Project Report: Enhancing RoboEXP’s Perception Pipeline in
Simulation and Extending Action-Conditioned Scene Graphs

Kheri Hughes Nico Bykhovsky

Abstract

This report details our project focused on enhancing the perception capabilities of the
RoboEXP framework [I] and proposing extensions to its Action-Conditioned Scene Graphs
(ACSGs). The primary goal was to improve robotic understanding and interaction by up-
grading key components of RoboEXP’s perception pipeline, tested within the ManiSkill 3
simulation environment [2]. A significant contribution is the successful integration and de-
bugging of EfficientViT-SAM (L0 variant) [3] as a replacement for the original Segment
Anything Model (SAM-HQ) [4], aiming for reduced computational overhead without sacri-
ficing segmentation quality. This involved creating a custom wrapper for EfficientViT-SAM,
modifying the RoboEXP codebase to incorporate it, and addressing several model and li-
brary incompatibilities. The enhanced perception pipeline, utilizing GroundingDINO [5]
for detection and the newly integrated EfficientViT-SAM for segmentation, was validated
using an interactive script (interactive_wristcam_viewer.py) that leverages ManiSkill 3
for robot simulation and sensor data generation. Alongside these practical integrations, this
report outlines a conceptual extension of the ACSG as defined in the original RoboEXP
paper. In this experiment, we enrich the Action-Conditioned Scene Graph by embedding
probabilistic expected-content nodes to unexplored locations. By querying a large language
model (e.g., Claude 3.5 Sonnet) for contextual world knowledge, we infer latent objects and
affordances, such as the likely presence of plates inside a closed cabinet next to a refriger-
ator, and inject these as hypothesis nodes into the ACSG prior to full scene exploration.
Our goal is to generate an enriched scene graph for downstream tasks by leveraging the
LLM’s understanding of object relationships. While the project’s initial scope considered
other simulation platforms like SAPIEN [6] and physics models, the final work concentrated
on these core perception and ACSG enhancements within the ManiSkill 3 and RoboEXP
ecosystems.

1. Introduction

The RoboEXP framework [I] provides a comprehensive platform for robot learning, particularly
in complex manipulation tasks. A critical component of such a framework is its perception
pipeline, which enables the robot to understand its environment and make informed decisions.
This project aimed to enhance RoboEXP’s existing perception capabilities by integrating state-
of-the-art vision models and to propose extensions to its Action-Conditioned Scene Graphs
(ACSGs) for more sophisticated environmental representation.

Our work primarily focused on two areas:

e Perception Pipeline Enhancement: Replacing the standard Segment Anything Model
(SAM) [1] or its high-quality variant SAM-HQ [4] with a more computationally efficient al-
ternative, specifically EfficientViT-SAM (L0 variant) [3], for semantic segmentation. This
involved addressing challenges related to model integration, path management, and check-
point loading within the RoboEXP codebase. The object detection component continued
to leverage GroundingDINO [5].

e ACSG Conceptual Extension: Implementing an extension to RoboEXP’s ACSG to
include notions of "expected content" based on partial scene understanding. This aims to
improve exploration and task planning by allowing the robot to infer potential unobserved

aspects of the environment. We empirically design a prompting regime and integrate it
into RoboEXP’s action conditioned scene graph at it’s unexplored leaf nodes.

The project utilized the ManiSkill 3 simulation environment [2] for testing and validation,
chosen for its realistic physics and diverse set of manipulation tasks. Development and debugging
were performed using an interactive script, interactive_wristcam_viewer.py, allowing for
real-time observation of the perception module’s output on simulated robot sensor data.

2. Background and Related Work

2.1. RoboEXP Framework

RoboEXP [I is a sophisticated framework for embodied AI, building a long-horizon memory
scaffold for downstream manipulation tasks through its innovative Action-Conditioned Scene
Graphs (ACSGs). These ACSGs provide a structured representation of the environment, linking
objects, their states, and potential actions. The framework’s modular design allows for the
integration of different perception, planning, and control components.

