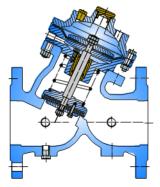
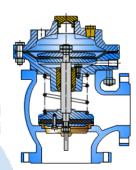


Diseñadas para proporcionar una larga vida útil, con un excelente control, consistente y confiable en su operación. Cuentan con tres diseños diferentes para cubrir todas las aplicaciones y todos los rangos de presión. Con asientos maquinados al cuerpo y Opcionalmente, con asientos montados al cuerpo a solicitud del cliente, en bronce y acero Inoxidable:



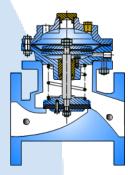
CLASES:


125 Hierro para 200 psi 150 Dúctil para 250 psi 250 Hierro para 500 psi

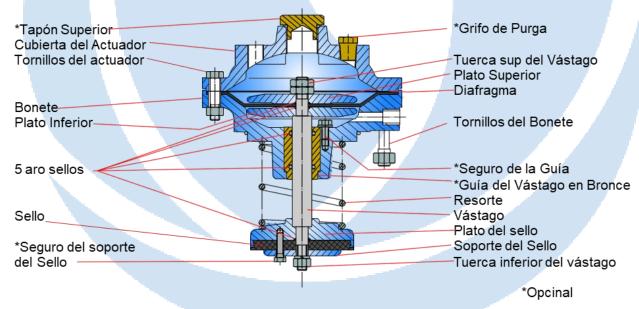
Globo Cuerpo en "Y"

Globo Angular

CLASES:


125 Hierro para 200 psi 250 Hierro para 500 psi

Globo Curbo


CLASES:

125 Hierro para 200 psi 250 Hierro para 500 psi

ACTUADOR A DIAFRAGMA DE CAMARA DOBLE

Proporciona a la válvula una operación de regulación suave y precisa, ademas, puede desmontarse del cuerpo, como una unidad, para su mantenimiento.

ALINEAMIENTO PRECISO Y SELLO HERMÉTICO

El ensamble del actuador se alinea con precisión al asiento del cuerpo, asegurando así, una apertura y cierre, con poca fricción, una regulación estable y un cierre hermético.

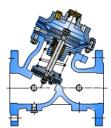


Fig.: 224- y D224-Clase 125 y 150D PSI 200 y 250

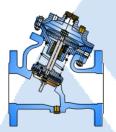


Fig.: 424-Clase 250 PSI 500

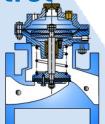


Fig.: 222-y 422-Clase 125 y 250 PSI 200 y 500

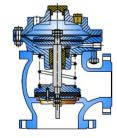
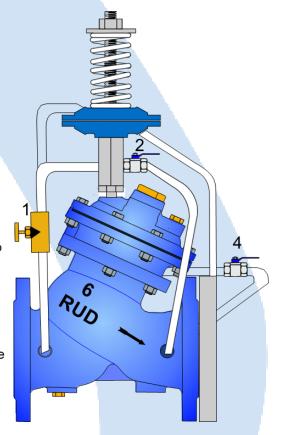


Fig.: 227-y 427-Clase 125 y 250 PSI 200 y 500

EQUIVALENCIA ENTRE CLASE, TIPO DE CUERPO (FIGURA) Y FUNCIONES DE VÁLVULA:

ROT	1000	ALANO DE	ODE PRESE	DE PRES	10 DEPRES	TON .	REDUCTOR	PEDUCTORA AVE	CONTRO	age.			
TOTAL	ADOR RETER OR RANGO A TAGOR	NCIÓN HIDAK	A TITUD DE PRUICA	ARIETTO SOLPE DEL	ANTICA E/CON SOLE	PONYARIETTI PADORA DE NOIDE	STENE EAGUA RES	DEDUCTORA A VREGULAD DORA DE PRO IDUAL APR	DORA DE PR	DORADE PRI	RETER CONSOLE	NCION HIDRA	ÎU.ICA
Figura-Función	FL	FA FA	FL/RH	AL	AP	AP/SL	AO	APR	SP	RP	RS	SL	T RH
Fig.: 224- CLASE 125 H. GRIS PARA 200 Lbs AGUA	224-FL	224-FA	224-FL/RH	224-AL	224-AP	224-AP/SL		224-APR		224-RP	224-RS	224-SL	224-RH
Fig.: D224- CLASE 150 DÚCTIL PARA 250 Lbs AGUA	D224-FL	D224-FA	D224-FL/RH	D224-AL	D224-AP	D224-AP/SL	D224-AO	D224-APR	D224-SP	D224-RP	D224-RS	D224-SL	D224-RH
Fig.: 424- CLASE 250 H. GRIS PARA 500 Lbs AGUA	424-FL	424-FA	424-FL/RH	424-AL	424-AP	424-AP/SL	424-AO	424-APR	424-SP	424-RP	424-RS	424-SL	424-RH
ELCUERPOE			UINADO EN S ADEMAS DEL										
				/	7.0 <u>2 to 11.10</u>								
Fig.; 222- G CLASE 125 D H. GRIS PARA B 200 Lbs AGUA O	222-FL	222-FA	222-FL/RH	222-AL	222-AP	222-AP/SL	222-AO	222-APR	222-SP	222-RP	222-RS	222-SL	222-RH
Fig.: 422- CLASE 250 U H. GRIS PARA R 500 Lbs AGUA B	422-FL	422-FA	422-FL/RH	422-AL	422-AP	422-AP/SL	422-AO	422-APR	422-SP	422-RP	422-RS	422-SL	422-RH
EL GLOBO CURBO	PUEDE SER	OPCIONALI	MENTE, CON/	ASIENTO DE	BRONCEAG	REGANDO (JNA "B" A LA	FIGURA, O	DE ACERO I	NOX. AGREG	SANDO UNA	"Ai" Ej.:222E	3-FL
Fig. 007													
Fig.: 227- CLASE 125 H. GRIS PARA 200 Lbs AGUA	227-FL	227-FA	227-FL/RH	227-AL	227-AP	227-AP/SL	227-AO	227-APR	227-SP	227-RP	227-RS	227-SL	227-RH
FIG.: 427- CLASE 250 H. GRIS PARA 500 Lbs AGUA	427-FL	427-FA	427-FL/RH	427-AL	427-AP	427-AP/SL	427-AO	427-APR	427-SP	427-RP	427-RS	427-SL	427-RH
ELCUEF	POANGULAR	VIENE CO	NASIENTOD	EBRONCE,	PUEDE SER	OPCIONALIN	IENTE, DE AC	ERO INOX.	AGREGANDO	UNA "Ai" A	LA FIGURA	EJ.: 227Ai-	•


VÁLVULA AUTOMÁTICA DE CONTROL DE GASTO CON PLACA DE ORI-FICIO. MARCA RUD FIGURA: 224-CG

- * Mantiene un gasto constante
- * Funcionamiento completamente automático
- * Incluye Brida con orificio limitante
- * Con opción de función como válvula check
- * La válvula aguja ajusta la velocidad de cierre o de respuesta de la válvula básica
- * Piloto de gran diafragma para mayor sensibilidad y de fácil ajuste

La válvula Automática de control de gasto evita un gasto excesivo, limitandolo a uno preseleccionad, sin que le afecte el cambio de presión en la línea.

La válvula es de operación hidráulica con diafragma a doble cámara y con piloto hidráulico.

El piloto extra sensible de gran diafragma especialmente diseñado para responder al diferencial de presión producido a través de la brida con orificio limitante.

Asegura un control preciso ya que con el mínimo cambio en el piloto de presión diferencial, producirá una inmediata acción correctiva de la válvula principal. Los ajustes en el control de Gasto se hacen girando la tuerca de regulación en el piloto.

Este modelo incluye una brida con orificio y con conexión de señal de baja presión al piloto ya instalada aguas abajo inmediata a la válvula básica.

Puede además ser equipada para la opción como válvula check y si un contra flujo ocurre, el flujo será admitido a la cámara superior de la válvula y esta cerrara para evitar el flujo de retorno.

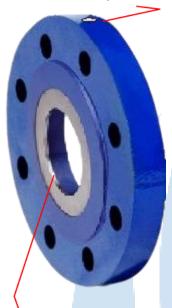
FUNCIONAMIENTO DE LA VÁLVULA


La válvula de control de gasto RUD está diseñada para controlar o limitar el gasto a un constante y predeterminado, sin importar las fluctuaciones en la presión y esta equipada con:

La Placa de orificio, instalada en forma inmediata a la brida de salida de la válvula principal. hay a elegir varios tamaños de orificio el las palacas de cada medida de válvula para asegurar un control preciso en el gasto de la valvula

El Piloto de control de gasto, un piloto de tres vías, normalmente abierta bajo condiciones normales, que detecta la presión diferencial en la placa de orificio y la equilibra contra una carga de presión mecánica de su resorte ajustable.

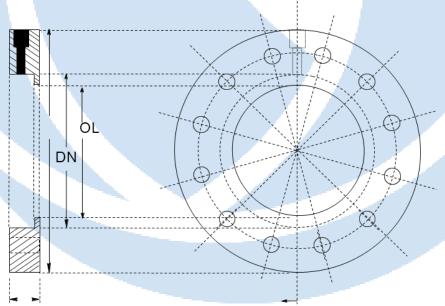
ES IMPORTANTE CONOCER LA PRESIÓN DE ENTRADA A LA VÁLVULA Y EL GASTO DESEADO.



Placa de Orificio Limitante para válvulas de control.

