
 - 1 -  

 

FreeRange 

Digital Design 
Foundation Modeling 

James Mealy © 2018  

v5.00 

 

 



Free Range Digital Design Foundation Modeling Table of Contents 

 

 - 2 -  

 

Table of Contents 
 

TABLE OF CONTENTS .............................................................................................................................. ‐ 2 ‐ 

PRETENTIONS ....................................................................................................................................... ‐ 12 ‐ 

ACKNOWLEDGEMENTS ......................................................................................................................... ‐ 13 ‐ 

ONE PERSON’S VIEWPOINT .................................................................................................................. ‐ 14 ‐ 

TOPIC COVERAGE & PREVIOUS BOOKS ................................................................................................. ‐ 15 ‐ 

OVERVIEW OF CHAPTER OVERVIEWS .................................................................................................... ‐ 16 ‐ 

1  FREERANGE DIGITAL DESIGN FOUNDATION MODELING OVERVIEW ............................................. ‐ 19 ‐ 

1.1  INTRODUCTION ..................................................................................................................................... ‐ 19 ‐ 

1.2  DIGITAL DESIGN OVERVIEW ..................................................................................................................... ‐ 19 ‐ 

1.3  HISTORICAL OVERVIEW OF DIGITAL DESIGN COURSES ................................................................................... ‐ 20 ‐ 

1.4  THE APPROACH WE’LL BE TAKING ............................................................................................................ ‐ 20 ‐ 

1.5  THE NEW DIGITAL PARADIGM: DIGITAL DESIGN FOUNDATION MODELING ....................................................... ‐ 21 ‐ 

1.5.1  DDFM Overview ...................................................................................................................... ‐ 21 ‐ 

1.5.2  The Three Approaches to Digital Design ................................................................................. ‐ 23 ‐ 

1.6  CHAPTER SUMMARY .............................................................................................................................. ‐ 24 ‐ 

1.7  CHAPTER EXERCISES ............................................................................................................................... ‐ 25 ‐ 

2  THE BATTLE OF ANALOG AND DIGITAL ......................................................................................... ‐ 26 ‐ 

2.1  INTRODUCTION ..................................................................................................................................... ‐ 26 ‐ 

2.2  ANALOG THINGS AND DIGITAL THINGS ...................................................................................................... ‐ 26 ‐ 

2.3  CHAPTER SUMMARY .............................................................................................................................. ‐ 29 ‐ 

2.4  CHAPTER EXERCISES ............................................................................................................................... ‐ 30 ‐ 

3  THE WONDERFUL WORLD OF MODELING .................................................................................... ‐ 31 ‐ 

3.1  INTRODUCTION ..................................................................................................................................... ‐ 31 ‐ 

3.2  THE “MODELING” APPROACH TO ANYTHING .............................................................................................. ‐ 31 ‐ 

3.3  THE BLACK BOX DIAGRAM IN DIGITAL DESIGN ............................................................................................ ‐ 32 ‐ 

3.4  MODELING WITH BLACK BOX DIAGRAMS ................................................................................................... ‐ 33 ‐ 

3.5  BLACK BOX MODELING REDUX ................................................................................................................. ‐ 37 ‐ 

3.6  CHAPTER SUMMARY .............................................................................................................................. ‐ 39 ‐ 

3.7  CHAPTER EXERCISES ............................................................................................................................... ‐ 40 ‐ 

3.8  DESIGN PROBLEMS ................................................................................................................................ ‐ 41 ‐ 

4  NUMBER SYSTEMS BASICS ........................................................................................................... ‐ 42 ‐ 

4.1  INTRODUCTION ..................................................................................................................................... ‐ 42 ‐ 



Free Range Digital Design Foundation Modeling Table of Contents 

 

 - 3 -  

 

4.2  NUMBER SYSTEM RETROSPECTIVE ............................................................................................................ ‐ 42 ‐ 

4.2.1  Stoneage Unary ....................................................................................................................... ‐ 43 ‐ 

4.3  NUMBER SYSTEMS BASICS ....................................................................................................................... ‐ 44 ‐ 

4.4  JUXTAPOSITIONAL NOTATION AND NUMBERS ............................................................................................. ‐ 45 ‐ 

4.5  COMMON DIGITAL RADII ........................................................................................................................ ‐ 46 ‐ 

4.5.1  Binary Number System ............................................................................................................ ‐ 47 ‐ 

4.5.2  Hexadecimal Number System ................................................................................................. ‐ 48 ‐ 

4.6  IMPORTANT ATTRIBUTES OF BINARY NUMBERS ........................................................................................... ‐ 49 ‐ 

4.6.1  Unique Numbers vs. Number of Bits ....................................................................................... ‐ 49 ‐ 

4.6.2  Number Range vs. Number of Bits .......................................................................................... ‐ 49 ‐ 

4.6.3  Number of Bits to Represent a Number .................................................................................. ‐ 50 ‐ 

4.7  ENGINEERING NOTATION ........................................................................................................................ ‐ 51 ‐ 

4.8  CHAPTER SUMMARY .............................................................................................................................. ‐ 53 ‐ 

4.9  CHAPTER EXERCISES ............................................................................................................................... ‐ 54 ‐ 

4.10  DESIGN PROBLEMS ........................................................................................................................... ‐ 56 ‐ 

5  NUMBER SYSTEMS: CODES AND CONVERSIONS ........................................................................... ‐ 57 ‐ 

5.1  INTRODUCTION ..................................................................................................................................... ‐ 57 ‐ 

5.2  NUMBER SYSTEM CONVERSIONS .............................................................................................................. ‐ 57 ‐ 

5.2.1  Any Radix to Decimal Conversions .......................................................................................... ‐ 57 ‐ 

5.2.2  Decimal to Any Radix Conversion ............................................................................................ ‐ 58 ‐ 

5.2.3  Binary ↔ Hex Conversions ..................................................................................................... ‐ 61 ‐ 

5.3  FAST RADIX‐BASED DIVISION & MULTIPLICATION ........................................................................................ ‐ 62 ‐ 

5.4  OTHER USEFUL CODES ........................................................................................................................... ‐ 63 ‐ 

5.4.1  Binary Coded Decimal Numbers (BCD) .................................................................................... ‐ 63 ‐ 

5.4.2  One‐Hot Codes ........................................................................................................................ ‐ 64 ‐ 

5.4.3  Unit Distance Codes (UDC) ...................................................................................................... ‐ 65 ‐ 

5.5  CHAPTER SUMMARY .............................................................................................................................. ‐ 67 ‐ 

5.6  CHAPTER EXERCISES ............................................................................................................................... ‐ 68 ‐ 

5.7  CHAPTER DESIGN PROBLEMS ................................................................................................................... ‐ 71 ‐ 

6  BRUTE FORCE DIGITAL DESIGN .................................................................................................... ‐ 72 ‐ 

6.1  INTRODUCTION ..................................................................................................................................... ‐ 72 ‐ 

6.2  DIGITAL DESIGN .................................................................................................................................... ‐ 72 ‐ 

6.2.1  Step 1: Defining the Problem .................................................................................................. ‐ 73 ‐ 

6.2.2  Step 2: Describing the Solution ............................................................................................... ‐ 74 ‐ 

6.2.3  Step 3: Implementing the Solution .......................................................................................... ‐ 77 ‐ 



Free Range Digital Design Foundation Modeling Table of Contents 

 

 - 4 -  

 

6.3  CHAPTER SUMMARY .............................................................................................................................. ‐ 80 ‐ 

6.4  CHAPTER EXERCISES ............................................................................................................................... ‐ 81 ‐ 

6.5  DESIGN PROBLEMS ................................................................................................................................ ‐ 84 ‐ 

7  TIMING DIAGRAM INTRODUCTION .............................................................................................. ‐ 86 ‐ 

7.1  INTRODUCTION ..................................................................................................................................... ‐ 86 ‐ 

7.2  TIMING DIAGRAM OVERVIEW .................................................................................................................. ‐ 86 ‐ 

7.2.1  Timing Diagrams: The Gory Details......................................................................................... ‐ 87 ‐ 

7.2.2  Timing Diagrams: The Initial Details ....................................................................................... ‐ 88 ‐ 

7.3  TIMING DIAGRAMS: BUNDLE NOTATION .................................................................................................... ‐ 90 ‐ 

7.3.1  Bundle Notation in Schematic Diagrams ................................................................................ ‐ 90 ‐ 

7.3.2  Bundle Notation in Timing Diagrams ...................................................................................... ‐ 92 ‐ 

7.4  TIMING DIAGRAM ANNOTATIONS ............................................................................................................. ‐ 99 ‐ 

7.4.1  Timing Diagram Usage ......................................................................................................... ‐ 100 ‐ 

7.4.2  Understanding Timing Diagrams .......................................................................................... ‐ 100 ‐ 

7.5  CHAPTER SUMMARY ............................................................................................................................ ‐ 103 ‐ 

7.6  CHAPTER EXERCISES ............................................................................................................................. ‐ 104 ‐ 

7.7  DESIGN PROBLEMS .............................................................................................................................. ‐ 109 ‐ 

8  RIPPLE CARRY ADDERS .............................................................................................................. ‐ 110 ‐ 

8.1  INTRODUCTION ................................................................................................................................... ‐ 110 ‐ 

8.2  ITERATIVE MODULAR DESIGN OVERVIEW ................................................................................................. ‐ 110 ‐ 

8.3  THE HALF ADDER (HA) ........................................................................................................................ ‐ 111 ‐ 

8.4  THE FULL ADDER (FA) .......................................................................................................................... ‐ 112 ‐ 

8.5  RIPPLE CARRY ADDERS (RCA) ................................................................................................................ ‐ 114 ‐ 

8.6  DIGITAL DESIGN FOUNDATION NOTATION: THE RCA ................................................................................. ‐ 119 ‐ 

8.7  CHAPTER SUMMARY ............................................................................................................................ ‐ 121 ‐ 

8.8  CHAPTER EXERCISES ............................................................................................................................. ‐ 122 ‐ 

8.9  DESIGN PROBLEMS .............................................................................................................................. ‐ 123 ‐ 

9  BOOLEAN FUNCTIONS AND DEMORGAN’S THEOREM ................................................................ ‐ 124 ‐ 

9.1  INTRODUCTION ................................................................................................................................... ‐ 124 ‐ 

9.2  REPRESENTING BOOLEAN FUNCTIONS ...................................................................................................... ‐ 124 ‐ 

9.3  DEMORGAN’S THEOREMS ..................................................................................................................... ‐ 125 ‐ 

9.4  MINTERM & MAXTERM REPRESENTATIONS .............................................................................................. ‐ 127 ‐ 

9.5  COMPACT MINTERM & MAXTERM FUNCTION FORMS ................................................................................ ‐ 132 ‐ 

9.6  CHAPTER SUMMARY ............................................................................................................................ ‐ 139 ‐ 

9.7  CHAPTER EXERCISES ............................................................................................................................. ‐ 140 ‐ 



Free Range Digital Design Foundation Modeling Table of Contents 

 

 - 5 -  

 

9.8  DESIGN PROBLEMS .............................................................................................................................. ‐ 143 ‐ 

10  MORE STANDARD LOGIC GATES................................................................................................. ‐ 144 ‐ 

10.1  INTRODUCTION .............................................................................................................................. ‐ 144 ‐ 

10.2  NAND GATES AND NOR GATES ....................................................................................................... ‐ 144 ‐ 

10.3  XOR AND XNOR GATES .................................................................................................................. ‐ 146 ‐ 

10.4  LOGIC GATE ABSTRACTIONS .............................................................................................................. ‐ 147 ‐ 

10.4.1  Gates as Inverters ............................................................................................................. ‐ 147 ‐ 

10.4.2  Gates as Switches ............................................................................................................. ‐ 147 ‐ 

10.4.3  Gates as Buffers ............................................................................................................... ‐ 148 ‐ 

10.5  CHAPTER SUMMARY ........................................................................................................................ ‐ 154 ‐ 

10.6  CHAPTER EXERCISES ........................................................................................................................ ‐ 155 ‐ 

10.7  DESIGN PROBLEMS ......................................................................................................................... ‐ 156 ‐ 

11  CIRCUIT FORMS ......................................................................................................................... ‐ 157 ‐ 

11.1  INTRODUCTION .............................................................................................................................. ‐ 157 ‐ 

11.2  CIRCUIT FORMS .............................................................................................................................. ‐ 157 ‐ 

11.2.1  The Standard Circuit Forms .............................................................................................. ‐ 157 ‐ 

11.3  MINIMUM COST CONCEPTS .............................................................................................................. ‐ 160 ‐ 

11.4  CHAPTER SUMMARY ........................................................................................................................ ‐ 161 ‐ 

11.5  CHAPTER EXERCISES ........................................................................................................................ ‐ 162 ‐ 

12  SIGNED BINARY REPRESENTATIONS ........................................................................................... ‐ 165 ‐ 

12.1  INTRODUCTION .............................................................................................................................. ‐ 165 ‐ 

12.2  SIGNED BINARY NUMBER REPRESENTATIONS ....................................................................................... ‐ 165 ‐ 

12.2.1  Sign Magnitude Notation (SM): ....................................................................................... ‐ 166 ‐ 

12.2.2  Diminished Radix Complement (DRC) ............................................................................... ‐ 167 ‐ 

12.2.3  Radix Complement (RC): ................................................................................................... ‐ 168 ‐ 

12.3  NUMBER RANGES IN SM, DRC, AND RC NOTATIONS ............................................................................ ‐ 170 ‐ 

12.4  EXTENDING DATA WIDTHS ............................................................................................................... ‐ 171 ‐ 

12.4.1  Unsigned Binary ............................................................................................................... ‐ 171 ‐ 

12.4.2  Signed Binary (RC Form) ................................................................................................... ‐ 171 ‐ 

12.5  CHAPTER SUMMARY ........................................................................................................................ ‐ 173 ‐ 

12.6  CHAPTER EXERCISES ........................................................................................................................ ‐ 174 ‐ 

12.7  DESIGN PROBLEMS ......................................................................................................................... ‐ 176 ‐ 

13  BINARY MATHEMATICS ............................................................................................................. ‐ 177 ‐ 

13.1  INTRODUCTION .............................................................................................................................. ‐ 177 ‐ 

13.2  BINARY ADDITION AND SUBTRACTION ................................................................................................. ‐ 177 ‐ 



Free Range Digital Design Foundation Modeling Table of Contents 

 

 - 6 -  

 

13.2.1  Binary Subtraction ............................................................................................................ ‐ 177 ‐ 

13.2.2  Addition and Subtraction on Unsigned Binary Numbers .................................................. ‐ 178 ‐ 

13.2.3  Addition and Subtraction on Signed Binary Numbers ...................................................... ‐ 179 ‐ 

13.3  SPECIAL CASES OF VALIDITY FOR RC NUMBERS ..................................................................................... ‐ 181 ‐ 

13.4  CHAPTER SUMMARY ........................................................................................................................ ‐ 183 ‐ 

13.5  CHAPTER EXERCISES ........................................................................................................................ ‐ 184 ‐ 

13.6  DESIGN PROBLEMS ......................................................................................................................... ‐ 187 ‐ 

14  MIXED LOGIC ............................................................................................................................. ‐ 188 ‐ 

14.1  INTRODUCTION .............................................................................................................................. ‐ 188 ‐ 

14.2  MIXED LOGIC OVERVIEW ................................................................................................................. ‐ 188 ‐ 

14.3  THE INVERTER AND MIXED LOGIC ...................................................................................................... ‐ 190 ‐ 

14.4  EQUIVALENT SIGNALS FOR DPI NOTATION........................................................................................... ‐ 190 ‐ 

14.5  MIXED LOGIC‐BASED GATE FORMS .................................................................................................... ‐ 191 ‐ 

14.6  AND/OR AND NAND/NAND FORMS .............................................................................................. ‐ 194 ‐ 

14.7  OR/AND & NOR/NOR FORMS....................................................................................................... ‐ 195 ‐ 

14.8  MIXED LOGIC ANALYSIS ................................................................................................................... ‐ 196 ‐ 

14.9  MIXED LOGIC DESIGN ...................................................................................................................... ‐ 200 ‐ 

14.10  CHAPTER SUMMARY ........................................................................................................................ ‐ 205 ‐ 

14.11  CHAPTER EXERCISES ........................................................................................................................ ‐ 206 ‐ 

14.12  DESIGN PROBLEMS ......................................................................................................................... ‐ 210 ‐ 

15  MODULAR DESIGN .................................................................................................................... ‐ 211 ‐ 

15.1  INTRODUCTION .............................................................................................................................. ‐ 211 ‐ 

15.2  THE BIG DIGITAL DESIGN OVERVIEW .................................................................................................. ‐ 211 ‐ 

15.3  MODULAR DESIGN OVERVIEW .......................................................................................................... ‐ 212 ‐ 

15.4  CHAPTER SUMMARY ........................................................................................................................ ‐ 222 ‐ 

15.5  CHAPTER EXERCISES ........................................................................................................................ ‐ 223 ‐ 

15.6  DESIGN PROBLEMS ......................................................................................................................... ‐ 224 ‐ 

16  DECODERS ................................................................................................................................. ‐ 226 ‐ 

16.1  CHAPTER OVERVIEW ....................................................................................................................... ‐ 226 ‐ 

16.2  INTRODUCTION TO DECODERS ........................................................................................................... ‐ 226 ‐ 

16.3  GENERIC DECODERS ........................................................................................................................ ‐ 227 ‐ 

16.4  STANDARD DECODERS ..................................................................................................................... ‐ 228 ‐ 

16.5  DIGITAL DESIGN FOUNDATION NOTATION: GENERIC DECODER ................................................................ ‐ 232 ‐ 

16.6  DIGITAL DESIGN FOUNDATION NOTATION: STANDARD DECODER ............................................................. ‐ 233 ‐ 

16.7  CHAPTER SUMMARY ........................................................................................................................ ‐ 235 ‐ 



Free Range Digital Design Foundation Modeling Table of Contents 

 

 - 7 -  

 

16.8  CHAPTER EXERCISES ........................................................................................................................ ‐ 236 ‐ 

16.9  DESIGN PROBLEMS ......................................................................................................................... ‐ 239 ‐ 

17  MULTIPLEXORS.......................................................................................................................... ‐ 241 ‐ 

17.1  INTRODUCTION .............................................................................................................................. ‐ 241 ‐ 

17.2  MAKING DECISIONS IN HARDWARE AND SOFTWARE .............................................................................. ‐ 241 ‐ 

17.3  MULTIPLEXORS .............................................................................................................................. ‐ 242 ‐ 

17.4  DIGITAL DESIGN FOUNDATION NOTATION: MUX ................................................................................. ‐ 248 ‐ 

17.5  CHAPTER SUMMARY ........................................................................................................................ ‐ 250 ‐ 

17.6  CHAPTER EXERCISES ........................................................................................................................ ‐ 251 ‐ 

17.7  DESIGN PROBLEMS ......................................................................................................................... ‐ 256 ‐ 

18  COMPARATORS ......................................................................................................................... ‐ 261 ‐ 

18.1  INTRODUCTION .............................................................................................................................. ‐ 261 ‐ 

18.2  COMPARATORS .............................................................................................................................. ‐ 261 ‐ 

18.3  DIGITAL DESIGN FOUNDATION NOTATION: COMPARATOR ...................................................................... ‐ 270 ‐ 

18.4  CHAPTER SUMMARY ........................................................................................................................ ‐ 271 ‐ 

18.5  CHAPTER EXERCISES ........................................................................................................................ ‐ 272 ‐ 

18.6  DESIGN PROBLEMS ......................................................................................................................... ‐ 274 ‐ 

19  PARITY GENERATORS AND CHECKERS ........................................................................................ ‐ 277 ‐ 

19.1  INTRODUCTION .............................................................................................................................. ‐ 277 ‐ 

19.2  PARITY GENERATORS AND PARITY CHECKERS ........................................................................................ ‐ 277 ‐ 

19.3  EXTRA PARITY DETAILS .................................................................................................................... ‐ 284 ‐ 

19.4  DIGITAL DESIGN FOUNDATION NOTATION: PARITY GENERATOR .............................................................. ‐ 285 ‐ 

19.5  CHAPTER SUMMARY ........................................................................................................................ ‐ 286 ‐ 

19.6  CHAPTER EXERCISES ........................................................................................................................ ‐ 287 ‐ 

19.7  DESIGN PROBLEMS ......................................................................................................................... ‐ 289 ‐ 

20  INTRODUCTION TO SEQUENTIAL CIRCUITS ................................................................................. ‐ 291 ‐ 

20.1  INTRODUCTION .............................................................................................................................. ‐ 291 ‐ 

20.2  SEQUENTIAL VS. COMBINATORIAL CIRCUIT ........................................................................................... ‐ 291 ‐ 

20.3  SEQUENTIAL CIRCUITS: LOW‐LEVEL BASICS .......................................................................................... ‐ 292 ‐ 

20.4  THE NOR LATCH ............................................................................................................................ ‐ 296 ‐ 

20.4.1  Latch Terminology ............................................................................................................ ‐ 297 ‐ 

20.5  STATE DIAGRAMS ........................................................................................................................... ‐ 297 ‐ 

20.6  PS/NS TABLES ............................................................................................................................... ‐ 298 ‐ 

20.7  EXCITATION TABLES ......................................................................................................................... ‐ 299 ‐ 

20.8  THE NAND LATCH .......................................................................................................................... ‐ 300 ‐ 



Free Range Digital Design Foundation Modeling Table of Contents 

 

 - 8 -  

 

20.9  NOR AND NAND LATCH SUMMARY .................................................................................................. ‐ 300 ‐ 

20.10  CHAPTER OVERVIEW ....................................................................................................................... ‐ 302 ‐ 

20.11  CHAPTER EXERCISES ........................................................................................................................ ‐ 303 ‐ 

20.12  DESIGN PROBLEMS ......................................................................................................................... ‐ 304 ‐ 

21  FLIP‐FLOPS ................................................................................................................................ ‐ 305 ‐ 

21.1  INTRODUCTION .............................................................................................................................. ‐ 305 ‐ 

21.2  CLOCK VERNACULAR ....................................................................................................................... ‐ 305 ‐ 

21.3  FLIP‐FLOPS .................................................................................................................................... ‐ 306 ‐ 

21.4  THE D FLIP‐FLOP ............................................................................................................................ ‐ 306 ‐ 

21.5  SYNCHRONOUS AND ASYNCHRONOUS FLIP‐FLOP INPUTS ........................................................................ ‐ 307 ‐ 

21.5.1  D Flip‐Flop with Reset ....................................................................................................... ‐ 308 ‐ 

21.5.2  D Flip‐Flop with Set Input ................................................................................................. ‐ 309 ‐ 

21.6  FLIP‐FLOPS WITH MULTIPLE CONTROL INPUTS ...................................................................................... ‐ 310 ‐ 

21.7  CHAPTER OVERVIEW ....................................................................................................................... ‐ 312 ‐ 

21.8  CHAPTER EXERCISES ........................................................................................................................ ‐ 313 ‐ 

21.9  DESIGN PROBLEMS ......................................................................................................................... ‐ 315 ‐ 

22  REGISTERS ................................................................................................................................. ‐ 316 ‐ 

22.1  INTRODUCTION .............................................................................................................................. ‐ 316 ‐ 

22.2  REGISTERS ..................................................................................................................................... ‐ 316 ‐ 

22.3  SPECIAL REGISTER CIRCUITS: THE ACCUMULATOR ................................................................................. ‐ 322 ‐ 

22.4  REGISTERS: THE FINAL COMMENTS .................................................................................................... ‐ 324 ‐ 

22.5  DIGITAL DESIGN FOUNDATION NOTATION: REGISTERS ........................................................................... ‐ 325 ‐ 

22.6  CHAPTER SUMMARY ........................................................................................................................ ‐ 326 ‐ 

22.7  CHAPTER EXERCISES ........................................................................................................................ ‐ 327 ‐ 

22.8  DESIGN PROBLEMS ......................................................................................................................... ‐ 329 ‐ 

23  FINITE STATE MACHINES ............................................................................................................ ‐ 330 ‐ 

23.1  INTRODUCTION .............................................................................................................................. ‐ 330 ‐ 

23.2  FSM DESIGN: START WITH WHAT YOU KNOW ..................................................................................... ‐ 330 ‐ 

23.3  FSM ILLEGAL STATE RECOVERY ......................................................................................................... ‐ 349 ‐ 

23.4  FSM OVERVIEW AND SUMMARY ....................................................................................................... ‐ 355 ‐ 

23.5  HIGH‐LEVEL MODELING OF FINITE STATE MACHINES ............................................................................. ‐ 356 ‐ 

23.6  THE FSM: SYMBOLOGY OVERVIEW .................................................................................................... ‐ 357 ‐ 

23.6.1  The State Bubble .............................................................................................................. ‐ 357 ‐ 

23.6.2  The State Diagram ........................................................................................................... ‐ 358 ‐ 

23.6.3  State Transitions Controlling Conditions .......................................................................... ‐ 359 ‐ 



Free Range Digital Design Foundation Modeling Table of Contents 

 

 - 9 -  

 

23.6.4  FSM External Outputs ....................................................................................................... ‐ 360 ‐ 

23.6.5  Non‐Important FSM Outputs ............................................................................................ ‐ 361 ‐ 

23.6.6  Non‐Important FSM Inputs ............................................................................................... ‐ 361 ‐ 

23.7  THE FINAL STATE DIAGRAM SUMMARY ............................................................................................... ‐ 362 ‐ 

23.8  CHAPTER SUMMARY ........................................................................................................................ ‐ 364 ‐ 

23.9  CHAPTER EXERCISES ........................................................................................................................ ‐ 365 ‐ 

23.10  DESIGN PROBLEMS ......................................................................................................................... ‐ 366 ‐ 

24  FSM CLOCKING ISSUES ............................................................................................................... ‐ 367 ‐ 

24.1  CHAPTER OVERVIEW ....................................................................................................................... ‐ 367 ‐ 

24.2  CLOCKING WAVEFORMS .................................................................................................................. ‐ 367 ‐ 

24.2.1  The Period ........................................................................................................................ ‐ 367 ‐ 

24.2.2  The Frequency .................................................................................................................. ‐ 368 ‐ 

24.2.3  Duty Cycle ......................................................................................................................... ‐ 369 ‐ 

24.3  PRACTICAL SYNCHRONOUS CIRCUIT CLOCKING ..................................................................................... ‐ 370 ‐ 

24.3.1  Setup and Hold Times ....................................................................................................... ‐ 370 ‐ 

24.4  MAXIMUM FSM CLOCK FREQUENCIES ............................................................................................... ‐ 370 ‐ 

24.5  CHAPTER SUMMARY ........................................................................................................................ ‐ 373 ‐ 

24.6  CHAPTER EXERCISES ........................................................................................................................ ‐ 374 ‐ 

25  INTRODUCTORY CONTROLLER‐BASED FSM DESIGN .................................................................... ‐ 376 ‐ 

25.1  INTRODUCTION .............................................................................................................................. ‐ 376 ‐ 

25.2  FSM HISTORICAL OVERVIEW ............................................................................................................ ‐ 376 ‐ 

25.3  DIGITAL DESIGN OVERVIEW .............................................................................................................. ‐ 378 ‐ 

25.3.1  DDFM Overview ............................................................................................................... ‐ 378 ‐ 

25.3.2  The Three Approaches to Digital Design .......................................................................... ‐ 380 ‐ 

25.4  ATTACK OF THE BLINKING LEDS ......................................................................................................... ‐ 382 ‐ 

25.5  FSMS AS SEQUENCE DETECTORS ....................................................................................................... ‐ 388 ‐ 

25.5.1  Sequence Detector Post‐Mortem ..................................................................................... ‐ 391 ‐ 

25.6  TIMING DIAGRAMS: THE MEALY & MOORE‐TYPE OUTPUTS ................................................................... ‐ 392 ‐ 

25.7  CHAPTER SUMMARY ........................................................................................................................ ‐ 396 ‐ 

25.8  CHAPTER EXERCISES ........................................................................................................................ ‐ 397 ‐ 

25.10  DESIGN PROBLEMS ......................................................................................................................... ‐ 400 ‐ 

26  COUNTERS ................................................................................................................................ ‐ 406 ‐ 

26.1  INTRODUCTION .............................................................................................................................. ‐ 406 ‐ 

26.2  COUNTERS: A REGISTER WITH FEATURES ............................................................................................. ‐ 406 ‐ 

26.3  TYPICAL COUNTER FEATURE SET ISSUES .............................................................................................. ‐ 410 ‐ 



Free Range Digital Design Foundation Modeling Table of Contents 

 

 - 10 -  

 

26.4  SPECIAL COUNTER CIRCUITS: EVENT COUNTERS .................................................................................... ‐ 422 ‐ 

26.5  DIGITAL DESIGN FOUNDATION NOTATION: COUNTERS ........................................................................... ‐ 424 ‐ 

26.6  CHAPTER SUMMARY ........................................................................................................................ ‐ 426 ‐ 

26.7  CHAPTER EXERCISES ........................................................................................................................ ‐ 427 ‐ 

26.8  DESIGN PROBLEMS ......................................................................................................................... ‐ 428 ‐ 

27  SHIFT REGISTERS ....................................................................................................................... ‐ 432 ‐ 

27.1  INTRODUCTION .............................................................................................................................. ‐ 432 ‐ 

27.2  SHIFT REGISTERS: ANOTHER SPECIALTY REGISTER ................................................................................. ‐ 432 ‐ 

27.3  UNIVERSAL SHIFT REGISTERS ............................................................................................................. ‐ 435 ‐ 

27.4  BARREL SHIFTERS ............................................................................................................................ ‐ 439 ‐ 

27.5  OTHER COMMON SHIFTS ................................................................................................................. ‐ 440 ‐ 

27.5.1  Rotates ............................................................................................................................. ‐ 440 ‐ 

27.5.2  Arithmetic Shifts ............................................................................................................... ‐ 440 ‐ 

27.6  DIGITAL DESIGN FOUNDATION NOTATION: SHIFT REGISTER .................................................................... ‐ 449 ‐ 

27.7  REGISTER OVERVIEW ....................................................................................................................... ‐ 450 ‐ 

27.8  CHAPTER EXERCISES ........................................................................................................................ ‐ 452 ‐ 

27.9  DESIGN PROBLEMS ......................................................................................................................... ‐ 455 ‐ 

28  STRUCTURED MEMORY: RAM AND ROM ................................................................................... ‐ 458 ‐ 

28.1  INTRODUCTION .............................................................................................................................. ‐ 458 ‐ 

28.2  MEMORY INTRODUCTION AND OVERVIEW ........................................................................................... ‐ 458 ‐ 

28.2.1  Basic Memory Operations: READ and WRITE ................................................................... ‐ 459 ‐ 

28.2.2  Basic Memory Types: ROM and RAM ............................................................................... ‐ 459 ‐ 

28.3  SOFTWARE ARRAYS VS. HARDWARE STRUCTURED MEMORIES ................................................................. ‐ 460 ‐ 

28.4  MEMORY OPERATION DETAILS: READING AND WRITING ........................................................................ ‐ 460 ‐ 

28.5  MEMORY SPECIFICATION AND CAPACITY ............................................................................................. ‐ 461 ‐ 

28.6  MEMORY INTERFACE DETAILS ........................................................................................................... ‐ 462 ‐ 

28.7  MEMORY PERFORMANCE PARAMETERS .............................................................................................. ‐ 463 ‐ 

28.8  MEMORY ADDRESS RANGES ............................................................................................................. ‐ 465 ‐ 

28.9  DIGITAL DESIGN FOUNDATION NOTATION: RAM ................................................................................. ‐ 473 ‐ 

28.10  CHAPTER SUMMARY ........................................................................................................................ ‐ 474 ‐ 

28.11  CHAPTER EXERCISES ........................................................................................................................ ‐ 475 ‐ 

28.12  DESIGN PROBLEMS ......................................................................................................................... ‐ 476 ‐ 

APPENDIX .......................................................................................................................................... ‐ 478 ‐ 

MEALY’S LAWS OF DIGITAL DESIGN .................................................................................................... ‐ 479 ‐ 

REQUIEM FOR THE DIGITAL LOGIC DESIGNER ...................................................................................... ‐ 480 ‐ 



Free Range Digital Design Foundation Modeling Table of Contents 

 

 - 11 -  

 

RIPPLE CARRY ADDER (RCA) ........................................................................................................................... ‐ 484 ‐ 

MULTIPLEXOR (MUX) ................................................................................................................................... ‐ 485 ‐ 

COMPARATOR .............................................................................................................................................. ‐ 486 ‐ 

GENERIC DECODER ........................................................................................................................................ ‐ 487 ‐ 

STANDARD DECODER ..................................................................................................................................... ‐ 488 ‐ 

PARITY GENERATOR....................................................................................................................................... ‐ 489 ‐ 

REGISTERS ................................................................................................................................................... ‐ 490 ‐ 

COUNTERS ................................................................................................................................................... ‐ 491 ‐ 

SHIFT REGISTERS ........................................................................................................................................... ‐ 492 ‐ 

RANDOM ACCESS MEMORY (RAM) ................................................................................................................. ‐ 493 ‐ 

FINITE STATE MACHINE (FSM) ........................................................................................................................ ‐ 494 ‐ 

DIGITAL DESIGNER FOUNDATION MODEL CHEATSHEET ...................................................................... ‐ 495 ‐ 

DIGITAL DESIGN DICTIONARY ............................................................................................................. ‐ 496 ‐ 

INDEX ................................................................................................................................................. ‐ 525 ‐ 

 



 

 - 12 -  

 

 

Pretentions 

   

Legal Stuff 

 

FreeRange Digital Design Foundation Modeling 

Copyright © 2018 Bryan James Mealy. 

