

"Redefining Precision: TronSight's Laser Triangulation and Confocal Technology for Next-Gen Manufacturing"

Speakers:

Rui Moreira CTO & Co-Founder AOI Airon

Leo LUEngineering Director
TronSight

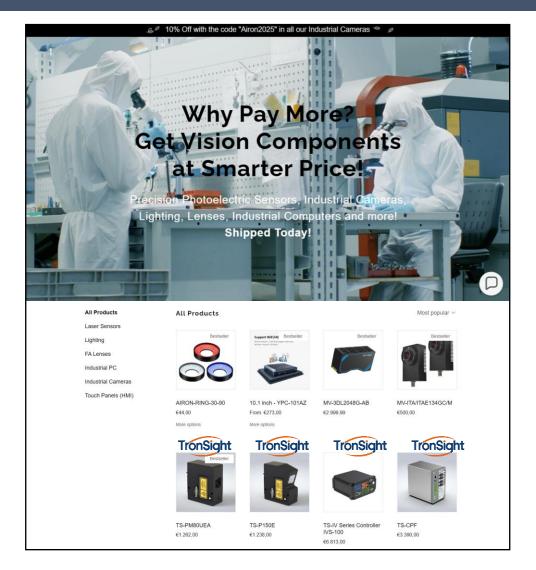
AOI Airon UG | The Start Up for Machine Vision

Stuttgarter Str. 70, 70825, GERMANY Amtgericht Stuttgart, HRB: 799086

USt-IdNr.: DE147794137

Who we are?

Vision Components, Delivered.


We are a Start Up of experienced System Integrators bringing to you: Machine Vision components in one click away. Explore our e-commerce selection:

- Laser Displacement and Confocal Sensors
- Vision Lighting & Lenses
- Cameras & Industrial PCs, and more!

Ask for our 2025 catalogue!

More Info, contact: <u>sales@aoi-airon.com</u> www.aoi-airon.com

Company Timeline: 10 years of R&D

TronSight: Precision Measurement Expert

- First demo product
- Base in Suzhou, ready to start a business

- Investment obtained
- 30 colleagues
- New project on interferometric sensor

2015 2018 2021 2023 2025

- First project on laser distance sensor
- Three Master Thesis in Zhejiang University, China

- TronSight Established
- 1 PhD & 4 Masters
- 200 m² space
- New project on confocal sensor

- More than 120 colleagues
- 3000 m² space
- 4 site offices in China
- Presence in Southeast
 Asia & Europe (Airon)

Product Overview: displacement and thickness

Displacement Measurement

Chromatic Confocal Displacement Sensor

<8 mm
Probe outer diameter
1×10⁻⁴ Torr
Vacuum compatible

Laser Triangulation Displacement Sensor

160kHz
Sampling speed
2~2000mm
Measurement range

Split-type Autofocus Sensor

50kHz focusing speed 0.5 μm focusing accuracy

Thickness Measurement

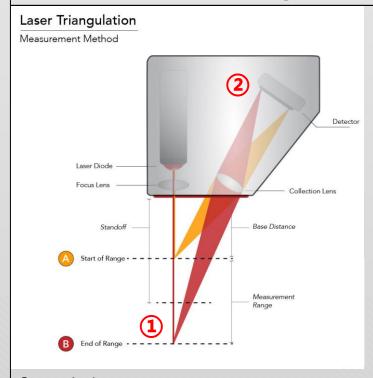
Reflective Film Thickness Sensor

>20 nm measurement capability ±1 nm accuracy

Infrared Interferometric Thickness Sensor

±0.1 µm linear accuracy 40 kHz Sampling rate

10 µm-2 mm silicon wafer thickness measurement


White Light Interferometric Thickness Sensor

50 mm working distance <100 μm thickness range

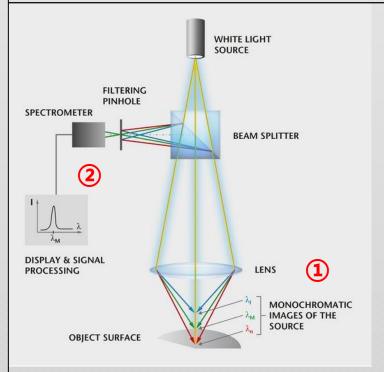
Principle for displacement measurement

Laser Triangulation Principle

Pros:

- high speed
- 2. long range

Cons:


- 1. big size
- vacuum incompatible

Source: Acuity

PRINCIPLE:

- Laser beam diffusely reflected
- ② Image of the spot focused on the detector
- 3 spot location changes with the distance to the target

Chromatic Confocal Principle

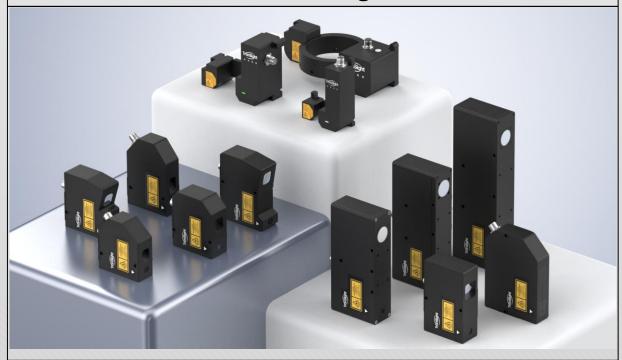
Pros:

- small size
- 2. large solid angle
- 3. glass compatible
- 4. vacuum compatible

Cons:

- 1. limited speed
- 2. short range

Source: Polytec


PRINCIPLE:

- Color-coding of space
- ② Color-decoding by analyzing the spectral content
- 3 spectrum position changes with the distance to the target

Product for displacement measurement

TS-P Series Laser Triangulation Sensor

KEY FEATURES:

- Measurement range: 2-2000 mm
- Repeatability: 0.15 µm
- High-speed sampling up to 160 kHz
- Deep customization: wavelength, light source, structure

TS-C Series Chromatic Confocal Sensor

KEY FEATURES:

- High resolution 3 nm; high sampling speed 32 kHz
- Small size of 3.8mm outer-diameter
- Supports 16-channel synchronous sampling
- Can measure high-reflective and transparent materials

User case 1: Automotive industry

1D Barcode scanning for the vehicle wheel hub

Background:

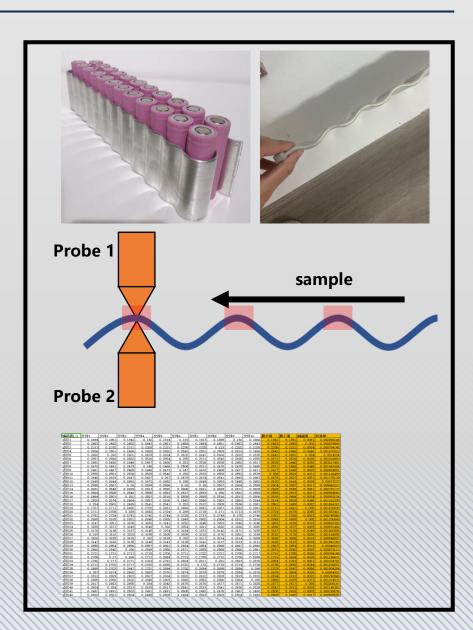
- The production of automotive wheels involves numerous processes, and a 1D barcode is set on the hub to identify its information for convenient quality control.
- This product information is converted into a cast or printed 1D barcode on the wheel, serving as
 the unique identifier for the corresponding mold, which allows for information logging,
 positioning, and automatic quantity statistics during production.
- Tronsight's TS-P series laser triangulation displacement sensor can measure the height variations on the wheel edge as it rotates, thereby reading the 1D barcode information.