Conexión al piloto para el registro del cambio de presión

- *Diseña apegado a ANSI 125/150, ó 250/300 Hierro ASTM A 126 CI-B ó ASTM A 536 según la clase seleccionada
- *Materiales opcionales disponibles


Orificio limitante menor al diámetro nominal

La Placa de Orificio Limitante se usa típicamente en válvulas de control de flujo y de gasto. La placa de orificio es un componente esencial utilizado para generar una caída de presión específica y predecible en el sistema.

La placa tiene un diseño compacto y esta instalada de fabrica aguas abajo, o aguas arriba de la válvula principal dependiendo de la funcionó que se requiera, cuenta con un barreno con rosca NPT de 1/4" donde se toma la señal de presión que se comunica al piloto, si esta aquas abajo siempre sera tal señal posterior a la restricción del orificio limitante, si la placa se encuentra colocado aguas arriba sera siempre antes del orificio limitante, no se debe invertir la posición de la toma de la señal ya que afectaría el desempeño de la válvula de control.

La placa al igual que la válvula debe ser de el mismo material, ya sea hierro o hierro dúctil, según lo haya especificado el cliente. También se puede ofrecer en otros materiales a solicitud, todas las de hierro estarán recubiertas con pintura epoxica aplicada electrostáticamente y termo fusionada, especificado por AWWA C-550. La selección del tamaño de orificio de la placa se hace mediante las tablas de proporciones, que mas adelante de enuncian.

No se recomienda instalarse adyacente a esta placa una válvula mariposa ya que el orificio limitante puede interferir en la correcta operación (apertura) de este tipo de válvulas.

Las dimensiones generales de la brida preparada para el Orificio limitante se apegan a los estándares ASME/ANSI A 16.1 para las clases 125/150, ó 250/300

Determinación del tamaño ó Diámetro interior del Orificio Limitante

- 1. Para determinar el tamaño del orificio, se deberá saber el flujo nominal y el diámetro de la tubería donde será instalada la placa.
- 2. Dimensionar un orificio para:

A. Flujo constante

Selecciona la tabla de acuerdo al diámetro de la tubería y localiza la columna del flujo nominal que mejor se adecue, seleccione el tamaño del orificio.

Ejemplo: Una tubería de 6" con un flujo deseado de 700 gpm. Se deberá usar la tabla de 6", el Flujo Nominal que más se acerca es el de 670 gpm que corresponde un orificio con un diámetro interior de 3.8"

			DN 6"		1			
Tamaño		Flujo - g	рт		Flujo - LPS			
Orificio	Min.	Max.	Nominal		Min.	Max.	Nominal	
4.60	490	1960	1100		30.9	123.7	69.4	
4.40	435	1740	980		27.4	109.8	61.8	
4.20	380	1520	850		24.0	95.9	53.6	
4.00	330	1320	750		20.8	83.3	47.3	
3.80	300	1200	670		18.9	75.7	42.3	
3.60	265	1060	590		16.7	66.9	37.2	
3.40	230	920	520	L.	14.5	58.0	32.8	
3.20	200	800	450		12.6	50.5	28.4	
3.00	175	700	395		11.0	44.2	24.9	
2.80	150	600	340		9.5	37.9	21.5	
2.60	130	520	295		8.2	32.8	18.6	
2.40	110	440	245		6.9	27.8	15.5	

B. Rango de Flujo

Selecciona la tabla de acuerdo al diámetro de la tubería y localiza el rango de flujo entre los límites de máximo y mínimo para determinar el orificio de la placa. El rango de flujo podrá estar en más de un orificio, aquí se deberá de optar por el flujo con el que más frecuentemente se maneje. Localice el flujo que mejor se adecue y seleccione el tamaño de orificio.

Ejemplo:

Una tubería de 6" con un rango de flujo entre 300-1000 gpm. Se deberá usar la tabla de 6", más de un tamaño de orificio caen dentro de este rango, el flujo que con más frecuencia se tiene en una conducción de 6" es de 500 gpm. Utilizando la columna de Flujo Nominal el que más se acerca es el de 520 gpm que tiene un orificio de 3.4"

			DN 2"			
Tamaño		Flujo -	gpm		Flujo - L	.PS
Orificio	Min.	Max.	Nominal	Min.	Max.	Nominal
1.55	55	220	125	3.5	13.9	7.9
1.50	50	200	115	3.2	12.6	7.3
1.40	42	168	95	2.6	10.6	6.0
1.20	29	116	65	1.8	7.3	4.1
1.00	19	76	45	1.2	4.8	2.8
0.80	12	50	28	0.8	3.2	1.8

	DN 2 1/2"									
Tamaño		Flujo - g	pm	Flujo - LPS						
Orificio	Min.	Max.	Nominal	Min.	Max.	Nominal				
1.87	80	330	180	5.0	20.8	11.4				
1.60	55	220	120	3.5	13.9	7.6				
1.40	40	160	88	2.5	10.1	5.6				
1.20	28	115	62	1.8	7.3	3.9				
1.00	19	80	43	1.2	5.0	2.7				
0.80	12	50	28	0.8	3.2	1.8				

