Targeting 6-Phosphofructo-2-Kinase To Increase the Efficacy of ER and CDK4/6 Inhibitors Against Metastatic Breast Cancer

Principal Investigator: Yoannis Imbert-Fernandez, Ph.D

Applicant Organization: University of Louisville Research Foundation

Address: 505 South Hancock Street Room 427A
Clinical and Translational Research Building
Louisville, KY 40202

Phone: 502-852-3686

Email: Yoannis.imbertfernandez@louisville.edu
PATHWAY TO “RO1” STATEMENT

This application seeks to address the challenge to eliminate the mortality associated with breast cancer by examining the potential for PFKFB3 inhibitors to increase the anti-breast cancer efficacy of two small molecules, fulvestrant and palbociclib, that are FDA-approved for the treatment of stage IV breast cancer. The results of this study are expected to provide the needed rationale to expand our initial observations into an RO1 proposal. The application will be written to include the following aims:

1. To determine the effects of simultaneous PFKFB3 and CDK4/6 inhibition on the utilization of glucose and glutamine using 13C-isotopomer metabolomics analyses by NMR and mass spectrometry. **Rationale:** Active Rb suppresses glucose and glutamine metabolism and we postulate that dual targeting of PFKFB3 (and thus CDK1) and CDK4/6 inhibition will cause a marked suppression of metabolic flux via reduced Rb-phosphorylation and increased Rb function, especially in the absence of estrogen or presence of fulvestrant. We will propose to analyze glucose and glutamine utilization pathways using NMR and mass spectrometry metabolomics approaches that we have established in our lab after PFKFB3 and CDK4/6 inhibition.

2. Examination of the roles of PFKFB3 and CDK4/6 in endocrine-resistant breast cancer cells. **Rationale:** 25 to 50% of newly diagnosed ER+ breast cancer patients will not respond at all to anti-estrogen therapies and, importantly, most patients that initially responded to these agents eventually become resistant during the course of therapy (acquired resistance). Interestingly, the E2-induced metabolic flare on FDG-PET scans is predictive of breast cancer endocrine responsiveness highlighting the importance of glucose metabolism in E2-driven breast cancer tumors. Given that PFKFB3 and CDK4/6 are targets downstream of endocrine therapy we will postulate that combining PFK158 with palbociclib and/or fulvestrant in endocrine resistant cells will cause a synergistic increase in cell death and re-sensitize ET resistant cells to endocrine therapies.

3. To assess the capacity of the PFKFB3 inhibitor, PFK158, to prolong the anti-tumor activity of fulvestrant and palbociclib against ER+ patient-derived xenograft (PDX) models and to prolong the anti-tumor activity of palbociclib against three TN PDX models in NGS mice. **Rationale:** A limitation of the in vivo xenograft models generated by implanting cultured cell lines that we have proposed in aim 2 is their inadequate predictive value for future outcomes. Given that our long-term objective is to generate sufficient pre-clinical data for a phase 1/2 clinical trial in stage IV ER+ and TN breast cancer patients, we will propose to study the potential utility of PFK158 in the more relevant PDX models.

These preliminary studies will provide enough rationale to submit an RO1 in the fall of 2016 and will markedly improve the potential of the application to get funded, which will have a major impact on breast cancer patients.
BUDGET JUSTIFICATION

Personnel

Yoannis Imbert-Fernandez, Ph.D., will function as the P.I. and no salary is requested annually. Dr. Imbert-Fernandez demonstrated that estrogens stimulate PFKFB3 which was found to be essential for breast cancer cell glucose metabolism and survival. Dr. Imbert-Fernandez is currently funded through the DOD CDMRP Breast Cancer Post-Doctoral Fellowship to study the regulation of glucose utilization by estadiol in breast cancer.

Amy Clem, M.S., will serve as the laboratory technician and 4 months of her salary is requested annually. She will conduct the combination studies proposed in Specific Aim 1 using siRNA and small molecular inhibitors and will interrogate the novel hypothesis that PFK158 may be able to disrupt the CDK1 compensation that occurs after exposure to palbociclib.

A 3% inflation increment has been factored after Year 1 for cost-of-living salary increases. Fringe benefits are charged at their actual rate which is currently 37.67%.

Budget

The following categories are requested

<table>
<thead>
<tr>
<th>BUDGET CATEGORY</th>
<th>INITIAL BUDGET PERIOD (YEAR 1)</th>
<th>INITIAL BUDGET PERIOD (YEAR 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SALARY</td>
<td>17,084</td>
<td>17,596</td>
</tr>
<tr>
<td>MATERIALS AND SUPPLIES</td>
<td>78,154</td>
<td>77,642</td>
</tr>
<tr>
<td>TRAVEL COST</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>INDIRECT COSTS</td>
<td>4,762</td>
<td>4,762</td>
</tr>
<tr>
<td>TOTAL COSTS</td>
<td>100,000</td>
<td>100,000</td>
</tr>
<tr>
<td>TOTAL COSTS FOR ENTIRE PROPOSED PERIOD</td>
<td>100,000</td>
<td>100,000</td>
</tr>
</tbody>
</table>

The University of Louisville's Department of Purchasing has policies and procedures in place for goods and services. The policies are located at http://louisville.edu/purchasing/policies.

