REGRESSION ANALYSIS

The Influencing Factors of Gun Deaths: A Regression Analysis

Qumars Jadali

University of Missouri - St. Louis

Abstract

This paper examines the relationship between gun deaths and the number of NICS background checks (per 100,000 people) from FBI.gov, median household income from American Community Surveys 1 Year Estimates, percent of high school graduates and lower from American Community Surveys 1 Year Estimates, and the legality of private transactions. All of the data is on a by-state basis, covering all 50 states for the year 2017 because that is the most recent year where all of the data in the model is available. **REGRESSION ANALYSIS**

Theory

$$GUNDEATHS_i = B_0 + B_1(NICS) + B_2(INC) + B_3(ED) + B_4(PDUM) + \varepsilon_i$$

The dependent variable "GUNDEATHS" measures the number of deaths by firearms per state, yearly, for every 100,000 people. As seen above, the estimated population regression model was created using ordinary least squares. The term "NICS" is defined as the number of NICS background checks done by state, per year, for every 100,000 people. An NICS check is a background check that citizens must undergo if they buy a firearm from a federally licensed dealer. To test the significance of this variable, an upper 1-tailed t-test with a 5% level of significance will be used. This variable was chosen because although it doesn't capture every single firearm sale in the United States, the majority of firearms transactions are done through federally licensed dealers, and it can be a good measure for number of guns sold per year. If the number of guns sold per year is increasing, it can be predicted that it is more likely that a criminally motivated person can get ahold of a gun since there are more in circulation which could be attained through illegal means (such as strawman sales, or theft), or a private sale. The predicted sign on this variable is positive.

Some states do not require NICS checks when sales are done privately, between two individual parties. To capture that effect, included is a dummy variable called PDUM, which is the private sales dummy. Only 15 states require an NICS check for private sales on top of sales from federally licensed dealers. If the dummy equals 1, then the state allows private sales without an NICS check. If else, then the dummy will equal 0. To test the significance of PDUM, an upper 1-tailed t test with a 5 percent level of significance will be used. The private sales dummy is included because it will help separate states that allow private transactions and states

3

REGRESSION ANALYSIS

that don't. What can be predicted from has been stated previously, if a state allows private sales it could be predicted that there is a higher probability of a "bad person" getting their hands on a firearm because the opportunity cost of selling a firearm to a person that is not allowed to buy one, is lowered significantly because it's no longer the responsibility of the private seller to verify the buyers status. The predicted sign on this variable is positive.

Median household income in 2017 inflation adjusted dollars by state represents the "INCOME" variable. It is included as a variable because it is expected that areas with higher incomes will have less gun deaths because crime is correlated with poverty. So it can be inferred that the "richer" the area, the less crime will be expected whether it is because they are able to afford private security or are able to successfully fund local police departments. To test the significance of the income variable, a lower 1 tailed test with a 5% level of significance will be used. The predicted sign on this variable is negative.

Finally, an education variable "ED" is included. It is specifically the percentage of the population per state that are high school graduates (or equivalent such as GED) and lower, ages 25 and up. It is expected that areas that are less educated will have a higher probability of greater occurrences of crime. This is similar to the income variable, but it better measures the effects of what happens when states have less funding for schooling compared to more funding. To test the significance of this variable, a lower 1 tailed t test with a 5% level of significance will be used. The predicted sign on this variable is negative because as the percent of the population that are high school graduates grow, it could be expected to see a decrease in crime.

Data & Empirical Methodology

The base year for all of the data is 2017. The data used to measure the number of gun deaths is from the CDC/National Center for Health Statistics which utilizes the CDC WONDER database, the table is called "Firearm Mortality by State-1". The data is by state for all 50 states, on a yearly basis, and is pre-adjusted & measured in deaths per 100,000 people. There are 50 observations for this death by firearm variable.

NICS checks are measured in number of checks per 100,000 people, per state for all 50 states (50 observations), on a monthly & early basis. This data can be found on FBI.gov, and the table is called NICS Firearm Background Checks: Month/Year by state Year 2017. For this study, only yearly data was used, and in order to find how many checks were done per 100,000 people, the total number of checks per state per year were divided by the population, then 100,000 was divided by that number in order to find the number of background checks per capita. The specific data can be found later in this study.

Income is measured as median household income in the past 12 months in 2017 inflation adjusted dollars. The data is on a by-state basis and measured yearly. However, the base year used is 2017. The data is pulled from the US Census Bureau, American Community Surveys 1year estimates, specifically it is table number S1901.

