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Figure 1. We introduce LVAS-Agent, a multi-agent collaborative framework for end-to-end long video audio synthesis. Built on
VLM and LLM-based agents, it simulates real-world dubbing workflows, enabling automatic video script generation, audio design, and
high-quality audio synthesis for long videos.
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dio for visual content, critically enhances viewer immer-
sion and narrative coherence in film and interactive media.
However, video-to-audio dubbing for long-form content
remains an unsolved challenge due to dynamic semantic
shifts, temporal misalignment, and the absence of dedicated
datasets. While existing methods excel in short videos, they
falter in long scenarios (e.g., movies) due to fragmented
synthesis and inadequate cross-scene consistency. We pro-
pose LVAS-Agent, a novel multi-agent framework that em-
ulates professional dubbing workflows through collabora-
tive role specialization. Our approach decomposes long-
video synthesis into four steps including scene segmenta-
tion, script generation, sound design and audio synthesis.
Central innovations include a discussion-correction mecha-
nism for scene/script refinement and a generation-retrieval
loop for temporal-semantic alignment. To enable system-
atic evaluation, we introduce LVAS-Bench, the first bench-
mark with 207 professionally curated long videos span-
ning diverse scenarios. Experiments demonstrate supe-
rior audio-visual alignment over baseline methods. Project
page: https://lvas-agent.github.io.

1. Introduction

Recent advancements in generative Al, particularly diffu-
sion models and large language models (LLMs), have sig-
nificantly improved short-video dubbing, enabling synchro-
nized audio that enhances viewer immersion. However,
long-video dubbing presents unique challenges, including
complex semantic shifts, cross-scene temporal alignment,
and adaptation to dynamic content. Current models, opti-
mized for short clips, struggle to maintain narrative coher-
ence over extended durations, limiting their effectiveness in
applications such as film dubbing, AIGC video voiceovers,
and automatic narration for mute videos. Moreover, the lack
of dedicated datasets for long-video audio synthesis has hin-
dered progress, as current datasets and benchmarks focus on
short-form content.

Existing video-to-audio methods fall into two categories:
(1) training dedicated generators such as SpecVQGAN [13]
and Diff-Audio [33], which capture short-term correlations
but fail in long-term scene transitions, and (2) adapting
text-to-audio models like SonicVisionLM [52] and V2A-
Mapper [47], which heavily rely on textual descriptions and
struggle with implicit visual cues in long videos. These
methods encounter common issues:(i) they lack mecha-
nisms to capture long-range dependencies across dynami-
cally changing scenes, (ii) they fail to preserve contextual
continuity in dialogue-rich videos, and (iii) they struggle to
synthesize background sounds that evolve naturally over ex-
tended durations. Additionally, these methods rely on short-
video datasets, which lack annotations for multi-sounds and
cross-scene consistency with only 2-4 words for each audio

labels.

A fundamental question arises: How can we leverage
short-video dubbing priors to enable long-video synthesis
while ensuring semantic coherence, temporal alignment,
and scalable synthesis without requiring large-scale long-
video training data? A naive approach is to split long
videos into shorter segments and apply existing methods.
However, this approach practically may lead to issues such
as poor continuity, unnatural transitions, and unclear main
voice due to the lack of understanding of long-sequence
videos.

To address these challenges, we present LVAS-Agent,
a multi-agent framework that mimics professional dub-
bing workflows through structured role collaboration. Our
key innovation lies in decomposing the synthesis process
into specialized stages with collaborative agents: semantic-
aware scene segmentation, context-sensitive script gener-
ation, ambiguity-resolved sound design, and knowledge-
enhanced audio synthesis. The overall is shown in Figure 1.

Specifically, our method operates through four tightly
coupled roles. The Storyboarder first segments videos
into narrative-preserving scenes using shot transition detec-
tion and contrastive keyframe clustering. The Scriptwriter
then generates time-aligned audio scripts by fusing visual
semantics from CLIP-encoded [38] features with dialogue
context analysis. Building on this, the Designer employs
spectral saliency analysis to disentangle foreground dia-
logues from ambient sounds, refining annotations through
agent-mediated ambiguity resolution. Finally, the Synthe-
sizer orchestrates hybrid audio generation, blending neural
text-to-speech with diffusion-based environmental effects.
Central to the system are two collaborative mechanisms: a
discussion-correction process for scene merging and script
refinement, and a generation-retrieval-optimization loop
that iteratively aligns sound design with retrievable audio
knowledge, enabling precise temporal and semantic consis-
tency.

To enable systematic evaluation, we introduce the Long-
Video Audio Synthesis (LVAS) benchmark, comprising 207
professionally selected long videos. LVAS-Bench covers
various scenes such as urban landscapes, combat simula-
tions, and animation actions to ensure the accuracy of the
evaluation.

