			Metal	dima	Surfa									Date Require	ic Rush TAT (if applies to entire sub	ime Required:		
Samp	le Barcode Label	Sample (Location) I				-	1	Ne C	db-	- 4									Rush Confirm	mation Number			
				Daté Sa		Time Sampled	Matrix		RC	RC	-	-							# of Bottles	Come	(call lab for #) nents		
9			-8D	Apr 1 20	17	13:59	GW	Y	V										4				
		MW174	28-85	× 1		13:56	GW	Y	Y										4				
	-		-10D	l		15:34	GW	Y	V								-		4				
		NUBBER	POND	Apr I	4	9:15	ANSW	N		1							-	-	7				
		Marting		201	F	F		-	1		-						-	-	2				
		WHERE	¥.				qui	-	-			_			-				-				
		MARINA	w l				(BA)						-		-	-	-	-		18			
		Jakeza	ġ	-			ALL.								_		-			+			
*		MANAGAR	P		-		attr		-							_	-						
		Manala			-											2							
							-1301		-								- 1						
2	TOM RED		Date: (YY/MN		Time	- F	RECEIVED BY	: (Signature/P	rint)		Date: (YY/N	IM/DD)	Tir			ised and	Ē		Laborate	ory Use Only			
>	101 ipeo	0	14/04/	1/ 1	11:0	O Xa	111 + 1A	RWIN	MOKI	in 1	10/17/01	111	15	30		bmitted	- Time S	ensitive	12	Custoda	al Yes M		
ISS OTHER	ISE AGREED TO IN WRI	TING, WORK SURMITTED	ON THIS CHAIN OF	CUETOS								-			1				CO1.	J -1 0 Present	X		
WLEDGME	NT AND ACCEPTANCE C	TING, WORK SUBMITTED F OUR TERMS WHICH AR QUISHER TO ENSURE TH	ON THIS CHAIN OF E AVAILABLE FOR	CUSTODY VIEWING	IS SUBJ	ECT TO MAXXAM MAXXAM.CA/TE	IS STANDARD TER RMS.	MS AND COND	ITIONS. S	GNING OF	F THIS CHAI	N OF CUST	ODY DOCL	JMENT IS	-	Call of	-		401	initiaci	ite: Maxxa Yellow: 0		

Maxxam Analytics International Corporation o/a Maxxam Analytics

APPENDIX D

Hydrographs

MW17-1S

MP Elevation	182.86 masl
Grade 182.1	masl
DATE	ELEVATION
10-Apr-17	176.91
17-Apr-17	176.75
24-Apr-17	177.29
01-May-17	177.76
08-May-17	178.15
15-May-17	178.46
23-May-17	178.74
29-May-17	178.99
05-Jun-17	179.18
12-Jun-17	179.24
20-Jun-17	179.28
26-Jun-17	179.29
31-Jul-17	179.33
10-Jan-18	178.16
05-Feb-18	178.95
08-Mar-18	179.70
11-Apr-18	180.09
15-May-18	180.66
14 Jun 18	180.39
18-Jul-18	180.18
01-Aug-18	180.12
05-Sep-18	179.94
18-0ct-18	179.70
15-Nov-18	179.61
05-Dec-18	179.54

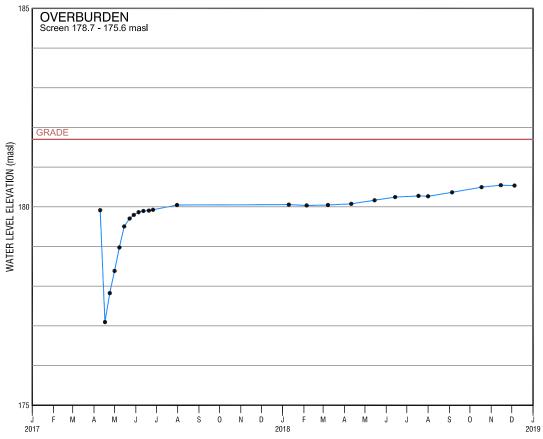
MW17-1D 185 LOWER DOLOSTONE Screen 170.1 - 168.5 masl GRADE WATER LEVEL ELEVATION (masl) 180 175 M M M S 0 F А Μ J J А S 0 Ν D F А J J А Ν D 2017 2018 2019

1771656

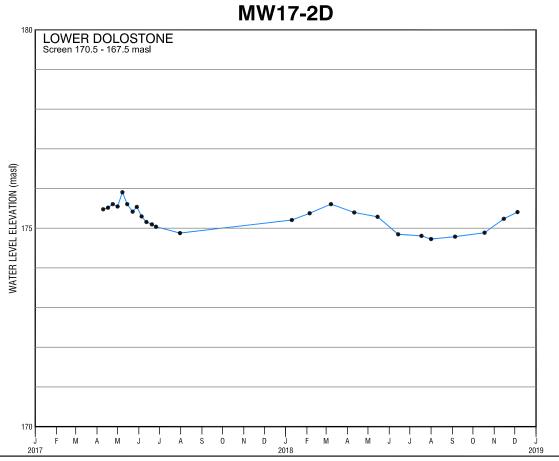
13 Mar 19

REGIONAL MUNICIPALITY OF NIAGARA

PORT COLBORNE QUARRY


DATE ELEVATION 10-Apr-17 17-Apr-17 176.95 176.67 17-Apr-17 24-Apr-17 01-May-17 08-May-17 15-May-17 23-May-17 29-May-17 05-Jun-17 20-Jun-17 26-Jun-17 176.75 176.66 177.09 176.77 176.58 176.77 176.58 176.47 176.30 176.24 176.37 176.63 176.63 176.62 176.67 176.62 176.72 176.72 176.72 176.41 175.95 176.04 175.95 176.02 176.17 175.60 176.02 176.02 176.02 176.82 20-Jun-17 26-Jun-17 31-Jul-17 10-Jan-18 05-Feb-18 08-Mar-18 11-Apr-18 15-May-18 14-Jun-18 18-04-18 01-Aug-18 05-Sep-18 18-0ct-18 15-Nov-18 05-Dec-18 05-Dec-18

MP Elevation 182.92 masl Grade 182.0 masl


18G001

GOLDER

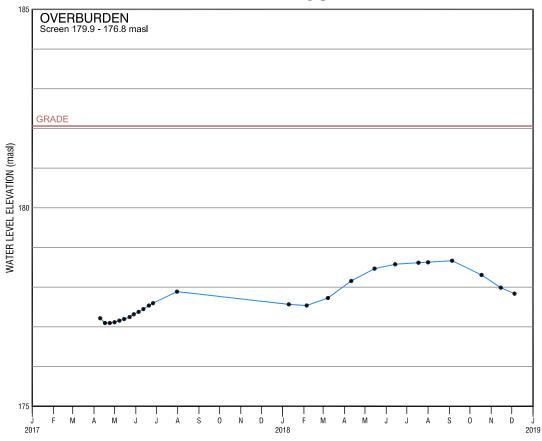
MW17-2S

MP Elevation	n 182.85 masl
Grade 181.7	mas
DATE	ELEVATION
10-Apr-17	179.91
17-Apr-17	177.10
24-Apr-17	177.82
01-May-17	178.38
08-May-17	178.98
15-May-17	179.51
23-May-17	179.71 179.79
29-May-17 05-Jun-17	179.87
12 Jun 17	179.90
20 Jun 17	179.90
26-Jun-17	179.93
31-Jul-17	180.04
10-Jan-18	180.05
05-Feb-18	180.04
08-Mar-18	180.04
11-Apr-18	180.07
15-May-18	180.16
14-Jun-18	180.24
<u> 18-Jul-18</u>	180.27
01-Aug-18	180.26
05-Sep-18	180.37
18-0ct-18	180.49
15-Nov-18	180.54
05-Dec-18	180.54

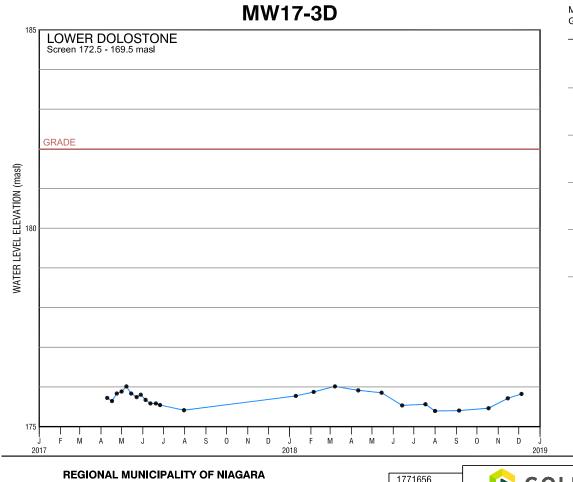
1771656

13 Mar 19

REGIONAL MUNICIPALITY OF NIAGARA


PORT COLBORNE QUARRY

MP Elevation 182.64 masl
Grade 181.7 masl


Grade 181.7	mas
DATE	ELEVATION
10-Apr-17	175.48
17-Apr-17	175.52
24 Apr 17	175.61
01-May-17	175.55
08-May-17	175.91
15-May-17	175.61
23-May-17	175.42
29-May-17	175.54
05-Jun-17	175.30
12-Jun-17	175.16
20-Jun-17	175.10
26-Jun-17	175.04
31-Jul-17	174.88
10-Jan-18	175.21
05-Feb-18	175.38
08-Mar-18	175.61
11-Apr-18	175.40
15-May-18	175.29
14-Jun-18	174.85
<u> 18-Jul-18</u>	174.81
01-Aug-18	174.73
05-Sep-18	174.79
18-0ct-18	174.89
15-Nov-18	175.24
05-Dec-18	175.41

GOLDER

MW17-3S

MP Elevation	n 183.05 masl
Grade 182.1	mas
DATE	ELEVATION
10-Apr-17	177.22
17-Apr-17	177.10
24-Apr-17	177.10
01-May-17	177.12
08-May-17	177.16
15-May-17	177.20
23-May-17	177.25
29-May-17	177.32
05-Jun-17	177.38
<u>12-Jun-17</u>	177.45
20-Jun-17	177.54
26 Jun 17	177.60
31-Jul-17	177.89
10-Jan-18	177.57
05-Feb-18	177.54
08-Mar-18	177.73
11-Apr-18	178.16 178.47
15-May-18 14-Jun-18	178.58
14-Jul-18	178.62
01 Aug 18	178.63
05 Sep 18	178.67
18-0ct-18	178.31
15-Nov-18	177.99
05-Dec-18	177.84
00 000 10	

PORT COLBORNE QUARRY

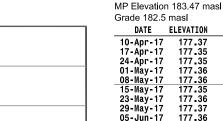
1771656

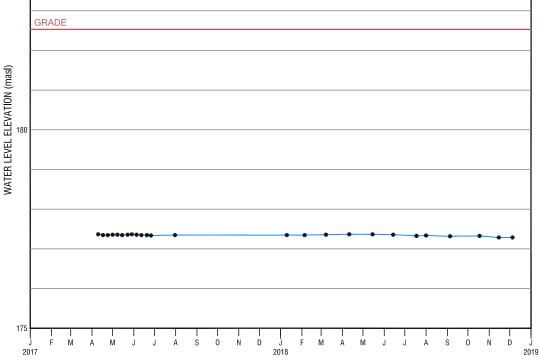
13 Mar 19

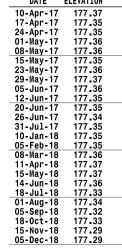
Grade 182.0	mas
DATE	ELEVATION
10-Apr-17	175.72
17-Apr-17	175.64
24 Apr 17	175.83
01-May-17	175.88
08-May-17	176.01
15-May-17	175.83
23-May-17	175.74
29-May-17	175.80
05 - Jun - 17	175.67
12-Jun-17	175.58
20-Jun-17	175.58
26-Jun-17	175.54
31-Jul-17	175.41
10-Jan-18	175.77
05-Feb-18	175.87
08-Mar-18	176.01
11 Apr 18	175.91
15-May-18	175.85
14 - Jun - 18	175.53
<u> 18-Jul-18</u>	175.56
01-Aug-18	175.39
05-Sep-18	175.40
18-0ct-18	175.46
15-Nov-18	175.71
05-Dec-18	175.82

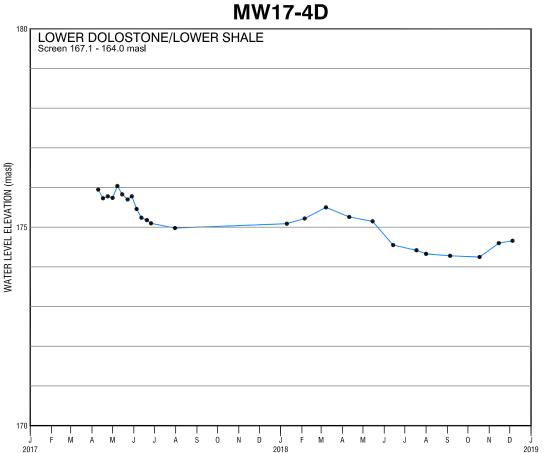
MP Ele _+i. - 102 00

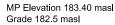
MP Elevation	183.00 masi
Grade 182.0	mas
DATE	ELEVATION
10-Apr-17	175.72
17-Apr-17	175.64
24-Apr-17	175.83
01-May-17	175.88
08-May-17	176.01


18G003


GOLDER

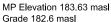

MW17-4S

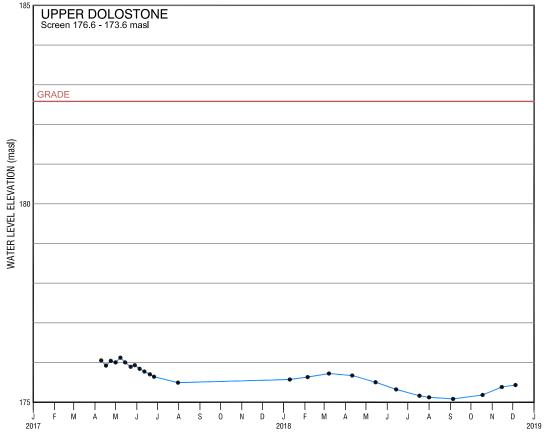

185


UPPER DOLOSTONE Screen 177.9 - 174.9 masl

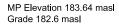
Grade Toz.e mao	
DATE	ELEVATION
10-Apr-17	175.95
17-Apr-17	175.73
24-Apr-17	175.78
01-May-17	175.74
08-May-17	176.04
15-May-17	175.83
23-May-17	175.70
29-May-17	175.78
05 Jun 17	175.46
12-Jun-17	175.24
20-Jun-17	175.18
26-Jun-17	175.10
31-Jul-17	174.98
10-Jan-18	175.09
05-Feb-18	175.22
08-Mar-18	175.50
11-Apr-18	175.26
15-May-18	175.15
14-Jun-18	174.55
<u> 18-Jul-18</u>	174_42
01-Aug-18	174.33
05-Sep-18	174.28
18-0ct-18	174.25
15-Nov-18	174.60
05-Dec-18	174.66

PORT COLBORNE QUARRY


REGIONAL MUNICIPALITY OF NIAGARA


1771656

13 Mar 19


18G004

MW17-5S

mas
ELEVATION
176.05
175.92
176.04
176.00
176.12
176.00
175.89
175.93
175.84
175.77
175.70
175.64
175.49
175.57
175.63
175.72
175.67
175.50
175.32
175.16
175.12
175.08
175.18
175.38
175.43

ELEVATION

172.24 172.04

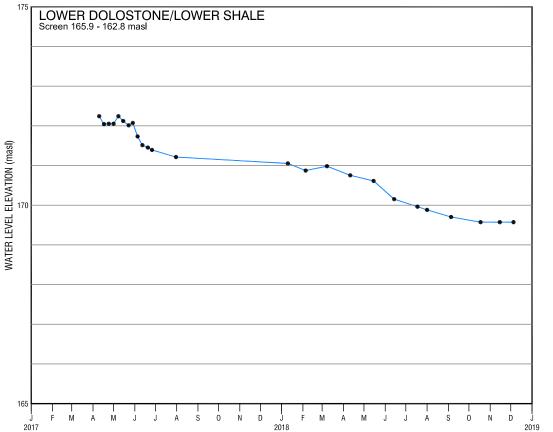
172.04 172.05 172.05 172.24 172.12 172.01 172.07 171.72

171.73 171.51

169.96

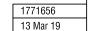
169.70 169.57 169.57

169.57


DATE

10-Apr-17 17-Apr-17

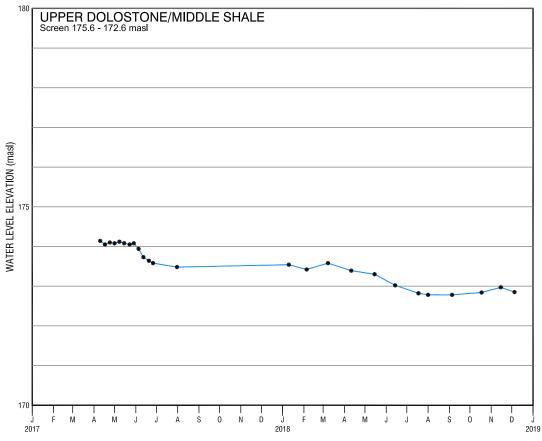
17-Apr-17 24-Apr-17 01-May-17 08-May-17 15-May-17 23-May-17 29-May-17 05-Jun-17 20-Jun-17 26-Jun-17


20-Jun-17 26-Jun-17 31-Jul-17 10-Jan-18 05-Feb-18 08-Mar-18 11-Apr-18 15-May-18 14-Jun-18 18-04-18 01-Aug-18 05-Sep-18 18-0ct-18 15-Nov-18 05-Dec-18

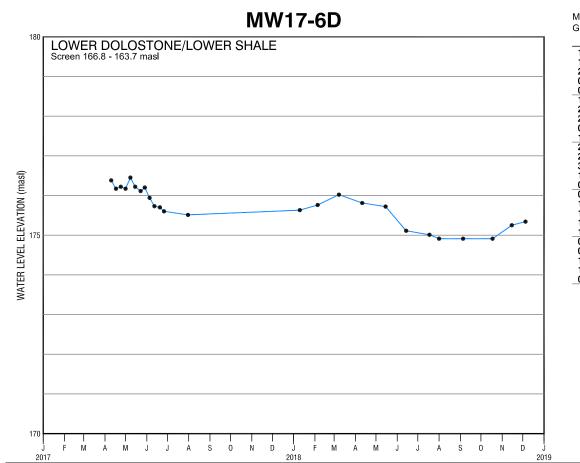
05-Dec-18

MW17-5D

REGIONAL MUNICIPALITY OF NIAGARA PORT COLBORNE QUARRY



GOLDER


C

18G005

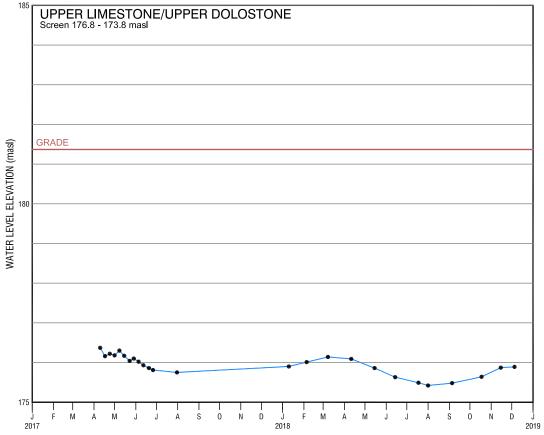
MW17-6S

MP Elevation 182.77 masl	
Grade 181.8	mas
DATE	ELEVATION
10-Apr-17	174.14
17-Apr-17	174.05
24-Apr-17	174.10
01-May-17	174.08
08-May-17	174.12
15-May-17	174.08
23-May-17	174.05
29 May 17	174.08
05-Jun-17	173.94
12-Jun-17	<u>173.73</u> 173.64
20-Jun-17 26-Jun-17	173.58
20-Jul-17 31-Jul-17	173.48
10-Jan-18	173.54
05-Feb-18	173.42
08-Mar-18	173.58
11-Apr-18	173.39
15-May-18	173.30
14-Jun-18	173.02
18-Jul-18	172.82
01-Aug-18	172.78
05-Sep-18	172.78
18-0ct-18	172.84
15-Nov-18	172.97
05-Dec-18	172.85

1771656

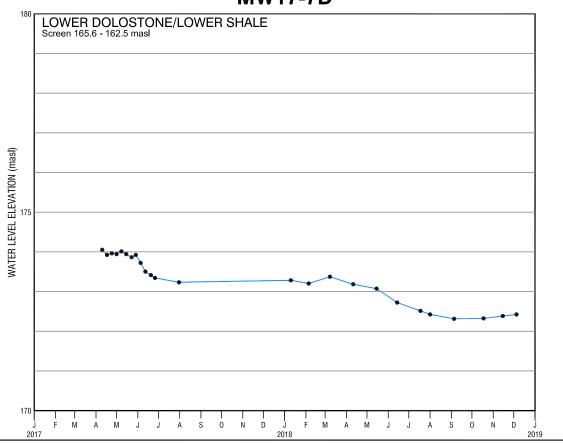
13 Mar 19

MP Elevation 182.84 masl
Grade 181.8 masl


Grade 181.8	mas
DATE	ELEVATION
10-Apr-17	176.38
17-Apr-17	176.17
24-Apr-17	176.22
01-May-17	176.17
08-May-17	176.45
15-May-17	176.22
23-May-17	176.11
29-May-17	176.20
05-Jun-17	175.94
12-Jun-17	175.73
20-Jun-17	175.70
26-Jun-17	175.60
31-Jul-17	175.51
10-Jan-18	175.63
05-Feb-18	175.76
08-Mar-18	176.02
11-Apr-18	175.81
15-May-18	175.72
14-Jun-18	175.11
18-Jul-18	175.01
01-Aug-18	174_91
05-Sep-18	174 91
18-0ct-18	174 91
15-Nov-18	175.25
05-Dec-18	175.34

GOLDER

C

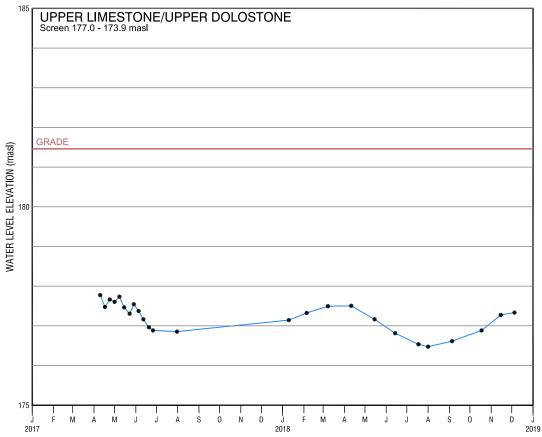

REGIONAL MUNICIPALITY OF NIAGARA PORT COLBORNE QUARRY

MW17-7S

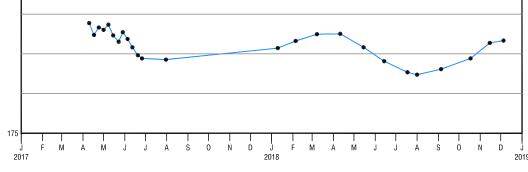
MP Elevatior	n 182.36 masl
Grade 181.4	masl
DATE	ELEVATION
10-Apr-17	176.37
17-Apr-17	176.16
24-Apr-17	176.22
01-May-17	176.18
08-May-17	176.30
15-May-17	176.17
23-May-17	176.04
29-May-17	176.10
05-Jun-17	176.02
12-Jun-17	175.93
20-Jun-17	175.86
26-Jun-17	175.81
31-Jul-17	175.75
10-Jan-18	175.90
05-Feb-18	176.01
08-Mar-18	176.14
11-Apr-18	176.09
15-May-18	175.86
14 - Jun - 18	175.63
<u> 18-Jul-18</u>	175.49
01-Aug-18	175.42
05-Sep-18	175.48
18-0ct-18	175.64
15-Nov-18	175.87
05-Dec-18	175.89

DATE ELEVATION 10-Apr-17 174.05 17-Apr-17 173.92 24-Apr-17 173.96 01-May-17 173.94 08-May-17 173.94 08-May-17 173.94 23-May-17 173.94 23-May-17 173.94 23-May-17 173.94 20-May-17 173.94 20-Jun-17 173.94 20-Jun-17 173.94 20-Jun-17 173.92 05-Jun-17 173.72 12-Jun-17 173.34 31-Jul-17 173.34 31-Jul-17 173.34 0-Jan-18 173.23 10-Jan-18 173.20 08-Mar-18 173.37 11-Apr-18 173.07 14-Jun-18 172.51 01-Aug-18 172.42 05-Sep-18 172.32 15-May-18 172.32 15-Nay-18 172.32 15-Nay-18 172.32 15-Nay-18 172.32	Grade 181.4	mas
17-Apr-17 173.92 24-Apr-17 173.96 01-May-17 173.94 08-May-17 174.01 15-May-17 173.94 23-May-17 173.94 23-May-17 173.92 29-May-17 173.92 05-Jun-17 173.92 05-Jun-17 173.92 20-Jun-17 173.41 26-Jun-17 173.34 31-Jul-17 173.23 10-Jan-18 173.23 05-Feb:18 173.20 08-Mar-18 173.20 08-Mar-18 173.20 08-Mar-18 173.20 08-Mar-18 173.07 11-Apr-18 172.18 15-May-18 172.72 18-Jul-18 172.51 01-Aug-18 172.31 18-Oct-18 172.32	DATE	ELEVATION
17-Apr-17 173.92 24-Apr-17 173.96 01-May-17 173.94 08-May-17 173.94 08-May-17 173.94 23-May-17 173.94 23-May-17 173.86 29-May-17 173.86 29-May-17 173.86 29-May-17 173.72 12-Jun-17 173.50 20-Jun-17 173.41 26-Jun-17 173.34 31-Jul-17 173.23 10-Jan-18 173.28 05-Feb-18 173.37 11-Apr-18 173.18 15-May-18 173.07 14-Jun-18 172.72 18-Jul-18 172.51 01-Aug-18 172.42 05-Sep-18 172.32	10-Apr-17	174.05
01-May-17 173.94 08-May-17 173.94 23-May-17 173.94 23-May-17 173.94 23-May-17 173.92 05-Jun-17 173.72 20-Jun-17 173.41 26-Jun-17 173.41 26-Jun-17 173.43 31-Jul-17 173.23 10-Jan-18 173.28 05-Feb-18 173.37 11-Apr-18 173.18 15-May-18 173.18 15-May-18 173.07 14-Jun-18 172.72 18-Jul-18 172.51 01-Aug-18 172.42 05-Sep-18 172.42 05-Sep-18 172.42	17-Apr-17	173.92
08-Maý-17 174.01 15-May-17 173.94 23-May-17 173.86 29-May-17 173.86 29-May-17 173.86 29-May-17 173.92 05-Jun-17 173.72 12-Jun-17 173.41 20-Jun-17 173.43 31-Jul-17 173.23 10-Jan-18 173.28 05-Feb-18 173.37 11-Apr-18 173.07 14-Jun-18 172.72 18-Jul-18 172.51 01-Aug-18 172.42 05-Sep-18 172.32	24 Apr 17	173.96
15-May-17 173.94 23-May-17 173.86 29-May-17 173.92 05-Jun-17 173.92 12-Jun-17 173.50 20-Jun-17 173.34 31-Jul-17 173.34 31-Jul-17 173.23 10-Jan-18 173.28 05-Feb-18 173.37 11-Apr-18 173.37 11-Apr-18 173.72 18 173.71 19-May-18 173.20 08-Mar-18 173.37 11-Apr-18 172.72 18-Jul-18 172.72 18-Jul-18 172.42 05-Sep-18 172.31 18-Oct-18 172.32		
23-May-17 173.86 29-May-17 173.92 05-Jun-17 173.72 12-Jun-17 173.73 20-Jun-17 173.41 26-Jun-17 173.43 31-Jul-17 173.23 10-Jan-18 173.28 05-Feb-18 173.28 05-Feb-18 173.37 11-Apr-18 173.18 15-May-18 173.07 14-Jun-18 172.72 18-Jul-18 172.72 18-Jul-18 172.51 01-Aug-18 172.42 05-Sep-18 172.31 18-0ct-18 172.32		174.01
29-May-17 173.92 05-Jun-17 173.72 12-Jun-17 173.50 20-Jun-17 173.41 26-Jun-17 173.34 31-Jul-17 173.23 10-Jan-18 173.28 05-Feb-18 173.37 11-Apr-18 173.18 15-May-18 173.07 14-Jun-18 172.72 18-Jul-18 172.51 01-Aug-18 172.42 05-Sep-18 172.32		
05-Jun-17 173.72 12-Jun-17 173.50 20-Jun-17 173.41 26-Jun-17 173.34 31-Jul-17 173.23 10-Jan-18 173.28 05-Feb-18 173.20 08-Mar-18 173.37 11-Apr-18 173.18 15-May-18 173.07 14-Jun-18 172.72 18-Jul-18 172.42 05-Sep-18 172.31 18-Oct-18 172.32		
12-Jun-17 173.50 20-Jun-17 173.41 26-Jun-17 173.34 31-Jul-17 173.23 10-Jan-18 173.28 05-Feb-18 173.37 11-Apr-18 173.37 11-Apr-18 173.07 14-Jun-18 172.72 18-Jul-18 172.51 01-Aug-18 172.42 05-Sep-18 172.31		
20-Jun-17 173.41 26-Jun-17 173.34 31-Jul-17 173.23 10-Jan-18 173.28 05-Feb-18 173.37 11-Apr-18 173.37 11-Apr-18 173.07 14-Jun-18 172.72 18-Jul-18 172.51 01-Aug-18 172.42 05-Sep-18 172.31		
26-Jun-17 173.34 31-Jul-17 173.23 10-Jan-18 173.28 05-Feb-18 173.20 08-Mar-18 173.37 11-Apr-18 173.18 15-May-18 173.07 14-Jun-18 172.72 18-Jul-18 172.51 01-Aug-18 172.42 05-Sep-18 172.31 18-0ct-18 172.32		
31-Jul-17 173.23 10-Jan-18 173.28 05-Feb-18 173.20 08-Mar-18 173.37 11-Apr-18 173.18 15-May-18 173.07 14-Jun-18 172.72 18-Jul-18 172.51 01-Aug-18 172.42 05-Sep-18 172.31 18-Oct-18 172.32		
10-Jan-18 173.28 05-Feb-18 173.20 08-Mar-18 173.37 11-Apr-18 173.18 15-May-18 173.07 14-Jun-18 172.72 18-Jul-18 172.51 01-Aug-18 172.42 05-Sep-18 172.31 18-Oct-18 172.32		
05-Feb-18 173.20 08-Mar-18 173.37 11-Apr-18 173.07 15-May.18 173.07 14-Jun-18 172.72 18-Jul.18 172.51 01-Aug.18 172.42 05-Sep.18 172.31 18-Oct-18 172.32		
08-Mar-18 173.37 11-Apr-18 173.18 15-May-18 173.07 14-Jun-18 172.72 18-Jul-18 172.51 01-Aug-18 172.42 05-Sep-18 172.31 18-Oct-18 172.32		
11-Apr-18 173.18 15-May-18 173.07 14-Jun-18 172.72 18-Jul-18 172.51 01-Aug-18 172.42 05-Sep-18 172.31 18-Oct-18 172.32		
15-May-18 173.07 14-Jun-18 172.72 18-Jul-18 172.51 01-Aug-18 172.42 05-Sep-18 172.31 18-Oct-18 172.32		
14-Jun-18 172.72 18-Jul-18 172.51 01-Aug-18 172.42 05-Sep-18 172.31 18-Oct-18 172.32		
<u>18-Jul-18</u> 172.51 01-Aug-18 172.42 05-Sep-18 172.31 18-Oct-18 172.32		
01-Aug-18 172.42 05-Sep-18 172.31 18-Oct-18 172.32		
05-Sep-18 172.31 18-Oct-18 172.32		
18-0ct-18 172.32		
15 Nov 18 172 38		
	15-Nov-18	172.38
05-Dec-18 172.42	05-Dec-18	172.42

MP Elevation 182.43 masl da 101.1 m

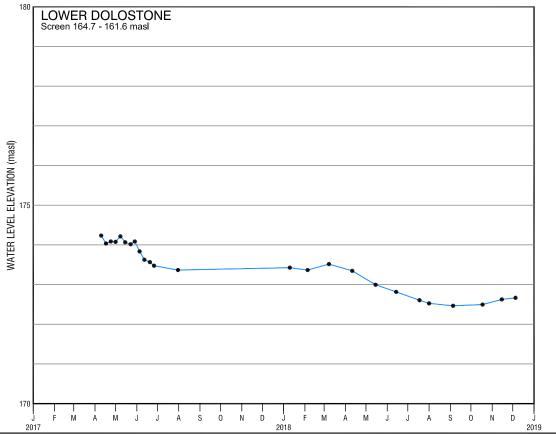

18G007

REGIONAL MUNICIPALITY OF NIAGARA PORT COLBORNE QUARRY



GOLDER

MW17-8S



MP Elevatio	n 182.59 masl
Grade 181.5	mas
DATE	ELEVATION
10-Apr-17	177.77
17-Apr-17	177.48
24-Apr-17	177.66
01-May-17	177.60
08-May-17	177.74
15-May-17	177.46
23-May-17	177.30
29-May-17	177.54
05-Jun-17	177.38
12-Jun-17	177.16
20-Jun-17	176.96
26-Jun-17	176.88
31-Jul-17	176.85
10-Jan-18	177.15
05-Feb-18	177.32
08-Mar-18	177.49
11-Apr-18	177.51
15-May-18	177.16
14-Jun-18	176.82
<u> 18 Jul 18</u>	176.54
01-Aug-18	176.48
05-Sep-18	176.62
18-0ct-18	176.88
15-Nov-18	177.27
05-Dec-18	177.34

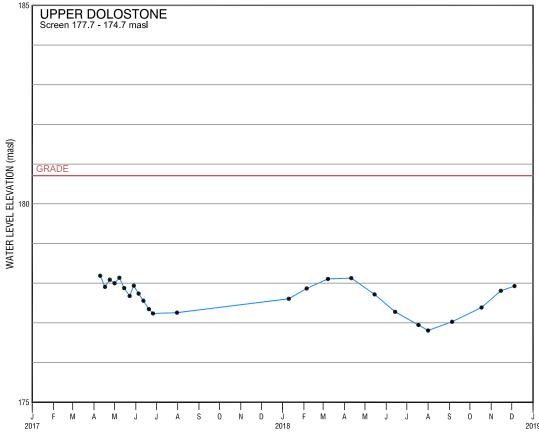
MW17-8D

1771656

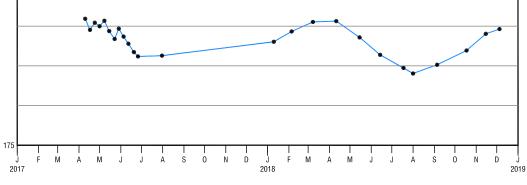
13 Mar 19

Grade 181.4	masl
DATE	ELEVATION
10-Apr-17	174.24
17-Apr-17	174.04
24-Apr-17	174.09
01-May-17	174.08
08-May-17	174.22
15-May-17	174.07
23-May-17	174.02
29-May-17	174.09
05 - Jun - 17	173.84
<u>12-Jun-17</u>	173.63
20-Jun-17	173.57
26-Jun-17	173.48
31-Jul-17	173.37
10-Jan-18	173.43
05-Feb-18	173.37
08-Mar-18	173.52
11-Apr-18	173.35
15-May-18	173.00
14-Jun-18	172.82
<u>18-Jul-18</u>	172.61
01-Aug-18	172.53
05-Sep-18	172.47
18-Oct-18	172.50
15-Nov-18	172.63
05-Dec-18	172.67