Education is measured as the percent of the population of high school graduates (includes equivalency), people with less than 9th grade education, and 9th-12th grade education with no diploma for the population of each state, aged 25 years and up. People with 9th grade and below, 9th-12th grade with no diploma, and a high school diploma or equivalent was summed up for use in this study. This data is pulled from the US Census Bureau, American Community Surveys 1-year estimates, table number S1501.

5

The private sales dummy variable is measured as if the state allows private sales with no NICS check, the value equals 1. If else, the value equals 0. The data was pulled from Giffords Law Center To Prevent Gun Violence website, universal background checks by state.

The scale variable used is total population estimates by state for the year 2017, from the US Census Bureau, American Community Surveys 1-year estimates, table number B01003. This variable is not estimated in the regression, it is only used for scaling purposes.

Findings

$$\begin{split} & \text{GUNDEATHS}_i = 35.7 + .00001155(\text{NICS}) - .0003492(\text{INCOME}) - .0636(\text{ED}) + 1.5(\text{PDUM}) + \epsilon_i \\ & \text{Standard Errors} \quad (11.23) \quad (.00004415) \quad (.00009069) \quad (.16625381) \quad (1.43687557) \\ & \text{R}^2 = .4486 \\ & \text{Adjusted } \text{R}^2 = .3996 \end{split}$$

The model above was estimated using ordinary least squares. Corresponding descriptive statistics data and correlation data can be found on the charts on the next page. As predicted previously in data and empirical methodology section of this research paper, all of the signs that were estimated, came out exactly as predicted by theory. According to R², 44.86% of the variation of gun deaths per capita, around its mean is explained by the regression. Since R² values of .4-.6 are expected for cross sectional state data, it can be interpreted as a well-fitting regression. According to adjusted R², 39.96% of the variation of gun deaths per capita around its mean is explained by the regression deaths per capita around its mean is explained by the regression. According to adjusted R², 39.96% of the variation of gun deaths per capita around its mean is explained by the regression, adjusted for degrees of freedom. According to the special case of F test, the model has a good overall fit because the null hypothesis was able to be rejected with a 5% level of significance. 4 T-tests were conducted, for NICS (upper 1 tailed test) and PDUM (upper 1 tailed test), the result was to not reject the null hypothesis. Those results are

against the initial beliefs for those variables, despite the estimated equation having the correctly signed beta values. Unlike INCOME (lower 1 tailed test) and ED (lower 1 tailed test), the result was to reject the null hypothesis, which was conducive with the previously predicted relationship stated previously in the paper.

Descriptive Statistics for All Data Used

The state with the highest rate of gun deaths per capita is Alaska! This is counterintuitive because one would expect states with large city populations would have higher gun deaths per capita! The state with the lowest rate of gun deaths per capita is Hawaii. Which could probably be predicted from their strict gun control regulation and a reasonably wealthy population. An interesting statistic is that Kentucky had over 104,000 background checks for every 100,000 people! Kentucky bought more guns than they had people!

	Mean	STDev	Min	Max
GUNDEATHS	13.552	5.37	2.5	24.5
NICS	9183.414	14049.103	892.586	104204.828
INCOME	59792.6	9854.763	43469	80776
ED	38.944	5.067	29.7	54.1
PDUM	0.72	0.454	0	1
POP	6500504.12	7345269.897	579315	39536653

Pairwise Correlation Table for All Data Used

As seen, there is not a single pairwise correlation value that is above .80. That is the first clue that there is no evidence of multicollinearity. Since there is no evidence of multicollinearity, there is a very small possibility of increased standard errors which lowers t scores, which can negatively affect hypothesis testing. In the appendix, VIF (Variable Inflationary Factors) were calculated, and no values over 5 were found, therefore the probability of multicollinearity in this experiment is next to 0.

	GUNDEATHS	NICS	INCOME	ED	PDUM	POP (scale)
GUNDEATHS	1.0000	0.2003	-0.6556	0.4175	0.3673	-0.2531
NICS	0.2003	1.0000	-0.2523	0.2404	0.1762	-0.0972
INCOME	-0.6556	-0.2523	1.0000	-0.6981	-0.3800	0.1306
ED	0.4175	0.2404	-0.6981	1.0000	0.1769	0.0408
PDUM	0.3673	0.1762	-0.3800	0.1769	1.0000	-0.1514
POP (scale)	-0.2531	-0.0972	0.1306	0.0408	-0.1514	1.0000

GLS model is depicted below. (Not needed in this study due to no evidence of heteroskedasticity from low VIF's and no pairwise correlation values over .80)