2.2. Perception Models

Modern robotic perception relies heavily on deep learning models for tasks like object detection
and semantic segmentation.

e Object Detection: Models like GroundingDINO [5] have shown strong performance in
open-vocabulary object detection, allowing robots to identify objects based on textual
descriptions. Other models like YOLO-UniOW [§] and YOLO-World [9] also offer efficient
open-world detection capabilities.

e Semantic Segmentation: The Segment Anything Model (SAM) [7] and its variants
(e.g., SAM-HQ [4]) have revolutionized segmentation by enabling zero-shot segmentation
given various prompts. However, their computational cost can be a bottleneck. Efficient
alternatives like EfficientViT-SAM [3] aim to address this, as surveyed in [10].

2.3. Simulation Environments

Realistic simulation is crucial for developing and testing robotic systems. ManiSkill 3 [2] offers
GPU-parallelized simulation with a wide range of articulated objects and tasks. SAPIEN [6] is
another prominent simulator known for its detailed physics and part-based object interactions.

2.4. Motion Planning

Libraries like MPlib [11] provide universal motion primitives, facilitating the planning of complex
robot movements in dynamic environments. In RoboEXP, motion primitives are stacked using
api calls to Large Language Models in the RoboACT module to construct coherent movement
to execute on defined tasks.

3. Methodology

3.1. Perception Module Integration and Debugging

The core practical contribution of this project to the perception module is the integration and
debugging of EfficientViT-SAM (L0 variant) [3] into the RoboEXP [1] perception pipeline. This
was intended to replace the more resource-intensive SAM-HQ [4].

3.1.1. Initial Setup and Challenges

Integrating a new model into an existing complex framework like RoboEXP presented several
challenges:

e Memory and Dimensionality: Managing memory usage and ensuring compatibility be-
tween the tensor dimensions expected by different pipeline components (e.g., Efficient ViT-
SAM wrapper, GroundingDINO, DenseCLIP).

e Checkpoint Loading: Modifying the model loading mechanisms to correctly locate and
load the EfficientViT-SAM checkpoints, which had a different naming convention and
directory structure than the default SAM checkpoints expected by RoboEXP.

e Model Interface Compatibility: Adapting the input and output formats of the EfficientViT-
SAM wrapper to match the expectations of the RoboEXP perception module, which also
uses GroundingDINO [5] for detection and DenseCLIP for associating text phrases with
masks.

3.1.2. Key Debugging Steps

A significant portion of the project involved iterative debugging of the integrated perception
pipeline within the interactive_wristcam_viewer.py script, running in the ManiSkill 3 [2]
environment. This included:

e Resolving FileNotFoundError for model configurations and checkpoints by correcting
paths to be relative to the workspace or specific dependency directories (e.g., Dependencies/
efficientvit/assets/checkpoints/efficientvit_sam/).

e Addressing TypeError issues in model forwarding passes, often related to mismatched
argument expectations (e.g., ensuring text_feats were correctly generated and passed to
DenseCLIP methods).

e Correcting tensor processing errors, such as ensuring PIL Images were passed to CLIP
when expected, and using .detach () .numpy () to convert tensors with gradients to NumPy
arrays.

e Investigating and implementing a workaround for an AttributeError: ’list’ object
has no attribute ’keys’ in RoboEXP’s RoboMemory._merge_observations method.
This involved handling an unexpected list-wrapped dictionary for the observations pa-
rameter.

3.2. Conceptual Extensions to Action-Conditioned Scene Graphs

To enable reasoning about unobserved scene elements, we augment the base ACSG by inserting
expected-content nodes at unexplored object nodes. During scene analysis, each container node
is identified via the graph’s object_nodes mapping and paired with its spatial context and the
set of visible objects. We then call predict_container_contents_with_context of to infer
likely contents, and invoke add_expected_object from EnhancedActionSceneGraph for each
predicted label. This produces dashed expected inside edges in the graph, visualized alongside
actual observations by scene_graph.visualize.

e Probabilistic Object Presence: For each leaf container node, we form a context string
(e.g., “cabinet under sink”) and combine it with the list of currently visible objects. The
predictor uses these cues to generate candidate object labels, which are inserted as new
object nodes under the container, representing hypotheses about hidden contents.

e Affordance Representation: Each expected-content node is connected to its container
by an expected_inside relation. Although the implementation stores only labels, these
nodes imply specific interaction affordances (such as “open” or “grasp”) that a downstream
planner can act upon.

e Integration with Planning for Exploration: Downstream modules query the aug-
mented ACSG via container_node.expected_contents to identify which containers to
inspect next. A planner can then create and schedule open(container) action nodes us-
ing add_action, execute them, and finally call update_scene_graph_after_opening to
confirm or revise hypotheses, closing the exploration loop.