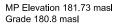
18G008

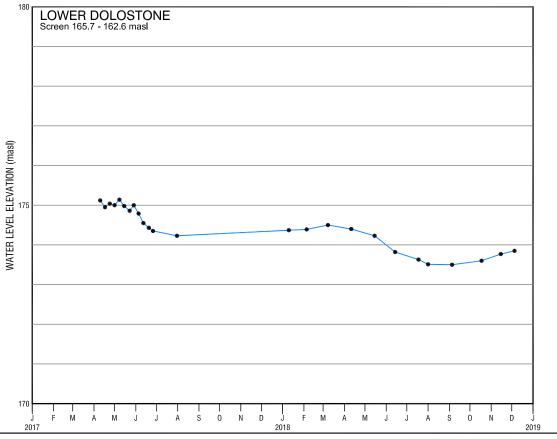

GOLDER

C


REGIONAL MUNICIPALITY OF NIAGARA PORT COLBORNE QUARRY

MW17-9S





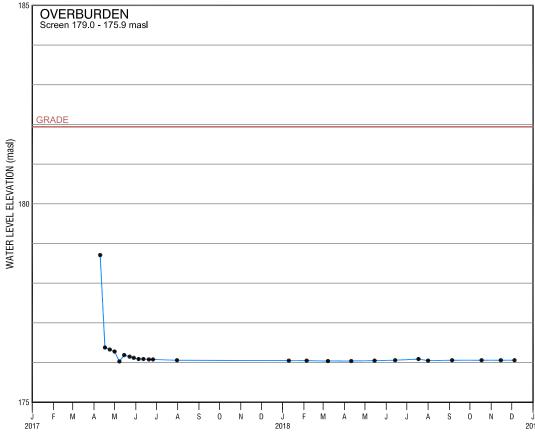
Grade 180.7	mas
DATE	ELEVATION
10-Apr-17	178.19
17-Apr-17	177.91
24-Apr-17	178.09
01-May-17	178.00
08-May-17	178.14
15-May-17	177.88
23-May-17	177.68
29-May-17	177.94
05-Jun-17	177.74
<u>12-Jun-17</u>	177.56
20-Jun-17	177.35
26-Jun-17	177.24
31-Jul-17	177_26
10-Jan-18	177.61
05-Feb-18 08-Mar-18	<u>177.87</u> 178.11
11-Apr-18	178.13
15-May-18	177.72
14-Jun-18	177.28
18-Jul-18	176.95
01 Aug 18	176.81
05-Sep-18	177.03
18-0ct-18	177 39
15-Nov-18	177.81
05-Dec-18	177.93

MW17-9D

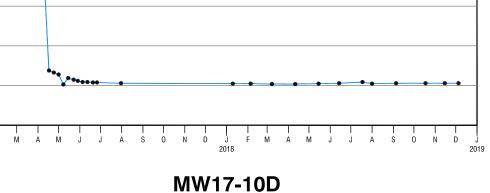
1771656

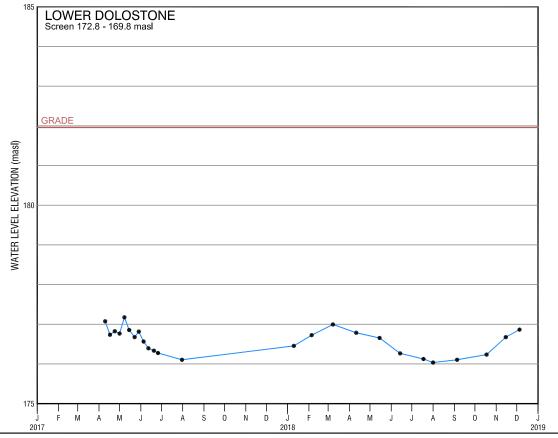
13 Mar 19

01440 10010	maor
DATE	ELEVATION
10-Apr-17	175.12
17-Apr-17	174.95
24-Apr-17	175.04
01-May-17	175.00
08-May-17	175.14
15-May-17	174.98
23-May-17	174.86
29-May-17	175.00
05-Jun-17	174.79
12-Jun-17	174.55
20 - Jun - 17	174.43
26-Jun-17	174.35
31-Jul-17	174.23
10-Jan-18	174.37
05-Feb-18	174.39
08-Mar-18	174.50
11-Apr-18	174.40
15-May-18	174.23
14-Jun-18	173.82
<u> 18-Jul-18</u>	173.63
01-Aug-18	173.51
05-Sep-18	173.50
18-0ct-18	173.60
15-Nov-18	173.77
05-Dec-18	173.85


5-May-17	174.98
3-May-17	174.86
9-May-17	175.00
5-Jun-17	174.79
2-Jun-17	174.55
0-Jun-17	174.43
6-Jun-17	174.35
1-Jul-17	174.23
D-Jan-18	174.37
5-Feb-18	174.39
B-Mar-18	174.50
1-Apr-18	174.40
5-May-18	174.23
4-Jun-18	173.82
8-Jul-18	173.63
1-Aug-18	173.51
5-Sep-18	173.50
8-0ct-18	173.60
5-Nov-18	173.77

GOLDER


C


REGIONAL MUNICIPALITY OF NIAGARA PORT COLBORNE QUARRY

MW17-10S

	n 182.86 masl
Grade 181.9	mas
DATE	ELEVATION
10-Apr-17	178.71
17-Apr-17	176.38
24-Apr-17	176.33
01-May-17	176.28
08-May-17	176.03
15-May-17	176.19
23-May-17	176.15
29-May-17	176.12
05 - Jun - 17	176.09
12-Jun-17	176.09
20-Jun-17	176.08
26-Jun-17	176.08
31-Jul-17	176.06
10-Jan-18	176.05
05-Feb-18	176.05
08-Mar-18	176.04
11-Apr-18	176.04
15-May-18	176.05
14-Jun-18	176.06
<u> 18-Jul-18</u>	176.09
01-Aug-18	176.05
05-Sep-18	176.06
18-0ct-18	176.06
15-Nov-18	176.06
05-Dec-18	176.06

1771656

13 Mar 19

REGIONAL MUNICIPALITY OF NIAGARA

PORT COLBORNE QUARRY

DATE ELEVATION 10-Apr-17 177.07 17-Apr-17 176.74 24-Apr-17 176.82 01-May-17 176.82 01-May-17 176.85 23-May-17 176.85 23-May-17 176.85 20-May-17 176.82 05-Jun-17 176.67 02-Jun-17 176.34 26-Jun-17 176.40 20-Jun-17 176.34 26-Jun-17 176.73 31-Jul-17 176.76 05-Feb-18 176.76 05-Feb-18 176.79 15-May-18 176.26 14-Jun-18 176.26 18-Jul-18 176.62 05-Feb-18 176.65 14-Jun-18 176.26 18-Jul-18 176.26 18-Jul-18 176.04 05-Sep-18 176.04 05-Sep-18 176.04
17-Apr-17 176.74 24-Apr-17 176.82 01-May-17 176.82 15-May-17 176.85 23-May-17 176.85 29-May-17 176.88 05-Jun-17 176.82 05-Jun-17 176.82 05-Jun-17 176.40 20-Jun-17 176.34 26-Jun-17 176.34 26-Jun-17 176.46 05-Feb-18 176.46 05-Feb-18 176.63 08-Mar-18 176.99 11-Apr-18 176.65 14-Jun-18 176.65 14-Jun-18 176.66 18-Jul-18 176.64 05-Sep-18 176.04 05-Sep-18 176.04
24 Apr-17 176.82 01-May-17 176.76 08-May-17 177.18 15-May-17 176.85 23-May-17 176.68 29-May-17 176.68 29-May-17 176.68 205-Jun-17 176.82 05-Jun-17 176.40 20-Jun-17 176.34 26-Jun-17 176.73 26-Jun-17 176.73 08-Mar-18 176.46 05-Feb-18 176.73 08-Mar-18 176.99 11-Apr-18 176.65 14-Jun-18 176.66 18-Jul-18 176.61 05-Aug-18 176.04 05-Sep-18 176.04
01-May-17 176.76 08-May-17 177.18 15-May-17 176.85 23-May-17 176.85 23-May-17 176.82 05-Jun-17 176.82 05-Jun-17 176.57 12-Jun-17 176.34 26-Jun-17 176.34 26-Jun-17 176.10 10-Jan-18 176.46 05-Feb-18 176.73 08-Mar-18 176.99 11-Apr-18 176.99 11-Apr-18 176.99 11-Apr-18 176.99 11-Apr-18 176.99 15-May-18 176.65 14-Jun-18 176.26 18-Jul-18 176.26 18-Jul-18 176.10 05-App-18 176.04 05-Sep-18 176.04
08-May-17 177.18 15-May-17 176.85 23-May-17 176.68 29-May-17 176.68 29-May-17 176.67 12-Jun-17 176.34 20-Jun-17 176.34 20-Jun-18 176.46 05-Feb-18 176.73 08-Mar-18 176.99 11-Apr-18 176.65 14-Jun-18 176.66 14-Jun-18 176.66 18-Jul-18 176.61 01-Aug-18 176.04 05-Sep.18 176.04 05-Sep.18 176.04
15-May-17 176.85 23-May-17 176.68 29-May-17 176.62 05-Jun-17 176.57 12-Jun-17 176.42 05-Jun-17 176.34 26-Jun-17 176.61 10-Jan-18 176.40 05-Jeb-18 176.46 05-Feb-18 176.73 08-Mar-18 176.99 11-Apr-18 176.65 14-Jun-18 176.65 14-Jun-18 176.65 14-Jun-18 176.66 18-Jul-18 176.66 18-Jul-18 176.66 18-Jul-18 176.66 18-Jul-18 176.66 18-Jul-18 176.66 18-Jul-18 176.64 05-Sep.18 176.04
23-May-17 176.68 29-May-17 176.82 05-Jun-17 176.57 12-Jun-17 176.34 26-Jun-17 176.34 26-Jun-17 176.34 26-Jun-17 176.10 10-Jan-18 176.46 05-Feb-18 176.73 08-Mar-18 176.79 11-Apr-18 176.99 11-Apr-18 176.65 14-Jun-18 176.26 18-Jul-18 176.13 01-Aug-18 176.04 05-Sep-18 176.10
29-May-17 176.82 05-Jun-17 176.57 12-Jun-17 176.34 20-Jun-17 176.34 26-Jun-17 176.27 31-Jul-17 176.10 10-Jan-18 176.46 05-Feb-18 176.73 08-Mar-18 176.69 11-Apr-18 176.65 14-Jun-18 176.65 14-Jun-18 176.61 18-Jul-18 176.10
05-Jun-17 176.57 12-Jun-17 176.34 20-Jun-17 176.34 26-Jun-17 176.34 26-Jun-17 176.34 26-Jun-17 176.34 26-Jun-17 176.34 10-Jan-18 176.46 05-Feb-18 176.73 08-Mar-18 176.99 11-Apr-18 176.65 14-Jun-18 176.65 14-Jun-18 176.26 18-Jul-18 176.13 01-Aug-18 176.04 05-Spe-18 176.04
12-Jun-17 176.40 20-Jun-17 176.34 26-Jun-17 176.27 31-Jul-17 176.10 10-Jan-18 176.46 05-Feb.18 176.73 08-Mar-18 176.99 11-Apr-18 176.65 14-Jun-18 176.65 14-Jun-18 176.26 18-Jul-18 176.13 01-Aug-18 176.04 05-Sep.18 176.10
20-Jun-17 176.34 26-Jun-17 176.27 31-Jul-17 176.46 05-Feb-18 176.46 05-Feb-18 176.73 08-Mar-18 176.99 11-Apr-18 176.65 14-Jun-18 176.65 14-Jun-18 176.26 18-Jul-18 176.13 01-Aug-18 176.04 05-Sep-18 176.04
26-Jun-17 176.27 31-Jul-17 176.10 10-Jan-18 176.46 05-Feb-18 176.73 08-Mar-18 176.99 11-Apr-18 176.65 14-Jun-18 176.65 14-Jun-18 176.65 14-Jun-18 176.26 18-Jul-18 176.65 14-Jun-18 176.62 18-Jul-18 176.61
31-Jul-17 176.10 10-Jan-18 176.46 05-Feb-18 176.73 08-Mar-18 176.99 11-Apr-18 176.79 15-May-18 176.65 14-Jun-18 176.26 18-Jul-18 176.13 01-Aug-18 176.04 05-Sep-18 176.10
10-Jan-18 176.46 05-Feb-18 176.73 08-Mar-18 176.99 11-Apr-18 176.79 15-May-18 176.65 14-Jun-18 176.65 14-Jun-18 176.13 01-Aug-18 176.04 05-Sep-18 176.10
05-Feb-18 176.73 08-Mar-18 176.99 11-Apr-18 176.65 14-Jun-18 176.26 18-Jul-18 176.13 01-Aug-18 176.04 05-Bep-18 176.04
08-Mar-18 176.99 11-Apr-18 176.79 15-May-18 176.65 14-Jun-18 176.26 18-Jul-18 176.13 01-Aug-18 176.04 05-Sep-18 176.10
11-Apr-18 176.79 15-May-18 176.65 14-Jun-18 176.26 18-Jul-18 176.13 01-Aug-18 176.04 05-Sep-18 176.10
15-May-18 176.65 14-Jun-18 176.26 <u>18-Jul-18 176.13</u> 01-Aug-18 176.04 05-Sep-18 176.10
14-Jun-18 176.26 18-Jul-18 176.13 01-Aug-18 176.04 05-Sep-18 176.10
<u>18-Jul-18 176.13</u> 01-Aug-18 176.04 05-Sep-18 176.10
01-Aug-18 176.04 05-Sep-18 176.10
05-Sep-18 176-10
18-0ct-18 176.24
15-Nov-18 176.68
05-Dec-18 176-87

MP Elevation 183.04 masl

18G010

GOLDER

APPENDIX E

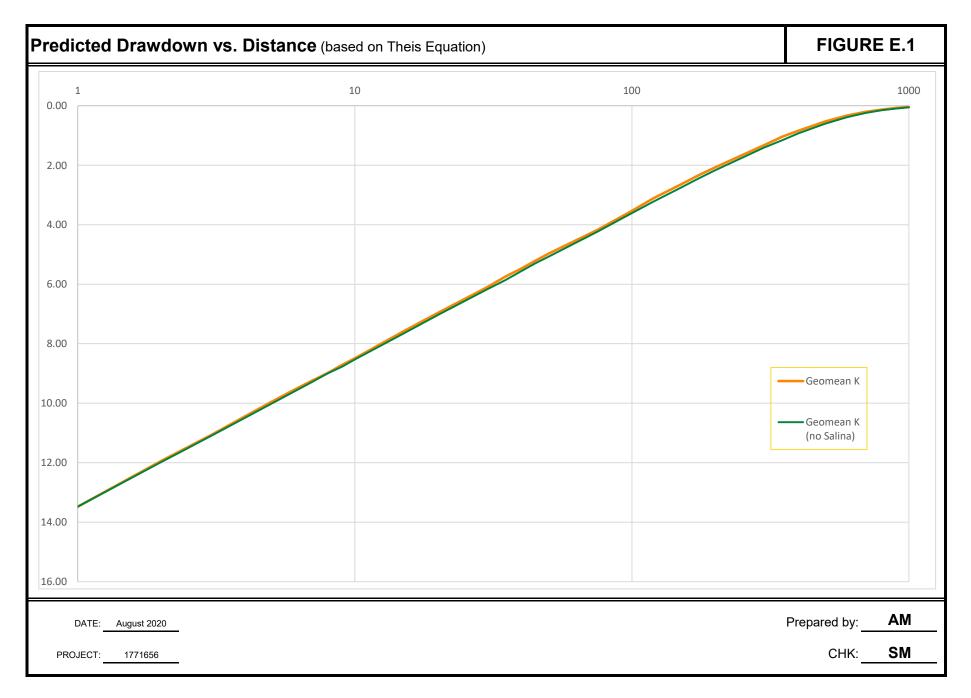
Zone of Influence Analysis Groundwater Seepage Calculation

August 2020

Table E.1 - Theis Analysis

Parameters: K = 0.052 m/day Parameters: K = 0.059 M/day Parameters: K = 0.050 M/day Parameters: K = 0.050 M/day Parameters: M/day T = 0.611	m/day m ² /day day 3 m ³ /day W(u) h- 12.17 10 10.84 9.3 9.98 8.4 9.41 8.0 8.95 7.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	m ² /day day 3 m ³ /day W(u) h- 12.17 10 10.84 9.3 9.98 8.4 9.41 8.0 8.95 7.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	m ² /day day 3 m ³ /day W(u) h- 12.17 10 10.84 9.3 9.98 8.4 9.41 8.0 8.95 7.0
H-h =13.4813.48H-h =13.48H-h =16.76H-h =10.35T =0.778m²/dayS =0.0001T =0.879m²/dayS =0.0001T =0.989m²/dayT =0.980m²/dayT =0.910T =0.9100.9100.9100.9100.9100.9100.9100.9100.9100.91	day 3 m ³ /day W(u) h- 12.17 10 10.84 9.3 9.98 8.4 9.41 8.0 8.95 7.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	day 3 m ³ /day W(u) h- 12.17 10 10.84 9.3 9.98 8.4 9.41 8.0 8.95 7.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	day 3 m ³ /day W(u) h- 12.17 10 10.84 9.3 9.98 8.4 9.41 8.0 8.95 7.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 m ³ /day W(u) h- 12.17 10 10.84 9.3 9.98 8.4 9.41 8.0 8.95 7.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3 m ³ /day W(u) h- 12.17 10 10.84 9.3 9.98 8.4 9.41 8.0 8.95 7.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	W(u) h- 12.17 10 10.84 9.3 9.98 8.4 9.41 8.0 8.95 7.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.17 10. 10.84 9.1 9.98 8. 9.41 8. 8.95 7.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.84 9.2 9.98 8.4 9.41 8.0 8.95 7.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.98 8.4 9.41 8.0 8.95 7.0
43.7E-059.6510.4543.3E-059.7710.5042.9E-059.9113.1244.7E-0555.7E-059.209.9655.1E-059.3310.0254.5E-059.4312.5057.3E-0568.3E-058.839.5667.3E-058.959.6166.5E-059.0612.0161.1E-0471.1E-048.549.2471.0E-048.649.2978.8E-058.7611.6171.4E-0481.5E-048.308.9881.3E-048.378.9981.2E-048.5411.3181.9E-0491.9E-048.058.7191.6E-048.168.7791.5E-048.3010.9992.4E-04102.3E-047.848.49102.0E-047.948.53101.8E-048.0510.66102.9E-04155.2E-047.007.58154.6E-047.137.66154.1E-047.259.60156.6E-04209.2E-046.436.96208.1E-046.547.03207.2E-046.668.82201.2E-03352.8E-035.646.11301.8E-035.746.17301.6E-035.307.77302.6E-03352.8E-035.055.47403.3E-035.175	9.41 8.0 8.95 7.0
5 5.7E-05 9.20 9.96 5 5.1E-05 9.33 10.02 5 4.5E-05 9.43 12.50 5 7.3E-05 6 8.3E-05 8.83 9.56 6 7.3E-05 8.95 9.61 6 6.5E-05 9.06 12.01 6 1.1E-04 7 1.1E-04 8.54 9.24 7 1.0E-04 8.64 9.29 7 8.8E-05 8.76 11.61 7 1.4E-04 8 1.5E-04 8.30 8.98 8 1.3E-04 8.37 8.99 8 1.2E-04 8.54 11.31 8 1.9E-04 9 1.9E-04 8.05 8.71 9 1.6E-04 8.16 8.77 9 1.5E-04 8.30 10.99 9 2.4E-04 10 2.3E-04 7.84 8.49 10 2.0E-04 7.13 7.66 115 4.1E-04 7.25 9.60 15 6.6E-04 20 9.2E-04 6.43 6.96 20 8.1E-04 6.54 7.03 20 7.2E-04 6.66 <td>8.95 7.0</td>	8.95 7.0
68.3E-058.839.5667.3E-058.959.6166.65E-059.0612.0161.1E-0471.1E-048.549.2471.0E-048.649.2978.8E-058.7611.6171.4E-0481.5E-048.308.9881.3E-048.378.9981.2E-048.5411.3181.9E-0491.9E-048.058.7191.6E-048.168.7791.5E-048.3010.9992.4E-04102.3E-047.848.49102.0E-047.948.53101.8E-048.0510.66102.9E-04155.2E-047.007.58154.6E-047.137.66154.1E-047.259.60156.6E-04209.2E-046.436.96208.1E-046.547.03207.2E-046.668.82201.2E-03302.1E-035.646.11301.8E-035.746.17301.6E-035.867.77302.6E-03352.8E-035.055.47403.3E-035.175.56402.9E-035.307.03404.7E-03454.7E-034.815.21454.1E-034.925.29453.7E-035.056.69455.9E-03505.7E-034.604.98505.1E-034.73<	
71.1E-048.549.2471.0E-048.649.2978.8E-058.7611.6171.4E-0481.5E-048.308.9881.3E-048.378.9981.2E-048.5411.3181.9E-0491.9E-048.058.7191.6E-048.168.7791.5E-048.3010.9992.4E-04102.3E-047.848.49102.0E-047.948.53101.8E-048.0510.66102.9E-04155.2E-047.007.58154.6E-047.137.66154.1E-047.259.60156.6E-04209.2E-046.436.96208.1E-046.547.03207.2E-046.668.82201.2E-03302.1E-035.646.11301.8E-035.746.17301.6E-035.867.77302.6E-03352.8E-035.055.47403.3E-035.175.56402.9E-035.307.03404.7E-03454.7E-034.815.21454.1E-034.925.29453.7E-035.056.69455.9E-03505.7E-034.604.98505.1E-034.735.08504.5E-034.836.40507.3E-02751.3E-023.864.18751.1E-023.94 <td></td>	
81.5E-048.308.9881.3E-048.378.9981.2E-048.5411.3181.9E-0491.9E-048.058.7191.6E-048.168.7791.5E-048.3010.9992.4E-04102.3E-047.848.49102.0E-047.948.53101.8E-048.0510.66102.9E-04155.2E-047.007.58154.6E-047.137.66154.1E-047.259.60156.6E-04209.2E-046.436.96208.1E-046.547.03207.2E-046.668.82201.2E-03302.1E-035.646.11301.8E-035.746.17301.6E-035.867.77302.6E-03352.8E-035.305.74352.5E-035.465.86352.2E-035.547.35353.6E-03403.7E-035.055.47403.3E-035.175.56402.9E-035.307.03404.7E-03454.7E-034.815.21454.1E-034.925.29453.7E-035.056.69455.9E-03505.7E-034.604.98505.1E-034.735.08504.5E-034.836.40507.3E-03751.3E-023.864.18751.1E-023.94<	
91.9E-048.058.7191.6E-048.168.7791.5E-048.3010.9992.4E-04102.3E-047.848.49102.0E-047.948.53101.8E-048.0510.66102.9E-04155.2E-047.007.58154.6E-047.137.66154.1E-047.259.60156.6E-04209.2E-046.436.96208.1E-046.547.03207.2E-046.668.82201.2E-03302.1E-035.646.11301.8E-035.746.17301.6E-035.867.77302.6E-03352.8E-035.305.74352.5E-035.465.86352.2E-035.547.35353.6E-03403.7E-035.055.47403.3E-035.175.56402.9E-035.307.03404.7E-03454.7E-034.815.21454.1E-034.925.29453.7E-035.056.69455.9E-03505.7E-034.604.98505.1E-034.735.08504.5E-034.836.40507.3E-03751.3E-023.864.18751.1E-023.944.24751.0E-024.045.35751.6E-03	8.30 7.0
102.3E-047.848.49102.0E-047.948.53101.8E-048.0510.66102.9E-04155.2E-047.007.58154.6E-047.137.66154.1E-047.259.60156.6E-04209.2E-046.436.96208.1E-046.547.03207.2E-046.668.82201.2E-03302.1E-035.646.11301.8E-035.746.17301.6E-035.867.77302.6E-03352.8E-035.305.74352.5E-035.465.86352.2E-035.547.35353.6E-03403.7E-035.055.47403.3E-035.175.56402.9E-035.307.03404.7E-03454.7E-034.815.21454.1E-034.925.29453.7E-035.056.69455.9E-03505.7E-034.604.98505.1E-034.735.08504.5E-034.836.40507.3E-03751.3E-023.864.18751.1E-023.944.24751.0E-024.045.35751.6E-02	
155.2E-047.007.58154.6E-047.137.66154.1E-047.259.60156.6E-04209.2E-046.436.96208.1E-046.547.03207.2E-046.668.82201.2E-03302.1E-035.646.11301.8E-035.746.17301.6E-035.867.77302.6E-03352.8E-035.305.74352.5E-035.465.86352.2E-035.547.35353.6E-03403.7E-035.055.47403.3E-035.175.56402.9E-035.307.03404.7E-03454.7E-034.815.21454.1E-034.925.29453.7E-035.056.69455.9E-03505.7E-034.604.98505.1E-034.735.08504.5E-034.836.40507.3E-03751.3E-023.864.18751.1E-023.944.24751.0E-024.045.35751.6E-02	
209.2E-046.436.96208.1E-046.547.03207.2E-046.668.82201.2E-03302.1E-035.646.11301.8E-035.746.17301.6E-035.867.77302.6E-03352.8E-035.305.74352.5E-035.465.86352.2E-035.547.35353.6E-03403.7E-035.055.47403.3E-035.175.56402.9E-035.307.03404.7E-03454.7E-034.815.21454.1E-034.925.29453.7E-035.056.69455.9E-03505.7E-034.604.98505.1E-034.735.08504.5E-034.836.40507.3E-03751.3E-023.864.18751.1E-023.944.24751.0E-024.045.35751.6E-03	
302.1E-035.646.11301.8E-035.746.17301.6E-035.867.77302.6E-03352.8E-035.305.74352.5E-035.465.86352.2E-035.547.35353.6E-03403.7E-035.055.47403.3E-035.175.56402.9E-035.307.03404.7E-03454.7E-034.815.21454.1E-034.925.29453.7E-035.056.69455.9E-03505.7E-034.604.98505.1E-034.735.08504.5E-034.836.40507.3E-03751.3E-023.864.18751.1E-023.944.24751.0E-024.045.35751.6E-03	
35 2.8E-03 5.30 5.74 35 2.5E-03 5.46 5.86 35 2.2E-03 5.54 7.35 35 3.6E-03 40 3.7E-03 5.05 5.47 40 3.3E-03 5.17 5.56 40 2.9E-03 5.30 7.03 40 4.7E-03 45 4.7E-03 4.81 5.21 45 4.1E-03 4.92 5.29 45 3.7E-03 5.05 6.69 45 5.9E-03 50 5.7E-03 4.60 4.98 50 5.1E-03 4.73 5.08 50 4.5E-03 4.83 6.40 50 7.3E-03 5.05 75 1.6E-02 75 1.3E-02 3.86 4.18 75 1.1E-02 3.94 4.24 75 1.0E-02 4.04 5.35 75 1.6E-02	
403.7E-035.055.47403.3E-035.175.56402.9E-035.307.03404.7E-03454.7E-034.815.21454.1E-034.925.29453.7E-035.056.69455.9E-03505.7E-034.604.98505.1E-034.735.08504.5E-034.836.40507.3E-03751.3E-023.864.18751.1E-023.944.24751.0E-024.045.35751.6E-02	
454.7E-034.815.21454.1E-034.925.29453.7E-035.056.69455.9E-03505.7E-034.604.98505.1E-034.735.08504.5E-034.836.40507.3E-03751.3E-023.864.18751.1E-023.944.24751.0E-024.045.35751.6E-02	
505.7E-034.604.98505.1E-034.735.08504.5E-034.836.40507.3E-03751.3E-023.864.18751.1E-023.944.24751.0E-024.045.35751.6E-02	
75 1.3E-02 3.86 4.18 75 1.1E-02 3.94 4.24 75 1.0E-02 4.04 5.35 75 1.6E-02	
120 3.3E-02 2.87 3.10 120 2.9E-02 2.99 3.22 120 2.6E-02 3.10 4.10 120 4.2E-02 150 5.2E-02 2.45 2.65 150 4.6E-02 2.57 2.76 150 4.1E-02 2.68 3.55 150 6.6E-02	
175 7.0E-02 2.15 2.33 175 6.2E-02 2.26 2.43 175 5.5E-02 2.38 3.15 175 9.0E-02 200 9.2E-02 1.91 2.07 200 8.1E-02 2.02 2.17 200 7.2E-02 2.12 2.81 200 1.2E-02	1.74 1.4
200 9.2E-02 1.91 2.07 200 0.1E-02 2.02 2.17 200 7.2E-02 2.12 2.01 200 1.2E-0 300 2.1E-01 1.22 1.32 300 1.8E-01 1.31 1.41 300 1.6E-01 1.41 1.87 300 2.6E-02	
300 2.1E-01 1.22 1.32 300 1.8E-01 1.41 300 1.6E-01 1.41 1.67 300 2.6E-01 350 2.8E-01 0.96 1.04 350 2.5E-01 1.08 1.16 375 2.5E-01 1.04 1.38 350 3.6E-01	
350 2.6E-01 0.90 1.04 350 2.5E-01 1.10 375 2.5E-01 1.04 1.38 350 3.0E-0 400 3.7E-01 0.77 0.84 400 3.3E-01 0.86 0.92 400 2.9E-01 0.96 1.27 400 4.7E-02	
400 5.7E-01 0.84 400 5.8E-01 0.86 0.92 400 2.9E-01 0.96 1.27 400 4.7E-0 500 5.7E-01 0.48 0.52 500 5.1E-01 0.56 0.60 500 4.5E-01 0.63 0.83 500 7.3E-01	
500 5.7E-01 0.48 0.52 500 5.7E-01 0.56 0.60 500 4.5E-01 0.63 0.63 500 7.5E-01 600 8.3E-01 0.30 0.32 600 7.3E-01 0.35 0.38 600 6.5E-01 0.41 0.55 600 1.1E+01	
700 1.1E+00 0.19 0.20 700 1.0E+00 0.22 0.24 700 8.8E-01 0.27 0.36 700 1.4E+00	
800 1.5E+00 0.19 0.20 700 1.0E+00 0.22 0.24 700 8.8E-01 0.27 0.30 700 1.4E+00 800 1.5E+00 0.12 0.13 800 1.3E+00 0.14 0.15 800 1.2E+00 0.19 0.25 800 1.9E+00	
900 1.9E+00 0.06 0.07 900 1.6E+00 0.09 0.09 900 1.5E+00 0.12 0.15 900 2.4E+00	• UUM US
1000 2.3E+00 0.04 0.04 1000 2.0E+00 0.05 0.05 1000 1.8E+00 0.06 0.09 1000 2.9E+00 0.05 1000 1.8E+00 0.06 0.09 1000 2.9E+00 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0	

Geomean	K (no Sali	na)	6.8E-07
	te drawdov		0.02 01
Parameter			
K =	0.059	m/day	
B =	13.64	,	
– H-h =	13.64		
Т=	0.805	m²/day	
S =	0.0001	,	
t =	14	day	
Q =	11.07966	m ³ /day	
-		, ,	
r (m)	u	W(u)	h-h₀
1	2.2E-06	12.45	13.64
2	8.9E-06	11.06	12.12
3	2.0E-05	10.29	11.28
4	3.6E-05	9.68	10.61
5	5.5E-05	9.23	10.11
6	8.0E-05	8.87	9.72
7	1.1E-04	8.63	9.46
8	1.4E-04	8.30	9.09
9	1.8E-04	8.10	8.88
10	2.2E-04	7.84	8.59
15	5.0E-04	7.04	7.72
20	8.9E-04	6.46	7.08
30	2.0E-03	5.69	6.23
35	2.7E-03	5.34	5.85
40	3.6E-03	5.08	5.57
45 50	4.5E-03	4.85	5.32
50 75	5.5E-03 1.2E-02	4.63 3.86	5.07 4.23
100	1.2E-02 2.2E-02	3.80	4.23 3.57
120	3.2E-02	2.93	3.21
150	5.0E-02	2.49	2.72
175	6.8E-02	2.19	2.40
200	8.9E-02	1.94	2.12
300	2.0E-01	1.26	1.39
350	2.7E-01	0.98	1.08
400	3.6E-01	0.79	0.87
500	5.5E-01	0.50	0.55
600	8.0E-01	0.32	0.35
700	1.1E+00	0.22	0.24
800	1.4E+00	0.12	0.13
900	1.8E+00	0.07	0.08
1000	2.2E+00	0.04	0.04


GOLDER

			Long Wa	1	Short Wall				
		Min DD	Max DD	Int DD	Min DD	Max DD	Int DD		
K	Hydraulic Conductivity (m/day)	0.059	0.059	0.059	0.059	0.059	0.059		
	ROI (m)	500	500	500	500	500	500		
1	Drawdown (m)	10.35	16.76	13.56	10.35	16.76	13.56		
	Length (m)	1400	1400	1400	400	400	400		
Α	Drawdown (m)	10.35	16.76	13.555	10.35	16.76	13.555		
Q	(m ³ /day)	17.7	46.4	30.4	5.1	13.3	8.7		

Total Q - 3 walls (quarry faces)

