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Abstract 
 
Recent studies have linked neural coherence deficits with impairments associated with 
Autism Spectrum Disorders (ASD).  The current study tested the hypothesis that lowering 
neural hyperconnectivity would lead to decreases in autistic symptoms.  Subjects underwent 
connectivity-guided EEG biofeedback, which has been previously found to enhance 
neuropsychological functioning and to lessen autistic symptoms.  Significant reductions in 
neural coherence across frontotemporal regions and source localized power changes were 
evident in frontal, temporal, and limbic regions following this treatment.  Concurrently, there 
were significant improvements on objective neuropsychological tests and parents reported 
positive gains (decreases in symptoms) following the treatment.  These findings further 
validate EEG biofeedback as a therapeutic modality for autistic children and suggest that 
changes in coherence anomalies may be related to the mechanism of action.  
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Introduction 
 
The Centers for Disease Control and Prevention now indicates that the current prevalence of 
Autism Spectrum Disorder (ASD) is 1 in 68 (CDC, 2014).  Furthermore, the U.S. Department 
of Education reported that from the 1992-1993 to 2001-2002 school years the rate of Autism 
increased 528% and seems to continue to be on the rise (Safran, 2008; Yeargin-Allsopp, 
Rice, Karapurkar, Doernbert, Boyle, & Murphy 2003).  Ganz (2006) found that in the United 
States approximately $3.2 million is spent to care for a single individual with Autism over the 
course of his or her lifetime, which in turn equates to a total cost of $35 billion annually.
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Beyond the monetary costs, countless other collateral effects are felt by family members who 
care for those with ASD and by the individuals themselves.  
 
Autism is a neurodevelopmental disorder characterized by a triad of impairment in social 
interaction, communication, and restricted patterns of behavior or interests (APA, 1994).  The 
Diagnostic and Statistical Manual-Fourth Edition (DSM-IV) criteria states that autism cannot 
be diagnosed before three years of age; however, a recent survey has found that parents 
have reported autistic symptoms as early as 18 months and have even sought medical 
treatment before the age of two (APA, 1994; Filipek et al., 1999).  The heterogeneous range 
of pervasive developmental disorders includes the following classifications: autistic disorder, 
Rett’s syndrome, childhood disintegrative disorder, Asperger’s disorder, and pervasive 
developmental disorder not otherwise specified (PDD-NOS; DSM-IV, APA, 1994).  These 
classifications are categorized by a broad range of common symptoms coupled with levels of 
severity.  Speech may be inflexible and unresponsive to the context as well as limited to 
echolalia or narrow topics of expertise in which discourse can proceed without 
conversational interplay (Belmonte, Beckel-Mitchener, Boulanger, Carper, & Webb 2004).  
Moreover, social behaviors are often characterized by lack of interaction; play lacks 
cooperation in which the child usually confines himself or herself to playing on the periphery 
of the group.  Additionally, the imagination of a child with ASD is usually deficient and the 
individual narrowly focuses on repetitive behaviors (Belmonte et al., 2004). 
  
Recent research points to a theory of faulty neural connectivity as a mechanism underlying 
the symptoms of ASD (Baron-Cohen, 2004; Belmonte et al., 2004).  ―Connectivity‖ can be 
defined as any number of means of measuring the communication between two or more 
neural locations within the brain (Coben, 2007).  Rippon, Brock, Brown, and Boucher (2007) 
suggested a model of Autism associated with information integration deficits resulting from 
reduced connectivity between specialized local neural networks and over-connectivity within 
individual neural assemblies, most notably within the frontal lobes.  Over-connectivity, or 
hyperconnectivity, refers to excessive communication between neural locations in the brain.  
Over-connectivity of neural assemblies within and between the frontal lobes have been found 
to lead to disruptions in the integration of information from emotional, language, sensory, and 
automatic systems (Courchesne & Pierce, 2005).  Mizuno, Villalobos, Davies, Dahl, and 
Muller (2006) found though the use of fMRI data that individuals with ASD have areas of 
excessive connectivity within numerous neural locations, most notably the right postcentral 
and middle frontal regions as well as the left insula.  Likewise, Buxhoeveden, Semendeferi, 
Schenker, and Courchesne (2004) reported evidence that Autism is a disorder of excessive 
connectivity within the frontal lobes, which in turn impacts the neural connectivity between 
the frontal cortex and other brain systems.  Diffusion Tensor Imaging (DTI) studies of 
subjects with ASD have revealed evidence of the following neural abnormalities: increases in 
cerebral white matter volumes within the frontal cortex, abnormally small minicolumns in the 
frontal area, and abnormally long dendritic spines present in high densities.  Variable 
resolution electromagnetic tomography (VARETA) images of patients with ASD also showed 
increased activity in the cerebellum, thalamus, hippocampus, parahippocampal, cuneus, 
cingulate, and lingual gyrus as well as in temporal, precentral, postcentral, parietal, and 
occipital cortical regions (Coben, Chabot, & Hirschberg 2013).  All of the aforementioned 
evidence is indicative of frontal dysfunction consistent with hyperconnectivity for subjects 
with ASD (Barnea-Goraly et al., 2004; Herbert et al., 2004; Buxhoeveden et al., 2004; 
Semendeferi et al., 2004; Belmonte et al., 2004).  It has recently been hypothesized that 
reducing neural hyperconnectivity within the autistic brain can lead to improvements in 
realms such as, but not limited to, attention, self-regulatory functions, social behavior, and 
communication skills (Coben & Myers, 2008).   
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Electroencephalographic (EEG) analysis provides real time neural data of electrical activity 
across multiple regions with excellent temporal resolution. Cantor, Thatcher, Hrybyk, and 
Kaye (1986) conducted computerized EEG analyses of 11 children with ASD between the 
ages of 4 and 12 years, in contrast to three other groups of children: (a) 88 normal children, 
(b) a matched group of 18 mentally handicapped children, and (c) a group of 13 mental age-
matched normal toddlers.  The findings indicated that children with ASD had significantly 
greater coherence between hemispheres in the beta band than mentally handicapped, 
normal children, or normal toddlers.  Children in the autistic group had higher coherence in 
the alpha band than did those in the normal group, and had less interhemispheric and 
intrahemispheric asymmetry than participants in the normal or mentally handicapped group.  
―Coherence‖ is one means of measuring connectivity based on EEG data and represents a 
specific mathematical calculation of the cross-correlation between two waveforms within a 
frequency band.  These findings would appear to suggest that the EEG is a useful and valid 
means of measuring coherence anomalies in this population.  Continuing, Murias, Webb, 
Greenson, and Dawson (2007) used EEG analysis to assess connectivity in 18 adults with 
ASD in comparison to 18 healthy adult controls in eyes-closed resting states.  Their results 
showed that there was locally elevated coherence in the ASD group, particularly within the 
left hemisphere in a low frequency (theta) band.  In the lower alpha range (8–10 Hz), far-
reaching reduced coherence was evident for the ASD group within frontal regions, and 
between frontal regions and all other scalp locations (Murias et al., 2007).  These results 
indicate a pattern of over-connectivity and under-connectivity in the brain of subjects with 
ASD.  Coben, Clarke, Hudspeth, and Barry (2008) compared 20 children with and without 
ASD, matched for gender, age, and IQ.  Findings were suggestive of dysfunctional 
integration of frontal and posterior sites with patterns of extensive coherence anomalies.  
Coben et al. (2013) studied 91 children with ASD and compared them to 91 normal controls.  
The findings showed differences for EEG power, asymmetry, and coherence.  There was a 
combination of both hyper- and hypocoherence with high coherence over frontal regions and 
with low coherences across temporal and posterior brain regions. 
 
