--- title: "Q's Regression Code" output: word_document: default html_notebook: default --- ```{r} install.packages("pastecs") install.packages("corrplot") ``` ```{r} library(pastecs) library(corrplot) ``` ```{r} DATA <- read.csv("/Users/Q/Desktop/adjDATA.csv") DATA ``` ```{r} options(scipen = 999) ``` ```{r} stat.desc(DATA) ``` ```{r} regout <- lm(DATA$GUNDEATHS ~ DATA$NICS + DATA$INCOME + DATA$ED + DATA$PDUM) regout ``` ```{r} GLS <- lm(DATA$GUNDEATHS ~ DATA$NICS/DATA$POP + DATA$INCOME/DATA$POP + DATA$ED/DATA$POP +DATA$PDUM/DATA$POP) summary(GLS) ``` ```{r} VIF1 <- lm(DATA$GUNDEATHS ~ DATA$NICS) summary(VIF1) ``` ```{r} VIF2 <- lm(DATA$GUNDEATHS ~ DATA$INCOME) summary(VIF2) ``` ```{r} VIF3 <- lm(DATA$GUNDEATHS ~ DATA$ED) summary(VIF3) ``` ```{r} VIF4 <- lm(DATA$GUNDEATHS ~ DATA$PDUM) summary(VIF4) ``` ```{r} summary(regout) ``` ```{r} corrs <- cor(DATA) corrs ``` ```{r} residuals <- resid(regout) residuals ``` ```{r} parkstats <- lm(formula = log(residuals^2) ~ log(POP), data = DATA ) parkstats ``` ```{r} summary(parkstats) ```