_			Min DD	Max DD	Int DD
	Q	(m ³ /day)	27.8	72.9	47.7

APPENDIX F

Well Water Survey Responses MECP Water Well Records

LABEL	CON	DATE	EASTING	ELEV	WTR FND	CR TOP LEN	SWL	RATE	TIME	PL	DRILLER	TYPE	WELL NAME
	LOT	mmm-yr	NORTHING	masl	mbgl Qu	mbgl m	mbgl	L/min	min	mbgl	METHOD	STAT	DESCRIPTION OF MATERIALS
6600870	1	Jun-67	647750	178.3	14.3 Su		FLW	9	15	13.7	1702	WS	MOE# 6600870
	16		4750356		9.8 Su			-			CT	DO	0.0 BRWN CLAY 3.0 SHLE GRVL 4.3 LMSN 15.2
6600871	1	Nov-67	647518	178.9	17.4 Su		0.3	9	120	15.2	4720	WS	MOE# 6600871
	16		4750362								СТ	DO	0.0 BRWN CLAY 7.3 LMSN 17.4
6600880	1	May-57	646259	179.2	6.7 Su		0.6	5	60	6.1	2526	WS	MOE# 6600880
	19	,	4750312								СТ	DO	0.0 CLAY 4.6 LMSN 7.6
6600881	1	Sep-60	646581	179.8	4.6 Fr		1.5	91	30	2.4	5425	WS	MOE# 6600881
	19	•	4750278								СТ	DO	0.0 TPSL 0.3 BRWN CLAY 1.8 BRWN LMSN 4.9
6600884	1	Jan-52	646160	179.5	7.9 Su		2.4	18	30	2.4	4720	WS	MOE# 6600884
	20		4750310								СТ	DO	0.0 CLAY 0.9 LMSN 7.9
6600886	1	Sep-52	645390	178.0	5.8 Fr		1.8	14	30	1.8	4720	WS	MOE# 6600886
	21	·	4750294								СТ	DO	0.0 TPSL CLAY 2.1 LMSN 5.8
6600890	1	Jul-61	645466	178.3	6.1 Fr		1.8	32	90	5.5	4720	WS	MOE# 6600890
	21		4750312								СТ	DO	0.0 CLAY 1.8 LMSN 6.1
6600895	1	Jul-63	645738	180.1	9.1 Fr		3.0	9	90	8.5	4720	WS	MOE# 6600895
	21		4750550								СТ	DO	0.0 CLAY 2.7 LMSN 9.1
6600898	1	Jun-51	645292	178.0	8.2 Mn		1.2				1915	WS	MOE# 6600898
	22		4750306								СТ	DO	0.0 CLAY 1.5 LMSN 8.2
6600954	2	Feb-47	648505	181.4			NR				3204	WS	MOE# 6600954
	14		4750524								СТ	DO	0.0 TPSL CLAY 2.4 LMSN 4.0
6600955	2	May-52	648342	180.7	6.7 Fr		2.4			2.4	3210	WS	MOE# 6600955
	14		4750490								СТ	DO	0.0 CLAY STNS 2.4 LMSN 6.7
6600956	2	Aug-54	648277	181.1	10.1 Fr		5.8	36	10	5.8	3208	WS	MOE# 6600956
	14		4752434								СТ	DO	0.0 CLAY 1.2 BRWN LMSN 10.1
6600957	2	Nov-54	648446	180.1	3.4 Fr		NR	91	120	1.2	3536	WS	MOE# 6600957
	14		4750518								СТ	DO	0.0 LMSN 3.4
6600958	2	Jul-59	648324	180.1	8.8 Su		3.7	23	60	4.3	2526	WS	MOE# 6600958
	14		4750752								СТ	DO	0.0 CLAY 3.7 LMSN 8.8
6600959	2	Apr-64	648277	182.9	15.2 Fr		4.9	23	90	12.2	4720	WS	MOE# 6600959
	14		4752176								СТ	DO	0.0 RED CLAY 8.2 SHLE 15.2
6600960	2	Nov-65	648502	180.4	9.8 Fr		1.2	45	90	4.6	4720	WS	MOE# 6600960
	14		4750502								СТ	DO	0.0 CLAY 3.7 LMSN 9.8
6600961	2	Jun-51	648256	179.8	11.0 Fr		1.5				1915	WS	MOE# 6600961
	15		4750556								СТ	DO	0.0 CLAY 4.6 GREY LMSN 11.0
6600962	2	Jul-53	648246	180.1	9.1 Fr		NR	23	120		3210	WS	MOE# 6600962
	15		4750576								СТ	DO	0.0 CLAY MSND STNS 1.2 RED CLAY 5.2 GREY
													SHLE 9.4
6600963	2	May-54	648237	180.1	16.5 Fr		0.9	136	60	0.9	3208	WS	MOE# 6600963
	15		4750570								CT	DO	0.0 CLAY 5.5 LMSN 16.5
6600964	2	Jul-54	648232	180.4	9.1 Fr		1.5	364	15	1.5	3208	WS	MOE# 6600964
	15		4750590	100 -							CT	DO	0.0 CLAY 4.9 LMSN 9.1
6600965	2	Jun-56	648258	180.1	6.7 Fr		1.5	227	60	3.0	2526	WS	MOE# 6600965
0000000	15		4750634	100 1				~			CT	DO	0.0 CLAY 2.4 LMSN 6.7
6600966	2	May-65	648159	180.1	8.5 Su		0.6	91	60	0.6	4720	WS	MOE# 6600966
0000007	15	NI 00	4750630	170.0	0.1.0					~ =	CT	DO	0.0 CLAY 3.7 LMSN 8.5
6600967	2	Nov-66		179.8	9.1 Su		1.8	45	90	3.7	4720	WS	MOE# 6600967
	15		4750456								СТ	DO	0.0 CLAY 4.6 LMSN 9.1

LABEL	CON	DATE	EASTING	ELEV	WTR FND	CR TOP LEN	SWL	RATE	TIME	PL	DRILLER	TYPE	WELL NAME
	LOT		NORTHING	masl	mbgl Qu	mbgl m	mbgl	L/min			METHOD		DESCRIPTION OF MATERIALS
6600968	2	Aug-49	647594	185.6	13.1 Fr		7.6				3204	WS	MOE# 6600968
	16	, ag io	4752384	100.0	10.111		1.0				CT	DO	0.0 CLAY GRVL 3.0 CLAY 9.1 LMSN 13.7
6600969	2	May-54	647466	184.7	8.2 Fr		2.4	68	60	2.4	3210	WS	MOE# 6600969
	16	may or	4752258	10111	0.2 1 1			00	00		CT	DO	0.0 TPSL 0.6 CLAY 5.5 QSND 7.6 LMSN 9.4
6600970	2	Oct-63	647728	188.7	16.8 Fr		10.7	45	90	12.8	4720	WS	MOE# 6600970
0000010	16	00000	4752278	100.1	10.011		10.1	10	00	12.0	CT	DO	0.0 TPSL 0.6 MSND 13.7 LMSN 16.8
6600971	2	Jul-48	647384	179.2	7.9 Su		0.6	9	60	8.2	3017	WS	MOE# 6600971
	_ 17		4750440				0.0	· ·		0.2	CT	DO	0.0 RED CLAY 2.7 LMSN 8.8
6600972	2	Mar-52	647437	180.1	8.2 Su		2.4			2.4	3210	WS	MOE# 6600972
0000072	17		4750906	100.1	0.2 04						CT	DO	0.0 CLAY 5.2 CLAY GRVL 5.8 LMSN 9.1
6600973	2	Aug-54	647284	182.9	7.3 Fr		3.0	45	60	3.0	3209	WS	MOE# 6600973
	17	,	4752120				0.0			0.0	CT	DO	0.0 TPSL 0.6 CLAY 6.4 LMSN 7.3
6600974	2	May-58	647418	179.8	12.2 Fr		2.4	68	30	2.4	4720	WS	MOE# 6600974
	17	may oo	4750632	110.0				00	00		CT	IR	0.0 RED CLAY 4.6 BLUE CLAY 7.9 LMSN 12.2
6600975	2	Sep-49	647028	180.1	8.5 Fr		3.7	18	30	6.1	3204	WS	MOE# 6600975
0000010	18	000 10	4750826	10011	0.011		0.1	10	00	0.1	CT	DO	0.0 TPSL 0.9 LMSN 9.1
6600976	2	Jul-51	646664	180.1	8.5 Fr		2.4				4754	WS	MOE# 6600976
0000010	18	our or	4750690	100.1	0.011						CT	DO	0.0 CLAY 0.9 LMSN 9.1
6600977	2	Nov-51	646663	178.3	19.2 Fr		5.2	18	30	5.2	4720	WS	MOE# 6600977
0000011	18	1101 01	4750558	110.0	10.211		0.2	10	00	0.2	CT	ST	0.0 CLAY 1.8 BRWN SHLE 19.2
6600978	2	Jul-57	646825	180.1	6.4 Fr		2.1	45	30	2.1	4720	WS	MOE# 6600978
0000010	18	our or	4750408	100.1	0.111			10	00		CT	DO	0.0 RED CLAY 2.4 LMSN 6.4
6600979	2	Jan-59	646965	180.1	6.4 Fr		1.8	227	60	2.4	2526	WS	MOE# 6600979
	18		4750418		0						CT	DO	0.0 CLAY 2.1 LMSN 6.4
6600980	2	Jun-61	646861	180.1	6.1 Fr		0.9	68	60	0.9	4720	WS	MOE# 6600980
	18	our or	4750434	100.1	0.111		0.0	00	00	0.0	CT	DO	0.0 TPSL CLAY 0.6 LMSN 6.1
6600981	2	Dec-47	646271	179.2	4.0 Fr		0.3				4629	WS	MOE# 6600981
	_ 19	200	4750442				0.0				CT	DO	0.0 CLAY 3.0 LMSN 4.0
6600982	2	Dec-47	646272	179.2	7.9 Fr		0.3				4629	WS	MOE# 6600982
	_ 19	200	4750442				0.0				CT	DO	0.0 CLAY 4.6 LMSN 7.9
6600983	2	May-52	646514	179.8	4.6 Su		0.6			0.6	3210	WS	MOE# 6600983
	19		4750406								CT	DO	0.0 CLAY 2.4 LMSN 4.6
6600984	2	Jul-52	646623	179.2	6.4 Su		1.2			1.2	3210	WS	MOE# 6600984
	19		4750488								CT	DO	0.0 RED CLAY 3.0 LMSN 6.4
6600985	2	Jul-53	646593	179.8	11.9 Su		8.2	18	120	9.1	3210	WS	MOE# 6600985
	19		4750406							5	CT	DO	0.0 CLAY MSND STNS 3.4 GREY SHLE 11.9
6600986	2	Jul-53	645864	179.2	4.9 Su		0.3	9	120	0.9	3210	WS	MOE# 6600986
	19		4750382				0.0	÷		5.0	CT	DO	0.0 CLAY MSND STNS 1.8 GREY SHLE 4.9
6600987	2	May-52	645837	178.9	7.6 Su		2.1			2.1	3210	WS	MOE# 6600987
	20	,	4750396								CT	DO	0.0 CLAY 1.5 LMSN 7.6
6600988	2	Mar-67	646213	179.5	7.9 Su		0.6	68	60	0.6	4720	WS	MOE# 6600988
	20		4750418								CT	DO	0.0 CLAY 3.7 LMSN 7.9
6600989	2	Jul-48	645750	179.8	8.5 Fr		2.4	23	30	7.6	3017	WS	MOE# 6600989
	21		4750390								CT	DO	0.0 CLAY GRVL 4.3 LMSN 8.8
6600990	2	Mar-50		182.3	8.8 Fr		1.2			9.4	3809	WS	MOE# 6600990
	21		4751222								CT	DO	0.0 TPSL 0.6 LMSN 9.4
l	- •										U 1		

LABEL (CON	DATE	EASTING	ELEV	WTR FND	CR TOP LEN	SWL	RATE	TIME	PL I	DRILLER	TYPE	WELL NAME
			NORTHING	masl	mbgl Qu	mbgl m		L/min					DESCRIPTION OF MATERIALS
6600991	2	Apr-53	645784	179.8	4.9 Fr	Ū.	1.2	23		0	3210	WS	MOE# 6600991
0000001	21	7.pi-00	4750466	175.0	4.511		1.2	20			CT	DO	0.0 CLAY MSND STNS 0.9 GREY SHLE 4.9
6600992	2	Oct-53	645764	180.4	7.3 Su		1.2	18	30	7.3	4720	WS	MOE# 6600992
	21	001-00	4750468	100.4	7.0 00		1.2	10	00	7.0	CT	DO	0.0 CLAY 2.7 LMSN 7.3
6600994	2	Sep-59	645768	182.0	5.8 Fr		1.5	18	60	2.4	2526	WS	MOE# 6600994
0000004	21	Ocp-00	4751138	102.0	0.011		1.0	10	00	2.7	CT	DO	0.0 TPSL STNS 0.6 LMSN 5.8
6600995	2	Mar-62	645701	182.6	9.8 Fr		4.6	45	60	6.1	4720	WS	MOE# 6600995
	21		4751196	102.0	0.011		7.0	40	00	0.1	CT	DO	0.0 LMSN 9.8
6600996	2	Dec-48	645166	180.1	4.9 Fr		0.9				3204	WS	MOE# 6600996
	22	D00 40	4751336	100.1	4.0 11		0.0				CT	DO	0.0 TPSL CLAY 2.4 LMSN 4.9
6600997	2	Mar-52	645177	180.7	6.4 Su		3.4	18	30	3.4	4720	WS	MOE# 6600997
	22		4751486	100.1	0.1 04		0.1	10	00	0.1	CT	DO	0.0 TPSL CLAY 2.4 BLCK SHLE 6.7
6600998	2	Aug-57	644994	180.7	4.3 Fr		1.8	14	30	2.7	2526	WS	MOE# 6600998
	22	, taig e .	4751486								CT	DO	0.0 CLAY 2.4 LMSN 4.3
6600999	2	May-58	645033	181.7	7.6 Su		1.2	9	30	7.6	4720	WS	MOE# 6600999
	22		4751700					-			CT	DO	0.0 RED CLAY 1.8 SHLE 7.6
6601000	2	Jul-59	645047	181.1	10.7 Su		3.7		90		4720	WS	MOE# 6601000
	22		4751582				••••				CT	DO	0.0 CLAY 1.8 GREY LMSN 10.7
6601001	2	May-59	644985	180.1	6.7 Su		3.7	23	60	6.1	2526	WS	MOE# 6601001
	22		4751410								CT	DO	0.0 CLAY 1.8 LMSN 7.9
6601002	2	May-59	645037	180.1	3.0 Fr		1.5	9	60	2.1	2526	WS	MOE# 6601002
	22	,	4751430								CT	DO	0.0 CLAY 1.8 LMSN 3.7
6601003	2	Apr-54	644925	179.8	6.7 Fr		4.6	45	60	4.6	2526	WS	MOE# 6601003
	23	·	4751318								СТ	DO	0.0 CLAY 3.4 LMSN 6.7
6601091	3	May-58	647479	185.0	7.9 Fr		2.4	68	30	2.4	4720	WS	MOE# 6601091
	16		4752844								СТ	DO	0.0 RED CLAY 3.7 SHLE 7.9
6601092	3	Nov-65	647608	185.3	12.8 Fr		6.1	68	90	6.1	4720	WS	MOE# 6601092
	16		4752492								СТ	СО	0.0 BLUE CLAY 7.9 GRVL 8.8 SHLE 12.8
6601093	3	Oct-66	647603	185.3	12.5 Fr		6.7	91	90	8.2	4720	WS	MOE# 6601093
	16		4752514								CT	ST	0.0 CLAY 6.7 GRVL MSND 8.2 LMSN 12.5
6601094	3	Aug-47	647036	184.1	8.5 Fr		8.5				1915	WS	MOE# 6601094
	17		4752450								CT	DO	0.0 TPSL 0.6 MSND 4.3 LMSN 8.5
6601099	3	Mar-59	647386	184.7	9.4 Fr		3.0	45	30	3.0	4720	WS	MOE# 6601099
	17		4752618								СТ	DO	0.0 RED CLAY 5.2 GREY LMSN 9.4
6601100	3	Mar-59	647385	184.4	10.1 Fr		3.7	45	30	3.7	4720	WS	MOE# 6601100
	17		4752496								СТ	DO	0.0 RED CLAY 5.8 GREY LMSN 10.1
6601102	3	Jul-61	647396	184.7	8.8 Fr		2.4	32	60	4.6	4720	WS	MOE# 6601102
	17		4752714								СТ	DO	0.0 CLAY 4.9 LMSN 8.8
6601103	3	Apr-62	647381	185.3	8.2 Fr		1.2	45	60	3.7	4720	WS	MOE# 6601103
	17		4753086								CT	DO	0.0 BRWN CLAY 3.7 LMSN 8.2
6601104	3	Sep-65	647379	186.8	9.4 Fr		3.7	32	90	6.1	4720	WS	MOE# 6601104
	17		4753240								CT	DO	0.0 CLAY 2.4 SHLE 6.7 LMSN 9.4
6601112	3	Sep-46	646224	184.1	11.0 Fr		NR				4629	WS	MOE# 6601112
	19		4752458								СТ	DO	0.0 CLAY 3.0 LMSN 14.0
	3	Apr-47	646152	184.4	15.2 Fr		NR				1915	WS	MOE# 6601121
	20		4752446								СТ	DO	0.0 CLAY 3.4 LMSN 15.2

LABEL		DATE		ELEV		CR TOP LEN		RATE	TIME				WELL NAME
	LOT	mmm-yr	NORTHING	masl	mbgl Qu	mbgl m	mbgl	L/min	min	mbgl	METHOD	STAT	DESCRIPTION OF MATERIALS
6601125	3	Jun-57	645642	185.0	11.9 Fr		2.7	45	30	2.7	4720	WS	MOE# 6601125
	21		4752420								СТ	DO	0.0 TPSL CLAY 0.9 SHLE 3.0 LMSN 11.9
6601126	3	Jun-58	645359	185.0	15.8 Fr		5.2	18	30	15.8	4720	WS	MOE# 6601126
	21		4752424								СТ	DO	0.0 RED CLAY 8.5 GREY LMSN 15.8
6602558	2	Oct-70	647415	182.0	10.7 Fr		2.4	45	60	12.2	5405	WS	MOE# 6602558
	17		4751882								СТ	DO	0.0 RED CLAY STNS 5.8 LMSN 13.7
6602629	2	Aug-71	648277	182.9	12.2 Fr		5.8	55	60	9.1	3640	WS	MOE# 6602629
	14		4752182								СТ	ST	0.0 BRWN CLAY 7.0 GREY CLAY 8.5 GREY SHLE
													9.1 GREY LMSN 15.2
6602667	2	May-72	647375	182.0	13.4 Fr		2.1	36	60	4.0	3640	WS	MOE# 6602667
	17		4751782								СТ	DO	0.0 BRWN CLAY 6.4 GREY LMSN 13.7
6602706	2	Sep-72	646605	180.7	6.7 Su		2.4	36	60	3.0	3640	WS	MOE# 6602706
	19		4750922								СТ	DO	0.0 BRWN CLAY 2.1 GREY LMSN 7.0
6602785	2	Sep-73	646943	180.7	17.7 Su		3.0	5	60	18.3	3640	AQ	MOE# 6602785
	18	•	4750898		10.7 Su						СТ	-	0.0 BRWN CLAY 4.0 GREY SHLE LMSN 4.6 GREY
					4.6 Su								LMSN 18.3
6602786	2	Oct-73	646950	180.4	4.3 Fr		1.2	18	60	10.1	3640	WS	MOE# 6602786
	18		4750872								СТ	DO	0.0 BRWN CLAY 4.0 GREY GRVL 4.3 GREY SHLE
													4.6 GREY LMSN 10.1
6602787	2	Oct-73	646960	180.1	7.0 Fr		1.5	64	60	2.1	3640	WS	MOE# 6602787
	18		4750418								СТ	DO	0.0 BRWN TPSL 0.6 GREY LMSN 7.3
6602789	2	Oct-73	647425	182.3	11.3 Su		4.9	64	60	6.1	3640	WS	MOE# 6602789
	17		4751476								СТ	DO	0.0 BRWN CLAY 3.4 GREY LMSN 11.6
6602790	2	Oct-73	647398	183.5	13.7 Fr		4.0	18	75	16.2	3640	WS	MOE# 6602790
	17		4752144								СТ	DO	0.0 BRWN CLAY 6.1 BRWN FSND 7.6 BRWN STNS
													8.5 GREY SHLE 9.1 GREY LMSN 16.2
6602929	1	Feb-74	645228	178.0	7.6 Su		1.2	55	60	3.0	3640	WS	MOE# 6602929
	22		4750302								СТ	DO	0.0 BRWN CLAY 2.1 GREY LMSN 8.2
6602990	2	Sep-74	647423	182.3	11.6 Fr		4.9	68	60	6.1	3661	WS	MOE# 6602990
	17		4751726								СТ	DO	0.0 TPSL 0.6 CLAY PCKD 5.5 BRWN CLAY SOFT
											-	-	8.2 GREY LMSN 12.2
6603052	2	Feb-75	648102	185.3	16.2 Fr		9.1	68	75	10.1	3640	WS	MOE# 6603052
	15		4752186								СТ	ST	0.0 BRWN TPSL 0.6 BRWN SAND GRVL 12.2 GREY
													LMSN 16.5
6603087	3	Jun-75	647661	185.9	10.7 Fr		6.7	114	180	11.6	2102	WS	MOE# 6603087
	16		4752570								СТ	СО	0.0 BRWN CLAY 1.5 GREY CLAY 10.7 ROCK 22.6
6603090	3	Aug-75	647459	186.2	7.9 Fr		1.8	23	60	8.2	3571	WS	MOE# 6603090
	16	U -	4753252								CT	DO	0.0 BLCK TPSL 0.3 BRWN CLAY 2.4 GREY LMSN
													9.1
6603186	2	Nov-74	644995	181.1	12.2 Fr		7.0	23	60	12.2	3640	WS	MOE# 6603186
	22		4751522								CT	DO	0.0 BRWN CLAY PCKD 0.6 BRWN SHLE LOOS 1.2
												- •	GREY LMSN LYRD 12.2
6603188	2	Dec-76	646495	179.8	3.7 Su		0.9	36	60	3.0	3640	WS	MOE# 6603188
	_ 19		4750402								CT	DO	0.0 BRWN CLAY PCKD 2.1 GREY LMSN FLNT LYRD
											• ·		6.1
6603189	3	Dec-76	647355	185.3	6.1 Fr		1.2	73	60	3.0	3640	WS	MOE# 6603189
	17		4753062		4.0 Fr						CT	DO	0.0 BRWN CLAY PCKD 2.1 BRWN CLAY GRVL PCKD
											÷.		3.4 GREY LMSN LYRD 7.6
l													

LABEL		DATE		ELEV		CR TOP LEN		RATE	TIME				
	LOT		NORTHING	masl	mbgl Qu	mbgl m	mbgl	L/min	min	•	METHOD		DESCRIPTION OF MATERIALS
6603234	2	Oct-77	646595	179.8	6.1 Su		0.6	9	60	7.3	3640	WS	MOE# 6603234
	19		4750402								СТ	DO	0.0 BRWN TPSL SOFT 0.3 BRWN CLAY PCKD 2.4
													BRWN SHLE LYRD 3.0 GREY LMSN LYRD 7.6
6603237	1	Sep-77	645815	179.5	9.1 Su		3.0	136	60	4.6	5417	WS	MOE# 6603237
	20	-	4750322								СТ	DO	0.0 BRWN CLAY SNDY 1.8 GREY FLNT 9.8
6603301	3	May-78	647455	184.7	10.4 Su		6.7	91	150	9.8	2123	WS	MOE# 6603301
	16	,	4752742								СТ	ST	0.0 BRWN CLAY 2.4 GREY CLAY 6.7 CLAY GRVL
											•	•••	9.8 ROCK 17.4
6603379	2	Sep-79	647575	184.4	9.1 Fr		8.5	45		12.2	2123	WS	MOE# 6603379
	16		4752682								СТ	ST	0.0 CLAY TPSL 0.9 GREY CLAY 4.6 GREY CLAY
	10		1102002								01	01	GRVL 8.5 UNKN 16.8
6603653	2	Jul-85	647245	180.4	4.0 Fr		2.7	68	60	3.7	3640	WS	MOE# 6603653
0000000	17	001 00	4750861	100.1	4.011		2.1	00	00	0.7	CT	DO	0.0 BRWN CLAY DNSE 4.0 GREY SHLE 4.6 GREY
	17		4750001								01	DO	LMSN SHLE LYRD 6.1
6603670	3	Oct-85	647392	184.1	19.2 -		8.2	36	60	15.2	3640	WS	MOE# 6603670
0003070	17	001-00	4752587	104.1	13.2 - 12.2 Mn		0.2	50	00	15.2	040 CT	DO	0.0 GREY LMSN LYRD 19.5
6603793	2	Jan-88	647989	179.8	12.2 Min 10.1 Su		0.9	95	180	1.5	4795	WS	MOE# 6603793
0003793		Jan-oo		179.0	10.1 Su		0.9	95	100	1.5			0.0 BLUE CLAY STNS PCKD 0.9 BRWN CLAY PCKD
	16		4750574								СТ	DO	
0000044		A	045504	404.4	5 0 F			07	100	0.4	4705	14/0	5.8 GREY FLNT LYRD 8.2 GREY LMSN LYRD 10.7
6603811	2	Apr-88	645594	181.4	5.2 Fr		2.4	27	120	2.4	4795	WS	MOE# 6603811
	22		4751181	170.0	3.0 Fr						CT	DO	0.0 BRWN CLAY PCKD 2.7 GREY LMSN LYRD 5.5
6603826	2	Aug-88	644991	179.8			NR				4795	-	MOE# 6603826
	22		4751315								СТ	-	0.0 BRWN CLAY PCKD 2.7 GREY FGVL CLAY PCKD
													3.4 GREY FLNT LMSN LYRD 5.5 GREY LMSN FLNT
													9.1
6604059	2	Jan-92	647364	178.3	13.1 Fr		4.9	55	60	13.1	2123	WS	MOE# 6604059
	17		4750288								RA	DO	0.0 BRWN CLAY 1.2 GREY CLAY 4.6 RED CLAY
													GRVL 11.3 ROCK 13.4
6604078	2	Aug-92	647841	189.0	60.0 Su		12.8	159	120	12.2	2123	WS	MOE# 6604078
	16		4752311		49.7 Su						RA	IN	0.0 BRWN CLAY 0.9 BRWN SAND 6.1 BRWN SAND
					47.2 Su								STNS 14.0 ROCK 90.8
6604079	2	Aug-92	647801	188.7	46.9 Su		NR	9			2123	AS	MOE# 6604079
	16		4752212								RA	IN	0.0 BRWN CLAY 1.2 BRWN SAND 4.6 BRWN SAND
													GRVL 7.9 BRWN SAND BLDR 10.1 ROCK 90.8
6604129	2	Dec-92	645942	179.2	14.9 Su		4.0	23	90	13.7	4795	WS	MOE# 6604129
	20		4750422		8.8 Su						СТ	DO	0.0 BRWN CLAY PCKD 1.5 GREY LMSN LYRD 14.9
6604207	1	Jun-95	646585	179.2	4.6 Fr		3.4	27	150	7.0	4795	WS	MOE# 6604207
-	21		4750348		3.7 Fr						СТ	DO	0.0 BLCK TPSL PCKD 0.3 BRWN CLAY PCKD 2.4
	- •				••						- •		GREY LMSN LYRD 7.6
6604324	2	Aug-98	647429	182.9	14.3 Fr		6.1	91	150	6.1	4795	WS	MOE# 6604324
	17		4751579				0.1	• •			CT	DO	0.0 BLCK TPSL PCKD 0.3 BRWN CLAY FGVL PCKD
	••										01	20	1.2 GREY LMSN LYRD 14.6
6604339	2	Mar-99	646477	180.1	5.2 Fr		0.9	50	90	6.1	4795	WS	MOE# 6604339
000-003	2 19	Mai-33	4750399	100.1	0.211		0.9	50	30	0.1	4795 CT		0.0 BLCK TPSL PCKD 0.3 RED CLAY PCKD 2.4
	19		4100099									00	
6604521	3	Sen 00	647602	185.0	8.8 Fr	2.1 -6.1	NR				6571	OW	GREY LMSN LYRD 6.7 MOE# 6604521
0004021		Sep-00		100.0	0.0 FI	2.1-0.1	INF					-	0.0 BRWN TPSL LOOS 0.9 GREY LMSN LYRD 14.3
	16		4752548								PC	-	U.U DRIVIN IPOL LOUO U.9 GRET LIVION LTRD 14.3

LABEL	CON LOT	DATE	EASTING	ELEV	WTR FND	CR TOP LEN		RATE	TIME		DRILLER METHOD		WELL NAME DESCRIPTION OF MATERIALS
0004500	LUI		NORTHING	masl	mbgl Qu	mbgl m		L/min	min	mbgi			
6604522	3	Sep-00	647648	186.5	8.2 Fr	0.6 -6.1	NR				6571	OW	MOE# 6604522
	16		4752476								PC	-	0.0 BRWN TPSL LOOS 0.9 GREY LMSN LYRD 12.8
6604662	2	Jun-02	646618	179.5	7.9 Fr		0.6	45	90	9.1	4795	WS	MOE# 6604662
			4750522								СТ	DO	0.0 BLCK TPSL PCKD 0.6 BRWN CLAY PCKD 3.0
													GREY LMSN LYRD 10.1
7041805		Feb-07	646849	181.7		3.7 -3.0	NR				6809	OW	MOE# 7041805 TAG#A052598
			4751165								-	-	0.0 RED CLAY SILT 1.5 GREY LMSN 6.7
7160241	2	Feb-11	648246	180.1	5.2 Fr		2.7	95	240	3.4	4795	WS	MOE# 7160241 TAG#A079412
	15		4750504								СТ	CO	0.0 BRWN CLAY PCKD 1.5 GREY LMSN SHLE LOOS
													5.5 GREY LMSN DNSE 7.3
7161328		Mar-11	645720	182.0		0.9 -2.4	NR				7241	OW	MOE# 7161328 TAG#A107756
			4751259								DM	TH	0.0 BRWN TPSL SAND SOFT 0.6 GREY ROCK HARD
													3.4
7184673		Jul-12	647889	188.7			7.6		60		2123	AB	MOE# 7184673 TAG#A073942
			4752484								-	Oth	0.0
7185636	1	Jul-12	647454	178.0	17.1 Su		3.0	18	60	11.3	7294	WS	MOE# 7185636 TAG#A115943
	16		4750081								СТ	DO	0.0 BRWN TPSL 0.6 BRWN CLAY GRVL 7.0 GREY
													LMSN 18.9
7185637	1	Jul-12	647454	177.7			NR				7294	AQ	MOE# 7185637
	16		4750081								-	DO	0.0

	QUALITY:		TYPE:		USI	E:		М	ETHOD :
Fr	Fresh	WS	Water Supply	CO	Comercial	NU	Not Used	СТ	Cable Tool
Mn	Mineral	AQ	Abandoned Quality	DO	Domestic	IR	Irrigation	JT	Jetting
Sa	Salty	AS	Abandoned Supply	MU	Municipal	AL	Alteration	RC	Rotary Conventional
Su	Sulphur	AB	Abandonment Record	PU	Public	MO	Monitoring	RA	Rotary Air
	Unrecorded	TH	Test Hole or Observation	ST	Stock	-	Not Recorded	BR	Boring

Easting and Northings UTM NAD 83 Zone 17, Translated from Recorded UTM NAD, subject to Field Verified Location or Improved Location Accuracy. Records Copyright Ministry of Environment Queen's Printer. Selected information tabulated to metric with changes and corrections subject to Driller's Records.

Table E-12018 Water Well Survey ResultsPort Colborne Quarries

			Water Supply			Well Details		
	Address			Municipal Water	al Depth Water Description Well		Other Groundwater Related Issues/Complaints/Notes	
352	Chippawa Road	1	1	No		Hard & Sulphurous		
458	Chippawa Road	1	1	No	65	Sulphurous		
<u>622</u> 717	Chippawa Road Chippawa Road	1	-	No No	74	Hard	Stated when the quarry began operations the wells in the area went dry. No compensation was ever received for pumping the wells dry.	
731	Chippawa Road	1	-	No	90	Hard & Sulphurous	Deepened well from 60' to 90' due to low quantity.	
739	Chippawa Road	1	-	No	62	Hard & Sulphurous	Drought problems in the last 10 years.	
962	Chippawa Road	1	-	No	65	Hard & Sulphurous	Stated quarry is affecting water quality of well due to excessive heavy blasting. Water quantity issues in 2010 resulting in deepening of the well.	
975	Chippawa Road	1	-	No	65	Hard	Stated issues with quantity, well deepened by 17' in 1999. Iron problems, have tried using bleach (didn't work) and hydrogen peroxide to treat. Another well previously present on property, decommissioned in 1990.	
998	Chippawa Road	1	1	No		Fresh	Stopped using well approximately 20 years ago because water level was too low for pump depth.	
1196	Chippawa Road	1	-	No	90		Previous owner drilled well to 90' but kept pump at original depth of 60'.	
959	Highway 3 E	1	1	No	56	Sulphurous	Problems with quantity due to drought in 2005. Well has lower water level in last 15 years, but seems to good recovery following pumping.	
991	Highway 3 E	1	-	No		Fresh		
1331	Highway 3 E	1	-	No	22	Hard	Well had a rotted steel plug due to hard water, updated pump, piping and treatment in 2016.	
1838	Highway 3 E	1	1	No	25	Hard & Sulphurous		
909	Killaly Street East	1	-	No		Hard		
925	Killaly Street East	1	-	No		Hard & Culphuraua		
<u>977</u> 1096	Killaly Street East Killaly Street East	1	<u>1</u> 1	No No	49	Hard & Sulphurous Sulphurous	Stated well had high capacity until fall of 2016 when it started passing air through the system.	
1133	Killaly Street East	1	1	No	25	Iron & Sulphur	Quantity and quality(iron and sulphur) problems beginning in 2006-2008. Failure in dry summers and quality worsened in last 10 years.	
1246	Killaly Street East	1	-	No	12	Fresh	Problems with taste and clarity 3-4 years ago, bought RO and a softener to treat.	
1324	Killaly Street East	1	-	No	13	Fresh & Hard	Problems in the past with bacteria and drought.	
1640	Killaly Street East	1	1	No	25	Hard	Drought problems in 2016.	
1704	Killaly Street East	1	1	No	25	Fresh & Hard	Bad smell and tea coloured in 1999, self corrected in 6 months. Water problem caused by too much chicken manure spread on bordering field, followed by 2 weeks of heavy rain. Installed a cistern and used it for 6 months, then back to well.	
1051	Lorraine Road	1	1	No	25	Hard & Sulphurous	Insufficient water supply for 2 adults and 2 children historically, put in a cistern in 1953.	
1413	Lorraine Road	1	-	Yes	21	Fresh & Hard	Drought problem in 2008.	
1630	Miller Road	1	1	No		Hard & Sulphurous	Problems due to drought.	
1732	Miller Road	1	-	No	60	Hard & Sulphurous	Problems 5 years ago due to sand infiltration.	
2084	Miller Road	1	-	Yes			Well not usable, partially abandoned.	
2282	Miller Road	1	-	No			.During dry periods (drought) notice a slight sulphurous smell to the water, and in the last 2 months a slight yellowish tinge to the water.	
2085	Ramey Road	1	1	No			Well went dry after the quarry came in. Drilled deeper and then put a cistern in.	
211	Second Concession Road	1	-	No				
420	Second Concession Road	1	-	No	80	Fresh & Hard		

\\SD

Table E-12018 Water Well Survey ResultsPort Colborne Quarries

	Address		Water Supply			Vell Details	
			No. No. Municipal Depth Vells Cisterns Water Well		Water Description	Other Groundwater Related Issues/Complaints/Notes	
1559	Snider Road	1	1	No	51	Sulphurous	The water was fine for the first couple of months, then went sulphurous. It makes the house smell and the water filters must be changed constantly.
1266	Weaver Road	1	-	No		Fresh	My water system was overhauled just 4 months ago, have owned this farm organic 35 years and have always had good water.
2489	Carl Road	2	1	No		Fresh	
755	Highway 3 E	1	-	No	30	Sulphurous & Hard	
787	Highway 3 E	2	1	No	24	Hard & Iron	Problems in 2001 and 2006 due to pump failure and increased usage.
1577	Highway 3 E	2	1	No	22, 22	Hard & Sulphurous	One well on property went dry in 2016. Waited 8 months and only partially returned to strength.
1162	Weaver Road	2	1	No		Fresh	
448	Chippawa Road	-	1	No			
529	Chippawa Road	-	3	No			Stated that prior to purchasing the property a well had been in use but the quarry caused quantity issues. Now they use a 200 gallon tank along with two cisterns.
549	Chippawa Road	-	1	No			
665	Chippawa Road	-	1	No			
677	Chippawa Road	-	1	No			
930	Chippawa Road	-	1	No			
427	Highway 3 E	-	-	Yes			
705	Highway 3 E	-	1	No			
966	Highway 3 E	-	1	No			
1305	Highway 3 E	-	1	No			
1695	Highway 3 E	-	1	-			
1540	Lorraine/Babion Road	-	1	No			
642	Second Concession Road	-	-	Yes			
1246	Second Concession Road	-	1	Yes			
640	Second Concession Road						Survey Blank

Table E-12018 Water Well Survey ResultsPort Colborne Quarries

Survey	Delivered But No Response	Received					
2199	Babion Road	667	Hwy 3 E	911	Killaly Street East	2051	Ramey Road
459	Chippawa Road	683	Hwy 3 E	913	Killaly Street East	2075	Ramey Road
475	Chippawa Road	702	Hwy 3 E	941	Killaly Street East	2095	Ramey Road
517	Chippawa Road	722	Hwy 3 E	953	Killaly Street East	2105	Ramey Road
572	Chippawa Road			961	Killaly Street East	2125	Ramey Road
612	Chippawa Road	770	Hwy 3 E	965	Killaly Street East	275	Second Concession Road
647	Chippawa Road	831	Hwy 3 E	1007	Killaly Street East	291	Second Concession Road
650	Chippawa Road	919	Hwy 3 E	1233	Killaly Street East	316	Second Concession Road
657	Chippawa Road	971	Hwy 3 E	1268	Killaly Street East	386	Second Concession Road
672	Chippawa Road	981	Hwy 3 E	1288	Killaly Street East	408	Second Concession Road
702	Chippawa Road	1252	Hwy 3 E	1384	Killaly Street East	456	Second Concession Road
709	Chippawa Road	1326	Hwy 3 E	1394	Killaly Street East	530	Second Concession Road
736	Chippawa Road	1627	Hwy 3 E	1408	Killaly Street East	636	Second Concession Road
755	Chippawa Road	1716	Killaly Street East	1446	Killaly Street East	644	Second Concession Road
760	Chippawa Road	1751	Killaly Street East	1627	Killaly Street East	662	Second Concession Road
776	Chippawa Road	530	Killaly Street East	1014	Lorraine Road	708	Second Concession Road
880	Chippawa Road	551	Killaly Street East	1077	Lorraine Road	874	Second Concession Road
889	Chippawa Road	571	Killaly Street East	1096	Lorraine Road	1645	Second Concession Road
900	Chippawa Road	673	Killaly Street East	1314	Lorraine Road	1740	Second Concession Road
906	Chippawa Road	697	Killaly Street East	1368	Lorraine Road	1549	Snider Road
1024	Chippawa Road	741	Killaly Street East	1386	Lorraine Road	1587	Snider Road
1072	Chippawa Road	758	Killaly Street East	1516	Lorraine Road	1607	Snider Road
1112	Chippawa Road	759	Killaly Street East	1498	Miller Road	2062	Snider Road
1132	Chippawa Road	769	Killaly Street East	1580	Miller Road	1142	Weaver Road
1244	Chippawa Road	779	Killaly Street East	1682	Miller Road	1152	Weaver Road
1245	Chippawa Road	791	Killaly Street East	1778	Miller Road	974	Weaver Road/Carl Road
1246	Chippawa Road	806	Killaly Street East	1826	Miller Road	1030	Weaver Road/Carl Road
401	Hwy 3 E	806	Killaly Street East	1864	Miller Road	1054	Weaver Road/Carl Road
439	Hwy 3 E	877	Killaly Street East	2024	Miller Road	1080	Weaver Road/Carl Road
455	Hwy 3 E	893	Killaly Street East	2168	Miller Road	1110	Weaver Road/Carl Road
523	Hwy 3 E	896	Killaly Street East	1965	Ramey Road		
548	Hwy 3 E	901	Killaly Street East	2033	Ramey Road		
Survey	Undeliverable						
2129	Chippawa Road	1413	Hwy 3 E	1379	Killaly Street East	1094	Weaver Road/Carl Road
391 TOTAL	Hwy 3 E	1193	Killaly Street East	1828	Miller Road		

TOTALS

185 Surveys

7 Undeliverable

178 Delivered

53 Response Received

30% Response Rate

PRIVATE WATER WELL SURVEY
QUESTIONNAIRE

Sept 26,2017

TYPE OF DWELLING:		Commercial		
		Other:	••••••	
Is the owner willing to	o participate in the surve	ey? Yes	2	No 🗆
(If no, record address	below)			
OWNER: Name:		Telephone No. (bu	isiness)	
	niller Rd			
		Number of Occupa		
OCCUPANT (if other t	than Owner):			
Name:		Telephone No. 16	siness)	
		Telephone No. (ho		
Number of Bathrooms.	~		-	
GENERAL QUESTION	IS	73		
How long have you own	ned/occupied this dwelling ar-round or seasonally?	$g^{2} \qquad C^{-} c_{j} e^{j}$	ner .	
		1		
Is well water used for d		Yes No 🗆		
				4 m 1.
Are there any other wel	lls or water supplies used een since well water was	on the property?	14	ALS ARECONS
If no, what is the origin	of drinking water?	Id well on	s.re	filled + ras
				0
II. WATER WELL				
A. WELL CONSTRUC	TION DETAILS:			
Do you have a copy of	the MOE Water Well Rec	ord? 🛛 Yes (Well Re	cord #)
		□ No		,
	WATER WELL RECORD	-		
Date or Year Construct	Dug 🗆 Well Dia	Contractor		
Type of Well: Drilled	Z Dug □ Well Dia	ameter (inches)		
Present Well Depth:	Original W	ell Depth	🗆 S	ame as Present

.

