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Abstract—We propose a modular framework to optimize
language model inference through adaptive speculative decoding.
The first stage involves an extensive empirical evaluation of five
decoding strategies - Medusa, EAGLE, fuzzy speculative decod-
ing, standard draft-and-verify, and a non-speculative baseline
- measured across multiple dimensions including throughput,
token-level latency, and consistency with non-speculative outputs.
Based on these benchmarks, the second stage introduces a
prompt-aware routing mechanism that embeds incoming queries
via a sentence embedding model and maps them to clusters
derived from prompt semantics. Each cluster is assigned the
speculative decoding method that yielded the best performance
for that region in the prompt representation space. This approach
enables dynamic selection of decoding strategies conditioned on
prompt semantics, yielding substantial runtime improvements
while preserving output quality (1.63x runtime improvement,
over the average 1.51-1.53 observed empirically).

Index Terms—Large Language Models, Speculative Decoding,
Prompt-aware Optimization, Inference Acceleration

I. INTRODUCTION

Recent advances in speculative decoding have enabled sig-
nificant acceleration of language model inference by allow-
ing parallel or approximate token generation. Methods like
Medusa [1], EAGLE [2], fuzzy speculative decoding [3], and
draft-and-verify [4] introduce various mechanisms to reduce
latency while maintaining generation fidelity. These techniques
are gaining traction in production settings where inference
costs and throughput are critical, particularly for applications
built on large language models (LLMs) deployed in large-
scale, multi-tenant environments.

Benchmarks like SpecBench [5] have systematically eval-
uated speculative decoding strategies across a broad spec-
trum of tasks—ranging from arithmetic reasoning to code
generation—highlighting the trade-offs between speed and
accuracy. However, these benchmarks primarily focus on task
type or dataset as the unit of analysis, without considering
the semantic properties of individual prompts. This overlooks
an important observation: the effectiveness of a speculative
decoding strategy often depends not just on the task, but on
the semantic structure and complexity of the prompt itself.

In high-throughput inference settings, where data centers
serve a heterogeneous stream of prompts across domains and
user intents, using a single decoding strategy may leave perfor-
mance gains on the table. Instead, we hypothesize that prompt
semantics—as captured by sentence embeddings—offer a
lightweight and effective signal for online routing to the most
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suitable speculative decoding method. Unlike task classifica-
tion, this embedding-based approach is model-agnostic and
deployable with minimal overhead.

We present a two-stage framework to validate this idea.
First, we extend prior work by benchmarking several spec-
ulative decoding strategies (Medusa [1], EAGLE [2], fuzzy
decoding [3], draft-and-verify [4], and a baseline) across
diverse prompt types, quantifying their speed and accuracy
trade-offs. Then, we develop a routing mechanism that embeds
incoming prompts, clusters them using K-Means, and assigns
each cluster the decoding method that performed best during
benchmarking. Our experiments show that this approach leads
to consistent runtime improvements compared to using any
single strategy in isolation. To the best of our knowledge, we
are the first system that incorporates prompt semantics to guide
speculative-decoding method selection.

II. RELATED WORK

Speculative decoding aims to accelerate language model
inference by generating multiple candidate tokens using a
fast draft model and then verifying them using the full target
model. The standard draft-and-verify method introduced by
Leviathan et al. [4] executes this process in a greedy, token-
by-token manner, with a fixed-length draft followed by strict
verification.

EAGLE (Efficiently Accelerated Generation via Learning to
Estimate) [2] builds on this idea by introducing a confidence-
aware verification policy. Instead of performing full verifica-
tion for every token, EAGLE learns to predict the likelihood
that a draft token will be accepted, using a lightweight
estimator network trained alongside the main model. This
allows EAGLE to selectively skip verification steps for high-
confidence tokens, significantly improving throughput while
maintaining generation fidelity. EAGLE also supports specu-
lative decoding with dynamic step sizes, making it adaptable
to prompt complexity.