Our contributions can be summarized as follows:

* We introduce LVAS-Agent, a multi-agent framework that
systematically addresses long-video dubbing challenges
by structuring the synthesis process into role-specialized
collaborative agents.

* We release LVAS-Bench, the first dedicated long-video
audio synthesis dataset, covering 207 professionally cu-
rated videos across diverse scenarios, enabling standard-
ized benchmarking.

» Experiments demonstrate that LVAS-Agent improves se-
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mantic alignment, temporal alignment and distribution
matching of audio-visual for long-video dubbing over ex-
isting baselines.

2. Related Work

2.1. Video-to-Audio Generation

Video-to-audio generation, also known as dubbing, is a cru-
cial audio technique for enhancing viewers’ auditory expe-
rience and has witnessed significant evolution with the ad-
vent of neural approaches. Early neural dubbing models
demonstrated deep learning’s potential in sound effect cre-
ation, though limited to specific genres [1, 2, 30, 59]. Re-
cent advancements in video-to-audio generation have fol-
lowed two main directions. The first approach focuses on
training generators from scratch, with notable works in-
cluding SpecVQGAN [13], which employs a cross-modal
Transformer for auto-regressive sound generation, Im2Wav
[40], which conditions audio generation on CLIP features,
Diff-Foley [27], which enhances alignment through con-
trastive pre-training and MMAudio [3], which use a flow
matching-based multimodal joint training framework on
large-scale data. The second approach adapts text-to-audio
generators, with Xing et al. [53] utilizing ImageBind [8]
for optimization-based alignment, SonicVisionLM [52] em-
ploying caption-based synthesis, V2A-Mapper [47] directly
translating visual to text embeddings and FoleyCrafter [57]
integrating a learnable module into text-to-audio models
with end-to-end training. Despite these advances, existing
methods primarily excel only with short videos, encounter-
ing issues such as noise artifacts and audio-scene inconsis-
tencies in longer videos. Our method addresses these limita-
tions by incorporating a video understanding segmentation
module, providing an effective solution for audio generation
in long-form videos.

2.2. MLLMs for Video Understanding

Recent advances in vision foundation models [4, 15, 25,
38, 43, 44, 56] have led to the emergence of multimodal
LLMs (MLLMs) [18, 23, 45, 55], which have demonstrated
remarkable capabilities in language-guided visual under-
standing. This progress has naturally extended to video
understanding, with pioneering works including VideoChat
[20], Video-ChatGPT [28], Video-LLaMA [54], Video-
LLaVA [22], LanguageBind [60], and Valley [26]. How-
ever, videos present unique challenges compared to static
images, particularly due to their temporal nature and the
substantial volume of visual information that, when tok-
enized, often exceeds MLLMs’ context limitations. While
most existing approaches address this through frame sam-
pling, some methods, such as Video-ChatGPT [28], have
introduced more efficient video feature representations. The
field has also witnessed significant progress in instance-

level video understanding, with works like PG-Video-
LLaVA [31] for video grounding, and Artemis [36] for
video referring, expanding the capabilities of video under-
standing systems.

The challenge becomes particularly acute in long video
understanding, where effective keyframe selection becomes
more crucial and complex. While some approaches like
Kangaroo [24] and LLaVA-Video [58] leverage language
models with expanded context windows to accommodate
more frames, others have developed specialized techniques
to handle this limitation. MovieChat [42], for instance,
implements a dual-memory system with short-term and
long-term memory banks for efficient video content com-
pression and preservation. Similarly, MA-LMM [9] and
VideoStreaming [35] employ a Q-former alongside a com-
pact language model (Phi-2 [14]) for video data condensa-
tion. LongVLM [50] takes a different approach by utilizing
token merging to reduce video token count.

2.3. Multi-Agent System

Multi-agent systems have evolved significantly with the ad-
vent of large language models (LLMs). Early single-agent
frameworks like ModelScope-Agent [19] and Toolformer
[39] demonstrated the potential of LLMs in executing com-
plex tasks through tool integration. HuggingGPT [41] and
AudioGPT [12] further expanded this capability by incor-
porating domain-specific models and functionalities.

However, the limitations of single-agent systems led to
the emergence of multi-agent frameworks. Inspired by the
Society of Mind [29], works like Generative Agents [32]
pioneered the development of “Simulated Society”, where
multiple agents interact within defined environments. Prac-
tical implementations such as ChatDev [34], MetaGPT [10],
and TransAgents [51] have successfully demonstrated col-
laborative problem-solving through simulated workflows,
achieving superior reasoning and factuality compared to
single-agent approaches. These systems effectively address
complex tasks requiring meaningful collaborative interac-
tion, which single agents typically struggle to accomplish.