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface 2 2) Buried inside a well pit 3 3) Buried, but not in a well pit 1
The accurate location of the well is Known 🗹 Unknown 🗆
GPS coordinates: E N
Type of pump: Submersible Jet Pump Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil) Both
B. WELL WATER LEVELS:
Indicate whether measured from
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes 💋 No 🗆
If no, is this the case: All the time \Box Some of the time \Box Seasonally \Box Other
Use: Domestic: No 🗆 Yes 🖉 No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No 🖓 Yes 🗌 Lawn Watering/Garden: No 🗌 Yes 🖉
Livestock: No 🗆 Yes 🗖
Industrial: No 🖉 Yes 🗌 (provide details)
Irrigation: No 🗆 Yes 🔽 (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well?
What was the cause of the problem? \Box Drought \Box Pump Failure \Box Plugging
□ Increased Usage □ Interference □ Other (Please Specify)
Golder Associates

Did you ever have your well deepened or cleaned, or a new well constructed?
Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
H-
D. WATER TREATMENT AND QUALITY
Fresh 🗌 Sulphur 🗆 Salty 🗌 Iron Staining 🛛 Soft 🗆 Hard 🗗
Water Treatment equipment: Softener \Box UV \Box Reverse Osmosis \Box Filters \Box
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? Poor Good Excellent
Has your water quality previously been tested? No D Yes Z Good
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:
Where was the sample collected:
Field Measurements: Conductivity732. Temperature 14.4 pH. 7.35
E. SURFACE WATER
Are there any ponds, creeks etc. on the property?

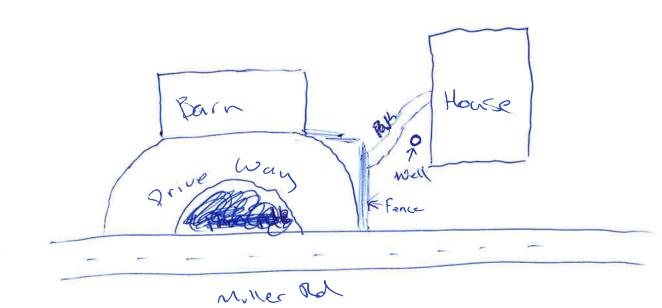
If yes, indicate size and depth? Use?.....

III. SEWAGE DISPOSAL SYSTEM

SYSTEM DETAILS

What type of sewage disposal system do you have:

Holding Tank (sewage removed by regular pump-outs)


- Septic Tank and Leaching Bed
- Other method of on-site disposal. Specify.....
- □ Do not know

Date or year Constructed

How often do you have the holding tank or septic tank pumped out?
When was the last time? Crosby Curry Indycar
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.)

IV. PROPERTY SKETCH AND PHOTOGRAPHS

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Completed by: P. Hering Date Sept 26,2017

S: Vactive/2017/3 Proj/1771656 Rankin_License App_Port Colborne/Phase 1000 Hydrogeology/Task 1002 - Water Well Survey/Private Well Survey Form 2017.doc

PRIVATE WATER WELL SURVEY QUESTIONNAIRE

(If no, record address I	below)			
Is the owner willing to	participate in the	survey? Yes	No 🗆	
	Institutional	□ Other:		
TYPE OF DWELLING:	Residential	Commercial		

I. OWNER / OCCUPANT INFORMATION AND GENERAL QUESTIONS:

Septer

2017

OWNER:	
Name:	Telephone No. (business)
Address: 2015 Killaly	Telephone No. (home)
Number of Bathrooms	Number of Occupants
OCCUPANT (if other than Owner):	
Name:	Telephone No. (business)
Address:	Telephone No. (home)
Number of Bathrooms	Number of Occupants
GENERAL QUESTIONS	35 wears
How long have you owned/occupied this dwelling? Is the property used year-round or seasonally?	Vas
Is the property used year-round or seasonally?	
Is well water used for drinking water supply? Yes	s 🗆 No 🗹
If no, why not?	
Are there any other wells or water supplies used on	
If no, how long has it been since well water was use	ed for drinking?
If no, what is the origin of drinking water?	ter cuoiers
II. WATER WELL	
A. WELL CONSTRUCTION DETAILS:	
Do you have a copy of the MOE Water Well Record	d? □ Yes (Well Record #
ATTACH A COPY OF WATER WELL RECORD, I	F POSSIBLE
Date or Year Constructed	Civil Eddig

 Type of Well: Drilled V
 Dug
 Well Diameter (inches)

 Present Well Depth:
 Original Well Depth.....
 Same as Present

Is Well Vented and How?:		
Top of Well Casing is:		
1) Above ground surface 2 2) Buried inside a well pit 2 3) Buried, but not in a well pit 2		
The accurate location of the well is Known \square Unknown \square		
GPS coordinates: E N		
Type of pump: Submersible 🗹 Jet Pump 🗆 Depth of Pump Intake (if known)		
Well completed into: Bedrock Overburden (Soil) Both		
B. WELL WATER LEVELS:		
Indicate whether measured from		
Original water level depth in metres (on water well record)		
Subsequent water level measurements (give depths in metres and dates)		
C. WATER QUANTITY		
Does your well supply enough water for your use? Yes Mo		
If no, is this the case: All the time \Box Some of the time \Box Seasonally \Box Other		
Use: Domestic: No 🗆 Yes 🗹 No. of persons using water from well		
Domestic includes (circle all that apply) Drinking Washing Cooking		
Pool: No 🗹 Yes 🖸 Lawn Watering/Garden: No 🗆 Yes 🗹		
Livestock: No 🕅 Yes 🗆		
Industrial: No 🗹 Yes 🗆 (provide details)		
Irrigation: No 🗹 Yes 🗆 (provide details)		
Other Uses		
Have you ever experienced any problems with your well? high use dried well out		
If so, when?		
Golder Associates		

Did you ever have your well deepened or cleaned, or a new well constructed?
If so, why?
Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
······
D. WATER TREATMENT AND QUALITY
Fresh 🗆 Sulphur 😡 Salty 🗆 Iron Staining 🗆 Soft 🗆 Hard 🗹
Water Treatment equipment: Softener 🖵 UV 🗆 Reverse Osmosis 🗆 Filters 🗹
Other equipment in use (if any): Peroxide Treatment
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? Description Good Excellent
Has your water quality previously been tested? No 🗹 Yes 🗆
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Vec
Water sample collected during this survey:
pulses signed
Field Measurements: Conductivity 1333 Temperature 21.2 pH 7.22
risk mederementer officiently a commentation remperature a construction primary primary access

E. SURFACE WATER

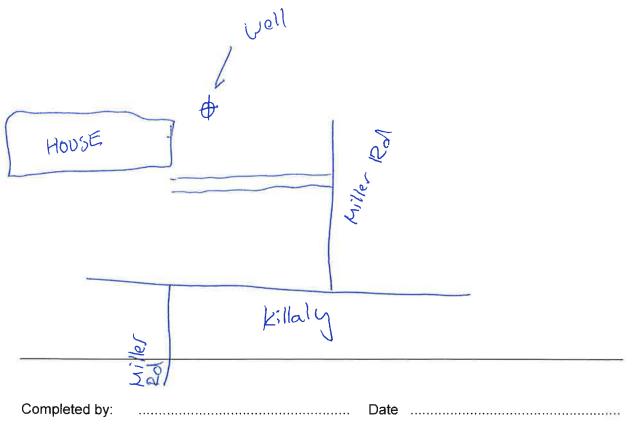
Are there any ponds, creeks etc. on the property? Marsh land in back (orner
f yes, indicate size and depth? Use?

SYSTEM DETAILS

What type of sewage disposal system do you have:

□ Holding Tank (sewage removed by regular pump-outs)

Septic Tank and Leaching Bed


Other method of on-site disposal. Specify

Do not know

Date or year Constructed Contractor

How often do you have the holding tank or septic tank pumped out?
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

S:Vactive/2017\3 Proj\1771656 Rankin_License App_Port Colborne\Phase 1000 Hydrogeology\Task 1002 - Water Well Survey\Private Well Survey Form 2017.doc

2017	
PRIVATE WATER WELL SURVEY	Sept 19
QUESTIONNAIRE	
TYPE OF DWELLING:	
TYPE OF DWELLING: I Residential Commercial	
	ů.
Is the owner willing to participate in the survey? Yes 🗹 No 🛛	
(If no, record address below)	Cistern
I. OWNER / OCCUPANT INFORMATION AND GENERAL QUESTIONS:	+
OWNER:	2 Luells
Name:	one is
Address: 1326 Huy 3 Telephone No. (home)	black
Number of Bathrooms	noter
OCCUPANT (if other than Owner):	
Name:	
Address:	
Number of Bathrooms Number of Occupants	
GENERAL QUESTIONS How long have you owned/occupied this dwelling?	
Is the property used year-round or seasonally?	
Is well water used for drinking water supply? Yes \Box No \mathbb{V}	
· · · · · · · · · · · · · · · · · · ·	10 A A
If no, why not?	lack water in
If no, how long has it been since well water was used for drinking?	
If no, what is the origin of drinking water?	
II. WATER WELL	
A. WELL CONSTRUCTION DETAILS:	
Do you have a copy of the MOE Water Well Record? Yes (Well Record #)
ATTACH A COPY OF WATER WELL RECORD, IF POSSIBLE	
Date or Year Constructed Contractor	
Type of Well: Drilled 🗹 Dug 🗆 Well Diameter (inches)	
Present Well Depth:	as Present

1

1

 (M^{*})

Water Well and Sewage Disposal System Survey Questionnaire

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface 2) Buried inside a well pit 3) Buried, but not in a well pit
The accurate location of the well is Known 🗹 Unknown 🗆
GPS coordinates: E N
Type of pump: Submersible Jet Pump Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil) Both
B. WELL WATER LEVELS:
Indicate whether measured from ground level or from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes 🗹 No 🗆
If no, is this the case: All the time Some of the time Seasonally Other
Use: Domestic: No 🗆 Yes 🔽 No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No 🗹 Yes 🗆 Lawn Watering/Garden: No 🗆 Yes 🗹
Livestock: No 🗹 Yes 🗆
Industrial: No 🗹 Yes 🗆 (provide details)
Irrigation: No 🗹 Yes 🗆 (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well?
If so, when?
What was the cause of the problem?
□ Increased Usage □ Interference □ Other (Please Specify)
Golder Associates

Did you ever have your well deepened or cleaned, or a new well constructed?
If so, why?
Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)

D. WATER TREATMENT AND QUALITY

Fresh 🗆 Sulphur 🗀 Salty 🗆 Iron Staining 🗹 Soft 🗔 Hard 🗆
Water Treatment equipment: Softener 🗆 UV 🗆 Reverse Osmosis 🗆 Filters 🗆
Other equipment in use (if any):
How would you describe the quality of your water? Poor Good Excellent
Has your water quality previously been tested? No D Yes
If yes, for what and how often? (bacteriological, chemical analyses, etc.).
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:
Where was the sample collected:

1

Field Measurements:	Conductivity Temperature	рН

E. SURFACE WATER

Are there any ponds, creeks etc. on the property?
If yes, indicate size and depth? Use?

SYSTEM DETAILS

What type of sewage disposal system do you have:

- Holding Tank (sewage removed by regular pump-outs)
- Septic Tank and Leaching Bed
- □ Other method of on-site disposal. Specify
- □ Do not know

Date or year Constructed Contractor

How often do you have the holding tank or septic tank pumped out?
When was the last time? Dever been pumped
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.)

Page 5 of 5

IV. PROPERTY SKETCH AND PHOTOGRAPHS

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Did not see wells on the visit

Completed by: T.Proks Date Sept 19, 2017

S:Vctive/2017/3 Proj/1771656 Rankin_License App_Port Colborne/Phase 1000 Hydrogeology/Task 1002 - Water Well Survey/Private Well Survey Form 2017.doc

			Sept 19	l
2017			2146 22	r Card
	PRIVATE WATER V QUESTION			Nates
TYPE OF DWELLING:		mmercial ner:	Plus 2	wells
Is the owner willing to	participate in the survey	? Ye	s 🗹 🛛 No 🗆	
(If no, record address I	pelow)			
I. OWNER / OCCUPAN	T INFORMATION AND GI	ENERAL QUEST	IONS:	
OWNER: Name: Address: 2196 Number of Bathrooms	5 And concession	Telephone No. (Telephone No. (Number of Occu	business) home)	
OCCUPANT (if other th	an Owner):		1	
Name: Address: Number of Bathrooms		Telephone No. (Telephone No. (Number of Occu	home)	
GENERAL QUESTIONS	5			
How long have you owne	ed/occupied this dwelling?	1953		
Is the property used yea	r-round or seasonally?	Yes	•••••••••••••••••••••••••••••••••••••••	
	nking water supply? Ye		Ð	
	y Water, Choc		O N-	
If no, how long has it bee	s or water supplies used or en since well water was use f drinking water?	ed for drinking?	notused	
II. WATER WELL				
A. WELL CONSTRUCT	ION DETAILS:		2 well	8
Do you have a copy of th	ne MOE Water Well Record	d? □Yes (Well F	Record #)
ATTACH A COPY OF W	VATER WELL RECORD, I		_	
Date or Year Constructe	d	Contractor		
Type of Well: Drilled	Dug 🗌 🛛 Well Diam	eter (inches)		
Present Well Depth:	Original Well	Depth	□ Same as	Present

×

2017	
Water Well and Sewage Disposal System Survey Questionnaire	Э

	ls We	ell Vented and Ho	ow?:				
	Top o	of Well Casing is:	1				
	1) Ab	ove ground surfa	ace 🗹	2) Buried ir	nside a well	pit 🗆 3) Buried, bu	t not in a well pit \Box
	The a	accurate location	of the we	ll is Knowr	n 🗹 Unkr	nown 🗆	
	GPS coordinates: E						
	Туре	of pump: Subm	ersible	Jet Pump	Depth	of Pump Intake (if kno	own)
	Well	completed into:	Bedrock .	<u> </u>	verburden (Soil) Both	
	B. W	/ELL WATER LE	VELS:				
	Indica	ate whether mea	sured from	n 🗆 grou	und level	or	asing
	Origii	nal water level de	epth in me	tres (on wat	ter well reco	rd)	
	Subs	equent water lev	el measur	ements (giv	e depths in	metres and dates)	
		/	1/		\checkmark		
/	<u></u>					مستعميها	
6					21 A A A A A A A A A A A A A A A A A A A		
	C. W	ATER QUANTI	ſY			/	
	Does	your well supply	enough v	vater for you	ır use?	Yes 🗹 No	
	lf no,	is this the case:	All the tin	ne 🗆 Som	e of the time	e 🗆 Seasonally 🗆	Other
	Use:	Domestic:	No 🗹	Yes 🗆	No. of p	ersons using water fro	om well
		Domestic includ	les (circle	all that app	ly) Drinkin	g Washing C	ooking
		Pool:	No 🗆	Yes 🗆	Lawn W	atering/Garden: No	
		Livestock:	No 🗆	Yes 📝			
		Industrial:	No 🗆	Yes 🗆	(provide deta	ils)	
		Irrigation:	No 🗆	Yes 🗆	(provide deta	iils)	478773
		Other Uses			Daily Us	age (if known)	2312423200139E
	Have	you ever experie	enced any	problems v	vith your we	ll?	
	lf so,	when?				********************************	
	What	was the cause o	of the prob	lem? □	Drought	Pump Failure	Plugging
	🗆 Inc	reased Usage	🗆 Inter	ference	Other (F	Please Specify)	
				Gold	ler Associate	es	

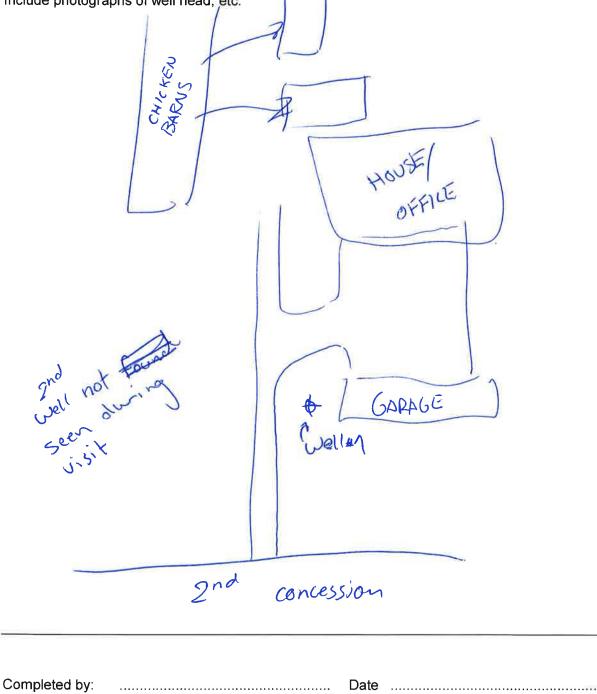
1PS
Did you ever have your well deepened or cleaned, or a new well constructed?
If so, why? more supply for chickens
Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
for the second s
D. WATER TREATMENT AND QUALITY
Fresh 🗹 Sulphur 🗹 Salty 🗆 Iron Staining 🗆 Soft 🗆 Hard 🗆
Water Treatment equipment: Softener 🗆 UV 🗀 Reverse Osmosis 🗆 Filters 🗆
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? Poor Good Excellent
Has your water quality previously been tested? No D Yes
If yes, for what and how often? (bacteriological, chemical analyses, etc.) 2. x. year
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:入 で
Where was the sample collected:
Field Measurements: Conductivity Temperature
E. SURFACE WATER

Are there any ponds, creeks etc. on the property?	has	been tilled	
If yes, indicate size and depth? Use?			

SYSTEM DETAILS

What type of sewage disposal system do you have:

Hølding Tank (sewage removed by regular pump-outs)


Septic Tank and Leaching Bed

Other method of on-site disposal. Specify

Do not know

Late or year Constructed Contractor How often do you have the holding tank or septic tank pumped out? very selder used When was the last time?..... Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

S:Vactive/2017/3 Proj/1771656 Rankin_License App_Port Colborne/Phase 1000 Hydrogeology/Task 1002 - Water Well Survey/Private Well Survey Form 2017.doc

PRIVATE WATER WELL SURVEY
QUESTIONNAIRE

Sept 19

is the owner willing to participate in the survey? Yes $ extsf{Yes}$ No \Box	
Institutional D Other:	
TYPE OF DWELLING: 🗹 Residential 🛛 Commercial	

I. OWNER / OCCUPANT INFORMATION AND GENERAL QUESTIONS:

OWNER:	
Name:	Telephone No. (business)
Address: 2478 Miller Rd	Telephone No. (home)
Number of Bathrooms	Number of Occupants
OCCUPANT (if other than Owner):	
Name:	Telephone No. (business)
Name: Address:	Telephone No. (home)
Number of Bathrooms	Telephone No. (home) Number of Occupants
GENERAL QUESTIONS	
How long have you owned/occupied this dwelling?	1 year
How long have you owned/occupied this dwelling? Is the property used year-round or seasonally?	Yes
Is well water used for drinking water supply? Ye	
If no, why not?	
Are there any other wells or water supplies used or	the property?
Are there any other wells or water supplies used or If no, how long has it been since well water was use	ed for drinking?
If no, what is the origin of drinking water?	
II. WATER WELL	
A. WELL CONSTRUCTION DETAILS:	
Do you have a copy of the MOE Water Well Record	
ATTACH A COPY OF WATER WELL RECORD,	F POSSIBLE
Date or Year Constructed	Contractor

Present Well Depth:	 Original Well Depth	Same as Present
r resent wen Deptil.		Came as i resent

Well Diameter (inches)

.....

Duger

Type of Well: Drilled 🗌

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface 🔽 2) Buried inside a well pit 🗌 3) Buried, but not in a well pit 🗋
The accurate location of the well is Known I Unknown Did not see visit
GPS coordinates: E N
Type of pump: Submersible 🗹 Jet Pump 🗀 Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil) Both
B. WELL WATER LEVELS:
Indicate whether measured from ground level or from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes 🖃 No 🛛
If no, is this the case: All the time \Box Some of the time \Box Seasonally \Box Other
Use: Domestic: No 🗆 Yes 🔽 No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No 🗌 Yes 🗌 Lawn Watering/Garden: No 🗌 Yes 🗹
Livestock: No 🗆 Yes 🗹
Industrial: No 🗆 Yes 🖾 (provide details)
Irrigation: No 🗆 Yes 🖾 (provide details)
Other Uses
Have you ever experienced any problems with your well?
What was the cause of the problem? \Box Drought \Box Pump Failure \Box Plugging
□ Increased Usage □ Interference □ Other (Please Specify)

Did you ever have your well deepened or cleaned, or a new well constructed?
If so, why?
Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
D. WATER TREATMENT AND QUALITY
Fresh 🖾 Sulphur 🗆 Salty 🗆 Iron Staining 🗹 Soft 🗆 Hard 🗆
Water Treatment equipment: Softener 🗹 UV 🗹 Reverse Osmosis 🗆 Filters 🗗
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? Poor Good Excellent
Has your water quality previously been tested? No D Yes D
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:
Where was the sample collected: frem outside gerden hose & book of house
~
Field Measurements: Conductivity 1419 Temperature 24.15 pH 7.32
E. SURFACE WATER

Are there any ponds, creeks etc. on the property?
If yes, indicate size and depth? Use?

SYSTEM DETAILS

What type of sewage disposal system do you have:

□ Holding Tank (sewage removed by regular pump-outs)

Septic Tank and Leaching Bed

Other method of on-site disposal. Specify

Do not know

When was the last time?.....

Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Did not see well on visit.

Completed by: T.Proks Date Sept 19,2017

S:Vactive/2017/3 Proj\1771656 Rankin_License App_Port Colborne\Phase 1000 Hydrogeology\Task 1002 - Water Well Survey\Private Well Survey Form 2017_doc

PRIVATE WATER W QUESTION	
	nmercial er:
Is the owner willing to participate in the survey? (If no, record address below)	Yes 🗹 No 🗆
I. OWNER / OCCUPANT INFORMATION AND GE	NERAL QUESTIONS:
OWNER: Name: Address: 1739 killlag Number of Bathrooms	Telephone No. (business) Telephone No. (home) Number of Occupants
OCCUPANT (if other than Owner): Name: Address: Number of Bathrooms	Telephone No. (business) Telephone No. (home) Number of Occupants
GENERAL QUESTIONS How long have you owned/occupied this dwelling? Is the property used year-round or seasonally? Is well water used for drinking water supply? Yes	¥3 yers Yes No□
If no, why not?	
Are there any other wells or water supplies used on If no, how long has it been since well water was use If no, what is the origin of drinking water?	d for drinking?
II. WATER WELL	
A. WELL CONSTRUCTION DETAILS:	
Do you have a copy of the MOE Water Well Record	II No
ATTACH A COPY OF WATER WELL RECORD, II	POSSIBLE
Date or Year Constructed	Contractor
0.1	eter (inches)
Present Well Depth: 25 Original Well	Depth

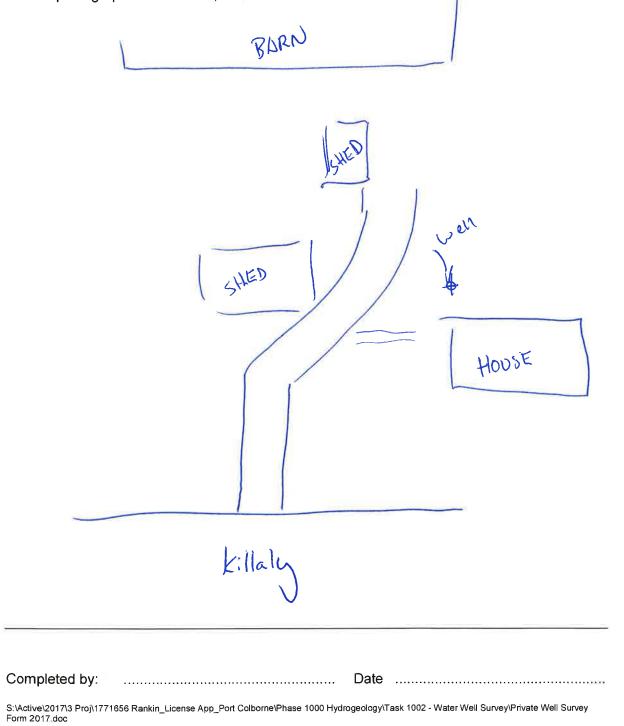
Is Well Vented and How?:	
Top of Well Casing is:	
1) Above ground surface 🗹 2) Buried inside a well pit 🗆 3) Buried, but not in a well pit 🗆	
The accurate location of the well is Known 🗹 Unknown 🗆	
GPS coordinates: E N	
Type of pump: Submersible 🖸 Jet Pump 🗹 Depth of Pump Intake (if known)	
Well completed into: Bedrock Overburden (Soil) Both	
B. WELL WATER LEVELS:	
Indicate whether measured from	
Original water level depth in metres (on water well record)	
Subsequent water level measurements (give depths in metres and dates)	
\sim	
C. WATER QUANTITY Does your well supply enough water for your use? Yes ☑ No □	
If no, is this the case: All the time \Box Some of the time \Box Seasonally \Box Other	
Use: Domestic: No 🗆 Yes 🗹 No. of persons using water from well	
Domestic includes (circle all that apply) Drinking Washing Cooking	
Pool: No Z Yes Lawn Watering/Garden: No L Yes	
Livestock: No 🗹 Yes 🗆	
Industrial: No 🗹 Yes 🗆 (provide details)	
Irrigation: No 🗹 Yes 🗆 (provide details)	
Other Uses	
Have you ever experienced any problems with your well?	
If so, when?	
What was the cause of the problem?	
□ Increased Usage □ Interference □ Other (Please Specify)	
Golder Associates	

Did you ever have your well deepened or cleaned, or a new well constructed?
Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
D. WATER TREATMENT AND QUALITY
Fresh Sulphur Salty Iron Staining Soft Hard
Water Treatment equipment: Softener 🗹 UV 🗹 Reverse Osmosis 🗆 Filters 🗆 Vonization 🔗
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? Poor Good Excellent
Has your water quality previously been tested? No □ Yes 🗠
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:
Where was the sample collected:
Field Measurements: Conductivity.669. Temperature 21.87 pH. 7.76
E. SURFACE WATER
Are there any ponds, creeks etc. on the property?
If yes, indicate size and depth? Use?

SYSTEM DETAILS

What type of sewage disposal system do you have:

Holding Tank (sewage removed by regular pump-outs)


Septic Tank and Leaching Bed

Other method of on-site disposal. Specify

Do not know

Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

PRIVATE WATER WELL SURVEY
QUESTIONNAIRE

Sept 19

TYPE OF DWELLING: Residential Commercial Institutional Other: 			
Is the owner willing to participate in the survey? Yes 🗹 No 🗆 (If no, record address below)			
I. OWNER / OCCUPANT INFORMATION AND GENERAL QUESTIONS:			
OWNER: Name: Telephone No. (business) Name: Telephone No. (business) Telephone No. (home) Address: Telephone No. (home) Number of Occupants Number of Bathrooms Number of Occupants Number of Occupants			
OCCUPANT (if other than Owner): Name:			
GENERAL QUESTIONS How long have you owned/occupied this dwelling? Is the property used year-round or seasonally? Is well water used for drinking water supply? Yes No If no, why not? Quality Are there any other wells or water supplies used on the property? If no, how long has it been since well water was used for drinking? If no, what is the origin of drinking water?			
II. WATER WELL			
A. WELL CONSTRUCTION DETAILS:			
Do you have a copy of the MOE Water Well Record? Yes (Well Record #)			
ATTACH A COPY OF WATER WELL RECORD, IF POSSIBLE			

Date or Year Constructed	Cont	tractor
Type of Well: Drilled Dug	Well Diameter (inch	es)
Present Well Depth:	Original Well Depth	Same as Present

Golder Associates

2017

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface \blacksquare 2) Buried inside a well pit \square 3) Buried, but not in a well pit \square
The accurate location of the well is Known D Unknown D Did not see well on visit
GPS coordinates: E N
Type of pump: Submersible 🗌 Jet Pump 🔎 Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil) Both
B. WELL WATER LEVELS
Indicate whether measured from
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes 🗹 No 🗆
If no, is this the case: All the time \Box Some of the time \Box Seasonally \Box Other
Use: Domestic: No 🗆 Yes 🗔 No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No 🗹 Yes 🗆 Lawn Watering/Garden: No 🗆 Yes 🗹
Livestock: No 🔽 Yes 🗆
Industrial: No 🗌 Yes 🗌 (provide details)
Irrigation: No 🗌 Yes 🗋 (provide details)
Other Uses
Have you ever experienced any problems with your well?
If so, when?
What was the cause of the problem? Drought Pump Failure Plugging
□ Increased Usage □ Interference □ Other (Please Specify)
Golder Associates

Did you ever have your well deepened or cleaned, or a new well constructed?		
If so, why?		
Pump test conducted?		
If yes, record pumping rate, duration and water levels (static, pumping and recovery)		
WIA.		
D. WATER TREATMENT AND QUALITY		
Fresh 🗌 Sulphur 🗹 Salty 🗹 Iron Staining 🗹 Soft 🗆 Hard 🗆		
Water Treatment equipment: Softener \Box UV \Box Reverse Osmosis \Box Filters \Box		
Other equipment in use (if any):		
Has your well recently been chlorinated and, if so, when?		
How would you describe the quality of your water?		
Has your water quality previously been tested? No 🗹 Yes \Box		
If yes, for what and how often? (bacteriological, chemical analyses, etc.)		
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE		
Yes		
Water sample collected during this survey: 121 Where was the sample collected: fish outside top @ book of house		
vvnere was the sample collected:		
Field Measurements: Conductivity 763 Temperature 24.68 pH 7.58		

E. SURFACE WATER

Are there any ponds, creeks etc. on the property?	NONE
If yes, indicate size and depth? Use?	