In contrast, Fuzzy Speculative Decoding [3] adopts a prob-
abilistic relaxation of verification. Rather than requiring exact
match between the draft and target model token predictions,
fuzzy decoding introduces a fuzzy acceptance criterion based
on top-k similarity or KL divergence thresholds. This approach
increases the acceptance rate of speculative tokens, which
reduces fallback costs and improves performance in smoother
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high variance, which helped us hypothesize that there may be
technique-specific high-performance subspaces.

Fig. 1: Comparison of decoding methods across model size and generation throughput for the ultrachat dataset with 5k input

prompts.
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Fig. 2: Clusters and centroids for 5,000 prompt embeddings,
projected to two dimensions using PCA. The separation be-
tween clusters suggests meaningful semantic structure in the
input space, supporting the use of clustering as a basis for
decoding strategy assignment.

token distributions. However, fuzzy acceptance can also prop-
agate low-confidence tokens in high-entropy regions, leading
to generation quality degradation in some cases.

Another complementary method medusa [1] proposes train-
ing heads that predict the i*" token from the current position
and come up with multiple proposals in parallel that can be
verified in parallel - the probability of identifying a continua-
tion this way is relatively high but it comes with the additional
overhead of training the new heads from the last hidden layer.

All three methods represent significant steps beyond stan-
dard draft-and-verify: EAGLE optimizes the verification pro-
cess, while Fuzzy Speculative Decoding (FSD) modifies the
acceptance condition itself and Medusa modifies the drafting
phase. Despite these advances, they are still typically deployed
statically, without adapting to the semantic nature of the input.
Our work addresses this by dynamically routing prompts to
the most appropriate decoding strategy based on semantic
embeddings—yielding consistent speedups while respecting
the strengths and weaknesses of each method.

Benchmarking frameworks such as SpecBench [5] provide
systematic comparisons of speculative decoding techniques

across a range of tasks (e.g., reasoning, summarization, dia-
logue). However, these evaluations typically aggregate perfor-
mance over datasets or tasks, without examining how different
decoding methods behave under varied prompt semantics. Our
results show that speculative methods exhibit high perfor-
mance variance across prompt types, and that routing prompts
based on sentence embeddings enables consistent speedups
beyond what any single method achieves alone. For example,
we find that EAGLE and FSD struggle on prompts that
encourage creativity while standard draft-and-verify performs
well - this isn’t task specific but rather semantic specific.

Recent work in input-aware inference explores ways
to adapt model behavior based on input characteris-
tics—examples include early exiting, Mixture-of-Experts rout-
ing [6], and conditional decoding. Systems like DeepSpeed-
Inference [7] implement dynamic layer skipping and runtime
pruning to reduce latency. However, these approaches often
require architectural modifications or supervised training ob-
jectives. In contrast, our method uses unsupervised clustering
of lightweight sentence embeddings, enabling prompt-aware
routing without fine-tuning or changes to the base model
architecture.

III. METHODS
A. Experimental Setup

All experiments were conducted on NVIDIA L40 GPUs
with 40 GB of VRAM. Each speculative decoding method
was assigned its own dedicated GPU to simulate a multi-
strategy deployment environment and eliminate cross-method
interference. Due to memory constraints and the need to fit
models fully on-chip, we use the LLaMA 3.1B and 8B variants
as our base models. All models were hosted using PyTorch
eager mode unless otherwise noted.

We evaluated decoding strategies on a corpus of 30,000
prompts from the UltraChat dataset. Of these, 5,000 prompts
were used for clustering and speedup profiling. Prompt embed-
dings were generated using the all-MiniLM-L6-v2 sentence
encoder, yielding 384-dimensional vectors. K-means cluster-
ing (with £ = 10) took approximately 1 minute to complete
on this dataset.