Release: xxx 

Date: xxx 

 

You can download a free electronic version of this book from one of the following sites: 

freerangefactory.org 

http://www.ee.calpoly.edu/faculty/bmealy/ 

 

The author has taken great care in the preparation of this book, but makes no expressed or implied warranty of 
any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or 
consequential damages in connection with or arising out of the use of the information or models contained in 
this book.  

This book is licensed under the Creative Commons Attribution-ShareAlike Un-ported License, which permits 
unrestricted use, distribution, adaptation and re-production in any medium, provided the original work is 
properly cited. If you build upon this work, you may distribute the resulting work only under the same, similar 
or a compatible license. To view a copy of this license, visit:  

http://creativecommons.org/licenses/by-sa/3.0/ 

We are more than happy to consider your contribution in improving, extending or correcting any part of this 
book. For any communication or feedback that you might have regarding the content of this book, feel free to 
contact the author at the following address:  

bmealy@calpoly.edu 

   

 



Free Range Digital Design Foundation Modeling Acknowledgements 

 

 - 13 -  

 

Acknowledgements 
 

   

Someday, I’ll write something here.  

 

 

Hey Dickson… Someday we’ll work together on all the things we’ve 
not yet completed. I look forward to that day. 

   



 

 - 14 -  

 

One Person’s Viewpoint 
Rambling Commentary 

My inspiration for this project came from two primary sources. First, I feel that publishing companies, 
bookstores, book authors, and academic administrators should not hold knowledge ransom. Students seeking 
knowledge are sitting ducks in structured learning situations such as colleges and universities. Being that 
students are the lowest hanging fruit, they always are the first to have their wallets lightened by various well-
connected entities. Second, every digital design textbook I’ve ever examined were filled with low-level details 
and techniques that are forgotten by students about five minutes after the final exam (which implies too much 
memorization and not enough understanding). The approach taken in this text is a giant step in the right 
direction (more details later). In the end, I hope this book serves as an alternative to shelling out money for 
overpriced textbooks full of knowledge that serves little purpose.  

This book will have errors. Please accept my sincerest apologies for the errors. I did my best to remove errors, 
but writing and proofreading is timing consuming and painfully boring. Unlike several of my colleagues, I 
don’t bribe students into proofreading my writing. I do happily accept suggestions and corrections from 
students, but I do not hand out rewards.  

I generated every digital design problem in this book. Once again, unlike many authors, I did not “assign” 
students to generate problems as assignments, and then use those problems in my text. I believe instructors 
who force students to create problems as graded assignments are unethical and are taking advantage of their 
positions as instructors.  

I could spend the remainder of my life tweaking this text, but I need to move onto other things. Feel free to 
contact me with corrections and comments. Please feel free to write at this address: bmealy@calpoly.edu 

   

There were two primary negative comments I received when I mentioned I was writing a textbook and was 
planning to give the book away at no cost. “If you don’t charge something, people will not value it”. I don’t 
understand this statement. The things I value most in my life were given to me.  

“You need experts in your field review your text”. As a college teacher, I constantly receive requests from 
book companies to “review” one of their texts. They always sweeten the deal with an offer of cash. I know of 
no one who is going to dedicate any significant amount of their time to reading a text they care nothing about, 
but I know of people who pretend to review books, write down some drivel, and receive their cash. Wow! 
Great review! A book is a mechanism to transfer knowledge; it’s not a popularity contest. 

   

Finally, this text is what it is. The quality and coverage is the best I can do given the various constraints I work 
under. I made the decision to embark on this project knowing it would likely be a career killer in the context of 
Cal Poly San Luis Obispo. Well, no need to wonder anymore; it’s definitely a career killer. I opted to directly 
support all students; if I had the chance to make the decision again, I would do no different. My previous books 
have found their way all over the world, seemingly helping students learn digital design and associated topics 
without lightening their wallets. What more could one ask for?   

 

James Mealy 
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Topic Coverage & Previous Books 
 

   

I previously wrote another digital design textbook: Digital McLogic Design. That book was a multi-year 
project that quickly outgrew itself and lost its way. While using that book in my courses, I always felt there 
was a better approach to teaching digital design, but I could not quite nail it down. This book represents what I 
feel is a significantly better approach to learning digital design. Here is my reasoning:  

 This text removes many low-level details associated with digital design in the standard 
approach to teaching digital design. I always found these details were the first things students 
forgot after leaving the final exam. This book instead concentrates on higher-level design 
principles. Not including the low-level details frees up more time to delve into design-oriented 
problems rather than learning how to represent a function in a bajillion different ways.  

 I ejected 98% of the concept of “function reduction”. This book proudly contains no Karnaugh 
Maps, or what I can “high-tech” tic-tac-toe. Karnaugh maps have severe limitations, and, no 
one will ever pay you do something by hand that a computer can do a bajillion times better and 
faster.  

 About 80-90% of the material found in this book is new. I did reuse some of the images, but I 
also “cleaned up” all of the text. My previous approach was to be purposely verbose; I try to be 
direct and terse in this book.  

 I suspect people will argue that the example problems in this text are sort of stupid. I can’t say 
I disagree. My thoughts are that people wanting to learn digital design must learn about the 
operation of basic devices; they will learn about those devices by using them in the designs 
found in this text. When and if they are someday faced with the task of creating a digital circuit 
to solve a problem, they will be able to do it because they understand how to use various digital 
modules to create circuits that work. Additionally, when the class is over, they hopefully will 
recall the basic operations of digital circuits long after they forget how to implement a Boolean 
function using a MUX. Lots of fun stuff in digital design, but much it lacks a point.  

 I removed HDL from the text. The previous text integrated VHDL and digital design, but no 
longer seems like the best solution. In the end, decoupling HDL from digital design allows 
students to learn either VHDL or Verilog. I’ve completed a first-pass version of a Verilog 
tutorial that I am using in my current digital design course offering. Additionally, there is the 
FreeRange VHDL Tutorial available from the freerangefactory.org site. If you want a 
hardcopy, Fabrizio (the co-author) printed a batch and has made them available on 
Amazon.com.  

And really finally, a story… I got a co-op job at National Semiconductor in 1988. Part of my job was to create 
a digital circuit that tested various digital modules using a new fabrication process. My group tasked me to 
create a simple circuit at a meeting I attended early in the co-op. The truth was that I had no clue what to do or 
even where to start. I had already taken two “digital design” courses in college, but I could not for the life of 
me design a digital circuit that solved an actual problem. I suspect my boss recognized my dismay, and quickly 
jotted down a digital circuit for me (a bunch of modules that talked to each other). He made it look as easy as it 
should be. More than anything, I hope people reading this text can walk away knowing how to create digital 
circuits to solve problems. Good luck.  
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Overview of Chapter Overviews 
This textbook presents introductory digital design topics with an emphasis on actual design issues. This 
textbook initially provides a basis of digital design, followed by a novel approach to modular digital design, 
which we refer to as Digital Design Foundation Modeling. This text exclude many topics typically found in 
digital design textbooks in order to focus more on the important aspects of modern digital design.  

 

Chapter 1: This chapter provides an outline of chapter structure in this text as well as an overview of the basic 
approach this text takes to teach digital design. This chapter also describes the basic tenets regarding the 
underlying theme of this text with the new digital design paradigm of Digital Design Foundation Modeling 
(DDFM). DDFM brings simplicity and structured-type design to the field of digital design. The descriptions 
this chapter uses to describe DDFM become clearer as the reader progresses the following chapters in this text.  

Chapter 2: This chapter provides a description of the “digital things” by example. The examples include 
comparisons and descriptions of basic everyday items to give readers an intuitive feel for the descriptions.  

Chapter 3: This chapter introduces the basic aspects of modeling, including definitions and examples. This 
supports the notion that all the work we do with digital design requires the use of many types of models. A 
main emphasis in this chapter is an introduction to hierarchical modeling.  

Chapter 4: This chapter provides a basic overview of number systems with an emphasis on their importance in 
digital design. The topics in this chapter include the basic vernacular associated with number systems, an 
introduction to binary and hexadecimal number systems and their properties important to digital design, and 
closes with an overview of engineering notation.  

Chapter 5: This chapter provides an overview of number conversions between radii typically associated with 
digital design (decimal, binary, and hexadecimal). This chapter also discusses other useful codes including 
BCD, one-hot, and unit distance codes.  

Chapter 6: This chapter introduces Brute Force Design, this text’s first true notion of digital design. This 
chapter presents digital design in the context of an example problem that we use to introduce the important 
aspects of modeling digital circuits, Boolean algebra, and basic logic gates.  

Chapter 7: This chapter introduces basic aspects of timing diagrams including proper annotation and bundle 
notation.  

Chapter 8: This chapter introduces the first foundation module: the ripple carry adder. This chapter starts by 
introducing basic digital modules including half and full adders.  

Chapter 9: This chapter introduces the basic aspects of representing Boolean functions, with an emphasis on 
standard SOP and POS forms. This chapter also describes the more common ways to represent functions 
including compact minterm and maxterm forms.  

Chapter 10: This chapter introduces the remainder of standard gates in digital design, which include NAND, 
NOR, XOR, & XNR gates. This chapter also shows how to configure basic logic gates to act as inverters, 
buffers, and switches.  

Chapter 11: This chapter introduces the more useful circuit forms used in digital design. The eight forms 
covered in chapter can be generated from SOP & POS forms; this chapter places the most emphasis on 
AND/OR & NAND/NAND and OR/AND & NOR/NOR forms. This chapter also touches upon minimum cost 
concepts as they relate to the various circuit forms.  

Chapter 12: This chapter introduces signed number using SM, DRC, and RC representations, with the most 
emphasis placed on RC representations. This chapter describes the number ranges associated with the various 
representations and describes the bit-extending both signed and unsigned number.  

Chapter 13: This chapter also covers binary addition and subtraction using RC representations. This chapter 
emphasizes the importance of verifying the validity of mathematical operation results.  
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Chapter 14: This chapter introduces the concept of mixed logic and uses those concepts in design and analysis 
examples. This chapter uses the concepts of equivalent gates and equivalent signals in the design and analysis 
process. This chapter mentions the PLC approach but primarily focuses on DPI.  

Chapter 15: This chapter presents a formal description of Modular Design (MD), which is the focus of design 
techniques in the remaining chapters. There are a few examples in this chapter, but the text adds more 
examples in later chapters after the presenting of various foundation modules.  

Chapter 16: This chapter introduces the concept of decoders; there are two types of these foundation modules: 
generic decoders and standard decoders. Generic decoders are any device we can describe using a tabular 
format while standard decoders are special cases of decoders that function as device enablers. .  

Chapter 17: This chapter introduces multiplexors (MUXes), which is another foundation module. MUXes act 
as “selector circuits” in digital design.  

Chapter 18: This chapter introduces the comparator, which is another foundation module. This chapter derives 
simple comparators at a low level, and then abstracts more complete comparators at the block level.  

Chapter 19: This chapter introduces the concept of parity, which leads to two foundation modules: the parity 
generator and parity checker. This chapter derives a simple parity generator at a low level, and then abstracts 
the design to the block level.  

Chapter 20: This chapter introduces sequential circuits. This chapter covers the low-level details regarding 
basic NOR and NAND latches, and then abstracts these devices to modules. This chapter is the first chapter 
that uses PS/NS tables and state diagrams to describe sequential circuits.  

Chapter 21: This chapter introduces the D flip-flop, the only flip-flop this text discusses. This chapter also 
describes synchronous and asynchronous control inputs to flip-flops. This chapter also provides an introduction 
description of state diagrams.  

Chapter 22: This chapter introduces registers, which is essentially an extension of the previous chapter. The 
register is a digital design foundation module.  

Chapter 23: This chapter introduces finite state machines (FSMs) by introducing the various submodules of 
FSMs in terms of circuits we previously presented. This chapter presents the concepts of FSM in the context of 
low-level counter designs. The chapter also includes description of the standard symbology associated with 
state diagrams.  

Chapter 24: This chapter introduces some aspects of clocking basic sequential circuits. This chapter includes 
an overview of the vernacular associated with periodic clock signals. This chapter introduces setup and hold 
time issues in the context of maximum clocking frequencies of sequential circuits.  

Chapter 25: This chapter introduces the use of FSM as controller circuits. This chapter uses FSMs to control 
simple blinking LEDs and then moves onto using FSMs as sequence detectors.  

Chapter 26: This chapter introduces various types of counters, which is a digital design foundation module. A 
previous chapter introduced simple low-level counters; this chapter presents counters at a high-level by 
describing their basic attributes.  

Chapter 27: This chapter introduces the shift registers, which is a digital design foundation module. Shift 
registers are essentially simple registers with special features. This chapter also introduces other related 
shifting-type operation including barrel shifts, arithmetic shifts, and rotate operations.  

Chapter 28: This chapter presents the basic concepts of relatively large memory devices such as RAMs and 
ROMs. We include the RAM as a digital design foundation module. This chapter also covers basic structured 
memory performance, memory capacity parameters, and memory vernacular.  

 

Appendix: This provides an overview of Digital Design Foundation Modeling Concepts.  

Digital Design Dictionary: This is a glossary of popular words and expressions, (and other tidbits) having to 
do with digital design and computer design. This glossary also covers aspects of computer design.  
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Index: This is an index for the important words and phrases found throughout the text.  
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1 FreeRange Digital Design Foundation Modeling Overview 

 

1.1 Introduction 

This text divides topics into small subject modules, which we creatively refer to as chapters. The intention is to 
keep the subject matter as short as possible and bundled into relatively small readable portions. No one wants 
to read long pages of technical drivel, but people are more likely to read short pages of technical drivel.  

Each chapter has many useful features in order to help the reader spend less time fighting the text and more 
time understanding the subject matter. Each chapter includes the following features:  

 Introduction: Quick motivating prose overview of the main chapter topics 

 Chapter Acquired Skills: The skills reader should have after working through the chapter 

 The Body of the Chapter: In case you want the whole story (with example problems) 

 Chapter Summary: The quick overview of chapter’s main points 

 Chapter Exercises: Drill-type problems that support the chapter material 

 Design Problems: Problems that involve digital circuit design  

 

Main Chapter Topics 

OVERVIEW OF TEACHING MODERN DIGITAL DESIGN: Digital design evolved faster 
than digital design courses could keep up with; a quick overview of the issues is helpful.  

OVERVIEW OF DIGITAL DESIGN FOUNDATION MODELING: This chapter briefly 
describes this text’s unique approach to digital design.  

 

Chapter Acquired Skills 

 Be able to provide historical context to digital design 

 Be able to describe the basic approach of Digital Design Foundation Modeling.  

 

1.2 Digital Design Overview 

Even though we’re only a few pages into the introductory verbage1 of digital design, we’re ready to grasp the 
main ideas behind modern digital design and relate them to this text’s approach. If you had to describe digital 
design in one short sentence, it would be something such as:  

digital design: the act of creating digital circuits to solve problems 

The keys to this definition lie with “creating a digital circuit” and the “problem” that is “solved”. These ideas 
are worth expanding upon.  

                                                           

1 Definition of verbage: part verbose, part garbage; pronounced ver-baj.  
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Solving a Problem: “Solving a problem” could mean many things; this text solves problems using 
digital circuits. Figure 1.1 shows a general diagram of a digital circuit that we use as a starting point 
for this text. We won’t initially know from the problem description what goes inside the box in the 
diagram, but the problem description generally tells us the “inputs” and “outputs” of the circuit as 
well as how the circuit should behave.  

Creating Digital Circuits: The many approaches to digital design all involve creating a digital circuit 
and placing it (figuratively speaking) in the box of Figure 1.1. If your digital circuit manipulates the 
inputs in such a way as to always provide the requested functionality on the outputs, then your digital 
design works. The digital circuit you design establishes a structured relationship between the circuit’s 
inputs and outputs in such a way as to solve the given problem. In a nutshell, digital design is a matter 
of “creating” the interior of the Digital Circuit box in Figure 1.1.  

 

Figure 1.1: “Digital Design” in a nutshell: a general model of a digital circuit. 

1.3 Historical Overview of Digital Design Courses 

It was a different world when I first worked with digital logic (sometime in the mid-1800s); my digital design 
world revolved around the knowledge and topics presented in the course text. There was no laboratory 
associated with the digital design course. Because of this lack of hands-on experience, combined with the fact 
that the test/development equipment too costly for students, I relied on the course text to gather my digital 
knowledge. Computers were expensive and not practically available to students. There was no internet and 
software for digital designers either did not exist or was too expensive to be practical. Worst of all, all 
“designs” that were actually done were “paper designs2”.  

1.4 The Approach We’ll Be Taking 

Despite advances in digital technology, digital design textbooks remain mired in the dark ages of both 
engineering and educational technology. Despite these drawbacks, we see a steady increase in the price of 
digital design textbooks accompanied by a decline in their quality. As digital technology progressed, more 
resources became available to both digital design instructors and students, which obsolesced the standard 
approach to teaching digital design.  

Although the goal of transferring knowledge from the text to the reader remains the same, it’s not universally 
accepted what topics should appear in a text. Typical digital design texts contain excessive amounts of low-
level detail that you’ll quickly forget. Authors write digital design texts from a standpoint of presenting digital 
concepts in a manner that supports the easy generation of exam questions, which makes the text attractive to 
lazy instructors. Actual design problems are hard to generate and harder to grade3, and thus rarely find their 
way onto exams or into textbooks.  

The underlying theme of this textbook is to eject subject matter that does not support the development of viable 
digital designers; doing so allows us to spend more time with actual digital design. We acknowledge that 

                                                           
2 A paper design was something you tried hard to convince someone else that it would work if you actually implemented it. 
The person you were trying to convince was often your instructor.  
3 The issue here is that digital design problems always have multiple solutions, which requires a higher level of expertise 
and effort to both genereate and grade properly. In this context, “expertise” requires more time.  
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advanced digital designers or instructors who read this text may feel that this text omits some important topics. 
However, with the knowledge we present in this text, anyone can easily pick up a standard digital design 
textbook and gather in the full details. In addition, because publishers actively generate new versions of 
textbooks to prevent instructors from using old textbooks, there are many excellent and low-priced textbooks 
available from used book websites4.  

1.5 The New Digital Paradigm: Digital Design Foundation Modeling 

After many years of teaching digital design using a traditional approach, we formulated a new paradigm for 
presenting digital design. We refer to our new approach as Digital Design Foundation Modeling, or DDFM. 
This approach builds upon both modular design and hierarchical design, which are the main tenets of modern 
digital design. DDFM focuses on presenting digital design topics in the context of actual digital designs, while 
removing many of the antiquated topics associated with old-style digital design. The underlying goals of 
DDFM are to simplify the presentation of introductory digital design, and to provide a simple circuit model 
that describes all levels of digital design. 

1.5.1 DDFM Overview 

We provide the high-level details about DDFM in this section, but if you’re new to digital design, you 
probably won’t be able to grasp the big picture at this time. The focus of DDFM is to present digital design in a 
simple and organized manner, which facilitates and expedites learning the subject matter. These are the main 
tenets of DDFM:  

 The main purpose of digital design is to solve problems using digital circuits 

 We can best describe digital circuits in a modular and hierarchical manner 

 Digital circuits are a set of digital modules that exchange information under the control of some entity 

 We perform digital circuit design in a structured5 manner, meaning that we can model any digital 
circuit using a relatively small subset of digital modules, which we refer to as the digital design 
foundation modules. Each foundation module performs a relatively small set of simple operations. 

 We present the digital design foundation modules at a high-level by modeling the modules in terms of 
their data, control, and status signals, which allows us to use the modules in designs, while not 
requiring us to initially understand underlying implementation details.  

 We classify the digital design foundation modules as either “controlled” or “controller” circuits 

 We consider there to be four approaches to controlling a digital circuit:  

1) NO CONTROL (no flexibility in circuit behavior) 

2) INTERNAL CONTROL (controlling circuits using internal signals) 

3) EXTERNAL CONTROL (controlling circuits with devices such as buttons, switches, etc.) 

4) CIRCUIT CONTROL (controlling circuits using FSM or computer).  

 We categorize digital design approaches into three categories:  

1) BRUTE FORCE DESIGN (BFD) 

2) ITERATIVE MODULAR DESIGN (IMD)  

3) MODULAR DESIGN (MD) 

 

                                                           
4 Check out your local library, www.ebay.com, or www.addall.com for availability and/or pricing of these books. Many 
websites also include reviews of these books in order to help you narrow your selection.  
5 This is an analogy to structured computer program design 
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Figure 1.2 shows a digital circuit containing various modules. We define a digital circuit as a controlled 
interaction between a set of sequential and combinatorial circuits (the two types of digital circuits). Solving 
problems using digital circuits requires controlling the flow of data through the circuit in such a way that it 
solves the given problem. Figure 1.2 also shows the modularity (the various modules) and the hierarchical 
(modules within modules, or boxes within boxes) characteristics of digital circuits.  

 

Figure 1.2: A generic digital circuit containing a set of digital modules. 

Figure 1.3(a) shows the standard approach to modeling digital circuits, where we classify all digital circuit 
signals as either inputs or outputs. Figure 1.3(b) and Figure 1.3(c) shows how DDFM further classifies inputs 
and outputs by first separating digital modules into “controlled circuits” and “controller circuits”. Figure 1.3(b) 
shows that we further classify the inputs to controlled circuits as either “data” or “control” and classify the 
outputs of controlled circuits as either “data” or “status”. This means the various circuit elements in Figure 
1.3(b) are able to 1) pass data from their data inputs to their data outputs under the direction of the “control” 
inputs, and, 2) describe characteristics of the data transfers using the status outputs. Similarly, the status 
outputs of the controlled circuit form the status inputs of the controller circuit. The controller circuit of Figure 
1.3(c) inputs the status signals of controlled circuits and manages the controlled circuits by outputting the 
appropriate control signals to control the controlled circuits.  

   

(a) (b) (c) 
 

Figure 1.3: Old digital circuit model (a); models for controlled (b) and controller circuits (c). 

The DDFM paradigm allows us to model all digital circuits as a controller that controls a set of modules. We 
then consider the solution to any digital design problem as a matter of using a controller to properly control the 
dataflow through a set of controllable modules. Figure 1.4 shows an example of many circuit modules 
controlled by a controller circuit; the controller circuit is either a finite state machine (FSM) or some type of 
computer control, such as a microcontroller. Figure 1.4 includes three different module shapes showing that 
controllable modules can either be combinatorial or sequential circuits, as well as off-the-shelf computer 
peripherals.  
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Figure 1.4: Our unifying digital circuit model. 

1.5.2 The Three Approaches to Digital Design 

Part of DDFM includes categorizing digital design into three different approaches, which we discuss in more 
detail later in the text. With some combination of these three approaches, you can create any digital circuit.  

BRUTE FORCE DESIGN (BFD): Our first approach to digital design. Although simple, its 
simplicity limits its practicality in non-trivial designs.  

ITERATIVE MODULAR DESIGN (IMD): Our second approach to digital design. Although IMD 
removes some of the limitations of BFD, it is only applicable to a few of circuits.  

MODULAR DESIGN (MD): Our final and most powerful approach to digital design, and is thus 
where this text expends most of its efforts.   
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1.6 Chapter Summary 

 

 There are two basic types of digital logic circuits combinatorial, which are circuits where outputs are a 
function of the circuit’s inputs (these circuits can’t store information). Sequential circuits outputs are a 
function of the sequence of the circuit’s inputs (these circuits can store information).  

 The two basic tenets of digital logic are 1) Digital logic circuits are inherently hierarchical. We 
generally describe digital circuits at a level, which allows us to transfer as information as quickly as 
possible. Abstracting digital designs to higher levels aids in understanding and designing circuits. 2) 
Digital logic circuits are modular in that they are decomposable into a set of standard digital 
modules, which we refer to as digital design foundation modules. We make circuit descriptions an 
aggregate compilation of foundation modules to help us understand the circuits.   

 Digital Design Foundation Modules is based on the following attributes:  

 The main purpose of digital design is to solve problem using digital circuits.  

 Digital circuits are a set of digital modules that exchange information under the control of some 
entity.  

 We can complete any digital circuit design by using a relatively small subset of digital modules we 
refer to as the digital design foundation modules.  

 We can present the digital design foundation modules at a high-level by primarily describing the 
functionality of the circuit in terms of its associated data, control, and status signals.  

 We classify the digital design foundation modules as either “controlled” or “controller” circuits.  

 There are four approaches to controlling a digital circuit:   

1) NO CONTROL (no flexibility in circuit behavior) 

2) INTERNAL CONTROL (using internal signals) 

3) EXTERNAL CONTROL (using buttons, switches, etc.) 

4) CIRCUIT CONTROL (using FSM or computer).  

 There are three approaches to designing a digital circuit:  

1) BRUTE FORCE DESIGN  

2) ITERATIVE MODULAR DESIGN  

3) MODULAR DESIGN  
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1.7 Chapter Exercises 

 

1) List and briefly describe the basic definition of digital design. 

2) Briefly explain why there is no good off-the-shelf textbook for digital design courses.   

3) List a few websites where you can purchase inexpensive digital design texts.  

4) Briefly describe the main goals of Digital Design Foundation Modeling. 

5) Briefly describe the three main types of design.  

6) Briefly describe the four ways you can control a digital circuit.  
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2 The Battle of Analog and Digital 

 

2.1 Introduction 

The first step in learning anything is to become familiar with the terminology associated with the subject 
matter. This chapter starts by defining the notions of “digital” and “design”. We won’t be doing any digital 
design in this chapter, but we gain a common foundation for introducing later subject matter.  

 

Main Chapter Topics 

ANALOG AND DIGITAL: This chapter provides a description of the inherent differences 
between things that are “analog” and “digital”. 

 

Chapter Acquired Skills 

 Be able to describe things that are digital or analog in nature.  

 

2.2 Analog Things and Digital Things 

Since the term “digital” is quite important in this text, we need to give it solid definition. You can best 
understand the concept of “digital” when you see it alongside the definition of the relative opposite of digital, 
or “analog”. We can best describe these terms with examples.  

Example 1: In doing the sustainability thing, I installed compact fluorescent (CF) lights in place 
of my incandescent lights as well as dimmers on incandescent light I did not replace. While the 
CF lights use less power, the intensity of their light is not adjustable: the CF light is all the way 
on or all the way off. While incandescent lights use more energy, I can save energy by using a 
“dimmer” to adjust the light’s output intensity. I am thus hypothetically able to adjust the dimmer 
to provide an infinite number of light intensity levels (but only one level at a time). The on/off 
nature of the CF bulb is a hallmark of “digital” while the infinite number of intensity levels 
associated with the incandescent bulb controlled by a dimmer is the hallmark of “analog”.  

Example 2: Many buildings have both wheelchair ramps and stairs leading to their entrances. 
The wheelchair ramp represents a continuous path to the building, which means that you can 
hypothetically stop at any one of an infinite number of levels along this path to the building. The 
stairs, on the other hand, only have a few “discrete” levels you can stop at; the individual stairs 
represent these levels. The difference here is discrete levels (for the stairs) vs. continuous levels 
(for the ramp). This example differs from the previous example in that instead of having two 
discrete levels for the CF bulb (on and off); we now have many discrete levels (one level for each 
of the stairs). The discreteness of things such as the steps is the hallmark of digital while the 
continuousness of things such as the ramp is the hallmark of analog. What’s bugging me, though, 
is how to characterize an escalator…  
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Example 3: Stringed instruments create sound with a vibrating string connected between two 
fixed points. On instruments such as guitars (or mandolins, bass guitars, etc.) and violins (or 
violas, cellos, fretless bass guitars) you change the pitch of the vibrating string by placing your 
fingers at different positions on the fingerboard, which effectively changes the length of the 
vibrating string. The difference between these instruments is that guitars have frets on the 
fingerboard while violins do not (see Figure 2.1). The frets only allow the string to vibrate at a set 
of discrete string lengths (generally 19-22 on a typical guitar)1. The violin, on the other hand, has 
no frets, so you can effectively generate an infinite number of pitches from a given string 
dependent upon where you place your finger. In other words, the guitar generates a discrete 
number of pitches while the violin provides a continuous number of pitches.  

 

Figure 2.1: "Frets" on a bass guitar fingerboard and the “fretless” violin fingerboard on the right. 

The basis of all digital logic is the use of circuit elements whose inputs and outputs can only be one of two 
values. We typically describe these two values as ON-OFF, TRUE-FALSE, HIGH-LOW, GOOD-BAD, 
BLACK-WHITE, TEACHER-ADMINISTATOR, etc. Either a “high voltage” or “low voltage” drives the 
actual circuit, but we generally describe circuits using more general terms. We typically represent the inputs 
and outputs of digital circuits using 1’s and 0’s, which are placeholders for the high and low voltage values2.  