	DN 3"									
Tamaño		Flujo - į	gpm		Flujo - L	.PS				
Orificio	Min.	Max.	Nominal	Min.	Max.	Nominal				
2.29	120	480	270	7.6	30.3	17.0				
2.20	105	420	240	6.6	26.5	15.1				
2.00	84	336	190	5.3	21.2	12.0				
1.80	65	260	145	4.1	16.4	9.1				
1.60	50	200	115	3.2	12.6	7.3				
1.40	38	152	86	2.4	9.6	5.4				
1.20	28	112	62	1.8	7.1	3.9				
1.00	19	76	43	1.2	4.8	2.7				

			DN 4"			
Tamaño	1	Flujo - g	gpm		Flujo - I	_PS
Orificio	Min.	Max.	Nominal	Min.	Max.	Nominal
3.00	205	820	450	12.9	51.7	28.4
2.80	170	680	390	10.7	42.9	24.6
2.60	140	560	310	8.8	35.3	19.6
2.40	115	460	260	7.3	29.0	16.4
2.20	96	384	215	6.1	24.2	13.6
2.00	78	312	175	4.9	19.7	11.0
1.80	63	252	140	4.0	15.9	8.8
1.60	49	196	110	3.1	12.4	6.9
1.40	38	152	84	2.4	9.6	5.3
1.20	28	112	62	1.8	7.1	3.9

			DN 6"					
Tamaño	F	-lujo - g	gpm		Flujo - LPS			
Orificio	Min.	Max.	No	minal	Min.	Max.	Nominal	
4.60	490	1960	1:	100	30.9	123.7	69.4	
4.40	435	1740	9	80	27.4	109.8	61.8	
4.20	380	1520	8	50	24.0	95.9	53.6	
4.00	330	1320	7	50	20.8	83.3	47.3	
3.80	300	1200	6	70	18.9	75.7	42.3	
3.60	265	1060	5	90	16.7	66.9	37.2	
3.40	230	920	5	20	14.5	58.0	32.8	
3.20	200	800	4	50	12.6	50.5	28.4	
3.00	175	700	3	95	11.0	44.2	24.9	
2.80	150	600	3	40	9.5	37.9	21.5	
2.60	130	520	2	95	8.2	32.8	18.6	
2.40	110	440	2	45	6.9	27.8	15.5	

			DN 8"			
Tamaño		Flujo - g	pm		Flujo - Ll	PS
Orificio	Min.	Max.	Nominal	Min.	Max.	Nominal
6.00	830	3320	1850	52.4	209.5	116.7
5.80	760	3040	1700	47.9	191.8	107.3
5.60	680	2720	1550	42.9	171.6	97.8
5.40	620	2480	1400	39.1	156.5	88.3
5.20	570	2280	1275	36.0	143.8	80.4
5.00	515	2060	1150	32.5	130.0	72.6
4.80	470	1800	1050	29.7	113.6	66.2
4.60	425	1700	950	26.8	107.3	59.9
4.40	385	1540	860	24.3	97.2	54.3
4.20	345	1380	780	21.8	87.1	49.2
4.00	310	1240	700	19.6	78.2	44.2

	DN 10"										
Tamaño		Flujo - g	gpm		Flujo - L	PS					
Orificio	Min.	Max.	Nominal	Min.	Max.	Nominal					
7.50	1300	5200	2900	82.0	328.1	183.0					
7.00	1075	4300	2400	67.8	271.3	151.4					
6.50	880	3520	1950	55.5	222.1	123.0					
6.00	730	2920	1650	46.1	184.2	104.1					
5.50	600	2400	1350	37.9	151.4	85.2					
5.00	490	1960	1100	30.9	123.7	69.4					
4.50	390	1560	870	24.6	98.4	54.9					
4.00	310	1240	690	19.6	78.2	43.5					
3.50	235	940	525	14.8	59.3	33.1					
3.00	175	700	385	11.0	44.2	24.3					

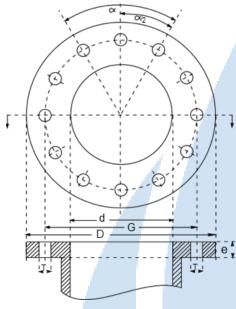
DN 12"									
Tamaño	I	-lujo - g	gpm		Flujo - l	_PS			
Orificio	Min.	Max.	Nominal	Min.	Max.	Nominal			
9.00	1850	7400	4200	116.7	466.9	265.0			
8.50	1575	6300	3500	99.4	397.5	220.8			
8.00	1350	5400	3000	85.2	340.7	189.3			
7.50	1150	4600	2600	72.6	290.2	164.0			
7.00	980	3920	2200	61.8	247.3	138.8			
6.50	840	3360	1875	53.0	212.0	118.3			
6.00	700	2800	1575	44.2	176.7	99.4			
5.50	580	2320	1300	36.6	146.4	82.0			
5.00	480	1920	1075	30.3	121.1	67.8			
4.50	385	1540	870	24.3	97.2	54.9			

