

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

www.datatheorem.com

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

API
Security

Data Theorem Special Edition

by Emily Freeman

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

API Security For Dummies®, Data Theorem Special Edition

Published by
John Wiley & Sons, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2020 by John Wiley & Sons, Inc., Hoboken, New Jersey

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
the prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in
the United States and other countries, and may not be used without written permission. Data
Theorem and the Data Theorem logo are are trademarks or registered trademarks of Data
Theorem, Inc. All other trademarks are the property of their respective owners. John Wiley &
Sons, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE
AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS
WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN
RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL
ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING
HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK
AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN
THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION
OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, or how to create a custom For
Dummies book for your business or organization, please contact our Business Development
Department in the U.S. at 877-409-4177, contact info@dummies.biz, or visit www.wiley.com/go/
custompub. For information about licensing the For Dummies brand for products or services,
contact BrandedRights&Licenses@Wiley.com.

ISBN 978-1-119-63962-6 (pbk); ISBN 978-1-119-63963-3 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Publisher’s Acknowledgments

We’re proud of this book and of the people who worked on it. Some of the
people who helped bring this book to market include the following:

Project Editor: Martin V. Minner

Editorial Manager: Rev Mengle

Acquisitions Editor: Ashley Coffey

Business Development
Representative: Karen Hattan

Production Editor: Siddique Shaik

http://www.wiley.com
http://www.wiley.com/go/permissions
mailto:info@dummies.biz
http://www.wiley.com/go/custompub
http://www.wiley.com/go/custompub
mailto:BrandedRights&Licenses@Wiley.com

Table of Contents iii

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Table of Contents
INTRODUCTION ... 1

About This Book ... 2
Icons Used in This Book ... 2

CHAPTER 1: Understanding APIs ... 3
Digging into API Architecture .. 4

Addressing HTTP ... 4
Executing actions .. 4

Managing APIs .. 5
Modernizing your systems .. 5
Communicating with protocols ... 5

Architecting Modern APIs .. 6
RESTing on your service layer ... 6
Separating concerns ... 6
Testing code... 6
Documenting APIs .. 7
Keeping your code agnostic .. 8

Working with Legacy APIs .. 8

CHAPTER 2: Growing the API Economy .. 9
Competing in Your Market .. 10
Moving to the Cloud ... 10
Enabling Microservices .. 10
Building a Single-Page App (SPA) .. 11
Utilizing Mobile Apps ... 11
Creating SDKs ... 12
Consuming Open Source Software .. 13
Scaling with Serverless .. 13

CHAPTER 3: Introducing DevOps ... 15
Transitioning to DevOps .. 15
Applying Security to DevOps ... 16
Understanding the Software Delivery Life Cycle 17
Shifting Security Left .. 18
Architecting for Security .. 18
Monitoring and Alerting .. 19

API Security

iv API Security For Dummies, Data Theorem Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

CHAPTER 4: Securing APIs with Traditional Approaches 21
Two Types of APIs ... 22

Productizing customer-facing APIs ... 22
Internalizing APIs .. 22
Shadow APIs .. 22

Securing APIs with Legacy Approaches ... 23
(Pen)testing manually ... 23
Using an API gateway ... 24
Creating web application firewalls .. 24

Dealing with the Consequences of Traditional API Security 25

CHAPTER 5:	 Modern	Approaches	to Securing	APIs 27
Catching Bugs Early via CI/CD ... 27

Injecting checks ... 28
Looking for dangerous code .. 28
Testing in CI/CD ... 29

Documenting APIs .. 29
Validating the Security of Your APIs in Production 30
Auto-Enforcing Policies .. 31
Tracking Changes ... 32
Closing the Loop ... 32

CHAPTER 6:	 Benefitting	from	an	API	Security	Framework 33
Streamlining Security Processes .. 33
Security at Key Stages of Development ... 34
Releasing with CI/CD Pipelines ... 34
Tracking Bugs .. 35
Accelerating Incident Response.. 36

CHAPTER 7:	 Automating	Your	API	Security	Framework:	
Introducing DevSecOps .. 37
Evaluating Risk .. 37
Securing Continuously ... 38

Testing .. 39
Monitoring and scanning ... 39

Managing Security Incidents ... 40
Alerting developers ... 40
Creating playbooks ... 40

Tooling Your DevSecOps Practice .. 41

CHAPTER 8:	 Ten	Takeaways .. 43

Introduction 1

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

Security is an afterthought in tech, like it or not. Engineers
often say security should be a priority but don’t take
actionable steps in their everyday work.

At its best, security is a sentinel, invisible and continuous,
watching over data and alerting you to threats, breaches, and
incidents. When you create and enforce security policies, you
begin to manage the risk that is already threatening your
company’s products, APIs, and services — whether you know it or
not. It’s become apparent that tech companies must secure every
component of their systems.

Application programming interfaces (APIs) are an often over-
looked attack vector, although this technology is how most mod-
ern applications transfer data to external users and internally
between services. Most companies have adopted software archi-
tectures such as microservices, which emphasize distributed sys-
tems, and tools like containers, which make applications more
ephemeral in nature. Serverless, a fully managed method of
 writing functionality and paying only for execution time, contin-
ues to increase in adoption and relies heavily on APIs.

The short-lived and dispersed nature of modern applications
makes traditional security practices — much of which were
manual — ineffective. Instead, organizations must adopt modern
security practices and automation to secure APIs with appropri-
ate techniques, catch security incidents before they become criti-
cal, and alert appropriate engineers in as close to real-time as
possible.

Much of modern security moves away from the manual work
of traditional processes and adopts automation for continuous
testing, scanning, monitoring, and alerting. This doesn’t mean
humans are removed from security; instead, they have improved
tools to discover and remedy vulnerabilities in near real-time.

2 API Security For Dummies, Data Theorem Special Edition

About This Book
This book is a high-level introduction to the key concepts of API
security and DevSecOps. It’s meant to be an amuse-bouche in
your security journey and empower you with the knowledge to
make decisions as you determine security practices for your engi-
neering organization.

As you read this book, you may find your interest piqued over
specific security attack vectors or modern approaches to secur-
ing systems. That’s great! I encourage you to seek out additional
information from a plethora of resources on modern API security,
DevSecOps, and application security.

In addition to a number of automation tools, Data Theorem offers
regular webinars and resources on API security to empower you
to make the best decisions for securing your applications and
systems.

Icons Used in This Book
This book uses the following icons to call your attention to can’t-
miss information.

I use this icon to introduce something that’s particularly technical
in nature.

Don’t miss the information marked with the Tip icon — it can
make your life easier.

When I need to emphasize a point that can help you avoid potential
pitfalls leading to bad consequences, you’ll see this icon next to
the paragraph.

This icon identifies material that’s worth committing to memory.

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

CHAPTER 1 Understanding APIs 3

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 1

IN THIS CHAPTER

 » Understanding API basics

 » Designing modern APIs

 » Managing and documenting APIs

Understanding APIs

An application programming interface (API) is a data trans-
fer approach that enables services within your application
to talk to other applications (or other services within your

system). Essentially, it enables Service A to talk to Service B in a
uniform way.

You benefit from APIs on a daily basis without even thinking
about them. Every time you sign on to your favorite social media
platform or shop on Amazon, the application is utilizing APIs to
fetch and update the data with which you’re interacting. APIs
come in three forms:

 » Private: For you and you alone. These private APIs are often
publicly accessible on the Internet, but not intended for
public consumption. For example, Apple’s API has hundreds
of private endpoints for iOS, which are intended for internal
use only.

 » Partnered: Exposed to specific external users. Two banks
might expose APIs to each other, such as when communicat-
ing wire transfer status where a web UI is not needed, but
rather a status code, such as “200.”

 » Public: Open to anyone. Twitter is a good example. It has
hundreds of APIs that developers can use in their own apps
at any time.