So why do we use digital circuits to solve my problems? We’re still all living in an analog world, but 
computers are only capable of operating in the digital realm3. Since a computer is generally a giant digital 
circuit, understanding digital design is the unstated first step in successfully designing and/or programming 
computers. The starting point for mastering anything inherently digital is learning digital design4.  

 

                                                           
1 We’re not considering using your fingers to stretch the string (which changes the frequency of the note).  
2 The notion of "voltage" may scare off some budding digital designers so we generally discuss digital design at a level of 
abstraction that enables us to ignore the reality that “voltage” is the lifeforce of digital circuits.  
3 To be clear, computers are made with transitor, which work because of the voltages attached to them. Transitors in digital 
circuits are either “all the way on” or “all the way off”, which provides them with their discretness.  
4 And protecting yourself from robots.  
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Digital: A description of a something (such as a signal or data) expressed by a finite 
number of discrete values (or states). These discrete values include the entire “range” 
of possibilities, but do not include any of the “in-between” values. 

Analog: A description of something that (such as a signal or data) expressed by a 
continuous range of values. The continuousness of analog implies that there are an 
infinite number of possible values in the given range. 
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2.3 Chapter Summary 

 

 We divide the world into two camps: analog and digital. Though we live in an analog world, the 
computers that run this world are inherently digital. The basic characteristic of analog things is that they 
are “continuous” in nature while the basic characteristic of digital things is that they are “discrete” in 
nature. Digital things can only take on a pre-determined set of values (thus the discreteness) while analog 
things can take on an infinite set of values (thus continuous).  

 The notion of digital things in the context of “digital design” generally only requires on two discrete 
values. These values are most often associated with ON/OFF, HIGH/LOW, or TRUE/FALSE. Most often 
in digital design, we describe these discrete values with ‘1’ and ‘0’.  

 The notion of digital in “digital design” stems from the use of transistors. Being that transistors are a basic 
electronic element, the discrete values that generates the digital nature of digital design results from high 
and low voltages associated with making the transistor operate. Since the voltage levels determine the 
physical characteristics of the devices, different digital devices use different voltage levels. Because of all 
these different voltage levels, we represent the discrete values of transistors in digital circuits as 1’s or 0’s.  
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2.4 Chapter Exercises 

 

1) The analog world we live in has many people who seem to thrive on the use of digital photography. 
Practically everyone it has a digital camera, or has the equivalent on his or her cell phone or computer. A 
conversion from analog to digital occurs somewhere in the camera. Where exactly does this analog-to-
digital (ADC) occur? Explain as best you can. 

2) Although the dimmer effectively provides what a continuous range of light frequencies between the ON 
and OFF limit, how can it possibly still be digital in nature? Explain as best you can.  

3) In reference to analog and digital cameras, describe the difference between analog zoom and digital zoom.  

4) There are analog computers out there. Briefly describe what an analog computer entails. Feel free to look 
this up online.  
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3 The Wonderful World of Modeling 

 

3.1 Introduction 

The ability to “model” something corresponds to both the ability to understand and implement that thing. 
Because of this, modeling is at the heart of all engineering fields. The approach we take to designing anything is 
to first find an appropriate model for that thing.  

Digital design uses many different types of models to help us understand the characteristics of digital design. 
There are many different paths to solving a problem using digital design, but all of these paths follow the same 
path: model your solution, and then use that model to help you create a digital circuit that solves your problem. 
This chapter introduces the basic aspects of modeling in the context of digital design.  

Main Chapter Topics 

MODELING AS A DESIGN TOOL: This chapter introduces the concept of modeling as 
the most basic tool for understanding just about anything, particularly digital design.  

 

Chapter Acquired Skills 

 Be able to describe the basic purpose of models 

 Be able to use black box diagrams to create models of anything 

 Be able to describe how model relates to modern digital design 

 

3.2 The “Modeling” Approach to Anything 

Until now, we’ve been careful not to limit our use the word “model” or “modeling”. The truth is that everything 
we do in digital design is a matter of generating the correct model. Below are two good definitions of the word 
model. We could not clearly define “model” with one definition, so we use two different but similar definitions. 
Note that the two definitions contain a different amount of detail, which is an important characteristic in 
modeling.  

model (def. 1): a description of something. 

model (def. 2): a description of something in terms that highlights the relevant 
information while hiding some of less useful information. 

We use models to represent or describe things. The above definitions do not state how we use models to describe 
something, which implies that there is no one absolutely correct model of something. Anything that presents 
information by describing something is by definition a model; some models are more useful than other models 
based on the amount of information they provide. Because there is no one “correct” model for anything, there 
can be different “valid” models of the same thing where, the different models provide varying amounts of 
information. The best model is the one that provides the reader with the most appropriate amount of information 
in the clearest manner for the problem at hand, which means the efficacy of models is inherently contextual. For 
example, a model providing significant amounts of information is not overly useful to someone expecting a 
simple model. 
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Models are important in digital design for one basic reason: models transfer information to the entity reading the 
model. The entity reading the model could be software, your lab partner, your teacher, or your pet cockroach. If 
you created a good model, then your model quickly promotes an understanding of the thing you’re modeling. If 
you’ve created a bad model, no one knows what you’re attempting to convey.  

The concept of models should be nothing new; there are an endless number of things in the real world that 
represent something without really being that thing. Using models is so useful that we tend to forget that we’re 
actually using and/or relying on them. The following list provides a few examples that may give you an idea of 
what you’re missing.  

Example 1: Runway Models – We’ve all seen them: emaciated men and women wearing bizarre 
clothing and sporting unique hairstyles strutting down the runway. These people are some 
designer’s representation (or model) of actual women and men. These are bad models because 
they are an attempt to destroy people’s self-image in order to inspire them to consume more crap. I 
refer to this as “crapitalism”.  

Example 2: Role Models – These models are the people that society expects us to highly revere. 
While we do know some features about these models (probably the good features, which is why 
they are role models), we do not have the full description. Unfortunately, we are often 
disappointed when a better description of role models appears in the police blotter1.  

Example 3: The Weather Report (weather prediction) –The satellite images indicate there is a 
storm somewhere and thus that rain arrives a week in advance. Weather forecasters base this 
prediction on models of previous weather patterns. There’s nothing to stop the storm from 
changing its path, but probabilistically speaking, it will rain.  

Example 4: Graphical User Interfaces (GUIs) – Practically every computer-type device uses some 
type of GUI, which contain graphical representations of items such as button, switches, sliders, 
elevator bars, etc. These items are models of the things they’re mimicking. Pixels on a display 
form models of buttons; the device interacts with the model to make something meaningful occur 
when something actuates the button model.  

Example 5: Video Games – The entire genre is a model of real and/or imaginary life. Everything 
you see in the game is a model of something you can relate to in real life, but it’s truly far from 
being real life. Guns in real life are much louder and smell funny when you fire them.  

 

3.3 The Black Box Diagram in Digital Design 

Digital design uses several different types of models. Recall that there is no one correct model of any given 
thing; either the model is useful because it helps you understand something, or it’s not useful because it provides 
you with nothing useful. Here’s a short list of models we use in digital design; we fill in the details later.  

 The black box diagram: The black box diagram, or BBD, is a box that graphically shows the 
inputs and outputs to the digital circuit. Figure 3.1(a) shows an example of a black box model 
used in digital design. The word “black” in black box has a figurative meaning in that we don’t 
know what’s inside the box. 

 The digital circuit element : We model basic digital devices using special symbols; when 
digital designers see these symbols, they know how the device operates. Boxes with descriptive 
labels sometimes replace these special symbols. Figure 3.1(b) shows an example of a digital 
circuit element model and its corresponding BBD.  

 The timing diagram: Timing diagrams graphically describe the operational characteristics of a 
digital circuit based on the status of signals plotted as a function of time. Figure 3.2 shows an 
example of a timing diagram for some unspecified digital circuit.  

                                                           
1 Or even worse, as academic administrators.  
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 The written description: We can model the operation of a digital component with a written 
description. If there is not an accompanying BBD with the written description, the description 
allows you to generate one. Figure 3.3(b) shows a written description of a digital circuit.  

 The Hardware Description Language (HDL) : You can use a HDL (Verilog or VHDL) to 
describe the operation of digital circuits. Figure 3.3(a) shows a VHDL model of a circuit.  

 
 

(a) (b) 

Figure 3.1: A BBD (a), and a digital circuit element model with its corresponding BBD (b). 

 

Figure 3.2: An example of a timing diagram. 

 

entity dff is 
   port (D,S,R : in std_logic;  
           CLK : in std_logic;  
         Q, nQ : out std_logic);  
end dff;  
 
architecture dff of dff is  
begin 
   process(D,S,R,CLK) 
   begin 
      if (R = '0') then  
         Q <= '0';  nQ <= '1';  
      elsif (S = '0') then  
         Q <= '1';  nQ <= '0';  
      elsif (rising_edge(CLK)) then  
         Q <= D;  
         nQ <= not D;  
      end if;  
   end process;  
end dff; 

The circuit has four inputs and two outputs. 
The outputs are always complements of each 
other. Two inputs, R and S, are asynchronous 
negative logic inputs. When R is asserted 
(negative logic), the Q output is ‘0’; when S is 
asserted, the output is ‘1’. The R input takes 
precedence over the S input. The Q output 
follows the D output on the active clock edge 
(rising-edge triggered).  

(a) (b) 

Figure 3.3: Two functionally equivalent models: an example of a VHDL model (a), and a written 
description of a digital circuit (b). 

3.4 Modeling with Black Box Diagrams 

The BBD is useful in designing anything, particularly digital circuits. Unlike modeling techniques such as using 
an HDL, black box diagrams do not burden you with constraints such as syntax rules. This being the case, don’t 
forget the overall purpose of models: models quickly transfer information to the reader. 
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In digital design, we’re most concerned about the inputs to and the outputs from digital circuits. We use a box to 
represent a digital circuit; lines going into and out of the box represent the inputs and outputs of the circuit, 
respectively. Figure 3.4 shows a few examples of a BBDs. Figure 3.4(a) shows the BBD with inputs and outputs 
on the left and right sides, respectively. Figure 3.4(b) shows an equivalent model where we indicate the inputs 
and outputs using arrowheads on the signal lines (arrows entering the box are inputs; arrows leaving the box are 
outputs). Figure 3.4(c) is another equivalent model that uses “self-commenting” signal names to differentiate the 
circuit’s I/O (input and output).  

   

(a) (b) (c) 

Figure 3.4: A few examples of basic black box diagrams. 

The models in Figure 3.4 are tough to write about because there are no hard rules for BBDs. However, here are a 
few strong guidelines you should follow:  

 The “flow” of digital models usually goes from left to right2. Thus, inputs are on the left side 
of the box while outputs are on the right side of the box.  

 Put arrowheads on signals if it’s not obvious what signals are inputs and outputs 

 Label all signals unless there is some compelling reason not to  

 Place labels on boxes if the reason for the box’s existence is not patently obvious  

 

The models in Figure 3.4 represent the first step in black box modeling. One of the hallmarks of any type of 
design is the ability to abstract the design across many levels. For our purpose, a high-level model of something 
may not be that useful if we are hoping for a low-level model (and vice versa). These different levels of a model 
make up a hierarchy of a particular design; each level offers a different type and/or amount of information.  

Figure 3.5 shows an example containing two BBDs; the models in Figure 3.6 use these two models. Figure 
3.6(a) shows a BBD that sports a two-level hierarchy. The upper-level is the MY_BIG_BOX model; the lower 
level contains four previously defined models (defined in Figure 3.5). The model in Figure 3.6(b) is somewhat 
similar to the model in Figure 3.6(a), with some important differences:  

 From Figure 3.6(a), we don’t know which signals are inputs and outputs by examining the 
model, as this higher-level model does not contain arrowheads on the signals nor do the 
signals contain self-commenting names.  

 The black box named Z_BOX on the lower level was not previously defined; what’s in this 
box is therefore a mystery and we hope someone defines it elsewhere.  

 The interior BBD at the lower level is true to what Figure 3.5 shows. You can use this fact to 
extrapolate which signals are the inputs and outputs for most of the signals in the higher-level 
model. The I/O characteristics of the Z_BOX remains a mystery.  

 The two models in Figure 3.6 are almost identical. The model in Figure 3.6(b) contains less 
information than the box in Figure 3.6(a) as it does not list the internal connections.  

                                                           
2 This is not always the case, but following this convention where possible makes your BBDs more readable.  
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Figure 3.5: Two example high-level BBDs. 

 

  

(a) (b) 

Figure 3.6: Examples of lower-level BBDs with similar features but varying amounts of detail.  

 

Example 3.1: Black-Box Design: Problem Version 1 

Provide a black box diagram showing a natural gas-powered storage-type water heater.  

Solution: The first thing to notice about the problem is the vagueness in the description. This is not necessarily a 
bad thing, particularly if you know nothing about hot water heaters. The problem is expecting you to do 
something; but you probably won’t provide your solution to the Maytag Company for immediate fabrication. In 
addition, you should definitely become comfortable with the vagueness of the problem statement: bad problem 
descriptions are typical in most engineering pursuits3.  

The first step in all design problems should be to draw a box and place a somewhat meaningful label on it; 
Figure 3.7(a) shows the result of this step. This step isn’t much, but it’s an important starting point, particularly if 
you have no idea of what to do. Drawing the top-level BBD is the first step in any engineering problem.  

The next step is to extrapolate something about solution from the problem statement. You know the water heater 
heats water; therefore, there must be a cold water input as well as a hot water output. Once you include these in 
your model, your BBD appears similar to Figure 3.7(b). For the last step, reread the problem description. You 
know that the heater is a natural gas heater, so it must have an input for natural gas. Figure 3.7(c) shows the 
model with a gas input.  

Because the problem statement did not provide us with direction to the level of detail desired for the solution, we 
can declare ourselves done. The model in Figure 3.7(c) is somewhat descriptive, especially if you know nothing 
about water heaters. The moral is that you started with nothing and ended up with an instructive model.  

                                                           
3 Good descriptions are somewhat contraining. Often descriptions are bad because the person generating the description does 
not know what they’re doing and are expecting to pass the blame to people attempting to interpret their description.  
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(a) (b) (c) 

Figure 3.7: A possible thought process for this example.  

 

 

 

Example 3.2: Black-Box Design Problem Version 2 

Provide a black box diagram showing a natural gas-powered storage-type water heater and 
some of its important subsystems. 

Solution: This is the same problem but now you need to know something about hot water heaters. The best 
approach is to realize that you probably know or can figure out how a hot water heater works. Also, note that 
when this problem asks for subsystems, it’s requesting that your solution be hierarchical in nature.  

Step One: Let’s not reinvent the wheel (the hallmark of all design): borrow from the previous example’s 
solution wherever possible. Figure 3.8(a) shows the result of this step (though we change the name of the 
black box from the previous example).  

Step Two: List all the subsystems that a hot water heater would require. There must be a storage tank for 
the hot water. There must be a control unit4 to maintain a constant water temperature by turning on the 
gas when the water cools and turning it off when it reaches the desired temperature. There is a gas 
burner, so there must be a fume exhaust (and we maybe should have included it in the previous example). 
Figure 3.8(b) shows the final solution. 

Once again, we declare this problem done. We could do more but we opt not to because our solution satisfies the 
original problem statement. Our final solution in Figure 3.8(b) shows a two-level hierarchical design; the top-
level is the HWHEATER2 module and the lower level shows the three subsystems, which we model as black 
boxes inside the top-level black box.  

 

 

(a) (b) 

Figure 3.8: A possible solution to this example. 

 

                                                           

4 Generally, a thermostat regulates the water temperature; that is, it keeps the water at some desired temperature without 
letting it get too much above or below a specific temperature.  
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Example 3.3: Black-Box Design Problem Version 3 

Provide a black box diagram showing a natural gas-powered storage-type water heater and 
some of its important subsystems. Include enough detail in model to show the basic interaction 
between the various subsystems.  

Solution: This example is a modification to the previous problem. Whereas in the previous example we had to 
know something about the heater’s subsystems, we now must know something about how the subsystems 
interact with each other.  

The problem doesn’t state how much detail we needed to include, so we’ll add a few details and call the problem 
done. The first step in the solution is to borrow from the previous example’s solution. Figure 3.9(a) shows the 
result of this step with the top-level BBD now having a new label. The remainder of the solution includes adding 
internal connections between subsystems, which we describe below. Figure 3.9(b) shows the final result. 

 We extend the external connections to the new subsystems. The cold-water input connects to the 
storage tank. The natural gas input connects to the burner. The hot water output connects to the 
tank, as that is where the unit stores the water. The fume exhaust connects to the burner, because 
the burner creates the fumes.  

 The control unit is the brain of the heater; it’s going to turn on the burner when the water gets 
too cold. That means the control unit must monitor the temperature of the tank (one connection 
goes from the tank to the control unit) and tell the burner to turn on/off (another connection goes 
from the control unit to the burner).  

  

(a) (b) 

Figure 3.9: A possible solution to this example. 

 

3.5 Black Box Modeling Redux 

The previous set of examples highlights the power of black box modeling. Although this example had nothing to 
do with digital design, the hierarchical design approach in these examples is the mainstay of modern digital 
design. There are two major things to note about this problem:  

 These examples only roughly stated the level of detail required by the problem solution. We did 
our best without worrying too much about the fact that the U.S. Patent office probably would 
not like our BBD. We provided what the problem asked for, and then moved on.  

 While doing these examples, we started out with nothing and had little knowledge about hot 
water heaters. When we were done, we had an interesting model of a hot water heater, and 
we’re probably a bit smarter. The black box modeling technique allowed us to take random bits 
of information and reassemble them in a viable model that satisfied the given problem. This is 
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the cool thing about black box modeling: it provides you with a method of creating a path to the 
problem’s solution when you feel like you have no idea where to go.  

Black box modeling is the mainstay of digital design. Accordingly, two of the most basic and important digital 
design principles deal directly with black box modeling:  

Mealy’s First Law of Digital Design: If in doubt, draw some black box diagrams.  

Mealy’s Second Law of Digital Design: If your digital design is running into weird obstacles 
that require kludgy solutions, toss out the design and start over from square one. 

Mealy’s Third Law of Digital Design: Every digital design problem can have many different 
but equivalent solutions; the absolute right solution is eternally elusive.  

Mealy’s Fourth Law of Digital Design: The digital design process is circular, not linear. If you 
think you’re going to generate the correct solution with the first pass, you’re bound for 
disappointment. The digital design process is circuit; always make going backwards a few steps 
to fix issues part of the design process. Don’t try to make your design perfect from the get-go, 
make it simple to understand so that you can fix issues as they arise.  

A result of Mealy’s First law of Digital Design is if you have no idea what you’re doing, you’ll at least look like 
a pro. The first step in every solution is to draw a top-level BBD that 1) lists what you do know (such as 
inputs/outputs and given signal name, and 2) labels everything (such as the names of the blocks). The purpose of 
Mealy’s Second law of Digital Design is to prevent you from becoming stuck on a bad design path. If your 
design is not coming relatively easy, toss it out, rethink it, and start again. Digital design should never be overly 
complicated. Good digital designers are people who know they are going to make mistakes, but have the 
wherewithal to quickly correct their issues.  
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3.6 Chapter Summary 

 

 The main tool used in any type of design is “modeling”. In this context, a model represents a description of 
something, but not necessarily that thing. Modern digital design uses many types of models including black 
box models, HDL models, timing diagrams, written descriptions, etc.  

 The main purpose of models is to quickly transfer information to the entity (person or computer) reading the 
model. Since there are generally no carved-in-stone rules to modeling, the best models are the ones that 
transfer the most information; this means that good models are inherently clear to the reader.  

 Models in general promote an overall understanding of the entity being modeled and thus can become 
complex. The main mechanism in modeling to handle this complexity is the notion of “hierarchical 
modeling” which means that models can simultaneously describe many different levels of the design. The 
construct of “boxes within boxes” embodies hierarchical modeling as it relates to black box modeling.  

 Black box modeling and hierarchical modeling is not limited to digital design; they can describe just about 
anything. In particular, black box models help people reverse engineer just about anything and thus create 
knowledge where only darkness previously reigned.  

 Digital design is about creating digital circuits to solve problems; problems solutions involve creating a 
circuit that establishes a structured relationship between the circuit’s inputs and outputs in such a way as to 
solve the given problem. 

 Three important digital design laws:  

 Mealy’s First Law of Digital Design: If in doubt, draw some black box diagrams.  

 Mealy’s Second Law of Digital Design: If your digital design is running into weird 
obstacles that require kludgy solutions, toss out the design and start over.  

 Mealy’s Third Law of Digital Design: Every digital design problem can have many 
different but equivalent solutions; the absolute right solution is eternally elusive.  

 Mealy’s Fourth Law of Digital Design: Digital design is circular, not linear. Plan on 
going backwards to correct issues in your design as they arise.  
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3.7 Chapter Exercises 

 

1) Briefly explain the general purpose for a model. 

2) Is there one correct model for anything? Briefly explain your answer.  

3) Briefly describe the attributes of the “best” model for anything.  

4) List some of the pros and cons of not having stringent rules regarding basic black box modeling techniques.  

5) One of the themes of this chapter is the hierarchical design approach. Would it be possible to have too many 
levels for a given design? Explain your answer without being too verbose 
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3.8 Design Problems 

 

1) Draw a block box model of the following devices (be sure to label your model as completely as possible): 

a) the family dog 

b) the tree growing in the forest 

c) a bottle of beer 

d) your best friend 

e) a compost pile 

2) Draw a block box model of the following devices (be sure to label your model as completely as possible):   

a) microwave oven  

b) handheld calculator  

c) television 

d) refrigerator/freezer 

3) Draw a two block diagrams, each using a different level of description, for the following devices (be sure to 
label your model as completely as possible):   

a) internal combustion engine  

b) soda-dispensing machine 
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4 Number Systems Basics 

 

4.1 Introduction 

The previous chapters gave you a small taste for the meaning of the terms “digital” and “model”. This chapter 
continues our move towards digital design by discussing some of the underlying details regarding number 
systems and their relation to digital design. This chapter introduces number systems.  

Main Chapter Topics 

NUMBER SYSTEM INTRODUCTION: Since number usage has become second nature, we 
probably forgot some of the underlying characteristics that make numbers “work”. This 
chapter provides a friendly reminder of common definitions associated with number 
systems.   

COMMON DIGITAL RADII: We use the binary and hexadecimal number systems in digital 
design to support hardware implementations of problem involving mathematics. This 
chapter describes these number systems.  

SPECIAL ATTRIBUTES OF BINARY NUMBERS: Binary numbers have several properties 
that we draw upon continuously in digital design. This chapter describes these attributes.  

ENGINEERING NOTATION: Writing numbers in a clear and concise manner is important 
in digital design. This chapter describes the motivation behind engineering notation.  

 

Chapter Acquired Skills 

 Be able to describe the basic vernacular associated with number systems 

 Be able to describe the following number systems:  

o Stoneage unary 

o Binary 

o Decimal 

o Hexadecimal 

 Be able to describe the important attributes of binary numbers 

o Unsigned binary number ranges 

o Number of bits required to represent positive decimal number 

o Unique numbers representable by a given number of bits 

 Be able to represent numbers using engineering notation  

 

4.2 Number System Retrospective 

Number systems became an integral part of human life, as humans required more viable approaches for 
quantifying their possessions. Human developed of numbers in order to correct a basic limitation of the human 
brain:  the lack of ability to handle large quantities of “things”.  
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My eighth grade algebra teacher1 once told the class a story about some primitive culture. I’ve forgotten why 
he told the story, but I never forgot the story itself, as it was the day I found out that I was not much better than 
a caveperson2. The teacher told the class about a number system used by a primitive culture, which comprised 
of three “numbers”: “one”, “two”, and “many”. What has always impressed me about this story was the fact 
that it still nicely describes the way my brain “processes” quantities of things. Although this caveperson 
number system seems limited compared to modern number systems, it underscores the limitations of the 
modern human brain.  

Figure 4.1 demonstrates a basic limitation in the human brain. In Figure 4.1(a), it’s obvious there is only one 
dot in the square; your brain both sees and processes this information instantaneously. Your brain probably has 
no problem “counting” the number of dots in the square of Figure 4.1(b) either. However, once you arrive at 
Figure 4.1(c), your brain can’t instantaneously gather this information: the sheer number of dots in the square 
instantly overloads your brain. In essence, your brain sees the number of dots as “many”; thus your brain is no 
more sophisticated than that of a caveperson.  

   

(a) (b) (c) 

Figure 4.1: An example showing a basic limitation of the human brain. 

We modern humans are able to both conceive of and process the dots in the square of Figure 4.1(c). We do this 
by representing the quantity of dots with a “number”. We define this number by a mutually agreed upon set of 
rules to ensure that everyone who uses that number refers to the same quantity of dots. There is even an agreed 
upon set of squiggles that we use to represent the numbers.  

4.2.1 Stoneage Unary 

Stoneage unary is still a useful and relatively popular number system. When cavepeople realized they needed a 
more precisely way to track the quantity of things, they started saving a small stone for each thing they 
possessed. For example, if they had 12 cows, they would store 12 small stones in the pockets of their stone-age 
loincloths. We call this counting system stoneage unary in that each stone represents a count of one thing. We 
still often use stoneage unary today with the notion of tick-marks. For example, cowboys cut one groove in the 
handle of their six-shooters for each person they kill. Similarly, academic administrators carve a notch in their 
desks for each person they bully, harass, and/or fire.  

It is still common to use tick marks to count various things; Figure 4.2 shows an example of such a counting 
system. This method of counting made it easy to perceive a total number of things by placing tic marks in 
groups of five things. For example, the number represented by the marks is Figure 4.2 is 23, which also 
happens to be the average IQ of academic administrators.  

 

Figure 4.2: An example of stoneage unary.  

                                                           
1 It was Mr. Fangman; the year was 1975. That was really his name.  
2 Mr. Fangman actually used a gender specific term; we’ll opt for a gender-neutral term to protect the innocent.  
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4.3 Number Systems Basics 

A quick review of the some of the underlying structure and definitions of number systems is in order. The 
concepts presented in this section should be nothing new to you, but you may have forgotten the actual 
definitions. Although you’re probably able to tweak around with multi-variable calculus but you probably 
forgot what exactly a radix point is. Welcome to higher education.  

 Number System: a language system consisting of an ordered set of symbols (digits) with rules 
defined for various mathematical operations 

 Digit: a symbol in a number system 

 Radix: the number of digits in the ordered set of symbols in a number system 

 Number: a collection of digits, which can contain both a fractional and integral part 

 Radix Point: a symbol that delineates the fractional and integral portions of a number 

As an example, consider a decimal number (radix = ten). Since the number is a decimal number, we can use 
any one of ten different symbols to represent a decimal number (0, 1, 2, 3, 4, 5, 6, 7, 6, 8, or 9)3. If we were 
only limited to ten numbers, the number system would be of little use to us. However, by placing digits side-
by-side and using special rules, we can represent any quantity of things.  

Placing digits side-by-side to represent numbers is what we refer to as juxtapositional notation. Using 
juxtapositional notation allows a given number system to represent numbers greater than the “radix-1”. 
Number systems can use juxtapositional notation for any radix value. Each of the digit positions in 
juxtapositional notation can be any of the digits in the ordered set for the given radix. For decimal numbers, the 
numbered set is: {0,1,2,3,4,5,6,7,8,9}.  

Figure 4.3 lists some other fun facts regarding numbers and juxtapositional notation. Figure 4.3 shows that we 
divide numbers into their integral and fractional parts, where the radix point delineates the integral and 
fractional portions of the number4. Each digit in both the fractional and integral portions of the number is a 
member of the set of numbers associated with the given radix. Figure 4.4 provides an alternative and more 
formal definition of a number, which includes some of the typical lingo we use to describe numbers. 

NUMBER = (N)R = (Integral Part) . (Fractional Part) 

                                 

                             Radix Point 

Figure 4.3: The form of a typical number using juxtapositional notation.  

 

                                                           

3 Keep in mind that these symbols are arbitrary; if you don’t like them, feel free to create your own.  
4 The radix point is that funny dot that you’re not supposed to call a decimal point unless the radix is ten. 
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NUMBER = (N)R = (An-1 An-2 … A1 A0 . A-1 A-2 … A–m)R 

 

where:  

R  radix 

A  one digit in the number 

An-1  the most significant digit (MSD) 

A-m  the least significant digit) 

Figure 4.4: Another form of a typical number.  

 

Example 4-1: Describing Parts of Decimal Number Representations 

Describe the integral and fractional portions of the following number: 989.45  

Solution: “989” is the integral portion of the number; “45” is the fractional portion of the number; the radix 
point divides the integral and fractional portions of the number. Since there is no listed radix, the radix value of 
ten is implied and thus the number is a decimal number. We only include a radix if the number has a radix 
other than ten.   

 

4.4 Juxtapositional Notation and Numbers 

Juxtapositional notation allows a given number system to represent quantities larger than the “radix-1”. 
Juxtapositional notation places symbols side-by-side in order to represent quantities larger than the numbers in 
the given set by assigning a weight to every digit position in the number. By convention, the numbers are 
monotonically increasing (scanning right to left) powers before the radix point, and, and monotonically 
decreasing powers of the radix (scanning left to right) after the radix point. The weighting of the digit to the 
immediate left of the radix point is the radix raised to the zero power while the weighting of the digit 
immediately to the right of the radix point is raised to power of “-1”. 

 

Example 4.2: Weightings in Decimal Numbers 

Show the weightings associated with each digit in the following number: 987.45  

Solution: Table 4.1 shows the solution to Example 4.2. The radix exponential row uses the radix to 
monotonically increasing/decreasing powers to designate the weightings. This convention follows the 
juxtapositional number conventions in Figure 4.4.  
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Decimal Value 
of Digit Weight 

100 10 1  0.1 0.01 

Radix 
Exponential 

102 101 100  10-1 10-2 

Positional Value 
9 x 100 
(900) 

8 x 10 
(80) 

7 x 1  
(7) 

. 
4 x 0.1 

(0.4) 

5 x 0.01 

(0.05) 

       Radix Point 

Table 4.1: The solution to Example 4.2.  

 

4.5 Common Digital Radii 

Digital design commonly uses three different radii: 10, 2, and 16. We generally refer to these number systems 
as “base 10”, “base 2”, and “base 16”, respectively, where the “base” is the radix value; we refer to these 
number systems as decimal, binary, and hexadecimal (hex), respectively. Table 4.2 lists the justification for 
using these number systems digital design and include the symbol sets for these three number systems.  

Name Radix Justification Symbol Set 

Decimal 10 
It’s what humans understand and 
is thus comfortable to work with 

0,1,2,3,4,5,6,7,8,9 

Binary 2 
It’s what digital hardware 
understands and we must be able 
to work with the hardware 

0,1 

Hexadecimal 

(hex) 
16 

It is a substitute for binary as it 
helps humans understand long 
strings of 1’s and 0’s 

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F 

Table 4.2: Justifications for using particular number systems in digital design.  