	DN 14"									
Tamaño		Flujo -	gpm		Flujo - I	LPS				
Orificio	Min.	Max.	Nominal	Min.	Max.	Non	ninal			
10.00	2350	9400	5200	148.3	593.0	328	3.1			
9.50	2025	8100	4500	127.8	511.0	283	3.9			
9.00	1750	7000	3900	110.4	441.6	246	5.1			
8.50	1500	6000	3400	94.6	378.5	214	1.5			
8.00	1300	5200	2900	82.0	328.1	183	3.0			
7.50	1150	4600	2500	72.6	290.2	157	7.7			
7.00	960	3840	2150	60.6	242.3	135	5.6			
6.50	820	3280	1850	51.7	206.9	116	5.7			
6.00	700	2800	1550	44.2	176.7	97	.8			
5.50	585	2340	1300	36.9	147.6	82	.0			
5.00	480	1920	1075	30.3	121.1	67	.8			
4.50	385	1540	860	24.3	97.2	54	.3			

DN 16"									
Tamaño		Flujo - g	gpm	Flujo - I	Flujo - LPS				
Orificio	Min.	Max.	Nominal	Min.	Max.	Nominal			
11.50	3100	12400	7000	195.6	782.3	441.6			
11.00	2700	10800	6100	170.3	681.4	384.9			
10.50	2400	9600	5400	151.4	605.7	340.7			
10.00	2100	8400	4700	132.5	530.0	296.5			
9.50	1850	7400	4200	116.7	466.9	265.0			
9.00	1650	6600	3650	104.1	416.4	230.3			
8.50	1450	5800	3250	91.5	365.9	205.0			
8.00	1250	5000	2850	78.9	315.5	179.8			
7.50	1100	4400	2450	69.4	277.6	154.6			
7.00	950	3800	2150	59.9	239.7	135.6			
6.50	810	3240	1800	51.1	204.4	113.6			
6.00	700	2800	1550	44.2	176.7	97.8			

DN 18"													
Tamaño		Flujo - g	pm	Flujo - LPS									
Orificio	Min.	Max.	Nominal	Min.	Max.	Nominal							
13.00	5200	15500	9000	328.1	977.9	567.8							
12.00	4100	12300	7100	258.7	776.0	447.9							
11.50	3700	11000	6400	233.4	694.0	403.8							
11.00	3300	9850	5700	208.2	621.4	359.6							
10.50	2950	8800	5100	186.1	555.2	321.8							
10.00	2600	7850	4550	164.0	495.3	287.1							
9.50	2350	6200	3600	148.3	391.2	227.1							
9.00	2100	6200	3600	132.5	391.2	227.1							
8.50	1850	5500	3200	167.2	347.0	201.9							
8.00	1650	4850	2800	104.1	306.0	176.7							
7.50	1400	4250	2450	88.3	268.1	154.6							
7.00	1250	3650	2100	78.9	230.3	132.5							

DN 20"													
Tamaño		Flujo - Į	gpm	Flujo - LPS									
Orificio	Min.	Max.	Nominal	Min.	Max.	Nominal							
14.00	6000	18000	10500	378.5	1135.6	662.4							
13.50	5300	16000	9500	334.4	1009.4	599.4							
13.00	4800	14500	8500	302.8	914.8	536.3							
12.50	4300	12900	7500	271.3	813.9	473.2							
12.00	3900	11700	6700	246.1	738.2	422.7							
11.50	3400	10500	6100	214.5	662.4	384.9							
11.00	3200	9500	5500	201.9	599.4	347.0							
10.50	2900	8600	5000	183.0	542.6	315.5							
10.00	2600	7700	4500	164.0	485.8	283.9							
9.50	2300	6100	3600	145.1	384.9	227.1							
9.00	2000	6100	3600	126.2	384.9	227.1							
8.50	18000	5400	3200	1135.6	340.7	201.9							