Six-Month Progress

The PI will provide a progress report six months after the initiation of the project. The progress will include an updated budget and the milestones achieved during the period funded.
PUBLIC ABSTRACT: Targeting 6-Phosphofructo-2-Kinase To Increase the Efficacy of ER and CDK4/6 Inhibitors Against Metastatic Breast Cancer

Breast tumors are driven to grow through a combination of increased breast cancer cell sugar metabolism and proliferation. An enzyme called 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) regulates both of these two biological processes by activating two key downstream enzymes, 6-phosphofructo-2-kinase (PFK-1) and cyclin-dependent kinase 1 (CDK1). Estrogens stimulate PFKFB3 which was found to be essential for breast cancer cell glucose metabolism and survival in 2014. This year, a drug, palbociclib, that inhibits other estrogen-regulated enzymes, cyclin-dependent kinases 4 and 6, was found to improve the survival of breast cancer patients when combined with anti-estrogen agents. We postulated that simultaneous inhibition of both of these estrogen-regulated enzymes (PFKFB3 and CDK4/6) would be catastrophic to breast cancer cells but not to normal cells. In new, unpublished studies, we have found that a PFKFB3 inhibitor (called PFK158) not only increases the anti-breast cancer activity of the widely used anti-estrogen drug, fulvestrant, in mice but also increases the anti-breast cancer activity of palbociclib in vitro. Based on these studies, we believe that PFK158 will increase the activity of anti-estrogen (e.g. fulvestrant) and anti-CDK4/6 (e.g. palbociclib) drugs to durably shrink tumors and hopefully improve the survival of estrogen receptor (ER)+ breast cancer patients. We also believe that PFK158 may improve the activity of anti-CDK4/6 inhibitors in the absence of anti-estrogen agents in triple-negative (TN) breast cancer patients. Importantly, we developed PFK158 at the University of Louisville and are conducting a phase 1 trial that includes breast cancer patients at four institutions including the University of Louisville, MD Anderson Cancer Center, UT Southwestern and Georgetown University. Accordingly, we are confident that if we find that PFK158 improves the activity of these FDA-approved drugs in our highly relevant mouse models of breast cancer, then we will be able to quickly initiate multiple phase 1/2 trials to test these combinations in women suffering from both ER+ and TN breast cancer.

OVERARCHING CHALLENGE: This application seeks to address the challenge to eliminate the mortality associated with breast cancer by examining the potential for PFKFB3 inhibitors to increase the anti-breast cancer efficacy of two small molecules, fulvestrant and palbociclib, that are FDA-approved for the treatment of stage IV breast cancer.

HYPOTHESIS: We postulate that PFKFB3 inhibitors may be able to increase the efficacy of ER antagonists and CDK4/6 inhibitors through combined suppression of glucose metabolism and CDK1 activity.

SPECIFIC AIMS:
1. To determine the effects of combined ER, CDK4/6 and PFKFB3 inhibition on glucose metabolism, cell cycle regulators, growth and survival in vitro.
2. To examine the anti-metabolic and anti-growth effects of fulvestrant, palbociclib and PFK158 as monotherapies and in combination in mouse models of breast cancer in vivo.

CLINICAL APPLICATION: The results of this study may provide the rationale to conduct phase 1/2 clinical trials of PFK158 in combination with anti-estrogen agents and CDK4/6 inhibitors in ER+ breast cancer patients and in combination with CDK4/6 inhibitors in TN breast cancer patients. If we observe clinical responses in these early phase trials, then we intend to conduct phase 3 trials to determine the potential of PFK158 to improve the survival of breast cancer patients. Although the potential benefits are clear, the risks are not as we have not observed any serious adverse events related to PFK158 in the phase 1 clinical trial (expected completion is in early 2016). The proposed pre-clinical studies should take 3 years but, if we observe data consistent with improved outcomes during the first 1-2 years of this grant, then we would develop the phase 1/2 clinical trial protocols in order to initiate these trials before the end of the three-year grant period.