At evaluation time, prompts were routed to decoding strate-
gies based on their nearest cluster centroid. Each cluster
contained approximately 3,000 prompts on average (standard
deviation: 682). Runtime metrics, including total generation
time and tokens per second, were logged to Weights and Biases
for analysis.

Speedup figures are reported relative to naive decoding
using standard PyTorch, and we visualize variance across
decoding strategies in Figure 1b. Notably, all methods exhibit
high token-level variance, motivating the use of routing to mit-
igate performance instability across heterogeneous prompts.

B. Benchmarking

We conducted extensive profiling and benchmarking of
several speculative decoding methods across different infer-
ence engines to characterize the conditions under which each
technique delivers optimal performance. Our initial focus was
on low-level execution efficiency: we used the PyTorch profiler
to analyze GPU-level behavior, including kernel launches,
memory operations, and operator fusion.

One of our early objectives was to investigate whether writ-
ing custom CUDA kernels could yield meaningful speedups
in the speculative decoding pipeline. However, our profiling
revealed that existing libraries—particularly Hugging Face
Transformers—already employ a high degree of kernel- and
graph-level optimization. As a result, there is limited headroom
for additional gains through custom kernel development that
would generalize across decoding strategies.

In the sections that follow, we detail our profiling method-
ology and findings, comparing PyTorch’s eager mode with
optimized inference frameworks such as vLLM. As shown
in Fig. 2, running inference using VLLM yields noticeably
higher and more stable GPU utilization compared to standard
PyTorch. These insights inform the architectural decisions
behind our dynamic routing framework, motivating a shift in
focus from kernel-level optimization to high-level scheduling
and prompt-aware inference selection.

Metric Value
Silhouette Score (sampled) 0.1463
Davies-Bouldin Index 4.6091
Calinski-Harabasz Index 124.7877
Inertia 2763.05
Average Cluster Size 500.0 £+ 107.09

TABLE I: Clustering metrics for 5,000 prompt embeddings
using K-Means (k = 10).

1) Torch Profiler: We used the PyTorch profiler to cap-
ture detailed GPU-level statistics, including kernel launches,
memory operations, and execution timelines. These traces
were manually analyzed to identify potential optimization
opportunities. Unsurprisingly, however, our findings confirmed
that Hugging Face Transformers already apply aggressive low-
level optimizations, leaving limited room for further kernel-
level improvements.

2) vLLM: We profiled all the decoding methods on the
VLLM inference engine [8], a high-throughput system de-
signed for efficient KV cache memory management. vLLM
introduces PagedAttention, which decouples logical and phys-
ical KV cache allocations using a virtual memory-style paging
system. This architecture eliminates internal and external
memory fragmentation, enabling significantly higher batch
sizes during inference, especially for long sequences. Profiling
was conducted using a custom script that iterates over prompt
clusters and logs runtime statistics, such as total time and
tokens-per-second, to WandB.

Method Harmonic Mean Speedup
Spec-Dec (VLLM) 1.87
Eaglel (VLLM) 1.81
Spec-Dec (Std) 1.52
FSD (Std) 1.34
Eagle2 (Std) 1.33

Naive (VLLM) 1.13

TABLE II: Harmonic mean speedups across all clusters for
each decoding method, relative to naive decoding on standard
PyTorch.

C. Clustering

To enable prompt-specific decoding strategies without in-
curring inference-time overhead, we adopt a lightweight of-
fline clustering approach. Prompts are embedded using the
all-MiniLM-L6-v2 sentence encoder, and the resulting 384-
dimensional vectors are clustered using K-Means. This unsu-
pervised procedure groups semantically similar prompts and
forms the basis for assigning an optimal speculative decoding
strategy to each cluster.

Decoding strategies are selected per cluster using speedup
data collected during benchmarking. For each prompt, we
record the speedup achieved by different decoding techniques
and compute the harmonic mean within each cluster to re-
flect overall runtime efficiency while reducing sensitivity to
outliers.