~

Page 4 of 5

III. SEWAGE DISPOSAL SYSTEM

SYSTEM DETAILS

What type of sewage disposal system do you have:

Holding Tank (sewage removed by regular pump-outs)

Septic Tank and Leaching Bed

Other method of on-site disposal. Specify

Do not know

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Did not see well on visit

Completed by:

T. Proks Date Sept 19, 2017

S:\Active\2017\3 Proj\1771656 Rankin_License App_Port Colborne\Phase 1000 Hydrogeology\Task 1002 - Water Well Survey\Private Well Survey Form 2017 doc

PRIVATE WATER W QUESTION		
	nmercial er:	
Is the owner willing to participate in the survey?	Yes 🗹 🛛 No 🗆	
(If no, record address below)		
I. OWNER / OCCUPANT INFORMATION AND GE	INERAL QUESTIONS:	
OWNER: Name: Address: 974 Wccref Number of Bathrooms	Telephone No. (business) Telephone No. (home) Number of Occupants	
	Number of Occupants	
OCCUPANT (if other than Owner): Name: Address: Number of Bathrooms	Telephone No. (business) Telephone No. (home) Number of Occupants	
GENERAL QUESTIONS		
GENERAL QUESTIONS How long have you owned/occupied this dwelling? Is the property used year-round or seasonally?	Syperi	
Is the property used year-round or seasonally?	Yes	
Is well water used for drinking water supply? Yes D No		
If no, why not? Quality	1160	
Are there any other wells or water supplies used on the property?		
If no, how long has it been since well water was used for drinking?		
II. WATER WELL		
A. WELL CONSTRUCTION DETAILS:		
Do you have a copy of the MOE Water Well Record? Yes (Well Record #		
ATTACH A COPY OF WATER WELL RECORD, I	POSSIBLE	
Date or Year Constructed	Contractor	
Type of Well: Drilled 🗹 Dug 🗆 Well Diam	eter (inches)	
Present Well Depth: Original Well	Depth Depth	
Golder Asso	ciates	

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface (2) 2) Buried inside a well pit (2) 3) Buried, but not in a well pit (2)
The accurate location of the well is Known 🗹 Unknown 🗆
GPS coordinates: E N
Type of pump: Submersible 🗌 Jet Pump 🗹 Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil) Both
B. WELL WATER LEVELS:
Indicate whether measured from \Box ground level or \Box from top of casing
Original-water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes 🗹 No 🛛
If no, is this the case: All the time \Box Some of the time \Box Seasonally \Box Other
Use: Domestic: No 🗆 Yes 🖬 No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No 🖄 Yes 🗆 Lawn Watering/Garden: No 🗖 Yes 🖸
Livestock: No 🖸 Yes 🗹 chickens
Industrial: No 🗹 Yes 🗆 (provide details)
Irrigation: No 🗹 Yes 🗌 (provide details)
Other Uses
Have you ever experienced any problems with your well?NO
What was the cause of the problem? \Box Drought \Box Pump Failure \Box Plugging
□ Increased Usage □ Interference □ Other (Please Specify)
Golder Associates

	ted?	
f yes, record pum	ping rate, duration and water levels (static, pumping and recovery)	
		•••••
	·····	•••••
/		
). WATER TREA	TMENT AND QUALITY	
		1
Vater Treatment	equipment: Softener 🗹 UV 🗆 Reverse Osmosis 🗆 Filters 🗹	
	n use (if any):	
Has your well rece	ently been chlorinated and, if so, when?	
How would you de	escribe the quality of your water? Poor Good Good	Excellent
	uality previously been tested? No 🗆 Yes 🗹	
f yes, for what an	d how often? (bacteriological, chemical analyses, etc.)	ers o
	OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL A IE WELL WATER, IF AVAILABLE	NALYSIS
	-A. VFC	
	lected during this survey	~
Nater sample coll Nhere was the sa	imple collected: from outsite top @, bach	

E. SURFACE WATER

Are there any ponds, creeks etc. on the property?
If yes, indicate size and depth? Use?

SYSTEM DETAILS

What type of sewage disposal system do you have:

- Holding Tank (sewage removed by regular pump-outs)
- Septic Tank and Leaching Bed
- □ Other method of on-site disposal. Specify
- □ Do not know

Date or year Constructed

How often do you have the holding tank or septic tank pumped out? NOT SINCE OUNING
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
ank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Did not see well on visit

Completed by:

TiProks

Date Sept 19 2017.

S:Vactive/2017/3 Proj/1771656 Rankin_License App_Port Colborne/Phase 1000 Hydrogeology/Task 1002 - Water Well Survey/Private Well Survey Form 2017.doc

Page 5 of 5

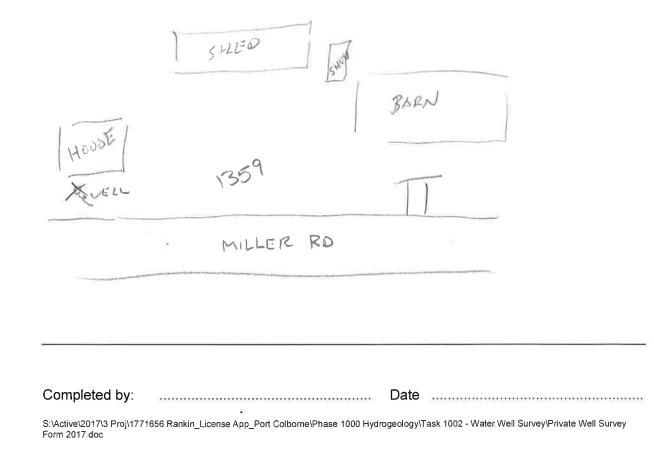
PRIVATE WATER WELL SURVEY QUESTIONNAIRE	
TYPE OF DWELLING: 🗹 Residential 🛛 Commercial	
Is the owner willing to participate in the survey? Yes \checkmark No \Box (If no, record address below)	
I. OWNER / OCCUPANT INFORMATION AND GENERAL QUESTIONS:	
OWNER: Name: Telephone No. (business) Name: Telephone No. (business) Address: 13559 Miller Rd Number of Bathrooms Number of Occupants	
OCCUPANT (if other than Owner): Name: Telephone No. (business) Address: Telephone No. (home) Number of Bathrooms Number of Occupants	Lun
GENERAL QUESTIONS How long have you owned/occupied this dwelling? Is the property used year-round or seasonally?	
Is well water used for drinking water supply? Yes D No D If no, why not? <u>Slight Small (Supplus</u>) and black particles Are there any other wells or water supplies used on the property? <u>Old usells</u> , <u>a</u> fe If no, how long has it been since well water was used for drinking? <u>If no, what is the origin of drinking water</u>	
II. WATER WELL	
A. WELL CONSTRUCTION DETAILS:	
Do you have a copy of the MOE Water Well Record? Yes (Well Record #)
ATTACH A COPY OF WATER WELL RECORD, IF POSSIBLE	autol brach
Date or Year Constructed	******

2017 Water Well and Sewage Disposal System Survey Questionnaire	Page 2 of 5
Is Well Vented and How?:	
Top of Well Casing is:	
1) Above ground surface 2) Buried inside a well pit 3) Buried, but not in	ı a well pit □
The accurate location of the well is Known I Unknown	
GPS coordinates: E	
Type of pump: Submersible ☑ Jet Pump □ Depth of Pump Intake (if known) .	
Well completed into: Bedrock Overburden (Soil) Both	
B. WELL WATER LEVELS:	
Indicate whether measured from	
Original water level depth in metres (on water well record)	
Subsequent water level measurements (give depths in metres and dates)	
2	
C. WATER QUANTITY	
Does your well supply enough water for your use? Yes 🖄 No 🗆	
If no, is this the case: All the time \Box Some of the time \Box Seasonally \Box Other	er
Use: Domestic: No 🗆 Yes 🖾 No. of persons using water from we	Ш
Domestic includes (circle/all that apply) Drinking Washing Cooking	i) /
Pool: No 🗹 Yes 🗆 / Lawn Watering/Garden: No 🗔	Yes 🖬
Livestock: No 🗆 Yes 🗹	
Industrial: No 🗹 Yes 🗆 (provide details)	END FOR FRANKLASSE
Irrigation: No 🗹 Yes 🗆 (provide details)	
Other Uses	
Have you ever experienced any problems with your well?	Smell, SPME block
If so, when? pipe trozen year	
	lugging
□ Increased Usage □ Interference □ Other (Please Specify)	
Golder Associates	

Did you ever have your well deepened or cleaned, or a new well constructed?
Pump test conducted? A register when constructed
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
UNSURÉ
D. WATER TREATMENT AND QUALITY
Fresh 🗆 Sulphur 🗹 Salty 🗔 Iron Staining 🗹 Soft 🗆 Hard 🗔
Water Treatment equipment: Softener 🗆 UV 🖾 Reverse Osmosis 🗆 Filters 🗆
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? Poor Good Excellent
Has your water quality previously been tested? No \Box Yes \Box \mathcal{N}/\mathcal{N}
If yes, for what and how often? (bacteriological, chemical analyses, etc.)X.A.
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey: DP D NOT WATUT TO GIVE WATER Where was the sample collected: SAMPLE
Where was the sample collected:
Ω
Field Measurements: Conductivity Temperature pH
E. SURFACE WATER
Are there any ponds, creeks etc. on the property?

SYSTEM DETAILS

What type of sewage disposal system do you have:


□ Holding Tank (sewage removed by regular pump-outs)

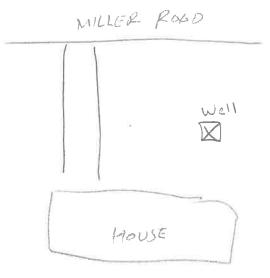
- Septic Tank and Leaching Bed
- Other method of on-site disposal. Specify
- □ Do not know

Date or year Constructed

How often do you have the holding tank or septic tank pumped out? HASN'T BEEN EMPTIED	
When was the last time?	
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding	
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual	
odours, soft ground, etc.)	

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

	PRIVATE WAT	FER WELL SURVEY	
	QUES	TIONNAIRE	
TYPE OF DWELLING:		☐ Commercial ☐ Other:	
	-ticinate in the ev	1	
Is the owner willing to pa	-	irvey? tes 🖂	Νο
(If no, record address be	10w)		
I. OWNER / OCCUPANT	INFORMATION A	ND GENERAL QUESTIONS:	
OWNER:			
Name:	/	Telephone No. (business)
Address:	Mer Rd		
Number of Bathrooms		Number of Occupants	
OCCUPANT (if other that	n Owner):		/
Name:		Telephone No. (business)
Address:	/		
Number of Bathrooms		Number of Occupants	/
GENERAL QUESTIONS			
	/occupied this dwe	llina? 4 years	
Is the property used year-	ound or seasonally	lling?	
Is well water used for drink	king water supply?	Yes 🗆 No 🗹	
If no, why not? CRVAL	ITY corred	ed pipes in the how	ve before T
Are there any other wells of	or water supplies us	sed on the property?	
If no, how long has it been	since well water w	as used for drinking?	UPE
If no, what is the origin of o	drinking water?		
II. WATER WELL			
A. WELL CONSTRUCTION	ON DETAILS:		
	MOF Water Well F		
Do you have a conv of the			
Do you have a copy of the		⊡-No	
		RD, IF POSSIBLE	
Do you have a copy of the ATTACH A COPY OF WA Date or Year Constructed	NTER WELL RECO		N/A


Is Well Vented and How?:
Top of Well Casing is
1) Above ground surface 2) Buried inside a well pit 2 3) Buried, but not in a well pit 2
The accurate location of the well is Known I Unknown
GPS coordinates: E N
Type of pump: Submersible 🗹 Jet Pump \Box Depth of Pump Intake (if known)
Well completed into: Bedrock
B. WELL WATER LEVELS:
Indicate whether measured from \Box ground level or \Box from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
X
C. WATER QUANTITY
Does your well supply enough water for your use? Yes 🗹 No 🗆
If no, is this the case: All the time \Box Some of the time \Box Seasonally \Box Other
Use: Domestic: No 🗹 Yes 🗆 No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No 🗌 Yes 🗌 Lawn Watering/Garden: No 🗌 Yes 🗹
Livestock: No 🗆 Yes 🗹
Industrial: No 🗆 Yes 🗆 (provide details)
Irrigation: No D Yes Ir (provide details)
Other Uses
Have you ever experienced any problems with your well? If so, when?
What was the cause of the problem? Drought Pump Failure Plugging
□ Increased Usage □ Interference □ Other (Please Specify)
Golder Associates

Did you ever have your well deepened or cleaned, or a new well constructed?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
D. WATER TREATMENT AND QUALITY
Fresh 🗋 Sulphur 🗹 Salty 🗆 Iron Staining 🗹 Soft 🗆 Hard 🗆
Water Treatment equipment: Softener 🗌 UV 🗌 Reverse Osmosis 🗌 Filters 🗌
Other equipment in use (if any):
Has your water quality previously been tested? No \Box Yes \Box $WSURE$
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey: YES Where was the sample collected: Right from the wall, with built in purv
Field Measurements: Conductivity 972 Temperature 17-6 pH 8.06
E. SURFACE WATER

	NO
Are there any ponds, creeks etc. on the property?	
If yes, indicate size and depth? Use?	?

SYSTEM DETAILS

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

S:\Active\2017\3 Proj\1771656 Rankin_License App_Port Colborne\Phase 1000 Hydrogeology\Task 1002 - Water Well Survey\Private Well Survey Form 2017.doc 2017 Sept 5

÷

PRIVATE WATER WELL SURVEY QUESTIONNAIRE

TYPE OF DWELLING: Residential Commercial Institutional Other:
Is the owner willing to participate in the survey? Yes No (If no, record address below)
I. OWNER / OCCUPANT INFORMATION AND GENERAL QUESTIONS:
OWNER: Image: Comparison of Bathrooms Number of Bathrooms Image: Comparison of Comparison
OCCUPANT (if other than Owner):
Name: Telephone No. (business) Address: Telephone No. (home) Number of Bathrooms Number of Occupants
GENERAL QUESTIONS
How long have you owned/occupied this dwelling?
Is the property used year-round or seasonally?
Is well water used for drinking water supply? Yes \Box No \Box If no, why not?
Are there any other wells or water supplies used on the property?
If no, how long has it been since well water was used for drinking?
If no, what is the origin of drinking water?
II. WATER WELL
A. WELL CONSTRUCTION DETAILS:
Do you have a copy of the MOE Water Well Record? □ Yes (Well Record #
ATTACH A COPY OF WATER WELL RECORD, IF POSSIBLE
Date or Year Constructed
Type of Well: Drilled Dug Dug Well Diameter (inches)
Present Well Depth: Original Well Depth

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface 2) Buried inside a well pit 3) Buried, but not in a well pit
The accurate location of the well is Known 🗆 Unknown 🗹
GPS coordinates: E N
Type of pump: Submersible 🗹 Jet Pump 🗆 Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil) Both
B. WELL WATER LEVELS:
Indicate whether measured from ground level or from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes I No
If no, is this the case: All the time \Box Some of the time \Box Seasonally \Box Other
Use: Domestic: No 🗆 Yes 🗹 No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No 🗹 Yes 🗆 Lawn Watering/Garden: No 🗆 Yes 🗹
Livestock: No 🗹 Yes 🗆
Industrial: No 🗹 Yes 🗆 (provide details)
Irrigation: No 🗹 Yes 🗔 (provide details)
Other Uses
Have you ever experienced any problems with your well?
If so, when?
What was the cause of the problem? \Box Drought \Box Pump Failure \Box Plugging
□ Increased Usage □ Interference □ Other (Please Specify)
Golder Associates

Did you ever have your well deepened or cleaned, or a new well constructed?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
D. WATER TREATMENT AND QUALITY
Fresh Sulphur Salty I Iron Staining Soft Hard
Water Treatment equipment: Softener \Box UV \Box Reverse Osmosis \Box Filters \Box
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? I Poor Good Excellent
Has your water quality previously been tested? No 🗹 Yes 🗆
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
VES
Water sample collected during this survey:
Where was the sample collected: from Lock yourd trose
Field Measurements: Conductivity. 783 Temperature

E. SURFACE WATER

Are there any ponds, creeks etc. on the property?	
f yes, indicate size and depth? Use?	

SYSTEM DETAILS
What type of sewage disposal system do you have:
Holding Tank (sewage removed by regular pump-outs)
Septic Tank and Leaching Bed
Other method of on-site disposal. Specify
Do not know reinstalled 20+ years
Date or year Constructed Contractor
How often do you have the holding tank or septic tank pumped out?
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Did not see well on visit owners think it is buried

Completed by: T.Proks Date Sept 5, 2017

S:Vactive/2017/3 Proj/1771656 Rankin_License App_Port Colborne/Phase 1000 Hydrogeology/Task 1002 - Water Well Survey/Private Well Survey Form 2017.doc

2017 Sept 5			
PRIVATE WATER WELL SURVEY QUESTIONNAIRE			
	ommercial her:		
Is the owner willing to participate in the survey	? Yes 🗹 No 🗆		
(If no, record address below)			
I. OWNER / OCCUPANT INFORMATION AND G	ENERAL QUESTIONS:		
OWNER: Name: Address:	Telephone No. (business) Telephone No. (home) Number of Occupants		
OCCUPANT (if other than Owner):			
Name: Address: Number of Bathrooms	Telephone No. (business) Telephone No. (home) Number of Occupants		
GENERAL QUESTIONS			
How long have you owned/occupied this dwelling? Is the property used year-round or seasonally? Is well water used for drinking water supply? Ye	19779 YES es 12 No □		
If no, why not?			
Are there any other wells or water supplies used of If no, how long has it been since well water was us If no, what is the origin of drinking water?	n the property?		
II. WATER WELL			
A. WELL CONSTRUCTION DETAILS:			
Do you have a copy of the MOE Water Well Reco			
ATTACH A COPY OF WATER WELL RECORD,	□ No IF POSSIBLE		
Date or Year Constructed ~ 1977	Contractor		
Type of Well: Drilled 🗹 Dug 🗆 Well Diar			
Present Well Depth: • 40 Original We	I Depth		

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface \Box 2) Buried inside a well pit \Box 3) Buried, but not in a well pit \Box
The accurate location of the well is Known $ abla$ Unknown \Box
GPS coordinates: E N
Type of pump: Submersible 🗹 Jet Pump 🗆 Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil) Both
B. WELL WATER LEVELS:
Indicate whether measured from \Box ground level or \Box from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes 🗹 No 🗆
If no, is this the case: All the time \Box Some of the time \Box Seasonally \Box Other
Use: Domestic: No 🗆 Yes 🗗 No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No 🗹 Yes 🗆 Lawn Watering/Garden: No 🗆 Yes 🗹
Livestock: No 🗌 Yes 🗹
Industrial: No 🗹 Yes 🗆 (provide details)
Irrigation: No 🗹 Yes 🗆 (provide details)
Other Uses
Have you ever experienced any problems with your well? … <u>ハゥルト</u>
If so, when?
What was the cause of the problem? Drought Pump Failure Plugging
□ Increased Usage □ Interference □ Other (Please Specify)
Golder Associates

Did you ever have your well deepened or cleaned, or a new well constructed? \mathcal{PO}
If so, why?
Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)

D. WATER TREATMENT AND QUALITY
Fresh 🖸 Sulphur 🗹 Salty 🗆 Iron Staining 🗹 Soft 🗇 Hard 🗹
Water Treatment equipment: Softener 🗹 UV 🗆 Reverse Osmosis 🗹 Filters 🗹
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when? IN THE HOUSE
How would you describe the quality of your water? Poor Good Excellent
Has your water quality previously been tested? No I Yes I
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey: no tap before treatment system
Where was the sample collected:
Field Measurements: Conductivity Temperature pH

E. SURFACE WATER

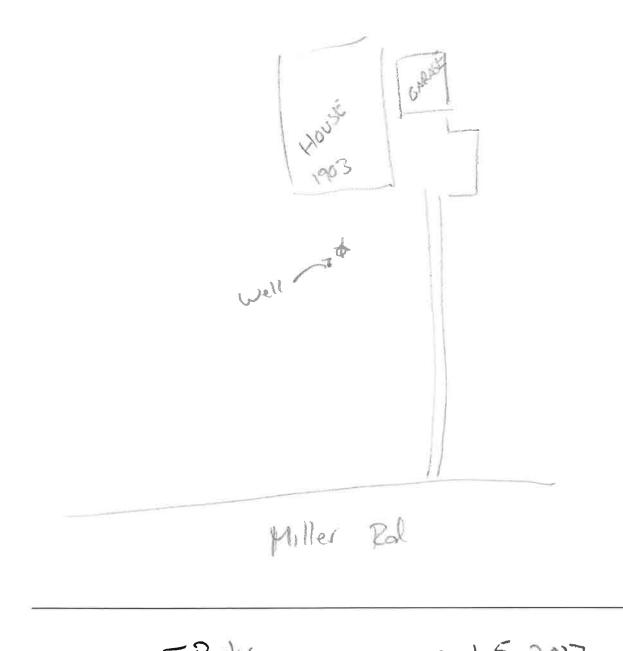
į.

E. SURFACE WATER		1
Are there any ponds, creeks etc. on the property?	YES	PONIS
If yes, indicate size and depth? Use?80×40	14'	
If yes, indicate size and depth? Use?QQQ	.7.0	

SYSTEM DETAILS

What type of sewage disposal system do you have:

Holding Tank (sewage removed by regular pump-outs)


☑ Septic Tank and Leaching Bed

□ Other method of on-site disposal. Specify

Do not know

Date or year Constructed 1995. Contractor

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Date Sept 5,2017 T.Proks Completed by:

S:Vactive/2017/3 Proj\1771656 Rankin_License App_Port Colborne\Phase 1000 Hydrogeology\Task 1002 - Water Well Survey\Private Well Survey Form 2017 doc

2017 Sept 5		
PRIVATE WATER WELL SURVEY QUESTIONNAIRE		
TYPE OF DWELLING: 🗹 Residential 🛛 Commercial		
Institutional Other:		
Is the owner willing to participate in the survey? Yes $ abla$ No \Box		
(If no, record address below)		
I. OWNER / OCCUPANT INFORMATION AND GENERAL QUESTIONS:		
OWNER:		
Name: Telephone No. (business)		
Address: Addre		
Number of Bathrooms		
OCCUPANT (if other than Owner):		
Name: Telephone No. (business)		
Address:		
Number of Bathrooms		
GENERAL QUESTIONS		
How long have you owned/occupied this dwelling? 2 years in Dec		
Is the property used year-round or seasonally?		
Is well water used for drinking water supply? Yes M No		
If no, why not?		
Are there any other wells or water supplies used on the property?		
If no, how long has it been since well water was used for drinking?		
If no, what is the origin of drinking water?		
II. WATER WELL		
A. WELL CONSTRUCTION DETAILS:		
Do you have a copy of the MOE Water Well Record? □ Yes (Well Record #		
ATTACH A COPY OF WATER WELL RECORD, IF POSSIBLE		
Date or Year Constructed Contractor		
Type of Well: Drilled 🗹 Dug 🗆 Well Diameter (inches)		
Present Well Depth: いりる' Original Well Depth D Same as Present		

÷

14

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface 2) Buried inside a well pit 3) Buried, but not in a well pit
The accurate location of the well is Known I Unknown Did not see
CDS apardinatos: E
Type of pump: Submersible D Jet Pump D Depth of Pump Intake (if known) SHALLAN WELL
Well completed into: Bedrock
B. WELL WATER LEVELS:
Indicate whether measured from
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes $ abla = 1$ No
If no, is this the case: All the time \Box Some of the time \Box Seasonally \Box Other
Use: Domestic: No 🗆 Yes 🗹 No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No 🗹 Yes 🗆 Lawn Watering/Garden: No 🗆 Yes 🗆
Livestock: No 🗆 Yes 🗹
Industrial: No 🗹 Yes 🗆 (provide details)
Irrigation: No 🗹 Yes 🗆 (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well?
If so, when?
What was the cause of the problem? Drought Pump Failure Plugging
□ Increased Usage □ Interference □ Other (Please Specify)
Golder Associates

Did you ever have your well deepened or cleaned, or a new well constructed?
If so, why?
Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
/
f
D. WATER TREATMENT AND QUALITY
Fresh 🗹 Sulphur 🗹 Salty 🗆 Iron Staining 🗆 Soft 🗆 Hard 🗹
Water Treatment equipment: Softener 🗹 UV 🗆 Reverse Osmosis 🗆 Filters 🗹
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? Poor Good Excellent
Has your water quality previously been tested? No D Yes
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:
Where was the sample collected: from outside tap in front of house
water runs through roinfresh Filter
Field Measurements: Conductivity.//68Temperature

E. SURFACE WATER

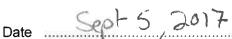
Are there any ponds, creeks etc. on th	e property?		
If yes, indicate size and depth? Use?	50××25 psp4	unsue 7	in the Inidale

SYSTEM DETAILS

What type of sewage disposal system do you have:

- □ Holding Tank (sewage removed by regular pump-outs)
- Septic Tank and Leaching Bed
- Other method of on-site disposal. Specify
- □ Do not know

Date or year Constructed Contractor


How often do you have the holding tank or septic tank pumped out?
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Did not see well on visit

Completed by:

T.Proks

S:Vactive/2017\3 Proj\1771656 Rankin_License App_Port Colborne\Phase 1000 Hydrogeology\Task 1002 - Water Well Survey\Private Well Survey Form 2017.doc

	PRIVATE WATER QUESTIO		
TYPE OF DWELLING:		Commercial Dther:	
Is the owner willing to p	participate in the surve	ey? Yes	No 🗆
(If no, record address b	elow)		
I. OWNER / OCCUPANT	INFORMATION AND	GENERAL QUESTIONS:	
OWNER:			11
Name:	MillerRa	Telephone No. (business	
	10 mar vea	Telephone No. (home) .	1 1
Number of Bathrooms		Number of Occupants ,	
OCCUPANT (if other that	an Owner):		
Name:		Telephone No. (business	
Address:		Telephone No. (home) .	
Number of Bathrooms		Number of Occupants	
GENERAL QUESTIONS			
	ed/occupied this dwelling	1? vlyær	
	-round or seasonally?		
Is the property used year			
Is the property used year Is well water used for drin	nking water supply?	Yes 🗹 No 🗆	
Is the property used year Is well water used for drin If no, why not?	nking water supply?	Yes 🗹 No 🗆	
Is the property used year Is well water used for drin If no, why not? Are there any other wells	nking water supply?	Yes No ロ on the property?んの	
Is the property used year Is well water used for drin If no, why not? Are there any other wells If no, how long has it bee	nking water supply?	Yes No □ on the property?	
Is the property used year Is well water used for drin If no, why not? Are there any other wells If no, how long has it bee	nking water supply?	Yes No ロ on the property?んの	
Is the property used year Is well water used for drin If no, why not? Are there any other wells If no, how long has it bee	nking water supply?	Yes No □ on the property?	
Is the property used year Is well water used for drin If no, why not? Are there any other wells If no, how long has it bee If no, what is the origin of	nking water supply?	Yes No □ on the property?	
Is the property used year Is well water used for drin If no, why not? Are there any other wells If no, how long has it bee If no, what is the origin of II. WATER WELL A. WELL CONSTRUCT	or water supply?	Yes No D	
Is the property used year Is well water used for drin If no, why not? Are there any other wells If no, how long has it bee If no, what is the origin of II. WATER WELL A. WELL CONSTRUCT	or water supply?	Yes No C on the property?	
Is the property used year Is well water used for drin If no, why not? Are there any other wells If no, how long has it bee If no, what is the origin of II. WATER WELL A. WELL CONSTRUCT Do you have a copy of the ATTACH A COPY OF W	or water supplies used or water supplies used on since well water was f drinking water? ION DETAILS: he MOE Water Well Rec VATER WELL RECORD	Yes No □ on the property?	
Is the property used year Is well water used for drin If no, why not? Are there any other wells If no, how long has it bee If no, what is the origin of II. WATER WELL A. WELL CONSTRUCT Do you have a copy of the ATTACH A COPY OF W	or water supplies used or water supplies used on since well water was f drinking water? ION DETAILS: he MOE Water Well Rec VATER WELL RECORD	Yes No □ on the property?	
Is the property used year Is well water used for drin If no, why not? Are there any other wells If no, how long has it bee If no, what is the origin of II. WATER WELL A. WELL CONSTRUCT Do you have a copy of the ATTACH A COPY OF W	or water supplies used or water supplies used on since well water was f drinking water? ION DETAILS: he MOE Water Well Rec VATER WELL RECORD	Yes No □ on the property?	

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface 2 2) Buried inside a well pit 3 3) Buried, but not in a well pit 1
The accurate location of the well is Known $\overline{\mathbb{M}}'$ Unknown \Box
GPS coordinates: E N
Type of pump: Submersible 🛛 Jet Pump 🗆 Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil) Both
B. WELL WATER LEVELS:
Indicate whether measured from ground level or from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes Yes No
If no, is this the case: All the time \Box Some of the time \Box Seasonally \Box Other
Use: Domestic: No 🗆 Yes 🗹 No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No 🗹 / Yes 🗆 Lawn Watering/Garden: No 🗆 Yes 🔽
Livestock: No 🖾 Yes 🗆
Industrial: No 🗹 Yes 🗆 (provide details)
Irrigation: No 🗹 Yes 🗆 (provide details)
Other Uses
Have you ever experienced any problems with your well? MOUE SO FAR
If so, when?
What was the cause of the problem? Drought Pump Failure Plugging
□ Increased Usage □ Interference □ Other (Please Specify) Golder Associates

Did you ever have your well deepened or cleaned, or a new well constructed?
Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
Fgallmin
D. WATER TREATMENT AND QUALITY
Fresh 🗹 Sulphur 🗆 Salty 🗆 Iron Staining 🗆 Soft 🗔 Hard 🗹
Water Treatment equipment: Softener $ earrow UV \square$ Reverse Osmosis \square Filters $ earrow V$
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? Poor Good Excellent
Has your water quality previously been tested? No Yes
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:Yes.
Where was the sample collected: From top in the garage
Field Measurements: Conductivity. 1855. Temperature 19.5. pH. 8.04

E. SURFACE WATER

Are there any ponds, creeks etc. on the property?	
If yes, indicate size and depth? Use? $\mathcal{N}^{\mathcal{D}}$	

SYSTEM DETAILS

What type of sewage disposal system do you have:

□ Holding Tank (sewage removed by regular pump-outs)

 \square Septic Tank and Leaching Bed

□ Other method of on-site disposal. Specify

Do not know

Date or year Constructed 2016. Contractor

How often do you have the holding tank or septic tank pumped out?	NOT VET
When was the last time?	
Have you ever had any problems with your sewage disposal systems	? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visil	bly stained areas, unusual

odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

T. Proks Date Sept 5, 2017 Completed by:

S:Vactive/2017/3 Proj\1771656 Rankin_License App_Port Colborne/Phase 1000 Hydrogeology/Task 1002 - Water Well Survey/Private Well Survey Form 2017.doc

2017 Sept 5		
PRIVATE WATER WELL SURVEY QUESTIONNAIRE		
TYPE OF DWELLING: Image: Commercial Image: Institutional Image: Other: Image: Commercial		
Is the owner willing to participate in the survey? Yes ☑ No □		
(If no, record address below)		
I. OWNER / OCCUPANT INFORMATION AND GENERAL QUESTIONS:		
OWNER:		
Name:	/	
Address: 2261 2 nd (concession Telephone No. (home)	1	
Number of Bathrooms Number of Occupants	2	
OCCUPANT (if other than Owner):		
Name: Telephone No. (business)		
Address:		
Number of Bathrooms		
GENERAL QUESTIONS How long have you owned/occupied this dwelling? Is the property used year-round or seasonally? Is well water used for drinking water supply? Yes M No If no, why not? Are there any other wells or water supplies used on the property?		
If no, how long has it been since well water was used for drinking?		
If no, what is the origin of drinking water?		
II. WATER WELL		
A. WELL CONSTRUCTION DETAILS:		
Do you have a copy of the MOE Water Well Record? Well Record #)	
ATTACH A COPY OF WATER WELL RECORD, IF POSSIBLE		
Date or Year Constructed 73^{5} Contractor		
Type of Well: Drilled 🗹 Dug 🗆 Well Diameter (inches)		
Present Well Depth: $35'-46'$ Original Well Depth Same as Pre	sent	

.

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface \square 2) Buried inside a well pit \square 3) Buried, but not in a well pit \square
The accurate location of the well is Known I Unknown I we didn't see where well was
GPS coordinates: E N
Type of pump: Submersiblev Jet Pump Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil) Both
B. WELL WATER LEVELS:
Indicate whether measured from \Box ground level or \Box from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes 🛛 No 🗆
If no, is this the case: All the time \Box Some of the time \Box Seasonally \Box Other
Use: Domestic: No 🗆 Yes 🗹 No. of persons using water from well?
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No 🗹 Yes 🗆 Lawn Watering/Garden: No 🗆 Yes 🗊
Livestock: No 🗹 Yes 🗆
Industrial: No 🗹 Yes 🗆 (provide details)
Irrigation: No 🗹 Yes 🗆 (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well?
If so, when? E. col. from neighbouring sheep Form property (no longer exists)
What was the cause of the problem? Drought Pump Failure Plugging
□ Increased Usage □ Interference □ Other (Please Specify)
Golder Associates

117
Did you ever have your well deepened or cleaned, or a new well constructed?
If so, why?
If so, why? Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
D. WATER TREATMENT AND QUALITY
Fresh 🗹 Sulphur 🗆 Salty 🗆 Iron Staining 🗆 Soft 🗆 Hard 🗹
Water Treatment equipment: Softener \Box UV \Box Reverse Osmosis \Box Filters 🗹
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? Poor Good Excellent
Has your water quality previously been tested? No \Box Yes Σ'
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
From chicken plant aiross the road
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS
RESULTS ON THE WELL WATER, IF AVAILABLE
ligger and which at unt
Water sample collected during this survey: the sample collected:
Where was the sample collected:
Field Measurements: Conductivity Temperature pH

E. SURFACE WATER

E. OOR ADE WATER
Are there any ponds, creeks etc. on the property?
Are there any policis, creeks etc. on the property
If yes, indicate size and depth? Use?

SYSTEM DETAILS

What type of sewage disposal system do you have:

□ Holding Tank (sewage removed by regular pump-outs)

Septic Tank and Leaching Bed

C Other method of on-site disposal. Specify

Do not know

Date or year Constructed
How often do you have the holding tank or septic tank pumped out?
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Did not see where well was

Completed by:

T. Proks

Date Sept 5, 2017

S: Active\2017\3 Proj\1771656 Rankin_License App_Port Colborne\Phase 1000 Hydrogeology\Task 1002 - Water Well Survey\Private Well Survey Form 2017.doc

2017 Sept 5
PRIVATE WATER WELL SURVEY QUESTIONNAIRE
TYPE OF DWELLING: Image: Commercial Institutional Other:
Is the owner willing to participate in the survey? Yes \square No \square
(If no, record address below)
I. OWNER / OCCUPANT INFORMATION AND GENERAL QUESTIONS:
OWNER: Name: Telephone No. (business) Name: Telephone No. (business) Address: 17.50 Killaly Number of Bathrooms Number of Occupants
OCCUPANT (if other than Owner):
Name: Telephone No. (business) Address: Telephone No. (home) Number of Bathrooms Number of Occupants
GENERAL QUESTIONS
How long have you owned/occupied this dwelling? 52 years
Is the property used year-round or seasonally?
Is well water used for drinking water supply? Yes \square No \square
If no, why not?
Are there any other wells or water supplies used on the property?
If no, how long has it been since well water was used for drinking?
If no, what is the origin of drinking water?
II. WATER WELL
II. WATER WELL Well ID #: A. WELL CONSTRUCTION DETAILS: A091778
Do you have a copy of the MOE Water Well Record? □ Yes (Well Record #
ATTACH A COPY OF WATER WELL RECORD, IF POSSIBLE
Date or Year Constructed $2014/2015$ Contractor Schoolery Prilling Type of Well: Drilled \square Dug \square Well Diameter (inches) $4''$
Present Well Depth:

4

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface \square 2) Buried inside a well pit \square 3) Buried, but not in a well pit \square
The accurate location of the well is Known \square Unknown \square
GPS coordinates: E N
Type of pump: Submersible 🗹 Jet Pump 🗆 Depth of Pump Intake (if known)
Well completed into: Bedrock
B. WELL WATER LEVELS:
Indicate whether measured from \Box ground level or \Box from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes 🗹 No 🗀
If no, is this the case: All the time
Use: Domestic: No 🗆 Yes 🗹 No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No 🗹 Yes 🗆 Lawn Watering/Garden: No 🗆 Yes 🗹
Livestock: No 🗹 Yes 🗆
Industrial: No 🗹 Yes 🗆 (provide details)
Irrigation: No 🗹 Yes 🗆 (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well?
If so, when?
What was the cause of the problem? Drought Pump Failure Plugging
□ Increased Usage □ Interference □ Other (Please Specify) Golder Associates
Golder Associates

2017 Water Well and Sewage Disposal System Survey Questionnaire

Did you ever have your well deepened or cleaned, or a new well constructed? NEW WELL
If so, why?
Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
D. WATER TREATMENT AND QUALITY
Fresh 🗹 Sulphur 🗆 Salty 🗆 Iron Staining 🗹 Soft 🗔 Hard 🗹
Water Treatment equipment: Softener 🗤 UV 🗹 Reverse Osmosis 🗹 Filters 🗹
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? Poor Good Excellent
Has your water quality previously been tested? No D Yes D
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS
RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:
Water sample collected during this survey: 11es Where was the sample collected: from outside top in body yard
~
Field Measurements: Conductivity

E. SURFACE WATER

Are there any ponds, creeks etc. on the property? $\mathcal{V} \bigcirc$	
f yes, indicate size and depth? Use?	