Conclusion

The purpose of the paper was to examine the relationship between gun deaths by state per 100,000 people, the number of NICS checks per capita (per 100,000 people) by state, the median household income by state, the percent of the population that are high school graduates (or equivalent such as GED) and lower, ages 25 and up, and whether the state being measured allows private gun sales without an NICS check. To summarize the findings, the estimated model had no evidence of heteroskedasticity (due to the Park Test), no evidence of multicollinearity (due to VIF's under 5, and no pairwise correlation above .80). The model also had a good overall fit due to the results of the special case of F test. The model also had an R^2 that would be expected for cross sectional state data, and the adjusted R² still showed that after adjusting for degrees of freedom, the model still explained almost 40% of the variation of gun deaths around its mean. Despite not being able to reject two of the four T tests, upon further thought, had the two variables been signed differently, all four of the T tests would have resulted in rejecting the null. As found in the pairwise correlation tables, a strong negative correlation of -.66 was found between income and gun deaths, and a slightly less strong, but still statistically significant correlation of .42 between percent of the population with a high school diploma or lower and gun deaths. The number of background checks completed per capita had a slight positive correlation with gun deaths, as well as whether a state allows private sales without NICS checks.

References

NICS checks

"NICS Firearm Checks: Month/Year by State." FBI, FBI, 4 June 2016,

https://www.fbi.gov/file-repository/nics_firearm_checks__month_year_by_state.pdf/view.

Gun Deaths (CDC content from wonder.cdc.gov)

"Stats of the States - Firearm Mortality." Centers for Disease Control and Prevention,

Centers for Disease Control and Prevention, 10 Jan. 2019,

https://www.cdc.gov/nchs/pressroom/sosmap/firearm_mortality/firearm.htm.

Income

U.S Census Bureau, 2017 American Community Survey 1-Year Estimates MEDIAN HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2017 INFLATION-ADJUSTED DOLLARS) Table Number: S1901

Education

U.S Census Bureau, 2017 American Community Survey 1-Year Estimates Table Number: S1501

Private Sales

"Universal Background Checks." Giffords Law Center to Prevent Gun Violence, https://lawcenter.giffords.org/gun-laws/policy-areas/background-checks/universal-backgroundchecks/#state.

Population by state (scale variable)

U.S. Census Bureau, 2017 American Community Survey 1-Year Estimates Measured in total number of people per state Table number: B01003

Gun Deaths

Firearm Mortality by State-1

YEAR	STATE	RATE	DEATHS	URL
2017	AL	22.9	1,124	/nchs/pressroom/states/alabama/alabama.htm
2017	AK	24.5	180	/nchs/pressroom/states/alaska/alaska.htm
2017	AZ	15.8	1,134	/nchs/pressroom/states/arizona/arizona.htm
2017	AR	20.3	613	/nchs/pressroom/states/arkansas/arkansas.htm
2017	CA	7.9	3,184	/nchs/pressroom/states/california/california.htm
2017	co	13.4	779	/nchs/pressroom/states/colorado/colorado.htm
2017	СТ	5.1	188	/nchs/pressroom/states/connecticut/connecticut.htm
2017	DE	11.7	111	/nchs/pressroom/states/delaware/delaware.htm
2017	FL	12.4	2,724	/nchs/pressroom/states/florida/florida.htm
2017	GA	15.4	1,623	/nchs/pressroom/states/georgia/georgia.htm
2017	н	2.5	39	/nchs/pressroom/states/hawaii/hawaii.htm
2017	ID	16.4	280	/nchs/pressroom/states/idaho/idaho.htm
2017	IL	12.1	1,543	/nchs/pressroom/states/illinois/illinois.htm
2017	IN	15.3	1,016	/nchs/pressroom/states/indiana/indiana.htm
2017	IA	9	293	/nchs/pressroom/states/iowa/iowa.htm
2017	KS	16	466	/nchs/pressroom/states/kansas/kansas.htm
2017	KY	16.2	730	/nchs/pressroom/states/kentucky/kentucky.htm
2017	LA	21.7	1,008	/nchs/pressroom/states/louisiana/louisiana.htm
2017	ME	11.7	172	/nchs/pressroom/states/maine/maine.htm
2017	MD	12.3	742	/nchs/pressroom/states/maryland/maryland.htm
2017	MA	3.7	262	/nchs/pressroom/states/massachusetts/massachusetts.htm
2017	MI	11.3	1,138	/nchs/pressroom/states/michigan/michigan.htm

Educational Attainment

View Geography Notes

Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties.