For long-video audio synthesis, while AudioAgent [49]
employs pre-trained diffusion models and GPT-4, it lacks
explicit multi-agent collaboration and specific optimiza-
tions for long videos. In contrast, we propose LVAS-Agent:
a multi-agent collaborative framework that mimics profes-
sional dubbing workflows. Our system comprises special-
ized agents for video segmentation, content understanding
(leveraging advanced MLLM models for precise descrip-
tion), and audio tag generation (separating foreground and
background elements). These components work in concert
with MMAudio to produce high-quality synthesized audio.



3. Method

3.1. Overview

By clearly defining the roles of agents, multi-agent systems
can decompose complex tasks into smaller, more manage-
able ones. In LVAS-Agent, we define four main characters:
Storyboarder, Scriptwriter, Designer, and Synthesizer.
As show in Figure 2, each of these roles carries its own spe-
cific set of responsibilities. The Storyboarder is respon-
sible for the creation of video storyboards. This includes
planning the storyboard strategy, segmenting video scenes,
and extracting keyframes. The Scriptwriter is in charge
of writing the video script. Their responsibilities include
understanding the video content, collaborating with the sto-
ryboard artist to generate a detailed video outline, and pro-
viding references for the sound designer. The Designer is
tasked with annotating sound effects based on the video out-
line. This includes analyzing video descriptions, generating
detailed sound effect annotations for each potential sound,
classifying entity and environmental sounds, and collabo-
rating with the voiceover artist to refine the sound annota-
tions. Finally, the Generator is responsible for the actual
sound effect synthesis. This includes transforming sound
effect annotations into suitable sound labels and using pro-
fessional tools to achieve step-by-step sound-video synthe-
sis, combining the main sound and background sound.

3.2. Multi-agent collaboration strategy

In this section, we present the two agent collaboration
strategies employed in this work: Discussion-Correction
(Algorithm 1) and Generation-Retrieval-Optimization (Al-
gorithm 2).

Discussion-Correction This strategy, as illustrated by Al-
gorithm 1, is executed through the collaboration between
two agents . First, the Storyboarder agent P segments the
video into distinct scenes, denoted as [vg, . . ., vy, based on
shot transitions and extracts the corresponding keyframes
lists {[kfi1,...],-..,[kfn,1,...]}. Next, the Scriptwriter
agent Q performs a global analysis of the entire video, fol-
lowed by a detailed examination of each segment based on
its respective keyframes. The Storyboarder agent P and
Scriptwriter agent Q then engage in a discussion to de-
termine whether certain segments should be merged and
whether the segment captions require refinement, based on
both the global understanding and the detailed video cap-
tions. The final output is a structured video script.
Generation-Retrieval-Optimization This is accomplished
through the collaboration between the Designer agent D
and the Synthesizer agent S. First, the Designer agent D
formulates an initial sound design based on the video script.
The Synthesizer agent S then retrieves relevant knowledge
from a sound synthesis database to generate a concrete im-
plementation plan. This plan is reviewed by the Designer

Algorithm 1: Collaboration Strategy

Input: Storyboarder agent P, Scriptwriter agent Q,
Video V
Output: Structured video script T
T() < 0 {vo,...,vn} < P(V)// Shot
Change Detection
{kf07 B kfn} — P({”Oa SR Un})
// Keyframe Extraction
Uy < Q(V) // Understand global
content, style features
for; =0tondo
Ui « Q(kf)
if i > 1 then
D P(U“ Uz‘717 Uv)
if D = M ERGE then
vi_1 < merge_segments(v;_1,v;)
L T+ TU [Ui—lin}
else

T« TUUy
return T

agent D, who decides whether further refinement of the
sound design is needed or if the plan is ready for final syn-
thesis. Specifically, this process begins with an in-depth
understanding of the video script, followed by iterative ex-
changes of feedback between the Designer agent D and the
Synthesizer agent S. Through multiple iterations, the final
sound synthesis plan is determined.

Algorithm 2: Generation-Retrieval-Optimization
Collaboration Strategy

Input: Designer agent D, Synthesizer agent S,
Video script T, Maximum iterations Ny, ax

Output: Finalized sound synthesis plan Afpa

Initialization: A, < D(T);

A retrieved S(Ainil);

for i = 1t0 Ny do

Areviewed — D(Aretrieved);

if D determines A epieneq is FINAL then
break; // Exit early if

L finalized

A odified < D(Areviewed);

L Aretrieved — S(Amodiﬁed);
return Aeviewed;