4 API Security For Dummies, Data Theorem Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

APIs are a powerful way to enhance your application and expose
services to external parties. APIs are becoming products on their
own because the appetite and economies for data continue to
expand across every industry.

Digging into API Architecture
APIs expose back end data to specific services and users.
Architecting an API depends heavily on the audience. Is the API
private and designed for services within your system? Or is it
public- facing and exposed to anyone?

Most public APIs are designed to be consumed by developers or
other apps. For example, Amazon uses APIs to connect services
within the company with others. The user service may use an API
to communicate with the payment processing service. However,
tech companies also expose APIs to developers to monetize their
applications through in-app advertising and purchasing (in addi-
tion to other use cases).

Addressing HTTP
APIs follow the standards of hypertext transfer protocol (HTTP) —
the protocol that determines how messages are formatted and
sent over the Internet — to pass information back and forth.
HTTP usually uses four actions (sometimes referred to as meth-
ods or verbs): GET, POST, PUT, and DELETE. An additional method,
called PATCH, mimics PUT but applies only the delta (or difference)
of a resource.

HTTP is stateless, which means every instruction is executed in
isolation. In other words, a command has no knowledge of other
commands.

Executing actions
The HTTP methods (or actions) listed in the preceding section
are dependent on the scope you provide. For example, if you ask a
service to return all users, you implement an API to call GET and
supply a scope of all users. If you want to retrieve a user, you call
GET and supply a scope of a single resource, in this case the user’s
database ID or other identifier.

CHAPTER 1 Understanding APIs 5

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Managing APIs
Just like any code in your system, APIs require constant manage-
ment. The interface itself unlocks a massive amount of value for
your organization in terms of performant access to data as well
as opportunities for monetization. Managing APIs goes beyond
maintaining the code in your system. Securing APIs includes con-
trolling access, monitoring use, securing transactions, and ana-
lyzing opportunities for improvement.

APIs should be designed with your customer in mind and allow for
efficient transfer of data, taking advantage of the protocols that
govern the Internet, like HTTP.

Modernizing your systems
Cloud native applications — a term for applications designed to
run in the cloud — are driven by microservices and APIs. As cloud
adoption continues to increase and companies take advantage of
the infrastructure as a service (IaaS), platform as a service (PaaS),
and software as a service (SaaS) options provided by cloud pro-
viders, the need for well-designed and secure APIs will increase
exponentially.

The separation of logic provided by a decoupled architecture sup-
ported by APIs is currently unmatched. Modernizing your entire
system should include a strategy for writing, maintaining, and
improving APIs.

Communicating with protocols
APIs use specific URLs to tell applications which action to use and
include any required information. Your user service likely will
have dozens of APIs, but focus on these:

 » The API /users would GET all users, returning a list of every
user in the database.

 » The API /users/10 would GET the user with an ID of 10,
returning the data of that specific user.

 » The API to retrieve a user by another identifier might look
like /users?name=‘emily’. That API might return any user
with a name including “emily.”

6 API Security For Dummies, Data Theorem Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Architecting Modern APIs
APIs allow different engineering teams to select diverse languages,
technologies, and tools. Additionally, APIs create a communica-
tion path without direct linking, shared memory, or shared data.
If architected well, APIs offer the following benefits.

RESTing on your service layer
The modern standard for APIs is REST — Representational State
Transfer. The RESTful approach takes advantage of the HTTP
actions of GET, PUT (or PATCH), POST, and DELETE. REST empha-
sizes that all actions should be condensed to those methods.

A new API and querying language, GraphQL, is growing in pop-
ularity because of its flexible approach. Unlike other solutions,
GraphQL allows the client to determine how data is structured
and returned, limiting excessive data transfers.

Separating concerns
One of the benefits of APIs is the separation of concerns between
your application’s logic and the external communication layer.
Users don’t have direct access to your business logic. Instead, they
access information by requesting it via the API and receiving a
response from your application.

Testing code
Testing APIs, especially their security, can be challenging. I sug-
gest you start with the following questions:

 » Does the function work as expected?

 » What happens when a user inputs unexpected parameters?

 » Can the API endpoints tolerate intense user load?

 » Does the API work with any kind of client?

Ideally, all your reading and writing functionality will pass
through an API, thus limiting the paths through which data can
be accessed and changed. This single interface then enables you to
secure it appropriately. This approach is significantly more ben-
eficial if you have regulatory or compliance concerns.

CHAPTER 1 Understanding APIs 7

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Testing APIs, just as with other code, should take place in a vari-
ety of environments that enable developers to slowly increase
resources and data to isolate potential issues in their code. Devel-
opers should write automated tests as they write their APIs and
store the test code in the same source code repository that your
entire engineering team utilizes.

When all code is in one place, every engineer can be empowered to
contribute to its maintenance and improvement.

Finally, consider abnormal user behavior in your testing strat-
egy. A test that confirms expected functionality given expected
inputs is called a happy path test. A test that looks at behavior
when unexpected parameters are used is called a sad path test. Sad
path tests are critical to ensuring that users are limited in their
ability to interact with your API, thus preventing hackers from
taking advantage of vulnerabilities.

Documenting APIs
APIs should be as consistent as possible to decrease confusion.
They should also be well-documented — especially if exposed
to external users. Software development kits (SDKs) are sets
of tools — typically accompanying public APIs — released by
organizations with public APIs to help developers get started
using an API.

Ideally, your APIs will be documented with information pertinent
to the user but also future developers. API specifications like
OpenAPI and Swagger are crucial. The questions you want to
answer in documentation are:

 » What is the resource it accesses? For example, users are a
resource.

 » What are the endpoints and methods?

 » What parameters does the endpoint expect?

 » What’s an example of a successful request for this API?
Include a schema in your example.

 » What response is expected? This should include details of
the schema and parameters that the user will receive
accompanying a successful response.

8 API Security For Dummies, Data Theorem Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Keeping your code agnostic
Perhaps the most beneficial aspect of APIs is that they are tech-
nology agnostic. APIs are a communication layer between two
services. This approach does not require the services to have any-
thing in common. For example, one service may be implemented
in the language Go and another in Python. With a well-designed
API, the services communicate flawlessly.

The power this capability unlocks for engineering teams is incred-
ible. It means you can utilize different languages and technolo-
gies to take advantage of specific advantages without taking into
account the impact to your entire system. Engineering teams can
scale and evolve to specialize in different tools and still interact
with other services internal to the application. This layer, when
secured properly, protects the business logic of your application
from meddling.

Working with Legacy APIs
The term legacy API can refer to two things: legacy (essentially old
or unmaintained) code that is wrapped in an API or an API that
is, well, mature. In the case of the former, an API serves as a way
of exposing the legacy logic to users in a modern way. This can
be a great way of allowing users (or other services) to access old
or deprecated features. The latter is often an API that utilizes an
older method of API design like SOAP or formats the data in a tra-
ditional structure like Extensible Markup Language (XML) rather
than the modern JavaScript Object Notation (JSON).

Many codebases have an ancient piece of logic that drives a key
piece of functionality. This logic typically falls into two types:
logic that works but no one knows why, and logic written in a
language no longer supported by the team. Wrapping that legacy
code in an API is a great way to manage access to the functionality
without opening the code to problematic changes.

CHAPTER 2 Growing the API Economy 9

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 2

IN THIS CHAPTER

 » Utilizing the competitive advantage of
APIs

 » Taking advantage of modern
infrastructure

 » Digging into microservices, serverless,
and OSS

Growing the API
Economy

The rapid iteration of modern software delivery life cycles
requires engineering teams to innovate quickly and bring
new ideas to market before their competitors.

APIs are a way for you to gain market share from competitors
and monetize your applications in new and exciting ways. Imag-
ine you have the best data on restaurant reviews. You can create a
website and a mobile app and try to get thousands of users to use
your products while spending millions of dollars in advertising, or
you can create an API and sell access to the data to Yelp, Google,
Facebook, Trip Advisor, and so on.