Here are a few important things to note about these number systems:  

 We refer to binary digits as bits 

 The number of symbols in each number system spans from ‘0’ to the “radix – 1”. The lowest value 
symbol is zero and the highest valued symbol is “radix – 1”.  

 The hexadecimal system runs out of number symbols after ‘9’, and then arbitrarily switches to the 
alpha characters of A→F (case does not matter).  

 We often list binary numbers in groups of four and “zero-extend”” (add extra zeros) to the values to 
make then four bits when necessary  

 We often refer to a grouping of four bits as a “nibble”  

 We refer to a grouping of eight bits are a “byte” 
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Table 4.3 shows a list of decimal values 0→15, along with their binary and hex equivalents. We list the binary 
numbers in groups of four bit as that helps humans quickly identify the numbers. Zero-extending the binary 
numbers does not change the value of the number.  

(base 10) 
Decimal 

(base 2) 
Binary 

(base 16) 
Hexadecimal 

0 0000 0 
1 0001 1 
2 0010 2 
3 0011 3 
4 0100 4 
5 0101 5 
6 0110 6 
7 0111 7 
8 1000 8 
9 1001 9 

10 1010 A 
11 1011 B 
12 1100 C 
13 1101 D 
14 1110 E 
15 1111 F 

Table 4.3: Numbers that every digital designer should memorize. 

4.5.1 Binary Number System 

The binary number system is basis of all transactions in digital hardware because digital circuit hardware 
(namely transistors) only operates in two states5. Therefore, while humans prefer decimal, digital circuits 
require binary. Using binary represents a new thang, so you need to invest some time in learning the basics of 
binary (and hexadecimal). The best way to start this is to memorize everything in Table 4.3. This is not a big 
deal, as you already know decimal, and hexadecimal is straightforward to learn as it only contains six new 
characters. You need to quickly translate between decimal↔binary↔hexadecimal; generating a table similar to 
Table 4.3 each time you need to do a conversion is a waste of time. To fluent with powers of two, you also 
need to memorize the values in Table 4.4.  

                                                           

5 Transistors can operate in more than two states, but transistors in digital circuits only operate in two states.  
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(base 2) 
Binary 

(base 10) 
Decimal 

(base 16) 
Hexadecimal 

(base 2) 
Binary 

(base 10) 
Decimal 

(base 16) 
Hexadecimal 

20 1 1 20 – 1 0 0 

21 2 2 21 – 1 1 1 

22 4 4 22 – 1 3 3 

23 8 8 23 – 1 7 7 

24 16 10 24 – 1 15 F 

25 32 20 25 – 1 31 1F 

26 64 40 26 – 1 63 3F 

27 128 80 27 – 1 127 7F 

28 256 100 28 – 1 255 FF 

29 512 200 29 – 1 511 1FF 

210 1024 400 210 - 1 1023 3FF 

Table 4.4: Important powers of two that you also need to memorize. 

 

Example 4.3: Binary Number Weightings 

Show the weightings associated with each digit in the following number:  101.112 

Solution: Table 4.5 shows the solution to Example 4.3. 

Decimal Value of 
Digit Weight 

4 2 1  0.5 0.25 

Radix 
Exponential 

22 21 20  2-1 2-2 

Positional Value 
1 x 4 

(4) 

0 x 2 

(0) 

1 x 1  
(1) 

. 
1 x 0.5 

(0.5) 

1 x 0.25 

(0.25) 

        Radix Point 

Table 4.5: The solution to Example 4.3. 

 

4.5.2 Hexadecimal Number System 

The hexadecimal number system contains sixteen digits in its ordered set of symbols. The first ten numbers are 
the same as decimal numbers, but we use alpha characters (A→F) to represent the numbers 10→15 because we 
run out of the arbitrary squiqqles we use for the ten decimal digits. Table 4.3 shows the hexadecimal numbers 
along with the associated decimal and binary numbers (in 4-bit format).  

Hexadecimal numbers exist in digital design for one single purpose: they provide a shorthand notation to 
represent binary numbers. The general rule in digital design is to never use binary numbers greater than four 
bits because they are too hard for your brain to process. One of the accepted exceptions is when the binary 
number is all 0’s or all 1’s.  
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4.6 Important Attributes of Binary Numbers 

In digital design, we find ourselves working with special properties of binary numbers. This section introduces 
and describes a few of these properties. 

4.6.1 Unique Numbers vs. Number of Bits 

Quite often in digital design land, there is an issue of how many unique numbers can you represent by “X 
number of bits”. There’s a special relationship in a binary number system that uses monotonically increasing 
powers for the bit-position weight values. For example, were you are only considering one bit, you can two 
unique numbers: ‘0’ and ‘1’. If you have two bits, you can have four unique numbers: “00”, “01”, “10”, and 
“11”. If you have three bits, etc. The equation in Figure 4.5 shows the relationship between the number of bits 
and the quantity of unique numbers those bits can represent. The equation in Figure 4.5 essentially describes 
the second column in Table 4.4.  

Number of unique combination of bits = 2 number of bits 

Figure 4.5: The relation between the number of bits and number of unique numbers.  

 

Example 4.4: Binary Number Characteristics 

How many unique numbers can you represent with an 8-bit unsigned binary number?  
 

Solution: The solution to this problem utilizes the formula in Figure 4.5. The quantity of unique numbers = 
2number of bits = 28 = 256 

 

 

Example 4.5: Binary Number Characteristics 

How many unique numbers can you represent with a 12-bit unsigned binary number?  

 

Solution: The solution to this problem utilizes the formula in Figure 4.5. The quantity of unique numbers = 
2number of bits = 212 = 4096.  

 

4.6.2 Number Range vs. Number of Bits 

A given number of bits in an unsigned binary number can represent a range of value, which runs from ”all 0’s” 
to “all 1’s”. For unsigned binary numbers, we interpret all zeros as the decimal value of zero, which represents 
the minimum value for the range; the maximum value is where all bits are a ‘1’. Figure 4.6 shows a formula for 
the number range as a function of the number of bits.  

number range (unsigned binary) for X Bits = [0,2X – 1] 

Figure 4.6: The range for a given number of bits for unsigned binary numbers.  

 



Free Range Digital Design Foundation Modeling Chapter 4 

 

 - 50 -  

 

Example 4.6: Binary Number Characteristics 

What is the number range for an 8-bit unsigned binary number?   

 

Solution: The solution to this problem utilizes the formula in Figure 4.6. The quantity of unique numbers = 
[0,28 – 1] = [0,256 – 1] = [0,255].  

 

 

 

Example 4.7: Binary Number Characteristics 

What is the number range for a 12-bit unsigned binary number?   

 

Solution: The solution to this problem utilizes the formula in Figure 4.6. The quantity of unique numbers = 
[0,212 – 1] = [0,4096 – 1] = [0,4095].  

 

4.6.3 Number of Bits to Represent a Number 

Quite often in digital design, we need to know the minimum number of bits we require to represent a given 
decimal number. For example, we have 100 different items that we need to assign a unique set of bits. In 
digital design, we most often want to represent that number in a minimum number of bits as well. Figure 4.7 
shows the formula; this formula uses a ceiling function.  

𝐌𝐢𝐧𝐢𝐦𝐮𝐦 𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐁𝐢𝐭𝐬 𝐑𝐞𝐪𝐮𝐢𝐫𝐞𝐝 𝐭𝐨 𝐑𝐞𝐩𝐫𝐞𝐬𝐞𝐧𝐭 𝐚 𝐃𝐞𝐜𝐢𝐦𝐚𝐥 𝐍𝐮𝐦𝐛𝐞𝐫 𝐗 ⌈𝐥𝐨𝐠𝟐 𝑿⌉ 

Figure 4.7: The number range for an unsigned binary number based on the number of bits in the 
number.  

 

Example 4.8: Binary/Decimal Number Relations 

What is the minimum number of bits required to represent 269 items?  

Solution: The solution to this problem utilizes the formula in Figure 4.7.  

Minimum number of bits = ceiling(log2[269]) = 9 bits. 
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Example 4.9: Binary Number Characteristics 

Consider a 6-bit binary number; list the maximum value, the minimum value, and the two 
numbers in the middle of the number range that these six bits are able to represent. 

Solution: The list below provides the requested numbers:  

The maximum number: this would be all “1’s”, or “111111” = 63 

The minimum number: this would be all “0’s”, or “000000” = 0 

We derive the two middle numbers from the fact that there is always an even quantity of numbers available for 
a given number of bits. The two numbers in the middle of the range are “011111” and “100000”; these 
numbers represent 31 and 32, respectively. These two numbers effectively divide the 6-bit number into the 
following two ranges: [0,31] and [32,63]. Note that each range has 32 unique numbers.  

 

4.7 Engineering Notation 

In order to reduce their workload and thought-load, we typically use engineering notation to represent 
numerical quantities. Problems can arise when attempting to express numbers without using a convention as 
Table 4.6 shows, which lists the same number in different but equivalent ways.  

0.000034.7 x 102 0.347 x 10-2 

0.00034.7 x 101 3.47 x 10-3 

0.00347 34.7 x 10-4 

0.0347 x 10-1 347 x 10-5 

Table 4.6: A few ways to represent 34.7 x 10-4.  

The problem is that it’s hard to gather an intuitive feel for numbers if they don’t conform to some standard. 
The solution is to use engineering notation to represent numbers in digital design. Engineering notation is a 
subset of scientific notation with some extra rules added. The motivation of using engineering notation is to 
enhance the intuitive feel of numbers by placing restrictions on their representations.  

Engineering notation uses special suffixes to represent the exponential portion of the number. The advantage of 
engineering notation is that it allows you to obtain a quick feel for the magnitude of numbers based on its 
magnitude and prefix. Figure 4.8 shows the rules for using engineering notation.  

 The magnitude portion of the number should be between 1 and 1000. We officially list 
this range as [1,1000)6.  

 The units portion of the number uses an appropriate prefix and does not use exponential 
notation. The valid prefixes are integral multiples of three.  

Figure 4.8: The rules for correctly using engineering notation. 

Table 4.7 lists the prefixes you need to know. There are many others, but how often do you have the 
unsatisfiable urge to use prefixes such as “yocto”7. You should be familiar with most of these prefixes already; 
but if not, now is your chance to learn some lingo that impresses your friends.  

                                                           

6 This notation means that the number is greater than or equal to 1 but less than 1000.  
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Value Prefix Abbrev Example 

109 Giga G GHz 
106 Mega M MHz 
103 Kilo k kHz 
10-3 mili m ms 
10-6 micro μ μs 
10-9 nano n ns 

Table 4.7: Engineering Notation prefixes.  

 

Example 4.10: Converting a Number to Engineering Notation 

Represent the value 452300Hz in engineering notation.  

Solution: The value 452300 is greater than 1000 (103) but less than 1000000 (106). This means we need to use 
the “k” prefix. We then divide the given number by 1000 to obtain the proper magnitude portion of the number 
before we attach the k prefix. The final answer is 452.3 kHz.  

 

 

 

Example 4.11: Converting Exponential Notation to Engineering Notation 

Represent the value 84.3 x 10-8s in engineering notation.  

Solution: First, convert the exponential portion of the value to a multiple of three. If we multiple the number 
by 100 (102), the exponential portion of the number becomes -6, which is OK. However, to compensate for this 
multiplication, we must also divide the magnitude portion of the number by 100. The resulting magnitude 
value is then 0.843. However, since this value is less than one, this is not proper engineering notation. Our only 
other choice is to adjust the exponential part in the other direction. To do this we divide the exponential portion 
of the number by 10 to obtain 10-9 and then multiply the magnitude portion of the number by 10 as 
compensation. The result is 843ns.  

 

 

  

                                                                                                                                                                                   

7 Yep, it sounds more like a personal hygiene problem than a prefix.  
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4.8 Chapter Summary 

 

 Engineering notation is a subset of scientific notation and we typically use it to represent numbers when 
we need to quickly get a feel for the size of the number. Engineering notation uses a magnitude and 
exponential parts to represent numbers. The magnitude part must be in the range [1,1000); the exponential 
part must be an integral multiple of three, which we represent with standard metric prefixes.  

 The development of numbers resulted from the need to process larger “quantities” of things. Human brains 
can’t process large quantities of things; “numbers” allows human brains to comprehend and process larger 
quantities of things  

 We use hexadecimal numbers to make long strings of binary numbers more readable to humans. 

 Numbers represent quantities that are too big for our brain to understand and process. We form numbers 
by using a basic set of symbols associated with the particular radix in question. Numbers use 
juxtapositional notation to represent quantities larger than the numbers represented by the associated 
symbol set. We assign different weightings to digit positions for each position in a number. Numbers have 
both integral and fractional portions, which we delineate with a radix point.  

 Digital design uses binary numbers because of the fact that a binary number nicely models the high-
voltage vs. low-voltage relationship in the underlying transistor implementation of digital circuits. 

 Two important characteristics of unsigned binary numbers are 1) the quantity of numbers you can 
represent by a given number of bits, and, 2) the range of unsigned numbers that you can represent by a 
given number of bits. These quantities can be represented by closed form formulas:  

   Number of Unique Numbers = 2 number of bit locations 

   Number Range for Unsigned Binary Numbers = [0-(2 number of bit locations – 1)] 

𝐌𝐢𝐧𝐢𝐦𝐮𝐦 𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐁𝐢𝐭𝐬 𝐑𝐞𝐪𝐮𝐢𝐫𝐞𝐝 𝐭𝐨 𝐑𝐞𝐩𝐫𝐞𝐬𝐞𝐧𝐭 𝐚 𝐃𝐞𝐜𝐢𝐦𝐚𝐥 𝐍𝐮𝐦𝐛𝐞𝐫 𝐗 ⌈𝐥𝐨𝐠𝟐 𝑿⌉ 
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4.9 Chapter Exercises 

 

1) Briefly describe why we use hexadecimal numbers in digital design?  

2) Convert the following values to engineering notation.  

a) 235500000 

b) 45 x 10-4 

c) 241.3 x 108 

d) -33.8 x 10-4 

e) 0.00303 x 10-4 

f) 0.146 x 108 

g) 0.0000000253 x 104 

h) 8.355 x 107 

 

3) Which of the following numbers are have a larger magnitude?  

a) 235500000 or 23.55 x 10-6 

b) 4.5m or 45 x 10-4 

c) 241.3M or 241.3 x 108 

d) -33.8 x 10-6 or -33.81 x 10-6 

 

4) If you had 153 items in your backpack, can you think of a way to describe those items other than using 
numbers? If you can think of ways, how much do those ways differ from stone-age unary? 

5) Represent the following numbers in two different styles of stoneage unary 

a) 3 

b) 16 

c) 10,456,638 

6) How many unique numbers can be represented by a 4, 8, and 12-bit binary numbers? For this problem, 
assume that standard weightings are used for the binary number. 

7) Show the unsigned binary and hexadecimal equivalents of the following decimal numbers. Use four bits to 
represent the binary numbers.  

a) 7 

b) 9 

c) 14 

d) 2 

e) 15 

8) Briefly described why binary numbers are associated with digital design. 

9) Write closed form formulas that show the middle two decimal numbers of any given number of bits in an 
unsigned binary number range.  
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10) Consider a 4-bit unsigned binary number that uses the following weighting (listed from left-most to right-
most bits): 5, 3, 2, and 1. (Don’t laugh, people actually do things like this).  

a) List the unique numbers that can be represented by this range.  

11) How many bits (unsigned binary) does it require to represent the following decimal number?  

a) 3 

b) 32 

c) 129 

d) 193 

e) 3999 

f) 250 

12) How many unique numbers can be represented by the following number of bits. Also, list the ranges 
considering the bits represent unsigned binary numbers.  

a) 6 

b) 10 

c) 8 

d) 9 
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4.10 Design Problems 

 

1) Design your own personal number system. This system should have radix of eight. Make sure you define 
both the symbols and the weighting of numbers based on digit position. The symbols you use in your 
number system must be unique. Provide a few example numbers and at least one example conversion to 
decimal.  
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5 Number Systems: Codes and Conversions 

 

5.1 Introduction 

Digital design uses various codes to represent “things of interest”, such as numbers. There are a bajillion 
different codes out there, but digital design primarily uses only a few of those codes. Digital designers need to 
both understand those codes and be able to convert between them. This chapter describes some popular codes 
and the conversion between these codes.  

Main Chapter Topics 

CONVERSIONS BETWEEN VARIOUS RADII: This chapter describes basic algorithms to 
convert between various number systems.  

 

Chapter Acquired Skills 

 Be able to convert a number from any radix to decimal  

 Be able to convert a decimal number to any radix 

 Be able to convert binary numbers to hexadecimal and hexadecimal to binary 

 Be able to convert BCD numbers to decimal and back 

 Be able to describe and generate a one-hot code 

 Be able to describe and generate a unit-distance code 

 

5.2 Number System Conversions 

The reality is that we humans think in decimal but computers and other digital devices operate strictly in 
binary. This means we need to be able to translate between the various number systems typically associated 
with digital design.  

5.2.1 Any Radix to Decimal Conversions 

The digit positions in any number using juxtapositional notation have weights associated with them. The 
associated number multiplies the weights in order to generate the final number. An earlier chapter had a few 
binary to decimal conversions; some more examples follow.  

 

Example 5.1: Hexadecimal-to-decimal conversion  

Convert 1CE.A416  (hexadecimal) to decimal.  

Solution: Table 5.1 provides the solution to Example 5.1. The solution is similar to a previous example, but 
with a different radix.   
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Decimal Value 
of Digit Weight 

256 16 1  0.0625 0.003906 

Radix 
Exponential 

162 161 160  16-1 16-2 

Positional Value 
1 x 256  
(256) 

12 x 16  
(192) 

14 x 1  
(14) 

  . 
10 x 0.0625 
 (0.625) 

4 x 003906 
(0.015625) 

      Radix Point 

Final answer:  256 + 192 + 14 + 0.0625 + 0.003906 = 462.066409 

Table 5.1: The solution to Example 5.1. 

 

5.2.2 Decimal to Any Radix Conversion 

You can use many different algorithms to convert numbers from decimal to a number system of any radix; this 
section examines the most straightforward algorithm for humans. This approach works for converting decimal 
to any base, but we only perform decimal to binary conversions. Note that the best approach to do these 
conversions is to use a calculator.  

The decimal to binary conversion is the conversion you use most often in digital design. There are two parts to 
this approach; one for the integral portion and fractional portions of numbers.  

As motivation for converting the integral portion of decimal number to binary, let’s convert a decimal number 
to a decimal number (don’t worry, it proves a point). The approach we take is to divide the number multiple 
times by the radix value. Example 5.2 provides an overview of this division process.  

 

Example 5.2: Decimal-to-decimal conversion 

Convert 487 to decimal.  

Solution: Table 5.2 shows the solution to this example. The solution comprises of repeated divisions with the 
top row of table being the first division.  

487 ÷ 10 = 48 Remainder: 7 LSD = 7 
48 ÷ 10 = 4 Remainder: 8  
4 ÷ 10 = 0 Remainder: 4 MSD = 4 

Table 5.2: Decomposing an integral decimal number into a decimal number. 

 

You can see in Example 5.2 repeated division by the radix value decomposes the original value into its 
individual weighted components. The first value that this algorithm generated was the least significant digit 
(LSD) which is the remainder after the first division. The final value generated by this algorithm is the most 
significant digit (MSD). If you were to reassemble the number with the MSD on the left and the LSD on the 
right, you would get the original number back. Wow!  

This example proves that the algorithm is valid and it thus works when transferring from decimal to a number 
of any radix value. In both examples, we use the terms LSB and MSB, which refers to Least Significant Bit 
and Most Significant Bit, respectively. Not surprisingly, the technique we refer to this technique as repeated 
radix division (RRD).  
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Example 5.3: Decimal-to-Binary Conversion 

Convert 12 to binary. 

Solution: Table 5.3 shows the solution to this example in a series of steps starting with the top row of the table.  

 

12 ÷ 2 = 6 Remainder: 0 LSB = 0 
Final Answer:  
1210 =11002 

6 ÷ 2 = 3 Remainder: 0  
3 ÷ 2 = 1 Remainder: 1  
1 ÷ 2 = 0 Remainder: 1 MSB = 1 

Table 5.3: The solution to Example 5.3: decomposing a decimal number into a binary number. 

 

 

 

Example 5.4: Decimal-to-Binary Conversion (integral) 

Convert 147 to binary.  

Solution: Table 5.4 shows the solution to this example in a series of eight steps starting with the top row of the 
table being the first step. 

147 ÷ 2 = 73 Remainder: 1 LSB = 1 

Final Answer:  
14710 =100100112 

73 ÷ 2 = 36 Remainder: 1  
36 ÷ 2 = 18 Remainder: 0  
18 ÷ 2 = 9 Remainder: 0  
9 ÷ 2 = 4 Remainder: 1  
4 ÷ 2 = 2 Remainder: 0  
2 ÷ 2 = 1 Remainder: 0  
1 ÷ 2 = 0 Remainder: 1 MSB = 1 

Table 5.4: The solution to Example 5.4 

 

As a motivational example for converting the fractional portion of a number to some other base, let’s first 
convert a fractional decimal number to decimal number. The approach we take is to multiply the number 
repeatedly by the radix value and examine the result. In each step, we’ll peel off the newly created integral 
portion of the number and put it aside. Example 5.5 provides an overview of this algorithm. Note from the 
result in Example 5.5 that the first integral result is the MSD of the original number. The final value we obtain 
is the LSD of the original number. We refer to this algorithm to as repeated radix multiplication (RRM).  

There are two key points about the example in Example 5.7. First, as opposed to the example in Example 5.6, 
the example in Example 5.7 does not appear to end. For the sake of sanity in this example, we decided to end 
the pain after four iterations of the algorithm. Stopping the algorithm after four iterations is arbitrary (doing 
four iterations was boring enough). The other key point is that the answer is no longer a proper equation. In 
reality, since our conversion never ended as nicely as in Example 5.6, we must use the approximation symbol 
to indicate that the equality was not preserved. Also, note that all of these examples use a subscripted two to 
indicate that the converted number is in a binary representation.  
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Example 5.5: Decimal-to-decimal conversion (fractional) 

Convert 0.243 to decimal.  

Solution: Table 5.5 shows the solution in a series of eight steps starting with the top row of the table.  

0.243 × 10 = 2.43  remove the 2 MSD = 2 
0.43 × 10 = 4.2 remove the 4  
0.3× 10 = 3.0  remove the 3 LSD = 3 

Table 5.5: Solution to Example 5.5 

 

 

 

Example 5.6: Decimal-to-Binary Conversion (fractional) 

Convert   0.375 to binary.  

Solution: Table 5.6 shows the solution to this example in a few steps starting with the top row of the table 
being the first step.  

0.375 × 2 = 0.75  remove the 0 MSB = 0 
0.375 = 0.0112 0.75 × 2 = 1.50 remove the 1  

0.5 × 2 = 1.0  remove the 1 LSB = 1 

Table 5.6: Solution to Example 5.6 

 

 

 

Example 5.7: Decimal-to-Binary Conversion (fractional) 

Convert   0.879 to binary.  

Solution: Table 5.7 shows the solution to this example in a few steps starting with the top row of the table 
being the first step.  

0.879 × 2 = 1.758  remove the 1 MSB = 1 

0.879 ≈ 0.11102 
0.758 × 2 = 1.516 remove the 1  
0.516 × 2 = 1.032 remove the 1  
0.032 × 2 = 0.064 remove the 0 LSB = 0 (?) 

Table 5.7: Solution to Example 5.7 
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5.2.3 Binary ↔ Hex Conversions 

The key to converting between binary and hex numbers is to note that a single hex number represents a group 
of four binary numbers (and vice versa). This works because both binary and hex numbers are powers of two, 
which allows for the individual weightings of the numbers to be powers of two also. The conversions of 
Example 5.8 and Example 5.9 highlight the relationship between the group of fours in the context of a binary-
to-hexadecimal conversion and a hexadecimal-to-binary conversion, respectively. In addition, there are a few 
special items to note in these examples.  

 

 

 

 

Solution: Figure 5.1 shows the solution to Example 5.8; here is some cool stuff to note: 

 We omit the leading zeros in the number as they have no value   

 We add zeros to the end of the fractional portion of the number (commonly referred to as bit-
stuffing). A common mistake is to see that final ‘1’ in the fractional portion of the number think 
that is equivalent to a binary ‘1’, but the number has the weight associated with the MSB of a 4-
bit binary number. The final bit is associated with a hexadecimal ‘8’ and not ‘1’.  

 

1100110.101012  = 66.A816 

Figure 5.1: The solution to Example 5.8. 

 

 

 

Example 5.9: Hexadecimal-to-binary conversion 

Convert D37.AC16  to binary.  

Solution: Figure 5.2 shows the solution to Example 5.9.  

 

D37.AC16  = 110100110111.101011002 

Figure 5.2: The solution to Example 5.9. 

 

Example 5.8: Binary-to-hexadecimal conversion 

Convert 1100110.101012  to hexadecimal. 
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5.3 Fast Radix-Based Division & Multiplication 

Division and multiplication are usually complex operations in any radix. When the divisor or multiplicand is 
the radix raised to an integral power, these multiplication and division are trivial. We’re all familiar with the 
notion of dividing or multiplying decimal numbers by powers of ten, where all we do is move the decimal 
point around and added extra zeros where necessary. This ease of operation is no different for other radii, 
namely binary and hexadecimal. The best way to show this is with a few examples.  

 

 

 

 

Solution: First, 8 is an integral power of 2 (23=8). This means that we need to move the radix point three digits 
to the left, which is the same operation as dividing by 8. The final answer is 1100.1101012. 

 

 

 

 

 

 

Solution: First, 32 is an integral power of 2 (25=32). This means that we need to move the radix point five 
digits to the right, which is the same operation as multiplying by 32. The final answer is 111011001002. 

 

 

 

 

 

 

Solution: First, 256 is an integral power of 16 (162=256). This means that we need to move the radix point two 
digits to the left, which is the same operation as dividing by 256. The final answer is: 3A.D7B16.  

 

 

 

 

Solution: Note that 256 is an integral power of 16 (162=256). This means that we need to move the radix point 
two digits to the right, which is the same operation as multiplying by 256. The final answer is: CDF8016.  

 

Example 5.10: Binary Division 

Divide the following value by 8: 1100110.1012 

Example 5.11: Binary Multiplication 

Multiply the following value by 32 111011.0012  

Example 5.12: Hexadecimal Division 

Divide the following value by 256: 3AD7.B16 

Example 5.13: Hexadecimal Multiplication 

Multiply the following value by 256: CDF.816 
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5.4 Other Useful Codes 

Using binary patterns to represent numbers is a major field of study in modern engineering.. In that we 
currently live in the information age, there are an endless number of binary codes in use. 

You’re about to learn several different common ways of representing numbers using binary codes. In this 
context, the word “code” refers to the interpretation of a set of bits. Up until this point, if you were to see a 
bunch of bits, you would naturally think about juxtapositional notation and the weights of the numbers, which 
happen to be powers of two (the radix for binary). As you’ll soon find out, this is only true for unsigned binary 
numbers in one particular format; we need other number representations to be fluent in digital-land.  

5.4.1 Binary Coded Decimal Numbers (BCD) 

Binary coded decimal (BCD) numbers are similar to the group of fours. The goal is to have a unique set of bits 
to represent each of the digits in the decimal system. Since there are ten different numbers in the decimal 
system, we need at least four bits to uniquely represent each of the decimal digits. We could not represent the 
set of decimal numbers with three bits because that only provides eight different unique bit patterns. On the 
other hand, there is nothing stopping us from using more than four bits to represent the digits but that would 
end up having lots of unassigned codewords. As it is, there are sixteen different bit combinations possible with 
four bits, which results in six of the bit combinations not used when representing the set of decimal digits1.  

Table 5.8 shows the four-bit code words and the decimal digits they represent. The primary role of BCD 
numbers is to represent decimal numbers in devices that display numbers.  

Decimal BCD Code 

0 0000 
1 0001 
2 0010 
3 0011 
4 0100 
5 0101 
6 0110 
7 0111 
8 1000 
9 1001 
- 1010 
- 1011 
- 1100 
- 1101 
- 1110 
- 1111 

 

Table 5.8: The decimal digits and their associated BCD codes. 

 

Example 5.14: BCD-to-decimal conversion 

Convert   011001111000BCD to decimal.  

Solution: Figure 5.3 shows the solution to Example 5.14.  

                                                           

1 Although these six combinations are often used to represent “numbers” 10-15 hexadecimal.  
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011001111000BCD  = 678 

Figure 5.3: The solution to Example 5.14. 

 

 

 

Example 5.15: Decimal-to-BCD conversion 

Convert 396 to BCD. 

Solution: Figure 5.4 shows the solution to Example 5.15.  

 

396  = 001110010110BCD 

Figure 5.4: The solution to Example 5.15. 

 

5.4.2 One-Hot Codes 

The idea of a one-hot code is simple: for a codeword of n-bits in length, only one of the bits is ‘1’ at any given 
time; the other bits are zero. Table 5.9 shows examples of 3, 4, 5, and 6-bit one-hot codes; creating one-hot 
codes is relatively simple.  

Two areas in digital design use one-hot codes. First, they are the outputs of a “standard decoder”, which is a 
device we discuss in an upcoming chapter. Second, we typically use one-hot codes in the low-level design of 
finite state machines (FSMs). In this text, we do a majority of FSM design at a high level, so we won’t visit the 
topic in a significant manner in the remainder of this text. There are also “one-cold” codes; these codes share 
the same properties as one-hot codes, except the codeword’s bits are inverted (changed to ‘1’ if ‘0’, or changed 
to ‘0’ if ‘1’).   
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Table 5.9: Examples of 3, 4, 5, and 6-bit one-hot codes.  

3-bit 
One-Hot Code 

4-bit 
One-Hot Code 

5-bit 
One-Hot Code 

6-bit 
One-Hot Code 

001 0001 00001 000001 

010 0010 00010 000010 

100 0100 00100 000100 

- 1000 01000 001000 

-  10000 010000 

-   100000 

5.4.3 Unit Distance Codes (UDC) 

The concept of “distance” in digital-land has a special and relatively simple meaning. When you see the word 
distance, it’s usually in the context of “the distance between two code words”. What this implies is that you 
were given set of binary code words of equal length; the set of codes also has a specified sequence (such as a 
binary count). In this context, each of the code words is different from all of the other code words in the set. 
This set of code words now has order, uniqueness, and a constant bit-length, so we can discuss the distance 
between two code words in the set. An example of a code set would be the binary numbers associated with the 
decimal range [0,15], which could be a represented with a 4-bit binary code.  

Table 5.10 shows an example of a 5-bit binary code. Table 5.10 shows that we define the distance between two 
code words as the number of bits that you must toggle (invert) to form one code word out of another 
contiguous code word in the set.  

Table 5.10: A few examples of “distances” between code words. 

Code 
Word A 

Code 
Word B 

Distance from  
Word A to Word B Comment 

00000 11111 5 Toggle all bits 

01110 00110 1 Toggle second bit from right 

00110 00110 0 Toggle no bits 

00111 11100 4 Toggle outer two bits 

A unit distance code (UDC) is a set of code words where the maximum distance between any two contiguous 
code words is one. In other words, to get from one code word to the next code word in the sequence, you only 
need to toggle one bit.  