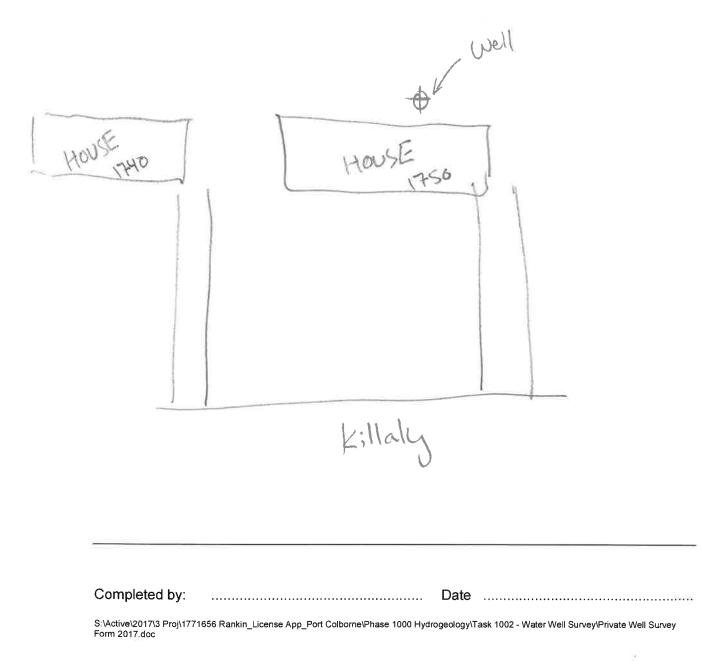
SYSTEM DETAILS

What type of sewage disposal system do you have:

□ Holding Tank (sewage removed by regular pump-outs)

Septic Tank and Leaching Bed

Other method of on-site disposal. Specify


Do not know

How often do you have the holding tank or septic tank pumped out?
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.)

Page 5 of 5

IV. PROPERTY SKETCH AND PHOTOGRAPHS

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

	QUESTIC	DNNAIRE
TYPE OF DWELLING:		Commercial Other:
lo the owner willing to	norticipate in the surv	ev? Yes No 🗆
Is the owner willing to		
(If no, record address b		
I. OWNER / OCCUPAN	T INFORMATION AND	GENERAL QUESTIONS:
OWNER:		/
Name:		Telephone No. (business)
Address:	illerly	Telephone No. (home)
Number of Bathrooms	0	Number of Occupants
OCCUPANT (if other th	an Owner):	
Name:		Telephone No. (business)
Address:		Telephone No. (home)
Number of Bathrooms		Number of Occupants
GENERAL QUESTIONS		41
How long have you owne		g?
Is the property used year	•	
Is well water used for dri		Yes 🖉 No 🗆
-		124
		on the property?
If no, how long has it bee		used for drinking?
16 1 1 1 1 1 1 1 1	f drinking water?	
If no, what is the origin o	Ū	
If no, what is the origin o		
II. WATER WELL	_	_
II. WATER WELL A. WELL CONSTRUCT	TION DETAILS:	
II. WATER WELL A. WELL CONSTRUCT	TION DETAILS:	cord? Yes (Well Record #
II. WATER WELL A. WELL CONSTRUCT	TION DETAILS: ne MOE Water Well Rec	ord? □Yes (Well Record #
 II. WATER WELL A. WELL CONSTRUCT Do you have a copy of the ATTACH A COPY OF WELL 	TION DETAILS: ne MOE Water Well Rec VATER WELL RECORE	ord? □ Yes (Well Record # □ No D, IF POSSIBLE
 II. WATER WELL A. WELL CONSTRUCT Do you have a copy of the ATTACH A COPY OF WELL 	TION DETAILS: ne MOE Water Well Rec VATER WELL RECORE	ord? □Yes (Well Record #

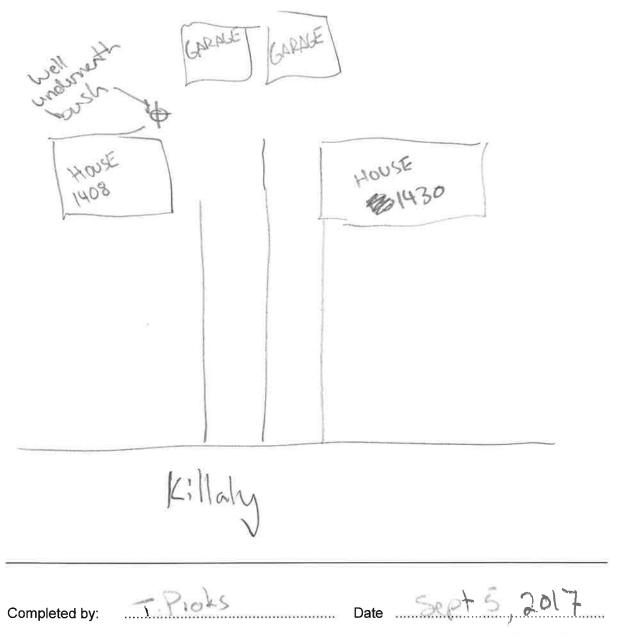
Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface \square 2) Buried inside a well pit \square 3) Buried, but not in a well pit \square
The accurate location of the well is Known \square Unknown \square
GPS coordinates: E
Type of pump: Submersible D Jet Pump Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil) Both Both
B. WELL WATER LEVELS:
Indicate whether measured from ground level or from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes 🗹 No 🗆
If no, is this the case: All the time \Box Some of the time \Box Seasonally \Box Other
Use: Domestic: No 🗆 Yes 🗹 No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No 🗹 Yes 🗆 Lawn Watering/Garden: No 🗆 Yes 🗆
Livestock: No 🗹 Yes 🗆
Industrial: No 🗹 Yes 🗆 (provide details)
Irrigation: No 🗹 Yes 🗆 (provide details)
Other Uses
Have you ever experienced any problems with your well? None, pump failure once
If so, when?
What was the cause of the problem?
🗆 Increased Usage 🛛 Interference 🖾 Other (Please Specify)
Golder Associates

2017 Water Well and Sewage Disposal System Survey Questionnaire

Did you aver have your well deepend or elegand, or a new yoll constructed 2 \mathcal{V}
Did you ever have your well deepened or cleaned, or a new well constructed?
If so, why? Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
D. WATER TREATMENT AND QUALITY
Fresh 🗆 Sulphur 🗹 Salty 🗆 Iron Staining 🗆 Soft 🗆 Hard 🕏
Water Treatment equipment: Softener 🗆 UV 🗆 Reverse Osmosis 🗆 Filters 🗆
Other equipment in use (if any):Colleger
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? Poor Good Excellent
Has your water quality previously been tested? No D Yes
If yes, for what and how often? (bacteriological, chemical analyses, etc.) tested when sall
is replaced
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Ves
Water sample collected during this survey:
Where was the sample collected: from outside tap @ side of house

Field Measurements: Conductivity $/250$ Temperature 219 pH 3.55

E. SURFACE WATER


Are there any ponds, creeks etc. on the property?
If yes, indicate size and depth? Use?

298

SYSTEM DETAILS		
What type of sewage disposal system do you have:		
\Box Holding Tank (sewage removed by regular pump-outs)		
Septic Tank and Leaching Bed		
Other method of on-site disposal. Specify		
Do not know		
Date or year Constructed Contractor New one put in ~10-15 years		
How often do you have the holding tank or septic tank pumped out?		
When was the last time?		
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding		
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual		
odours, soft ground, etc.)		

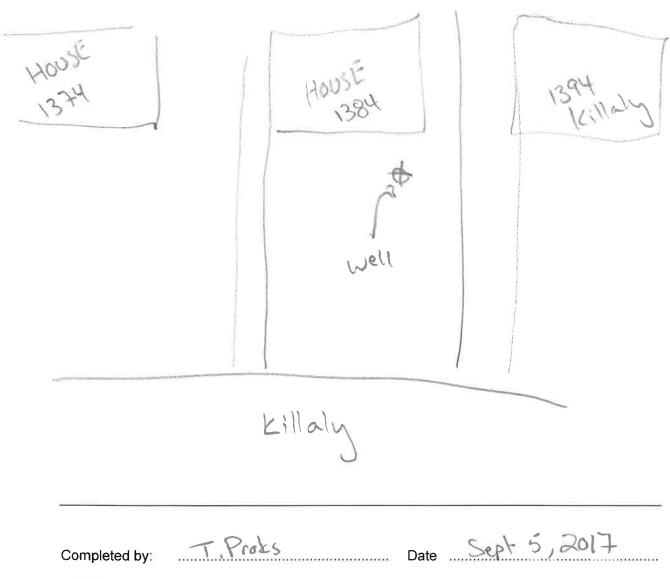
III. SEWAGE DISPOSAL SYSTEM

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

S:\Active\2017\3 Proj\1771656 Rankin_License App_Port Colborne\Phase 1000 Hydrogeology\Task 1002 - Water Well Survey\Private Well Survey Form 2017.doc

2017 Sept 5
PRIVATE WATER WELL SURVEY QUESTIONNAIRE
TYPE OF DWELLING: I Residential Commercial
Is the owner willing to participate in the survey? Yes $ ensuremath{\mathbb{M}}$ No \Box
(If no, record address below)
I. OWNER / OCCUPANT INFORMATION AND GENERAL QUESTIONS:
OWNER:
Name:
Address: 1384 Killaly Telephone No. (home)
Number of Bathrooms
OCCUPANT (if other than Owner):
Name:
Address:
Number of Bathrooms
GENERAL QUESTIONS
How long have you owned/occupied this dwelling?
Is the property used year-round or seasonally?
Is well water used for drinking water supply? Yes D No M
If no, why not?
Are there any other wells or water supplies used on the property?
If no, how long has it been since well water was used for drinking?
If no, what is the origin of drinking water?
II. WATER WELL
A. WELL CONSTRUCTION DETAILS:
Do you have a copy of the MOE Water Well Record? Yes (Well Record #
ATTACH A COPY OF WATER WELL RECORD, IF POSSIBLE
Date or Year Constructed
Type of Well: Drilled 🗹 Dug 🗆 Well Diameter (inches)
Present Well Depth: N/N Original Well Depth
Golder Associates

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface 2) Buried inside a well pit 3) Buried, but not in a well pit
The accurate location of the well is Known I Unknown
GPS coordinates: EN/A NN/A
Type of pump: Submersible 🗹 Jet Pump 🗆 Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil) Both
B. WELL WATER LEVELS:
Indicate whether measured from
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes 🗹 No 🗆
If no, is this the case: All the time \Box Some of the time \Box Seasonally \Box Other
Use: Domestic: No 🗆 Yes 🗹 No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No 🗹 Yes 🗆 Lawn Watering/Garden: No 🗆 Yes 🗆
Livestock: No 🗹 Yes 🗆
Industrial: No 🗹 Yes 🗆 (provide details)
Irrigation: No 🗹 Yes 🗆 (provide details)
Other Uses
Have you ever experienced any problems with your well?
If so, when?
What was the cause of the problem?
□ Increased Usage □ Interference □ Other (Please Specify)
Golder Associates


10
Did you ever have your well deepened or cleaned, or a new well constructed?
If so, why?
Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
2
D. WATER TREATMENT AND QUALITY
Fresh 🗆 Sulphur 🗹 Salty 🗆 Iron Staining 🗆 Soft 🗆 Hard 🗔
Water Treatment equipment: Softener 🗌 UV 🗌 Reverse Osmosis 🗔 Filters 🗆
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when? んう
How would you describe the quality of your water? Poor Good Excellent
Has your water quality previously been tested? No 🗹 Yes 🗆
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS
RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:
Where was the sample collected: from outside hose at side of house
where was the sample conected.
Field Measurements: Conductivity 683 Temperature 22.8 pH.7.84
Provide measurements. Conductivity
E. SURFACE WATER

	. 1 /
Are there any ponds, creeks etc. on the property?.	NO
If yes, indicate size and depth? Use?	\frown

SYSTEM DETAILS

What type of sewage disposal system do you have:
Holding Tank (sewage removed by regular pump-outs)
Septic Tank and Leaching Bed
Other method of on-site disposal. Specify
Do not know
Date or year Constructed Contractor
How often do you have the holding tank or septic tank pumped out?
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

S:\Active\2017\3 Proj\1771656 Rankin_License App_Port Colborne\Phase 1000 Hydrogeology\Task 1002 - Water Well Survey\Private Well Survey Form 2017.doc

2017 Sept 5					
PRIVATE WATER WELL SURVEY QUESTIONNAIRE					
TYPE OF DWELLING: V Residential Commercial					
Is the owner willing to participate in the survey? Yes 🛛 No 🗆					
(If no, record address below)					
I. OWNER / OCCUPANT INFORMATION AND GENERAL QUESTIONS:					
OWNER: Name: Telephone No. (business) Name: Number of Bathrooms Telephone No. (home)					
OCCUPANT (if other than Owner):					
Name: Telephone No. (business) Address: Telephone No. (home) Number of Bathrooms Number of Occupants					
GENERAL QUESTIONS					
How long have you owned/occupied this dwelling? 30 year S Is the property used year-round or seasonally? 485 Is well water used for drinking water supply? Yes \Box No \Box					
If no, why not?					
Are there any other wells or water supplies used on the property? NO If no, how long has it been since well water was used for drinking? $Never MSEC$ If no, what is the origin of drinking water? $Cistern f.bothed$					
II. WATER WELL					
A. WELL CONSTRUCTION DETAILS:					
Do you have a copy of the MOE Water Well Record? □ Yes (Well Record #					
ATTACH A COPY OF WATER WELL RECORD, IF POSSIBLE					
Date or Year Constructed					
Type of Well: Drilled □ Dug ☑ Well Diameter (inches)					
Present Well Depth: <u>~151</u> Original Well Depth Same as Present					

2017			
Water Well and	Sewage Disposa	System Surve	y Questionnaire

100

Is Well Vented and How?:					
Top of Well Casing is:					
1) Above ground surface 2) Buried inside a well pit 3) Buried, but not in a well pit					
The accurate location of the well is Known ∇ Unknown \Box					
GPS coordinates: E					
Type of pump: Submersible					
Well completed into: Bedrock Overburden (Soil) Both					
B. WELL WATER LEVELS:					
Indicate whether measured from \Box ground level or \square from top of casing					
Original water level depth in metres (on water well record)					
Subsequent water level measurements (give depths in metres and dates)					
C. WATER QUANTITY					
Does your well supply enough water for your use? Yes V No					
If no, is this the case: All the time \Box Some of the time \Box Seasonally \Box Other					
Use: Domestic: No 🗆 Yes 🖄 No. of persons using water from well					
Domestic includes (circle all that apply) Drinking Washing Cooking					
Pool: No 🖸 Yes 🗹 Lawn Watering/Garden: No 🗆 Yes 🗹					
Livestock: No 🗹 Yes 🗆					
Industrial: No 🗹 Yes 🗆 (provide details)					
Irrigation: No 🗹 Yes 🗆 (provide details)					
Other Uses					
Have you ever experienced any problems with your well?					
If so, when?					
What was the cause of the problem? Drought Pump Failure Plugging					
Increased Usage Interference Other (Please Specify)					
Golder Associates					

Did you ever have your well deepened or cleaned, or a new well constructed? $rac{\mathcal{VO}}{\mathcal{O}}$
If so, why?
Pump test conducted? $\mathcal{N}^{\mathcal{O}}$
If yes, record pumping rate, duration and water levels (static, pumping and recovery)
D. WATER TREATMENT AND QUALITY
Fresh 🗆 Sulphur 🗹 Salty 🗆 Iron Staining 🗆 Soft 🗆 Hard 🕑
Water Treatment equipment: Softener 🗌 UV 🗆 Reverse Osmosis 🗆 Filters 🗆
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? Poor Good Excellent
Has your water quality previously been tested? No 🗹 Yes 🗆
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:
Where was the sample collected: From dedicated submersible in due well
Field Measurements: Conductivity. 72. Temperature 19.9 pH.8.20
E. SURFACE WATER

Are there any ponds, creeks etc. on the property?	ND
If yes, indicate size and depth? Use?	

SYSTEM DETAILS

What type of sewage disposal system do you have:

□ Holding Tank (sewage removed by regular pump-outs)


☐ Septic Tank and Leaching Bed

□ Other method of on-site disposal. Specify

Do not know

Date or year Constructed Contractor
How often do you have the holding tank or septic tank pumped out? 5
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.) main line damaged from roots.

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

S:\Active\2017\3 Proj\1771656 Rankin_License App_Port Colborne\Phase 1000 Hydrogeology\Task 1002 - Water Well Survey\Private Well Survey Form 2017.doc

PRIVATE WATER WELL SURVEY				
QUESTIONNAIRE				

2

2017 , Sept 5

TYPE OF DWELLING: Image: Commercial Image: Institutional Image: Commercial					
Is the owner willing to participate in the survey? (If no, record address below)	Yes 🗹	No 🗆			
I. OWNER / OCCUPANT INFORMATION AND GE	ENERAL QUESTIONS:	· · · · · · · · · · · · · · · · · · ·			
OWNER:					
Name: didn't get	Telephone No. (business)	N/A			
Address: 1162 Weaver Rd	Telephone No. (home)				
Number of Bathrooms	Number of Occupants				
OCCUPANT (if other than Owner):					
Name: NIA	Telephone No. (business)	NIA			
Address:	Telephone No. (home)	<u>N/A</u>			
Number of Bathrooms N/A	Number of Occupants	N/A			
GENERAL QUESTIONS How long have you owned/occupied this dwelling? Is the property used year-round or seasonally? Is well water used for drinking water supply? Yes If no, why not? M/A Are there any other wells or water supplies used on the property? N/A If no, how long has it been since well water was used for drinking? N/A If no, what is the origin of drinking water?					
A. WELL CONSTRUCTION DETAILS:					
Do you have a copy of the MOE Water Well Record? □ Yes (Well Record #					
ATTACH A COPY OF WATER WELL RECORD, IF POSSIBLE					
Date or Year Constructed unsuce 15+ years Contractor N/A					
Type of Well: Drilled I Dug U Well Diameter (inches)					
Present Well Depth:					

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface 🗹 2) Buried inside a well pit \Box 3) Buried, but not in a well pit \Box
The accurate location of the well is Known \square
GPS coordinates: E
Type of pump: Submersible 🗆 Jet Pump 🗹 Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil) Both
B. WELL WATER LEVELS: \mathcal{N}/\mathcal{A} Indicate whether measured from \Box ground level or \Box from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes Mo
If no, is this the case: All the time
Use: Domestic: No 🗆 Yes 🗹 No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No 🗹 Yes 🗆 Lawn Watering/Garden: No 🗔 Yes 🗹
Livestock: No 🗹 Yes 🗆
Industrial: No 🗹 Yes 🗆 (provide details)
Irrigation: No 🗹 Yes 🗆 (provide details)
Other Uses
Have you ever experienced any problems with your well?
If so, when?
What was the cause of the problem? \Box Drought \Box Pump Failure \Box Plugging
□ Increased Usage □ Interference □ Other (Please Specify)
Golder Associates

Did you ever have your well deepened or cleaned, or a new well constructed?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)

D. WATER TREATMENT AND QUALITY

Fresh 🗹	Sulphur 🗆	Salty 🗆	Iron Sta	aining 🗆	Soft 🗆	Hard 🗆		
Water Trea	atment equipm	nent: Softei	ner 🗆	UV□	Reverse C	smosis 🗆	Filters	
Other equi	Other equipment in use (if any):							
Has your well recently been chlorinated and, if so, when?								
How would you describe the quality of your water? Poor Good Excellent								
Has your water quality previously been tested? No 🗹 Yes 🗆								
If yes, for what and how often? (bacteriological, chemical analyses, etc.)								

ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE

Water sample collected	d during this survey:
Where was the sample	e collected: N/A
Field Measurements:	Conductivity

E. SURFACE WATER

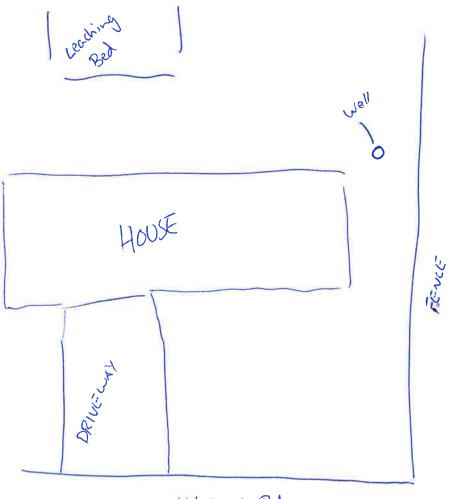
Are there any ponds, creeks etc. on the property?	NONE
If yes, indicate size and depth? Use?	

SYSTEM DETAILS

What type of sewage disposal system do you have:

□ Holding Tank (sewage removed by regular pump-outs)

Septic Tank and Leaching Bed


□ Other method of on-site disposal. Specify.....

Do not know

Date or year Constructed MA... Contractor

How often do you have the holding tank or septic tank pumped out? NOT OFTEN
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Weaver Rd

T. Proks Date Sept 5, 2017 Completed by:

S:Vactive/2017\3 Proj\1771656 Rankin_License App_Port Colborne\Phase 1000 Hydrogeology\Task 1002 - Water Well Survey\Private Well Survey Form 2017.doc

PRIVATE WATER WELL SURVEY QUESTIONNAIRE

	ommercial her:		
Is the owner willing to participate in the survey (If no, record address below)	? Yes 🗆 No 🗆		
I. OWNER / OCCUPANT INFORMATION AND G	ENERAL QUESTIONS:		
OWNER:			
Name:	Telephone No. (business)		
Name: Address: <u>1430</u> Killary	Telephone No. (home)		
Number of Bathrooms	Number of Occupants		
OCCUPANT (if other than Owner):			
Name:	Telephone No. (business)		
Address:	Telephone No. (home)		
Number of Bathrooms	Number of Occupants		
GENERAL QUESTIONS			
How long have you owned/occupied this dwelling?			
Is the property used year-round or seasonally?			
Is well water used for drinking water supply? Ye	es 🗆 No 🗆		
If no, why not?			
Are there any other wells or water supplies used of	n the property?		
If no, how long has it been since well water was us	ed for drinking?		
If no, what is the origin of drinking water?			
II. WATER WELL			
A. WELL CONSTRUCTION DETAILS:			
Do you have a copy of the MOE Water Well Recor	d? □ Yes (Well Record #) □ No		
ATTACH A COPY OF WATER WELL RECORD,	IF POSSIBLE		
Date or Year Constructed	Contractor		
Type of Well: Drilled Dug Well Diam	neter (inches)		
Present Well Depth: Original Wel	I Depth		
Golder Associates			

Is Well Vented and How?:			
Top of Well Casing is:			
1) Above ground surface \Box 2) Buried inside a well pit \Box 3) Buried, but not in a well pit \Box			
The accurate location of the well is Known \Box Unknown \Box			
GPS coordinates: E N			
Type of pump: Submersible \Box Jet Pump \Box Depth of Pump Intake (if known)			
Well completed into: Bedrock Overburden (Soil) Both			
B. WELL WATER LEVELS:			
Indicate whether measured from \Box ground level or \Box from top of casing			
Original water level depth in metres (on water well record)			
Subsequent water level measurements (give depths in metres and dates)			
C. WATER QUANTITY			
Does your well supply enough water for your use? Yes □ No □			
If no, is this the case: All the time \Box Some of the time \Box Seasonally \Box Other			
Use: Domestic: No 🗆 Yes 🗆 No. of persons using water from well			
Domestic includes (circle all that apply) Drinking Washing Cooking			
Pool: No 🗆 Yes 🗆 Lawn Watering/Garden: No 🖾 Yes 🗋			
Livestock: No 🗆 Yes 🗆			
Industrial: No 🗆 Yes 🖾 (provide details)			
Irrigation: No 🗌 Yes 🗌 (provide details)			
Other Uses Daily Usage (if known)			
Have you ever experienced any problems with your well?			
If so, when?			
What was the cause of the problem?			
□ Increased Usage □ Interference □ Other (Please Specify)			
Golder Associates			

Did you ever have your well deepened or cleaned, or a new well constructed?
f so, why?
Pump test conducted?
f yes, record pumping rate, duration and water levels (static, pumping and recovery)

D. WATER TREATMENT AND QUALITY

Fresh 🗆	Sulphur 🗌	Salty 🗆	Iron Staining 🗆	Soft 🗆	Hard 🗌	
Water Tre	atment equipr	nent: Softe	ner 🗆 🛛 UV 🗆	Reverse O	smosis 🗆	Filters
Other equi	ipment in use	(if any):				
Has your v	well recently b	een chlorin	ated and, if so, v	when?		*********
How would	d you describe	e the quality	y of your water?	Poor	🗆 Good	Excellent
Has your v	water quality p	reviously b	een tested?	No		Yes 🗆
If yes, for y	what and how	often? (ba	cteriological, che	mical analys	ses, etc.)	
	••••••				••••••	
ATTACH	COPY OF AN	Y PREVIO	US CHEMICAL	AND/OR BA	CTERIOLO	GICAL ANALYSIS

ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE

		Temperature	
Where was the sample	collected:		
Water sample collected	during this survey:		

E. SURFACE WATER

re there any ponds, creeks etc. on the property?	æ
yes, indicate size and depth? Use?	

SYSTEM DETAILS

What type of sewage disposal system do you have:
Holding Tank (sewage removed by regular pump-outs)
Septic Tank and Leaching Bed
Other method of on-site disposal. Specify
Do not know
Date or year Constructed Contractor
How often do you have the holding tank or septic tank pumped out?.....
When was the last time?.....
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Completed by:		Date	
S:\Active\2017\3 Proj\17716 Form 2017.doc	56 Rankin_License App_Port Colborne\Phase 1000 Hydro	ogeology\T	ask 1002 - Water Well Survey\Private Well Survey

7

PRIVATE WATER WELL SURVEY QUESTIONNAIRE

	mmercial ner:
Is the owner willing to participate in the survey? (If no, record address below)	Yes 🗆 No 🗹
I. OWNER / OCCUPANT INFORMATION AND GI	ENERAL QUESTIONS:
OWNER:	
Name:	Telephone No. (business)
Address: 1094 Weaver	Telephone No. (home)
Number of Bathrooms	Number of Occupants
OCCUPANT (if other than Owner):	
Name:	Telephone No. (business)
Address:	Telephone No. (home)
Number of Bathrooms	Number of Occupants
GENERAL QUESTIONS How long have you owned/occupied this dwelling? Is the property used year-round or seasonally? Is well water used for drinking water supply? Ye	
If no, why not?	
Are there any other wells or water supplies used or	the property?
If no, how long has it been since well water was use	ed for drinking?
If no, what is the origin of drinking water?	
II. WATER WELL	
A. WELL CONSTRUCTION DETAILS:	
Do you have a copy of the MOE Water Well Record	d? □ Yes (Well Record #) □ No
ATTACH A COPY OF WATER WELL RECORD, I	F POSSIBLE
Date or Year Constructed	Contractor
Type of Well: Drilled 🗆 Dug 🗆 🛛 Well Diam	eter (inches)
Present Well Depth: Original Well	Depth

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface 2) Buried inside a well pit 3) Buried, but not in a well pit
The accurate location of the well is Known \Box Unknown \Box
GPS coordinates: E N
Type of pump: Submersible 🗌 Jet Pump 🛛 Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil) Both
B. WELL WATER LEVELS:
Indicate whether measured from \Box ground level or \Box from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes □ No □
If no, is this the case: All the time \Box Some of the time \Box Seasonally \Box Other
Use: Domestic: No 🗆 Yes 🗆 No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No 🗌 Yes 🗌 Lawn Watering/Garden: No 🗌 Yes 🗌
Livestock: No 🗆 Yes 🗔
Industrial: No 🗆 Yes 🖾 (provide details)
Irrigation: No 🗌 Yes 🗌 (provide details)
Other Uses
Have you ever experienced any problems with your well?
If so, when?
What was the cause of the problem? \Box Drought \Box Pump Failure \Box Plugging
\Box Increased Usage \Box Interference \Box Other (Please Specify)
Golder Associates

Did you ever have your well deepened or cleaned, or a new well constructed? If so, why? Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)

D. WATER TREATMENT AND QUALITY
Fresh 🗌 Sulphur 🗆 Salty 🗆 Iron Staining 🗆 Soft 🗆 Hard 🗔
Water Treatment equipment: Softener \Box UV \Box Reverse Osmosis \Box Filters \Box
Other equipment in use (if any):
Has your well recently been chlorinated and, if so, when?
How would you describe the quality of your water? Poor Good Excellent
Has your water quality previously been tested? No D Yes D
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE
Water sample collected during this survey:
Where was the sample collected:
Field Measurements: Conductivity Temperature pH
E. SURFACE WATER

Are there any ponds, creeks etc. on the property?
If yes, indicate size and depth? Use?

SYSTEM DETAILS

What type of sewage disposal system do you have:
Holding Tank (sewage removed by regular pump-outs)
Septic Tank and Leaching Bed
Other method of on-site disposal. Specify
Do not know
Date or year Constructed Contractor How often do you have the holding tank or septic tank pumped out?
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

 Completed by:
 Date

 S:\Active\2017\3 Proj\1771656 Rankin_License App_Port Colborne\Phase 1000 Hydrogeology\Task 1002 - Water Well Survey\Private Well Survey

Form 2017 doc

	PRIVATE WATER WELL QUESTIONNAIR		
	Residential	cial	
Is the owner willing to part (If no, record address below		Yes 🗹	No 🗆
I. OWNER / OCCUPANT IN	IFORMATION AND GENER	AL QUESTIONS:	
OWNER:			
Name:	Tele	phone No. (busine:	ss)
Address: TG45 2he	4	phone No. (home)	•
Number of Bathrooms		ber of Occupants .	
OCCUPANT (if other than C	Owner):		
		ohone No. (busine:	ss)
Address:		ohone No. (home)	
Number of Bathrooms		ber of Occupants.	
GENERAL QUESTIONS How long have you owned/or Is the property used year-rou			
		No 🗔	
Is well water used for drinking	g water supply? Yes 🗌		
Is well water used for drinking			
Is well water used for drinking If no, why not? Are there any other wells or v	water supplies used on the p	property?	
Is well water used for drinking	water supplies used on the p ince well water was used for	property? drinking?	
Is well water used for drinking If no, why not? Are there any other wells or w If no, how long has it been sin If no, what is the origin of drir	water supplies used on the p ince well water was used for	property? drinking?	
Is well water used for drinking If no, why not? Are there any other wells or v If no, how long has it been sin If no, what is the origin of drir II. WATER WELL	water supplies used on the p ince well water was used for nking water?	property? drinking?	
Is well water used for drinking If no, why not? Are there any other wells or v If no, how long has it been sin If no, what is the origin of drir	water supplies used on the p ince well water was used for nking water?	property? drinking?	
Is well water used for drinking If no, why not? Are there any other wells or v If no, how long has it been sin If no, what is the origin of drir II. WATER WELL A. WELL CONSTRUCTION Do you have a copy of the Me	water supplies used on the p ince well water was used for nking water?	Yes (Well Record :	
Is well water used for drinking If no, why not? Are there any other wells or v If no, how long has it been sin If no, what is the origin of drir II. WATER WELL A. WELL CONSTRUCTION Do you have a copy of the Me	water supplies used on the p ince well water was used for nking water?	Yes (Well Record :	
Is well water used for drinking If no, why not? Are there any other wells or v If no, how long has it been sin If no, what is the origin of drir II. WATER WELL	water supplies used on the p ince well water was used for nking water? I DETAILS: OE Water Well Record?	Yes (Well Record :	#
Is well water used for drinking If no, why not? Are there any other wells or w If no, how long has it been sin If no, what is the origin of drin II. WATER WELL A. WELL CONSTRUCTION Do you have a copy of the Mate ATTACH A COPY OF WATE	water supplies used on the p ince well water was used for nking water? I DETAILS: OE Water Well Record?	Yes (Well Record : No	#

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface 2) Buried inside a well pit 3) Buried, but not in a well pit
The accurate location of the well is Known \Box Unknown \Box
GPS coordinates: E N
Type of pump: Submersible
Well completed into: Bedrock Overburden (Soil) Both
B. WELL WATER LEVELS:
Indicate whether measured from \Box ground level or \Box from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes □ No □
If no, is this the case: All the time \Box Some of the time \Box Seasonally \Box Other
Use: Domestic: No 🗆 Yes 🗆 No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No 🗌 Yes 🗌 Lawn Watering/Garden: No 🗌 Yes 🗌
Livestock: No 🗌 Yes 🗌
Industrial: No 🗆 Yes 🗆 (provide details)
Irrigation: No 🗆 Yes 🗌 (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well?
If so, when?
What was the cause of the problem?
□ Increased Usage □ Interference □ Other (Please Specify)
Golder Associates

Did you ever have your well deepened or cleaned, or a new well constructed?	-
f so, why?	
Pump test conducted?	•••
f yes, record pumping rate, duration and water levels (static, pumping and recovery)	
	05
	8

D. WATER TREATMENT AND QUALITY

Fresh 🗆	Sulphur 🗌	Salty 🗌	Iron Stainir	ng 🗆 🛛 So	oft 🗆	Hard 🗆		
Water Trea	atment equipn	nent: Softer	ner 🗆 🛛 UV	🗆 Rev	erse O	smosis 🗆	Filters [ן
Other equi	pment in use	(if any):			•••••			******
Has your v	ell recently b	een chlorin	ated and, if	so, when?				
How would	l you describe	the quality	of your wat	er? 🗆 P	oor	🗆 Good		Excellent
Has your w	vater quality p	reviously b	een tested?		No 🗆]	Yes 🗆	
lf yes, for v	vhat and how	often? (bad	teriological	, chemical	analys	es, etc.)		

ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE

Water sample collected	d during this survey:
	collected:
Field Measurements:	Conductivity Temperature pH

E. SURFACE WATER

Are there any ponds, creeks etc. on the property?
If yes, indicate size and depth? Use?

SYSTEM DETAILS

What type of sewage disposal system do you have:
Holding Tank (sewage removed by regular pump-outs)
Septic Tank and Leaching Bed
Other method of on-site disposal. Specify
Do not know
Date or year Constructed Contractor
How often do you have the holding tank or septic tank pumped out?.....
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Completed by: ...

..... Date

S:Vactive/2017/3 Proj/1771656 Rankin_License App_Port Colborne/Phase 1000 Hydrogeology/Task 1002 - Water Well Survey/Private Well Survey Form 2017.doc

8		
	E WATER WELL SURVEY QUESTIONNAIRE	
TYPE OF DWELLING: V Residentia		
Is the owner willing to participate in (If no, record address below)	he survey? Ye	es 🖻 No 🗆
I. OWNER / OCCUPANT INFORMATI		
OWNER:	on and general ques	
Name	Telephone No.	(business)
Address: 2225 Miller P	Telephone No.	(home)
Number of Bathrooms		upants
OCCUPANT (if other than Owner):		
Name:	Telephone No.	(business)
Address:	Telephone No.	(home)
Number of Bathrooms	Number of Occo	upants
GENERAL QUESTIONS		
How long have you owned/occupied thi	s dwelling?	
Is the property used year-round or seas	onally?	
Is well water used for drinking water su	oply? Yes 🗌 🛛 No	· 🗖
If no, why not?		
Are there any other wells or water supp		
If no, how long has it been since well w	-	
If no, what is the origin of drinking wate		
II. WATER WELL		
A. WELL CONSTRUCTION DETAILS		
Do you have a copy of the MOE Water	Well Record? □ Yes (Well □ No	Record #
ATTACH A COPY OF WATER WELL	RECORD, IF POSSIBLE	
Date or Year Constructed	Contractor	
	Well Diameter (inches)	

Golder Associates

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface \Box 2) Buried inside a well pit \Box 3) Buried, but not in a well pit \Box
The accurate location of the well is Known \Box Unknown \Box
GPS coordinates: E N
Type of pump: Submersible 🗆 Jet Pump 🗀 Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil) Both
B. WELL WATER LEVELS:
Indicate whether measured from \Box ground level or \Box from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes No
If no, is this the case: All the time Some of the time Seasonally Other
Use: Domestic: No 🗌 Yes 🗌 No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No 🗌 Yes 🗌 Lawn Watering/Garden: No 🗌 Yes 🗌
Livestock: No 🗌 Yes
Industrial: No 🗆 Yes 🗇 (provide details)
Irrigation: No 🖾 Yes 🖾 (provide details)
Other Uses
Have you ever experienced any problems with your well?
If so, when?
What was the cause of the problem? \Box Drought \Box Pump Failure \Box Plugging
□ Increased Usage □ Interference □ Other (Please Specify)
Golder Associates

Did you ever have your well deepened or cleaned, or a new well constructed?	••••
f so, why?	
Pump test conducted?	
f yes, record pumping rate, duration and water levels (static, pumping and recovery)	

Fresh 🗌	Sulphur 🗆	Salty 🗆	Iron Staining] Soft 🗆	Hard 🗆		
Water Treatment equipment: Softener 🗆 UV 🗆 Reverse Osmosis 🗆 Filters 🗆							
Other equipment in use (if any):							
Has your well recently been chlorinated and, if so, when?							
How would you describe the quality of your water? Poor Good Excellent							
Has your w	ater quality p	reviously b	een tested?	No 🗆]	Yes 🗆	
If yes, for what and how often? (bacteriological, chemical analyses, etc.)							

ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE

Water sample collected	I during this survey:
	collected:
•••••••••••••••••••••••••••••••••••••••	
Field Measurements:	Conductivity Temperature pH

Are there any ponds, creeks etc. on the property?
If yes, indicate size and depth? Use?

SYSTEM DETAILS

What type of sewage disposal system do you have:
Holding Tank (sewage removed by regular pump-outs)
Septic Tank and Leaching Bed
Other method of on-site disposal. Specify.....
Do not know
Date or year Constructed Contractor
How often do you have the holding tank or septic tank pumped out?.....
When was the last time?.....
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Completed by: Date

S:Vactive/2017/3 Proj/1771656 Rankin_License App_Port Colborne/Phase 1000 Hydrogeology/Task 1002 - Water Well Survey/Private Well Survey Form 2017,doc

PRIVATE WATER WELL SURVEY QUESTIONNAIRE

	mmercial ner:
Is the owner willing to participate in the survey	? Yes 🗆 No 🗆
(If no, record address below)	
I. OWNER / OCCUPANT INFORMATION AND G	ENERAL QUESTIONS:
OWNER:	
Name: Address: 2276 2 nd Concession Number of Bathrooms	Telephone No. (business) Telephone No. (home) Number of Occupants
OCCUPANT (if other than Owner):	
Name: Address:	Telephone No. (business) Telephone No. (home) Number of Occupants
GENERAL QUESTIONS	
How long have you owned/occupied this dwelling?	
Is the property used year-round or seasonally?	
Is well water used for drinking water supply? Ye	s 🗆 No 🗆
If no, why not?	
Are there any other wells or water supplies used or If no, how long has it been since well water was use If no, what is the origin of drinking water?	
II. WATER WELL	
A. WELL CONSTRUCTION DETAILS:	
Do you have a copy of the MOE Water Well Record	□No
Date or Year Constructed	Contractor
Type of Well: Drilled 🗇 Dug 🗆 Well Diam	

Present Well Depth: Original Well Depth Same as Present

Golder Associates

660

Is Well Vented and How?:				
Top of Well Casing is:				
1) Above ground surface \Box 2) Buried inside a well pit \Box 3) Buried, but not in a well pit \Box				
The accurate location of the well is Known \Box Unknown \Box				
GPS coordinates: E N				
Type of pump: Submersible Jet Pump Depth of Pump Intake (if known)				
Well completed into: Bedrock Overburden (Soil) Both				
B. WELL WATER LEVELS:				
Indicate whether measured from \Box ground level or \Box from top of casing				
Original water level depth in metres (on water well record)				
Subsequent water level measurements (give depths in metres and dates)				
C. WATER QUANTITY				
Does your well supply enough water for your use? Yes □ No □				
If no, is this the case: All the time \Box Some of the time \Box Seasonally \Box Other				
Use: Domestic: No D Yes No. of persons using water from well				
Domestic includes (circle all that apply) Drinking Washing Cooking				
Pool: No 🗆 Yes 🗋 Lawn Watering/Garden: No 🗆 Yes 🗆				
Livestock: No 🗆 Yes 🗆				
Industrial: No 🗆 Yes 🗌 (provide details)				
Irrigation: No 🗆 Yes 🗂 (provide details)				
Other Uses Daily Usage (if known)				
Have you ever experienced any problems with your well?				
If so, when?				
What was the cause of the problem? Drought Pump Failure Plugging				
□ Increased Usage □ Interference □ Other (Please Specify)				
Golder Associates				

Did you ever have your well deepened or cleaned, or a new well constructed?	
If so, why?	
Pump test conducted?	
If yes, record pumping rate, duration and water levels (static, pumping and recovery)	

Fresh 🗆	Sulphur 🗌	Salty 🗌	Iron Stainir	ig 🗌 🛛 So	ft 🗌	Hard 🗆		
Water Treatment equipment: Softener 🗆 UV 🗆 Reverse Osmosis 🗆 Filters 🗆								
Other equipment in use (if any):								
Has your well recently been chlorinated and, if so, when?								
How would you describe the quality of your water? Poor Good Excellent								
Has your w	vater quality p	reviously b	een tested?		No 🗆		Yes 🗆	
If yes, for what and how often? (bacteriological, chemical analyses, etc.)								

ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE

Water sample collected	I during this survey:
Where was the sample	collected:
Field Measurements:	Conductivity Temperature pH

re there any ponds, creeks etc. on the property?	
yes, indicate size and depth? Use?	

SYSTEM DETAILS

What type of sewage disposal system do you have:
Holding Tank (sewage removed by regular pump-outs)
Septic Tank and Leaching Bed
Other method of on-site disposal. Specify
Do not know
Date or year Constructed Contractor
How often do you have the holding tank or septic tank pumped out?.....
When was the last time?.....
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Completed by: Date

S:Vactive/2017/3 Proj\1771656 Rankin_License App_Port Colborne\Phase 1000 Hydrogeology\Task 1002 - Water Well Survey\Private Well Survey Form 2017.doc

Sept19 2439 Maller R.R.

PRIVATE WATER WELL SURVEY QUESTIONNAIRE

TYPE OF DWELLING: Residential Commercial Zwellsonsite notion use Institutional Other:
Is the owner willing to participate in the survey? Yes No Cister (If no, record address below)
(If no, record address below)
I. OWNER / OCCUPANT INFORMATION AND GENERAL QUESTIONS: not pooked a
I. OWNER / OCCUPANT INFORMATION AND GENERAL QUESTIONS: not hooked a OWNER: Yet, may connect
Name:
Address:
Number of Bathrooms
OCCUPANT (if other than Owner):
NE
Name: Telephone No. (business) Address: Telephone No. (home)
Number of Bathrooms Number of Occupants
GENERAL QUESTIONS
How long have you owned/occupied this dwelling?
Is the property used year-round or seasonally?
Is well water used for drinking water supply? Yes D No D
If no, why not?
Are there any other wells or water supplies used on the property?
If no, how long has it been since well water was used for drinking?
If no, what is the origin of drinking water?
II. WATER WELL
A. WELL CONSTRUCTION DETAILS:
Do you have a copy of the MOE Water Well Record? □ Yes (Well Record #
□ No ATTACH A COPY OF WATER WELL RECORD, IF POSSIBLE
Date or Year Constructed
Type of Well: Drilled 🗆 Dug 🗆 Well Diameter (inches)
Present Well Depth: Original Well Depth 🛛 Same as Present
Golder Associates

18

Is Well Vented and How?:			
Top of Well Casing is:			
1) Above ground surface 2) Buried inside a well pit 3) Buried, but not in a well pit			
The accurate location of the well is Known \Box Unknown \Box			
GPS coordinates: E N			
Type of pump: Submersible			
Well completed into: Bedrock Overburden (Soil) Both			
B. WELL WATER LEVELS:			
Indicate whether measured from \Box ground level or \Box from top of casing			
Original water level depth in metres (on water well record)			
Subsequent water level measurements (give depths in metres and dates)			
C. WATER QUANTITY			
Does your well supply enough water for your use? Yes No □ If no, is this the case: All the time □ Some of the time □ Seasonally □ Other			
Use: Domestic: No I Yes No. of persons using water from well Domestic includes (circle all that apply) Drinking Washing Cooking			
Pool: No \Box Yes \Box Lawn Watering/Garden: No \Box Yes \Box			
Livestock: No 🗆 Yes 🗆			
Industrial: No 🗆 Yes 🖾 (provide details)			
Irrigation: No 🗆 Yes 🗆 (provide details)			
Other Uses			
Have you ever experienced any problems with your well?			
If so, when?			
What was the cause of the problem? Drought Pump Failure Plugging			
□ Increased Usage □ Interference □ Other (Please Specify)			
Golder Associates			

Did you ever have your well deepened or cleaned, or a new well constructed?
If so, why?
Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)

Fresh 🗌	Sulphur 🗌	Salty 🗆	Iron Staining] Soft 🗆	Hard 🗆		
Water Trea	atment equipm	ient: Softer	ner 🗌 🛛 UV 🗆	Reverse C)smosis 🗆	Filters 🗆]
Other equi	pment in use	(if any):					
			ated and, if so,				
How would	you describe	the quality	of your water?	Poor	🗆 Good	1	Excellent
Has your w	ater quality p	reviously b	een tested?	No [Yes 🗆	
lf yes, for w	hat and how	often? (bad	cteriological, che	emical analys	ses, etc.)	·····	

ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE

Field Measurements:	Conductivity Temperature pH
Where was the sample	e collected:
Water sample collecte	d during this survey:

Are there any ponds, creeks etc. on the property?
If yes, indicate size and depth? Use?

SYSTEM DETAILS

What type of sewage disposal system do you have:

- □ Holding Tank (sewage removed by regular pump-outs)
- □ Septic Tank and Leaching Bed
- □ Other method of on-site disposal. Specify
- Do not know

Date or year Constructed Contractor

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Completed by:	 Date	

S:VActive/2017/3 Proj/1771656 Rankin_License App_Port Colborne/Phase 1000 Hydrogeology/Task 1002 - Water Well Survey/Private Well Survey Form 2017 doc

2017	Sept 19
	ER WELL SURVEY 2229 METH HU
TYPE OF DWELLING: Residential	ER WELL SURVEY TIONNAIRE Commercial Other:
Is the owner willing to participate in the sur	rvey? Yes 🔀 🚬 No 🗆
(If no, record address below)	<u> </u>
I. OWNER / OCCUPANT INFORMATION AN	D GENERAL QUESTIONS:
OWNER:	
Name:	
Address:	
Number of Bathrooms	Number of Occupants
OCCUPANT (if other than Owner):	
Name:	
Address: Number of Bathrooms	
GENERAL QUESTIONS How long have you owned/occupied this dwellin Is the property used year-round or seasonally? Is well water used for drinking water supply?	
If no, why not?	
If no, how long has it been since well water was	ed on the property?s used for drinking?
II. WATER WELL	
A. WELL CONSTRUCTION DETAILS:	
	ecord? □ Yes (Well Record #
ATTACH A COPY OF WATER WELL RECOR	≀D, IF POSSIBLE
Date or Year Constructed	Contractor
Type of Well: Drilled Dug Well D	Diameter (inches)
Present Well Depth: Original V	Well Depth

× 1

Golder Associates

Is Well Vented and How?:			
Top of Well Casing is:			
1) Above ground surface 2) Buried inside a well pit 3) Buried, but not in a well pit			
The accurate location of the well is Known \Box Unknown \Box			
GPS coordinates: E N			
Type of pump: Submersible 🖾 Jet Pump 🗔 Depth of Pump Intake (if known)			
Well completed into: Bedrock Overburden (Soil) Both			
B. WELL WATER LEVELS:			
Indicate whether measured from \Box ground level or \Box from top of casing			
Original water level depth in metres (on water well record)			
Subsequent water level measurements (give depths in metres and dates)			
-			
C. WATER QUANTITY			
Does your well supply enough water for your use? Yes □ No □			
If no, is this the case: All the time \Box Some of the time \Box Seasonally \Box Other			
Use: Domestic: No 🗆 Yes 🗆 No. of persons using water from well			
Domestic includes (circle all that apply) Drinking Washing Cooking			
Pool: No 🗌 Yes 🗌 Lawn Watering/Garden: No 🗌 Yes 🗌			
Livestock: No 🗆 Yes 🗆			
Industrial: No 🗌 Yes 🗌 (provide details)			
Irrigation: No 🗆 Yes 🗆 (provide details)			
Other Uses			
Have you ever experienced any problems with your well?			
If so, when?			
What was the cause of the problem? \Box Drought \Box Pump Failure \Box Plugging			
□ Increased Usage □ Interference □ Other (Please Specify)			
Golder Associates			

Did you ever have your well deepened or cleaned, or a new well constructed?
f so, why?
Pump test conducted?
f yes, record pumping rate, duration and water levels (static, pumping and recovery)

Fresh 🗆	Sulphur 🗆	Salty 🗋	Iron Staining] Soft 🗆	Hard 🗋		
Water Trea	atment equipm	nent: Softer		Reverse O	smosis 🗆	Filters 🗆	
Other equi	pment in use ((if any):		•••••••••••••••••••••••••••••••••••••••			
			ated and, if so,				
How would	you describe	the quality	of your water?		🗆 Good		lent
Has your w	ater quality p	reviously be	een tested?	No 🗆	ן	Yes 🗌	
If yes, for w	hat and how	often? (bac	teriological, ch	emical analys	es, etc.)		
	••••••						

ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE

Water sample collected during this survey:				
	collected:			
Field Measurements:	Conductivity Temperature pH			

Are there any ponds, creeks etc. on the property?
If yes, indicate size and depth? Use?

SYSTEM DETAILS

What type of sewage disposal system do you have:
Holding Tank (sewage removed by regular pump-outs)
Septic Tank and Leaching Bed
Other method of on-site disposal. Specify.....
Do not know
Date or year Constructed Contractor
How often do you have the holding tank or septic tank pumped out?....
When was the last time?.....
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Completed by:

..... Date

S:Vactive/2017\3 Proj\1771656 Rankin_License App_Port Colborne\Phase 1000 Hydrogeology\Task 1002 - Water Well Survey\Private Well Survey Form 2017.doc

Golder Associates

	TIONNAIRE 1826 Multer	-N
	Commercial Construction	no no
TYPE OF DWELLING: Residential Institutional	☐ Commercial Cò \ ☐ Other:	res
Is the owner willing to participate in the su	ırvey? Yes 🗆 No 🗆	
(If no, record address below)		
I. OWNER / OCCUPANT INFORMATION AN	ND GENERAL QUESTIONS:	
OWNER:		
Name:	Telephone No. (business)	
Address:	Telephone No. (home)	
Number of Bathrooms	Number of Occupants	
OCCUPANT (if other than Owner):		
Name:	Telephone No. (business)	
Address:	Telephone No. (home)	
Number of Bathrooms	Number of Occupants	
GENERAL QUESTIONS		
	lling?	
Is the property used year-round or seasonally		
Is well water used for drinking water supply?		
•		
	ed on the property?	
	as used for drinking?	
If no, what is the origin of drinking water?		
II. WATER WELL		
A. WELL CONSTRUCTION DETAILS:		
Do you have a copy of the MOE Water Well R	Record? □ Yes (Well Record #	
ATTACH A COPY OF WATER WELL RECO		
Date or Year Constructed	Contractor	
Type of Well: Drilled Dug Well	Diameter (inches)	

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface \Box 2) Buried inside a well pit \Box 3) Buried, but not in a well pit \Box
The accurate location of the well is Known \Box Unknown \Box
GPS coordinates: E N
Type of pump: Submersible Jet Pump Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil) Both
B. WELL WATER LEVELS:
Indicate whether measured from \Box ground level or \Box from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes No
If no, is this the case: All the time \Box Some of the time \Box Seasonally \Box Other
Use: Domestic: No D Yes No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No 🗌 Yes 🗌 Lawn Watering/Garden: No 🗌 Yes 🗔
Livestock: No 🗆 Yes 🗆
Industrial: No 🗆 Yes 🖾 (provide details)
Irrigation: No 🗆 Yes 🗆 (provide details)
Other Uses
Have you ever experienced any problems with your well?
If so, when?
What was the cause of the problem? \Box Drought \Box Pump Failure \Box Plugging
□ Increased Usage □ Interference □ Other (Please Specify)
Golder Associates

Did you ever have your well deepened or cleaned, or a new well constructed?	
If so, why?	
Pump test conducted?	
If yes, record pumping rate, duration and water levels (static, pumping and recovery)	

Fresh 🗌	Sulphur 🗌	Salty 🗌	Iron Staining] Soft 🗆	Hard 🗆		
Water Trea	atment equipm	ient: Softer	ner 🗆 🛛 UV 🗆	Reverse C)smosis 🗌	Filters 🗆]
Other equi	pment in use ((if any):		•••••			
Has your w	vell recently be	en chlorin	ated and, if so,	when?			
How would	l you describe	the quality	of your water?	🗋 Poor	🗆 Good		Excellent
Has your w	vater quality p	reviously be	een tested?	No [Yes 🗆	
lf yes, for v	vhat and how	often? (bac	cteriological, che	emical analys	ses, etc.)		

ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE

Water sample collected	I during this survey:
Where was the sample	collected:
Field Measurements:	Conductivity Temperature pH

Are there any ponds, creeks etc. on the property?	
If yes, indicate size and depth? Use?	

SYSTEM DETAILS

What type of sewage disposal system do you have:
Holding Tank (sewage removed by regular pump-outs)
Septic Tank and Leaching Bed
Other method of on-site disposal. Specify
Do not know
Date or year Constructed Contractor
How often do you have the holding tank or septic tank pumped out?.....
When was the last time?....
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Completed by: Date

S:\Active\2017\3 Proj\1771656 Rankin_License App_Port Colborne\Phase 1000 Hydrogeology\Task 1002 - Water Well Survey\Private Well Survey Form 2017_doc

PRIVATE WATER WELL SURVEY QUESTIONNAIRE

.

2017 Sept 20

	Cisten
	mmercial Well on property, not connector
Is the owner willing to participate in the survey	? Yes 🗌 No 🗆
(If no, record address below)	
I. OWNER / OCCUPANT INFORMATION AND G	ENERAL QUESTIONS:
OWNER:	
Name:	Telephone No. (business)
Address: 1379 Kullano	Telephone No. (home)
Number of Bathrooms	Number of Occupants
OCCUPANT (if other than Owner):	
Name:	Telephone No. (business)
Address:	Telephone No. (home)
Number of Bathrooms	Number of Occupants
GENERAL QUESTIONS How long have you owned/occupied this dwelling? Is the property used year-round or seasonally? Is well water used for drinking water supply? Ye	
If no, why not?	
Are there any other wells or water supplies used or	a the property?
If no, how long has it been since well water was use	ed for drinking?
If no, what is the origin of drinking water?	
II. WATER WELL	
A. WELL CONSTRUCTION DETAILS:	
Do you have a copy of the MOE Water Well Record	
ATTACH A COPY OF WATER WELL RECORD, I	□ No F POSSIBLE
Date or Year Constructed	Contractor
Type of Well: Drilled 🗆 Dug 🗆 Well Diam	eter (inches)
Present Well Depth: Original Well	Depth Depth
Golder Asso	ciates

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface
The accurate location of the well is Known \Box Unknown \Box
GPS coordinates: E N
Type of pump: Submersible \Box Jet Pump \Box Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil) Both
B. WELL WATER LEVELS:
Indicate whether measured from \Box ground level or \Box from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes □ No □
If no, is this the case: All the time \Box Some of the time \Box Seasonally \Box Other
Use: Domestic: No 🗆 Yes 🗆 No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No 🗌 Yes 🗌 Lawn Watering/Garden: No 🗌 Yes 🗌
Livestock: No 🗆 Yes 🗆
Industrial: No 🗆 Yes 🗔 (provide details)
Irrigation: No 🗆 Yes 🗌 (provide details)
Other Uses Daily Usage (if known)
Have you ever experienced any problems with your well?
If so, when?
What was the cause of the problem? \Box Drought \Box Pump Failure \Box Plugging
□ Increased Usage □ Interference □ Other (Please Specify)
Golder Associates

Did you ever have your well deepened or cleaned, or a new well constructed?	
f so, why?	
Pump test conducted?	
f yes, record pumping rate, duration and water levels (static, pumping and recovery)	

Fresh 🗌	Sulphur 🗆	Salty 🗌	Iron Staining] Soft 🗆	Hard 🗀		
Water Trea	atment equipm	nent: Softer	ner 🗆 🛛 UV 🗆	Reverse O	smosis 🗆	Filters 🗆]
Other equi	pment in use ((if any):					
Has your w	ell recently be	en chlorin	ated and, if so,	when?			*****
How would	you describe	the quality	of your water?	🗋 Poor	🗆 Good		Excellent
Has your w	/ater quality p	reviously b	een tested?	No		Yes 🗆	
lf yes, for v	what and how	often? (bad	cteriological, che	emical analys	ses, etc.)		

ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE

Water sample collected	during this survey:
Where was the sample	collected:
Field Measurements:	Conductivity Temperature pH

Are there any ponds, creeks etc. on the property?
If yes, indicate size and depth? Use?

SYSTEM DETAILS

What type of sewage disposal system do you have:
Holding Tank (sewage removed by regular pump-outs)
Septic Tank and Leaching Bed
Other method of on-site disposal. Specify
Do not know
Date or year Constructed Contractor
How often do you have the holding tank or septic tank pumped out?
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding
tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual
odours, soft ground, etc.)

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Completed by:	· · · · · · · · · · · · · · · · · · ·	Date	
---------------	---------------------------------------	------	--

S:Vactive/2017/3 Proj/1771656 Rankin_License App_Port Colborne/Phase 1000 Hydrogeology/Task 1002 - Water Well Survey/Private Well Survey Form 2017.doc

PRIVATE WATER WELL SURVEY QUESTIONNAIRE

TYPE OF DWELLING: Residential Comm Institutional Other: 	ercial					
Is the owner willing to participate in the survey? Yes \Box No \Box						
(If no, record address below)	CISTERN/ DO WELL					
I. OWNER / OCCUPANT INFORMATION AND GENE	RAL QUESTIONS:					
OWNER: Name: Te	lephone No. (business)					
	lephone No. (home)					
Number of BathroomsNu	mber of Occupants					
OCCUPANT (if other than Owner):						
Name: Te	lephone No. (business)					
Address: Te	lephone No. (home)					
Number of Bathrooms Nu	mber of Occupants					
GENERAL QUESTIONS						
How long have you owned/occupied this dwelling? Is the property used year-round or seasonally?						
Is well water used for drinking water supply? Yes \Box						
If no, why not?						
Are there any other wells or water supplies used on the						
If no, how long has it been since well water was used f						
II. WATER WELL						
A. WELL CONSTRUCTION DETAILS:						
Do you have a copy of the MOE Water Well Record?	□ Yes (Well Record #) □ No					
ATTACH A COPY OF WATER WELL RECORD, IF P						
Date or Year Constructed	Contractor					
Type of Well: Drilled Dug Well Diameter	(inches)					
Present Well Depth: Original Well Dep	oth Same as Present					

Golder Associates

Is Well Vented and How?:
Top of Well Casing is:
1) Above ground surface \Box 2) Buried inside a well pit \Box 3) Buried, but not in a well pit \Box
The accurate location of the well is Known \Box Unknown \Box
GPS coordinates: E N
Type of pump: Submersible Jet Pump Depth of Pump Intake (if known)
Well completed into: Bedrock Overburden (Soil) Both
B. WELL WATER LEVELS:
Indicate whether measured from \Box ground level or \Box from top of casing
Original water level depth in metres (on water well record)
Subsequent water level measurements (give depths in metres and dates)
C. WATER QUANTITY
Does your well supply enough water for your use? Yes D No
If no, is this the case: All the time \Box Some of the time \Box Seasonally \Box Other
Use: Domestic: No 🗆 Yes 🗆 No. of persons using water from well
Domestic includes (circle all that apply) Drinking Washing Cooking
Pool: No 🗆 Yes 🗆 Lawn Watering/Garden: No 🗆 Yes 🗆
Livestock: No 🗆 Yes 🗀
Industrial: No 🗌 Yes 🗌 (provide details)
Irrigation: No 🗋 Yes 🗔 (provide details)
Other Uses
Have you ever experienced any problems with your well?
If so, when?
What was the cause of the problem? \Box Drought \Box Pump Failure \Box Plugging
□ Increased Usage □ Interference □ Other (Please Specify)
Golder Associates

Did you ever have your well deepened or cleaned, or a new well constructed?
If so, why?
Pump test conducted?
If yes, record pumping rate, duration and water levels (static, pumping and recovery)

Fresh 🗆	Sulphur 🗆	Salty 🗆	Iron Stainir	ig 🗌 🛛 Soft [🗌 Hard 🗆		
Water Tre	atment equipr	nent: Softe	ner 🗆 🛛 UV		e Osmosis 🗆] Filters [
Other equipment in use (if any):							
Has your v	well recently b	een chlorir	ated and, if	so, when?			
How would you describe the quality of your water? Poor Good Excellent							
Has your water quality previously been tested? No D Yes D							
If yes, for what and how often? (bacteriological, chemical analyses, etc.)							
	••••••						
ATTACH	COPY OF AN		US CHEMIC		BACTEDIO	I OGICAL	VNVI VOIC

ATTACH COPY OF ANY PREVIOUS CHEMICAL AND/OR BACTERIOLOGICAL ANALYSIS RESULTS ON THE WELL WATER, IF AVAILABLE

Water sample collected during this survey:					
Where was the sample	collected:				
•••••••					

Field Measurements:	Conductivity Temperature pH				

Are there any ponds, creeks etc. on the property?	
If yes, indicate size and depth? Use?	

SYSTEM DETAILS

What type of sewage disposal system do you have:
Holding Tank (sewage removed by regular pump-outs)
Septic Tank and Leaching Bed
Other method of on-site disposal. Specify
Do not know
Date or year Constructed Contractor
How often do you have the holding tank or septic tank pumped out?.....
When was the last time?
Have you ever had any problems with your sewage disposal systems? (e.g. leaks from holding tank, failure of septic system including surficial release of sewage, visibly stained areas, unusual odours, soft ground, etc.)

IV. PROPERTY SKETCH AND PHOTOGRAPHS

Sketch the location of the septic system (including approximate leaching bed area), the well and the on-site structures, giving the best approximated distance between each of them. Include ground surface slope (in degrees or percentage). Note any indications of septic system failure such as stained areas, surficial release of sewage, unusual odours, soft ground, etc. Identify on-site and/or adjacent roads, ditches, surface water bodies. Record the GPS coordinates for the top of the well casing (x,y,z). Record height of top of well casing above ground surface. Include photographs of well head, etc.

Completed by:		Date	
S:\Active\2017\3 Proj\17716 Form 2017.doc	56 Rankin_License App_Port Colborne∖Phase 1000 Hydro	ogeology\T	ask 1002 - Water Well Survey\Private Well Survey

APPENDIX G

Curricula Vitae

Education

PhD Osgoode Hall Law School, York University, 2013

LLM Osgoode Hall Law School, York University, 2005

MBA Centre for Innovative Management, Athabasca University, 2001

M.Sc. Earth Sciences, Brock University, 1997

B.Sc. Geological Sciences (Honours), University of Toronto, 1985

Certifications

Professional Geoscientist, P.Geo., Ontario

Certified Professional Accountant, CPA, Ontario

Certified Management Consultant, CMC

Project Management Professional, PMP

Languages

English – Fluent

St. Catharines

Senior Hydrogeologist and Principal

As a Senior Hydrogeologist with Golder, Dr. McFarland has more than 30 years of professional experience and a broad background in conducting, managing, and directing aggregate waste management, mining, power, oil and gas, and ground management and protection projects. He served as the project director for work programs for proposed mines, aggregate operations, and industrial facilities.

He has a broad background in licensing and permitting of pits and quarries. This includes the licensing for the expansion of the Lafarge Dundas Quarry, the expansion of the Lafarge Woodstock Quarry, the expansion of the Nelson Aggregate Quarry, the RW Tomlinson license application, the St. Mary's cement Bonis Quarry, the ongoing expansion of the Port Colborne Quarry, and the Lafarge Goodwood Pit and other sites. He is also involved in numerous PPTW applications for pits and quarries. In addition, he has extensive experience in site selection studies and resource evaluations for aggregate sites.

Sean acted as the Project Director and Senior Hydrogeologist for the 2014 and 2015 annual landfill monitoring reports for the Vale Port Colborne site and for eight landfill monitoring programs in Niagara Region. He was the Project Manager and Senior Hydrogeologist for the extensive Adams Mine landfill project, which involved the successful permitting of a 20 million tonne hydraulic containment engineered landfill facility, within a 200 m deep former open pit mine, following hydrogeological investigations collected over an 8-year period that involved extensive monitoring well installation, electronic instrumentation and testing, pump test analyses and groundwater flow modelling. He has also been an expert witness for hydrogeology at Environmental Assessment (EA) and Ontario Municipal board (OMB) hearings and has been involved in extensive contaminated site investigations including legal disputes.

Additional project experience includes hydrogeological assessments for the low level radioactive (LLRWM) facility concepts of waste management for the Canadian federal government Siting Task Force Secretariat (STFS) in limestone bedrock beneath the Great Lakes, and fractured and faulted Precambrian granitic gneiss at the Chalk River Nuclear Reactor site in northern Ontario, Canada. Further project experience in fractured rock includes the proposed Steetley Landfill, in limestone bedrock of the Niagara escarpment, including an extensive EA level hydrogeological investigation, over a 5-year period, and the existing Brow Landfill including an EPA level investigation, a long-term monitoring program and remediation.

Employment History

Golder Associates Ltd. – Mississauga, Ontario Senior Geoscientist and Principal (1987 to Present)

Hydrogeologist then Senior Hydrogeologist (1987-present) Managing Principal, Vice President, Canada (2005-2014) Associate - 1997 appointment Principal - 2003 appointment

Geologist and Hydrogeologist (1985 to 1987)

Characterization of proposed and existing metal and industrial mineral facilities and impact assessments for industrial facilities.

Regina Associates Ltd. – Kingston, Ontario Geoscientist (1983 to 1987)

Characterization of proposed and existing metal and industrial mineral facilities in Ontario, Nova Scotia, Newfoundland, British Columbia, and the Northwest Territories; and hydrogeological impact assessments for industrial facilities.

PROJECT EXPERIENCE – AGGREGATE INDUSTRY

Aggregate Resource Evaluation Regional Municipality of Peel, ON	Project Manager and geologist for evaluation of sand and gravel and bedrock resources in the Regional Municipality of Peel, Ontario for the provincial Ministry of Municipal Affairs and Housing (MMAH). The project was carried out as part of the development of the official plan for the Region.
Region of Peel Regional Municipality of Peel, ON	Technical advisor for ARIP (Aggregate Resource Inventory Paper) report for the Regional Municipality of Peel. The project involves and evaluation of shale and gravel, limestone and shale resources in the Region and was submitted to the Ontario Geological Survey for publication as a government document ARIP Paper.
Navan Quarry Navan, ON	Project Manager and geologist for evaluation of sand and gravel and bedrock resources in the Regional Municipality of Peel, Ontario for the provincial Ministry of Municipal Affairs and Housing (MMAH). The project was carried out as part of the development of the official plan for the Region.
Brockville Quarry Brockville, ON	Project Manager and hydrogeologist for hydrogeological evaluation of the Permanent Lafarge Brockville Quarry. The results of the evaluation were used to negotiate the liability of the quarry to alleged water well interference associated with quarry expansion with the Ontario Ministry of the Environment.
Dufferin Aggregates ON	Project Director and senior hydrogeologist for numerous aggregate projects at quarries and sand and gravel pits within Ontario including resource evaluations, hydrogeological investigations, and environmental assessments.
Due Diligence Studies Southern Ontario	Project Manager and senior hydrogeologist for due diligence studies as part of the potential purchase of aggregate companies and operating pits and quarries in Ontario.