ASME/ANSI B16.1 CLASE 125 **HIERRO GRIS**

Y EN HIERRO DÚCTIL PARA PRESIÓN DE TRABAJO 250 Lb ANSI/AWWA C110/A21.10

plg	plg	plg	plg	a	a/2	plg	#	plg	plg
2	6	5/8	4 ¾	90°	45°	3/4	4	5/8	2 ½
2 1/2	7	1 ¹ / ₁₆	51/2	90.	45°	3/4	4	5/8	2 ½
3	7 ½	3/4	6	90.	45°	3/4	4	5/8	2 ½
4	9	$1^{5}/_{16}$	7 ½	45°	22°30′	3/4	8	5/8	3
5	10	$1^{5}/_{16}$	8 ½	45°	22°30′	7/8	8	3/4	3
6	11	1	9 ½	45°	22°30′	7/8	8	3/4	3 ½
8	13 ½	1 ¹ / ₈	11 ¾	45°	22°30′	7/8	8	3/4	3 ½
10	16	$1^{3}/_{16}$	14 ¼	30°	15°	1	12	⁷ / ₈	3 ½
12	19	1 1 14	17	30°	15°	1	12	⁷ / ₈	4
14	21	$1^{3}/_{8}$	18 ¾	30°	15°	1 ¹ / ₈	12	1	4 ½
16	23 ½	$1^{7}/_{16}$	21 1/4	22°30′	11°15′	1 ¹ / ₈	16	1	4 ½
18	25	19/16	22 ¾	22°30′	11°15′	1 ¹ / ₄	16	1 ¹ / ₈	4 ½
20	27 ½	111/16	25	18°	9°	1 ¹ / ₄	20	1 ¹ / ₈	5
24	32	1 ⁷ / ₈	29 ½	18°	9°	$1^{3}/_{8}$	20	1 ¼	5 ½
30	38 ¾	2 ¹ / ₈	36	12°51′26′′	6°25′43″	$1^{3}/_{8}$	28	1 ¼	6 ½
36	46	$2^{3}/_{8}$	42 ¾	11°15′	5°37′30″	15/8	32	1 ½	7

Ángulo Radial de

Centros de Taladros Diám.

Taladros

No.

Т

Diámetro

de los

Tornillos

Longitud

de los

Tornillos

Espesor

Bridas

Diámetro Mínimo de

de Bridas

D

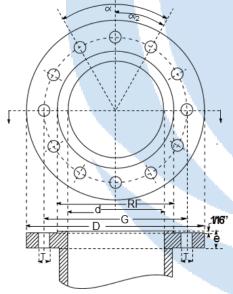
Diámetro

Nominal

d

Diámetro

Línea


Gramil

G

¥	Diámetro Nominal d	Díametro de Bridas D	Espesor Mínimo de Bridas e	Diámetro Línea Gramil G	Diámetro de Cara Realzada RF	Ángulo Radial de Centros de Taladros		Taladros Diám. T No.		Diámetro de los Tomillos	Longitud de los Tomillos
	plg	plg	plg	plg	plg	a	a/2	plg	#	plg	plg
	2	6	5/8	4 ¾	3 ⁵ / ₈	90°	45°	3/4	4	⁵ / ₈	2 ½
	2 1/2	7	1 ¹ / ₁₆	5 ¹ / ₂	4 ¹ / ₈	90°	45°	3/4	4	⁵ / ₈	2 ½
	3	7 ½	3/4	6	5	90°	45°	3/4	4	5/8	2 ½
	4	9	15/16	7 ½	6 ³ / ₁₆	45°	22°30′	3/4	8	⁵ / ₈	3
	5	10	15/16	8 ½	7 ⁵ / ₁₆	45°	22°30′	⁷ / ₈	8	3/4	3
	6	11	1	9 ½	8 ¹ / ₂	45°	22°30′	7/8	8	3/4	3 ½
	8	13 ½	11/8	11 ¾	10 ⁵ / ₈	45°	22°30′	7/8	8	3/4	3 ½
	10	16	13/16	14 1/4	$12^{3}/_{4}$	30°	15°	1	12	⁷ / ₈	3 ½
	12	19	1 ^{1/4}	17	15	30°	15°	1	12	⁷ / ₈	4

Diámetro	Diámetro	Espesor Mínimo de	Diámetro	Diámetro de Cara	Ángulo Radial de Centros de		Taladros Diám.		Diámetro de los	Longitud de los
Nominal	de Bridas	Bridas	Línea Gramil	Realzada				NI-	Tomillos	Tomillos
d	D	е	G	RF	Taladros		Т	No.	TOTTINOS	
plg	plg	plg	plg	plg	a	a/2	plg	#	plg	plg
2	6 1/2	7/8	5	$4^3/_{16}$	45°	22°30′	3/4	8	5 ₈	2 ½
2 1/2	7 ½	1	$5^{7}/_{8}$	4 ¹⁵ / ₁₆	45°	22°30′	7/8	8	3/4	3 ½
3	81/4	11/8	6 ⁵ / ₈	5 ¹¹ / ₁₆	45°	22°30′	7/8	8	3/4	3 ½
4	10	1 ^{1/4}	$7^{7}/_{8}$	$6^{15}/_{16}$	45°	22°30′	7/8	8	3/4	4
5	11	1 ³ / ₈	9¼	8 ⁵ / ₁₆	45°	22°30′	7/8	8	3/4	4
6	12 ½	17/16	10 ⁵ / ₈	9 ¹¹ / ₁₆	30°	15°	7/8	12	3/4	4
8	15	15/8	13	11 ¹⁵ / ₁₆	30°	15°	1	12	7 ₈	4 ½
10	17 ½	17/8	15 1/4	14 ¹ / ₁₆	22°30′	11°15′	1 ¹ / ₈	16	1	5¼
12	20 ½	2	17 ¾	16 ⁷ / ₁₆	22°30′	11°15′	1 ^{1/4}	16	11/8	5 ½

ASME/ANSI B 16.5 CLASE 150 ACERO WCB

ASME/ANSI B16.1 CLASE 250 HIERRO GRIS Y

ASME/ANSI B 16.5 CLASE 300 ACEROWCB

Guía Básica para la instalación y puesta en operación.