SOLUTION & RESULT:

TS-P Series Laser
 Triangulation Sensor

User case 2: Automotive industry

Water cooling plate film thickness measurement


Background:

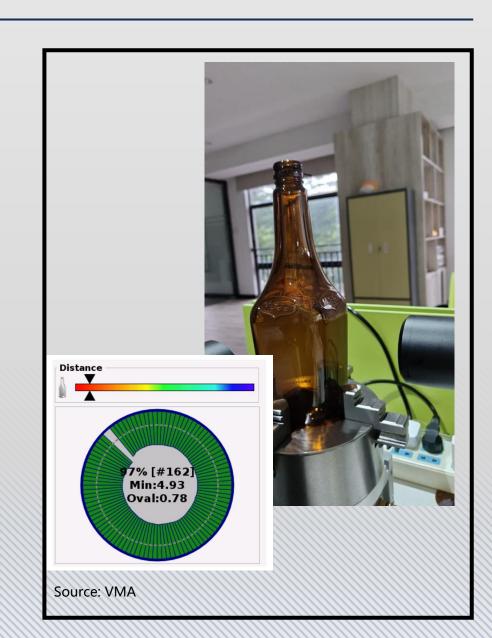
- New energy vehicle batteries require effective thermal management to prevent performance degradation and safety
- Serpentine liquid cooling tubes are used in cylindrical batteries (e.g., 4680), relying on close contact and an insulating coating for optimal performance and safety.
- Therefore, precisely measuring the thickness of this surface insulation coating is critical to ensure proper heat dissipation and reliable electrical insulation.

SOLUTION & RESULT:

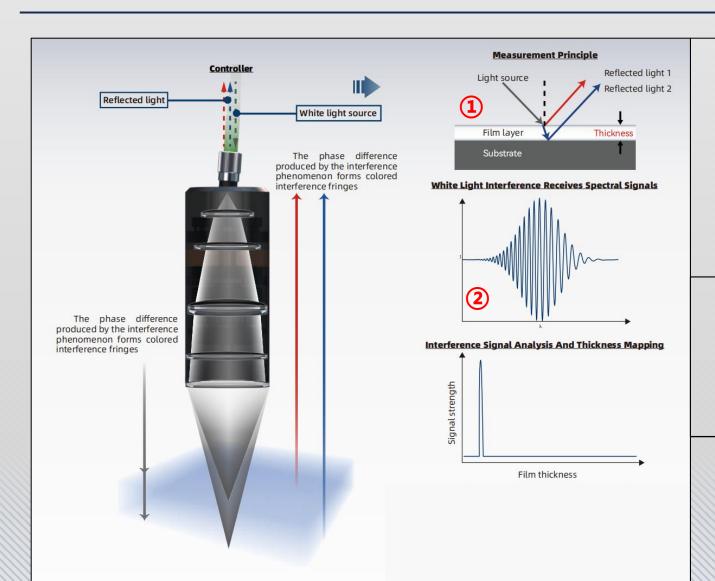
- TS-C Series Chromatic Confocal Sensor
- Statistically calculate the dynamic repeat precision using the film thickness data at the positions corresponding to the minimum (maximum) values from Probe 1 (Probe 2).
- Dynamic repetition can be < 5µm on the movement

User case 3: glass industry

GLASS BOTTLE THICKNESS MEASUREMENT


Background:

- The wall thickness of every single glass bottle must be checked to avoid breakage and possible harm to the user.
- This measurement process is challenging due to the varying shapes, colors, high production speeds, and extreme temperatures of the glass bottles on the line.
- Therefore, reliable inline measurement is essential for continuous quality control, ensuring manufacturing efficiency and consistent product safety standards.