Preliminary research suggests that EEG biofeedback may be an effective form of therapy for 
reducing autistic symptoms in children (Coben & Padolsky, 2007; Jarusiewicz, 2002).  EEG 
biofeedback enables the clinician to train the brain to work in a new, more efficient way 
through the use of underlying operant conditioning paradigms.  This treatment involves 
providing a subject with visual and auditory ―feedback‖ for particular neural behaviors 
(Monastra, Monastra, & George, 2002).  Through conditioning, the subject is taught to inhibit 
EEG frequencies that are excessively generated and to augment frequencies that are 
deficient.  With continuous training and coaching, subjects are taught to maintain brainwave 
patterns concurrent with healthy neural functioning.  Recently, Walker, Kozlowski, and 
Lawson (2007) presented evidence demonstrating the ability of neurofeedback training to 
successfully train neural functioning to more normal states, while simultaneously showing 
reductions in autistic symptoms.  For more in-depth information regarding EEG biofeedback 
the interested reader is referred to Hammond (2007).  The efficacy of EEG biofeedback for 
autistic children was initially assessed by Jarusiewicz (2002), in which she reported a 26% 
decrease in autistic symptoms in the experimental group and a 3% reduction in a wait-list 
control group.  Further, this therapy is a therapeutic intervention that can be achieved over 
the course of a few months, has no demonstrable side effects, and is useful for a wide array 
of disorders including ADHD, epilepsy, dyslexia, and other areas of functioning (Leins et al., 
2007; Hammond, 2007; Lubar, Swartwood, Swartwood, & O’Donnell, 2005; Egner & 
Sterman, 2006; Evans & Park, 1996).  
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In our previous study (Coben & Padolsky, 2007), we presented evidence supporting the 
efficacy of connectivity-guided EEG biofeedback for ASD.  Parental judgment of clinical 
improvement was positive in 89% (33 of 37 subjects) of the experimental group.  This was 
significantly different from the control group in which 83% of parents reported no change.  
Importantly, no subject in either group reported a worsening in autistic symptoms.  Parental 
ratings on the Autism Treatment Evaluation Checklist (ATEC; Rimland & Edelson, 2000) 
showed a 40% decrease in core autistic symptoms as a result of this intervention in the 
experimental group.  Decreases in autistic symptoms were also found on the Gilliam 
Asperger’s Disorder Scale (GADS; Gilliam, 2001), Gilliam Autism Rating Scale (GARS; 
Gilliam, 1995), Personality Inventory for Children, Second Edition (PIC-2; Lachar, & Gruber, 
2001), and Behavior Rating Inventory of Executive Function (BRIEF; Gioia, Isquith, Guy & 
Kenworthy, 2000).  In comparison, no such changes were evident in the wait-list control 
group.  Finally, pre-post neuropsychological evaluations of attention, visual perceptual, 
language, and executive functioning revealed increases in the experimental group’s 
neuropsychological performance, as much as a one standard deviation improvement per 
domain, by the completion of the study. 
  
In the present study we expand on these previous findings by presenting data regarding 
changes in brain functioning.  Source localized changes in EEG power and coherence will be 
explored.  We hypothesize that connectivity-guided EEG biofeedback is an intervention 
capable of changing the autistic brain in a therapeutic manner.  We further hypothesize that 
reducing neural hypercoherence underlies the above reviewed clinical efficacy of this 
approach.  
 

Method 
 
Participants 
 
Thirty-seven children diagnosed with ASD were utilized for this study as the experimental 
group, while 12 children also diagnosed with ASD served as the wait-list control group.  The 
groups did not differ significantly in terms of age, gender, race, handedness, other 
treatments, or severity of ASD as indicated by the ATEC.  The experimental group received 
at least 20 sessions of connectivity-guided EEG biofeedback training, while the wait-list 
control group received no experimental treatment.  Finally, the necessary informed consent 
was obtained and all procedures were fully explained to parents in order for their children to 
participate in the study. 
  