Although the latter approach will not make you a household name,
your data will be consumed by millions of people and you’ll have
only one product (an API) to maintain. This is an oversimplifi-
cation of the real world, but the power of APIs as it pertains to
growing business needs outweighs web apps and possibly even
mobile.

The term API economy is a way of describing the market develop-
ing from an emphasis of APIs and API design in tech.

10 API Security For Dummies, Data Theorem Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Competing in Your Market
An API enables you to connect users with logic in a quick and
usually an insecure fashion. The API layer that sits between your
customer and your application is a set of tools and protocols that
pass information.

APIs have become ubiquitous and the new way for companies to
take advantage of previously untapped business and monetization
strategies (like charging for API calls). One of the most
exciting competitive advantages of an API is that it is the best way
to mobilize, process, and monetize large datasets.

Moving to the Cloud
Cloud providers like Microsoft Azure, Amazon Web Services
(AWS), and Google Cloud Platform (GCP) have played a key role
in driving the API economy forward. For cloud platforms, high-
quality, stable and secure APIs have become a way for users to
have better management of their systems as well as quickly turn
on new services or instantiate new resources.

Enabling Microservices
Microservices have eclipsed monolithic applications as the
 industry-recommended application architecture. Monoliths are
typically designed in a three-layered stack with a user interface (UI),
business logic, and data access layer sitting above the database. The
layers are stacked upon each other. The UI only communicates with
the business logic, which asks the data access layer for information
and passes it back up the stack to the user.

In a microservice architecture, logic is organized into small,
decoupled components. Each component can freely communicate
with any other component — through an API. This layer is
essential for ensuring services can be written in different
languages and take advantage of tools incompatible with other
components. Because the API design is standardized, the logic in
each component is essentially tech agnostic.

CHAPTER 2 Growing the API Economy 11

Although microservices can increase the general complexity of
a system, they enable developers to take more ownership over
specific services and maintain a codebase with cleaner separation
of logic and responsibility.

Building a Single-Page App (SPA)
A single page-application (SPA) is a way of making a web app
appear more responsive to the user by loading the application
once. In the past, every event, or click, that the user initiated
kicked off a new request to the server, which resulted in loading
a new page.

SPAs require you to make key architecture decisions at the start of
your project. At no point in a SPA does the entire page get wiped
away only to be reloaded. Instead, new components are loaded as
required by accessing APIs within your system.

You use SPAs all the time when you go on Twitter or Facebook,
as well as any time you check Gmail or get directions on Google
Maps. Notice how you’ve never had to refresh the entire page
on any of these pages. New information is loaded automatically
without any end-user involvement.

Compartmentalized API calls consume fewer resources than
rendering the entire page on the server and thus fuel the quick
response time of a SPA. Requests made within the server are
faster than the time it takes for the browser to request and receive
from the server.

Utilizing Mobile Apps
Your APIs act as a glue and connect web apps, desktop apps,
cloud resources, data, and mobile applications. Instead of build-
ing unique data access for each of these mediums, APIs can be
called from anywhere in your system and access the same data
securely. Thanks to sound API design, your mobile app acts as a
single vehicle with which users may access your application logic.

Outside of data and user experience (UX) consistency, some of
the most pressing concerns regarding mobile apps pertain to

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

12 API Security For Dummies, Data Theorem Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

performance. Users are unforgiving and expect quick response
times on mobile apps.

The three main performance indicators to pay attention to are:

 » Latency: The time required for a request to make it from the
API to the server.

For mobile, network connection and physical geography can
have a massive impact on latency.

 » Response time: The latency of your system added to the
time required for the server to process a request.

 » Crashes: If your mobile app crashes completely, users can’t
interact with your business, and you can’t make money. Be
sure to consider the device, browser, and operating system
(OS) the client was using when the app crashed.

Having insight into your latency is critical to locating and improv-
ing performance issues in the back end of your application.

Not only will APIs improve your speed performance, RESTful APIs
are cacheable. The client can store responses in a cache, which
reduces the number of server requests required. Asking the server
to do the bulk of the logic and rendering is more efficient than
client-side execution with mobile clients. Finally, scalability is
critical to mobile app development. Applications must evolve to
sustain heavy user load at the same response rates.

Creating SDKs
Software development kits (SDKs) are collections of code, tools,
and information required to build an application. SDKs take many
forms but are often built for APIs so that organizations can show-
case the power of their APIs through interesting use cases.

SDKs are key for API adoption and integration. If developers are
your customers, APIs and SDKs should be central in your business
planning. An SDK should include the following:

 » Documentation: Instructions for how developers should
implement the API. Include common “gotchas” that develop-
ers might run into and any other relevant information.

CHAPTER 2 Growing the API Economy 13

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Libraries and tools: Libraries often include prebuilt classes
or logic that will help developers as they build their apps.

 » License: Can the user build a proprietary application using the
SDK? Be clear about your licensing expectations in the SDK.

 » Sample code: Ideally, your SDKs will target several languages
and include sample code to enable adoption from develop-
ers with a wide variety of backgrounds and experience.

Consuming Open Source Software
Open source software (OSS) is typically free-to-use software devel-
oped by a community of engineers who contribute to projects about
which they’re passionate. OSS is a wonderful and powerful way to
integrate prebuilt tools into your system without dedicating massive
resources to building a custom tool. Incorporating new software into
your system isn’t free, however. Integration takes engineering hours,
not to mention the resources required to maintain the software.

OSS is available under dozens of licenses with various require-
ments and restrictions. Be sure to read the fine print if you plan
to use OSS in a proprietary product or service.

One of the key components of OSS is that you can see the source
code. Everything is open to the public and you can fork (copy) an
OSS and customize it.

OSS provides tools to better manage and secure your APIs but also
includes projects that have APIs available for developers to con-
sume out of the box. For example, Swagger, an API management
tool, offers many open source tools.

Scaling with Serverless
Scaling is a key concern for most tech companies and can be difficult
to solve. How do you scale to meet demand without exhausting your
resources? Serverless is a short way to describe a cloud computing
service to manage resources and pay only for the resources you
consume while running the functions of an application.

Serverless is a relatively new and powerful tool often included in
offerings by cloud providers. Serverless is still executed by servers,

14 API Security For Dummies, Data Theorem Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

but you pay only for execution time. At times when your applica-
tion experiences less load, you pay less. You supply a function and
receive the response. Though you have no control over the execution
environment, your code is automatically containerized and auto-
scaled for you, so you pay only when your code is run. This is true
power of cloud computing, versus virtual machines in the cloud.

Serverless is a uniquely useful for scaling applications because it
simplifies capacity planning and maintenance is managed by the
cloud provider.

Serverless can be used in conjunction with code released and run
through traditional methods. Alternatively, applications can be
written to be exclusively serverless applications — eschewing any
need to provision servers.

Serverless is closely associated with function as a service (FaaS), a
cloud service that executes a method without storing any data. A
related concept is the serverless database, which applies the same
pay-as-you-go model to data storage.

The main benefits of serverless is the ease of implementation and
the cost — it’s quick for engineers to deploy and you pay only
for the resources you use. Serverless is extremely useful for
 autoscaling based on user load. In addition, serverless abstracts
complex development because it limits the requirement to develop
software using a specific framework to the serverless ecosystem
your team selects. Developers do not need to consider things like
multithreading. Serverless is fully managed. At its most basic
implementation, all the developer does is upload the code for a
function to the cloud provider. The function is then run when
triggered by a predetermined event.

In Amazon Web Service (AWS), serverless is referred to as AWS
Lambda. Other cloud providers refer to the comparable service as
Azure Functions, Google Cloud Functions, or IBM Cloud Functions.