							Alabar	ma								Alas	ka		
- î		То	tal	Perc	ent	Ma	ile	Percent	Male	Fen	nale	Percent	Female	To	tal	Perc	ent	Ma	ale
64 of 64	Subject	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error
	Population 18 to 24 years	471,079	+/-5,556	(X)	(X)	234,658	+/-3,611	(X)	(X)	236,421	+/-4,089	(X)	(X)	73,053	+/-2,182	(X)	(X)	41,110	+/-1,635
	Less than high school graduate	63,810	+/-5,003	13.5%	+/-1.0	37,085	+/-3,295	15.8%	+/-1.3	26,725	+/-3,693	11.3%	+/-1.5	10,416	+/-1,619	14.3%	+/-2.3	6,421	+/-1,303
	High school graduate (includes equivalency)	161,311	+/-6,371	34.2%	+/-1.4	90,367	+/-4,298	38.5%	+/-2.0	70,944	+/-4,495	30.0%	+/-1.9	27,892	+/-2,497	38.2%	+/-3.3	17,448	+/-2,009
	Some college or associate's degree	214,751	+/-6,848	45.6%	+/-1.3	95,174	+/-5,328	40.6%	+/-2.0	119,577	+/-4,508	50.6%	+/-1.7	29,966	+/-2,588	41.0%	+/-3.2	14,835	+/-2,022
	Bachelor's degree or higher	31,207	+/-3,445	6.6%	+/-0.7	12,032	+/-1,872	5.1%	+/-0.8	19,175	+/-2,533	8.1%	+/-1.1	4,779	+/-1,124	6.5%	+/-1.5	2,406	+/-896
	Population 25 years and over	3,309,607	+/-5,907	(X)	(X)	1,565,244	+/-3,842	(X)	(X)	1,744,363	+/-4,468	(X)	(X)	481,561	+/-2,194	(X)	(X)	250,605	+/-1,870
	Less than 9th grade	137,386	+/-6,439	4.2%	+/-0.2	71,748	+/-4,430	4.6%	+/-0.3	65,638	+/-4,095	3.8%	+/-0.2	14,246	+/-1,878	3.0%	+/-0.4	6,031	+/-898
	9th to 12th grade, no diploma	309,557	+/-10,261	9.4%	+/-0.3	155,237	+/-7,434	9.9%	+/-0.5	154,320	+/-6,766	8.8%	+/-0.4	25,790	+/-2,449	5.4%	+/-0.5	14,647	+/-2,134
	High school graduate (includes equivalency)	1,029,982	+/-16,141	31.1%	+/-0.5	509,811	+/-10,820	32.6%	+/-0.7	520,171	+/-10,710	29.8%	+/-0.6	133,132	+/-5,152	27.6%	+/-1.1	80,671	+/-3,552
	Some college, no degree	709,100	+/-12,029	21.4%	+/-0.4	327,801	+/-9,219	20.9%	+/-0.6	381,299	+/-8,241	21.9%	+/-0.5	126,985	+/-4,710	26.4%	+/-1.0	65,565	+/-3,332
	Associate's degree	278,878	+/-8,974	8.4%	+/-0.3	111,785	+/-5,091	7.1%	+/-0.3	167,093	+/-7,255	9.6%	+/-0.4	42,724	+/-3,095	8.9%	+/-0.6	20,307	+/-2,240
	Bachelor's degree	528,019	+/-10,136	16.0%	+/-0.3	242,582	+/-6,751	15.5%	+/-0.4	285,437	+/-7,602	16.4%	+/-0.4	86,444	+/-4,760	18.0%	+/-1.0	39,090	+/-2,403
	Graduate or professional degree	316,685	+/-8,377	9.6%	+/-0.3	146,280	+/-5,657	9.3%	+/-0.4	170,405	+/-5,602	9.8%	+/-0.3	52,240	+/-3,278	10.8%	+/-0.7	24,294	+/-2,113
	Percent high school graduate or higher	(X)	(X)	86.5%	+/-0.3	(X)	(X)	85.5%	+/-0.5	(X)	(X)	87.4%	+/-0.4	(X)	(X)	91.7%	+/-0.6	(X)	(X)
	Percent bachelor's degree or higher	(X)	(X)	25.5%	+/-0.4	(X)	(X)	24.8%	+/-0.5	(X)	(X)	26.1%	+/-0.5	(X)	(X)	28.8%	+/-1.2	(X)	(X)