POTENTIAL IMPACT: Our proposed studies to test the hypothesis that PFK158 may synergistically increase the activity of palbociclib with and without fulvestrant in pre-clinical models is anticipated to provide the rationale to conduct IND-enabling toxicity studies and phase 1/2 trials of these combinations in TN and ER+ stage IV breast cancer which in turn is expected to result in improved clinical outcomes for patients suffering from metastatic breast cancer.
NAME: Imbert-Fernandez, Yoannis

eRA COMMONS USER NAME (credential, e.g., agency login): yimire01

POSITION TITLE: Postdoctoral Scholar

EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as nursing, include postdoctoral training and residency training if applicable. Add/delete rows as necessary.)

<table>
<thead>
<tr>
<th>INSTITUTION AND LOCATION</th>
<th>DEGREE (if applicable)</th>
<th>Completion Date MM/YYYY</th>
<th>FIELD OF STUDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Havana, Cuba</td>
<td>B.A.</td>
<td>1998</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>University of Louisville, Louisville, KY</td>
<td>M.S.</td>
<td>2008</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>University of Louisville, Louisville, KY</td>
<td>Ph.D</td>
<td>2010</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>James Graham Brown Cancer Center, Louisville, KY</td>
<td>Post-Doc</td>
<td>2010</td>
<td>Medicine (Medical Oncology/Hematology)</td>
</tr>
</tbody>
</table>

A. Positions and Honors

Positions and Employment

1998 – 2000 Associate Researcher, National Coordinating Center of Clinical Trials. Havana, Cuba (Supervisor: Grisel Gonzalez)

2002 – 2003 Volunteer, Department of Molecular and Craniofacial Biology, University of Louisville, Louisville, KY (Supervisor: William W. Young, Ph.D.)

2003 – 2005 Laboratory technician, Department of Molecular and Craniofacial Biology, University of Louisville, Louisville, KY (Supervisor: William W. Young, Ph.D.)

2011 – Present Post-Doctoral Scholar, Division of Hematology/Oncology, Department of Medicine, University of Louisville, KY (Mentor: Jason Chesney, M.D., Ph.D.)

Honors

2007-2010 NIH Pre-Doctoral Fellowship, The National Eye Institute
2010 Graduate Dean's Citation, University of Louisville
2012 Invited speaker at the Molecular Targets Group at the James Graham Brown Cancer Center, University of Louisville. Title: Estriadiol: How sweet it is.
2012 Invited speaker at the Department of Biochemistry and Molecular Biology, University of Louisville. Title: Fructose-2,6-Bisphosphate- An Essential Effector Molecule of Estriadiol-Induced Glucose Metabolism and Growth.
2012 Ralph Scott Fellow Basic Research Prize 3rd place (JGBCC Retreat)
B. Peer-reviewed publications (Yoannis Imbert became Yoannis Imbert-Fernandez in 2010)

Poster Presentations

C. Current Support

1. DOD CDMRP Breast Cancer Post-Doctoral Fellowship (Imbert-Fernandez)

<table>
<thead>
<tr>
<th>Title:</th>
<th>Regulation of Glucose Utilization by Estradiol In Breast Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role:</td>
<td>Principal Investigator (100%)</td>
</tr>
<tr>
<td>Period of Support:</td>
<td>7/01/2013-6/30/2016</td>
</tr>
<tr>
<td>Total Award:</td>
<td>$447,226</td>
</tr>
</tbody>
</table>

This grant proposal is to fund my training to become a breast cancer researcher.
BIOGRAPHICAL SKETCH

Provide the following information for the Senior/Key personnel and other significant contributors. Follow this format for each person. DO NOT EXCEED FIVE PAGES.

NAME: Clem, Amy

eRA COMMONS USER NAME (credential, e.g., agency login): alclem01

POSITION TITLE: Research Technologist Senior

EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as nursing, include postdoctoral training and residency training if applicable. Add/delete rows as necessary.)

<table>
<thead>
<tr>
<th>INSTITUTION AND LOCATION</th>
<th>DEGREE (if applicable)</th>
<th>Completion Date</th>
<th>FIELD OF STUDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Montevallo, Alabama</td>
<td>B.S.</td>
<td>1999</td>
<td>Biology</td>
</tr>
<tr>
<td>University of Louisville, Louisville, KY</td>
<td>M.S.</td>
<td>2003</td>
<td>Biochemistry</td>
</tr>
</tbody>
</table>

A. Positions and Honors

Positions and Employment

2000 – 2001 Post-baccalaureate program, National Institutes of Health, Bethesda

2001 – 2003 Research technologist II, University of Louisville, Louisville, KY (Supervisor: Sham Kakar, Ph.D.)

2003 – 2006 Research technologist II, University of Louisville, Louisville, KY (Supervisor: Jason Chesney, M.D, Ph.D.)

2006 – Present Research technologist senior, University of Louisville, Louisville, KY (Supervisor: Jason Chesney, M.D, Ph.D.)

B. Peer-reviewed publications