As with any technology, serverless has its own security concerns,
which simply need to be managed. Legacy tools, such as vulner-
ability scanning tools, aren’t designed for serverless, making
it more difficult to detect problems in functions. Furthermore,
serverless is a prime platform for a denial of service (DOS) attack
that triggers countless serverless events that use a constrained
resource. This type of DOS has been referred to as a denial of wallet
(DOW) attack because of the economic harm it imposes by forcing
an organization to incur greater cloud costs.

CHAPTER 3 Introducing DevOps 15

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 3

IN THIS CHAPTER

 » Making the move to DevOps

 » Designing your system for security

 » Notifying engineers of security concerns

Introducing DevOps

DevOps is a concept that evolved from Agile and seeks to
eliminate the friction between developers and operations
folks in traditional engineering teams. The philosophy

emphasizes three priorities: people, process, and technology.

The priorities of DevOps occur in that order for a reason. The first
priority, people, refers to the cultural change of your engineer-
ing team to one that encourages engineers to collaborate, trust
their colleagues, learn from failure, and take ownership over their
work.

The next priority of DevOps, process, focuses on creating systems
in which your engineers can thrive. If an engineer makes a mis-
take, it’s because the processes you utilize need to be improved
and refined to reduce the possibility of human error as a contrib-
uting factor to failure.

Finally, technology ensures that your team uses tools that opti-
mize productivity and accelerate the team’s velocity.

Transitioning to DevOps
Transitioning to DevOps is not an overnight process. Applying
the methodology requires concerted effort to unify people and
undo some of the patterns formed in the past. One of the biggest

16 API Security For Dummies, Data Theorem Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

challenges in a transition to DevOps entails convincing waterfall
engineers that the initial investment of time will pay dividends
in faster development, as well as creating a groundswell of
excitement and adoption at the engineering level.

If engineers don’t understand the benefits of DevOps for them
and their daily work, a transition to a DevOps culture will fail.

If applied well, the concepts and principles of DevOps will ener-
gize your team and create a shared learning culture that embraces
a growth mindset. Instead of looking at mistakes as failures, it
seeks to learn from error rather than avoid it at all costs.

This attitude is particularly important in security. If engineers
feel they might be fired or otherwise punished for a security lapse,
they may be more likely to avoid being forthright about the fac-
tors that led to the event. A DevOps environment recognizes that
security is a component of the process. Mistakes will be made
and vulnerabilities will be released. DevSecOps seeks to introduce
security early in the development process and rapidly iterate to
reduce incidents in the future.

Though it’s called DevOps and focuses on developers and oper-
ations, the methodology applies to any team involved in the
software development life cycle. The purpose is to create an envi-
ronment where every engineer can thrive — regardless of their
background or expertise. By inviting everyone to the table during
the planning phase, you provide space for each engineer to high-
light particular concerns and develop shared approaches toward
solving those problems, long before code is written.

Applying Security to DevOps
Security has a key place in DevOps and is often referred to as
DevSecOps. In traditional engineering, security was an after-
thought. However, as security became more important, the indus-
try overcorrected and development teams felt stalled to the point
that they’d rather avoid security than embrace it. This approach
put security in the impossible situation of preventing developers
from shipping their insecure code. You can imagine the frustra-
tion and animosity that emerged between teams.

CHAPTER 3 Introducing DevOps 17

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevSecOps seeks to shift security left in the process and infuses
security into the development process in a manner similar to
performance testing, quality assurance (QA) testing, and user
acceptance testing. When security is invisible but planned for and
managed early in the process, security engineers are less likely
to become gatekeepers who prevent developers from releasing
their software. DevSecOps emphasizes preventative process over
manual or reactive work (which requires more security engineers).
Many security teams struggle with this issue. However, “fewer
people, more processes” is an approach developers can embrace.

The worst thing you can do in DevSecOps is force developers to act
like security people. Features always take priority, but DevSecOps
identifies solutions in the process that developers can embrace
quickly and efficiently. (No, security training is not one of them.)

Rather than being referees, security professionals should inte-
grate security software into the system and ensure that appro-
priate monitoring is implemented so developers are immediately
alerted to issues and provided key information needed to remedy
security concerns.

Understanding the Software
Delivery Life Cycle

In traditional engineering organizations, the software delivery
life cycle was linear, with one phase occurring after the previ-
ous one until software was released to customers. The traditional
phases were typically:

 » Planning: Decide which features should be included.

 » Designing: Make key architecture decisions for the project.

 » Developing: Write the code.

 » Testing: Ensure the code works as expected.

 » Deploying: Release the new functionality.

Security used to fit somewhere between testing and deploying.
Thus, defects would have to be kicked all the way back to the
developing phase. Large defects might even be returned to the
design phase. This method slowed development significantly and
created plenty of frustration.

18 API Security For Dummies, Data Theorem Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps seeks to connect the ends of the software development life
cycle and create a continuous cycle of feedback and improvement.
By treating the process as a circular and never-ending practice
of software development, you can focus on small (and secure)
changes deployed frequently. If a security tool has identified a top
priority one (P1) security issue that would otherwise leak confi-
dential data to unauthorized sources, the developer can treat the
experience as an iteration in the development cycle rather than a
devastating failure.

Shifting Security Left
DevSecOps seeks to move security considerations to the develop-
ment phase. This approach connects the ends of the traditional
software development life cycle to make a continuous circuit of
rapid iteration.

In a DevOps culture, continuous iteration is an important aspect
of a healthy engineering team. That continuous improvement
includes encouraging engineers to push code — without fear of
negative repercussions — and trust the process. Security is a
prime area in which to provide this type of opportunity.

Shifting security left in your delivery of software entails baking
security into the right spots, but not every spot.

Architecting for Security
Security used to be a mostly manual process. It involved stagnant
security processes and long checklists. As your systems become
more distributed and you take advantage of decoupled microser-
vices, continuous integration and delivery (CI/CD), and ephemeral
containers, your security practices must evolve as well. Modern
security takes advantage of automation to track components
across your entire system.

Automating security covers nearly every area of your system. Here
are a few areas to pay special attention to:

 » Authentication: Provide the appropriate amount of
privilege to reduce opportunities for unauthorized access.

CHAPTER 3 Introducing DevOps 19

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Authorization: Ensure authorized users have the appropri-
ate rights and privileges for a particular function, assets,
command, or data source.

 » Encryption: As information flows within your system, ensure
everything is encrypted appropriately with cryptography
suites that meet regulatory compliance standards.

 » Availability: Apps, systems, and assets always need to be up
and running reliably.

 » Auditing: Ensure logs are always on and accessible because
the identification of a data breach often relies on a few audit
categories.

Monitoring and Alerting
You hear the term continuous improvement often in DevOps circles.
The DevOps methodology doesn’t seek to avoid failure at all costs
but instead prepare for (and learn from) failure when it occurs.

Apply continuous improvement to your security practices, moni-
toring, and alerting. This approach helps you incrementally
improve from wherever you are in your DevSecOps adoption.

It’s better to start at nothing and slowly add security checks and
DevOps practices than to avoid adopting modern approaches all
together. If you’re just getting started, you may feel overwhelmed
by the number of security aspects to consider. Accept where you
are currently and begin by improving a single component. Then
approach the next, and the next, until you feel adequately pro-
tected against common vulnerabilities and attacks.

I encourage you to adopt a monitoring approach that tracks your
security across all externally facing applications and infrastructure.

You need automation tools to tell you when security and privacy
gaps occur and when (in)security becomes a bottleneck in your
pipeline. Metrics to track include:

 » Number of sensitive data assets publicly exposed on the
Internet

 » Number of data assets accessible to authenticated but
unauthorized entities

20 API Security For Dummies, Data Theorem Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Percentage of apps and packets running without any
in-transit encryption

 » Amount of downtime for critical apps and systems

Implement security across the key parts of your process to alert
you as soon as security issues appear.

