

Antimicrobial proof-of-concept: a novel device combining UV light and ozone for human skin antisepsis

Alexander S Maris, MD, Jeremy W Jacobs, MD, MPH, Gerald Van Horn III, PhD, D(ABMM), Charles W Stratton IV, MD, and Jonathan E Schmitz, MD, PhD, D(ABMM)

Vanderbilt University Medical Center, Dept. of Pathology, Microbiology, and Immunology

INTRODUCTION

- · Hand hygiene (HH) remains a cornerstone for the prevention of microbial transmission, both in the community and healthcare setting
- While hand-washing with plain soap and warm water remains the "gold standard" for HH, the process is less than standardized in practice (10 sec to 2 min) and the microbial reduction variable (0.5 to 3.3 log reduction)
- · Alcohol-based hand rubs (ABHR) and wipes offer an ostensibly more rapid and convenient alternative with satisfactory efficacy against vegetative microbes (up to 3 log reduction), but the effect against Clostridioides difficile spores limits their use
- Ultraviolet (UV) light has well-established antimicrobial effect (AME), including sporicidal activity
- Likewise, ozone (O₃) has potent AME and is commonly utilized in the field of dentistry
- In this study, we report proof-of-concept data on the AME of a novel investigational device, HyLuxO3 (GMI, LLC, Nashville, TN, USA; Fig. 1), that is engineered to synergistically combine UV-C light energy and high velocity O₃ airflow to not only decontaminate environmental surfaces and fomites, but also to safely achieve human skin antisepsis within regulatory limits



Figure 1: HvLuxO3 prototype device, 222 nm UV-C light beams are directed centrally from above and below at a fixed UV irradiance (0.6 mW/cm2), [O₃] output (0.1 ppm), and sample-to-device distance (5 cm). The only user-defined variable for this prototype device is exposure time.

METHODS

- HyLuxO3 was tested on LB agar to titrate device variables to ascertain intensities for optimal AME: later testing was performed on VITRO-SKIN (Florida Suncare Testing, Bunnell, FL), a human glabrous skin surrogate
- ATCC strains of MRSA, Staphylococcus epidermidis, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans were used to test AME vs. vegetative microbes; Bacillus atrophaeus spores were used as a surrogate for C. difficile
- Tested variables included time under device, [O₃], airflow velocity, 222 and/or 254 nm UV light, sample distance from UV lamp, and UV beam width. Positive controls were used to calculate log-kill curves for AME

wicrobe (exposure time)	CFC inoculated onto	Cr C anter	Cro alter	Log-Kill (illean)
	plate	exposure (mean)	exposure (std dev)	
B. atrophaeus (5 sec)	2,000,000	88	52	4.36
B. atrophaeus (30 sec)	2,000,000	14	8.7	5.14
B. atrophaeus (60 sec)	2,000,000	6.7	5.6	5.47
C. albicans (5 sec)	160,000	2.1	1.2	4.88
C. albicans (30 sec)	160,000	0.4	0.5	5.19
C. albicans (60 sec)	160,000	0	0	5.20
E. coli (5 sec)	2,000,000	7.3	5.6	5.44
E. coli (30 sec)	2,000,000	1.3	1.4	6.19
E. coli (60 sec)	2,000,000	1.0	1.3	6.30
K. pneumoniae (5 sec)	3,200,000	18	13	5.26
K. pneumoniae (30 sec)	3,200,000	5.2	3.8	5.79
K. pneumoniae (60 sec)	3,200,000	2.0	1.9	6.20
MRSA (5 sec)	16,000,000	42	24	5.58
MRSA (30 sec)	16,000,000	7.3	12	6.34
MRSA (60 sec)	16,000,000	1.3	1.4	7.09
P. aeruginosa (5 sec)	2,400,000	17	9.7	5.14
P. aeruginosa (30 sec)	2,400,000	7.9	4.4	5.48
P. aeruginosa (60 sec)	2,400,000	3.1	1.8	5.89
S. epidermidis (5 sec)	4,000,000	13	5.3	5.48
S. epidermidis (30 sec)	4,000,000	1.8	3.8	6.35
S. epidermidis (60 sec)	4,000,000	0.9	2.1	6.60

- Log-kill data for the HyLuxO3 device against spores and vegetative microbes as a function of exposure time are presented in Table 1
- 4.36 log-kill against spores was achieved in 5 sec; a >5 log-kill was achieved by extending sample exposure to 30 sec (Fig. 2)
- >5 log-kill against all vegetative bacteria was achieved in 5 sec; ≥6 log-kill was achieved by extending sample exposure to 30-60 sec

Figure 2: HvLuxO3 device AME vs. B. atrophaeus spores. Plates were inoculated with 2.0 x 106 CFU. Positive control (bottom) was not exposed; the 5 sec (left), 30 sec (top), and 60 sec (right) plates were exposed to the device for their respective time durations.

CONCLUSIONS

- HyLuxO3 combines 222 nm UV-C light and O₃ to achieve >4 logkill against spores in 5 sec and >5 log-kill against spores in 30 sec
- This device showed a >5 log-kill against common pathogenic vegetative microbes in 5 sec and >6 log-kill in 30-60 sec.
- These AME results rival those of hand-washing and ABHRs by 2-4 logs while decreasing the necessary exposure time from minutes to seconds. Moreover, similar efficacy was shown on agar as on VITRO-SKIN, a well-studied glabrous human skin surrogate
- · Studies on human hands are needed to confirm the efficacy and safety of HyLuxO3 under OSHA and EPA regulations

REFERENCES

- Kampf G, Kramer A. Epidemiologic background of hand hygiene and evaluation of the most important agents for scrubs and rubs. Clin Microbiol Rev. 2004:17(4):863-893. doi:10.1128/CMR.17.4.863-893.2004.
- Edmonds SL, Zapka C, Kasper D, et al. Effectiveness of hand hygiene for removal of Clostridium difficile
- spores from hands. Infect Control Hosp Epidemiol. 2013;34(3):302-305. doi:10.1086/669521 Buonanno M, Ponnaiya B, Welch D, et al. Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV
- Light, Radiat Res. 2017;187(4):483-491, doi:10.1667/RR0010CC.1.
 Narita K, Asano K, Morimoto Y, Igarashi T, Nakane A, Chronic irradiation with 222-nm UVC light induces
 - neither DNA damage nor epidermal lesions in mouse skin, even at high doses. PLoS One. Nothing to disclose 2018;13(7):e0201259, Published 2018 Jul 25, doi:10.1371/journal.pone.0201259.