3.3. Video Structure

As shown in Figure 2, this paper proposes a structured video
script generation method to assist in generating sound ef-
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Figure 2. Workflow of LVAS-Agent. Given the original video, Storyboarder and Scriptwriter collaborate through Discussion and Cor-
rection to create a structured video script. The Designer and Generator complete multi-layered, high-quality sound synthesis through the

Generate-Retrieve-Optimize mechanism.

fects for full-length videos. The method addresses three
core challenges: 1) existing audio synthesis tools have dura-
tion constraints; 2) current Video-To-Audio methods strug-
gle with scene and content transitions, hindering semantic
and temporal alignment; 3) ensuring consistency between
video captions and audio descriptions for coherent synthe-
sis. To overcome these, we introduce a fine-grained video
structuring approach, supported by collaboration between
storyboarder and scriptwriter agents, as outlined in Algo-
rithm | The specific design of these agents is detailed as
follows.

Storyboarder is an LLM-based agent responsible for fine-
grained video structuring in the VTA task. Its key functions
include detecting shot transitions for coarse segmentation,
extracting key frames using the K-Means clustering algo-
rithm, and refining segment boundaries and captions based
on the Scriptwriter’s Video Caption. Shot detection uses
an HSV color space transition method for rapid, frame-
accurate segmentation, enabling detailed video understand-
ing. By extracting key frames from smaller segments, it
captures more visual information compared to directly in-
putting the full video into a vision-language model, enhanc-
ing video comprehension. Storyboarder also collaborates
with the Scriptwriter to decide whether segments should
be merged or captions refined, considering both local and

global video context. Detailed implementation is in Ap-
pendix 1.

Scriptwriter is a visual support agent responsible for com-
prehending both the full video and individual video seg-
ments. Recent video understanding tasks achieve compre-
hension by extracting information from visual contexts to
derive semantic features [21] or by directly generating de-
scriptive text [5]. Textual descriptions of the video script
make it easier to maintain consistency between video and
audio descriptions. Furthermore, the textual format facil-
itates interaction among multiple agents. Notably, trans-
forming the video into a structured script, independent of
video frames, enhances processing speed and significantly
reduces the number of tokens. The detailed implementation
is provided in Appendix 2.

3.4. Audio Design and Generation

This section presents the second stage of LVAS-Agent: au-
dio design and generation, as shown in Figure 2. The
design follows key principles: 1) Mimicking professional
sound design workflows by analyzing video scripts for ac-
curate audio descriptions, 2) Enhancing efficiency and qual-
ity using existing audio generation tools, and 3) Ensuring
structured, editable audio planning for fine-grained con-
trol. This stage uses a collaborative framework with two
LLM-based agents, integrating retrieval-augmented genera-
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Figure 3. Our LVAS-Bench is presented in the following parts: (a) illustrates sample data from the benchmark, (b) provides statistical
distributions of audio categories and sub-categories across the dataset, and (c) presents the statistics of video categories within the dataset.

tion (RAG) and audio synthesis tools to create high-quality,
multi-layered audio.

Designer annotates audio in the video script and collabo-
rates with the Synthesizer agent to finalize the audio design.
Real-world dubbing often involves complex scenes with
layered environmental sounds, diverse sound-producing ac-
tions, and varying audio levels. To address this, we in-
troduce a Chain-of-Thought (CoT) reasoning mechanism,
breaking the task into steps: identifying primary action
sounds, analyzing background audio, and ensuring audio
coherence. The Designer agent creates the initial audio de-
sign, covering foreground and background sounds, volume
control, and sound descriptions, while verifying alignment
with the video content. It then provides iterative feedback
to the Audio Synthesizer to optimize the final audio plan.

Generator The Generator synthesizes audio based on the
audio annotations obtained through collaboration with the
Designer. It uses retrieval-augmented generation (RAG)
with an audio label knowledge base, Video-to-Audio (VTA)
and Text-to-Audio (TTA) models for synthesis, hierarchical
mixing, and volume adjustment. RAG-based retrieval en-
sures high-quality synthesis, addressing the limitations of
VTA models trained on the VGGSound dataset, which con-
tains only 310 audio labels with 2-4 words each. When au-
dio prompts match these predefined labels, the generated
audio is more stable and higher quality.

Building on this insight, all VGGSound labels were re-
organized and reclassified into 20 common video scenar-
i0s. To enrich the labels, GPT-4 and human annotators
added details such as typical scenarios and relevant ob-
jects or interactions. This resulted in 192 refined labels.
The structured knowledge base allows the Generator to re-
trieve and modify predefined labels, rather than relying on
open-ended prompts. This retrieval-based approach enables
the “generation-retrieval-optimization” mechanism in Al-

gorithm 2, facilitating iterative refinement of audio synthe-
sis. The LVAS-Agent employs MMAudio [3], an open-
source framework supporting VTA and TTA synthesis, en-
suring flexibility for final audio mixing, volume adjustment,
and refinements.