There is a science to creating UDCs but we’ll not go into that. Know when you hear the words “unit distance”, 
that it’s describing a relationship between two binary numbers. There is also a special form of UDCs that we 
refer to as Gray Codes. Often times when people mention Gray and Unit Distance codes, they’re actually 
referring the unit distance property and not the special characteristics associated with Gray codes. Table 5.11 
lists a few UDC examples.  
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2-bit UDC 4-bit UDC 8-bit UDC 

00 

01 

11 

10 

0001 

0011 

0111 

1111 

1110 

1100 

1000 

0000 

10000001 

11000001 

11000011 

11100011 

11100111 

01100111 

01100110 

00100110 

00100100 

00000100 

00000000 

10000000 
 

Table 5.11: Examples of 2, 3, and 8-bit UDC codes.  
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5.5 Chapter Summary  

 

 Hexadecimal (base 16) and binary (base 2) are two of the primary number systems commonly used and 
associated with digital design. We use hexadecimal to make long strings of 1’s and 0’s more readable.  

 We often require conversion between various types of numbers associated with digital design. The 
important most common conversions are decimal-to-binary, binary-to-decimal, hexadecimal-to-binary, 
and binary-to-hexadecimal. We perform these conversions using special algorithms.  

 Binary coded decimal (BCD), unit distance codes (UDCs), and one-hot codes are three codes we 
commonly use in digital logic design.   
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5.6 Chapter Exercises 

 

1) Explain briefly but fully why the group of four approach works for converting number between 
hexadecimal and binary representations. 

2) Complete the following number systems conversions:  

a) 011110010001BCD to decimal 

b) 0001000000110110BCD to decimal  

c) 4377 to BCD 

d) 70023 to BCD 

e) 4AC16 to decimal  

f) 782B16 to decimal 

g) 101102 to decimal 

h) 1011112 to decimal 

3) Complete the following mathematical operations 

a) 110110112 * 8 

b) 10110110 ÷ 16 

c) 3AB16 * 8 

d) 4A7F ÷ 32 

4) What is the minimum radix value of the following number?: 145.801 

5) What is the minimum radix value of the following number?: BA.12 

6) Which of these two positive numbers is greater? 100110110.11002 or 15B.B16  

7) Assemble these numbers into a gray code sequence: 111, 000, 110, 011, 001, 100 

8) Can the following set of number be made to form a gray code?  

0011, 0110, 1100, 0111, 1111, 1110, 0001 

9) What is the maximum distance between any two of the following numbers?   

0011, 0110, 1100, 0111, 1111, 1110, 0001. 

10) In the table below, cross out one code word from each column to make the code in the column into a unit 
distance code. These two columns represent two separate unit distance codes.   

 

0000 
0010 
0110 
1110 
1111 
1100 
1101 
1001 
0001 

 
 
 
 
 
  

00000 
10000 
10001 
11001 
11011 
10111 
10011 
10010 
00010 
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11) In the table below, add one code word to each column to make the code in the column into a unit 
distance code. Add the required code words only in the rows indicated with arrows. These two 
columns represent two separate unit distance codes – your answer will not necessarily be the same 
code word for each code.  

0000 

0100 

0110 

0010 

0011 

 

1111 

1110 

1100 

1000 

 

 

 

 

 

    

0000 

0001 

0011 

0111 

0110 

 

1100 

1000 

 

 

 

12) The table below shows five binary codes. Circle the codes that are unit distance codes. 

000 

001 

011 

111 

110 

100 

 

0000 

1000 

0100 

0010 

0001 

0000 

0001 

0011 

0010 

0110 

0100 

1100 

1000 

 

01000 

01001 

01011 

01111 

11111 

01111 

01110 

01100 

00100 

00000 

00000 

00100 

01100 

01110 

11111 

11110 

11100 

11000 

10000 

 
 

 

13) Show the one-hot codes for the following number of bits:  

a) 3 

b) 6 

c) 8 

 

14) Show a 16-bit one-hot code in hexadecimal.  

15) Divide the following number by 256:     3 5 F D 116.    

16) Divide the following number by 32:     1 0 1 1 0 1 0 0 0 1 0 0 1 1 12.    

17) Multiply the following number by 256: A473.116. 
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18) Multiply the following number by 2048: B321.A216. 

19) Multiply the following number by 64: 110110.102. 

20) Multiply the following number by 256: 110.10012. 
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5.7 Chapter Design Problems 

 

1) Design a unit distance code that contains six code words. The code should be circular in nature and each 
code word should be five bits long 

2) Design a unit distance code that you can use to represent a re-design of a BCD code. Your new code 
should be a four-bit code and represent all numbers from 0→9.  

3) Design a unit distance code that you can used to represent a re-design of a standard binary code. Your new 
code should be a four-bit code and represent all numbers from 0→15.  

4) Design 8-bit two-hot code. For this code, each code word has only two bits set. Any given bit is only set in 
one of the codewords. In what applications would this code be potentially useful?  

5) Design an 8-bit two-hot code that contains six different codewords. For this code, each code word has only 
two bits set.  
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6 Brute Force Digital Design  

 

6.1 Introduction 

This chapter is the first chapter covering true “digital design”. This chapter presents a single approach to digital 
design, but it is by no means the only approach. This chapter presents a model for solving digital design 
problems.  

Main Chapter Topics 

DIGITAL DESIGN OVERVIEW: This chapter uses a design example to introduce a simple 
digital design process: the “iterative”, or “brute force” approach to digital design. 

BOOLEAN ALGEBRA: This chapter introduces Boolean algebra including its basic 
axioms and associated theorems.  

 

Chapter Acquired Skills 

 Be able to describe the purpose of a logic gates and inverters 

 Be able to describe truth tables for both AND gates, OR gates, an inverters  

 Be able to model solutions to digital design problems by using specifying input/output 
relationships in equation form and circuit forms.  

 

6.2 Digital Design 

Being the average smart person, you’ve solved many problems during your life. However, have you ever 
analyzed your approach to solving problems? The following verbage lists the approach that I generally take to 
solving a problem. This approach is generic enough to be applicable to any problem. Here is my basic 
algorithm for solving problems.  

a) Define the problem: understand the starting point and requirements 

b) Describe your solution to the problem: propose a path to the solution 

c) Implement your solution to the problem: embodiment of the solution 

The following verbage represents an introduction to digital design that we present in the context of an actual 
problem. We’re designing a digital circuit; you would take a different approach if you were designing a stick in 
the mud. The basic concept of all digital design is simple: you’re creating a circuit that provides the correct 
output(s) to a given set of input(s)1. There are many approaches to performing digital design; this section 
presents only one of them. You’ll find that you eventually develop your own style and approach to digital 
design as you gain more experience. You’ll initially be on a mission to collect tools and experience with digital 
design. 

                                                           
1 What you see later in this test is that the “correct” outputs can also be based on a sequence of inputs. For now, we’ll 
pretend that the circuit outputs are based solely on the circuit inputs at a given time.  
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6.2.1 Step 1: Defining the Problem 

The basis of any design problem is a relatively clear statement of the problem. In digital design, you typically 
face the notion of designing a digital circuit that processes some set of inputs and generates the desired output. 
Example 6.1 provides the problem statement for this painfully long design example.  

 

Example 6.1: The First Design Problem 

Problem Statement: Design a digital circuit that has an output that indicates when the 3-bit 
binary number on the input is greater than four. 

Solution: The first step in defining the problem is to translate what the problem is asking into another form. 
The best place to start with all digital design problems is to draw a BBD that shows the circuit’s inputs and 
outputs. You can see from the problem statement that the digital circuit has three inputs (the 3-bit binary 
number) and one output (indicates a quality of the inputs). A model in this context is a description of a digital 
circuit, which we loosely define in Figure 6.1(a).  

The diagram of Figure 6.1(a) shows that our final circuit has three inputs and one output. Figure 6.1(b) shows 
another model of our final circuit. The main difference between these two models is the fact that the model in 
Figure 6.1(b) has given specific names to the inputs and outputs. The circuit models of Figure 6.1(a) and 
Figure 6.1(b) shows the same thing but the Figure 6.1(b) provides a greater amount of detail.  

The model of Figure 6.1(b) is better because we need to use the signal names to solve this problem. The signal 
names applied to the model in Figure 6.1(b) are nothing special: the “B” could mean binary; the numbers 
following the B’s are probably associated with the weighting factors of the binary numbers. The “F” is a 
typical name given to the outputs of a digital circuit because the output is a function of the inputs.  

There is some important information missing from the model of Figure 6.1(b): since the three inputs represent 
a binary number, we need to know the weights associated with each bit. The solution needs to state this this 
information in order for the model of Figure 6.1(b) solution to have meaning. Let’s consider the B2 input to be 
the most significant bit (MSB) and the B0 input to be the least significant bit (LSB). You must always state this 
extra information in your digital design solutions. A good model of anything prevents the reader of that model 
from assuming anything, so always state any assumptions as part of the model. 

  

(a) (b) 

Figure 6.1: Two different models of the proposed digital circuit.  

The next step is to establish a relationship between the circuit’s inputs and outputs. The approach we take is to 
show an input/output relationship in such a way as that we are essentially solving the given problem. The way 
we do this is to list every possible unique combination of the three inputs and assign an output value that 
indicates when the inputs satisfy the problem. We refer to the table that displays this input/output relationship 
as a truth table. Figure 6.2(a) shows the empty truth table while Figure 6.2(b) shows the truth table with every 
possible combination of the three binary inputs; the output indicates when the input combination solves the 
problem.  
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B2 B1 B0 F 
    
    
    
    
    
    
    
    

 

B2 B1 B0 F 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 

 

(a) (b) 

Figure 6.2: The empty and completed truth table for Example 6.1.  

The following describes some of the important things to note about the truth tables in Figure 6.2. 

 Figure 6.2(a) shows an empty truth table while Figure 6.2(b) shows a truth table containing 
many 1’s and 0’s. Digital circuitry and digital models typically use 1’s and 0’s to model the 
voltages that drive the underlying hardware, so this allows us to abstract past the need to deal 
with voltages. We model voltages using 1’s and 0’s for the remainder of this text. 

 The tables have eight rows. There is always a binary relationship between the number of 
inputs to the circuit and the number of rows in the associated truth table. Since there are three 
inputs, there are 23 unique combinations of the three inputs. The decimal equivalents to the 
listed input values range from zero to seven (0-7), because in binary, the counting begins at 0 
(“000”) and ends at 7 (“111”).  

 The truth table is set up so that F is a function , which is no different from the concept of 
functions in mathematics where there are independent variables and dependent variables. For 
this example, B2, B1, and B0 are the independent variables while F is the dependent variable. 
The value of F is dependent upon the values of the B2, B1, and B0 inputs. The output F has 
only one value for each possible input combination, which preserves the functional 
relationship.  

 The first three columns of the truth table form every unique combination of the three input 
values. The column for the output shows what we want the circuit output to be if a particular 
input combination appears on the inputs. For this example, we entered 0’s for the cases where 
the inputs bits represent a number less than five. We enter 1’s for the cases where the input 
combination is greater than four.  

 The truth table includes an extra grid line in the middle row of the truth table in order to 
increase the readability of the table. We typically divide truth tables into rows of four. 

The problem is now 100% defined using the truth table in Figure 6.2(b). In case you’re thinking that this 
problem is somewhat straightforward in the way that we specified the outputs, you’re correct. This particular 
style of digital design is an exhaustive approach in that the truth table lists every possible input combination. 
We refer to this approach as the iterative approach to digital design, but we refer to it as BFD (brute force 
design). Would an iterative approach be possible if the circuit had 24 inputs? No! Therein lays the basic 
limitation of the iterative approach.  

6.2.2 Step 2: Describing the Solution 

Although the truth table has completely defined the solution to this problem, it is somewhat klunky to work 
with, especially as the number of inputs increase. What we need to do is develop a “science” of sorts in order 
to more efficiently describe the problem’s solution. Lucky for us that someone a long time ago already 
developed the “science” we’re looking for. Here’s the shortened version of the story.  
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About a bajillion years ago, George Boole developed some methods to deal with a two-valued algebra2. 
Although his original intent was to model logical reasoning in a mathematical context, his work currently 
forms the basis for all digital design. We refer to this two-valued algebra as Boolean algebra. Boolean algebra 
uses a basic set of operators defined over the set of elements in question. The possible elements in this set are 
{0,1}, which clearly shows the two-values (a binary thang).  

Table 6.1 lists the basic axioms of Boolean algebra. The axioms completely define the basic operators in 
Boolean algebra: the dot (•), the cross (+), and the overbar ( ˉ ). Table 6.2 and Table 6.3 list the Boolean 
algebra theorems; we can prove these theorems using the axioms in Table 6.13.  

1a  1b  
2a  2b  
3a  3b  
4a  4b  

Table 6.1: Boolean algebra Axioms 

5a  5b xx 1  Null element 

6a 000  xx  6b  Identity 

7a  7b  Idempotent 

8a xx   
  Double Complement 

9a  9b  Inverse 

Table 6.2: Single variable theorems. 

10a  10b Commutative 

11a 11b Associative 

12a  12b  Distributive 

13a  13b  Absorption 

14a 
 

14b 
 

Combining 

15a 
 

15b 
 

DeMorgan’s 

Table 6.3: Two and three-variable theorems. 

The most important result gathered from the basic axioms of Table 6.1 is the definition of the three operators. 
Although the axioms completely define these operators, the definition of these operators is clearer when 
represented in a truth table. The three operators have names: we refer to the dot operator (•) as the AND 
operator as it defines an AND operation (to as logical multiplication). We refer to the cross operator (+) as the 
OR operator as it defines an OR operation (logical addition). We refer to the overbar as the NOT operator as it 
defines a NOT operation (usually referred to as inversion or complementation). Table 6.4 shows the truth 
tables associated with these three operator definitions; we generate these truth tables from the basic axioms.  

                                                           
2 In case you have forgotten what algebra is, it’s a mathematical system used to generalize arithmetic operations by using 
letter or symbols to stand for numbers based on rules derived from a minimal set of basic assumptions. The world refers to 
these basic assumptions as axioms. An axiom is a statement universally accepted as true. From this set of axioms, theorems 
can be proved true or false. A theorem is a proposition that can be proven true from axioms.  
3 Proving the theorems using the basic axioms is a typical exercise in most digital design texts. We’ll opt to move onto 
more useful things.  

000  111 
111  000 

00110  11001 
10  01

00 x
xxx  00

xxx  xxx 

0 xx 1 xx

xyyx  xyyx 
)()( zyxzyx  )()( zxyzyx 

)()()( zxyxzyx  )()()( zxyxzyx 
xyxx  )( xyxx  )(

xyxyx  )()( xyxyx  )()(

yxyx  )( yxyx  )(
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AND 
(logical multiplication) 

OR 
(logical addition) 

NOT 
(inversion) 

x y  
0 0 0 
0 1 0 
1 0 0 
1 1 1 

 

x y  
0 0 0 
0 1 1 
1 0 1 
1 1 1 

 

x  
0 1 
1 0 

 

Table 6.4: Truth tables for the three basic logical operators. 

The goal of this section is to produce a scientific method of describing the function associated with the solution 
of the original problem. Since that problem appeared about five pages ago, Figure 6.3 provides the truth table 
defining the solution to this problem.  

B2 B1 B0 F 

0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 

Figure 6.3: The truth table for the original problem. 

We now have several different ways of describing the function that solves the problem at hand. The first 
representation is the truth table, which we know as being rather klunky. A second solution is sort of a verbal 
and thus non-scientific solution. Figure 6.4 shows the long and drawn out text of this verbal solution. Notice 
that Figure 6.4 extensively uses of the words “and” and “or” in the solution. However, since we went to all the 
trouble to describe Boolean algebra, Figure 6.5 shows a better (more efficient and scientific) way to describe 
the function using Boolean algebra. Note the similarities in the solutions of Figure 6.4 and Figure 6.5.  

The output of the circuit is a ‘1’ when:  

 

     (B2=1 and B1=0 and B0=1)  or  (B2=1 and B1=1 and B0=0)  or  (B2=1 and B1=1 and B0=1)   

Figure 6.4: One approach to describing the solution to Example 6.1.  

 

Figure 6.5: A better approach to describing the solution to Example 6.1.  

There are several important things to note about the equation in Figure 6.5.  

 This is truly an equation (note the presence of the equal sign). We refer to this equation as a Boolean 
equation or sometimes as a Boolean expression. We wrote the expression in functional form where we 
list the complete set of independent variables on the left side of the equals sign and we list the 
dependent value on the right of equals sign.  

 The expression implies some form of precedence of the AND, OR, and NOT operators. The NOT 
operator has highest precedence followed by the AND, and then the OR operator. We write these 

yxF  yxF 
xF 

B0B1B2  B0B1B2  B0B1B2  B0)B1,F(B2, 
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Boolean expressions using parenthesis around the individual terms that are ANDed together4. Figure 
6.6 shows an example of the equation of Figure 6.5 with a refreshing use of parentheses. 

B0)B1(B2  )B0B1(B2  B0)B1(B2  B0)B1,F(B2,   

Figure 6.6: An arguably better approach to describing the solution to Example 6.1. 

6.2.3 Step 3: Implementing the Solution 

Up to this point, you’ve defined your solution (step 1) and described your solution (step 2) which means you’re 
now ready to implement your solution. The word implement has many connotations; what we mean in this 
context is that we need some way to implement this function in actual hardware5. All you currently know are 
the basic functions associated with Boolean algebra: AND, OR, and NOT.  

There are entities out there we refer to as “logic gates” that implement the individual logic functions. Just as 
there are AND, OR, and NOT functions, there are also physical circuits (AND, OR, and NOT gates) that 
implement these functions. A logic gate is a physical device that implements a logic function. Figure 6.7 shows 
model for these three basic gates. In other words, the gates represent the associated logic functions but without 
providing details as to the function’s implementation on the transistor level.  

AND gate OR gate Inverter 

   

Figure 6.7: The basic gate symbols used to model AND, OR, and NOT functions.  

AND gates and OR gates must have at least two inputs but don’t have a maximum number of inputs. In the 
cases of more than two inputs, the functions remain consistent. Figure 6.8 lists a more generic definition of 
AND & OR gates; these definitions completely describe the functionality of these gates when they have more 
than two inputs6. AND & OR gates can have as many inputs as they need while still exhibiting the basic AND 
& OR functionality. Inverters can only have one input and one output.  

 AND gates and OR gates can have only one output.  

 Inverters can only have one input and one output.  

AND gates:  the output is a ‘1’ only when all the inputs are a ‘1’  

OR gates: the output is a ‘0’ only when all the inputs are a ‘0’ 

Figure 6.8: A more generic and intuitive definition for AND & OR functions. 

These gates give us the ability to implement the solution in hardware. However, for this problem, we’re not 
going to actually implement the circuit. Instead, we’re going to provide yet another model for the circuit that 
solves this problem. Figure 6.9 shows a model of the final circuit implementation. Make sure you understand 
the relationship between the circuit model of Figure 6.9 and the Boolean equation in Figure 6.5. To test your 
understanding of this relationship, you should be able to generate the associated Boolean equation in Figure 6.5 
that describes the circuit from the circuit model in Figure 6.9.  

                                                           
4 Use of parenthesis reduces the need to memorize operator precedence. So, if in doubt, use parenthesis.  
5 A digital design synonym for implementing a function in hardware is to “realize” the function or “function realization”.  
6 You can add more inputs to the gate symbols as required. 
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Non-complemented signals in the Boolean equation connect directly to the gates, while signals with overbars 
(complemented signals) pass through inverters; the output of the inverter connects to the gates. The equation 
contains three terms where the signals are ANDed together. The output of the three associated AND gates form 
the three inputs to the OR gate. The output of the OR gate is the circuit’s final output.  

 

Figure 6.9: The circuit model that solves Example 6.1.  

You should be able to go back and forth between the various representations of a Boolean function. In this 
example, we worked with four different representations of a Boolean function: 1) truth table, 2) written 
description, 3) Boolean equation, and 4) a circuit model. There are many more ways to represent a Boolean 
function. Each of these representations is a model of a digital circuit. Given any one of these models, you can 
1) generate any of the other models, and 2) implement the circuit.  

An important issue to realize about this circuit is that is has no control feature. Most of the circuit we study in 
digital design have one of four types of control: 1) no control, 2) internal, 3) external, or 4) by a controller 
circuit. The circuits we’ve study so far have no control: the outputs simply react to the inputs.  

 

 

 

Example 6-2: Generic Design #2 

Design a circuit that has four inputs (A, B, C, D) and two outputs (F, EVEN). All inputs and 
outputs are single bits. The four inputs represent a binary number where A is the MSB and D 
is the LSB. The F output indicates when the 4-bit input value is odd and has two and only two 
bits set. The EVEN output indicates when the input value is even. Provide a top-level BBD 
and a lower-level circuit diagram for your circuit solution. Also, state what type of control the 
circuit uses.  

Solution: The first step is to generate a BBD for the solution, which we show in Figure 6.10. The circuit has 
four single-bit inputs and two single-bit outputs.  

 

Figure 6.10: The top-level BBD for this example.  

The next step is to define the solution using a truth table. This problem has four single-bit inputs, which 
requires that the truth table have 24 or 16 rows. This problem has two outputs, which we represent with two 
separate columns in the truth table. Table 6.5 shows the final truth table with completed F and EVEN columns.  
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A B C D F EVEN 

0 0 0 0 0 1 
0 0 0 1 0 0 
0 0 1 0 0 1 
0 0 1 1 1 0 
0 1 0 0 0 1 
0 1 0 1 1 0 
0 1 1 0 0 1 
0 1 1 1 0 0 
1 0 0 0 0 1 
1 0 0 1 1 0 
1 0 1 0 0 1 
1 0 1 1 0 0 
1 1 0 0 0 1 
1 1 0 1 0 0 
1 1 1 0 0 1 
1 1 1 1 0 0 

Table 6.5: The truth table for the solution. 

Figure 6.11 shows the final equations for the solution. We took a straightforward approach for the F equation; 
we list the inputs associated with the given row in the truth table where the F output is a ‘1’. We could have 
done the same thing for the EVEN output, but that would have created an equation containing eight sum terms, 
which is gruntwork we try to avoid. While it’s comfortable to follow rules when solving digital design 
problems, you must always use some horse sense, which is what we did for the EVEN output. We noted that 
the EVEN column is an inversion of the D input column; we can easily represent this by writing an equation 
that equates an inverted D input to the EVEN output. This is a shortcut, but it represents something you should 
always look for when solving problems. Figure 6.12 shows the final circuit model for this example. 

𝐸𝑉𝐸𝑁 𝐷 

𝐹  �̅�𝐵𝐶𝐷 �̅�𝐵�̅�𝐷 𝐴𝐵�̅�𝐷 

Figure 6.11: The final equations for this example.  

 

Figure 6.12: The final circuit model for this example.  
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6.3 Chapter Summary 

 

 The need to solve a problem drives the creation of a digital circuit. We can describe the basic process of 
digital design in three steps: 1) define the problem, 2) describe the solution, and 3) implement the solution. 
We can describe solutions to digital design problems Boolean equations, which have their basis in Boolean 
algebra.  

 There are many possible ways to represent solutions to digital design problems. We consider these many 
solutions to be functionally equivalent in that they all describe the same thing but do so in different ways. 
In other words, if the outputs for two given solutions are equivalent based on the same set of inputs (but 
the form of the solutions differ), the solutions are functionally equivalent. 

 Four axioms define the basic operation of Boolean algebra. Those axioms define the basic logic operators 
of AND, OR, and INVERSION. 

 There is relatively long list of Boolean algebra theorems associated with Boolean algebra. Some of these 
theorems are quite useful in digital logic while we rarely apply others.  

 Digital design uses logic gates to implement basic Boolean operators in hardware.  
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6.4 Chapter Exercises 

 

1) What entity forms the basis of iterative design? Briefly explain 

2) Why is it that you have to learn something as inefficient as iterative design? Briefly explain 

3) Why is the term “brute force” associated with iterative design? Briefly explain.  

4) Can you, at this early stage in your digital design career, describe a better approach to digital design?  

5) Why are truth table-based designs considered severely limited? 

6) Generate a Boolean equation that is equivalent to each of the following truth tables.  

B2 B1 B0 F 
0 0 0 0 
0 0 1 1 
0 1 0 1 
0 1 1 0 
1 0 0 1 
1 0 1 0 
1 1 0 0 
1 1 1 0 

 

A B C F 
0 0 0 1 
0 0 1 0 
0 1 0 1 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 0 
1 1 1 0 

 

(a) (b) 

  

X Y Z F 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 1 
1 0 1 1 
1 1 0 0 
1 1 1 0 

 

t u v F1 F2 
0 0 0 1 0 
0 0 1 1 0 
0 1 0 0 1 
0 1 1 0 1 
1 0 0 0 0 
1 0 1 1 0 
1 1 0 0 1 
1 1 1 0 1 

 

(c) (d) 
 

7) Convert the following Boolean expression to truth table form.  

a)  

b)  

c)  

 

  

CBACBACBACBACBAF ),,(

CBACBACBACBACBACBAF ),,(

ZYXZYXZYXZYXZYXF ),,(
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8) Convert the following Boolean functions to truth table form.   

 

a)  

 

b)  

 

c)  

 

9) Draw a circuit representation for the following Boolean equations:  

a)  

b)  

 

10) Write a Boolean equation that describes the following circuit: 

 

 

11) Write a Boolean equation that describes the following circuit: 

 

 

12) Write a Boolean equation that describes the following circuit: 

 

 

)()()()()(),,( TSRTSRTSRTSRTSRTSRF 

)()()()(),,( CBACBACBACBACBAF 

)()()()(),,( ZYXZYXZYXZYXZYXF 

ZYXZYXZYXZYXZYXF ),,(

)()()()()(),,( TSRTSRTSRTSRTSRTSRF 
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13) Write a Boolean equation that describes the following circuit: 

 

 

14) If a truth table were constructed in order to define the input/output relationship of the circuit 
represented by the following schematic diagram, how many rows would the truth table have? Briefly 
explain your answer.  
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6.5 Design Problems 

 

In addition to solving each of the problems below, state whether the circuit has “no control”, “internal control”, 
or “external control”. Model the final circuit using AND gates, OR gates, and inverters. 

1) Design a circuit that has three inputs and two outputs. One of the outputs indicates when the 3-bit input 
value is less than three; the other output indicates then the input is greater than five. Provide the equations 
that describe your circuit in SOP form.  

2) Design a circuit that has three inputs and two outputs. One output indicates when the three inputs 
(considered a binary number) are even; the other output indicates when the three input bits are odd.  

3) Design a circuit whose 3-bit output is two greater than the 3-bit input. The binary count should wrap when 
the output value is greater than 1112.  

4) Design a digital circuit that controls a switch box according to the following specifications: If either one 
(and only one) or two (and only two) of the three input switches are on, the output is on. For this problem, 
assume that “on” is represented by a ‘1’.  

5) Design a digital circuit according to the following specifications. The circuit output indicates when the 3-
bit binary input is less than or equal to four but not zero. Provide a proper black box diagram, a truth table, 
a Boolean equation, and a circuit diagram that model your solution.  

6) Design a circuit that translates a 4-bit stoneage unary code to an unsigned binary code.  

7) Design a circuit that translates a 4-bit one-hot code to an unsigned binary code. Consider the unsigned 
binary number on the output to indicate the bit position of the set bit in the one-hot code, where the right-
most bit in the one-hot code is the “zero” position.  

8) Design a digital circuit that controls a switch box according to the following specifications: If either one 
(and only one) or two (and only two) of the three input switches are on, the output is on. For this problem, 
assume that on is represented by a ‘1’.  

9) You’re the owner of a clothing store that has three dressing rooms. Each dressing room has a sensor that 
indicates (with a ‘1’) when a dressing room is occupied (a ‘0’ indicates the dressing room is empty). 
Provide a block diagram, truth table, and Boolean equations that model the solution to this problem. 
Design a circuit that indicates the following:  

 When all three dressing rooms are empty 
 When only one or only two dressing rooms are occupied 
 When two or three dressing rooms are occupied 

10) Your four friends are total whack jobs so you’ve decided to design a circuit that will help you decide how 
you will spend time with them. Provide a block diagram, truth table, Boolean equation and circuit diagram 
that models a solution for this problem. Be sure to state any assumptions you make for this problem. 
Design a circuit that specifies when it is safe to go out with your friends according to the following 
criteria:  

 You’re a total whack job too, so you must go out with at least two friends 
 At no time will all four of your friends want to go out together   
 Friend A will only go out if Friend B goes out too 
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11) Design a circuit that has an output that indicates when the four-bit unsigned binary number on the input is 
a prime number. For this problem, an input value of “0000” will never occur (be sure to note this fact 
where appropriate). Provide a block diagram, truth table, and a Boolean equation that models a solution 
for this problem. 

12) Design a circuit with an output that indicates when the 4-bit unsigned binary input is greater than two and 
less than twelve (2 < input_val < 12). For this problem, the binary equivalent of 15 will never appear on 
the circuit inputs. Provide a block diagram, truth table, and Boolean equation for the final circuit.  

13) Design a circuit that has inputs consisting of a single switch and a 3-bit unsigned binary number. If the 
switch is off (off = ‘0’), the output indicates when the 3-bit binary input is less than four. If the switch is 
off (on = ‘1’), the output indicates when the 3-bit binary input is less than three. The value of “000” will 
never appear when the switch is in the off position. Provide a block diagram, truth table, and a Boolean 
equation for the final circuit.  

14) Design a circuit that has four inputs and one output. The output is used to indicate the following conditions 
regarding four people (Person A, B, C, and D) in a room. Provide a block diagram, truth table, and a 
Boolean equation that models a solution for this problem.  

 When person A is in the room and at least two other people are in the room, and  
 When person B is in the room and only one other person is in the room.  
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7 Timing Diagram Introduction 

 

7.1 Introduction 

The previous chapters provided a foundation of digital design. Half the battle in implementing of any design is 
the notion that your design will need modifications in order to ensure the design successfully completes the 
task it set out to do. This leaves you with two options, both of which you’ll find yourself taking: 1) make sure 
you understand all the parameters before you start the design, and, 2) fully test the design at many stages along 
the way and particularly when the design is completed. The main topic of this chapter is to timing diagrams, a 
mechanism to facilitate both of these objectives. Timing diagrams are going to help limit the number of 
mistakes you make and help you and/or anyone understand your design. 

Timing diagrams represent both a design tool and a test tool, which means that you can use timing diagrams to 
both specify designs and test designs. Timing diagrams provide a visual representation of what the various 
signals in your circuit should be doing (design) or what your circuit is actually doing (test). Whoever who 
coined the phrase “a picture is worth a thousand words” was definitely referring to timing diagrams.  

Main Chapter Topics 

TIMING DIAGRAMS: Digital designers use timing diagrams in order to specify, explain, 
and/or model digital circuits. Timing diagrams provide both a design tool as well as a 
method to verify the proper operation of circuits. This chapter introduces timing diagrams 
and describes their relation to digital circuits. 

 

Chapter Acquired Skills 

 Be able to understand the terminology and symbology associated with timing diagrams. 