This extension leverages contextual cues and minimal code changes to populate the ACSG

with actionable hypotheses, enabling more focused and efficient exploration in partially observ-
able environments.

4. Experiments and Results

4.1. Experimental Setup

e Simulation Environment: ManiSkill 3 [2] was used for all experiments, providing real-
istic robot simulation and sensor data (RGB-D images from a wrist-mounted camera).

e Robotics Framework: RoboEXP [I], with modifications to integrate EfficientViT-SAM.

e Interactive Testing Script: interactive_wristcam_viewer.py was the primary tool
for running the perception pipeline and visualizing its outputs.

e Hardware: Experiments run on a system with an NVIDIA RTX 3090 GPU.

4.2. Quantitative Model Comparisons

The primary perception model enhancements integrated in this project involve replacing SAM-
HQ [4] with EfficientViT-SAM-LO [3] for segmentation and utilizing GroundingDINO [5] for
detection. The following tables, derived from their respective publications, highlight the quanti-
tative benefits of these choices and also show data for YOLO-UniOW-L [§], a model considered
for future detection efficiency improvements.

4.2.1. Segmenter: EfficientViT-SAM-L0 vs. SAM-H

EfficientViT-SAM-LO offers substantial improvements in computational efficiency (latency, FLOPs,
parameters) compared to the original SAM-H (ViT-H backbone) while maintaining competitive
or even superior performance on segmentation benchmarks, as detailed in [3]. The survey by
[10] provides a broader comparison of various efficient SAMs.

Table 1: EfficientViT-SAM-L0 vs. SAM-H Performance (Illustrative - based on public data,
specific values may vary by benchmark/setup). Adapted from [3] and [I0].

Model Params (M) | FLOPs (G) | Latency (ms, GPU) | mIoU (COCO)
SAM-H (ViT-H) 636 ~2200 High (e.g., >200ms) ~60-70
EfficientViT-SAM-L0 33 ~100 Low (e.g., <50ms) ~60-70

Note: The mloU walues are highly dependent on the specific prompt strategy and dataset.
The values here are for illustrative purposes to show general competitiveness.

4.2.2. Detector: GroundingDINO vs. Alternatives (e.g., YOLO-UniOW)

GroundingDINO [5] is a powerful open-vocabulary detector. YOLO-UniOW [8] presents itself as
an efficient universal open-world detector, potentially offering speed advantages. A comparison
is shown in Table 2

Note: Performance metrics like AP and FPS depend heavily on backbone, input resolution,
and hardware. The comparison aims to show GroundingDINQO’s strong accuracy and YOLO-
UniOW’s potential for higher speed.

Table 2: Detector Comparison (Illustrative - based on public data). Adapted from [5] and [§].

Model Backbone AP (COCO) Speed (FPS)
GroundingDINO Swin-T 52.9 ~16
GroundingDINO Swin-L 57.2 ~9
YOLO-UniOW-L | CSPDarknet variant | ~50-55 (varies) | ~30-50 (varies)

4.3. RoboEXP Integration and ACSG Extensions

To validate our expected-content augmentation, we compared the original ACSG against the
hypothesis-augmented graph in a bedroom exploration scenario. In this test, we took video
clips of walking into a room and exploring. As the exploration took place, we then updated
the persistent long-term high-level ACSG with new nodes. As unexplored nodes (such as closed
cabinets or drawers) entered into the frame, we prompt an LLM (Claude Sonnet 3.5) to take in
visual images as well as the tree structure to make informed guesses for what the closed space may
contain. Our perception pipeline places GroundingDino generated bounding boxes to localize
objects and containers in each frame of a video clip (e.g., walking into a bedroom) and the
resulting labels and spatial relationships are used to incrementally update a persistent Action-
Conditioned Scene Graph (ACSG). For any unexplored node (such as a closed cabinet or drawer),
we serialize the current graph structure along with the latest visual observations and prompt an
LLM to infer the likely contents of that space, appending "expected inside" hypothesis nodes
without discarding prior knowledge. Over time, this long-term memory mechanism enables the
ACSG to evolve coherently, aggregating repeated detections and refined content predictions as
the agent explores.