			NIC	S Fire Ma		Backg Year t			ecks:				
					, II (II/)	i car t	.y 50						
				Iomos		ar 201 7 - Decen		2017					
State / Territory	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oet	Nov	Dec	Т
Alabama	41,542	46,251	48,769	32,652	33,331	35,687	31,474	35,038	32,019	36,619	47,418	56,545	
Alaska	4,500	5,917	6,971	6,983	6,442	6,353	6,487	6,946	6,303	8,080	7,527	8,330	
Arizona	31,366	37,388	38,170	32,052	28,734	28,359	25,714	29,376	28,394	29,277	34,541	41,559	
Arkansas	16,762	22,548	23,290	16,452 132,190	16,749	16,614	14,015	17,517 130.901	17,747	20,327	26,049 140.695	29,559	1
California Colorado	130,365 37,047	43,577	45,645	39,989	129,307 36,008	130,187 36,459	114,595 33,811	37,150	123,506 35,873	40,163	51,473	142,492 59,800	
Connecticut	15,073	15,209	18,787	16,406	16,149	16,504	14,525	14,019	12,117	13,201	14,334	15,455	
Delaware	4,299	5,066	5,527	4,296	4,012	3,634	2,981	3,509	3,502	3,692	4,577	5,544	
District of Columbia	81	93	111	104	82	74	68	80	61	217	365	204	
Florida	104,576	117,892	122,716	103,641	96,556	100,508	92,822	96,664	77,390	103,032	123,397	137,355	1
Georgia	44,615	53,177	57,235	37,829	36,905	39,874	35,085	38,830	35,371	43,293	54,950	64,491	
Guan	205	132	136	147 888	157	156	145	1.079	135 948	135	127	181	
Hawaii Idaho	866 11,146	1,037	1,090	888	1,117 13,065	1,083 20,241	1,109	1,079	948 14,938	1,235	1,171	1,119 19,750	
Illinois	138,008	139,697	163,728	135,507	121,746	113,889	108.000	126,921	116,449	122,798	150,588	163,756	1
Indiana	80,412	136,193	79,624	63,298	54,347	49,689	47,145	47,649	48,524	55,336	75,879	92,261	
Iowa	15,707	15,025	20,026	13,017	10,232	8,352	8,801	9,416	9,975	14,012	17,182	19,236	
Kansas	15,049	19,211	17,891	15,139	12,337	13,485	13,775	13,097	12,856	15,018	20,460	23,133	
Kentucky	345,924	313,748	397,959	392,685	391,740	392,002	390,494	394,718	398,706	401,155	404,508	417,841	4
Louisiana	27,709	27,684	29,310	22,065	21,311	23,497	20,454	24,694	27,821	27,436	35,485	41,735	
Maine Mariana Islands	6,865	7,731	9,632	8,115	7,200	6,474	5,837	7,751	8,715	10,328	8,578	9,364	
Maryland Maryland	13.368	14.852	11 15,769	13,182	12 11,660	12 10.945	13	27	16 11,255	13.651	21	23	
Massachusetts	19,996	18,130	21,059	17,866	16,651	15,841	12,900	16.258	15,460	16,842	17,548	17,941	
Michigan	39,067	48,382	54,452	41,939	38,548	37,088	33,378	39,255	36,944	44,262	54,350	45,578	
Minnesota	85,322	62,051	77,749	71,484	55,570	44,775	41,186	46,613	44,552	55,012	48,087	51,143	
Mississippi	17,113	24,043	24,421	16,803	15,680	17,154	14,388	21,963	17,491	19,080	28,188	35,528	
Missouri	39,098	50,850	52,928	40,019	34,965	36,752	32,415	37,449	37,571	43,987	56,129	62,810	
Montana	7,994	10,386	12,396	10,293	9,418	9,901	7,890	9,618	10,283	11,673	11,107	12,979	
Nebraska Nevada	6,205	7,122	7,337	5,745	5,025	4,265	4,266	5,209	5,345 9,460	6,543 10,198	8,303	8,953	
New Hampshire	12,067	12.282	13,529	10,588	8,868	9,184	8,333	9,313	10,689	10,198	11,627	12,035	
New Jersey	9,274	9,601	10,993	9,119	8,694	7,790	7,034	7,443	7,165	7,852	9,433	9,341	
New Mexico	10,966	15,364	14,963	12,748	11,291	11,398	10,580	11,690	12,491	13,543	16,110	18,635	
New York	31,567	31,910	35,608	33,113	31,294	27,677	25,576	28,779	30,703	32,615	37,306	36,347	
North Carolina	46,548	51,627	55,574	39,992	39,413	39,169	34,784	41,122	37,325	43,211	51,839	57,209	
North Dakota	4,933	6,193	6,461	6,504	4,654	4,939	4,136	4,874	5,212	6,209	6,334	6,528	
Ohio	58,574	74,257	81,153	66,800	56,229	53,164	49,432	51,103	49,942	56,960	76,732	78,726	
Oklahoma Oregon	24,547 22,210	30,840 29,183	30,518 32,423	27,478 27,936	22,693 26,466	24,632 27,103	20,738 23,239	24,061 24,904	23,371 27,277	25,822 27,786	38,406 34,103	41,245 38,537	
Pennsylvania	85,948	95,585	110,334	85,908	79,725	76,201	73,654	79,020	77,003	87,064	104,479	107,730	1
Puerto Rico	1,332	1,259	1,560	1,387	1,600	1,631	1,381	1,490	791	1,306	2,307	2,767	· ·
Rhode Island	2,147	2,354	2,553	2,133	1,883	1,899	1,646	1,718	1,799	2,103	2,173	2,269	
South Carolina	31,829	41,969	43,113	30,218	31,248	32,995	26,567	31,663	25,930	28,996	34,132	38,260	
South Dakota	7,614	9,754	9,770	7,857	7,004	6,704	6,068	6,686	7,457	9,244	9,908	10,507	
Tennessee	83,613	69,264	74,655	57,852	57,763	52,959	52,643	49,945	50,945	55,531	74,800	87,983	
Texas Utah	117,903 18,314	137,470 24,889	144,270 26,941	109,961 23,177	109,732 23,844	118,091 22,138	98,338 17,925	110,946 22,010	128,260 20,041	129,869 19,619	163,358 24,359	181,236 27,220	1
Vermont	2,691	3,594	4,051	3,818	2,577	2,138	2,275	22,010	3,084	3,463	3,240	3,759	
Virgin Islands	88	106	96	111	79	153	151	132	9	68	86	131	
Virginia	37,369	47,038	49,368	48,631	36,007	36,838	36,183	39,114	36,446	40,293	53,142	60,398	
Washington	46,027	52,154	58,069	47,895	45,816	46,023	38,369	42,120	43,049	48,147	53,072	58,937	
West Virginia	15,772	22,449	22,529	16,988	15,085	14,498	13,970	14,770	16,723	18,256	24,455	27,273	
Wisconsin	46,775	50,720	58,739	45,872	37,888	36,267	32,846	40,924	37,506	43,183	48,683	47,120	
Wyoming	3,705	4,554	5,315	4,269	4,128	3,975	3,398	4.111	4,281	4,370	5,665	6,940	