When alerting engineers to potential attacks, avoid “alert fatigue”
by ensuring that engineers are alerted only about immediate and
fixable issues affecting data. For more standard discoveries of
vulnerabilities, rely on telemetry, monitoring, and visualizations
to drive home the importance of security fixes.

CHAPTER 4 Securing APIs with Traditional Approaches 21

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 4

IN THIS CHAPTER

 » Diving into traditional security practices

 » Understanding two types of APIs

 » Evaluating the risks

Securing APIs with
Traditional Approaches

Securing application programming interfaces (APIs) is a
never-ending and often uphill battle. APIs, for all their ben-
efits, open new opportunities for unauthorized sources to

attack your data via vulnerabilities and exposures. In its report,
“API Security: What You Need to Do to Protect Your APIs,” Gartner
estimates that “by 2021, 90% of web-enabled applications will
have more surface area for attack in the form of exposed APIs
rather than the UI, up from 40% in 2019.”

Traditionally, APIs were protected by API gateways and con-
tent delivery networks (CDNs). Although these approaches hedge
against most brute-force attacks, a more nuanced and sophisti-
cated attack may be able to breach the protection.

The traditional approaches to API security are littered with limi-
tations. This chapter introduces the common traditional API
security strategies companies used to take and the tradeoffs of
legacy approaches.

22 API Security For Dummies, Data Theorem Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Two Types of APIs
Companies use two types of APIs: customer-facing APIs and
internal APIs. The external type is exposed to all Internet traffic.
External developers can make requests and receive responses to
the customer-facing API and take advantage of the functional-
ity and data of an application while bypassing the user interface.
Internal APIs, however, are exposed only to intra-application
traffic. For example, the Cart service may call the User service via
an internal API during the checkout process of an e-commerce
application.

Productizing customer-facing APIs
Customer-facing APIs are stable, visible, and targeted at a devel-
oper audience. This open and accessible API is designed to be uti-
lized by developers outside the publisher’s organization. The goal
is to leverage a community of technical audiences and increase
usage of the organization’s data and services. Occasionally API
publishers encourage developers to create applications that
expand on the core business.

The largest challenge of customer-facing APIs is ensuring that
the layer is secure every second of every day.

Internalizing APIs
While internal developers may call external-facing APIs, the more
common API calls between services within an application are for
internal use only. These APIs are not accessible by developers
outside the publishing organization.

Changes are made constantly — as fast as the company’s DevOps
and CI/CD practices allow. The speed of change makes mis-
takes, errors, and security oversights more likely. These APIs and
changes are less visible, which leaves companies at risk of discov-
ering vulnerabilities only after a hacker has breached private data.

Shadow APIs
Data leaks through all APIs, but you can’t protect what you don’t
know. The moment those APIs are exposed on the Internet, they
create attack vectors for hackers to extract data.

CHAPTER 4 Securing APIs with Traditional Approaches 23

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

When new Lambda-based microservices (serverless apps) are
created for others to use, programs generally interact with these
functions through Amazon’s API gateway. However, certain pro-
gramming frameworks create APIs that completely bypass any
gateway. These are called shadow APIs because they operate unde-
tected for long periods before security teams can discover them
and inspect their usage. If an API is not well designed, all the data
that passes through it is at risk. Most shadow APIs were created
as utilities, though some have caused financial and brand damage
to companies when exploited by attackers. The concern is that an
application or microservice that is pushed quickly, without nor-
mal security assurances, might have vulnerabilities.

The absence of authentication or authorization to the API can
permit users to take advantage of a serverless function to extract
data in ways never intended by the application developer. Two
factors exacerbate these problems in modern applications. One is
agile development, and the other is the automated nature of scal-
ing serverless resources.

Agile affects the rate of change, and serverless automation affects
the scale of exposure. Both have the potential to magnify the
effect of a simple mistake.

Securing APIs with Legacy Approaches
The traditional approaches to API security, although helpful at
reducing the attack surface, are too slow to keep up with the ever-
evolving tactics of bad actors. Decryption algorithms are con-
stantly being improved and released, opening vulnerabilities in
technology across the web. Hackers aren’t going to stop. Although
the key to modern detection is to take advantage of automated
security tools that discover and respond to threats within seconds,
it’s important to look back at traditional security strategies and
understand the tradeoffs and limitations.

(Pen)testing manually
A penetration test (pentest for short) is an approved manual
attempt to infiltrate a system. The outcomes of a pentest are
identified security weaknesses as well as the features and data
that are well protected from hackers. Typically, an external party

24 API Security For Dummies, Data Theorem Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

specializes in these tests. The tester supplies the company with
a verbose risk assessment that suggests mitigation options for
vulnerabilities discovered during the pentest.

Pentesting consultants are typically expensive and can be an
extremely slow approach. Bug bounties are a way of consistently
encouraging white hat hackers and developers to report vulner-
abilities they discover. Both of these styles of pentest result in
inconsistent reports of vulnerabilities because much depends
on who is initiating the test, their area of focus, and the scope
of the test. Ultimately, although pentests can be helpful, they lack
the speed and scalability needed in DevOps-enabled engineering
teams and processes.

Using an API gateway
An API gateway was a traditionally effective way of enforcing
security settings — such as authentication and authorization —
across all APIs. The gateway serves as a single source of entry for
all API requests.

This traditional approach requires developers opt into the gate-
way when they deploy new APIs. This is acceptable for external,
customer-facing APIs but less realistic for internal APIs that con-
nect microservices. Developers want to move fast, but an API
gateway quickly becomes an obstacle.

Gateways often add performance latency and can potentially
hinder your ability to autoscale. Additionally, it’s a restrictive
architecture for organizations building cloud native applications
or looking to move to the cloud through a hybrid approach. Appli-
cations designed for public clouds will default to the native gate-
way or choose to use none.

As you can imagine, if all traffic must flow through the gateway, it
becomes a single point of failure unless it’s deployed in a cluster,
which adds complexity. Ultimately, the additional cost and limi-
tations of an API gateway make it useful for some scenarios (par-
ticularly customer-facing APIs) but does not cover every use case.

Creating web application firewalls
A web application firewall (WAF) filters and observes HTTP traf-
fic as requests come into the application. Though not designed
to be a one-size-fits-all solution, WAFs add protection against

CHAPTER 4 Securing APIs with Traditional Approaches 25

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

specific types of attacks: cross-site scripting (XSS), SQL injection,
file inclusion, and cross-site forgery.

WAFs are a type of reverse proxy, a sentinel that fields attacks
before traffic reaches the server. Specific policies, put in place by
the organization, determine the behavior of the WAF and how it
filters traffic. For example, in the case of a distributed denial of
service (DDoS) attack, the WAF can introduce rate limiting quickly.

Dealing with the Consequences
of Traditional API Security

Security breaches of APIs are dominant because APIs are such a
ubiquitous method of passing information. Data breaches come
in many forms, but they almost always affect company revenue
and reputation.

New API breaches and vulnerabilities are discovered almost daily.
T-Mobile, Symantec, McDonald’s, Instagram, Salesforce.com,
and Venmo have all experienced major breaches in the past few
years because of API insecurity. If some of the largest companies
in the world have insecurities throughout their codebase of APIs
and services, you can bet you do too.

CHAPTER 5 Modern Approaches to Securing APIs 27

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 5

IN THIS CHAPTER

 » Integrating security into CI/CD

 » Securing APIs in production

 » Automating policy enforcement

Modern Approaches
to Securing APIs

As software evolves, so do the security vulnerabilities.
Hackers are constantly finding new ways to take advan-
tage of weaknesses in your systems. Although traditional

security practices still have their uses, updating your security
strategies should be a never-ending iterative process for you and
your team.