4. LVAS-Bench

Collection. We construct the first specialized long-video
audio synthesis benchmark(LVAS-Bench). The bench-
mark contains 207 professionally curated videos (with an
average duration of 1 minute) sourced from three main
origins: (1) film production archives with open licenses,
(2) annotated documentary segments, and (3) procedurally
generated synthetic scenes. Importantly, all videos in the
dataset have pure sound effects, with no background noise
or human speech. This creates a dataset of long-form, se-
mantically rich videos with clear transitions, matched with
corresponding pure sound-audio. Figure 3(a) illustrates rep-
resentative video-audio cases.

Statistical Analysis. To ensure diversity, LVAS-Bench cov-
ers sufficient video and audio categories. Figure 3(b) vi-
sualizes the benchmark’s audio types, encompassing five
major classes (e.g., human activities) with numerous fine-
grained subcategories. Figure 3(c) quantifies the distribu-
tion across 10 video-level categories, where instances such
as the “cooking” category comprise 22 entries.
Benchmark Annotation. LVAS-Bench also offers detailed
time-stamped annotations for each video-audio pair and
comprehensive global descriptions. The time-stamped an-
notations indicate captions from specific seconds to specific
seconds, while the global descriptions provide a detailed ac-
count of the entire long video. We implement a hybrid an-
notation protocol: initial annotations are generated by video
understanding model, subsequently refined through manual
verification by domain experts.
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5. Experiment

5.1. Experiment Setup.

Metrics We assess the generation quality in four different
dimensions: distribution matching, audio quality, semantic
alignment, and temporal alignment. 1) Distribution match-
ing assesses the similarity in feature distribution between
ground-truth audio and generated audio, under some em-
bedding models. We compute Fréchet Distance (FD) and
Kullback-Leibler (KL) distance. For FD, we adopt PaSST
[17] (FDpagsT), PANNs [16] (FDpanns), and VGGish
[6] as embedding models. For the KL distance, we adopt
PANNSs (KLpanns) and PaSST (KLp,ssT) as classifiers. 2)
We use PANNSs as the classifier, following Wang et al. [48],
to assess generation audio quality without the need for com-
parison with the ground truth, utilizing the inception score.
3) Semantic alignment is measured using ImageBind [7],
following Viertola et al. [46], by extracting visual features
from the input video and audio features from the generated
audio, then computing the average cosine similarity as the
IB-score. 4) Temporal alignment: We use synchronization
score (DeSync) to assess audio-visual synchrony. DeSync
is predicted by Synchformer [11] as the misalignment (in
seconds) between the audio and video.

Data. Since our method focuses on the task of sound effect
synthesis for long videos, which consist of shorter video-
audio pairs, are not suitable for evaluation. Therefore, this
paper uses the proposed LVAS-Bench to assess the perfor-
mance of the Agent-System.

Baselines. To accommodate sound effect synthesis for
videos of arbitrary length, the experimental baseline is de-
signed to first segment the video, then apply Video-to-Text
(VTA) on each segment, and finally combine the results.
We use state-of-the-art open-source methods, FoleyCrafter
[57] and MMAudio [3], as VTA tools. FoleyCrafter sup-
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Figure 4. We visualize the spectrograms of generated audio (by prior works and our method). LVAS-Agent demonstrates superior perfor-
mance in synthesizing long video audio, ensuring seamless scene transitions without errors or missing sounds.

ports audio generation for segments up to 10 seconds, while
MMAudio performs better for videos around 10 seconds
due to the duration of its training data. Consequently, we
set the segment interval for the baseline to 10 seconds.
Implementation Details. In our experiments, all LLM-
based agents use the Qwen API [37] with the “gwen-max”
model to simulate different agent roles. The visual support
agent is implemented using the locally deployed “Qwen2.5-
VL-7B” model. The retrieval-augmented generation for the
predefined audio description knowledge base is built on Lla-
malndex ' and powered by a “qwen-plus” model.

5.2. Main Results

The evaluation metric comparison results are shown in Ta-
ble 1, where LVAS-Agent outperforms the baseline meth-
ods across all metrics in four key dimensions, achieving
state-of-the-art performance. Additionally, we visualize and
compare the audio waveforms generated by different meth-
ods. The quantitative results demonstrate that our approach
enables the existing VTA base models to generate higher-
quality audio in long videos with enhanced semantic and
temporal consistency, all without additional training. As
shown in the visualized spectrogram comparison in Fig-
ure 4, (a) reveals that LVAS-Agent exhibits adaptive capa-
bility to video content variations, ensuring a high level of
alignment with the video while reducing the omission of
key sound effects and minimizing incorrect audio genera-
tion. Furthermore, (b) shows that our method, by designing
foreground and background audio layers, achieves a multi-
level synthesis that enhances its off-screen capability.