Cada figura-función de las VAC marca "RUD" son empacadas propiamente para su transporte y llevan un instructivo de instalación específico de la función para la que fue configurada, localicelo y lealo detenidamente, a falta del mismo solicitelo por fax o lo puede descargar directamente de nuestro Sitio Web en:

www.belg-w.com

Para cualquier duda comuniquese con su distribuidor o con el fabricante. A continuación le presentamos los lineamientos básicos de instalación de todas las VAC "RUD"

Inspección de la VAC y la línea en donde será instalada.

Antes de proceder a su instalación se deberá revisar el estado general de la VAC, para verificar que ésta no tenga daños producidos durante su transportación como serian: tubos aplastados, conexiones golpeadas o rotas, partes sueltas o faltantes etc. También debemos localizar la flecha en el cuerpo de la VAC, que nos indica la dirección del flujo y solamente en esta dirección se deberá instalar. Por lo que respecta a la línea de conducción, verifique que esté libre de elementos extraños, tales como piedras, maderas, plásticos etc., que puedan obstruir la operación normal de la VAC.

Instalación de la VAC.

Para una correcta instalación de la VAC, es recomendable colocar una válvula de compuerta (15), a la entrada de la misma, con la que se pueda seccionar la línea y así poder realizar los trabajos de mantenimiento requeridos por la VAC.para la mayoria de las VAC, es también recomendable instalar otra valvula de compuerta (15) a la salida de la VAC y así completamente aislarla para su mantenimiento. Así mismo es recomendable instalar válvula eliminadora de aire (16), manómetro y su conexión (17), así como su respectiva válvula de seccionamiento (18) aguas arriba de la VAC, y aguas abajo cuando sea necesario.

Comprobación de estado de válvulas auxiliares y piloto(s)

Terminada la instalación de la VAC y demás elementos, procederemos a revisar que sus válvulas auxiliares estén abiertas:

- 1.- La válvula de aguja (1), ábrala por completo, girando su maneral aprox. 9 vueltas en contra de las manecillas del reloj, desde la posición de totalmente cerrada. Con ella posteriormente podremos ajustar la velocidad de cierre de la VAC.
- 2.- La válvula de esfera (2) ábrala alineando su maneral paralelamente a su conducción. Mas tarde, ésta nos permitirá operar manualmente la VAC, abriéndola o cerrándola y la VAC hará lo mismo, cuando el (los) piloto(s) este(n) abierto(s).
- 3.- El (los) piloto(s) verifique que tipo de pilotos fueron requeridos y ábralo(s) por completo.
- si se trata de un <u>piloto normalmente cerrado (alivio de presión)</u>, éste se abre , aflojando la presión del tornillo sobre el resorte interno del piloto, si se trata de un <u>piloto normalmente abierto (reductor de presión)</u>, éste se abre , incrementando la presión del tornillo sobre el resorte interno del piloto, si se trata de un piloto flotador es permitiendo que la esfera flotadora cuelque libremente hacia abajo.
- 4.- La válvula de esfera, (4) ábrala alineando su maneral paralelamente a su conducción, esta deberá permanecer siempre abierta y solo se cerrará en la eventualidad de que se realicen con línea viva, trabajos de mantenimiento del actuador de la VAC o de su(s) piloto(s).

Llenado de la VAC y la línea de conducción

Realizados los pasos anteriores, llene la línea principal, permita se estabilice su presión dinámica y abra la válvula de compuerta (15), permitiendo que todos los conductos de la VAC se llenen de agua y sea expulsando todo el aire en ellos contenido. Esto, dependiendo del tamaño de la VAC y la presión de la línea principal, le llevara unos cuanto minutos. Si coloco una segunda válvula (15) aguas abajo cierrela y compruebe la hermeticidad de todos estos nuevos componentes del sistema. Realice la prueba de funcionamiento del actuador según instructivo de cada función especifica de las VAC "RUD".