NICS checks (Before adjusted per capita)

NICS checks scaled

Year	State	NICS scaled 100000/(pop/nics)	NICS total	Рор	pop/nics
2017	AL	9792.200498	477345	4874747	10.212209
2017	AK	10927.21632	80839	739795	9.1514615
2017	AZ	5486.248391	384930	7016270	18.227392
2017	AR	7909.68482	237629	3004279	12.642729
2017	CA	3971.276982	1570110	39536653	25.180817
2017	CO	8863.587481	496995	5607154	11.282114
2017	СТ	5066.044551	181779	3588184	19.739266
2017	DE	5264.263119	50639	961939	18.996011
2017	FL	6083.323802	1276549	20984400	16.438382
2017	GA	5193.549875	541655	10429379	19.254653
2017	HI	892.5856965	12742	1427538	112.03406
2017	ID	10606.00148	182099	1716943	9.428624
2017	IL	12506.51557	1601087	12802023	7.9958322
2017	IN	12455.07227	830357	6666818	8.0288575
2017	IA	5117.475827	160981	3145711	19.540884
2017	KS	6572.019101	191451	2913123	15.216024
2017	KY	104204.8283	4641480	4454189	0.9596484
2017	LA	7027.70277	329201	4684333	14.229401
2017	ME	7230.293726	96590	1335907	13.830697
2017	MD	2621.519496	158659	6052177	38.145816
2017	MA	3010.166886	206492	6859819	33.220749
2017	MI	5151.846795	513243	9962311	19.410515
2017	MN	12257.34793	683544	5576606	8.1583717
2017	MS	8439.797594	251852	2984100	11.848625
2017	MO	8587.065546	524973	6113532	11.645422
2017	MT	11798.07957	123938	1050493	8.4759557
2017	NE	3870.575956	74318	1920076	25.835948
2017	NV	4323.5595	129622	2998039	23.129091
2017	NH	9613.529988	129090	1342795	10.402006
2017	NI	1101 000160	102720	0005644	96 910503