The experimental group included 31 males and 6 females with ages ranging from 3.92 to 
14.66 years with a mean age of 8.92 years.  This group contained 36 Caucasians and one 
Asian American.  Among the experimental group 56.8% (n = 21) were diagnosed with PDD-
NOS, 18.9% (n = 7) with Autism, 13.5% (n = 5) with Asperger’s syndrome, and 10.8% (n = 4) 
with childhood disintegrative disorder.  The wait-list control group included 10 males and two 
females with ages ranging from 5.83 to 10.92 years with an average age of 8.19 years.  
 
Materials 
 
EEG data collection.  EEG data was collected in part as the basis for evaluating coherence 
differences in this study.  EEG data was obtained under two conditions, eyes closed and 
eyes open.  A stretchable electrode cap embedded with 19 sensors attached to the scalp 
was used to collect data, with frontal reference, prefrontal ground, and linked ears.  Each 
recording lasted 20 minutes, where 10 minutes were spent in both conditions.  All the data 
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collected was manually artifacted and analyzed for measures of multivariate 
coherence/connectivity in NeuroRep (Hudspeth, 1999).  Further, Neurometric Analysis 
System (NxLink, 2001; John, Prichep, Fridman, & Easton, 1988) and Neuroguide (Thatcher, 
Walker, Biver, North, & Curtin, 2003), both of which are FDA approved, were used to analyze 
absolute power, relative power, and coherence (Thatcher et al., 2003).  The reliability and 
validity of quantitative EEG (QEEG) have been sufficiently assessed and confirmed 
(Thatcher et al., 2003). 
  
QEEG involved recording and digitizing EEG readings based on the International 10/20 
System of electrode placement utilizing the Deymed Diagnostic (2004) TruScan 32 
Acquisition EEG System.  This system included 32 channels with sampling at 128 cycles per 
second and filtering between 0.1–40 Hz.  All recordings were done with impedance less than 
5 kOhms.  The common mode rejection ratio for this system is 102 dB and the isolation 
mode rejection ratio is 140 dB.  QEEG analysis mathematically compares an individual EEG 
reading to matched normative samples for age and gender.  Through this analysis 
inconsistencies in EEG neural functioning can be located and addressed.  Moreover, it has 
been found that QEEG analysis provides reliable descriptors of normative brain activity (John 
et al., 1988).  QEEG analyses were performed both before and after the administration of 
connectivity-guided EEG biofeedback.   
 
Neurofeedback equipment.  The NeuroCybernetics EEGer Training System 
(NeuroCybernetics Inc., 2006) was used to perform connectivity-guided EEG biofeedback 
training.  The sensors (Grass Silver Disc 48‖ Electrodes with SafeLead protected terminals; 
Grass SafeLead, 2006) were applied to the subject’s scalp to measure EEG activity.  The 
signal was then fed back to the subject in visual and aural form based on relative 
amplitude/threshold values.  The visual feedback consisted of simple graphics (presented in 
the form of computer games), providing a continuous display of the ratio of amplitude to 
threshold for each stream of data.  The aural reward consisted of a pre-recorded sound file 
of a short quarter of a second beep, occurring no more often than once per every half 
second and activating when specific amplitude/coherence conditions were met 
(NeuroCybernetics Inc., 2006).  Treatment was personalized to each individual on the basis 
of his or her original QEEG findings for power and coherence.  Based on each participant’s 
QEEG analysis, areas showing the most prominent hypercoherence were targeted for 
training.  QEEG analysis involved analytically comparing a participant’s individual EEG data 
to normative data indicative of such factors as age, gender, etc.  For example, based on pre-
treatment QEEG analysis, one patient was found to have maximal hypercoherence in the 
right frontal region primarily in alpha.  A protocol was designed for this patient to reward 
alpha (the frequency range of maximal hypercoherence) and to inhibit lower and higher 
frequency EEG activity at electrode sites F8/F7.  This was achieved by increasing or 
rewarding the EEG amplitude between sequential EEG sensors on the scalp within the 
frequency range of maximal hypercoherence.   
 
EEG amplitude can be defined as the difference between frequencies measured from an 
active and a reference sensor site.  Therefore, increasing EEG amplitude (difference) implies 
decreasing coherence (similarity) between the EEG electrode sites; intrinsically this process 
causes two electrode sites to become more disparate.  This is the crux of application of 
connectivity-EEG biofeedback as a means to decrease hypercoherence in children with 
ASD.  Moreover, amplitude was chosen for training due to the relative ease in manipulation 
as described above.  For a more in-depth discussion into the personalization of protocols, 
the interested reader is referred to Coben (2007).    
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eLORETA.  Exact Low Resolution Brain Electromagnetic Tomography (eLORETA) is a 
functional tomography that uses EEG data to create three-dimensional slices of neural 
activity highlighting areas of underactivity and overactivity (Pascual-Marqui, 1999).  From 
these three-dimensional image slices of cortical grey matter, the neurofeedback clinician can 
better assess activity deep within the brain beyond the EEG detectable at the surface.  To 
localize these power differences we chose eLORETA, which is the third incarnation of the 
LORETA system.  eLORETA is currently considered the most exact version, and has been 
evaluated and found to be a useful tool for localizing power differences (Pascual-Marqui, 
2007).  Further, the empirical validity of eLORETA has been sufficiently substantiated 
(Pascual-Marqui, Esslen, Kochi, & Lehmann, 2002). 
 