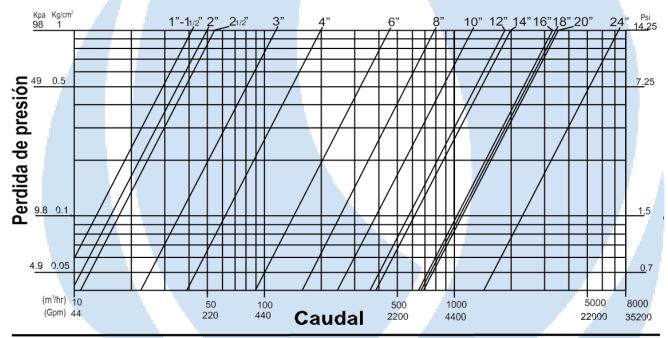
DATOS DE FLUJO DE VÁLVULA TIPO "Y"

Válvulas de Diámetro Nominal del Mismo Tamaño que la Línea

TAMAÑO DE LA VÁLVULA	1- 1 ½	2	2 ½	3	4	6	8	10	12	14	16	18	20	24
FACTOR Cv en Gpm	49	58	64	133	230	530	940	1440	2130	2300	3810	3950	4100	4930

El factor Cv de una Válvula, es el Conficiente de flujo en Gpm que causa una caída de presión de un Psi El factor Kv de una Válvula, es el Conficiente de flujo en m∛h que causa una caída de presión de 100 Kpa Suponiendo la Gravedad espacifica del liquido (Agua) = 1 y la temperatura ambiente de 15 °C

Q = Expresado como Grado de flujo en Gpm para Cv, ó Q = Grado de flujo en mi /h para Kv

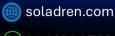

El Equivalente entre los factores se puede expresar como: Kv = Cv/1.155 ó Cv = 1.155Kv

El factor Cv (Kv) puede ser usado en las siguientes ecuaciones, para determinar el Flujo (Q) y la caída de Presión (ΔP)

 $Q=Cv \sqrt{\Delta P}$ $\Delta P=(Q/Cv)^2$

Estos factores están establecidos en base a válvula completamente abiertas.

Gráfico de Caída de Presión para Válvulas "Y" Totalmente Abiertas



OTRAS ESPECIFICACIONES (/EXTRA), Lo estándar no es necesario señalarlo.

AL SOLICITAR LA VÁLVULA TENGA EN CUENTA LAS SIGUIENTES CONSIDERACIONES: SOLICITE: FIGURA-FUNCIÓN/ADICIONAL/EXTRA, EJEMPLO: D222Ai-AP/SL-NA-220/250

Esta descripción corresponde a una (Figura) D222Ai válvula en hierro dúctil clase 250, con asiento de acero inoxidable, montada al cuerpo (-Función) -AP aliviadora de presión con piloto hidráulico (/Adicional) /SL equipada con válvula solenoide para apertura con señal eléctrica, -NA normalmente abierto y con Bobina para - 220 Volts (/Extra) /250 con resorte en el piloto para un rango de 100-250 lbs.

Ante cualquier duda consulte a su distribuidor o directamente al fabricante.

^{*}Conexiones de tubería: (estándar) Polietileno con conexiones Poly-Tite, todo marca Parker (MR), (/Cu)cobre y conexiones flare.

^{*}Especifique también el tipo de solenoide: (-NA) normalmente abierto, energizar para cerrar la válvula principal, ó (-NC) normalmente cerrado, energizar para abrir la válvula principal. y Voltaje del solenoide: (estándar) 110 Volts, (-220) 220 Volts.

GRÁFICO DE ZONA DE CAVITACIÓN

La Presión en una línea de conducción, puede variar significativamente a lo largo del tiempo de operación de dicha linea, dada su relación directa con el gasto, al irse reduciendo el gasto la presión tendera a incrementarse, por ello: Una vez seleccionado el tamaño de la válvula y se conozca el rango y el ciclo de la presión de la línea a lo largo del tiempo de operación de esta, establezca la presión de salida (que se desea mantener aguas abajo de la válvula), que será fijada al piloto y localicelas en este gráfico. Si algún punto de intersección cae dentro de la zona superior a la diagonal, puede ocurrir que la válvula presente cavitación. Se debe evitar la operación continua de válvulas en zona de cavitación.

Para resolver una situación de este tipo, se deberá instalar en serie más de una válvula sobre la misma línea, o como pasos laterales de dicha línea y de ésta manera, realizar la reducción de la presión en forma escalonada.

GARANTÍA


LAS VÁLVULAS "RUD"; Están fabricadas bajo el mas estricto control de calidad y son sometidas individualmente a las pruebas mas rigurosas, una vez terminado su ensamble. En base a ésto , GARANTIZAMOS todos nuestros productos contra cualquier defecto de fabricación, calidad de materiales o mano de obra.

Condiciones y Termino de la garantía para válvulas automáticas de control.:

Por cinco años a partir de la fecha de embarque de nuestra planta. Si alguna válvula automática llegara a presentar defectos de fabricación y/o materiales, nos comprometemos a repararla o reemplazarla. Sin embargo esta garantía no será válida cuando el producto haya sido dañado por: negligencia, abuso, accidentes o corrosión, ni cuando haya sido instalado y operado fuera de las condiciones de servicio recomendadas por el FABRICANTE. Tampoco deberá ser desensamblado y/o reparado por personal no autorizado por el FABRICANTE.

En ningún caso el FABRICANTE será responsable de pérdidas o disminución de utilidades por paros de plantas, incremento en costos de operación y cualquier daño consecuente del uso del producto.