The clustering model is trained on a 5,000-sample subset
of a 30,000-prompt corpus (UltraChat) and evaluated on the
full dataset. As shown in Fig.2, the 2D PCA projection
reveals visible semantic separation qualitatively. Tablel reports
quantitative metrics, showing reasonably compact and distinct
clusters. While not optimal, the clustering is sufficient to guide
decoding decisions, and more sophisticated methods could
improve separation at the cost of additional overhead which
may hurt the overall speedup.

Although the current setup is static, the approach is extensi-
ble to an online setting, where cluster centers can be updated
or refined post-hoc based on observed speedups. This provides
a scalable foundation for deploying prompt-aware speculative
decoding in systems with evolving prompt distributions.

D. Semantic Routing

At inference time, each incoming prompt is passed through
the all-MiniLM-L6-v2 sentence encoder to generate a 384-
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Fig. 3: GPU-level performance metrics collected during speculative decoding execution. These include memory bandwidth,
utilization, power draw, and SM activity, each offering insight into the system bottlenecks under different decoding strategies.

Fig. 4: A graphical representation of the routing algorithm.
Every component is easily replaced, and can be performed in
an online fashion.

dimensional embedding. This embedding is then assigned
to the nearest cluster centroid using a pre-trained K-Means
model. The process introduces negligible latency—embedding
a single prompt takes approximately 11 ms on average, and la-
bel prediction is near-instantaneous. For high-throughput sce-
narios, both steps can be trivially parallelized across batches.

Each cluster is associated with a single decoding strategy,
pre-selected based on offline benchmarking of speedup and
accuracy trade-offs. The selected speculative decoding method
is then invoked to generate the output. As illustrated in Fig. 4,
this process enables dynamic strategy selection based on
semantic characteristics of the prompt.

To support multi-strategy inference, we implement routing
as a separate inference gateway that runs independently of
the model servers. In our prototype, each decoding method
is loaded onto a dedicated GPU to simulate a multi-tenant
environment typical of large-scale deployments. Decoding
methods are accessed via API calls, but our architecture is
extensible to a unified custom scheduling layer capable of
handling load balancing and warm-started model switching.

We also build a chatbot interface using the same routing
system to demonstrate its responsiveness in a user-facing
application. Since MiniLM can embed over 14,000 prompts
per minute, the added latency is effectively negligible even in
interactive settings.

While our current system uses static cluster-to-method map-
pings, it can be extended to a dynamic variant: for example,
by updating strategy assignments based on real-time through-
put metrics or adapting to drift in the prompt distribution.
This opens the door to an online learning framework where
the system continuously optimizes decoding policy without
retraining the underlying models.

IV. RESULTS

A. Profile Results

From Fig.3a to Fig.3d, several key observations emerge
about the underlying hardware behavior of the decoding
strategies we benchmarked. The SM clock speed plots reveal
that speculative decoding methods experience periodic dips not
seen in the baseline, which maintains a more stable execution
profile. These dips likely correspond to the intermittent gap
between draft generation and target model verification, where
the GPU may be partially idle waiting for speculative rollouts
to complete.

The power utilization metrics (Fig. 3c) further highlight
an efficiency tradeoff. While Eagle 2 delivers the highest
throughput overall, it does so at the cost of increased power
consumption. In contrast, fuzzy speculative decoding (FSD)
and naive speculative decoding achieve comparable or superior
runtime performance with significantly lower power usage,
making them more favorable for power-constrained deploy-
ments.