Assessment scales.  GARS is a behavioral checklist.  This scale is comprised of four 
subtests (Stereotyped Behaviors, Communication, Social Interaction, and Developmental 
Disturbances) of 14 items each.  The scale was normed on a sample of 1,092 children and 
young adults (aged 2 to 28) across 46 U.S. states, the District of Columbia, Puerto Rico, and 
Canada.  The internal consistency reliability coefficients for all subtests and total Autism 
Quotient range from .88 to .96.  The stability or test-retest reliability ranges from .81 to .88 for 
all subtests and total Autism Quotient.  These results indicate high levels of stability required 
for pre-post treatment assessment of individuals with ASD.  The construct validity was 
confirmed by analyses finding that: Items of the subscales are representative of the 
behaviors associated with Autism; GARS scores strongly relate to each other and to 
performance on other screening tests for Autism; GARS scores are not related to age; and 
individuals with other diagnoses score differentially on the GARS.  The GARS is a scale 
shown to discriminate between autistic and non-autistic subjects with a 90% accuracy rate. 
 
GADS is a behavioral rating scale.  The GADS consists of 32 items divided into four 
subscales including: Social Interaction (10 items), Restricted Patterns of Behavior (8 items), 
Cognitive Patterns (7 items), and Pragmatic Skills (7 items).  The GADS was normed on a 
sample of 371 individuals (aged 3 to 22; males [n = 314], females [n = 57]) diagnosed with 
Asperger’s disorder from across 46 U.S. states, the District of Columbia, Canada, Great 
Britain, Mexico, Australia, and other countries.  Internal consistency reliability coefficients 
ranged from .87 to .95 for total Asperger’s Disorder Quotient across samples of children with 
and without identified disabilities.  The test-retest reliability for the Asperger’s Disorder 
Quotient is .93 (p < .01).  These results indicate that the GADS has a high level of stability 
for use as a pre-post treatment measure of individuals with Asperger’s disorder.  Construct 
validity was indicated by analyses finding that: GADS scores are minimally related to age; 
items on the subscales are representative of behaviors associated with Asperger’s disorder; 
persons with other diagnoses score differentially; GADS scores are strongly related to each 
other and performance on other tests that screen for serious behavioral disorders; and the 
GADS can discriminate among individuals with Asperger’s disorder and those with 
behavioral disorders.  The GADS has been found to have an 83% accuracy rate in 
discriminating Asperger’s and non-Asperger’s subjects (Gilliam, 2001).      
 
Procedure.   
 
A diagnostic interview was conducted with the parents to ascertain core behavioral, 
cognitive, and social/emotional issues of concern as part of a comprehensive 
neurodevelopmental history.  Additionally, all participants involved in this study met the 
criteria for either: autistic disorder, Asperger’s disorder, childhood disintegrative disorder, or 
PDD-NOS as described by the DSM-IV (APA, 1994).  A second inclusion criteria for this 
study were scores on the GADS and the GARS.  Only subjects with a total Asperger’s 
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Disorder Quotient of 70 or greater on the GADS or an Autism Quotient of 70 or greater on 
the GARS were used in this study.  
  
All participants underwent QEEG analysis both before the start of connectivity-guided EEG 
biofeedback training as well as at the completion of no less than 20 sessions.  A QEEG was 
performed before the administration of connectivity-guided EEG biofeedback in order to 
assess baseline levels of hyperconnectivity, coherence, and power.  Again, this baseline is 
assessed by analytically comparing each participant’s individual EEG data to a normative 
QEEG prior to treatment.  Based on this original analysis, personalized EEG biofeedback 
protocols were designed so as to optimally and efficiently decrease hypercoherence in each 
subject.  QEEG analysis performed after the administration of connectivity-guided 
biofeedback was used in tandem with pre-condition analysis to assess significant changes. 
 
Data Analysis.   
 
Source-localized (eLORETA) measures for absolute power were used as the initial set of 
dependent variables.  In regards to EEG data collection, average cross-spectral matrices 
were computed for bands delta (2–3.5 Hz), theta (4–7.5 Hz), alpha (8–12.5 Hz), beta (13–21 
Hz), low frequency (2–7 Hz), high frequency (13–32 Hz), alpha1 (8–10 Hz), alpha2 (10–12 
Hz), beta1 (12–16 Hz), beta2 (16–20 Hz), beta3 (20–24 Hz), beta4 (24–28 Hz), and beta5 
(28–32 Hz).  
  
For every frequency band and subject in the two groups, the current density modules at each 
voxel (current density amplitude) were smoothed with a three-dimensional moving average 
filter, normalized, and finally log-transformed.  Log-transformation of power estimates is 
routinely performed in EEG and eLORETA to approximate data Gaussianity (John, Prichep, 
& Easton, 1987).  With eLORETA, some smoothing is advisable to reduce anatomical and 
localization errors due to inter-individual differences in head geometry and electrodes 
placement.  In general, local maxima can be visualized in slightly different locations.  Spatial 
normalization consists of normalizing the square root of the sum of squared current density 
values for each subject at all voxels to equal unity.  This manipulation eliminates confounding 
variables such as the inter-individual variability in skull thickness and electrode impedance, 
without constraining the analysis on relative power measures.  Current density amplitude 
estimates computed and preprocessed as described provided the data for statistical 
analysis.  
 
To compare the current density amplitude of the two conditions, we used the randomization-
permutation multiple comparison t-max approach (Congedo, Finos, & Turkheimer, 2004) that 
has recently been utilized by Sherlin et al. (2007).  Data-permutation approaches can 
adaptively account for the correlation structure of the variables, an embedded feature of all 
electrophysiological measurements (Holmes, Blair, Watson, & Ford, 1996).  We performed 
one test for each of the 13 frequency band-pass regions (delta, theta, alpha, beta, low 
frequency, high frequency, alpha1, alpha2, beta1, beta2, beta3, beta4, and beta5).  For the 
whole data set (2,394 x 9 variables), voxel-by-voxel within t-tests were computed; this is the 
t-test for paired designs.  The mean of the pre-condition (A) is compared to the mean of the 
post-condition (B).  Individuals in the two conditions are the same.  The test-statistic is the 
well-known student-t, with positive values indicating mean (A) > mean (B), and negative 
values indicating mean (A) < mean (B).  In this test the mean of two conditions are 
compared.  A threshold of significance (if the global null hypothesis was false) was then 
computed by the t-max method.  For all bands, we tested the hypothesis that the mean 
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LORETA current density amplitude of the two conditions differed by subtracting the values 
for the pre-condition from the post-condition (Congedo et al., 2004). 
 