5.3. Ablation Study

To validate the effectiveness of the Agent-Framework de-
sign, an ablation study was conducted, as shown in Table 2.

Llamalndex: https://www.llamaindex.ai/.
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Methods Distribution Matching Audio Quality |Semantic Align Temporal Align
FDveal FDpannd FDpasst) KLpanns) KLpassTdISpannsT ISpassT?| IB-Scoret DeSync|
Baseline (FoleyCrafter)| 6.61 60.66 637.82 2.68 2.65 4.79 4.34 0.28 1.24
Baseline (MMAudio) 9.48 51.73 588.24 2.02 1.80 3.91 3.05 0.32 0.61
LVAS-Agent (Ours) 5.76 46.16 573.67 1.86 1.77 4.28 3.50 0.33 0.53

Table 1. Comparison of different methods on various evaluation metrics. Lower values () indicate better performance, while higher values

(1) indicate better quality.

Key Components Distribution Matching Audio Quality  Semantic Align  Temporal Align
Video-Structure  Chain-of-Thought RAG FDveal FDpanns ISpnssd IB-Scoret DeSynct
v 7.45 77.65 1.85 0.312 0.361
v v 7.41 76.84 1.82 0.319 0.346
v v v 7.12 71.61 1.81 0.336 0.338

Table 2. Ablation Study. Ablating different key components of LVAS-Agent and evaluating performance on LVAS-Bench.

Key components of the LVAS-Agent that contribute to en-
hancing audio generation quality were identified, including:
(1) generating sound effects after refined video segmenta-
tion, (2) a Chain-of-Thought process for structured sound
effect description and hierarchical generation, and (3) an it-
erative optimization process leveraging retrieved audio ref-
erence documents. The experiment was conducted on 20
randomly selected video cases.

First, integrating the proposed video structuring method
into the baseline significantly improved audio quality. This
improvement is attributed to content-aware segmentation,
which ensures consistency between video content and gen-
erated audio. Building on this, incorporating the CoT pro-
cess for audio description further enhanced both audio-
visual synchronization and quality. This is due to CoT’s
ability to effectively transform video captions into detailed
audio descriptions, systematically reasoning through pos-
sible sound effects and accurately identifying appropriate
sources. Finally, the retrieval-augmented iterative optimiza-
tion of audio descriptions further refined the VTA tool’s
audio generation, leveraging a domain-specific knowledge
base to translate LLM-generated generalized descriptions
into precise audio prompts familiar to the VTA model.

5.4. User Study

We conducted a user study involving 30 participants to eval-
uate our method in comparison with FoleyCrafter [57] and
MMAudio [3]. Participants were asked to listen to 10 au-
dio samples generated by each method and rate them on
a scale of 1 to 5 across three dimensions: “Audio Qual-
ity,” “Video-Audio Consistency,” and “Overall Satisfac-
tion.” Higher scores indicate better performance. As illus-
trated in Figure 5, the results of the user study demonstrate

that our method outperforms the two baseline approaches
across all evaluated aspects.

3 I I
| I I I
0

Audio Quality

N

Video-Audio Consistency Overall Satisfaction

B FoleyCrafter ¥ MMAudio B Ours

Figure 5. User study comparing our method with baselines across
different aspects. Higher values indicate greater user preference.

6. Conclusion

We present LVAS-Agent, a multi-agent framework that sys-
tematically tackles long-video dubbing challenges through
role-specialized collaborative agents. By decomposing the
workflow into scene segmentation, script generation, sound
design, and hybrid synthesis, our method overcomes limita-
tions in semantic continuity and temporal alignment inher-
ent to existing approaches. We also release the first dedi-
cated long-video audio synthesis dataset, covering 207 pro-
fessionally curated videos, named LVAS-Bench. Experi-
mental results demonstrate superior performance in distri-
bution matching, audio quality, and alignment metrics on



LVAS-Bench.

For future work, we aim to develop a large-scale,
finely annotated dataset of long-video audio to further
advance the development of long-video dubbing mod-

els.
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Long-Video Audio Synthesis with Multi-Agent Collaboration
Supplementary Material

A. System Prompts

Here we show the detailed prompts of our LVAS-Agent,
including Storyboarder, Scriptwriter, Designer and Syn-
thesizer. The prompt of Storyboarder includes a prompt
for global understanding as shown in Figure 2, a prompt for
understanding each of the divided small segments as shown
in Figure 3. The Storyboarder’s prompt as shown in Fig-
ure 1. The Designer’s prompt as shown in Figure 4. The
Synthesizer’s prompts includes a system prompt (as shown
in Figure 5) and a prompt for rag (as shown in Figure 6).