Memory behavior offers additional insights. As shown in
Fig. 3a, Eagle 2 exhibits the highest memory bandwidth usage,
whereas the baseline requires the least. This is expected,
as speculative methods must load and maintain both draft
and target models simultaneously, increasing memory pres-
sure. Interestingly, the baseline method also demonstrates the
poorest memory access performance—indicating a memory-
bound bottleneck that speculative decoding partially mitigates
by increasing arithmetic intensity. Eagle 2, in particular, stands
to benefit from further reductions in memory access latency,
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Cluster  FSD (Std)  Spec-Dec (Std)  Eagle2 (Std)  Naive (vLLM)  Spec-Dec (vVLLM)  Eaglel (vLLM)
0 1.51 1.53 1.84 1.13 1.73 1.74
1 1.60 1.83 1.58 1.13 2.13 2.20
2 1.66 1.75 1.71 1.14 1.86 1.77
3 1.60 1.37 1.36 1.13 1.74 1.76
4 0.52 1.24 0.52 1.13 1.83 1.80
5 1.73 1.52 1.78 1.13 191 1.83
6 1.58 1.51 1.27 1.13 1.88 1.74
7 1.80 1.51 1.73 1.13 1.93 1.86
8 1.59 1.58 1.71 1.13 1.92 1.78
9 1.63 1.54 1.66 1.13 1.82 1.75

TABLE III: Cluster-wise speedup comparison across decoding strategies and inference engines. All speedups are measured
relative to a baseline of naive decoding on standard PyTorch inference. Best values per cluster are shown in bold.

Comparison of Decoding Methods
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Fig. 6: Comparing performance of different speculative decod-
ing techniques across clusters. As we can see fuzzy speculative
decoding (fsd) and eagle 2 (eagle2) generally outperform the
naive speculative decoding technique but there’s some clusters
on which it beats them (especially cluster 4).

which could close the gap between its raw speed and power
efficiency.

GPU memory allocation patterns were consistent across all
methods: a sharp ramp-up during initialization followed by a
steady state proportional to model size, as expected given the
static nature of LLM parameter footprints.

Perhaps most surprising are the findings from Fig. 3d, which
show that speculative decoding techniques exhibit higher idle
time than the baseline. This counterintuitive result may be due
to LLaMA’s highly optimized single-model inference path.
In speculative setups, overhead from context switching or
poor pipeline parallelism could cause stalls that underutilize
the GPU. These inefficiencies point to an opportunity for
architectural enhancements: a multi-GPU or heterogeneous
deployment where the draft and target models are executed on
separate accelerators could improve SM utilization and overall
throughput—a direction we identify as promising future work.

1) Token-level statistics: Fig. 1b presents a comparative
analysis of speculative decoding methods across model size,
tokens per second, and total generation time. Although all
methods share the same base model, Eagle 2 has a slightly
higher parameter count, likely due to auxiliary components
introduced for drafting and verification. The tokens per second
plot shows Eagle 2 achieving the highest average throughput,
followed by FSD, with naive speculative decoding trailing
behind—frequently falling below the baseline in performance.

These trends are echoed in the generation total time plot,
where both Eagle 2 and FSD consistently outperform the
baseline and speculative decoding, albeit with considerable
variance.

Importantly, all methods display high step-to-step variance,
suggesting that performance fluctuates significantly depending
on the nature of the prompt. This observation, coupled with
the fact that the mean accepted tokens (MAT) metric is largely
compensated for during verification, reinforces the idea that no
single decoding method is universally optimal. These insights
directly motivate our routing strategy, which leverages prompt
embeddings to dynamically assign the most suitable decoding
method at inference time—achieving more stable performance
across heterogeneous input distributions.

2) vLLM: We found that naive (non-speculative decoding)
on VLLM provides a modest speedup of 1.13x compared to
naive decoding on a standard PyTorch engine, due to backend-
level optimizations discussed earlier.

When applying speculative decoding, we observe even
greater gains. Draft-and-verify speculative decoding on vLLM
achieves the highest average performance across all methods,
with a harmonic mean speedup of 1.87x over the baseline.
This outperforms the same speculative decoding strategy on a
standard engine (harmonic mean: 1.52x). Table II summarizes
the average performance of each method, while Table III
provides a per-cluster breakdown.