Resumé

Site Selection Studies Southern Ontario	Project Director for site selection studies for development of quarries and sand and gravel operations in Ontario.
Lafarge - North Quarry Flamborough, ON	Project Director for hydrogeological program at the Lafarge (formerly Redland) Quarry Operations in Flamborough, Ontario, to meet the regulatory requirements of the Ontario Ministry of the Environment.
Proposed Halminen Quarry Buckhorn, ON	Project Manager for a private application for a license for a proposed limestone quarry near Buckhorn, Ontario. The project involved management of multi- disciplinary project team public meetings, and application for a Class A licence under the Aggregate Resources Act.
Votorantim Cimentos Bowmanville, ON	Project Director for the development of a limestone/dolostone mine under Lake Ontario. The work programs involve drilling and testing of a 275 m deep borehole under the lake, development of an underground mine plan, preparation of an EA document for regulatory approvals and public participation programs.
Milton Limestone Quarry Peer Review Milton, ON	Project Director for the peer review of the hydrogeological and adaptive management plan report for the proposed Dufferin Aggregates Milton Quarry expansion. The work program involved meetings with the hydrogeological consultant and legal counsel and attendance at Ontario Municipal Board hearings.
SAROS Study Greater Golder Horseshoe, ON	Evaluation of supply and demand of aggregate resources in the Greater Golden Horseshoe for the MMNR (Ministry of Natural Resources and Forestry). The project includes resource estimates for 25 quarries and 120 pits and unlicensed sand and gravel resources in the study area.
Nelson Quarry Expansion Burlington, ON	Project Director for the proposed Nelson Quarry extension including extensive borehole drilling and monitoring well installations, water quality sampling, a surface water program, groundwater flow modeling, impact assessments, preparation of an Adaptive Management Plan (AMP), reporting and acting as an expert witness at an Ontario Municipal Board hearing.
Lafarge South Quarry Expansion Dundas, ON	Project Director for a hydrogeological and hydrological work programs in support of a license application for the expansion of the Lafarge South Quarry near Dundas, Ontario (ongoing). The work program involves borehole drilling and monitoring well installations, geophysical borehole logging, water quality sampling and analyses, hydrological analyses of streams and wetlands, a karst assessment, a water well survey, geological and hydrogeological interpretation, groundwater flow modeling, agency interaction and attendance at public meetings.
Lafarge Fonthill Pit PTTW Renewal Fonthill, ON	Project Director for a hydrogeological work program in support of a Permit to Take Water (PTTW) application for the Lafarge, The work program included interpretation of pumping wells records, evaluation of drawdown in water wells related to pumping, water quality analyses and preparation and submission of a report in support of the permit application.

Lafarge North Quarry Expansion Dundas, ON	Project Director for a hydrogeological work program conducted in support of a license application for the expansion of the Lafarge North Quarry. The work program involved borehole drilling and monitoring well installations, pumping tests, groundwater flow modelling, a water well survey, an impact assessment of potential effects on water wells and an adjacent provincially significant wetland, agency interaction and preparation of a report submitted in support of the license application. The application was approved with an Ontario Municipal Board hearing.
Lafarge PTTW Monitoring Programs ON	Project Director for hydrogeological monitoring programs for a portfolio of more than 50 pits and quarries in Ontario. The programs involved water level and water quality monitoring, evaluation of pumping records, effects assessments and preparation and submission of monitoring reports for compliance with the permits.
RW Tomlinson Quarry License Application Brechin, ON	Project Co-director for the hydrogeological work program for a hydrogeological work program performed in support of a license application for a dolostone quarry in the Carden Plain. The work program involved borehole drilling and monitoring well installation, geophysical borehole logging, packer testing, well response testing, pump testing, water quality sampling, groundwater flow monitoring, an impact assessment including potential effects on surrounding water wells and an adjacent wetland, development of a monitoring program preparation of a report in support of the application and agency interaction.
Proposed Lafarge Glen Morris Pit ON	Project Director and senior hydrogeologist for the hydrogeological work program in support of a license application for the proposed Glen Morris Pit. The work program included borehole drilling, monitoring well installations, groundwater level monitoring and the provision of data and preparation of a hydrogeological report.
Lafarge Wellington Quarry PTTW and ECA Renewal ON	Project Director and senior hydrogeologist for the Lafarge Wellington Quarry Renewal. The field program involved borehole drilling, packer testing, monitoring well installations, groundwater level monitoring, a field pumping test, development of a water budget and groundwater quality sampling. A hydrogeological impact assessment was developed to assess the potential impacts of quarry groundwater level drawdown related to quarry dewatering activities on surrounding private water wells and municipal wells. The work program included the modification of the regional source water protection to incorporate site data to assess the potential effects on the Guelph municipal wells.
Lafarge Regan Resource Drilling ON	Project Manager and senior geoscientist for resource drilling at the Lafarge Regan site using some drilling techniques. The results of the work program were provided to Lafarge for their resource assessment.
Lafarge Hagersville Quarry Hagersville, ON	Senior Hydrogeologist for the assessment of quarry dewatering and pumping for the Lafarge Hagersville Quarry as part of the PTTW monitoring program.

Arbour Farms License Application ON	Senior Hydrogeologist for the Arbour Farms license application for a pit below water. The work program included borehole drilling, installation of monitoring wells, groundwater level monitoring and assessment of potential effects on an adjacent water course. Three-dimensional groundwater flow and heat transport modeling was completed to assess the potential thermal impacts on the surrounding surface water courses.
Rankin Construction Port Colborne Quarry Extension Port Colborne, ON	Project Director for a multi-disciplinary work program for a license application for an extension of the Port Colborne Quarry. The work program involved hydrogeological, hydrological, blasting, noise, air, natural environment, planning, agricultural and archaeological studies, and a resource estimate. Senior Hydrogeologist for the hydrogeological work program that involved borehole drilling, monitoring well installations, groundwater quality sampling and analysis, an impact assessment and a monitoring and response program for potential impacts on surrounding water wells.
Lafarge Goodwood Pit Extension Goodwood, ON	Project Director and senior hydrogeologist for a license application for the Lafarge Goodwood Pit extension, for a Category 1 Class EA pit below water. The objective of the work program was to characterize the existing hydrogeological and hydrological conditions in the vicinity of the site, including the depth and elevation of the water table and assess potential effects of the operational and rehabilitation scenarios. The work program involved borehole drilling, monitoring well installations, groundwater level monitoring, development of a water budget and a hydrogeological impact assessment.
Lafarge Woodstock Quarry Expansion Woodstock, ON	Project Director and senior hydrogeologist for the hydrogeological investigation of the Woodstock quarry for support of a license amendment. The field program involved borehole drilling, packer testing, monitoring well installations, groundwater quality sampling and analysis, a field water well survey and development of a water budget. An impact assessment was conducted to assess the potential effect of quarry related groundwater level drawdown on surrounding water wells and surface water courses.
CRH Resource Evaluation and Due Diligence ON	Project Manager and senior geoscientist for a resource evaluation of a property near Orangeville, Ontario for potential acquisition for quarry development. The work program included borehole drilling, geological logging of the rock core, monitoring well installations to determine the depth of the water table, aggregate quality testing and reporting.
Limestone and Sandstone Resource Evaluation and Due Diligence Regional Municipality of Peel, ON	Project Director and senior hydrogeologist for a resource evaluation for a property developer for potential acquisition of an existing quarry near Mississauga. The work program involved borehole drilling, core logging, aggregate quality testing and reporting.
Stouffville Resource Drilling Stouffville, ON	Project Manager and senior hydrogeologist for the resource drilling at Lafarge Stouffville Quarry. The drilling was conducted using a sonic drill rig with continuous core sampling. The results were provided to the Lafarge geologist for the resource assessment.

Lakeridge Resource Drilling ON	Project Manager and senior geoscientist for the resource drilling at the Lafarge Lakeridge site. The drilling was conducted using sonic coring and the results provided to the Lafarge geologist for development of a resource assessment.
Votorantim Thomas Quarry License Application ON	Senior hydrogeologist for the hydrogeological component of the Votorantim Thomas Quarry Extension license application. The work program involved borehole drilling, packer testing, geophysical borehole logging monitoring well installations and groundwater quality sampling and analysis. Three-dimensional groundwater flow monitoring was conducted to assessment the potential hydrogeological impacts of the quarry.
Lafarge Pinkney Pit #3 ON	Senior Hydrogeologist for the hydrogeological work program for the Lafarge Pinkney Pit #3 license application. The work program involved borehole drilling, monitoring well installations and a hydrogeological impact assessment.
Lafarge Mosport Resource Drilling ON	Project Manager and senior geoscientist for the sonic borehole drilling at the Lafarge Mosport Pit. The results of the resource drilling were provided to the Lafarge geologist as part of the site resource assessment.
Lafarge Goodwood Resource Drilling ON	Project Manager and senior geoscientist for sonic borehole drilling of the resource near the Lafarge Goodwood Pit. The results of the drilling were provided to the Lafarge geologist for a resource assessment.
APAO (Aggregate Producers Association of Ontario) Water Consumption Study ON	Project Director for a study for the APAO to determine the consumption of water associated with pits and quarries.
Lafarge Sunningdale Pit Monitoring Program ON	Senior Hydrogeologist for the Lafarge Sunningdale Pit Monitoring Program. The work program includes hydrogeological monitoring, an assessment of potential impacts and preparation of an annual monitoring report.
Votorantim Resource Assessment ON	Project Manager and senior geoscientist for a resource assessment at a Votorantim Quarry in central Ontario. The work program involved borehole drilling and borehole geophysics were used to identify and correlate the geological formations and members at the site.
Cox Construction Monitoring Well Network Wellington County, ON	Project Manager and senior hydrogeologist for borehole drilling and monitoring well installations at a property in Wellington County to provide baseline date for potential future licensing as a quarry. The wells were installed in the thick sequence of Amabel Formation at this locates. Groundwater level monitoring was performed to determine the depth to water table.
Cox Construction Resource Evaluation and Due Diligence ON	Project Director for a drilling program to evaluate to the limestone resource for potential acquisition of a property for development. The work program involved borehole drilling, geological logging of the rock core, monitoring well installations, aggregate quality testing and reporting.

PROJECT EXPERIENCE – WASTE MANAGEMENT

Adams Mine Kirkland Lake, ON	Project Hydrogeologist and Project Manager for the hydrogeological assessment of the Adams Mine near Kirkland Lake, Ontario over a five-year period as part of the proposed development of 20 million tonne engineered landfill facility for solid non-hazardous waste. The facility will receive waste from the Greater Toronto Area (GTA) via a rail line system. The landfill facility incorporates a hydraulic containment design, which prevents outward migration of contaminants from the landfill, which reduces environmental impacts and long-term operating costs. Provided expert witness testimony in an environmental assessment (EA) hearing.
Brow Landfill Dundas, ON	Project Hydrogeologist then Project Manager for hydrogeological assessment for landfill expansion of the existing Redland Quarries Inc. (formerly Steetley Quarry Products Ltd.) solid industrial waste Brow Landfill in Flamborough, Ontario. Subsequent work included ongoing groundwater and surface water quality monitoring and preparation monitoring reports submitted to the MOE, followed by development of a closure plan and an ongoing compliance monitoring program.
South Quarry Landfill Flamborough, ON	Project Hydrogeologist for hydrogeological assessment of the proposed Redland Quarries Inc. (formerly Steetley Quarry Products Ltd.) South Quarry in Flamborough, Ontario for the proposed development of an engineered landfill facility. Participated in environmental assessment (EA) hearings and assisted with the preparation of final arguments with legal counsel.
Siting Task Force Secretariat Chalk River, ON	Project Hydrogeologist, then Project Manager for geological and hydrogeological characterizations of the Chalk River Nuclear laboratories property, near Chalk River, Ontario for siting of a proposed facility for the disposal of low-level nuclear waste for the federal Siting Task Force Secretariat (STFS).
Siting Task Force Secretariat Port Hope, ON	Project Hydrogeologist then Project Manager for geological and hydrogeological characterization of the Lakeshore site in Port Hope, Ontario, for the federal Siting Task Force Secretariat (STFS). The work was carried out as part of the feasibility level I study for dispose of low-level waste in engineered caverns beneath Lake Ontario and the Cameco Uranium fuel processing facility in Port Hope.
Interim Waste Authority Regional Municipality of Peel, ON	Project Hydrogeologist for geological and hydrogeological characterization comparative evaluation of five short-listed sites for siting of an engineered landfill facility as part of the provincial Interim Waste Authority (IWA) landfill site selection process for the Region of Peel.
Guelph-Wellington County WMMP Wellington County, ON	Project Hydrogeologist for geological and hydrogeological characterization of five candidate sites and identification of a preferred site in Wellington County for siting of an engineered municipal landfill facility, as part of the joint City of Guelph - County of Wellington Waste Management Master Plan (WMMP).
Model City Landfill Lewiston, NY	Project Hydrogeologist for hydrogeological investigation of the Model City hazardous waste landfill, near Lewiston, New York, carried out as part of landfill expansion.

Welland-Wainfleet WWMP Townships of Welland and Wainfleet, ON	Project Hydrogeologist for the identification of preferred sites for development of a municipal landfill facility, as part of the Welland-Wainfleet Waste Management Master Plan (WMMP).
Brock South Landfill Pickering, ON	Project Hydrogeologist for assessment of the proposed Brock South Landfill near Pickering, Ontario, to assess the suitability of the site for development of an engineered municipal landfill facility for Metropolitan Toronto.
Redland Queenston Quarry Queenston, ON	Project Hydrogeologist for hydrogeological assessment of the Redland Quarries Inc., Queenston Quarry to determine the suitability of the site for disposal of waste rock saline shale, from the construction of the proposed diversion tunnels of the Sir Adam Beck III hydroelectric generating facility in Niagara Falls, Ontario.
Fly Ash Disposal Facility ON	Project Hydrogeologist for hydrogeological investigations at four quarries located near Hagersville, Cayuga, Smithville, and Milton to determine their suitability for development an engineered landfill for disposal of fly ash from the Ontario Hydro Lakeview Power Generating Station.
Mohawk Street Landfill Brantford, ON	Project Hydrogeologist for assessment of groundwater and surface water quality impacts at the municipal Mohawk Street Landfill in Brantford, Ontario.
Vale Industrial Landfill Port Colborne, ON	Project director for the preparation of an annual report for the groundwater monitoring program for an industrial waste landfill at a former nickel refinery. The work program included interpretation of groundwater flow directions and water quality trends, evaluation of the extent of the leachate plume, and an impact assessment.
Vale Industrial Refinery Landfill Monitoring Port Colborne, ON	Project Director and senior hydrogeologist for an evaluation of the effectiveness of the purge well system at a former nickel refinery and the development of mitigation and rehabilitation measures for well clogging. The work program involved step drawdown pumping tests, longer term pumping tests, hydraulic analysis of pumping test data, assessment of the decline of well efficiency due to scaling and bio fouling and the development of a work program for well rehabilitation and maintenance including acidification.
Municipal Landfill Annual Monitoring Programs Niagara Region, ON	Project Director for the annual monitoring program for 8 landfills in bedrock and escarpment settings in Niagara Region. The work program involves field water quality sampling, groundwater level monitoring, and provision of progress and annual reports.
Proposed Walker Ingersoll Landfill ON	Senior Hydrogeologist for the hydrogeological investigation for the proposed Walker Landfill near Ingersoll, Ontario. The field program involved borehole drilling, monitoring well installations, packer testing, geophysical borehole logging, downhole flow profiling, groundwater quality sampling and analysis, a karst study, and a water well survey. Three-dimensional groundwater flow modeling was conducted to assess the potential impacts of the landfill.

PROJECT EXPERIENCE – SHALE INDUSTRY

Canada Brick Mississauga, ON	Specialist for assessment of geological controls upon shale quality at the Canada Brick Britannia Road quarry site. The work was carried out in conjunction with quality control estimate of shale reservoir on the property.
Canada Brick Halton Region, ON	Project Manager for a hydrogeological work program in support on an application for a license for the Hanson Brick Tremaine Quarry in Halton Region, Ontario.
Brampton Brick Limited Halton and Peel Region, ON	Project Director for a hydrogeological and surface water program in support of a license application for a proposed shale quarry for a brick manufacturer. The work programs involved borehole drilling and monitoring well installations, surface water flow monitoring, water quality sampling, groundwater flow modelling and preparation of an Adaptive Management Plan (AMP).
Hanson Brick Limited Halton Region, ON	Project Director for the assessment of the potential gas migration from a landfill to an adjacent brick manufacturing facility containing a brick kiln. The program identified potential risks and a monitoring and response program.

PROJECT EXPERIENCE – MINING

Stanleigh Mine Elliot Lake, ON	Project Hydrogeologist for assessment of the Rio Algom Stanleigh Mine near Elliot Lake, Ontario. The project included development of a three-dimensional flow model of a low-level radioactive waste tailings facility in Precambrian bedrock of the Canadian Shield. The model was used to develop estimates of seepage rates from the facility and was submitted to the Atomic Energy Control Board (AECB) as part of the regulatory approvals process.
Voisey's Bay Mine Labrador	Technical specialist for hydrogeological modelling at the Voisey's Bay Mine site involving development of three-dimensional groundwater flow models of a proposed tailings basin, mine waste rock disposal facility, and an open pit mine at the Voisey's Bay Mine Site in Labrador. The modelling was carried out for the Voisey's Bay Nickel Company (VBNC) as part of the hydrogeological assessment of the mine. The work was subject to regulatory review and presented as evidence at an environmental assessment hearing.
Baley Gold Mine Baley, Russia	Project Hydrogeologist for an Environmental Impact Assessment (EIA) as part of a feasibility study for mine expansion. The hydrogeological component included evaluation of potential for water quality impacts for an open pit mine and tailings basin, reduction of flow in stream and interference with the municipal water well supply.
Asacha Gold Mine Kamchatka, Russia	Project Hydrogeologist of the proposed Asacha Gold Mine in northeastern Russia. The assessment focused upon chemical water quality and streamflow impacts associated dewatering of an underground mine and construction of a tailings basin. The results of the assessment formed part of the mine feasibility study.

Timmins Mine Water Study Timmins, ON	Project Hydrogeologist for assessment of flooding of an extensive array of underground mine working beneath the City of Timmins. The assessment included evaluation of the potential impacts arising from the discharge of water from the flooded mine workings at surface within the city.
Cigar Lake Mine Saskatchewan	Project Hydrogeologist for assessment of potential groundwater inflows into proposed shaft in northern Saskatchewan for the Cigar Lake Mining Corporation (CLMC). The results of the assessment were used as the basis for the engineering design at the shaft.
Denison Mines Elliot Lake, ON	Project Hydrogeologist for an assessment of low-level nuclear waste tailings basin at the Denison Mines near Elliot Lake, Ontario. The hydrogeology study included assessment of seepage of uranium-impacted groundwater from the basin.
MaCassa Mines Kirkland Lake, ON	Project Hydrogeologist for hydrogeological assessment at the Lac Minerals MaCassa Mine tailing basins in Precambrian bedrock near Kirkland Lake, Ontario. The work was carried out to evaluate the potential impacts during operation and following decommissioning of the facility.

PROJECT EXPERIENCE – CONTAMINATED INDUSTRIAL SITES

ICI Nobel, ON	Hydrogeological assessment of groundwater and surface water quality at the former ICI explosives and war productions plant near Parry Sound, Ontario for ICI Canada. The program included assessment of groundwater and surface water quality impacts and removal of buried underground fuel storage tanks. The results of the investigations were submitted to the Ontario Ministry of the Environment as part of the site decommissioning.
Ford Motor Company North York, ON	Dewatering of a groundwater collection gallery and discharge of the contaminated (chlorinated solvent) wastewater to the municipal sewer system (under special conditions), at the Ford Motor Company Plant in North York, Ontario.
Shell Oil North York, ON	Dewatering of a groundwater collection gallery and discharge of the contaminated (chlorinated solvent) wastewater to the municipal sewer system (under special conditions), at the Ford Motor Company Plant in North York, Ontario.
Beaver Lumber Cole Harbour, NS	Excavation of underground storage tank (fuel oil) at the Beaver Lumber store at Cole Harbour, Nova Scotia. The results of the investigation favoured Beaver Lumber, by indicating that damage to the store was due to lack of delivery of the fuel supplier rather than leakage from the site fuel storage tank.
ICI Surfactants Oakville, ON	Hydrogeological impact assessment of cadmium concentrations in groundwater at the ICI Surfactants (formerly Atkemix) site in Oakville, Ontario. The results of the monitoring were submitted to the Ministry of Environment and Energy for regulatory purposes.

Bata Footwear Batawa, ON	Participation in the hydrogeological investigation of chlorinated solvent contamination of a bedrock limestone aquifer at the Bata Footwear plant site in Batawa, Ontario. The results of the hydrogeological impact assessment were submitted to the Ministry of Environment and Energy and used during subsequent legal proceedings to determine financial liability of Bata Footwear for the groundwater contamination.
Niagara Recycling Centre Niagara Falls, ON	Project Director and senior hydrogeologist for the annual operational and monitoring programs for a hydrogeological work program involving groundwater contaminated with chlorinated solvents at the Niagara Recycling Centre related to prior industrial land use. The work program involved operation of the groundwater injection remediation system, assessment of subsurface contamination and preparation of annual monitoring reports.
Rankin Construction Fill Management Plan Port Colborne, ON	Project Director and senior geoscientist for the development of a fill management plan for Pit 1 at the Rankin Construction Port Colborne Quarry. The program included a plan to take excess fill from the area to fill Pit 1. This included a sampling and reporting program to meet MECP requirements.

PROJECT EXPERIENCE – OIL & GAS

 Assessment of Natural Gas Storage Potential Lake Erie, ON
 Project Manager for an assessment of the potential for natural gas storage on Crown Lands beneath Lake Erie. The study involved the assessment of natural gas reservoirs to evaluate their suitability for use as gas storage facilities. Estimated available storage volumes were provided for each of the reservoirs.
 Assessment of Natural Gas Storage Potential Southwestern Ontario
 Project Manager for an evaluation of the hydrocarbon resources in Southwestern Ontario for the Petroleum Resources Centre of the Ministry of Natural Resources. The study included the interpretation and mapping of pool

Resources. The study included the interpretation and mapping of pool boundaries for major pools, calculations of in place and recoverable reserves, tabulation of reservoir characteristics, and estimation of potential hydrocarbon resources in the Ordovician strata of southern Ontario.

PROJECT EXPERIENCE – MUNICIPAL GROUNDWATER STUDIES

Groundwater Study for the County of Victoria ON	Project Director and senior hydrogeologist for a large-scale groundwater study for the County of Victoria with funding from the Provincial Water Protection Plan (PWPP). The work program involved a groundwater resource assessment, evaluation of existing groundwater usage, contamination assessment, development of management options and protection strategies, and an economic evaluation.
Groundwater Study for the City of Stratford ON	Project Director and senior hydrogeologist for a Groundwater Study for the City of Stratford involving an assessment of groundwater resources, source of contamination, pump testing of deep wells in limestone bedrock, and development of groundwater management options and protection strategies.

Simcoe and South Simcoe Groundwater Studies ON Provided specialist hydrogeological services for both the North Simcoe Groundwater Study and South Simcoe Groundwater Study. The work program involved a characterization of the hydrogeology of the study areas and numerical groundwater modelling of Well Head Protection Areas for municipal wells (WHPAs).

PROJECT EXPERIENCE – KARST

Nelson Quarry Extension ON Project Director and Senior Hydrogeologist for karst assessment of the proposed Nelson Quarry extension that involved mapping of the Amabel Formation along the exposed cliff faces of the Mount Nemo outlier, identification of karstic springs in the Medad Valley and associated water courses, mapping of karst features along more than 1 km of exposed quarry faces. Examination of surface karst features including sinkholes and internal drainage were mapped in the area of the quarry. An ERI (Electrical Resistivity Imaging) survey was conducted over a linear distance to identify potential anomalies that could represent karstic features. Boreholes were drilled into the karstic features to evaluate karstic conditions. The boreholes were video logged along the length of the hole to evaluate karstic features such as solution enlarged fractures and voids. The flow in the boreholes were pumped and logged during an impeller flow meter to assess inflow into boreholes from potential karstic features. An array of eight wells and a pumping well were drilled to conduct a tracer test using fluorescein dye. The dye was injected into the wells and the travel time and dye concentrations were recorded to evaluate karstic flow paths and velocities. The results were incorporated in a report submitted as part of the regulatory approvals process and presented and defended at an Ontario Municipal Board hearing.

Proposed Redland Quarries Landfill ON Project Hydrogeologist for a karst study as part of a geological and hydrogeological evaluations of a proposed hydraulic containment engineered landfill facility in a quarry near Dundas, Ontario. The karst study involved examination and evaluation of karstic features in the vicinity of the quarry including solution-enhanced weathering and extensive network of surficial dolostone plain, and examination of epi-karst on more than 1 km of quarry faces including solution enlarged and materialized vertical joints. The results of groundwater level monitoring results were evaluated for patterns indicative of presence of karst including rapid rises in groundwater levels ('spiking'). Pump tests were analysed to evaluate the drawdown and recovery responses characteristic of karst.

Proposed Dundas Quarry Extension ON

Project Director and Senior Hydrogeologist for a karst assessment as part of a hydrogeological work program for the approval of an application for a large dolostone quarry near Dundas, Ontario. The work program involved an ERI surface geophysical survey along more than 500 m of line to test for potential karstic anomalies. Boreholes were drilled in the areas of identified anomalies to evaluate the potential presence of karst. The faces of the quarries were also examined for layers of karstic groundwater inflow. The results of the karst study have been peer reviewed and are currently being used in support of the license application for quarry expansion.

Karst Remediation Hamilton, ON	Senior Hydrogeologist for a karst assessment of a remediated industry site in the area of the Eramosa Karst Conservation Area in Hamilton, Ontario. The work program involved a review of literature on karst in the area. An inspection of the karstic features includes sinkholes, internal drainage and inferred subsurface karstic flow pathways was undertaken in areas around the site. A report in support of a property transaction was provided to regulatory authorities and agencies.
Brow Landfill Monitoring Program ON	Project Hydrogeologist for an assessment of leachate seepage from an industrial solid waste landfill along karstic flow pathways including epi-karst, solution weathered vertical joints and horizontal fracture networks. The assessment involved monitoring of the flow rates from leachate springs and water quality of springs.
Hydrocarbon Reserve Evaluation Southwestern Ontario	Project Director and Senior Geologist/Hydrogeologist for the estimation of hydrocarbon reserves in Southern Ontario for the Petroleum Resource Centre of Ontario Ministry of Natural Resources. The work program involved extensive analysis of karstic reservoirs formed and dolomitization from solution weathering and collapse along vertical joints and horizontal sub horizontal fracture networks. Prepared a report summarizing the study and provided to the MNR as a commercial publication.

PROJECT EXPERIENCE – LAND DEVELOPMENT AND INFRASTRUCTURE

Peer Review, Town of Caledon Caledon, ON	Peer review of the hydrogeological work program for a proposed residential development in Palgrave for the Town of Caledon planning department. The work program involved review of hydrogeological reports, discussions with the Town and preparation of a peer review reports with recommendations.
Peer Review, Town of Caledon Caledon, ON	Peer review of the hydrogeological and geotechnical work program for a proposed residential development in Beaverhall for the Town of Caledon planning department. The work program involved review of hydrogeological reports, discussions with the Town and preparation of a peer review reports with recommendations.
Niacon Construction Niagara-on-the-Lake, ON	Hydrogeological assessment of the potential impacts associated with the development of an infrastructure for a zipline facility along the Niagara river at Thompsons Point. The work program involved an evaluation of the potential for reduction of groundwater seepage along the Niagara Gorge and related environmental effects. A report was prepared that was submitted to agencies as part of the regulatory approvals process.
Time Developments Niagara Falls, ON	Senior hydrogeologist for the hydrogeological assessment of the existing conditions and potential impacts associated with the development of a condominium adjacent to the Niagara River in Niagara Falls. The work program involved borehole drilling, monitoring wells installation, groundwater level monitoring and assessment of groundwater levels and flow directions. The results of the work program were incorporated into a geotechnical and hydrogeological report.

Time Developments Niagara Falls, ON	Phase 1 and Phase 2 Environmental Site Assessments (ESA) for regulatory approval for condominium development on River Road in Niagara Falls, Ontario. The work program involved test pitting and surface sampling as well as collection and analysis of soil and water samples and evaluation of potential soil and water contamination.
AECOM Oakville, ON	Hydrogeological assessment of the excavation and construction of a water pumping station in till and bedrock adjacent to a surface water course. The work program involved borehole drilling, monitoring well installations, hydraulic conductivity testing and a hydrogeological assessment of impacts on surrounding private wells associated with construction dewatering.
Geranium Homes Woodview Development ON	Hydrogeological assessment in support of approval for a proposed residential development involving borehole drilling, monitoring well installations, hydraulic conductivity testing, groundwater level monitoring, determination of groundwater levels and flow directions and a hydrogeological impact assessment involving a water balance to evaluate reduction in infiltration and potential interference with surrounding water wells and effects on an adjacent provincially significant wetland. Participated in meetings with the TRCA as part of the approvals process. A report was prepared in support of the approvals process.
Geranium Homes Altona Development ON	Hydrogeological assessment in support of approval for a proposed residential development. The work program involved borehole drilling, monitoring well installations, groundwater level monitoring, development of a water balance and a hydrogeological impact assessment. A report was prepared in support of the application.

Education

B.Sc.(Hons) Environmental Geoscience, Brock University, St. Catharines, 2012

Certifications

Professional Geoscientist -P.Geo., February 2017

Languages English – Fluent

Golder Associates Ltd. – St. Catharines

Byron Zwiep B. Sc. (Hons), P.Geo. Environmental Scientist

Mr. Zwiep is an Environmental Scientist who is involved with environmental monitoring and investigations; he also has significant experience with groundwater and surface water monitoring, leachate and combustible gas monitoring. His responsibilities include project management, co-ordinating and conducting field monitoring events, data analysis and verification, and preparation of technical reports and landfill annual monitoring reports. He also has experience drilling and installing overburden and bedrock wells, slug testing and completion of landfill gas monitoring and sampling.

Employment History

Golder Associates Ltd. – St. Catharines Environmental Scientist (2014 to Present)

AECOM – St. Catharines Environmental Scientist (2012 to 2014)

AECOM – St. Catharines Environmental Technician (September 2010 to December 2010)

PROJECT EXPERIENCE – CONTAMINATED LAND REMEDIATION

Stelco

Hamilton, Nanticoke, Ontario, Canada Project coordinator responsible for assisting in the project initiation phase including borehole layout, locate clearances and drilling program start up. Assisted with drilling, monitoring well development and subsequent groundwater sampling programs.

St. Lawrence Seaway Management Corporation Thorold, Ontario, Canada

Magellan Aerospace Fort Erie, Ontario, Canada

Regional Municipality of Niagara Recycling Centre Niagara Falls, Ontario, Canada

Regional Municipality of Niagara Recycling Centre Niagara Falls, Ontario, Canada

Pen Centre St. Catharines, Ontario, Canada

Regional Municipality of Niagara Recycling Centre Niagara Falls, Ontario, Canada

Loblaws Elmira, Ontario, Canada

Confidential Client Scarborough, Ontario, Canada

Project manager responsible for the investigation and cleanout of a culvert that directs discharge water from adjacent properties under the Welland Canal. The

culvert was used by various industries historically resulting in contamination of the sediments that partially blocked the canal. Design drawings and site supervision/inspection was completed.

Provide ongoing troubleshooting and maintenance support for the operation of the groundwater treatment system on-site. Organized the monthly surface water and semi-annual groundwater sampling programs.

Project Manager responsible for the organization and implementation of the environmental monitoring program and maintenance related to the operations and maintenance and monitoring of the Groundwater Treatment System at the Niagara Region Recycling Centre. Also responsible for the production of the annual monitoring reports in 2015 through 2021.

Developed and implemented a geoprobe investigation involving the completion of fifteen boreholes to bedrock surface and associated soil sampling to identify a potential source of contamination for chlorinated solvent concentrations observed in shallow bedrock groundwater. Completed associated reporting and future recommendations for additional bedrock monitoring wells to further delineate the plume and understand the bedrock hydrogeology in greater detail

Field technician responsible for contractor oversight to complete a sewer inspection. Also, set up diversion in storm sewer to pump water over to sanitary sewer.

Completed a work program involving the installation of seven additional bedrock monitoring wells, well development, hydraulic conductivity testing, groundwater sampling and associated reporting to complete a chlorinated solvent plume delineation and provide a greater understanding of the shallow bedrock groundwater flow direction. Provided recommendations for the installation of additional bedrock monitoring wells and overburden sampling to identify source of contamination.

Field program co-ordinator responsible for oversight of surfactant and persulfate injections. Completed well development and groundwater sampling to assess performance of remedial measures.

Assisted with construction oversight during excavation. Completed soil sampling to determine soil quality of backfill. Carried out an air monitoring program to ensure health and safety of workers. Completed groundwater sampling programs to determine extent of contamination and effectiveness of a treatment system

Confidential Client Confidential Locations, Canada Involved in sewer sampling project to determine the extent of groundwater intrusion into the sewer systems. Also completed multiple groundwater monitoring and sampling events. Completed data analysis to assist in the production of annual reports. Performed vacuum testing in a home to assess the extent of a sub slab depressurization system. Involved in performance testing to determine effectiveness of the remedial action plan.

PROJECT EXPERIENCE – WASTE MANAGEMENT

Regional Municipality of Niagara, Landfills in an Escarpment and Bedrock Setting Niagara Region, Ontario, Canada Naturalization Site, Mounta Landfill, Station Road Land Tarke include groundwater

Project Manager responsible for co-ordination and execution of all aspects of the landfill monitoring including scheduling, budget control, data analyses and interpretation, preparation of technical and annual reports and liaising with clients and regulatory agencies. Also, performed the role of Project Co-ordinator responsible for the organization and implementation of all field related monitoring requirements for seven landfills in the Region of Niagara including the: Glenridge Naturalization Site, Mountain Road Landfill, Quarry Road Landfill, Bridge Street Landfill, Station Road Landfill, Niagara Road 12 Landfill and Park Road Landfill. Tasks include groundwater, surface water, combustible gas and leachate level monitoring and sampling, assessment of field data in comparison to applicable environmental compliance approval requirements and other regulatory criteria.

Vale Canada Limited Port Colborne, Ontario, Canada Assisted with the preparation of compliance annual monitoring report including data compilation and analysis as well as assessment of hydrogeological conditions for the 2014 and 2015 annual landfill monitoring reports.

Halton Waste Management Site Milton, Ontario, Canada data compilation and analysis as well as assessment of hydrogeological conditions for the 2014 and 2015 annual landfill monitoring reports. Program Manager for monthly, quarterly and bi-annual environmental monitoring programs. Completed bi-annual groundwater, surface water and leachate

programs. Completed bi-annual groundwater, surface water and leachate monitoring program including sampling of residential wells. Created task hazard analysis in addition to a health and safety plan for the site. Replaced 40 well casings to upgrade current monitoring network of wells. Involved in field monitoring aspects of current depressurization program.

PROJECT EXPERIENCE – HYDROGEOLOGY

Port Colborne Quarries Port Colborne, Ontario, Canada

Time Development

Group Niagara Falls, Ontario, Canada Completed Phase I ESA site visit, well development, groundwater sampling and hydraulic conductivity testing. Assisted in development of hydrogeological work program and associated reporting. Co-ordinated Phase II ESA site work and assisted with associated reporting.

hydrogeological investigation to determine bedrock surface depth as well as

bedrock geology underlying the Site. Provided project management support for

Project coordinator responsible for developing and implementing a

hydrogeology and monitoring well installation portions of the project.

Vale Canada Limited Port Colborne, Ontario, Canada Completed field program in order to assess the performance of Vale's interceptor purge wells. Assisted with preparation of report summarizing results of step and 24 hour pump tests.

Ministry of Transportation - MTO Magnetewan First Nation, Ontario, Canada Completed bedrock drilling program to determine location and quality of groundwater as a preliminary study to highway construction. Constructed borehole logs and assisted in preparation of the report.

TRAINING

Transportation of Dangerous Goods AECOM, 2014

WHIMIS Golder Associates Ltd., 2017

First Aid and CPR Level C Red Cross, January 2017

40 Hour Hazardous Waste Operations and Emergency Response Training in Accordance with OSHA 29CFR 1910.120, ACUTE, 2014

SUPPLEMENTAL SKILLS

PROFESSIONAL AFFILIATIONS

Association of Professional Geoscientists of Ontario

golder.com