Income

tions: 🚿 Hide Table	Tools Add/Remove Geographies		Bookma	ark/Save	🖨 P	rint 📗	Downlo	oad 🕴 🎙	Create	a Map										
					1 127	38	_													
Table Teel	Is: 🗘 Reset Table 📔 Show Hidden	Down/C	Columna	i i i i i i i		Bowe/Ce	lumna	0												
Table Too				0.000		Rows/Co	iuiiiis	•												
	Click 'Back to Search' to se																			
Legend: 🔽	show/hide collapse/expand data categories	rearra colum	range 🖪 mns	rearran	nge 🛧 🗸	sort ascer descendir	g 🖬	filter rows												
															_					
															📑 Vie	w Geogra	aphy Note	s 📑	View Tab	le No
	nunity Survey (ACS) produces population, demog	graphic an	ind housing	g unit estin	nates, it is t	he Census	Bureau's F	Population	Estimates F	Program t	hat produce	es and dis	seminates	the officia	l estimates	of the pop	ulation for t	the nation,	states, cou	unties
s, and towns and estimate	es of housing units for states and counties.																			
	≪ < 1 - 18 of 104 > ≫																		«< 1 - 18	
ersions of this	≪ < 1 - 18 of 104 > ≫		Alaba		la	aka.	Aria	0.00	Arkan		Calife	raia	Color	ada	Conno	otiout	Dela		Distr	rict of
able are available	*		Alaba	ima	Ala	ska	Ariz	ona	Arkar	1585	Califo		Color		Conne	cticut	Dela	ware	Distr	
able are available or the following	* 1 1	Ū		ama Margin	Ala	ska Margin	Ariz	ona Margin	Arkan	nsas Margin	Califo	ornia Margin of	Color	ado Margin of	Conne	cticut Margin	Dela		Distr	rict of Imbia
ble are available or the following ears:	111111			Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	ware Margin of Error	Distr Colu Estimate	Ma of E
ble are available r the following ears: 2017 >	* 1 1			Margin		Margin		Margin		Margin		Margin of		Margin of		Margin		ware Margin	Distr Colu	nict of Imbia Ma
able are available or the following ears: 2017 > 2016	ر ۲۰»		Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	ware Margin of Error	Distr Colu Estimate	Mar of E
ble are available r the following ears: 2017 ►	Median household income in the past	E	Estimate V	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Distr Colu Estimate	Ma of E
ible are available or the following ears: 2017 > 2016 2015 2014 2013	Median household income in the past 12 months (m 2017 inflation-adjusted	E	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Distr Colu Estimate	Mar of E
ble are available r the following ble zouth 2016 2015 2014 2013 2012	Median household income in the past	E	Estimate V	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Distr Colu Estimate	Ma Ma
able are available or the following ears: 2017 > 2016 2015 2014 2013 2012 2011	Median household income in the past 12 months (m 2017 inflation-adjusted	E	Estimate V	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Distr Colu Estimate	Ma Ma
ble are available r the following sears: 2017 > 2016 2015 2014 2013 2012 2011 2010	Median household income in the past 12 months (m 2017 inflation-adjusted	E	Estimate V	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Distr Colu Estimate	Ma Ma
are available bib are available or the following ears: 2017 2016 2015 2014 2013 2012 2011 2010 2010	Median household income in the past 12 months (m 2017 inflation-adjusted	E	Estimate V	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Distr Colu Estimate	Ma Ma
able are available or the following eats: 2017 ▶ 2015 2015 2014 2013 2012 2011 2010 2009 2008	Median household income in the past 12 months (m 2017 inflation-adjusted	E	Estimate V	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Distr Colu Estimate	Ma Ma
able are available or the following ears: 2017 ► 2016 2015 2014 2013 2014 2012 2011 2010 2009 2008 2007	Median household income in the past 12 months (m 2017 inflation-adjusted	E	Estimate V	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Distr Colu Estimate	Ma Ma
2016 2015 2014 2013 2012 2011 2010 2009 2008	Median household income in the past 12 months (m 2017 inflation-adjusted	E	Estimate V	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Distr Colu Estimate	Ma Ma

