
Semantic Segmentation on Eye Images for Keratitis Detection

- Semantic Segmentation applied to OpenEDS 
Model, and then evaluated on real-life keratitis 
dataset

- Create an expressive model that can accurately 
capture features for pupil, iris, and sclera 

- Use extensive augmentation to normalize the 
datasets against each other to maximize 
performance on keratitis dataset

- OpenEDS data consisted of 12759 labeled 
images from 152 individuals in a standardized 
400 x 640

- OpenEDS images come with a labeled iris, 
pupil, and sclera

- Keratitis dataset gathered from Sankara 
Nethralaya consisting of 20 images of either 
bacterial, fungal, or viral keratitis

- Preprocessed keratitis images to be the same 
size by zero padding top and bottom

- Hand labeled keratitis images for the respective 
3 classes with help of Stanford Medical 
Students

- Input/Output: EDS Image input into model, 
and predicted mask is output

Related Works
- Initial approaches used signal processing to 

identify various parts of the eye, such as the iris 
[1].

- Learned methods first used boundary detection 
rather than pixel classification [2].

- Convolutional Networks rose with the 
prominence of SegNet + Conditional Random 
Fields [3].

- MobileNet v2 and a UNet + DenseNet 
architecture used on the OpenEDS dataset, 
originally for VR/AR gaze tracking. However, 
competition goal was to minimize parameters 
while retaining high performance instead of 
maximizing performance[4, 5]. 

- UNet Baseline is not expressive enough to 
capture that multiple modalities and edge 
cases, but more expressive loss functions and 
architectures help improve it.

- Geometric Mask Augmentation alone 
provides the most significant increase. Mask 
augmentation now used widely in many 
generative modeling tasks, and transfers well 
to vision and segmentation tasks.

- Increased data augmentation on training set 
improves keratitis detection task.
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- Baseline Binary: Binary UNet for sclera detection
- Baseline Multi Class: Adapt UNet for multiclass classification for pupil, iris, and sclera
- UNet + DenseNet: Use of a UNet architecture connected to a Densenet through densely connected 

feature maps at multiple resolutions. Expressive loss function consisting of surface loss, categorical 
cross entropy loss, and dice loss.

- Data Augmentation Factors:

Geometric Mask Augmentation
- Utilize geometric objects as masks in order for the network to adapt to keratitis-like objects. 

Geometric masks based off of analyzed keratitis shapes, such as ovals and concentric circles.
Bilateral Filtering

- Utilize bilateral filtering, which is a non-linear, edge-preserving, and noise-reducing filter in order 
to smooth out images but emphasize edges to better detect boundary points between the iris, 
pupil, and sclera. 

Contrast Limited Adaptive Histogram Equalization (CLAHE)
- Utilize Histogram Equalization in order to mimic similar lighting conditions across the 

OpenEDS Dataset and keratitis dataset to normalize pixel values across all ranges

Figure 2: Original Keratitis Image vs Bilateral Filtered Image Figure 3: Original Keratitis Image vs CLAHE Normalized Image

Model Name mIoU (EDS) mIoU (Keratitis)

Baseline (Multi Class) 0.6190 0.3451

UNet + DenseNet 0.9722 0.3847

UNet + DenseNet (GM) 0.9755 0.4256

UNet + DenseNet (BF) 0.9733 0.4034

UNet + DenseNet (CLAHE) 0.9747 0.4125

UNet + DenseNet (All 3) 0.9730 0.4491

UNet + DenseNet (All 3 + Random) 0.9674 0.4729

Figure 4: mIoU vs Epoch for Multiple Experiments

- Continue to gather data to improve keratitis 
predictions

- Utilize CRFs in image processing pipeline for 
increased pattern recognitions

- Incorporate outlined keratitis prediction
- Model architecture complexity 

reflects direct increase in mIoU.
- Geometric Masking helps the 

model improve the most, but 
bilateral filtering and CLAHE 
normalization do not provide 
increase our mIoU as much. 

- Linear Combination of data 
augmentation techniques seems to 
fare slightly better than original 
UNet + DenseNet

- Random Mask Injection lowers 
mIoU which makes sense there are 
significant modifications to 
training data 

Figure 1: Original OpenEDS Image vs 
CLAHE Normalized and Bilateral Filtered 
Images