 Be able to use and interpret different timing diagram styles  

 Be able to use timing diagram to specify functional relationships in digital circuits 

 Be able to analyze timing diagrams to generate Boolean equations describing digital 
circuits.  

 

7.2 Timing Diagram Overview 

We currently have several methods to model digital circuits including truth tables, circuit diagrams, and written 
circuit descriptions. Although these representations are 100% accurate descriptions, they are “timeless” in 
nature. This “timelessness” forms somewhat of an artificial representation of a circuit because digital circuits 
operate over given periods of time1. As digital circuits become more complex, it becomes harder to imagine 
how exactly the circuit operates over a given span of time2.  

A digital circuit operates over a given time span. During these time spans, the circuit’s outputs “adapt” to 
changes in the circuit inputs. We generally expect the circuit’s inputs to change; when these changes occur, the 

                                                           
1 It takes time for the electrons to move around in the underlying sillycone. Keep in mind that nothing is instantaneous in 
actual digital circuits although we typically can model signal changes in circuits as being so.  
2 As you’ll find out later, there are two basic types of circuits. The notion of “time” relative to a circuit becomes more 
complicated when the circuits outputs are a function of something other than the circuit’s inputs.  
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circuit’s outputs must respond such that they continue to match the specifications for a given set of inputs. A 
digital circuit’s outputs react dynamically to the circuits inputs.  

Timing diagrams detail a digital circuit’s operation over an arbitrary time span. Because of this, timing 
diagrams are important in digital design for two main reasons. Firstly, timing diagrams are able to specify 
and/or model digital circuit operation3. Secondly, digital designers use timing diagrams to verify that digital 
circuits are operating as specified either by using some type of simulator or by examining the waveform output 
from the actual circuit. In a written text such as this one, we only deal with the first item. When you’re 
designing and implementing circuits, you’ll be living with the second item when you work with simulators.  

We typically use special terminology and symbology in timing diagrams; we go over the more important ones 
in this chapter. You’ll find out that although there are many ways to represent timing diagrams, the concepts of 
timing diagrams and their relation to digital circuits is not overly complicated.  

7.2.1 Timing Diagrams: The Gory Details 

Figure 7.1 shows five timing diagrams serving as an introduction to the flavor of most timing diagrams you 
find out in digital-land. The numbered notes below Figure 7.1 provide an extended description and comments 
regarding each of the timing diagrams in Figure 7.1. The horizontal axis is the time axis in each of these timing 
diagrams; we only use the term “time” but we don’t include metrics such as “seconds” or “milliseconds”. The 
timing diagram shows a “functional” relationship; at any given time, a given signal is either high or low, but 
never both at the same time.  

1) This timing diagram shows a line that represents the value of digital signal in question. The 
signal typically has a name, but we’ve left it out in order to keep this discussion general. Note 
that the signal has two values, which is what you would expect from a digital signal. The signal 
shows various transitions from high-to-low and low-to-high.  

2) This timing diagram explicitly shows the two values of the signals. The vertical axis lists these 
two values as ‘H’ and ‘L’, which represent the high and low values of signals, respectively. This 
timing diagram also includes horizontal dotted lines, which support the notion that the digital 
signal is either high or low4. Timing diagrams often omit these dotted lines; we often include 
them in “busy” timing diagrams in order to increase readability.  

3) This timing diagram is similar to the timing diagram of (b) but we replace the ‘H’ and ‘L’ with 
‘1’ and ‘0’, respectively. This emphasizes the point that the two values of the digital signals are 
actually models representing some actual digital hardware. There are many flavors of digital 
hardware out there; these flavors can differ in the voltage levels used to drive the hardware. We 
opt to ignore voltage concerns by abstracting our digital designs to a higher level such that we 
don’t need to deal with voltage levels.  

4) This is another common style of modeling digital signals. While the previous timing diagrams 
use vertical lines to represent signal transitions, this timing diagram uses slanted lines. The lines 
always slant in the direction of advancing time. In reality, the signals in a digital circuit cannot 
instantaneously change value, as they seem to do in the previous timing diagrams. In other 
words, if you look close enough5, every signal appears slanted.  

5) The final timing diagram is nothing new, but we want to do is use this timing diagram to toss 
some typical timing diagram lingo at you. At (a) in the timing diagram shows that the given 
signal is initially low at the beginning of the timing diagram. At (b), the signal switches from a 
low state to a high state, or the signal toggles. At (c), the signal switches from a high state to a 

                                                           
3 More often, digital designers only specify the important parts of the circuit. In this context, “important” could have many 
meanings. As we travel deeper into digital design land, these meanings start to surface.  
4 This is primarily a mechanism to help the person reading the timing diagram figure out what is going on. This becomes 
important in complex designs where you need to list a page full of signals in order to verify your design is working 
correctly. After staring at a page full of signals, the “highness” and “lowness” of signals obfuscate due to brain overload.  
5 This means if you lower the time scale to smaller and smaller values.  
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low state, toggles. Around the time indicated by (d), the signal toggles two times (similar to (b) 
and (c)). At (e), the timing diagram ends with the signal in a low state.  

(1) 
 

(2) 
 

(3) 
 

(4) 
 

(5) 
 

Figure 7.1: Example timing diagrams.  

7.2.2 Timing Diagrams: The Initial Details 

We use timing diagrams to model the operation of digital circuits. Figure 7.2 shows an inverter and an 
associated timing diagram. The signal names x and F represent the input and output to the inverter, 
respectively (the top of Figure 7.2). The upper signal in the timing diagram is labeled x; the timing diagram 
shows the x signal as a function of time. The signal activity in x line is arbitrary; the intent of this timing 
diagram is to show the changes in the output F as a function of the input x6. Figure 7.2 shows the 
complementary relationship between the input and output for the inverter.  

 

 

Figure 7.2: Example timing diagram for inverter.  

Figure 7.3 shows example timing diagrams for AND & OR gates. In Figure 7.3(a), the output is only high 
when of both the x and y inputs are high. Likewise, Figure 7.3(b) shows that for an OR gate, the output is only 
low when both of the ‘x’ and ‘y’ inputs are low. The timing diagrams in Figure 7.3 completely describe the 

                                                           
6 Keep in mind that timing diagrams show the true functional relationship between the input (the independent variable) and 
the output (the dependent variable). For any one given instance of time, the output is necessarily high or low, but never 
both.  
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operation of AND & OR gates by showing the same information as the truth table but in a different form. Keep 
in mind that for both timing diagrams in Figure 7.3, the value of the input variables is arbitrary. 

  

  

(a) (b) 

Figure 7.3: Example timing diagrams for an AND gate (a) and an OR gate (b).  

For our final example, let’s generate a timing diagram for the main example problem from the previous 
chapters. Figure 7.4 shows the truth table associated with a previous example while Figure 7.5 shows an 
example timing diagram. The timing diagram includes the three inputs and one output in the truth table.  

Figure 7.5 uses some special notation to indicate that the timing diagram does indeed reflect the characteristics 
of the associated truth table. The vertical dotted lines in Figure 7.5 represent particular moments in time. At 
each dotted line, the index into the truth table provides an aid in your perusal of the timing diagram. For 
example, the (1) label indicates a match between the second row in the truth table where B2=’0’, B1=’0’, and 
B0=’1’. Under these input signal conditions, the output is a ‘0’.  

index B2 B1 B0 F 

(0) 0 0 0 0 
(1) 0 0 1 0 
(2) 0 1 0 0 
(3) 0 1 1 0 
(4) 1 0 0 0 
(5) 1 0 1 1 
(6) 1 1 0 1 
(7) 1 1 1 1 

 

Figure 7.4: The truth table for the original design problem. 
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Figure 7.5: Timing diagram for main problem specified in this chapter.  

Here are a few more comments regarding timing diagram of Figure 7.5.  

 The vertical dotted lines in Figure 7.5 do not overlap any input signal transitions. The 
“vertical” transitions in the signals indicate a discontinuity7 in the signal.  

 The input signals B0, B1, and B2 are arbitrary. In this particular timing diagram, one of the 
eight possible input combinations is missing from the timing diagram. Therefore, the timing 
diagram in Figure 7.5 does not completely describe a function as it would if it had output for 
every possible combination of inputs.  

7.3 Timing Diagrams: Bundle Notation 

Every digital designer knows that the underlying goal is to transform things from one form, to an equivalent 
but simpler form. This is particularly true with timing diagrams because they tend to become unwieldy and 
thus unreadable. One way to control this added complication is to exploit the common purpose of some signals 
by placing them into a group. The resulting grouping of signals makes designs easier to understand; the 
associated timing diagram is also easier to analyze.  

In digital design, the term “bus” sometimes refers to a group of signals, but the term bus has multiple 
definitions8. The more appropriate term for what we’re describing here is a “bundle”. You need to get used to 
the terms “bundle notation” and “bus notation” as digital design uses these terms quite often.  

7.3.1 Bundle Notation in Schematic Diagrams 

We can simplify block diagrams by “bundling” signals; using slash notation” allows us to do this quite easily; 
Figure 7.6 shows a few examples. We use a forward slash indicates a bundled signal and a number to indicate 
the number of signals in the bundle. Figure 7.6(a) shows the original diagram while the other components of 
Figure 7.6 show some examples.  

 Figure 7.6(a) shows the original block diagram indicating a black box with three inputs and one 
output. The inputs may be related and can thus be bundled. In each of the subsequent bundles, 
some information is lost (the names of the individual signals) in an effort to simplify the 
diagram less busy.  

                                                           
7 It’s one of those calculus terms. Please refer to your bulky math book for clarification.  
8 The term “bus” often refers to a “protocol”, which is essentially a pre-defined set of rules that describe a mechanism that 
digital entities can use to communicate with each other. Additionally, you often see the terms bus and protocol used 
interchangeably.  
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 Figure 7.6(b) shows one approach to bundling. This diagram attempts to preserve the names of 
the underlying signals from Figure 7.6(a). The slash on the “B_210” line indicates that the 
B_210 signal is now a bundle and that it contains three signals as the tiny “3” near the slash 
mark indicates.  

 Figure 7.6(c) shows an approach that attempts to save even less information than Figure 7.6(b) 
by using “B” instead of “B_210”. Once again, the diagram presents less information, but there is 
less clutter in the resulting circuit model.  

 Figure 7.6(d) shows yet another approach to bundling; in this case, the signal name also 
indicates how many signals are associated with the bundle. You see this sometimes, but it is not 
clear what the “_3” is attempting to indicate. As a result, it is questionable how much the “_3” 
helps.  

 

  

(a) (b) 

  

  

(c) (d) 
Figure 7.6: Various diagrams showing schematic-based bundling using slash notation. 

The general idea is to use bundling to make diagrams more readable. However, you need to be careful, as 
tossing every signal into a bundle does not always make sense. Figure 7.7 shows an example where bundling 
does not make sense. The diagram in Figure 7.7(a) shows a one-bit adder circuit9 while Figure 7.7(b) shows an 
attempt to bundle both the inputs and outputs on the device model. The result is a cleaner looking diagram, 
but… this is a total failure.  

The problem with bundling the signal in Figure 7.7(b) is that both the input and output signals is distinct; thus 
placing them into a bundle has made the diagram more confusing. We know this circuit is a 1-bit adder, but 
from the Figure 7.7(b) it appears to be some flavor of two bits. The idea behind bundling is to make the 
resulting diagrams more readable to humans; the example in Figure 7.7 has failed in this mission. Always 
make sure whatever you’re doing makes things easier to read and understand; “looking better” does not 
necessarily support “being better” is all about making things more understandable.  

  

(a) (b) 

Figure 7.7: A1-bit adder BBD (a), and a bad attempt to simplify (a) by using bundle notation (b).  

                                                           

9 This circuit adds two one-bit values and outputs a sum and a carry-out.  
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7.3.2 Bundle Notation in Timing Diagrams 

There are many ways to model bundles in timing diagrams; this section shows a few of them. Figure 7.8(a) 
shows that same tired block diagram we’ve been using for way too long now. What we’re interested in is a 
timing diagram associated with Figure 7.8(b). The block diagram in Figure 7.8(b) represents an equivalent 
version of Figure 7.8(a), which we simplify using bundle notation; the bundled signal in Figure 7.8(b) replaces 
the three signals in Figure 7.8(a).  

The signal B in Figure 7.8(b) represents the three signals B2, B1, and B0 from Figure 7.8(a). Since the names 
are now different, you’ve lost the notion that there may be an ordering associated with the signals in Figure 
7.8(a). If this is the case, you need to state this somewhere in the timing diagram.  

  

(a) (b) 

Figure 7.8: Example block diagrams for use by Figure 7.9.  

Figure 7.9 shows two different but equivalent timing diagrams. The timing diagram in Figure 7.9(a) lists the 
individual signals while the timing diagram in Figure 7.9(b) uses two forms of bundle notation. There are a few 
things of interest to note here; these notes follow the diagram.  
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(a) 

 

 

(b) 

Figure 7.9: Equivalent timing diagrams showing individual signals (a) and timing-diagram-based 
bundle notation (b).  

 In Figure 7.9(b), two parallel horizontal lines indicate that the signal is a bundle. The “X’s” in 
these lines indicate that at least one of the subsequent signals in the bundle has change from 
either a low to a high or a high to a low.  

 In Figure 7.9(b), numbers indicate the value of the signals in the bundle. You’ll see many 
different ways of representing these numbers; we opt to use a C programming language-type 
notation used to represent hexadecimal numbers to indicate the individual signals in the bundle. 
Specifically, the “0x” prefix on a number indicates that you should interpret the number as a 
hexadecimal number.  

 There are only three signals associated with the bundle while hex notation can specify four bits 
per hex number. We assume the missing signal(s) is always the most significant bit or bits; we 
also assume these missing bits are zero.  
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 The diagram should explicitly state that in the hex number n Figure 7.9(b), the most significant 
bit represented is B2 while the least significant bit is B0. If you did not state this, the reader may 
make an incorrect assumption regarding your timing diagram.  

 Figure 7.9(b) show the B’ and B” signals. These are equivalent signals but we use two different 
styles to represent their values. Often times the timing diagram drops the “parallel bar” notation 
when all the signals in the bundle are all high (all 1’s) or all low (all 0’s). Ether approach is fine; 
the timing diagram in B” is clearer and more consistent (one man’s opinion).  

Another common seen notation is associated with the expansion of bundles. Figure 7.10(a) shows a block 
diagram that includes a bundle while Figure 7.10(b) shows an associated timing diagram .The timing diagram 
in Figure 7.10(b) includes a “bundle expansion” of the B signal. The diagram indirectly states that bundle B 
comprises of three signals (B(2), B(1), and B(0), with B(2) being the MSB and B(0) being the LSB10. 
Simulators typically use this notation.  

 

(a) 

 

 

(b) 

Figure 7.10: Bundle expansion showing parenthetical indexing on the expanded bundle.  

  

                                                           

10 This notation assumes that the signal with the highest index is the most significant bit. This notation is quite common and 
diagrams rarely state that B(2) is the MSB. If you’re not using this approach in your timing diagrams, you need to clearly 
state the approach you’re using in order that you don’t confuse the crap out of someone.  
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Example 7.1: Timing Diagram Based on Circuit 

Use the following circuit to complete the accompanying timing diagram.  

 

 
 

Solution: There are many ways to approach this problem; the approach we take here is definitely the long way. 
This solution shows you all aspects of the problem and is not necessarily the best way to solve the problem. 
When you gain more experience in digital design, you’ll see other ways to solve the problem.  

Step 1) Write out the Boolean equation implemented by the circuit in a form we recognize. While we’re at it, 
we may as well expand the equation into standard SOP form, which helps us complete the truth table. We do 
this by multiplying each product term by something that ensures each product term includes one instance of the 
each independent variable. Multiplying a term by a variable ORed with its complement does not change the 
product term because we are multiplying the term by ‘1’ (a Boolean algebra theorem). Figure 7.11 shows the 
result of this step. 

CBABCACBACBAF

BBCACCBAF

CABAF







)()(

 

Figure 7.11: Expanding the original equation. 

Step 2) Generate a truth table and fill in a ‘1’ for the output associated with each of the product terms. We 
include the index values here as it may help us out later. One important point in this problem is that the 
problem never stated which of in the inputs the most significant bit. In this problem, not stating this 
information does not change the answer. However, since we decided to list the problem using a numeric index, 
we must state that input A is the MSB while input C is the LSB. Figure 7.12 shows the result of this step. 
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index A B C F 

(0) 0 0 0 0 
(1) 0 0 1 1 
(2) 0 1 0 0 
(3) 0 1 1 1 
(4) 1 0 0 1 
(5) 1 0 1 1 
(6) 1 1 0 0 
(7) 1 1 1 0 

Figure 7.12: Completing the associated truth table. 

Step 3) Figure 7.13 shows that you can use the state of the inputs signals to generate numeric indexes on the 
original timing diagram. The timing diagram includes vertical dotted lines for every notable span of time on 
the timing diagram.  

 

Figure 7.13: Entering the truth table inputs to a timing diagram. 

Step 4) Use the numbers you entered on the timing diagram to index into the truth table you generated for this 
problem. The outputs associated with each row of the truth table are graphically entered into the timing 
diagram with a 1’s and 0’s representing the high and low portions of the signal, respectively. Figure 7.14 
shows the timing diagram representing the final solution for this example.  

 

Figure 7.14: The completed timing diagram for Example 4.8. 
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Example 7.2: Timing Diagram Modeling a Circuit 

If possible, use the timing diagram listed below to generate a Boolean equation that describes 
the function modeled by the timing diagram. For this problem, consider A, B, and C to be 
inputs; F is an output.  

 
 

Solution: Once again, there are many ways to do this problem. For this problem, the timing diagram seemingly 
models a circuit with three inputs and one output. The first issue we need to deal with is whether this timing 
diagram describes a function. For the timing diagram to describe a function, the timing diagram must possess 
two characteristics. First, the timing diagram must represent all possible combinations of the three inputs. 
Second, for each of those individual combinations, the output must be consistent throughout the timing 
diagram in order for the timing diagram to model a function in the true mathematical sense of the word. 

Step 1) Find and mark all the input combinations represented in the given timing diagram. Figure 7.15 shows 
the result of this step.  

 

Figure 7.15: Inserting useful annotations into the timing diagram. 

Step 2) Because both of the conditions listed in the previous step exist, the given timing diagram does indeed 
represent a function. From this point, we can transfer the information from the timing diagram to a truth table. 
Once again, a “high” signal in the timing diagrams translates to a ‘1’ in the resulting truth table. Figure 7.16 
shows the result of this step.  
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index A B C F 

(0) 0 0 0 1 
(1) 0 0 1 1 
(2) 0 1 0 0 
(3) 0 1 1 0 
(4) 1 0 0 0 
(5) 1 0 1 0 
(6) 1 1 0 0 
(7) 1 1 1 1 

Figure 7.16: Completing a truth table for the problem. 

Step 3) From the previous truth table, we can generate the following Boolean equations. Figure 7.17 shows the 
equation that solves this problem.  

𝐹 𝐴  𝐵  𝐶 𝐴 𝐵 𝐶 𝐴𝐵𝐶 

Figure 7.17: The final equation for Example 7.2. 

 

Post Problem Commentary: This problem could be categorized as an “analysis” problem, or maybe even better 
as a “timing analysis” problem. We “analyzed” the original timing diagram in order to arrive at our solution. In 
addition, if we could also draw the circuit associated with the final equation.  

 

Example 7.3: Timing Diagram with Bundle Notation 

Using the following timing diagram, expand the listed bundle into individual signal. For this 
problem, assume that signal labeled B represented a bundle with three individual signals. Use 
parenthetical indexing for the signal members of B.  

 
 

Solution: For this problem, we need to expand the bundle notation and list the individual signals of the bundle 
in the timing diagram. We use parenthetical notation as specified by the problem, which dictates that B(2) is 
the MSB of the signal “B” and B(0) is the LSB of “B”. Figure 7.18 shows the final solution. Are you ready for 
the final solution11? 

                                                           
11 It’s a reference to an Elvis Costello song; no need to panic. 
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Figure 7.18: The final solution for Example 7.3. 

 

7.4 Timing Diagram Annotations 

Including notes on timing diagram is something you should always do. Digital designers refer to this practice 
as “annotating” their timing diagrams. Nothing looks crappier than a page filled with timing diagrams that 
include no notes helping the reader extract pertinent information from the timing diagram. The unstated rule 
for all timing diagrams is that they should include notes to describe what is important in that specific timing 
diagram in order to draw the reader’s eye to those items. Stated differently, either timing diagrams are trying to 
show you something, or you use them to show something to other people. There is no correct way to annotate a 
timing diagram, but the following list provides some reasonably intelligent guidelines.  

 The overall purpose of any diagram, including timing diagrams, is to quickly present 
information. Providing annotations facilitates the understanding of the underlying circuit. If 
your annotations make the timing diagram clearer, you’ve served your purpose.  

 Make sure you draw the reader’s eye to the important part of the timing diagram; you can easily 
do this with your annotations.  

 Don’t try to express too many ideas in one timing diagram. A better approach is to make 
multiple timing diagrams, each with its own succinct point.  

 Only include the signals and information in timing diagrams that help you get your point across; 
you should strive to omit unused or unimportant signals in timing diagrams.  

 The time-span for timing diagram should only include information that helps you solidify your 
point. The act of including too large of a time-slice diverts the focus away from what you’re 
trying to show. 

 All timing diagrams (and all diagrams, for that matter) should include a title that quickly 
describes what the timing diagram is trying to show.  

We tout timing diagrams as being incredibly useful, but that usefulness has two constraints. First, timing 
diagrams are only useful if you understand what you’re looking at. Second, the only way you can understand 
what you’re looking at is by having a working knowledge of the underlying circuit. If you don’t meet these two 
constraints, timing diagrams look like a bunch of random squiggles.  

When you’re looking at a timing diagram, chances are good that it came from one of three sources. Here are 
those sources with some brief explanation.  

Logic Analyzers: A logic analyzer is a device that shows the output of a circuit over a course of 
time. The key here is that the circuit is implemented and you’re testing an actual device. Logic 
analyzers output plain timing diagrams associated with the signals they are monitoring. What 
you get in the end is a plain timing diagram. While the timing diagram is great in itself, you 
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must have an idea of what you’re looking at and understand the circuit that generated the timing 
diagram for make the timing diagram useful.  

Simulators: Simulators typically outputs timing diagrams. Simulators generate their timing 
diagrams based on a model of your circuit, which means you don’t necessarily need to 
implement your circuit before simulating your circuit. Additionally, while a logic analyzer 
output can only display signals in the timing diagram that you’ve physically connected a test 
lead to, the simulator can generally provide an output of any signal in the circuit. Once again, 
the timing diagram is great only if you have an idea of what you’re look at and understand the 
underlying circuit.  

Humans: Yes, humans can generate timing diagrams too. The problem here is that they are 
timing consuming to generate, particularly if you plan to make them legible12. Yes, humans 
have their issues, but unlike simulators or logic analyzers, humans have the ability to make their 
timing diagrams more understandable. Humans increase the understandability and usefulness of 
their timing diagrams by annotating them, logic analyzers and simulators don’t have this ability.  

There is a common problem with courses that require the generation of timing diagrams. People tend to use a 
tool to generate the timing diagram as requested by the assignment, and then simply submit that timing 
diagram with the assignment deliverables. In this case, there is no evidence that people know what they 
submitted. The solution is to fully annotate any timing diagram you submit; the assignment is meaningless 
otherwise.  

7.4.1 Timing Diagram Usage 

No matter what you find yourself doing in digital design, you’ll be working with timing diagrams. Digital 
design uses timing diagrams for three main purposes:  

Design Description: If someone wants you to implement a circuit, they may provide you with a 
timing diagram that models the desired operation of a circuit. There are other ways to model 
circuits, but in some instances, the timing diagram provides the best model13. In this case, the 
timing diagram specifies how the circuit should operate. 

Design Verification: Once the circuit has been modeled and/or implemented, we can simulate it 
or connect it to the logic analyzer. We use the timing diagram output from these devices to 
determine if the design is working as we expect it to. The simulator tells you if your design has 
a good chance of working if you were to implement it, while the logic analyzer tells you if 
design is working after you implement the circuit.  

Design Documentation: Once you establish that the circuit actually works, you should use a 
timing diagram to document the circuit’s operation. It’s not enough to print out the timing 
diagram; you must also provide annotations on the timing diagram to make it meaningful14. 
Additionally, if you’re submitting the timing diagram as part of a report, it requires annotations 
to make it meaningful.  

7.4.2 Understanding Timing Diagrams 

Timing diagrams present a ton of information regarding the operation of your circuit. The key to quickly 
understanding timing diagrams is to annotate them. This generally means annotation by hand, even if a 
simulator or logic analyzer generated that timing diagram. You created the timing diagram for a reason; you 
won’t obtain your objective if the person reading your timing diagram does not understand what they’re 
looking at, which is a potential issue if that person is your instructor or supervisor.  

                                                           

12 I admit it…this text is lacking in timing diagrams because they take so long to generate.  
13 Recall that good models transfer the most information at the fastest rate.  
14 It does not matter if you’re the expert on it at the moment; six months from now you’ll have no idea how the circuit 
works.  
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Even the simplest timing diagram presents a lot of information very quickly. Your mission as the timing 
diagram annotator is two-fold: 1) to draw the reader’s eyes to the portion of the timing diagram that contains 
the information you feel is important, and, 2) to tell the reader what it is you’re trying to show (what they’re 
looking at).  

Students always ask me how to annotate timing diagrams. The truth is, I don’t really know; I’m actually 
hoping my students give me some ideas, or at least some ideas that are better than the ideas that I currently use. 
The key here is to add annotations that make the timing diagram clean. I don’t feel there is only one way to 
make timing diagrams clear, and I don’t feel that the approaches I use are the best ways. However, for lack of 
any better direction, I present them here.  

Generally speaking, timing diagrams are attempting to show you something. You’ll initially spend most of 
your time designing your annotations to show one of the following three items:  

1) Temporality of Events: This is a fancy way of stating the time required for “something”, which 
is generally bounded on both ends. Examples include the duration of a pulse or the duration of a 
propagation delay.   

2) Causality of Events: Events in timing diagrams typically are value changes for a given signal 
or set of signals. The annotations the condition(s) that caused that particular event.  

3) Correctness of Operations: Digital circuits typically perform logic and mathematical 
operations. In this case, we want to show that a given operation is correct. This is slightly 
different from causality of an event in that we show the circuit performed the operation as it 
should have.  

Figure 7.19 shows an example of a timing diagram that indicates the temporality of events. These 
annotations show various time durations associated with events such as the rising and falling edges of 
signals. Add whatever notes you feel necessary to tell the reader the significance of events in the timing 
diagram.  

 

Figure 7.19: Examples of annotations showing the temporality of events. 

Figure 7.20 shows an example timing diagram annotating the causality of events. This diagram is from an 
up/down counter (a circuit that counts up or down); the diagram is showing the required control signals to 
either allow an up or down count. The event of interest is always what the arrow is pointing at; the other 
annotations are the conditions that allowed the event to occur. Here are a few notes to support the circled 
values in the diagram.  

1) The event of interest is what the arrow is pointing at. The conditions causing this event are the 
rising edge of the CLK signal (because the arrow emanates from that edge) and the fact that the 
UP signal is low (because we put a heavy dot there). Note the CNT value decrements.  

2) The conditions causing this event are the rising edge of the CLK signal (because the arrow 
emanates from that edge) and the fact that the UP signal is high (because we put a heavy dot 
there). Note the CNT value increments.  
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Figure 7.20: Examples of annotations showing the causality of events.  

Figure 7.21 shows annotation indicating correctness of operations. This timing diagram is from some type of 
adder circuit, which adds the values of A & B. The timing diagram shows the two values being added and the 
resulting sum. The timing diagram shows that the values being added generate the correct results. Here are a 
few other things of interest to note about the timing diagram.  

 The diagram uses two different types of annotating styles. The first style uses arrows that point 
to two versions of the equation. The second form uses fewer arrows and equations. You could 
argue that the first version is better because it has more information, but it also introduces more 
clutter to the timing diagram. 

 We did not bother to annotate every line in the diagram. We stopped at some point for a reason 
such as to save time as we felt the given annotations did the job for us.  

 This timing diagram could have also shown the causality of events, but we opted to omit that 
style of annotation.  

These styles of annotations are guidelines; they’re not carved in stone. If you feel you have a better approach 
to annotating, then you should do it. Remember that you’re trying to transfer information; you know you’ve 
done a good job if your annotations quickly and easily transfer that information to the reader of the timing 
diagram.  

 

Figure 7.21: Inserting useful annotations into the timing diagram. 

 

 

 

  



Free Range Digital Design Foundation Modeling Chapter 7 

 

 - 103 -  

 

7.5 Chapter Summary 

 

 Timing Diagrams: One common and useful approach to modeling digital circuits is with a timing diagram. 
Timing diagrams show the state of signals over a given span of time. Timing diagrams explicitly show the 
functional relationship of digital circuits in that for every unique set of inputs, there is only one unique set 
of outputs. Timing diagrams use a signal’s value (most often either ‘1’ or ‘0’) as the independent variable 
(the vertical axis) and time as the dependent variable (the horizontal axis). Complete timing diagrams can 
completely specify a digital circuit’s correct operation. 

 Timing Diagrams for Design: We often use timing diagrams to define problems. For example, you may 
see problems stated such as “design a circuit that has an input/output relationship modeled by the 
following timing diagram. In this way, the timing diagram is part of the circuit specification.  

 Timing Diagrams in Analysis: We often use timing diagrams for analysis. There are two aspects to timing 
diagrams used in analysis. First, the timing diagram may be the output of a “digital circuit simulator”. In 
this way, you’re testing the expected output of a circuit that you have not necessarily implemented. 
Secondly, many test devices typically output timing diagrams. The Logic Analyzer is a standard test 
device that essentially generates timing diagrams which results from testing an actual implemented circuit. 
Either way, the thing you’re trying to figure out is whether your circuit may do (simulation) or actually 
does (implementation) the right thing.  

 Bundle Notation: This notation consists of associating single signals with a common purpose into one 
signal that has multiple sub-signals. Digital design commonly uses this notation designs in order to 
simplify the design and/or analysis process. Bundle notation is seen often in both schematics and timing 
diagrams. Bundle notation in schematics uses slash notation (a forward slash with a number indicating the 
number of signals in the bundle) while bundle notation in timing diagrams uses double bars with some 
type of indication of the value of the included signals.  

 Timing diagrams generally have three main purposes:  

1) Design Description  

2) Design Verification 

3) Design Documentation  

 We generally use timing diagrams to show three types of information 

1) Temporality of Events 

2) Causality of Events 

3) Correctness of Operations 
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7.6 Chapter Exercises 

 

1) Using the following Boolean equation to complete the accompanying timing diagram.  

CBACBABCF   

 

 

 

 

2) Using the following Boolean equation to complete the accompanying timing diagram.  

TRRSTSRSTRF   
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3) Does the timing diagram listed below completely define a function? Why or why not? If it does, write both 
SOP and POS equations that describes the function and provide a circuit diagram in both SOP and POS 
form that you could use to implement the circuit.  

 

 

4) The following timing diagram may completely model a function.  