SOLUTION & RESULT:

TS-C Series Chromatic Confocal Sensor

Principle for thickness measurement

KEY FEATURES:

- Film introduces phase differences depends on the wavelength
- ② Light interfere over the spectrum
- 3 the interference features changes with the thickness of the film

Pros:

- 1. high accuracy
- 2. usually no calibration needed
- 3. large working range

Cons:

1. small measurement angle

Product for thickness measurement

TS-IV Series white light interferometric sensor

KEY FEATURES:

- Measurement range: 1-100 µm(n=1.5)
- Accuracy: ±0.05 μm
- High-speed sampling up to 10 kHz
- Supports 16-channel synchronous sampling

TS-IR Series infrared interferometric sensor

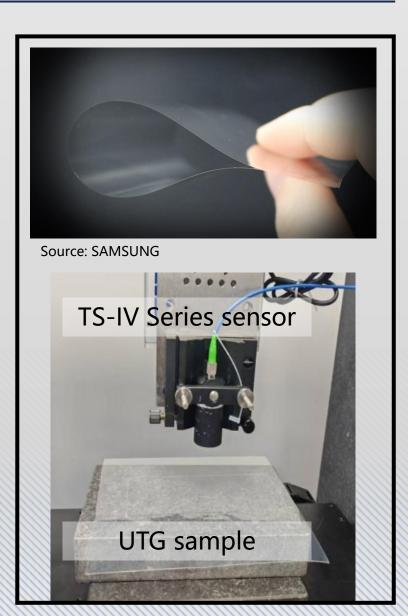
KEY FEATURES:

- Measurement range: 4-2500 mm(n=1.5)
- Accuracy: ±0.1 μm
- High-speed sampling up to 40 kHz
- Able to measure silicon wafer

User case 4: 3C industry

UTG THICKNESS MEASUREMENT

Background:


- Ultra-thin flexible glass (UTG) is a type of glass material with flexibility and bendable properties, is a key material in foldable screens.
- UTG is produced by processing ordinary glass through slimming processes, where glass with a thickness of 0.4mm or more is reduced to 0.1mm or less through chemical etching, with some being as thin as 20µm, followed by cutting and strengthening treatments.
- During the slimming process, real-time measurement of the reduced thickness is required.

SOLUTION & RESULT:

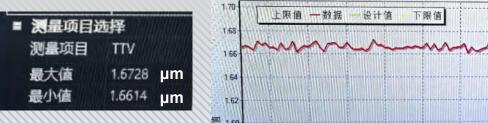
TS-IV Series white light interferometric sensor

- Sample1: with film on the glass; sample2: without upper film on the glass
- Dynamic repetition test: for each sample, 5 measuring points, 20 times in movement
- Dynamic repetition < 0.01µm

User case 5: semiconductor industry

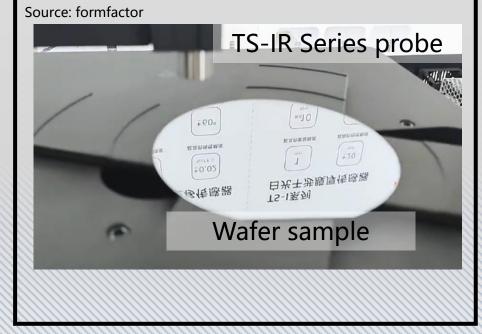
WAFER THICKNESS MEASUREMENT

BACKGROUND:


- Due to the "More than Moore" trend, the demand for advanced packaging requires increasingly thinner wafers.
- The successful implementation of these advanced packaging techniques depends on critical process upgrades in areas such as chemical mechanical polishing (CMP), bonding, and metrology.
- Therefore, achieving real-time wafer thickness measurement is essential for these processes and their associated equipment.

Infrared interferometric sensor

SOLUTION & RESULT:


TS-IR Series infrared interferometric sensor

- Sample: 12-inch wafer of 700µm thickness
- Measurement process: real-time thickness measurement on rotation
- TTV repetition(130 times) < 0.02µm

TTV of 12-inch wafer measured over 130 times

WAFER THICKNESS (IR) Wafer thickness and layer Thickness of a Si wafer, thickness using IR technology post grinding

In conclusion

- With AIRON, TronSight offers high-precision metrology solutions for industries, including
 - new energy industry
 - **3C industry**
 - semiconductor industry
 - glass industry
 - automotive industry

If you have any measurement demands and challenges, please contact us!