The eLORETA variables for each subject in each group (pre-post training) cross-spectral 
matrices were computed and averaged over 4-second epochs resulting in one cross-spectral 
matrix for each subject and for each of the discrete frequencies within each band.  Based on 
previous LORETA analyses (Lubar, Congedo, & Askew, 2003), we used a rectangular 
window.  Sliding overlapping windows (overlap 93.8%) allowed reliable and smooth spectral 
estimates.  The LORETA-Key software package (Pascual-Marqui, Michel, & Lehmann, 1994) 
was used to compute LORETA current density in the frequency domain directly from the 
average cross-spectral matrix (Frei et al., 2001).  This LORETA implementation incorporates 
a 3-shell spherical head model registered to recognized anatomical brain atlas (Talairach & 
Tournoux, 1988), and makes use of EEG electrode coordinates derived from cross-
registration between spherical and realistic head geometry (Towle et al., 1993).  The solution 
space is restricted to cortical gray matter using the digitized probability atlas of the Brain 
Imaging Center at the Montreal Neurological Institute (Collins, Neelin, Peters, & Evans, 
1994), divided in 2,394 voxels measuring 7 x 7 x 7 mm). 
 
To analyze coherence, subject groups were first prepared in the NeuroRep program NDAC.  
NDAC allows the user to identify and select a subset to compile raw connectivity indices for 
171 pairwise combinations of 19 electrodes, with each having five frequency bands: delta 
(0.5–3.5 Hz), theta (3.5–7 Hz), alpha (7–13 Hz), beta (13–22 Hz) and total (amplifier 
bandwidth) and then compute 171 final group means, standard deviations, skewness, and 
kurtosis.  Once the groups were prepared, the statistical program Compare was used to test 
for significant changes in coherence.  Compare allows the user to compute correlated 
Student’s t-tests between average connectivity indices for 171 pairwise electrode 
combinations (from NDAC).  The significance of the t-test probabilities was evaluated with 
False Discovery Rate methods (Benjamini & Hochberg, 1995; Miller et al., 2001) to control 
for multiple comparison errors.  All connectivity indices can optionally be Fischer z-
transformed to improve Gaussianity of the resulting distribution.  The total band limited refers 
to an EEG amplifier bandwidth of 0.5–40 Hz.  Recursive filter bandwidths refer to four 
exacted bands: delta (0.5–3.5 Hz), theta (3.5–7 Hz), alpha (7–13 Hz), beta (13–22 Hz).  The 
program compares means by use of Pearson correlations and correlated t-tests.  
Additionally, normalization of connectivity values can be achieved by using Fisher’s z-score 
transformation.  Further, Compare accounts for multiple comparison error by use False 
Discovery Rate (FDR; Benjamini & Hochberg, 1995) threshold values for judging 
significance.  Connectivity indices were computed with software derived from the ―COHER‖ 
programs written by Michael Hrybyk (Thatcher, Krause & Hrybyk, 1986) and were widely 
used in commercial computerized EEG software: Quantitative Signal Imaging, NeuroRep, 
NeuroData, Lexior, and NeuroGuide.  The routines implement the equation reported in 
Bendat and Piersol (1980) and they include the results from a calibration EEG recording.  To 
the authors’ knowledge, all commercial programs produce results identical to COHER’s 
results for the EEG calibration file.  In this equation, the signals are normalized over the 
entire record to minimize the influences of signal amplitudes and thereby emphasize the 
relationship between the pair of EEG profiles (Bendat & Piersol, 1980).  The values produced 
by Compare (coherence analyses) were a second set of dependant variables for this study. 
 

Results 
 
There were significant differences between pre- and post-conditions for source-localized 
absolute power.  The maximum t-statistic, or maximum t-value across the entire volume, for 
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each frequency band follows.  Absolute power significant t-values: delta (-2.63), theta (-2.43), 
and low frequency (-2.57).  
 
Figures 1 through 4 illustrate the statistically significant differences between the two 
conditions in absolute power along with the Brodmann's Area (Brodmann, 1909/2005) label 
of the voxel with maximum differences.  eLORETA current source density is displayed in the 
given frequency band.  Coordinates and t-values for the maximal different voxel are printed 
above the picture of the sagittal section.  All t-statistics that are positive are displayed in red 
(the mean of post-condition is greater than the mean of the pre-condition).  All t-statistics that 
are negative are displayed in blue (the mean of the post-condition is less than the mean of 
the pre-condition).  Displayed are the horizontal (left), sagittal (middle), and coronal (right) 
sections through the voxel with maximal t-statistic.  Further, errors associated with multiple 
comparisons were accounted for by our implementation of the randomization-permutation 
multiple comparison t-max approach (Congedo et al., 2004).  Only significant results 
(images) are shown (Refer to Figures 1 through 4). 
 
 
 

 
Figure 1. eLORETA analysis showing source localization of absolute delta power.  Significant differences 

localized to Brodmann area 33, anterior cingulate, and limbic lobe. 

 
 
 

 
Figure 2. eLORETA analysis showing source localization of absolute theta power.  Significant differences 

localized to Brodmann area 32, anterior cingulate, and limbic lobe.  
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Figure 3. eLORETA analysis showing source localization of absolute low frequency power.  Significant 

differences localized to Brodmann area 24, anterior cingulate, and limbic lobe. 

  
 
 

   
Figure 4. eLORETA analysis showing source localization of absolute low frequency power.  Significant 

differences localized to Brodmann areas 10 and 47, frontal gyrus, and frontal lobe. 