Catching Bugs Early via CI/CD
Continuous integration and continuous delivery (CI/CD) — the
“D” sometimes stands for deployment — is a way of automat-
ing your deployment process. You can automate portions of the
release or the entire deployment from the development environ-
ment all the way to production. Tests and security checks can be
injected into any phase of the pipeline.

28 API Security For Dummies, Data Theorem Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Injecting checks
The real benefit of a CI/CD pipeline is tracking changes end-
to-end and injecting checks to ensure you deliver reliable soft-
ware to your customers. How you structure your CI/CD pipeline,
however, is completely up to you. If you’re just getting started,
I encourage you to take one piece at a time and think of the process
as iterative and additive.

With CI/CD, a deployment will be triggered as soon as your devel-
opers commit new code to the master branch in your source con-
trol. This doesn’t mean that the build will be released to customers
(as in continuous deployment), but it will kick off the checks and
tests that run automatically in your pipeline. CI/CD pipelines are
often designed to halt just before releasing to production and await
a manual one-step release by one of a few specified approvers.

Although any security check helps harden your system against
vulnerabilities and attack vectors, you should add a few important
components to your CI/CD pipeline. Be sure to use vulnerability
scans for known security issues. These look for publicly identified
and well-known hacking vectors.

Add detections for nonapproved or outdated frameworks. There
are open source tools available to look for outdated dependencies,
such as https://github.com/dylang/npm-check.

Injecting checks that look at nonapproved or dangerous func-
tions, classes, or APIs can identify security vulnerabilities early
in the release process and prevent them from being released to
customers.

Looking for dangerous code
Examples of dangerous code are vulnerable XML parsing APIs
available in the Java standard library and string concatenation for
building SQL queries, which has the potential to lead to SQL injec-
tion, a common hacking technique. In addition, certain functions
are blacklisted for particular languages. Data Theorem produces
tools that identify bugs and other issues in the CI/CD process
for languages like Python (https://github.com/datatheorem/
flake8-alfred).

Your goal should be to use approved frameworks and tools across all
the software in your organization. You may find through dedicated
scanning that you’ll develop a long list of security vulnerabilities

https://github.com/dylang/npm-check
https://github.com/datatheorem/flake8-alfred
https://github.com/datatheorem/flake8-alfred

CHAPTER 5 Modern Approaches to Securing APIs 29

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

in APIs accessible across the entire organization. Developers may
feel this will slow development or limit experimentation, but these
approaches can prevent catastrophic error and often speed devel-
opment after an initial investment of time and resources.

Testing in CI/CD
Any CI/CD pipeline should have a robust test suite to support your
team’s software delivery and check against security, reliability,
functionality, visual changes, and more. It is absolutely critical,
and any attempt to create a CI/CD process without an automated
test suite will fail.

Automated tests are faster and more reliable than manual testing.
This method limits the chances that human error will miss criti-
cal bugs and vulnerabilities. Perhaps above all else, testing and
security checks in CI/CD allow your team to move faster. Be sure
to add unit tests with scenarios for detecting critical code paths
with a bad configuration or bad logic. These include:

 » Disabled authentication

 » Unenforced authorization

 » APIs that respond with payloads despite unexpected or bad
parameters

APIs should always respond with error codes with receiving
requests that include unexpected values and parameters. This is a
common vector used by hackers to gain access to a database.

Documenting APIs
Secure APIs start with documentation based on an API speci-
fication. An API spec is essentially a blueprint for every API in
your system and can help you avoid key architectural design
flaws before the development phase. The industry standard is
OpenAPI 3.0 (https://github.com/OAI/OpenAPI-Specification/
blob/master/3.0.0.md).

Because APIs are the glue that hold together the services in your
applications, it’s critical that they are designed to integrate well
with every service they will interact with. That requires some

https://github.com/OAI/OpenAPI-Specification/blob/master/3.0.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/3.0.0.md

30 API Security For Dummies, Data Theorem Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

forethought through a spec, which will guide developers and
designers as they expand your suite of APIs.

Validating the Security of Your
APIs in Production

Security checks don’t stop once the CI/CD pipeline has deployed
a release into production. Due to environmental differences and
unexpected complexities of a live system, you should always
stress-test your system in production environments that see live
traffic from customers.

Live testing in production can catch potential differences in how
the code behaves or is configured in different environments from
development, testing, staging, and production.

When verifying the configuration of the production environment,
be sure to confirm key attack vectors are not exploitable for your
APIs and services.

SSL/TLS encryption should be at the top of your list. This ensures
your HTTP connection is secure and guarded against intercep-
tions of data and messages during transfers. The next priority is
to set up rate limiting safeguards and protect against distributed
denial of service (DDoS) attacks. These precautions restrict traffic
to your system and prevent it from being overwhelmed.

Auditing plays an important role in your system by tracking when
data and information is accessed as well as application usage. Logs
monitor the data accessed and permit you and your team to detect
and prevent unauthorized access to data. Auditing is critical for
organizations that must show compliance with security policies
to larger regulatory bodies. Activity to log and audit includes:

 » Creation and deletion of users

 » Permissions changes

 » Password changes

 » User logins

 » Session timeouts and terminations

CHAPTER 5 Modern Approaches to Securing APIs 31

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Finally, your configuration should take into account autoscaling
controls that will prevent denial of wallet (DoW) attacks. In this
relatively new attack vector, hackers attempt to use customer-
facing business logic to trick the system into thinking a spike
of users are hitting the site. The goal is to drive up infrastruc-
ture costs and cause the victim to overuse resources in the cloud.
Watch account logins and creations closely as well as unusual
spikes in user-driven actions.

Auto-Enforcing Policies
Active protection of your system without human intervention is
the only way to achieve real-time enforcement of security poli-
cies and protect against attacks as they occur. Ideally, your system
automatically discovers and inspects API security vulnerabilities
while humans analyze the situational risk and prioritize the work.

The DevSecOps team or specialists should make ongoing risk-
based decisions on when certain issues should be mitigated and
where in the CI/CD pipeline those concerns should be tested.
However, in key scenarios, active protection is required to pre-
vent a security incident from occurring or escalating. Your system
should utilize tools to add this layer of protection without requir-
ing humans to be involved.

For example, imagine a company owns a customer-facing API
that transfers sensitive data that is required to have regulatory
oversight. If the API received a new configuration to reduce the
encryption to TLS 1.0 — which is less secure than most compli-
ance standards — and had its authentication disabled for testing,
the active protection would step in to override the configuration
change. Though the change may seem harmless at first glance,
the automated protection would ensure the organization is safe
and the data is protected — without involving a human at all.

32 API Security For Dummies, Data Theorem Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Tracking Changes
Shadow APIs are a threat to the security of your system. You sim-
ply can’t protect against something you don’t know exists. These
APIs are hidden, forgotten, and often long-lived, which puts your
applications at risk of hacking through a vulnerable endpoint.

Cloud providers and cloud security vendors supply monitoring
tools that provide insights and telemetry into your systems. One
of the best benefits is these tools detect new APIs and microser-
vices. Using these tools to create an up-to-date and accurate
inventory of the APIs currently deployed to your system helps you
identify rogue shadow APIs and either harden them with security
checks or delete them.

Closing the Loop
When API vulnerabilities are discovered, it’s important that the
security system sends alerts to your security events and informa-
tion management system (SIEM) and log aggregators.

If an issue is critical and threatens the system imminently, the
vulnerability should alert the engineer on call and trigger an inci-
dent response to ensure the matter is handed as soon as pos-
sible. In the event of a critical vulnerability or incident, be sure
to schedule and hold a post-incident review and collect action
items for future work that addresses the contributing factors.
Your security system should auto-generate tickets or work items
in your ticket tracking system (such as JIRA) that will be priori-
tized in your backlog. Each work item should be prioritized and
assigned to an engineering team to address the issue.