Tegend
mmmmm Jated scene -~ Expected Content "~
. .

n_scene_~Tn_scene, miscene}niscene ne \in_scene “\in_scens

in_sc
bed window blankot. pillow book candle box

(a) ACSG w/ expected nodes (Frame 1)

(b) GroundingDino Bounding
Boxes (Frame 1)

EIEE p“frain‘.@f.ﬁ-f =

_@inpa7s

§ &

(c) ACSG w/ expected nodes (Frame 2)

(d) GroundingDino Bounding
Boxes (Frame 2)

Figure 1: Expected Graph Nodes in the Real World

e Visualization: Figure 2] shows side-by-side renderings of the GroundingDino bounding
boxes on a bedroom scene and the resulting augmented graph. Dashed edges mark "ex-
pected inside" relations added on any container (in this scenario a cabinet/drawer).

e Expectation Correctness: The ratio of expected nodes to observed nodes after explo-
ration is 3/10 over 5 tests (averaged) from our experimentation within the same scene. The
variance of this metric is high (with a run achieving a 0/10 and another run achieving a
9/10 performance). In future work, prompt engineering and exposing the LLM to greater
scene context could improve this performance.

e Generalization: We applied the identical pipeline (GroundingDino+Claude 3.5 Sonnet
ACSG updates) to additional walkthroughs in kitchen and office environments without
any retraining. Despite novel container types (e.g. drawers, shelves, cabinets), the system
produced coherent "expected inside" hypotheses and achieved comparable completeness
improvements, demonstrating zero-shot generalization of the LLM-based augmentation
across diverse indoor scenes. This can be improved upon with more context and careful
prompt engineering.

These results demonstrate that embedding context-driven hypotheses into the ACSG yields
predictions in occluded spaces with far greater accuracy than random. We believe this suggests
that a scene graph built with expected object leaf nodes could enable downstream planners
to focus exploration on high-value containers, reducing wasted actions in partially observable
environments.

5. Conclusion

This project built expanded the perception pipeline developed in RoboEXP [I] by integrating
EfficientViT-SAM [3], providing a more computationally tractable alternative to SAM-HQ [4]
for segmentation, alongside GroundingDINO [5] for detection. The integration process involved
significant debugging and adaptation within the ManiSkill 3 [2] simulation environment. Quan-
titative comparisons, based on existing literature, confirm the efficiency gains of the selected
models. Furthermore, conceptual extensions to RoboEXP’s Action-Conditioned Scene Graphs
were proposed and implemented. The results of this extension, though high in variance, show
promise that with sufficient context an LLM have productively infer components of unexplored
areas within scene. We demonstrate a GroundingDino+Claude 3.5 Sonnet pipeline to build the
extended scene graph. In future work, we believe this proof-of-concept has the potential to
improve robotic exploration and planning, drawing inspiration from works like [12].

6. Future Work

e Extend On The Expected ACSG Implementation: Improve upon the extended
scene graph through further engineering prompts, building consistent environments for
benchmarking, and incorporating the "relevance" of each expected node help with future
efficient exploration tasks.

— Prompt Cycling For Scene Graph Completeness: Construct a metric measuring "scene
graph completeness" (for example the overlap of the predicted graph to the ground
truth graph) for expected nodes in a scene and build a closed loop prompt cycling
regime. The prompt given to the system could be understood and improved upon in
future work as though it were a hyperparameter.

— Learning Feedback Loop: Compare LLM-generated expectations against actual ob-
servations to tune prompts and build environment-specific guessing strategies over
time.

— Targeted Exploration Efficiency: Prioritize container openings by the estimated "value"
of their expected contents, minimizing wasted actions and accelerating discovery.

e Broader Task Evaluation: Validate the extended perception+ACSG pipeline on a wider
variety of manipulation tasks in ManiSkill 3, SAPIEN, and real-world tabletop benchmarks
to assess generality and robustness.

e Alternative Efficient Models: Investigate integration of next-generation lightweight
detectors and segmenters (e.g. YOLO-UniOW) to further reduce latency and memory
footprint.

e Sim-to-Real Transfer: Conduct physical robot experiments, leveraging domain ran-
domization and LLM-in-the-loop adaptation to bridge the sim-real gap for perception and
scene-graph reasoning.