  
 
 
The significant differences between the pre- and post-conditions were localized to decreased 
slow wave activity (2–7 Hz) in the anterior cingulate and the right frontal gyrus.  The 
strongest findings of decreased slow activity were found in Brodmann areas 32 and 33 that 
are located in the associational cortical area of the frontal lobes and that participate in 
prefrontal cortical networks, which are thought to govern personal and social behavior, 
emotion, and decision-making  (Salloway, Malloy, & Duffy, 2001; Courchesne & Pierce, 
2005).  Brodmann area 24 is located in associational cortical area in the anterior part of the 
cingulate gyrus.  This area is a cortical component of the limbic system that is involved in 
emotional processing, the control of facial expressions, and the affective dimensions of pain 
(Williams, White, & Mace, 2005).  Additionally, there was decreased low frequency band 
absolute power in Brodmann areas 10 and 47 of the right hemisphere.  This area is in the 
associational cortical area in the anterior-polar prefrontal region of the frontal lobes and 
participates in prefrontal cortical networks that govern executive functions (Koechlin & Hyafil, 
2007). 
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Pre- and post-EEG data groups were prepared and generated in NDAC.  Differences 
between these groups, in terms of coherence values, were analyzed in the statistical 
package Compare.  This statistical package made comparisons between 171 pairwise 
means using Pearson correlations and correlated t-tests.  Two-tailed probabilities were 
utilized for paired t-tests in the delta, theta, alpha, beta bands, and across the total frequency 
as well. FDR indices were used to control for errors due to multiple comparisons (Benjamini 
& Hochberg, 1995).  Similar to eLORETA, pre-condition scores were subtracted from post-
condition scores in Compare.  Blue results indicated a decrease in connectivity, while red 
results indicated increases in connectivity.  As figures 5 through 7 show, the statistical 
analyses indicated numerous significant reductions in connectivity between neural locations 
predominately in the alpha and beta bands, as well as in the total coherence.  
 
Figure 5 shows the statistical analysis of the alpha band values.  Eleven electrode pairs were 
found to have significant decreases in neural connectivity within this band, while only one 
pair was found to have a significant increase in connectivity.  
 
 
 

 
Figure 5. Compare findings of changes in alpha coherence, with a False Discovery Rate (FDR) of alpha  

p <= .0053. 

 
 
 
As Figure 6 shows, the analyses of the beta band found 43 electrode pairs to have 
significant decreases in neural connectivity. 
 



NeuroRegulation 

 

 

120 | NeuroRegulation                    Vol. 1(2):109-130  2014          doi:10.15540/nr.1.2.109 

http://www.neuroregulation.org 

 

 
Figure 6. Compare findings of changes in beta coherence, with a False Discovery Rate (FDR) of alpha  
p <= .064. 
 
 
 
As shown in Figure 7, the analyses for the total connectivity revealed 42 neural locations to 
have significant reductions in connectivity.  The total connectivity is an analysis of 
connectivity encompassing the entire EEG spectrum (0.5–22 Hz). 
 
 
 

 
Figure 7. Compare findings of changes in total coherence, with a False Discovery Rate (FDR) of alpha  
p <= .0164. 
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Figure 8 presents a graphical representation of our Compare calculations.  Blue lines 
between focal points indicated deceases in connectivity, while orange lines indicated 
increases in connectivity. Moreover, only significant findings are shown.  As our analysis 
shows, connectivity-guided EEG biofeedback predominately produced reductions in neural 
connectivity.  Further, these decreases in connectivity seemed to occur mostly within the 
frontotemporal region, especially on the right side. 
 
 

 
Figure 8. Graphical representation of Compare findings illustrating focal changes in neural connectivity. 

 
 
eLORETA analysis was also computed for the control group from pre- to post-conditions.  
Analogous to the experimental group to compare the current density amplitude of the two 
conditions of the wait-list control, we used the randomization-permutation multiple 
comparison t-max approach (Congedo et al., 2004).  Data-permutation approaches can 
adaptively account for the correlation structure of the variables, an embedded feature of all 
electrophysiological measurements (Holmes et al., 1996).  Again, we performed one test for 
each of the 13 frequency band-pass regions (delta, theta, alpha, beta, low frequency, high 
frequency, alpha1, alpha2, beta1, beta2, beta3, beta4, and beta5).  For the whole data set 
(2,394 x 9 variables), voxel-by-voxel within t-tests were computed.  This is the t-test for 
paired designs.  In this test the mean of two conditions are compared.  A threshold of 
significance (if the global null hypothesis was false) was then computed by the t-max 
method.  For all bands, we tested the hypothesis that the mean LORETA current density 
amplitude of the two conditions differed by subtracting the values for the pre-condition from 
the post-condition (Congedo et al., 2004).  Further, the results revealed that there were no 
significant changes from pre- to post-conditions among the participants in the wait-list control 
group using an alpha level of p < .10. 
 
Statistical analyses performed on the experimental group were also implemented for the 12 
participants of the control group in order to test for significant changes in coherence.  The 
analysis revealed that from pre- to post-conditions the control group had no significant 
changes in coherence.  Similar to the experimental group analysis, the inclusion of FDR 
(Benjamini & Hochberg, 1995) protects this analysis from errors associated with multiple 
comparisons.  Further, the analysis showed that in the control group no electrode location 
approached a p < .10 level, let alone significance. 
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Discussion 
 
