
Marv’s Re-Volt plugin for modern
Blender

Source Code
https://github.com/breathingstatue/blender-plugin/releases

This is the documentation for Marv's Re-Volt plugin for modern Blender.
It is intended to be used with Blender 5 version specifically.
Note: The plugin was updated from Marv’s version by Theman with the help of AI.

Please report Bugs and suggest features on GitLab or Re-Volt Discord Server or the Re-
Volt Hideout Forum.

Features

Import, Export

 World (.w)
 Mesh (.prm)
 Collision (.ncp)

 Instances (.fin)
 Mirror Planes (.rim)
 Hulls (.hul)
 Car / Car Parameters (via parameters.txt)
 Track Zones (.taz)
 Triggers (.tri)
 Models (.m)
 Objects (.fob)
 Visiboxes (.vis)

Missing Formats

 AI Nodes (.fan)
 Position Nodes (.pos)
 Lights (.lit)
 Force Fields (.fld)

Tools

 Bake light to vertex color
 Simple vertex painting tool
 Car Auto Shader
 Car shadow generator
 Texture animation helper
 Worldcut (export World in split meshes)
 Trigger Creator / Trigger Copy tool
 (.taz) Track Zone Creator / Reverse Track Zone IDs tool
 (.fob) Object Creator
 (.vis) Visibox Creator
 Hull Sphere Creator
 Convex Hull Creator

Installation

To install the add-on, locate the addons folder within your Blender configuration
folder.

For example for me it is located at C:\...\Blender\5.0\scripts\addons_core

If you're on GNU/Linux, your add-on folder should be located at
~/.config/blender/5.0/scripts/addons_core/, where 5.0 is the Blender version you
are using.

For more information, see Blender Manual.

Extract the io_revolt folder into the addons folder.

Now start up Blender and open the user preferences (Edit -> User Preferences...). Click
on the Add-ons tab and check Re-Volt.

File Specifications

The following files are supported by the add-on:

 World (.w)
 Mesh (.prm)
 Collision (.ncp)
 Instances (.fin)
 Mirror Planes (.rim)
 Hulls (.hul)
 Car Parameters (parameters.txt)
 Track Zones (.taz)
 Triggers (.tri)
 Models (.m)
 Objects (.fob)
 Visiboxes (.vis)

Textures:
The texture file name is used by the game engine to determine the texture number for
exported faces. Make sure it's named correctly (e.g. tracka.bmp, car.bmp). Currently
one car texture and up to 64 track textures are supported, all present files must be
named in order using scheme presented bellow.

 0 tracka
 1 trackb
 2 trackc
 3 trackd
 ...
 25 trackz
 26 trackaa
 27 trackba
 ...
 51 trackza
 52 trackab
 53 trackbb
 ...
 63 tracklb

Note: If the imported mesh is a car part, the texture path will be taken from either
car.bmp / carname.bmp (for example a car named bigvolt uses texture bigvolt.bmp).
If it's a level file, the texture name will be generated from the polygon's texture
number and taken from the level folder.

The texture number is also written onto a bmesh integer layer. It is very important to
set the texture numbers for each texture image. There is a function called Fix Texture
Numbers and Materials for that purpose (assuming the textures are named correctly
by following the forementioned texture naming logic).

World (.w)

World file is used for the game’s race tracks. In order to create a track, you have to
create meshes, assign textures, do Vertex Colouring, Environment Map colouring, and
add possible face properties and Texture Animations. The .w file’s name and the
track’s foldername as well as the track’s .ini file should follow the same naming logic.
The textures’ names were explained slightly above.

Probe Mesh (.prm)

.prm file is used for various parts of the car including body.prm, wheel.prm,
spring.prm, axle.prm, pin.prm, spinner.prm, as well as for the Instaced meshes. The
assigned material for the texture should be named as “car.bmp”.

Also instanced objects are .prm files. They use the texture tracka / trackb / trackc etc.
So you would use Texture Number for those as well.