/ ## **Role & Task**

You are a **professional video editor** responsible for determining whether two video clips should be merged based on their textual descriptions.
Your decision must ensure narrative and audiovisual continuity in the final edit.

## **Decision Criteria for Merging**
Analyze the relationship between the **last video clip**, the **current video clip**, and the **overall video timeline** by considering:
1. **Content Continuity**

- Are the two clips depicting the same ongoing scene or event?

- Does the transition between clips maintain a logical progression?

2. **Scene & Environment Consistency**
- Do both clips occur in the same setting?
- Example of **discontinuity**:
- A clip in an **outdoor park** followed by a scene **inside a church** — **Not continuous**
- A **]ake with a single tree** vs. a **lake with snow-capped mountains** — **Different settings, not continuous**
- Example of **continuity**:
- A **dog standing on stairs** — A **dog jumping down the stairs** — **Same entity, continuous event**

3. **Action & Sound Consistency**
- Are the actions and sounds from one clip naturally leading into the next?
- Example of **discontinuity**:
- **Chopping vegetables** followed by **sprinkling seasoning** — **Both are cooking-related but produce different sounds, not continuous**
- Example of **continuity**:
- **Tank firing** — **Tank shooting** — **Essentially the same action and sound, should be merged**
- **Two people dueling with knives** from different perspectives — **Same fight, should be merged**

## **Processing Steps**

1. **Analyze the Text Descriptions:**
- Compare the last clip’s caption, the current clip’s caption, and the whole video’s context.
- Determine whether the clips belong to the same scene or action sequence.

2. **If merging is required: **
- Generate a **new unified description** combining both clips.

3. **If merging is NOT required:**

- Assess whether the current video description needs adjustments for clarity and continuity based on the global context.
- If no modifications are needed, retain the original description.

## **Input Format**
"plaintext
Video Caption: [Last Video Clip Caption], [Current Video Clip Caption], [Whole Video Caption]

## **Output Format**
If the clips should be merged:
“json
{
"merge": "True",
"caption": {
"Background": "...",
"Entity": "...",
"Action": "...",
"Summary": "..."

If the clips should NOT be merged:
json
{
"merge": "False",
"caption": {
"Background": "...",
"Entity": "...",
"Action": "...",
"Summary": "..."

}

k Figure 1. Storyboarder Prompt




( **Role** \

You are a professional video editor with expertise in scene analysis, timeline construction, and event identification.

**Task Description**

Given a video, analyze its content to provide a detailed summary of the following:

1. Identify the main scenes and their sequence, highlighting key events and actions.

2. Construct an approximate timeline of the video, emphasizing transitions between key moments or actions.
3. Summarize the video’s content in a structured and coherent manner.

*H[nput**
A video clip.

**Qutput Format**

- Scene Summary: (Describe the key scenes and their sequence in detail)
- Timeline: (Provide a detailed summary of key events, highlighting transitions between scenes)

**QOutput Example**

- Scene Summary: The video begins with a busy city street, showing a large crowd and moving vehicles. The next scene
transitions to a park where a dog chases a ball and interacts with a child. The final scene cuts to the child throwing the ball
into a pond while the dog watches.

- Timeline: The video starts with the city street scene, then transitions to the park where the dog and child interact. It ends
with the child throwing the ball into the pond.

\_ J

Figure 2. Scriptwriter Prompt: full video understanding

/**Role** \

You are a video analyst with expertise in understanding and interpreting various video clips.

**Task Description**

Given a video clip, please perform the following tasks:

- Analyze the clip, identifying entities, their actions, and the video scene. Provide text descriptions as
required by the output format. The entities must be real and present in the video.

- The full video description provided is rough and not entirely accurate. You need to first analyze the current
clip and then summarize it, considering the existing full description.

**Constraints**

- The analysis is strictly limited to the provided video clip; avoid speculating or using background
information beyond the video.

- The summary must be strictly based on the video content, without personal assumptions or creative
additions.

- Background sounds typically include weather conditions (e.g., rain, snow, thunderstorms) or real-world
sounds (e.g., crowd parades, train horns).

- Avoid using abstract atmospheres like those of a futuristic city, forest, or the universe as background sounds.

**Input Data**
{Video}

**Output Format®*
- Background:
- Entity:
- Action:
- Video caption:

\\\\ /

Figure 3. Scriptwriter Prompt: video segment understanding




s

artist. Your output should be structured in JSON format.

### **Instructions**
Follow these steps carefully to ensure accurate and contextually appropriate sound effect descriptions:

1. **Identify Sound-Producing Entities & Actions**
- Extract key entities (e.g., people, animals, objects) and their actions from the video description.
- Only describe actions that naturally produce a sound. For example, "a car accelerating” makes a sound, but "a sunset" does not.
- Format: ‘[Entity] makes [adjective] sound" or ‘[Action] makes sound’.