CHAPTER 6 Benefitting from an API Security Framework 33

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 6

IN THIS CHAPTER

 » Applying security to key phases of the
development life cycle

 » Securing CI/CD pipelines

 » Responding to security incidents

Benefitting from an API
Security Framework

If you’re overwhelmed by how many security threats loom and
worried your already overworked team of engineers won’t be
able to handle API security on top of meeting the demands of

customers, don’t fret. You can build a DevSecOps process that will
improve your security and enable your team to rapidly iterate —
constantly improving your systems. An API security framework
starts with three fundamental parts:

 » Creating security policies

 » Enforcing policies

 » Managing risk

Streamlining Security Processes
Security processes used to be manual, labor-intensive, and slow.
Because of modern architecture, such as distributed systems and
ephemeral containers, it’s critical your security model is able to
adapt and respond within minutes, if not seconds.

34 API Security For Dummies, Data Theorem Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Your security processes and tooling should constantly analyze
your cloud environments, API gateways, logs, web and mobile
applications, as well as source code for changes that might cre-
ate vulnerabilities. Once you’re able to identify the changes to
your system, you can confirm that authentication, authorization,
encryption, access, and verification meet the standards you’ve set
for your team.

Only with a clear and holistic view of your system’s security can
you manage risk and enforce security policies. Without telemetry
and analytics, every security decision will be a shot in the dark
and you’ll miss critical holes in your API security. When a security
incident occurs, you’ll be able to leverage that data to appropri-
ately identify the components of the system affected and the con-
tributing factors that led to the event.

Security at Key Stages of Development
The differentiator between engineering teams who release highly
secure APIs and those who don’t comes down to discovering and
remedying security vulnerabilities at the right time in the process.

The software development life cycle (SDLC) is a series of stages
from ideation to production that includes planning, architecting,
developing, testing, and releasing code. Security must be a con-
sideration at key phases in the process. If you catch an issue early
in the SDLC, you can fix it quickly without significant engineering
resources. A security vulnerability in production not only opens
you up to a breach, it may require substantial work to remedy.

Releasing with CI/CD Pipelines
Continuous integration and continuous delivery (CI/CD) is the
ideal process for releasing cloud native applications — systems
built for cloud infrastructure and tooling. If you’re unfamiliar,
CI/CD is a pathway designed for developers to test and release
their code independently (without assistance from operations
engineers).

CHAPTER 6 Benefitting from an API Security Framework 35

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The “D” in CI/CD typically stands for delivery, but sometimes
deployment. The difference is that delivery simply means devel-
opers can automate the release of new features through the test-
ing environments but the pipeline halts just before releasing the
new code to customers. It requires human approval, typically by
a simple click of a button, to complete the deployment process.
Continuous deployment, on the other hand, is automated entirely.
If code is checked into the master branch, and passes all tests and
security gates, it is released to your production environment and
is accessible by customers. Continuous deployment, as you might
imagine, requires significant investment in thorough testing.

Security can be built into your CI/CD pipelines by checking for
security automatically at key stages. This includes:

 » When code is deployed to every pre-release environment
(development, testing, staging)

 » When features are released to customers in the production
environment

Checking security with a CI/CD pipeline is an improvement on
manual security processes instituted at the very end of the soft-
ware development life cycle, just before release. CI/CD tests will
alert developers immediately and allow for remediation quickly
and without a massive engineering effort.

Tracking Bugs
API tests typically look at actions, arguments, and responses to
ensure that the functionality works as expected. Additional tests
might explore error handling and performance under intense
customer usage. Every API test suite should also include secu-
rity gates to locate potential threats. When data exposure is
found, tracking that issue (and conveying the appropriate con-
text and information to your engineering team) becomes critical
to remediation.

36 API Security For Dummies, Data Theorem Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

If you don’t already have a centralized issue tracking process and
tool, start exploring potential solutions. Look for tools that use
automation to add and track bugs or make it easy to create new
issues. Features to consider include:

 » Cloud integration

 » Real-time notifications

 » High-quality reporting

 » Easy-to-use user interface

 » Bug duplication detection

The main benefit of a bug tracking system is to create a single
source of truth for your engineers when they submit and track
bugs. If you evaluate your security risks and are comfortable
delaying certain fixes, it’s fine to consider some bugs to be a form
of technical debt. But be sure to regularly prioritize the list so
engineers can quickly select the next most critical bug to patch.
The easier you can make security for your engineers, the more
success you’ll have in maintaining secure systems.

Accelerating Incident Response
Though not every incident is as dramatic as a British Airways or
Target retail exposure, where both have been fined and losses
are exceeding $200 million, the number of security incidents has
increased across every system simply because of the increased
complexity. There are more areas of an application open to attack
and data breach — including APIs.

Rather than add more security professionals, you need to begin to
rely on automation and tooling to provide insights into threats,
alert you about incidents or attacks in near real-time, and assist
you by taking action without human intervention to mitigate the
attack and limit exposure. This security automation and incident
response doesn’t eliminate the need for human intervention, a
topic covered in Chapter 7.

CHAPTER 7 Automating Your API Security Framework: Introducing DevSecOps 37

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 7

IN THIS CHAPTER

 » Calculating security risks

 » Continuously testing for security

 » Streamlining your incident response
process

Automating Your API
Security Framework:
Introducing DevSecOps

You don’t need to double your engineering staff to implement
good API security practices. Instead of working harder or
throwing people at the problem, think more strategically

about your approach. Automation empowers you to create a four-
point security framework:

 » Continuously discover changes to API specifications.

 » Analyze your API security constantly.

 » Manage risk through setting and enforcing security policies.

 » Alert on security incidents and implement remediation.

Evaluating Risk
Just as DevOps was created to remove the barriers between devel-
opers and operations folks, DevSecOps exists as a reminder that
security is an essential part of DevOps and should be injected into
key phases of the software development life cycle.

38 API Security For Dummies, Data Theorem Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Verifying API security early in the process secures the system
and reduces the cost of fixing issues discovered. Security threats
discovered just before, or after, a release to customers take
significantly more engineering resources to assuage.

Ask yourself the following questions:

 » What areas of your system are exposed?

 » What is your plan to reduce the attack surface and limit the
ways hackers can gain access to your system?

 » How will you continuously verify security?

 » What risks are you willing to take because of the cost of
prevention?

Being 100 percent secure is impossible. You face too many
“unknown unknowns,” constant changes to systems, and ever-
evolving threats to be able to harden yourself to every possible
exposure. Instead, focus on the most critical aspects of your sys-
tem, including customer data, regulation and compliance require-
ments, and the services that supply your business with the most
revenue.

Although business revenue is a critical aspect of evaluating secu-
rity risk, so is reputation. Consumer trust is an elusive requirement
for doing business. You ask your customers to trust you when they
supply you with personally identifying information (PII). In turn,
you watch over that data closely and protect customers from as
much exposure as possible. If you fail to take the necessary pre-
cautions, you may lose more than this quarter’s revenue. You may
lose customers for life.

Securing Continuously
Just as DevOps emphasizes continuous improvement (sometimes
referred to as kaizen), DevSecOps underscores the importance of
automating security across the entire development pipeline.

This continuous security increases your overall application secu-
rity, improves your testing across all environments, reduces the
cost to remediate when incidents occur, and increases collabora-
tion among all members of your engineering team.

CHAPTER 7 Automating Your API Security Framework: Introducing DevSecOps 39

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Testing
Your testing strategy should take into account your business goals
and customers as well as any mandated compliance. If your secu-
rity testing is currently manual, don’t expect to have an airtight
security test suite overnight. It’ll be a slow process, but you have
to start somewhere.

Testing for security should prioritize the areas of your apps most
likely to be attacked. APIs are a key vector because it’s data in
transit and open to a variety of well-known threats.

Your test suite should include robust security tests to verify that
components are protected against potential threats.