Level of Detail (LoD):
If a PRM file includes multiple meshes all of them will be imported.
A suffix will be appended to the mesh name (|q0 is the highest quality, |q3 is a lower
quality).
A fake user will be assigned to them so they're not lost when saving the file.

Note: Only car wheels support LoD.

Collision (.ncp)

All objects of the scene will be merged into one mesh and then exported to the file.
Objects will be ignored if they're a debug object or have the ignore object property set.
Faces that have the material NONE assigned to them will not be exported.

A lookup grid will be automatically exported. This can be turned off in the export
settings.

Instances (.fin)

Instance objects are .prm files placed around the track. An instance file contains data
about multiple objects. For example you can have multiple “tree” objects in the track,
but they may use only one tree.prm file and their location and orientation is saved in
the .fin file. Instance’s filename follows the name of the track.

ModelRGB: Instance file saves Model Colour to make the Vertex Colours lighter or
darker. This adds a variation to the otherwise similar “.prm duplicates”.

Mirror Planes (rim)

Mirror planes are .rim files placed around the track. If you want to make a mirror to
the track, use this file type.

Hull (.hul)

Note: For importing hull files qhull needs to be installed on GNU/Linux (macOS too)
in order to import Hulls (on Arch, install it with sudo pacman -S qhull, package name

may be similar on your distro). The add-on is shipped with qhull.exe for Windows
systems, nothing needs to be installed additionally.

Hull files are mainly used for car collision and moving model objects.

Importing a hull file results in several Blender objects:
One (sometimes more) convex hull which resembles the car body.
The interior (one per convex hull) consisting of spheres.

Note: Vertex and edge data is ignored when importing but written to exported files.
Many custom .huls don't include vertex and edge data, apparently the game works
without them.

Car Parameters

The add-on imports the car's body, wheels, springs, axles and pins and their positions
and angles (even wheel camber) using the parameters.txt.
Aerial will be a placeholder object while its location is read from the file. The car parts
are exported individually as .prm files. Use Car Parameters to Clipboard function for
the wheels, springs, axles, pins, aerial and locations/ orientation.

Track Zones (.taz)

You can import / export track zones, which are shown in Blender as transparent
meshes. There is a function in the addon called Reverse Zone IDs with which you can
make the reverse (R) track zones. The functions are in Scene tab.

Triggers (.tri)

You can import / export MAKEITGOOD Triggers, which are shown similarly as Track
Zones in Blender. There are functions in Scene and Object Tabs to choose the correct
trigger, set its ID and even copy a trigger. You can also search for any Trigger that is in
Blender Scene with “Find Special Objects” UI button at Output Tab.

Models (.m)

Models are used as MAKEITGOOD objects in-game via MAKEITGOOD. You can
modify the model file’s graphics in Blender, but you must define the .fob (model

placement and parameters) ingame with MAKEITGOOD. It is possible to use Texture
Animations for models.

Objects (.fob)

Objects can be created also in MAKEITGOOD in-game. You can modify the object
file’s ID and sub-properties in Blender, and while being able to adjust the angle of the
object, you can only see the presentage of the actual Object in-game. You can also
search for any Object that is in Blender Scene with “Find Special Objects” UI button at
Output Tab.

Visiboxes (.vis)

Visiboxes can be created also in MAKEITGOOD in-game. You can modify the visibox
file’s ID and sub-property in Blender, and you’re able to adjust the size of the visibox
by modifying their size in Blender. You can also search for any Visibox that is in
Blender Scene with “Find Special Objects” UI button at Output Tab.

Re-Volt plugin User Interface

The user interface is located in the Properties View.
The user interface is scattered along the Output, View Layer, Scene, Object and
Data Tabs.

Mesh Face Properties, NCP Properties and Vertex Colouring appear and work
only in the Edit Mode. Object Tab is only visible when you have an object selected.

Output Tab 1/3

Output Tab 2/3

Output Tab 3/3

View Layer Tab:

Scene Tab:

Object Tab (Edit Mode) 1/3:

Object Tab (Edit Mode) 2/3:

Object Tab 3/3:

And below this some Debug Properties.

Data Tab: (Texture Animations)