The major finding of this study is the evidence that connectivity-guided EEG biofeedback  
is a treatment capable of causing therapeutic neurophysiological changes in the brains of 
children with ASD.  Significant reductions in coherence between numerous neural regions 
occurred as a result of this intervention.  These findings were further substantiated by the 
eLORETA analysis, which showed prominent source localized changes in power in crucial 
regions of the brain for such children.  These changes were evident across frontal, temporal, 
and limbic regions.  The results of the current study also support and expand upon the 
findings found previously (Coben & Padolsky, 2007).  In our earlier study, we achieved an 
89% success rate that was coupled with a 40% reduction in core ASD symptoms.  Moreover, 
significant improvements were noted for the experimental group on measures of attention, 
executive, visual perceptual, and language functions.  In contrast, our analysis revealed that 
the control group did not significantly differ from the experimental group at the conclusion of 
our previous study insomuch that 83% of the parents of this group reported no change and 
presently no significant pre- to post-conditions changes were seen.  The significant clinical 
findings previously reported are now bolstered by the neurophysiology changes found 
presently.  This now provides preliminary evidence that connectivity-guided EEG 
biofeedback is capable of producing neurophysiological changes while concurrently reducing 
autistic symptoms.  Specifically, the findings found previously, coupled with our current 
findings, provide evidence that seemingly links reductions in hypercoherence and source-
localized power with reductions in autistic symptoms. 
 
This has a two-fold importance.  First, our analysis showed that the resulting decreases in 
hypercoherence derived from connectivity-guided EEG biofeedback seemed to 
conglomerate in and around the frontotemporal region.  These were the regions targeted for 
treatment.  This suggests that training over specific regions can have specific, localized 
effects.  Second, this finding provides support to the theory of frontal system involvement in 
ASD indicated by previous investigations (Courchesne & Pierce, 2005; Buxhoeveden et al., 
2004; Rippon et al., 2007).  
 
The theory of hypercoherence/connectivity, as it relates to autistic symptoms, has been the 
subject of several investigations.  Courchesne and Pierce (2005) reported patterns of over-
connectivity within the frontal lobes, as well as under-connectivity between the frontal lobe 
and other brain regions.  Courchesne, Redkay, and Kennedy (2004) previously attributed 
these findings to abnormal increases in the gray and white matter neurons of the frontal and 
temporal lobes occurring between the ages of 2 to 4 years old.  These abnormal increases in 
brain matter or early developmental neuroinflammation are thought to cause malfunctions in 
the brain, particularly in frontal minicolumn microcircuitry (Courchesne & Pierce, 2005).  
Neuroinflammation is also thought to explain the finding of enlarged head sizes found in 
children with ASD (Herbert et al., 2003; Herbert et al., 2004).  It is theorized that over-
connectivity can result from this neuroinflammation, due to the tendency of neurons that are 
excited to communicate more readily with other neurons that are close in proximity 
(Courchesne & Pierce, 2005).  Furthermore, as neural regions expand the neuropil space is 
reduced, causing an increase in neuron proximity that in turn will increase hyperconnectivity 
(Buxhoeveden et al., 2004).  Likewise, under-connectivity of the frontal cortex to other neural 
regions is produced due to the hyperconnected brain’s inability to form sufficient 
communications with other areas.  Consistent with this, recent findings have indicated that 
neuroinflammation of white matter impedes the autistic brain’s ability to connect or integrate 
information from other parts of the brain (Herbert, 2005).  This inability to communicate 
efficiently between neural assemblies may result in deficits in domains that require more 
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coordination and communication between brain areas, namely language and executive 
functioning.  Further, this phenomenon can readily be described as too many local services 
competing within themselves, in turn decreasing the quality of long distance communication.  
These neural anomalies of hyper- and hypoconnectivity in autism have also been prescribed 
as the consequence of a faulty pruning system.  Frith (2003) speculated that the 
neurophysiological brain deficits associated with autism are the result of a neural pruning 
system that fails to eliminate faulty connections within the brain during keys stage of 
development.  This pruning system plays a key role in coordinating neural functioning in the 
healthy individuals.  The failure of these inutile connections to be eliminated interferes with 
normal neural connections both locally and long distance within the brain.  
 
When long-distance frontal neural assembly connections are disrupted, resulting deficits in 
integration of information from emotional, sensory, language, and automatic systems can 
occur (Courchesne & Pierce, 2005).  Moreover, disruption of white matter tracts, as 
described previously, may cause deficit in social cognition associated with neural areas 
responsible for face and gaze processing, awareness of mental states, and emotional 
processing (Barnea-Goraly et al., 2004).  Further, deficits of frontal cortical networks are 
thought to lead to executive functioning impairments in areas of personal and social 
behavior, emotion, and decision-making (Salloway et al., 2001; Courchesne & Pierce, 2005).  
Likewise, deficits within the cortical area of the limbic system, most notably the anterior part 
of the cingulate gyrus, are theorized to result in deficiencies in emotional processing, the 
control of facial expressions, and the affective dimensions of pain (Williams et al., 2005).  
Insufficiencies within the temporal lobe, particularly the amygdala, have been correlated with 
autistic impairment related to social functioning and behavior (Baron-Cohen et al., 2000).  
Finally, by therapeutically reducing hypercoherence within these neural areas, as was 
achieved in this study, it is thought that the previously mentioned deficits and 
pathophysiology can be reduced and that positive behavioral changes can be gained.       
 
Our current study contributes to the aforementioned research by presenting evidence that 
shows that reducing hypercoherence may play an integral role in the improved treatment 
outcomes that result from connectivity-guided EEG biofeedback.  The evidence presented 
linking reductions in frontotemporal hypercoherence, as a means to produce therapeutic 
gains in autistics, is further confirmation of the critical roles these brain regions play in the 
symptoms of autistic disorders. 
 
This is the first study to present evidence of a treatment of ASD that is capable of 
therapeutically changing the neurophysiological dysfunction that is at the heart of autistic 
symptoms.  The decreases in neural coherence that were achieved in the present study 
included frontal, temporal, and underlying limbic structures.  As stated previously, these 
areas have been confirmed to be associated with autistic impairment (Salloway et al., 2001; 
Courchesne & Pierce, 2005; Williams et al., 2005; Baron-Cohen et al., 2000).  As such, the 
positive gains achieved by therapeutically impacting these neural areas confirms their 
involvement in ASD, as well as provides an insight into the overall neurophysiological 
mechanisms responsible for the efficacy of this therapy. 
 