Your testing strategy and test code should be available to every-
one on the team and held in a repository where changes will be
tracked. Be sure to run the tests in every pre-release environment
as you deploy the application. By the time your code reaches cus-
tomers and new APIs are exposed to potential threats, you should
feel confident you’ve taken the appropriate steps to protect your
system.

Consider security tools to monitor and detect security threats in
your apps on a continuous basis.

Monitoring and scanning
Monitoring and scanning is an automated way of discovering new
inventory (attack surfaces) and constantly assessing your appli-
cation’s resistance to known weaknesses and threats, typically in
production.

Static analysis tools look at code to find glaring security issues
and confirm that no confidential information, like secrets and
keys, made it into source control.

Utilizing security scanners at a regular cadence is a good idea,
but it’s also important to scan your system whenever changes are
made. If you bring in a new app, add API, switch vendors, or adopt
a third-party or open source tool, scan the system. The scanner
serves as a first line of defense against basic and sophisticated
threats.

40 API Security For Dummies, Data Theorem Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Managing Security Incidents
Reacting quickly to security attacks is key to catching the issue,
eliminating the threat, and identifying the contributing factors to
ensure appropriate work that prevents a future incident.

Unfortunately, security incidents aren’t smooth, linear processes.
Every major incident is chaotic and stressful. Incidents have five
phases:

 » Discovery: There’s a problem!

 » Response: Where does the threat originate? What services
are affected?

 » Restoration: Security threats are mitigated and services are
restored.

 » Reflection: What factors contributed to this incident?

 » Preparation: What work must be completed to avoid this
event in the future?

Alerting developers
It’s important to alert engineers to a potential security incident
as soon as it’s detected, but be careful not to over-alert. “Alert
fatigue” occurs when engineers experience an overabundance of
low-priority alerts and become immune to notifications — even
when the priority is high.

Different security incidents have different priority levels. Authen-
tication attacks, unauthorized access, and encryption issues are all
high priority; you should alert and act immediately. Other attacks,
such as probing and explorative attacks, are a lower priority.

Creating playbooks
A playbook is a set of rules or procedures that can be utilized
by the first responders to a security incident. Typically, play-
books (sometimes referred to as runbooks) include at least four
components:

CHAPTER 7 Automating Your API Security Framework: Introducing DevSecOps 41

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » An event or condition (such as a particular security incident)
that initiates the use of the playbook.

 » Action steps to take in response to the event. This is the bulk
of the playbook and provides instructions for what to do as
well as suggestions for future automation.

 » Specific policies or regulation information relevant to the
initiating event.

 » The desired outcome.

Tooling Your DevSecOps Practice
Securing your APIs with automation creates more secure systems
and enables you to validate your API security at every stage of the
process. I recommend you integrate with security tools for your
CI/CD pipelines, mobile apps, and API security. Look for tools that
integrate well with your environment, infrastructure, and other
management systems.

Ideally, your security analysis will detect authentication issues,
authorization gaps, outdated encryption, unvalidated parameters,
and shadow APIs in serverless applications.

I do not recommend developing your own security scanners and
tools. Except in rare cases, you’ll lack the expertise and focus to
keep track of all vulnerabilities and potential threats. In addition,
code has to be maintained, which means you’re adding work for
your engineers.

Plenty of third-party vendor tools, as well as open source solu-
tions, help you manage security. Choose tools that work well with
your current technology stack and infrastructure choices, address
the security issues you’re most concerned about, and have a user
interface that’s comfortable for your engineers.

CHAPTER 8 Ten Takeaways 43

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 8

IN THIS CHAPTER

 » Securing modern tools and architecture

 » Adopting DevSecOps principles

Ten Takeaways

I
f you take nothing else from this book, please remember these
ten tips on securing your APIs:

 » RESTing on HTTP: All APIs — GraphQL, REST, SOAP —
utilize the HTTP actions of GET, POST, PUT, and DELETE.

 » Migrating to the cloud: The cloud provides endless
opportunities for growth, often through APIs. The cloud-
driven API economy provides more opportunities for security
vulnerabilities — making APIs a critical piece of your system
to secure.

 » Securing APIs: Authentication, authorization, encryption,
availability, and auditing are the pillars of security. They
should be applied to all your publicly facing APIs that could
lead to data exposure on the open Internet.

 » Adopting DevOps: DevOps is a methodology intended to
create high-velocity teams that emphasize collaboration,
develop a learning culture, and share ownership. Securing
your APIs isn’t an overnight process and the DevOps
principle of continuous improvement is something critical to
your team’s success in securing their applications.

44 API Security For Dummies, Data Theorem Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Shifting security left: DevSecOps merges security with the
fundamentals of DevOps and seeks to move security left in
the software development life cycle, meaning you test and
fix security early and often.

 » Diving into security threats: Your APIs face nearly endless
security threats. Be sure to shield and validate API parameters,
encrypt data in transit, authenticate and authorize users,
remove identifying information from URLs, and utilize modern
TLS cryptography.

 » Moving beyond tradition: Traditional API gateways and
web application firewalls (WAFs) are useful but offer limited
security defense against sophisticated attacks on distributed
systems. Shadow APIs are a new class of real-time analyzers
that continuously assess APIs, especially those built for
the cloud.

 » Authenticating users: Always confirm users are who they
appear to be through authentication. Then ensure those users
have authorization to access specific data. Authentication
without authorization leaves you open to security threats.

 » Securing CI/CD: Initiate security checks at every stage of
your CI/CD release pipeline. If a developer checks code in or
releases it to a new environment, confirm that the code and
tools are secure.

 » Responding to incidents: Automation and telemetry help
you catch security incidents as they’re occurring and respond
appropriately. Create playbooks to enable engineers to
respond to incidents appropriately. Automating playbooks
can lead to auto-remediation for critical areas of your APIs
and applications.

http://Dummies.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Icons Used in This Book

	Chapter 1 Understanding APIs
	Digging into API Architecture
	Addressing HTTP
	Executing actions

	Managing APIs
	Modernizing your systems
	Communicating with protocols

	Architecting Modern APIs
	RESTing on your service layer
	Separating concerns
	Testing code
	Documenting APIs
	Keeping your code agnostic

	Working with Legacy APIs

	Chapter 2 Growing the API Economy
	Competing in Your Market
	Moving to the Cloud
	Enabling Microservices
	Building a Single-Page App (SPA)
	Utilizing Mobile Apps
	Creating SDKs
	Consuming Open Source Software
	Scaling with Serverless

	Chapter 3 Introducing DevOps
	Transitioning to DevOps
	Applying Security to DevOps
	Understanding the Software Delivery Life Cycle
	Shifting Security Left
	Architecting for Security
	Monitoring and Alerting

	Chapter 4 Securing APIs with Traditional Approaches
	Two Types of APIs
	Productizing customer-facing APIs
	Internalizing APIs
	Shadow APIs

	Securing APIs with Legacy Approaches
	(Pen)testing manually
	Using an API gateway
	Creating web application firewalls

	Dealing with the Consequences of Traditional API Security

	Chapter 5 Modern Approaches to Securing APIs
	Catching Bugs Early via CI/CD
	Injecting checks
	Looking for dangerous code
	Testing in CI/CD

	Documenting APIs
	Validating the Security of Your APIs in Production
	Auto-Enforcing Policies
	Tracking Changes
	Closing the Loop

	Chapter 6 Benefitting from an API Security Framework
	Streamlining Security Processes
	Security at Key Stages of Development
	Releasing with CI/CD Pipelines
	Tracking Bugs
	Accelerating Incident Response

	Chapter 7 Automating Your API Security Framework: Introducing DevSecOps
	Evaluating Risk
	Securing Continuously
	Testing
	Monitoring and scanning

	Managing Security Incidents
	Alerting developers
	Creating playbooks

	Tooling Your DevSecOps Practice

	Chapter 8 Ten Takeaways
	EULA

API Security