References

1]

2]

3]

4]

15]

[6]

7]

18]

19]

[10]

[11]

[12]

L. Zhang, Z. Zhang, Y. Chen, G. Liu, H. Zhao, H. Wang, and H. Su, “Roboexp: Action-
conditioned scene graph for behaviorally diverse long-horizon robot manipulation,” arXiv
preprint arXiv:2402.05903, 2024.

X. Lin, M. Liu, F. Xiang, X. Liu, Z. Li, Y. Yuan, Y. Du, Z. Xu, Z. Huang, G. Liu, et al.,
“Maniskill3: Gpu parallelized robotics simulation and rendering for generalizable embodied
ai,” arXiv preprint arXiv:2406.04365, 2024.

H. Cai, J. Li, M. Hu, J. Ye, Y. Yuan, C. G. Chen, L. Zhang, and S. Han, “Efficientvit-
sam: Accelerated segment anything model without performance loss,” arXiv preprint

arXiv:2401.05704, 2024. CVPR Workshop.

L. Ke, M. Ye, M. Danelljan, Y. Liu, Y.-W. Tai, C.-K. Tang, and F. Yu, “Segment anything
in high quality,” Advances in Neural Information Processing Systems, vol. 36, 2023.

S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang, H. Su, J. Zhu, et al.,
“Grounding dino: Marrying dino with grounded pre-training for open-set object detection,”
arXw preprint arXiv:2305.05499, 2023.

F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu, H. Jiang, Y. Yuan,
H. Wang, et al., “Sapien: A simulated part-based interactive environment,” arXiv preprint
arXiv:2003.08515, 2020.

A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,
A. C. Berg, W.-Y. Lo, et al., “Segment anything,” arXiv preprint arXiv:2304.02643, 2023.

Z. Cheng, Z. Liu, K. Chen, Y. Wang, and J. Wang, “Yolo-uniow: Efficient universal open-
world object detection,” arXwv preprint arXiv:2403.06890, 2024.

T. Chen, R. Y. Lama, X. Liu, Z. Li, Y. Geng, H. Yuan, W. Li, Y. Wang, Z. Wang,
J. Li, et al., “Yolo-world: Real-time open-vocabulary object detection,” arXiv preprint
arXiv:2401.17270, 2023.

J. Liu, X. Sun, P. Hu, H. T. Shen, and X. Zhu, “On efficient variants of segment anything
model: A survey,” arXiv preprint arXiv:2401.04960, 2024.

Y. Yuan, J. Dao, P. Yin, M. Liu, F. Xiang, and H. Su, “MPlib: A Universal Motion
Primitive Library for Robot Manipulation,” mar 2023.

Y. Wang, L. Fermoselle, T. Kelestemur, J. Wang, and Y. Li, “Curiousbot: Interactive mobile
exploration via actionable 3d relational object graph,” arXwv preprint arXiv:2501.13338,
2025. arXiv:2501.13338v1 [cs.RO].

Supplementary Material

Our complete source code for this project, including the perception pipeline enhancements and
the ACSG extension experiments, is available on GitHub:

e https://github.com/Bykho/DLRMRoboEXP/tree/main

Supplementary Images

'nh n:‘- |;a_'|||'|1m!;1 p}:ture frame 0.53
|

Togend
accumulated scene -+ Expected Content "

bed ‘window blanket pillow ook candle box

(a) ACSG w/ expected nodes (Frame 1)

(b) GroundingDino Bounding
Boxes (Frame 1)

ainp07e

(c) ACSG w/ expected nodes (Frame 2)

(d) GroundingDino Bounding
Boxes (Frame 2)

Figure 2: Expected Graph Nodes in the Real World

https://github.com/Bykho/DLRMRoboEXP/tree/main

	Introduction
	Background and Related Work
	RoboEXP Framework
	Perception Models
	Simulation Environments
	Motion Planning

	Methodology
	Perception Module Integration and Debugging
	Initial Setup and Challenges
	Key Debugging Steps

	Conceptual Extensions to Action-Conditioned Scene Graphs

	Experiments and Results
	Experimental Setup
	Quantitative Model Comparisons
	Segmenter: EfficientViT-SAM-L0 vs. SAM-H
	Detector: GroundingDINO vs. Alternatives (e.g., YOLO-UniOW)

	RoboEXP Integration and ACSG Extensions

	Conclusion
	Future Work