Explanation of Symbols An ¹¹ entry in the restimate column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate. An ¹² entry in the setimate column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate. An ¹² entry in the setimate nears the median falls in the lowest interval of an open-ended distribution. An ¹⁴ following a median estimate means the median falls in the lowest interval of an open-ended distribution. An ¹⁴ following a median estimate means the median falls in the lowest interval of an open-ended distribution. An ¹⁴ following a median estimate means the median falls in the lowest interval of an open-ended distribution. An ¹⁴ following a median estimate means the median falls in the lowest interval of an open-ended distribution. An ¹⁴ following and error column indicates that the median falls in the lowest interval of an open-ended distribution. An ¹⁴ following and error column indicates that the median falls in the lowest interval of an open-ended distribution. An ¹⁴ following and error column indicates that the median falls in the lowest interval of an open-ended distribution. An ¹⁴ following and error column indicates that the median falls in the lowest interval of an open-ended distribution. A statistical test is not appropriate. An ¹⁴ following and error column indicates that data for this geographic area cannot be displayed because the number of sample cases is too small. An (17) means that the estimate is not approached and approached distribution.

Total Data Adjusted for scale where applicable

STATE	GUNDEATHS	NICS	INCOME	ED	PDUM	POP
AL	22.9	9792.200498	48123	44.7	1	4874747
AK	24.5	10927.21632	73181	36	1	739795
AZ	15.8	5486.248391	56581	36.9	1	7016270
AR	20.3	7909.68482	45869	47.3	1	3004279
CA	7.9	3971.276982	71805	37.5	0	39536653
со	13.4	8863.587481	69117	29.7	0	5607154
СТ	5.1	5066.044551	74168	36.7	0	3588184
DE	11.7	5264.263119	62852	41.9	0	961939
FL	12.4	6083.323802	52594	40.4	1	20984400
GA	15.4	5193.549875	56183	41	1	10429379
н	2.5	892.5856965	77765	35.9	1	1427538
ID	16.4	10606.00148	52225	37.4	1	1716943
IL	12.1	12506.51557	62992	37	1	12802023
IN	15.3	12455.07227	54181	44	1	6666818
IA	9	5117.475827	58570	38.4	1	3145711
KS	16	6572.019101	56422	34.8	1	2913123
КҮ	16.2	104204.8283	48375	46.6	1	4454189
LA	21.7	7027.70277	46145	48.9	1	4684333
ME	11.7	7230.293726	56277	38.6	1	1335907
MD	12.3	2621.519496	80776	34.6	0	6052177
MA	3.7	3010.166886	77385	33.5	1	6859819
мі	11.3	5151.846795	54909	38	1	9962311
MN	8.2	12257.34793	68388	31.7	1	5576606
MS	21.5	8439.797594	43529	46	1	2984100
мо	21.5	8587.065546	53578	41.1	1	6113532
мт	22.5	11798.07957	53386	35.1	1	1050493

ECONOMETRICS DATA

```
Code
       ---
      title: "Q's Regression Analysis Code"
      output:
       word document: default
       html notebook: default
      ____
       ```{r}
 install.packages("pastecs")
 install.packages("corrplot")
 ...
      ```{r}
      library(pastecs)
      library(corrplot)
       • • •
      ```{r}
 DATA <- read.csv("/Users/Q/Desktop/adjDATA.csv")
 DATA
 • • •
       ```{r}
      options(scipen = 999)
       • • •
       ```{r}
 stat.desc(DATA)
 • • •
       ```{r}
      regout <- lm(DATA$GUNDEATHS ~ DATA$NICS + DATA$INCOME + DATA$ED +
DATA$PDUM)
      regout
       • • •
       ```{r}
 GLS <- lm(DATA$GUNDEATHS ~ DATA$NICS/DATA$POP +
DATA$INCOME/DATA$POP + DATA$ED/DATA$POP + DATA$PDUM/DATA$POP)
 summary(GLS)
 • • •
       ```{r}
       VIF1 <- lm(DATA$GUNDEATHS ~ DATA$NICS)
      summary(VIF1)
       • • •
       ```{r}
```

```
VIF2 <- lm(DATA$GUNDEATHS ~ DATA$INCOME)
summary(VIF2)
• • •
```{r}
VIF3 <- lm(DATA$GUNDEATHS ~ DATA$ED)
summary(VIF3)
• • •
```{r}
VIF4 <- lm(DATA$GUNDEATHS ~ DATA$PDUM)
summary(VIF4)
• • •
```{r}
summary(regout)
• • •
```{r}
corrs <- cor(DATA)
corrs
• • •
```{r}
residuals <- resid(regout)
residuals
• • •
```{r}
parkstats \leq -lm(formula = log(residuals^2) \sim log(POP), data = DATA)
parkstats
• • •
```{r}
summary(parkstats)
• • •
```