 If the timing diagram defines a function, draw a circuit diagram for the function in reduced form.  

 If the timing diagram does not define a function, explicitly describe why it does not.  

 

 

5) Consider the previous problem… can you safely state which of the inputs variables is the MSB or LSB? 
Be sure to provide a complete explanation.  

6) Does the timing diagram listed below completely define a function? Why or why not? If it does, write both 
SOP and POS equations that describes the function and provide a circuit diagram in both SOP and POS 
form that you could use to implement the circuit. 

 

 



Free Range Digital Design Foundation Modeling Chapter 7 

 

 - 106 -  

 

7) Consider the previous problem… how does the ordering of the labels of A, B, and C change the outcome 
of the problem? Be sure to provide a complete explanation.  

 

8) Does the timing diagram listed below completely define a function? Why or why not? If it does, write both 
SOP and POS equations that describes the function and provide a circuit diagram in both SOP and POS 
form that you could use to implement the circuit. 

 

 

9) If the following timing diagram completely specifies a function, write a Boolean expression for that 
function.  

 

 

10) If the following timing diagram completely specifies a function, write a Boolean expression for that 
function.  

 

 

11) Does the following signal completely specify a Boolean function? Briefly explain why or why not.  

 

 

 

  



Free Range Digital Design Foundation Modeling Chapter 7 

 

 - 107 -  

 

12) Complete the following timing diagram for the F output based on the given circuit.  

 

 
 

 

13) For this problem, consider the input variables to be A, B, and C and the outputs to be F1 and F2. The 
timing diagram below completely described functions F1 and F2. Write a Boolean expressions that 
describe F1 and F2 

 

 

14) For this problem, consider the input variables to be A, B, and C and the outputs to be F1 and F2. The 
timing diagram below completely described functions F1 and F2. Write a Boolean expression that describe 
F1 and F2. 
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15) For this problem, consider the input variables to be A, B, and C and the outputs to be F1 and F2. The 
timing diagram below completely described functions F1 and F2. Write a Boolean expressions that 
describe F1 and F2. 

 

 

16) The following timing diagram may completely model a function.  

 If the timing diagram defines a function, draw a circuit diagram for the function in reduced form.  

 If the timing diagram does not define a function, explicitly describe why it does not.  

 

 

17) For those aspiring digital designers on drugs, state whether the timing diagram listed below completely 
defines a function. Why or why not? Does anyone really freaking care?  
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7.7 Design Problems 

 

1) Design a circuit whose output represents a square of the input. For this problem, describe your design 
using SOP or POS equations. In addition, show the output of your circuit in the timing diagram below.  

 

 

2) Design a digital circuit that will be used by the head of a typical committee in academia. The input labeled 
“A-HOLE” is the head of the committee; the other two committee members are labeled “KISS_ASS1” and 
“KISS_ASS2”. Being a typical head of a committee, the chair of the committee has commissioned you to 
build this circuit in order to better serve him. The committee has a set of switches that they use for “secret” 
voting. Your mission is to modify the circuit inputs such that there is always a majority in any way the 
head of the committee votes. Provide a truth table and equations for your circuit; also, complete the 
following timing diagram in order to prove that you may know what you’re doing.  
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8 Ripple Carry Adders 

 

8.1 Introduction  

There are three different approaches to performing digital design; up until now, we’ve only worked with one of 
these approaches: BFD, or iterative design. In an effort to increase our efficiency as digital designers, we need 
other design approaches. This chapter introduces our second design approach: IMD, or “iterative modular 
design”. This approach is somewhat limited also, but it’s useful in some situations. Probably the best part about 
IMD is that it provides a great vehicle for presenting our first digital design foundation module: the ripple carry 
adder (RCA). 

Main Chapter Topics 

ITERATIVE MODULAR DESIGN (IMD): This chapter introduces the notion of iterative 
modular design in the context of a standard digital circuit.  

HALF ADDERS: One type of circuit that performs one-bit addition 

FULL ADDERS: Another type of circuit that performs one-bit addition  

RIPPLE CARRY ADDERS: A standard digital circuit that adds two digital values of 
arbitrary length.   

 

Chapter Acquired Skills 

 Be able to design a Half Adder (HA) and produce a gate-level model of it 

 Be able to design a Full Adder (FA) and produce a gate-level model of it 

 Be able to describe the differences between BFD and IMD 

 Be able to design a Ripple Carry Adder (RCA) using the iterative modular design 
approach 

 Be able to design specialty circuits using RCAs 

 

8.2 Iterative Modular Design Overview 

The main push behind IMD is the notion that we want to move away from the limits inherent to BFD, meaning 
primarily truth tables and their associated Boolean equations. IMD is the first step in decoupling the digital 
designer from generating Boolean equations as part of designing digital circuits.  

There are two separate aspects to IMD as the name implies. The first aspect is the “modular” part of IMD; this 
means we use previously designed modules as part of the design. In this context, a module is a black box 
model of something that was previously modeled. The second aspect of IMD is the “iterative” part, which 
means that we do some aspect of a design repeatedly. In IMD, the thing that is going to be iterated is the 
modular part of IMD, or the modules. IMD involves using pre-designed modules in an iterative manner in 
order to create circuits that do not require Boolean equations to model. Lastly, IMD introduces hierarchical 
digital design.   
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8.3 The Half Adder (HA) 

The HA is one of the most basic digital circuits and is the first mathematical circuit we develop in digital 
design. We know the HA as a “1-bit adder”, which means it adds two 1-bit values and outputs their sum and a 
carry out.  

 

Example 8.1: The Half Adder 

Design a circuit that adds two bits. The output of this circuit should show both the 
sum of the added bits and whether the addition operation has generated a carry-
out. We refer to this circuit as a half adder, and it is one of the most basic circuits 
in digital design and the digital design world refers to it as a Half Adder, or HA. 
Also, state what controls the circuit.  

Solution: Performing mathematical operations in decimal and binary follows the same rules; the only 
difference is that the binary number system only contains two symbols: ‘0’ and ‘1’.  

If you add two, single-digit, decimal numbers, your result are either a single digit number (less than ten) or a 
two-digit number (greater than nine). We represent the results of this addition that are greater than or equal to 
the radix with two digits while we represent the results that are less than the radix with a single digit. In the 
case of the two-digit result, one digit represents the result of the addition while the other digit represents the 
value that “carried-out” from the single-digit addition. The same is true for binary addition. Table 8.1 shows 
the four possible results for binary addition of single bit as well as the SUM and Carry-out results.  

One item of particular interest in Table 8.1 is the fact that adding ‘1’ to ‘1’ results in a sum of ‘0’ with a carry-
out of ‘1’. If you consider the Carry-out to be the MSB and the sum to be the LSB, the total result is “10” 
which is the binary equivalent of 2 (two) in decimal1.  

Operation SUM Carry-out (CO) 

0 + 0 0 0 

0 + 1 1 0 

1 + 0 1 0 

1 + 1 0 1 

Table 8.1: All possible single-bit addition operations with sum and carry results. 

Step 1) Define the Problem: The first step is to draw a high-level BBD of the circuit. From the problem 
statement, this circuit contains two inputs and two outputs. Figure 8.1 shows the two inputs (arbitrarily named 
OP_A and OB_B)2 and two outputs: SUM and CO. Table 8.2 and Table 8.3 show the empty truth the 
completed truth table for this design, respectively. The circuit has two inputs, which means it there are four 
(22) rows in the truth table.  

                                                           
1 OK, I saw a student with the following words written on his t-shirt “There are 10 types of people in the world, those who 
understand binary and those who do not”. Even my TA has the shirt. If this saying is copywritten, then feel free to sue me.  
2 You could choose any signal names for the inputs and outputs, but you should assign self-commenting names. In other 
words, OP_A (operand A) is arguably a better label than FINGER_NAIL although both labels are equally valid.  
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Figure 8.1: The black-box diagram for this problem. 

OP_A OP_B SUM CO 

0 0   

0 1   

1 0   

1 1   
 

 

OP_A OP_B SUM CO 

0 0 0 0 

0 1 1 0 

1 0 1 0 

1 1 0 1 
 

Table 8.2: The empty truth table.  Table 8.3: The completed truth table. 

Step 2) Describe the Solution: For this problem, you’ll need to generate two Boolean expressions: one for the 
SUM and the other for the CO. We write the final equations by logically summing the product terms 
associated with rows in which 1’s appear.  

BOPAOPBOPAOPSUM ____   
BOPAOPCO __   

Equation 8-1: The final equations for Example 8.1. 

Step 3) Implement the Solution: The final step is to translate the Boolean expressions of Equation 8-1 into 
circuit form. Figure 8.2 shows the final gate-level implementation. This circuit has not control features.  

 

Figure 8.2: The circuit model for the solution. 

 

8.4 The Full Adder (FA) 

While adding single bits is interesting, we want to be able to add values larger than one bit. While the HA 
outputs both a sum and carry, the HA circuit can’t do anything meaningful with the carry. HAs can never 
generate a result greater than one bit (or two bits if you include the carry as part of the sum). The solution is to 
redesign the HA so that it provides a provision for the carry from one HA as in input to another HA. The 
circuit that handles this is the full adder.  
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Example 8.2: The Full Adder (FA)  

Design a circuit that adds three bits: two bits are associated with a standard addition operation 
while the third bit is a “carry-in” bit. In other words, this circuit completes the following 
operation: (a + b + ci) where a & b are the standard additive operands and ci represents the 
carry-in bit. The outputs of the circuit are identical to the half adder: SUM and Carry-out. 
Also, state what controls the circuit. 

Solution: This design is similar to the half adder (HA), but the difference is that the FA contains an extra input, 
the carry-in bit. While the HA added two single bits to each other, the FA adds three single bits together. We 
know both the HA and FA as 1-bit adders. Figure 8.3 shows the BBD for the full adder.  

 

Figure 8.3: Black box diagram of the full adder. 

The next step in the design is to specify the input/output relationship of the design, which means we must 
specify the outputs we want for a given set of inputs. This is the BFD design approach, so we start with a truth 
table that lists every combination of the input variables. Figure 8.4 shows the result of this step.  

 
a b ci s co 
0 0 0   
0 0 1   
0 1 0   
0 1 1   
1 0 0   
1 0 1   
1 1 0   
1 1 1   

 

 
a b ci s co 
0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 

 

(a) (b) 

Figure 8.4: The truth tables associated with the FA design specifications. 

The next step is to translate the information in the output columns of the truth table of Figure 8.4(b) into 
equation form. Equation 8.2 shows the final equations for the two output variables. From these output 
equations, you could easily draw the final circuit model. Finally, this circuit has no control features.  

cibacibacibacibas   cibacibacibacibaco   

Equation 8.2: Boolean equations describing sum and carry-out outputs of the FA. 
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8.5 Ripple Carry Adders (RCA) 

People get PhDs or get the big bucks for designing new circuits that perform some calculations “better” than 
other digital circuits. This is important because computers generally spend a significant portion of time 
performing mathematical operations. If you can perform math operations more efficiently or with a smaller 
circuit, you’ve saved time (so you can do more operations), and/or you’ve saved space (so you can include 
other circuitry to do more stuff), and you’ve probably saved power (so you can play games on your phone 
longer before the battery dies).  

This section examines one type of mathematical circuit: the ripple carry adder (RCA). The RCA is versatile in 
that we can also easily configure it do subtraction (a topic for another chapter). The RCA is also a great vehicle 
to introduce iterative modular design (IMD).  

The RCA is our first Digital Design Foundation module. The RCA is an “n-bit adder”, which is a circuit that 
adds two n-bit numbers and provides an n-bit result and a carry-out. We construct the RCA in an iterative 
manner using a series 1-bit adders.  

 

Example 8-3: The Ripple Carry Adder 

Design a 4-bit Ripple Carry Adder (RCA). Represent each bit of this RCA using either a HA 
or FA. Also, state what controls the circuit. 

Solution: First, we must specify the inputs and outputs of this design using a black box diagram (BBD). The 
inputs include two 4-bit values; the output includes a 4-bit result and a 1-bit “carry” output. We refer to the 
carry output as the “carry-out”, or “co”. Figure 8.5 shows a black box diagram for this example.  

 

Figure 8.5: Top-level BBD for the ripple carry adder. 

If we had used BFD, we would start with a truth table. The problem with BFD is that circuit has eight inputs; 
the associated truth table would require 28, or 256 rows3. We instead solve this problem using IMD, which 
leverages the fact that we already designed two different one-bit adders (the HA and the FA). This problem 
requires that we design a 4-bit adder, so we assemble the 1-bit adders in such a way as to create a 4-bit adder. 
Figure 8.6 shows the final solution for this problem.  

 

Figure 8.6: Lower-level BBD for a 4-bit Ripple Carry Adder.  

                                                           

3 While this would be possible, such work is more suited to an academic administrator rather than a digital designer.  



Free Range Digital Design Foundation Modeling Chapter 8 

 

 - 115 -  

 

The circuit in Figure 8.6 has four specially connected 1-bit adders. To ensure the correct answer on the 
circuit’s outputs, each 1-bit adder must generate the “correct” values for both the sum and carry-out. While the 
a and b inputs are understood to be immediately available, the carry-outs are dependent upon the carry-ins 
from the previous bit locations moving from right to left (except for the HA). For example, generating the 
correct second-from-right sum bit is dependent upon the carry-out from the HA. We refer to this circuit as a 
ripple carry adder is because the carry must “ripple” from the lower-order adders to the higher-order adders 
(right-to-left in Figure 8.6). Here are some other useful things to note about this circuit.  

 Figure 8.6 uses weightings associated with each bit location as the given numbering implies. 
Higher the number “indexes”, have higher weightings. We refer to the “s3” output bit as the 
most significant bit (MSB) of the sum while we refer to the s0 output as the least significant bit 
(LSB) of the sum. This RCA uses the weightings associated with binary numbers for the 
individual bit locations.  

 We completed this design without using truth tables or Boolean equations. We completed this 
design on a higher level than previous designs, which means the design uses only previously 
designed modules (HAs & FAs). The design is modular in that we use previously designed 
modules; the design is iterative in that we place the modules in a repetitive manner. We’ve thus 
abstract the RCA design to a higher level.  

 The notion of the “carry out” (cout) in serves as the “fifth bit” and MSB for the addition. In 
essence, though we added two 4-bit unsigned numbers, we obtained a 5-bit result.  

 We refer to the RCA as an “n-bit adder” because if we wanted an 8-bit adder, we simply add 
four more FAs to the 4-bit RCA design. The act of “adding four more FAs” to the design is 
simple, but powerful.  

 

None of the modules in the RCA has control inputs, so this device uses no control.  
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Example 8-4: Timing Diagram for an 8-bit RCA 

Use the block diagram of the 4-bit RCA below to complete the accompanying timing diagram. For 
this problem, assume the Cin input is always ‘0’.  

 

 

 

Solution: Convince yourself what is going on in this problem by examining the timing diagram in Figure 8.7:. 
When you add two 4-bit binary numbers, you essentially end up with a 5-bit binary number with the carry-out 
being the most significant bit (MSB). The possible range for a 4-bit binary number is 0x0 to 0xF (equating to 0 
to 15 in decimal). Figure 8.7: shows the solution.  

 

Figure 8.7: The solution to Example 8-4. 

 

 

 

Example 8.5: A Component-based 8-Bit RCA 

Design an 8-bit RCA using two 4-bit RCA circuits. State any assumptions and make any 
changes you may need to the 4-bit RCAs. Also, state what controls the circuit. 
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Solution: The first step in this solution is to draw the BBD; Figure 8.8 shows the BBD for this problem. We 
add a carry-in input (Cin) to the BBD, which is arbitrary, but we include it so that we can cascade this circuit if 
we need to. If we choose not to cascade this circuit, we connect the carry-in input to ‘0’, which prevents the 
Cin input from affecting the SUM output.  

 

Figure 8.8: The high-level black box diagram for this problem. 

Although you may not have noticed it in the previous example, the “thing” that allowed you to increase the 
width of your 1-bit adder was the fact that the FA was a 1-bit adder that added three different bits together to 
generate a 1-bit result. The key to RCA success was taking the carry-out from a bit location of lower 
significance and including it in the addition operation of the next bit location of higher significance. However, 
since the lowest-order bit, or, the LSB, only required a one-bit adder with two inputs because there would be 
no carry-in into that bit location. Using a HA in the lowest order bit location saved some hardware (a few 
gates), but it left the circuit with the inability to be “cascaded” with other RCAs. This cascading of RCAs 
allows us to effortlessly build RCA of greater widths. The solution to this example would be to substitute a FA 
for the HA of Figure 8.6; Figure 8.9 shows the result of this step, which is a 4-bit RCA with a carry-in (Cin) 
input.  

 

Figure 8.9: Black box diagram for the 4-bit RCA we use in the solution.  

The next step in this solution is to draw a lower-level BBD that shows the all the modules we need for the 
solution. The problem states that we need two 4-bit RCAs; this means we must divide the circuit’s 8-bit inputs 
and output between the two RCAs. Figure 8.10 shows the result of this step.  

 

Figure 8.10: The internal modules for this solution.  

The final part of the solution is to connect the internal modules of Figure 8.10. Figure 8.11: shows the result of 
this step. This circuit has no control features. There are a few things to notice in Figure 8.11:.  

 There is no notion of HAs and FAs because it is a relatively high-level model  

 It is a common assumption in digital-land to include a “carry-in” in RCAs. In this case, we are 
assuming that the lowest-order bit uses an FA instead of a HA.  
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 Parenthetical notation shows that the total number of input bits for the two operands; we 
subsequently divide these between the two individual 4-bit RCAs. You always need to provide 
notation to indicate the routing of the associated signals. We use the same style of routing for 
the “sum” output.  

 The “Cin” input to the lower-order RCA is “tied to ground”. A requirement of circuit diagrams 
is that we must account for every input in the schematic diagram by connecting them to a 
signal, or assigning it a known and constant. 

 This circuit works as an 8-bit adder in this cascade formation because the “carry-out” from the 
lower-order RCA connects to the “carry-in” of the higher-order RCA. This is common in 
digital-land also as many digital ICs allow you to connect many of the same ICs together to 
increase the overall width (or length in some cases) of signals. We refer to the act of 
connecting things together in this manner as cascading.  

 

Figure 8.11: The final solution for this example. 

The RCA has no control input, so this circuit has no control ability; the outputs always respond to the inputs in 
the same way.  

 

 

 

Example 8-6: Signal Changing Circuit 

Design a circuit that increases the value on an 8-bit unsigned binary input signal by 30. The output of 
this circuit is always valid. Also, state what controls the circuit. 

Solution: The first step in this solution is to draw a BBD, means we must figure out the width of both the data 
inputs and data. The problem states the output data width should always be correct, which means that when we 
add the value to the number, the sum output is always correct. Thus, the width of the output data must be one 
bit greater than the width of the input data, which makes the output data width nine bits. Figure 8.12 shows the 
associated BBD.  
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Figure 8.12: Black box diagram for this problem. 

The next two steps in this problem are to establish the lower-level modules and connect them in such a 
way as to solve the problem. Figure 8.13 shows the final solution to this problem; here is the thought 
process that leads to that solution.  

 The circuit increases the input value by 30, so there must be an RCA in the circuit.  

 Because RCAs have two inputs to account for, we discern that one input must be the external 
input value while the other input must be “hardcoded” to a value of 30.  

 The width of the output is one bit greater than the width of the input. The RCA’s carry-out 
becomes the MSB. This fact is not obvious, so we clearly note it in Figure 8.13. 

 

Figure 8.13: The final solution for this problem.  

The next thing we must do is establish what controls the circuit’s operation. The RCA in this circuit has not 
control inputs, so this circuit has no control features.  

 

 

8.6 Digital Design Foundation Notation: The RCA 

We consider the RCA to be a Digital Design Foundation module. The RCA is a controlled circuit; 
Figure 8.14 shows the RCA in appropriate digital design foundation notation. As you would expect 
from an adder-type circuit, the RCA adds the two input operands (A & B) and the carry to generate 
the SUM output. Note the RCA has no control inputs, which means the device always performs the 
same operation on the three data inputs. The RCA’s CO output provides status for the RCA’s addition 
operation. Table 8.4 provides a description of all the inputs and outputs to the RCA.  
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Figure 8.14: Data, control and status signals for a RCA.  

 

 Signal Name Description 

IN
P

U
T

 
D

A
T

A
 

A 
One of two multi-bit addends (or operands). The data width of the two addends is 
equivalent.    

B One of two multi-bit operands. The data width of the two addends is equivalent.  

Cin A “carry in” input.  

O
U

T
P

U
T

 
D

A
T

A
 

SUM The result of summing the three inputs: two addends and the Cin input.  

C
O

N
T

R
O

L
 

n/a - 

S
T

A
T

U
S

 

Co 
A “carry-out” signal; this signal shows when the summation operation has 
generated a carry. The carry is effectively the “n+1” bit of an n-bit RCA.  

Table 8.4: The foundation matrix for a RCA. 
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8.7 Chapter Summary 

 

 Iterative Modular Design (IMD) is a more powerful design method than brute force design (BFD) because 
it bypasses the constraints presented by the truth tables and the entire BFD approach. There are several 
standard digital circuits that we design using IMD, the RCA is one of them.  

 The half-adder (HA) is a single-bit adder with two inputs (addends) and a result (sum) and carry output.  

 The full-adder (FA) is a single-bit adder with three inputs (two addends and a carry-in) and a result (sum) 
and carry output.  

 The ripple carry adder (RCA) is an arithmetic circuit comprised of FA, and sometimes a HA for the LSB. 
We define RCAs as “n-bit” adders, where n is both the width of the two non-carry-in operands and the 
width of the sum output.  

 We can easily “cascade” two n-bit RCAs to form a RCAs of width 2n. This modification requires that the 
higher-order RCA have a carry-in input.     

 The notion of what controls a circuit is always of importance to the digital designer; the options are 1) no 
control, 2) internal control, 3) external control, or 4) circuit controlled. A given circuit can have more than 
one form of these controls.  
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8.8 Chapter Exercises 

 

1) Briefly describe why we should always connect all unused input signals to either power or ground in all 
digital designs. In other words, why do we not what to “leave inputs hanging” or “leave inputs floating”.  

2) If you were to design a 10-bit RCA using the BFD approach, briefly explain how many rows with the 
associated truth table have?  

3) There are adders out there that fall into the category of “look ahead carry” adders. Briefly explain why 
these would output a result faster than a RCA.  

4) In your own words, briefly explain how the RCA got its name.  

5) Complete the timing diagram below considering the given schematic symbol.  
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8.9 Design Problems 

 

For the following problems:  

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution 

 Minimize the use of hardware in your solution 

 State the types of control your circuit uses (“no control”, “internal control”, and/or “external control”). 

 

1) Design a circuit that always increases the value of a 4-bit signal by two. The output of this circuit is 
always a valid summation.  

2) Design a circuit that always increases the value of an 8-bit signal by seven. This circuit has an output 
VALID that indicates when the 8-bit output sum value is valid.  

3) Design a circuit that always increases the value of an 8-bit signal by six. The width of the output data 
should always reflect the result of the addition.  

4) Design a 10-bit RCA using only two 4-bit RCAs, an HA, and a FA.  

5) Design a circuit that adds four 8-bit values and always returns the proper summation on the circuit’s 
output. The circuit’s output should not have a carry-out-type signal.  

6) Design a circuit that always doubles the value of the carry in before summing it with the circuits two 10-
bit input values. The output summation of this circuit is always valid.  

7) Design a circuit that multiplies a single 8-bit input by three. The resulting output is always correct.  

8) Design a circuit that multiplies a single 10-bit input by five. The resulting output is always correct.  

9) Use an RCA to design a circuit that blinks a single LED output at the highest rate possible using that RCA.  

10) Use an RCA to design a circuit that blinks a single LED output at the 1/16th the highest rate possible using 
that RCA.  

11) Design a circuit that adds two 5-bit digital values. If an external button is being pressed, the circuit outputs 
the correct result of the summation; otherwise, the circuit outputs all zeros. Assume the pressed button 
outputs a logical ‘1’ and the unpressed button outputs a logical ‘0’. Assume the circuit output is 6-bits 
wide.  

12) Design a circuit that adds two 4-bit digital values. If an external button is being pressed, the circuit outputs 
the correct result of the summation; otherwise, the circuit outputs all ones. Assume the pressed button 
outputs a logical ‘1’ and the unpressed button outputs a logical ‘0’. Assume the circuit's output is 5-bits 
wide. 

13) Design a circuit that adds five 10-bit unsigned binary numbers, A, B, C, D, and E. No matter what, the 
final sum should always be output, but this sum output is only a 10-bit number also. The catch is that this 
circuit has a “VALID” output that indicates when the 10-bit output is a valid represents the actual sum of 
the five input values. You can only use 10-bit RCAs for this circuit.  

14) Use two HAs and a minimal amount of additional logic to create a FA.  
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9 Boolean Functions and DeMorgan’s Theorem  

 

9.1 Introduction 

Digital design depends on the use of various model types to represent digital circuits. Digital designers need to 
be adept at modeling circuits in a way most appropriate for a given situation. Using the various digital 
theorems allows us to represent circuits in different but functionally equivalent ways. One more use of 
DeMorgan’s theorem is to help us transform Boolean equations into functionally equivalent forms.  

Main Chapter Topics 

DEMORGAN’S THEOREMS: Probably the most widely used theorem in digital design, 
DeMorgan’s theorems can transform equations into functionally equivalent forms.   

REPRESENTING BOOLEAN FUNCTIONS: There are many ways to represent Boolean 
functions; this chapter describes some of the more common approaches.  

 

Chapter Acquired Skills 

 Be able to represent functions using standard SOP form 

 Be able to represent functions using standard POS form 

 Be able to describe standard sum and standard product terms 

 Be able to form minterm and maxterm expansions from reduced Boolean equations 

 Be able to represent functions using SOP and POS forms 

 Be able to represent functions using compact minterm and compact maxterm forms.  

 Be able to transfer back and forth from any one function form to any other function 
form.  

 

9.2 Representing Boolean Functions 

A Boolean function, or “function”, is an equation that describes an input/output relationship of a module in 
terms of digital logic. There are many different ways of modeling this input/output relationship; you’ve seen 
three main approaches: truth tables, Boolean functions, and circuit models.  

There are a few important things to notice about input/out relationships. First, these three representations are 
functionally equivalent; so they say the same thing but say it in three different ways. Secondly, you’ll see that 
some function representations are more appropriate than others.  

 

Example 9.1: The First BFD Problem Revisited 

Design a digital circuit where the output of the circuit indicates when the 3-bit binary number on the 
input is greater than four. 
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Solution: The solution to Example 9.1 included a black box diagram (Figure 9.1(a)), a truth table (Figure 9.1 
(b)), a Boolean expression (Figure 9.2), and the final circuit diagram (Figure 9.3).  

 

B2 B1 B0 F 

0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 

 

(a) (b) 

Figure 9.1: The black box model and completed truth table for Example 9.1.  

B0)B1(B2  )B0B1(B2  B0)B1(B2  B0)B1,F(B2,   

Figure 9.2: A Boolean expression describing the solution to Example 9.1. 

 

Figure 9.3: The circuit model that solves Example 9.1.  

 

9.3 DeMorgan’s Theorems 

The list of theorems provided in a previous chapter is relatively long. Modern digital design rarely directly uses 
all of these theorems, but they use some of them quite often; DeMorgan’s is one of those theorems. We can 
generate different representations of a Boolean equations from an application (or multiple applications) of 
DeMorgan’s theorem. Figure 9.4 shows once again the Boolean equation that describes a solution to our first 
design problem. We refer to the form of this equation as the sum of products (SOP) form. This name makes 
sense in that there are three terms in the equation that are logically multiplied together; the equation then 
logically adds the product terms.  

 

Figure 9.4: The solution to the previous example listed again here.  

Another widely used Boolean equation form is the product of sums (POS) form. You can obtain the POS form 
from the truth table in a way that is similar to the SOP form. In the SOP form, you wrote the Boolean equation 
based on the rows of the truth table that contained a ‘1’. You found which rows contained a ‘1’ in the output 
and you included the product term for that row in the final Boolean equation.  

B0)B1(B2  )B0B1(B2  B0)B1(B2  B0)B1,F(B2, 
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Inverting the F output officially describes the same function (the right-most column in Figure 9.5). Note the 
right-most column in Figure 9.5 is the same as the F column except we invert the associated values, so the two 
right-most columns of Figure 9.5 have a complementary relationship. Generating an equivalent POS form for 
the truth table in Figure 9.5 is similar to the approach for generating the SOP form. The only difference is that 
we need to apply DeMorgan’s theorems multiple times to translate the equation to POS form.  

B2 B1 B0 F !F 

0 0 0 0 1 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 0 1 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 0 

 

Figure 9.5: The truth table for the original problem with a complemented output added.  

DeMorgan’s theorem is one of the more commonly applied logic theorems in digital design. DeMorgan’s 
theorem is also useful in other fields such as discrete mathematics, computer programming, and other various 
flavors of engineering. Table 9.1 shows DeMorgan’s theorems in both two variable and generalized forms. The 
final form in Table 9.1 emphasizes the fact the “variables” in the original listing of DeMorgan’s theorem are 
not necessarily Boolean variables. The symbols in the first two equations can be either simple Boolean 
variables or Boolean expressions. In either case, the overbar applies to the entire expression that it covers.  

  

  

  

Table 9.1: DeMorgan's theorem in two-variable and generalized forms. 

Let’s generate an equation for F in POS form. The key here is to notice that for the SOP form, you were 
interested in the rows of the truth table that had a ‘1’ for the output. The approach is to list the product terms 
with a ‘1’ on the output of the complemented output1. This first step is similar to generating SOP form but 
you’re actually generating an equation in SOP form for the complement of the output2. Table 9.2 shows the set 
of equations generated by seeking a POS expression for the given function. An explanation of each row in 
Table 9.2 follows the table.  

                                                           
1 Looking for 1’s in the inverted output column is the same as looking for 0’s in the non-inverted output column.  
2 Keep in mind that a complement of the output is not the desired output relative to the original problem. In other words, 
the complement of the output does not represent a solution for the given problem.  

YXYX  YXYX 

nn XXXXXX   2121 XnXXXnXX   2121
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(a) 
 

(b) 
 

(c) 
 

(d) 
 

(e)  

Table 9.2: Generating a POS form from multiple applications of DeMorgan's theorem. 

a) This equation is SOP form, which we generate by listing the product terms for the 0’s of the F column 
or the 1’s of the !F column. This is a valid SOP form for the complemented output, but we’re looking 
for a POS form for the uncomplemented output.  

b) We complement both sides of the equation in Table 9.2(a), which preserves the equality.  

c) Since the double complement of a variable equals that variable, the double-complemented F on left 
side of the equals sign becomes uncomplemented. Our ultimate goal is to generate an equation for F 
in POS form so we still need to massage this equation. The expression on the right side of the equals 
sign shows the results after the first application of DeMorgan’s theorem. The product terms are now 
complemented and are ANDed together, thus the giant overbar is now distributed to the individual 
product terms and the OR operators were changed to AND operators.   

d) Each of the product terms receives an individual application of DeMorgan’s theorem. The overbar is 
distributed to the individual components of the product terms and we switch the logic operators from 
AND to OR.  

e) A Boolean algebra axiom allows us to remove the double complements from the variables. The result 
of this step provides the desired POS form.  