EAGLEl on vLLM is a close competitor, achieving a
harmonic mean speedup of 1.81x, but underperforms slightly
compared to draft-and-verify. Upon investigation, we attribute
this to implementation discrepancies between the vLLM adap-
tation and the original EAGLE design. Notably, the vLLM
implementation introduces additional input and output layer
normalization steps and lacks the top-k tree-based verification
kernel described in the original paper. These differences result
in lower draft token acceptance rates and introduce additional
runtime overhead, which ultimately limits performance. [9]

Despite these issues, EAGLE1’s strong performance sug-
gests that a faithful reproduction of the original implemen-
tation within the vLLM architecture could yield even higher
gains. These findings reinforce the idea that inference accelera-
tion can be significantly amplified when model-level strategies
(such as speculative decoding) are paired with optimized
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cluster along with the corresponding speedup. We also show
the theoretical bound and the average of the maxima.
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inference engines, rather than applied in isolation.

B. Clustering and Routing

We re-evaluate speculative decoding strategies based on
their cluster-specific performance, rather than relying solely
on their overall average speedup. This allows us to retain
methods like standard draft-and-verify, which performs well
on specific clusters (notably cluster 4) where other techniques
underperform—sometimes achieving only 0.5x the baseline
speed. Using this routing strategy, we achieve a 1.63x overall
speedup, outperforming any individual decoding method, the
best of which achieves 1.52x. Notably, we exclude Medusa
from this comparison due to the absence of publicly available
weights for LLaMA 3.1 8B, which we selected as our baseline
model after evaluating Gemma, LLaMA, and Mistral.

As shown in Fig. 6, speculative decoding techniques exhibit
high performance variance across prompt types. Cluster 4, in
particular, contains creative prompts such as “Write a dialogue
between two high school students preparing for prom” and
“Create a mood board for a travel campaign.” Here, aggressive
methods like EAGLE and fuzzy speculative decoding under-
perform, achieving less than 0.5x baseline speed due to fre-
quent token rejections in high-entropy generations. In contrast,
the standard draft-and-verify strategy excels, benefiting from
its conservative verification mechanism that better preserves
coherence in open-ended outputs.

Fig. 7 highlights that each decoding method achieves peak
performance in different clusters. This cluster-level special-
ization supports our core hypothesis: routing prompts to
decoding methods based on their semantic properties yields
consistent runtime improvements at negligible cost, thanks to
the lightweight sentence embedding step and precomputation
of cluster centers.

C. Choosing the number of clusters

We also demonstrate performance across different k (num-
ber of clusters) and empirically find k=10 to provide the best
speedup as seen in Table IV. We also include the cluster-
specific speedups for k=10 in Table III.

TABLE IV: Comparison of harmonic mean speedup across
different cluster sizes.

Clusters (k) Harmonic Mean Speedup

5 1.6009
10 1.6576
20 1.6271

V. CONCLUSION AND FUTURE WORK

We introduced a prompt-aware speculative decoding frame-
work that dynamically selects the most suitable decoding
strategy based on the content of incoming prompts. By
embedding prompts and clustering them in a latent space,
we enable a decoding strategy assignment that empirically
yields the best runtime performance within each cluster. Our
evaluation demonstrates that this approach achieves a through-
put improvement of 1.63x over baseline, compared to 1.52x
when using the static best-performing decoding method in our
compute bound setup. The overhead introduced by embedding
computation is nominal, and becomes increasingly negligible
at inference scale and can be further improved by using
lightweight encoder models.

These results suggest that prompt semantics can serve as an
effective signal for optimizing inference. Rather than relying
on a single decoding strategy across all inputs, our framework
enables adaptive routing with minimal integration cost, offer-
ing a new degree of flexibility in system design. As speculative
decoding techniques continue to evolve, we see this modular
routing architecture as a foundation for future systems that
incorporate adaptive, prompt-aware inference paths.
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