2. **Determine Background Ambience**
- If the environment contributes to the soundscape (e.g., wind, rain, ocean waves), describe it as the background audio.
- Avoid vague terms such as "tense atmosphere" or "futuristic hum"—use concrete environmental sounds.
- Background audio should be clearly distinguishable from main sounds.

3. **Prioritize Primary vs. Secondary Sounds**

4. **Determine Sound Output Based on Reality**
Choose the most accurate option based on the video description:
- **QOption 1:** If no entity or ambient sound is relevant — ""audio": []', ""background": []'.
- **Qption 2:** If there is only an ambient sound — *"background": [ambient sound]’, "audio": [].
- **QOption 3:** If entities/zactions produce sound and there is ambient noise — ""audio": [entity sound]’, "background": [ambient sound]'.

5. **Avoid Redundant Sounds**
- Do not repeat the same sound in both "audio"" and *"background"".
- Example: ""background": ["wind"], "audio": ["wind noise"]" is redundant—only keep ""audio": ["wind noise"]".

#i## **Example Outputs**

#HH#H# **Example 1**

**Video Description:** "Intense space battle with ships firing and dodging debris."
**Qutput: **

*json

"background": [],
"audio": ["explosions", "cannon fire"]
“volume”: 40

##H# **Example 2%*
**Video Description:** "Two warriors engage in an intense sword fight."
**Qutput:**
*json
{
"background": [],
"audio": ["swords clashing with sharp metallic sounds"]

5

### **Input & Output Format**
#iH#H# **Input:**

***plaintext

{video description}

#H#H# **Output:**
“json

"background": [ambient sounds],
"audio": [main sounds]

L

You are a sound effects specialist. Your task is to generate precise and realistic sound effect descriptions for a video clip based on its textual description, just like a professional foley

- If the scene has a dominant action sound (e.g., car racing), it should be the main audio, while secondary sounds (e.g., crowd cheering) should be background if necessary.

~

Figure 4. Designer Prompt



e )
**Role**:
- You are an assistant responsible for providing accurate audio labels based on the input video description, audio description, and alternative
audio label references.

**Tasks and Requirements**:

- If the original label is ["None"], retain it without change.

- If no suitable match is found, keep the original description.

- Avoid using human voices in the "audio"” label unless there's a clear context, like cheering or similar actions.

- Estimate the background sound based on the entities in the video. For example, if a train is present, the background should be a train whistle.
If the video depicts a war scene, gunfire could be the background sound.

**Input**:

- Audio Label Alternative Reference: ...
- Clip Video Caption: ...

- Audio Description: ...

**Qutput™*:

Please output the following JSON string with no additional content:

"background audio": [audio],
"audio": [audio, ...]}

Figure 5. Synthesizer Prompt
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**Role & Task:** \

You are an Al assistant specializing in **audio analysis and labeling**. Your task is to retrieve the most appropriate and specific **audio labels** from a predefined reference document
based on the provided **video descriptions** and **original audio descriptions**.

**Guidelines for Retrieval & Labeling:**
1. **Strict Compatibility:** The retrieved audio label must be highly compatible with both the **video description** and the **original audio description**. If no suitable label is found,
**do not** provide a replacement.
2. **Document Format:** The reference document follows the structure:
- ""Audio Category": "Specific Label"
- Output only the **label** after *:" (do not include category titles).
3. **Replacement Strategy:**
- Prioritize **semantic similarity** when suggesting replacements.
- If no exact match is found, focus on the **type of sound produced**, disregarding the sound source.
- Example adjustments:
- Searching for "building explosion," but only "volcanic explosion" is available — Output **"explosion"**
- Searching for "tank firing," but no exact match exists — Find related **artillery firing** labels
- Searching for "airplane engine roar," but no exact match exists — Look for **airplane-related** sounds, as airplane noise originates from its engine
**Context Awareness:** Consider both **video captions** and **raw audio descriptions** for accurate label selection.
**Strict Label Set Adherence:** Stay strictly within the available labels in the reference document.
. **Handling 'None' Labels:** If the raw audio description is "["None"]’, retain “["None"]" without suggesting alternatives.

EEOES

**Response Format:**

[Raw Audio Label 1]: The optimized labels that can be referred to are as follows:
- [Suggested Label]: [Brief acoustic explanation]

[Raw Audio Label 2]: The optimized labels that can be referred to are as follows:
- [Suggested Label]: [Brief acoustic explanation]

© )
Figure 6. Synthesizer Prompt: Retrieval Augmented Generation(RAG)
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