The significant neurophysiological changes reviewed can be ascribed to the treatment with 
little risk of error due to the implementation of FDR indices (Benjamini & Hochberg, 1995) 
and randomization-multiple permutation analyses (Congedo et al., 2004).  Moreover, these 
changes can be confidently regarded as ameliorative in nature due to subjects’ reports of 
positive therapeutic gains and reductions in autistics symptoms at the completion of 20 
sessions of connectivity-guided EEG biofeedback.  These results are further strengthened by 
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our analysis, which revealed that the wait-list control group reported no significant changes 
from pre- to post-conditions. 
 
Our analysis showed that there were positive changes in source-localized power (eLORETA) 
within lower frequency bands; while findings also indicated that changes in coherence were 
seen predominately in the higher frequencies of alpha and beta band.  The reason for this 
discrepancy is not yet clearly understood.  Further, it would take increasingly more 
investigation to fully understand the implications of this difference.  
 
Recently, Pineda et al. (2007) investigated behavioral changes as a result of neurofeedback 
in children with autism.  The results showed that indeed positive behavioral changes were 
seen within the Speech/Language, Sociability, and Health/Physical behavior subscales of the 
ATEC as well as the Total score.  However, when comparing this data to the current 
investigation, it was revealed that the intervention implemented presently produced about a 
three times greater rate of efficacy.  Moreover, our current study saw no degradation or 
worsening of symptoms as assessed by any subscales of the ATEC.  Conversely, Pineda et 
al. (2007) presented evidence of negative changes in behavior in terms of the 
Sensory/Cognitive Awareness subscale of the ATEC.  Continuing, Pineda et al. (2007) chose 
to train the Mu rhythm mainly on the right hemisphere of the brain focusing on electrode site 
C4 as well as areas chosen based on EMG activity.  This technique produced a significant 
decrease in coherence for only one neural pair (C3–C4; Study 1) and three neural pairs (T3 
–T4; C3–C4; F3–F4) for study two (Pineda et al., 2007).  We, on the other hand, based the 
course of therapy on each individual’s QEEG analysis which revealed specific areas of 
maximinal hypercoherence and we postulate that this served as an underlying reason why 
our investigation was able to significantly decrease coherence between far more neural pairs 
(Refer to Fig. 5 through 7).  We would prescribe our increased success and lack of negative 
effects to our use of personalized QEEG analysis to plan and carry out neurofeedback, 
resulting in far greater reductions.  Similarly, Coben and Myers (2008) have recently 
compared data from their connectivity-guided EEG biofeedback study to Jarusiewicz’s 
(2002) earlier symptom-based neurofeedback investigation.  The results of this analysis 
indicated that connectivity-guided EEG biofeedback accomplished, on average, a full 
standard deviation greater improvement as compared to symptom-based neurofeedback, 
while still preventing any unwanted effects.  The implication of the aforementioned research 
comparisons would suggest that personalization of EEG protocols among subjects plays a 
positive role in the efficacy of our treatment. 
 
Others have recently hypothesized that the positive effects of neurofeedback for individuals 
with autism might be due to non-specific factors (Heinrich, Gevensleben, & Strehl, 2007; 
Kouijzer, van Schie, Gerrits, Buitelaar, & de Moor, 2013).  For example, Kouijzer et al. (2013) 
showed no difference in effect between EEG biofeedback and skin conductance 
biofeedback, but both were better in reducing autistic symptoms as compared to a non-
treatment control group.  They concluded that the beneficial effects might be due to 
treatment expectancy, implicit training of attention and/or intensive one-to-one contact with a 
therapist.  However, their training was only at midline locations and did not involve 
connectivity or coherence training.  Our current findings indicate improvements in clinical 
functioning associated with treatment-related neurophysiological changes in brain functioning 
that did not occur in the wait-list comparison group.  This indicates a strong likelihood that 
there were specific effects from the training and that the mechanism of action is the alteration 
of coherence in a therapeutic direction.  Interestingly, different types of neurofeedback 
trainings may have different impacts. 
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In terms of the limitations of our study, the participants consisted of a selected pool of 
subjects.  When subjects or, in this case, parents of subjects, select their preferred 
treatment, there is a risk of selection bias that may interact with the treatment effect.  
Therefore, randomized assignment of experimental and control groups would be needed to 
test for any interactions between the treatment effect and the subject selection.  Also, efforts 
could be made to include more subjects with increased severity of symptoms as well as 
more homogeneity in terms of age.  This would help better assess whether the severity of 
autistic symptoms moderates the efficacy of the treatment.  Additionally, to more precisely 
measure the effects of our treatment, a double-blind study design, in which subject 
assignment would be unknown by both the subjects and experimenters, would be 
recommended.  Furthermore, the addition of an alternative treatment or a placebo-controlled 
(i.e., sham neurofeedback) comparison group could help better assess the efficacy of 
connectivity-guided EEG biofeedback and help demonstrate that our results were not likely 
due to chance or an uncontrolled variable.  Periodic future follow-up assessments would also 
be beneficial in determining the efficacy of our intervention over an extended period of time.  
This would help better demonstrate the continuing efficacy over time of connectivity-guided 
EEG biofeedback.  We would also recommend future studies more precisely analyze the 
relationship between connectivity/coherence and autism.  This investigation provided 
evidence linking these two concepts to each other and to autistic impairments; however, 
further research would need to be conducted to enduringly validate this claim.  Finally, the 
addition of alternative imaging techniques (i.e., MRI or DTI), used in tandem with EEG 
analysis, would help better validate the neurophysiological changes found presently. 
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