In summary, you now have an approach for generating both an SOP and POS form of equations describing a 
digital relationship. These are common forms so note that the SOP form is generally associated with the 1’s of 
the circuit while the POS form is generally associated with the 0’s of the circuit3. The SOP and POS forms are 
functionally equivalent, which means they describe the same input/output relationship, but in different ways.  

 

9.4 Minterm & Maxterm Representations 

Without you knowing it, we previously exposed you to minterm representations and maxterm representations 
of functions. For this section, let’s return to the design from a previous chapter. Figure 9.6 shows the equation 
we were previously working with. From the truth table of Figure 9.6, you generated the Boolean function in 
Equation 9.1 to describe the truth table. We eventually went on to describe Equation 9.1 as sum-of-products 
form (SOP) but that is not the whole story. As it turns out, we’re actually listing this equation in what we refer 
to as “standard SOP form”. You know that the equation is in SOP form because you can see that there is a 
summation of many product terms. So what makes it a standard SOP form?  

                                                           
3 This may seem a little “follow the rules” oriented, but it will make more sense later as we delve deeper into other digital 
design topics.  

)B0B1(B2 B1)B2B2( )B0B1B2(  B0)B1B2(  )B0B1B2(  F 

)B0B1(B2 B1)B2B2( )B0B1B2(  B0)B1B2(  )B0B1B2(  FF 

)B0B1(B2 B0)B1B2( )B0B1B2(  B0)B1B2(  )B0B1B2(  F 

)B0B1B2()B0B1B2()B0B1B2()B0B1B2()B0B1B2(   F 

B0)B1B2()B0B1(B2B0)B1(B2)B0B1(B2B0)B1(B2   F 
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B2 B1 B0 F 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 

 

Figure 9.6: The generic function from a previous chapter.  

 

 

Equation 9.1 

Equation 9.1 is a standard SOP form because each of the product terms contains one instance of each of the 
function’s independent variables in either complemented or uncomplemented form. We consider the product 
terms in Equation 9.1 something special in that they are standard product terms4. When we’re describing a 
function using standard product terms, we list the product term associated with the row in the truth table that 
contains an output of ‘1’. Each row in the truth table has a unique product term associated with it; Table 9.3 
shows the product terms for three-variable (A, B, C) function.  

Table 9.3 shows that we also label the product terms as “minterms”s which is simply another name for a 
standard product term. Digital design also refers to an equation in standard SOP form as a minterm expansion 
of the function. Equation 9.2 shows the standard SOP form of the function from the previous example (we 
switched from B2, B1, and B0 to A, B, and C to make them easier to write).   

 

Equation 9.2 

There is also a standard product of sums (POS) form, which contains a logical multiplication of standard sum 
terms. We refer to a standard sum term as a maxterm. The main difference between minterms and maxterms is 
that maxterms describe the locations of the 0’s in the function’s output5. Alternatively, equivalently, maxterms 
describe the 1’s in the output of the complemented function. Equation 9.3 shows the standard POS form of the 
function; we sometimes refer to this form as a maxterm expansion.  

 

Equation 9.3 

 

                                                           

4 Later in this set of notes you’ll see that listing all the terms as standard product terms not generally done.  
5 More specifically, maxterms describe the location of the 0’s in the rows containing 0’s for the uncomplemented output.  

B0B1B2  B0B1B2  B0B1B2  F 

CBA  CBA  CBA  F 

C)BA()CB(A)B(A)CB(AC)B(A   F  C
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A B C minterm maxterm F index 

0 0 0   0 0 

0 0 1   0 1 

0 1 0   0 2 

0 1 1   0 3 

1 0 0   0 4 

1 0 1   1 5 

1 1 0   1 6 

1 1 1   1 7 
 

Table 9.3: A listing minterms and maxterms for the each combination of circuit inputs. 

There is a special relationship between the minterms and maxterms. For a given row in the truth table, the 
minterms and maxterms are complements of each other; Figure 9.7 shows this property. To generate a minterm 
from a maxterm (or vice versa), you first complement it and then tweak it using DeMorgan’s theorem. Figure 
9.8 shows an example of this relationship for the fourth row in Table 9.3. In Figure 9.8(a), we complement the 
equation for the given minterm and then DeMorganized to generate the associated maxterm.  

𝑀𝑎𝑥𝑡𝑒𝑟𝑚 𝑀𝚤𝑛𝑡𝑒𝑟𝑚 

𝑀𝑖𝑛𝑡𝑒𝑟𝑚 𝑀𝑎𝑥𝑡𝑒𝑟𝑚 

Figure 9.7: The secret relationship between minterms and maxterms. 

 

  

(a) (b) 

Figure 9.8: The complimentary relationship between minterms and maxterms.  

  

CBA  CBA 

CBA  CBA 
CBA  CBA 
CBA  CBA 
CBA  CBA 
CBA  CBA 
CBA  CBA 
CBA  CBA 

CBAF

CBAF

CBAFCBAF

CBAFCBAF









)0,0,1(),,(

)0,0,1(),,(

CBAF

CBAF

CBAFCBAF

CBAFCBAF









)0,0,1(),,(

)0,0,1(),,(
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Example 9.2: Circuit Form to Equation Transformation 

Change the following circuit implementation from a SOP (AND/OR) to a POS (OR/AND) 
form.  

 

Solution: There are many ways to represent functional relationships in digital-land; you’ve seen several 
equation forms (SOP & POS), truth tables, and timing diagrams. There are functionally equivalent ways to 
represent any given function, so you should be able to go from any one form to any other form. This problem is 
a case of going from a circuit model in SOP form to a circuit model in POS form. There are many ways to 
solve this problem; we take the most straightforward approach. Here are the steps to solve this problem:  

1) Write out the equation implemented by the circuit 

2) Expand the equation into standard SOP form 

3) Use the SOP equation to generate a truth table 

4) Write an equation for the complemented output 

5) Complement the equation and DeMorganize6 the result until the equation is in POS form 

6) Use the derived POS equation to re-implement the circuit 

 

1) Write the equation implemented by the circuit. The circuit is in SOP form; from the circuit, you can see 
that there are two product terms (two AND gates) that are logically added together (one OR gate). Figure 
9.9 shows the initial equation.  

 

CABACBAF ),,(  
 

Figure 9.9: The initial equation from this example. 

2) Although this equation is officially in SOP form, we need to transform it into standard SOP form in order 
to transfer the equation to a truth table. The problem right now is that both of the product terms are 
missing an independent variable, which we add back by logically multiply the equation by ‘1’. Thinking 
back to the original Boolean algebra theorems, you’ll find that: (x + !x = 1). Note the first product term is 
missing the C variable. We add it by multiplying the first product term by (C+!C = 1) which does not alter 
the value of the product term. Figure 9.10 shows the derivation of the product terms; Figure 9.11 shows 
the final expanded equation.  

 

                                                           

6 To “DeMorganize” means to apply DeMorgan’s theorem. This term was coined by the infamous Professor Freeman 
Freitag sometime in the mid-1980s.  
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CBACBABA

CCBABA



 )(

 
CBACBACA

BCABCACA

BBCACA





 )(

 
 

Figure 9.10: Expanding the product terms from the original equation. 

 

CBACBACBACBACBAF ),,(  
 

Figure 9.11: The final expanded equation.  

3) Now that the terms look familiar, we enter them into a truth table. Figure 9.12 shows that we place a ‘1’ in 
the F column for the corresponding product terms in the equation derived in the previous step.  

A B C F 

0 0 0 0 
0 0 1 1∙ (!A∙!B∙C)  
0 1 0 0 
0 1 1 1∙ (!A∙B∙C) 
1 0 0 1 ∙ (A∙!B∙!C) 
1 0 1 1∙ (A∙!B∙C) 
1 1 0 0 
1 1 1 0 

 

 

Figure 9.12: The truth table showing the implicated product terms. 

 

4) The next step is to write an equation for the complemented output. Figure 9.13 shows that we do this by 
adding a complemented F column to the previous truth table. Using the table in Figure 9.13, we can write 
an SOP equation for the complemented output; this result equation appears Figure 9.14.  

A B C F !F 
0 0 0 0 1 
0 0 1 1 0 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 1 0 
1 0 1 1 0 
1 1 0 0 1 
1 1 1 0 1 

 

 

Figure 9.13: The truth table expanded to show the complemented output.  

 

CBACBACBACBACBAF ),,(  
 

Figure 9.14: The final expanded equation.  
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5) The final equation is an expression for !F (another way of saying a complemented F). We want an 
expression for F (as opposed to !F), so we complement both sides of the equation and DeMorganize the 
result a bunch of times. Figure 9.15 shows these steps.  

 

CBACBACBACBACBAF ),,(  

CBACBACBACBACBAF ),,(  

)()()()( CBACBACBACBAF   

)()()()( CBACBACBACBAF   

)()()()( CBACBACBACBAF   
 

Figure 9.15: The final solution this example. 

6) Finally, the last step is to draw a circuit model for the final equation of the previous step; Figure 9.16 
shows the result of this step. This example turned out to be a long problem as it shows many of the useful 
and versatile properties associated with Boolean algebra. N note in the diagram below that the AND gate 
has some extended wings to handle the larger number of inputs. 

 
 

Figure 9.16: The final solution to this example. 

 

9.5 Compact Minterm & Maxterm Function Forms 

Representing functions in standard SOP or POS forms is klunky, so we use compact minterm forms or 
compact maxterm forms instead. The compact minterm and maxterm forms list the decimal index (see the 
right-most column of Table 9.3) associated with the rows where either the 1’s or 0’s of the circuit reside in a 
given truth table.  

Compact forms traditionally use Greek symbols in their representations: we use the summation symbol for 
listing minterms (since it is a “summing” of product terms) and the capital Pi symbol for listing maxterms7. 
Figure 9.17 shows the compact minterm and compact maxterm forms for the example we’re working with. 
These compact forms always need listing as a function of the independent variables. If you did not include all 

                                                           

7 If you consult the right source, you’ll find that the Pi symbol is associated with multiplication.  
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of the independent variables, you would not be able to expand the list into standard sum or standard product 
terms.  

  

(a) (b) 

Figure 9.17: Compact minterm and maxterm forms for the current example.  

You now know the following ways to represent functions: truth tables, standard SOP, standard POS, compact 
minterm, compact maxterm, and circuit forms. The forms relate to each other in that they essentially provide 
multiple ways of representing the same thing, so all of these different forms are functionally equivalent. This 
means that you should be able to change from any one of the forms to any other one of the forms. However, 
while switching from one form of a function to another is painfully exciting, it is not represent digital design, 
as most digital design textbooks lead you to believe.  

 

Example 9.3: Circuit to Equations Transformation Again 

Change the following circuit implementation from a POS (OR/AND) to a SOP (AND/OR) 
form.  

 

Solution: The solution to this problem is similar to the solution of a previous example; the steps are the same 
but you need to apply them in a strange reverse order.  

First, write the equation implemented by the circuit. The circuit is in POS form; the circuit has two sum terms 
(two OR gates) that are logically multiplied together (one AND gate). Figure 9.18 shows the resulting 
equation.  

 

)()(),,( CABACBAF   
 

Figure 9.18: The initial equation derived from the problem description. 

We need to put the above equation into SOP form so we can easily enter it into the truth table. If we 
complement both sides of the equation and then DeMorganize it, we get an expression for !F in SOP form.  

 )7,6,5(),,( CBAF  )4,3,2,1,0(),,( CBAF
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)()( CABAF   

)()( CABAF   

)()( CABAF   

CABAF   
 

Figure 9.19: DeMorganizing the original equation. 

From here, we need to expand each of the product terms to include each of the independent variables. Figure 
9.20 shows that we use the same technique as in the previous problem.  

 

CABAF   

)()( BBCACCBAF   

CBACBACBACBAF   
 

Figure 9.20: Expanding the derived equation. 

The equation in Figure 9.20 tells us where the 0’s live in the truth table. If we know where the 0’s live, we also 
know where the 1’s live (that’s what we need to give us an equation for this function in SOP form). Figure 9.21 
shows the results of this description. Figure 9.22 shows that we can now write an equation for F. 

A B C F !F 
0 0 0 0 1 
0 0 1 0 1 
0 1 0 1 0 
0 1 1 1 0 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 1 0 
1 1 1 0 1 

 

 

Figure 9.21: Including the complemented output in the truth table. 

 

CBACBACBACBAF   

Figure 9.22: Writing the equation for F. 

 

Figure 9.23 shows the final step in this problem, which is drawing a model for the final circuit implementation.  
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Figure 9.23: The final circuit solution for Example 9.3. 

 

 

 

Example 9.4: Half Adder in Standard POS Form 

Provide a circuit diagram for a half-adder (HA) implemented in POS form.  

Solution: For this solution, we assume you still remember the half adder.  

Step 1) Define the Problem: Draw a black box diagram of the final circuit; Figure 9.24 shows this result. Table 
9.4 and Table 9.5 show the original truth table and the truth table including the complemented outputs, 
respectively. In Table 9.5, we use an “!” (the exclamation mark) prefix to variables to indicate a complement of 
the variable. Nerdy people know this symbol as the bang character.  

 

Figure 9.24: The black-box diagram for the example problem. 

OP_A OP_B SUM CO 

0 0   

0 1   

1 0   

1 1   
 

Table 9.4: The original truth table. 



Free Range Digital Design Foundation Modeling Chapter 9 

 

 - 136 -  

 

OP_A OP_B SUM !SUM CO !CO 

0 0 0 1 0 1 

0 1 1 0 0 1 

1 0 1 0 0 1 

1 1 0 1 1 0 
 

Table 9.5: The truth table including complemented outputs. 

Step 2) Describe the Solution: For this problem, you’ll need to generate two Boolean expressions: one for the 
SUM and the other for the CO.  

)__()__( BOPAOPBOPAOPSUM   

)__()__()__( BOPAOPBOPAOPBOPAOPCO   

Equation 9.4: The starting equations for Example 9.4. 

)__()__( BOPAOPBOPAOPSUM   

)__()__( BOPAOPBOPAOPSUM   

)__()__( BOPAOPBOPAOPSUM   

)__()__( BOPAOPBOPAOPSUM   

Equation 9.5: The SUM path from SOP to POS for Example 9.4. 

)__()__()__( BOPAOPBOPAOPBOPAOPCO   

)__()__()__( BOPAOPBOPAOPBOPAOPCO   

)__()__()__( BOPAOPBOPAOPBOPAOPCO   

)__()__()__( BOPAOPBOPAOPBOPAOPCO   

Equation 9.6: The CO path from SOP to POS for Example 9.4. 

Step 3) Implement the Solution: The final step involves translating the Boolean expressions in Equation 9.5 
and Equation 9.6 into circuit form. Figure 9.25 shows the final gate-level implementation.  
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Figure 9.25: The circuit representation of the final solution for Example 9.4. 

Equation 9.7 lists both the SOP and POS forms for the CO output while Equation 9.8 lists the SOP and POS 
forms for the SUM output. The SOP and POS forms for a given output are functionally equivalent. Finally, 
Figure 9.26 shows a comparison of the final circuit implementations for both the SOP and POS versions of the 
half adder.  

BOPAOPCO __   

is functionally equivalent to: 

)__()__()__( BOPAOPBOPAOPBOPAOPCO   

Equation 9.7: The CO path from SOP to POS for Example 9.4. 

BOPAOPBOPAOPSUM ____   

is functionally equivalent to: 

)__()__( BOPAOPBOPAOPSUM   

Equation 9.8: The CO path from SOP to POS for Example 9.4. 

 

Figure 9.26 provides some interesting and important information as it relates to functional equivalency. There 
are now two functionally equivalent ways to model a HA using Boolean equations. Because the circuit in 
Figure 9.26(a) uses less hardware than the circuit in Figure 9.26(b), you can conclude that Figure 9.26(a) is the 
better approach. The difference in two gates does not seem like enough in the context of this example, but it’s 
more meaningful if you circuit required thousands (or millions) of HAs. This is a brief introduction to 
minimum cost concept, a topic we cover in a later chapter.  
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(a) (b) 

Figure 9.26: A comparison of the SOP (a) and POS (b) circuit diagrams for the half adder. 
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9.6 Chapter Summary 

 

 DeMorgan’s Theorem: One of the basic theorems in digital design typically used to translate from one 
form to other functionally equivalent forms. We can simplify Boolean expressions using DeMorgan’s 
theorem also. There are two different forms of DeMorgan’s theorem; both bring ultimate bliss to the user.  

 SOP and POS Representations: Two of the most common ways to represent Boolean functions are using 
sum-of-products (SOP) and product-of-sum (POS) forms. We typically use DeMorgan’s theorem to 
generate a POS equation from a truth table. The SOP form has by multiple product terms that we logically 
sum together while the POS form has sum terms that we logically multiply together.  

 We can represent Boolean functions in many different forms including standard and reduced SOP, 
standard and reduces POS, and compact minterm and maxterm forms.  

 We can represent a function with a truth table in two ways; either we present the positive version output (a 
representation of a non-complemented output variable) or the negative version (a representation of the 
complemented output variable). These two outputs are complements, or inversions, of each other.  
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9.7 Chapter Exercises 

 

For all of the following problems, SOP and POS refer to standard SOP and standard POS.  

 

1) Briefly explain why it is proper to list all the independent variables in the compact minterm and maxterm 
forms.  

2) Being that SOP and POS forms are functionally equivalent, describe a few reasons why you would want to 
use one form over the other.  

3) Generate a Boolean equation that is equivalent to each of the following truth tables in POS form.  

B2 B1 B0 F 
0 0 0 0 
0 0 1 1 
0 1 0 1 
0 1 1 0 
1 0 0 1 
1 0 1 0 
1 1 0 0 
1 1 1 0 

 

A B C F 
0 0 0 1 
0 0 1 0 
0 1 0 1 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 0 
1 1 1 0 

 

(a) (b) 

  

 
X Y Z F 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 1 
1 0 1 1 
1 1 0 0 
1 1 1 0 

 

 
t u v F1 F2 
0 0 0 1 0 
0 0 1 1 0 
0 1 0 0 1 
0 1 1 0 1 
1 0 0 0 0 
1 0 1 1 0 
1 1 0 0 1 
1 1 1 0 1 

 

(c) (d) 

 

4) Convert the following functions to POS form  

a)  

b)  

c)  

 

  

CBACBACBACBACBAF ),,(

CBACBACBACBACBACBAF ),,(

ZYXZYXZYXZYXZYXF ),,(
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5) Convert the following functions to SOP form.   

a)  

b)  

c)  

 

6) For the following circuit diagram, change the form from SOP to POS form. 

 
 

(a) (b) 

7) For the following circuit, change the circuit to a have an output for F in SOP form.  

 

 

8) Represent the following equation in compact minterm and maxterm forms.  

 

 

9) Convert the following Boolean functions to both compact minterm and maxterm forms.    

a)  

b)  

c)  

 

)()()()()(),,( TSRTSRTSRTSRTSRTSRF 

)()()()(),,( CBACBACBACBACBAF 

)()()()(),,( ZYXZYXZYXZYXZYXF 

)()()()()(),,( TSRTSRTSRTSRTSRTSRF 

)()()()()(),,( TSRTSRTSRTSRTSRTSRF 

)()()()(),,( CBACBACBACBACBAF 

)()()()(),,( ZYXZYXZYXZYXZYXF 
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10) Write a reduced Boolean equation in SOP and POS forms for each of the following functions.  

 (3,4,5,6)  C)B,F3(A,
  (2,4,6,7)  C)B,F4(A,

 

 ,9,12,13)(0,2,4,6,8  D)C,B,F5(A,
  0,13,15)(0,2,5,8,1  D)C,B,F6(A,

 

 13,14,15)(4,5,6,12,  D)C,B,F7(A,
  ,11,13,15)(2,3,6,7,9  D)C,B,F8(A,
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9.8 Design Problems 

 

For the following problems:  

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution 

 Minimize the use of hardware in your solution 

 State the types of control your circuit uses (“no control”, “internal control”, and/or “external control”). 

 

1) Design a circuit that has four inputs and three outputs. The four inputs are considered two 2-bit inputs. 
One output consider the two inputs to be binary numbers and indicates when the two input number are not 
equivalent. The other output considers the two inputs to be stone-age binary inputs and indicates when the 
two binary inputs are equivalent. The third output indicates when the previously described outputs are both 
in an “on”. For this problem, implement the first two outputs using POS forms; implement the third output 
in any way you deem appropriate, but minimize your use of gates in the implementation.  

2) Design a circuit that has four inputs and four outputs. Each input is from a switch that is associated with 
one of four doors to a room; the outputs control a locking device on each door. There are four different 
sets of people who need to get into the room but you need to control exactly who gets into the room. 
Consider the each door to be named A, B, C, or D. Design a circuit that allows the following control (don’t 
worry about how people are going to get out of the room). Provide a model of your circuit using POS 
form.  

 If someone wants in door A, that person always gets in and is always the only person that gets in 
unless door C wants in also, in which case both door A and C opens.  

 If someone wants in door B, that person can only get in if someone at door D wants in also. In this 
case, both door B and D opens.  

 The person at door C can never be in the room alone but can be in the room with anyone else.  
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10 More Standard Logic Gates 

 

10.1 Introduction 

This chapter continues up the digital design learning curve by introducing four new logic gates. Though you’ve 
been using AND & OR gates (and inverters) in your designs, these are not the most common gates in digital 
design.  

Main Chapter Topics 

STANDARD LOGIC GATES: This chapter introduces four new gates: the exclusive OR 
(XOR) and exclusive NOR (XNOR) gates, and the NAND and NOR gates.  

LOGIC GATE ABSTRACTIONS: The chapter introduces the notion that we can configure 
various logic gates as inverters, switches, or buffers.  

 

Chapter Acquired Skills  

 Be able to describe the notion of functionally complete as it applies to logic gates  

 Be able to use NAND, NOR, XOR, and XNOR gates in digital circuits 

 Be able to configure standard logic gates as inverters, switches, and buffers 

 

10.2 NAND Gates and NOR Gates 

We form the NAND and NOR gates by complementing the output of AND & OR gates, respectively1. The 
names NAND and NOR are a shortened version of NOT-AND (for NAND) and NOT-OR (for NOR). Figure 
10.1 shows that we can model the NAND & and NOR gates by adding an inverter on the output of the AND & 
OR gates. Figure 10.2 shows the two new gate symbols for the NAND and NOR gates. Figure 10.3 shows the 
truth tables associated with the NAND and NOR functions. The truth tables in Figure 10.3, show that the 
outputs of the NAND and NOR gates are in fact complemented versions of AND & OR gates, respectively.  

  

(a) (b) 

Figure 10.1: Functional equivalent models for the NAND (a) and NOR (b) logic gates.  

                                                           
1 You can think of these NAND/NOR gates with inverters on the outputs but there is a better way to model them. Don’t 
worry about the better way for now.  
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(a) (b) 

Figure 10.2: The NAND (a) and NOR (b) logic gates. 

A B  
0 0 1 
0 1 1 
1 0 1 
1 1 0 

 

A B  
0 0 1 
0 1 0 
1 0 0 
1 1 0 

 

(a) (b) 

Figure 10.3: Truth tables for the NAND (a) and NOR (b) logic functions.  

One of the advantages that NAND and NOR gates have over AND & OR gates is that they are functionally 
complete. This means that a NAND gate (or a series of NAND gates) can implement any Boolean function2. In 
other words, we can use a NAND gate to generate an AND function, an OR function, or a complement 
function (INVERTER). Note from the truth table for the NAND gate in Figure 10.3(a) that there are two ways 
to create an inverter from a NAND gate: 

1) The first and fourth rows of the NAND gate’s truth table indicate that if the two inputs to the 
NAND gate are equivalent, the output is an inversion of the input. We implement this in 
hardware by connecting the same signal to both inputs3 of ta two-input NAND gate; Figure 
10.4(a) shows this result.  

2) The third and fourth rows of the NAND gate’s truth table indicate that if one of the inputs to 
the NAND gate is fixed to a logic ‘1’, the output of the NAND gate exhibits an inversion 
function based on the other input. We implement this in hardware by connecting one NAND 
gate input to the high voltage; Figure 10.4(b) shows this result.  

 
 

(a) (b) 

Figure 10.4: Making an inverter from a NAND gate.  

There are also two ways to force a NOR gate to act as an inverter; Figure 10.1 shows these two approaches. 
We state these without proof; a few chapter exercises deal with this concept.  

                                                           
2 The same is true of a NOR gate; we opt not to provide the detailse.  
3 Or all of the inputs if there gates has more than two inputs.  

BAF  BAF 
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(a) (b) 

Figure 10.5: Making an inverter from a NOR gate.  

10.3 XOR and XNOR Gates 

The final type of logic gates are the exclusive OR gate (or the XOR gate) and the exclusive NOR gate (or 
XNOR gate). Figure 10.6 shows the schematic symbol for these two gates. Note the similarity between these 
gates and the OR and NOR gate symbols. In addition, we often refer to an exclusive NOR gate as an 
“equivalence gate”.  

  

(a) (b) 

Figure 10.6: The exclusive OR (XOR) and exclusive NOR (XNOR) gates. 

Figure 10.7 shows the truth tables that define the XOR and XNOR functions. The XOR and XNOR functions 
are complements of each other as is true with the OR and NOR gates, etc. Figure 10.8 shows the official 
Boolean equations describing the XOR and XNOR functions. In these equations, the XOR function has its own 
special operator symbol: the circled cross. There is also a special operator for XNOR gates, which Figure 
10.8(b) does not show4: the circled dot.  

The equations in Figure 10.8 are both important and useful; you’ll use these equations often. You may want to 
stare at them for a while; I know I sure do5. The truth table in Figure 10.7(b) for the XNOR function shows 
why we refer to it as an equivalence gate: the gate output is a logical ‘1’ when the two gate inputs are 
equivalent. One thing to note about XOR & XNOR gates: while AND, OR, NAND, and NOR gates can have 
two or more inputs, XOR and XNOR gates can only have two inputs.  

A B  

0 0 0 
0 1 1 
1 0 1 
1 1 0 

 

A B  
0 0 1 
0 1 0 
1 0 0 
1 1 1 

 

(a) (b) 

Figure 10.7: Truth tables for exclusive OR (XOR) (a) and exclusive NOR (XNOR) functions (b).  

 

                                                           

4 The equation editor I used when writing this does not contain the required symbol.  
5 Not really.  

BAF  BAF 
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(a) (b) 

Figure 10.8: The official equations describing the XOR (a) and XNOR functions (b).  

10.4 Logic Gate Abstractions 

The fact that we can configure NAND and NOR gates as inverters is useful in digital design. You know the 
logic behind these gates, but applying basic intuition to these gates allows you to use them in other ways. Once 
you develop an intuitive feel for basic logic gates, you can use them in many digital designs in clever ways. 

Basic gates have three useful functions beyond modeling them as logic elements. These three functions include 
1) using gates as inverters, 2) using gates as switches, 3) using gates as buffers. The following verbage more 
fully describes these functions while Figure 10.9 provides the visual details. For each of these gates, we only 
consider the case of 2-input gates, keeping in mind that gates of more than two inputs does not apply to XOR-
type gates. We omit all mention of the XNOR gate as it is a special case of the XOR gate.  

The key to making gates into one of these three functions is connecting an input (or inputs) to the power (logic 
‘1’), ground (logic ‘0’), of shorting the inputs to the gate. Often times we reference ground as “GND”; we draw 
with a down-pointed arrow in a circuit diagram. We refer to connecting an input to logic ‘1’ as “tying the input 
high” or “tied high” and we refer to connecting an input to logic ‘0’ as “tying the input low” or “tied low”.   

10.4.1 Gates as Inverters 

When we connect one input to power or ground (logical ‘1’ or ‘0’, respectively), a given gate acts as an 
inverter. Table 10.1 lists the connections required to create inverter functions from various gates6. We 
previously discussed using NAND and NOR gates as inverters.  

Gate Type Gate Connected as Inverter 

NAND 1) connect one input to ‘1’ or  

2) have both inputs share the same signal  

NOR 1) connect one input to ‘0’ 

2) have both inputs share the same signal 

XOR connect one input to ‘1’ 

Table 10.1: Gate connections for inverter functionality. 

10.4.2 Gates as Switches 

The notion of a switch means something we can turn on and turn off. When we “turn off” a gate, we say we are 
killing the gate, which means we prevent the output from changing. This is a useful function in many digital 
design applications because one input has the ability to disable the gate by forcing the output to a certain value.  

                                                           

6 Recall that this list does not include AND and OR gates as they are not functionally complete.  

BABABAF  ABBABAF 
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Gate Type Gate Connected as Switch 

AND & NAND connect one input to ‘1’; ‘0’ kills the gate 

OR & NOR connect one input to ‘0’, ‘1’ kills the gate 

Table 10.2: Gate connections for switch functionality. 

10.4.3 Gates as Buffers 

The word buffer is common term electronics. For digital electronics, a buffer function is essentially one that 
does not change the logic level of an input given signal. This is generally useful because often times you want 
to pass a signal along in a circuit unchanged. We often use buffering action is conjunction with either a switch 
or inverter functionality7.  

Gate Type Gate Connected as Buffer 

AND connect one input to ‘1’ 

OR connect one input to ‘0’ 

XOR connect one input to ‘0’ 

Table 10.3: Gate connections for buffer functionality. 

 

  

                                                           

7 For example, for a given input, the value is either high or low and the resulting gate function is a buffer and an inverter, or 
a buffer and a switch (depending on which gates you’re working with).  
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Gate Configuration Timing Example Comments 

  

Grounding one input of an AND gate 
makes the output always ‘0’, which 
“kills” the gate: DEAD 

  

Tying one input of an AND gate 
high allows the other input to pass 
unchanged to the output: BUFFER 

  

The NAND gate is dead when you 
ground one input: DEAD 

  

Tying one input of a NAND gate 
high inverts the other input: 
INVERTER 

  

Tying one input of an OR gate low 
prevents the input from effecting the 
output: BUFFER 

  

Tying an OR gate input to‘1’ kills 
the gate by forcing the output to 
always be ‘1’: DEAD 

  

Tying one input of a NOR gate to ‘0’ 
outputs an inversion of the other 
signal: INVERTER.  

  

Tying a NOR gate input to ‘1’ kills 
the gate; the output is always low: 
DEAD 

  

Tying one input to ‘0’ passes the 
other input to the output: BUFFER  

  

Tying one input to ‘1’ outputs an 
inversion of the other input: 
INVERTER 

Figure 10.9: Everything you didn’t want to know about the secret lives of logic gates. 

 

Example 10.1: Half Adder using New Gate Types 

Implement a half adder (HA) using a minimal amount of gates; use any type of gate you’re 
familiar with in order to minimize the final gate count.  
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Solution: This problem drops a giant hint that you should use a new gate in the solution. Figure 10.10 should 
help you recall that the HA has two inputs and two outputs. We all remember how a HA works but Figure 
10.11 provides the truth table while Equation 10.1 shows the final un-reduced equations. 

 

Figure 10.10: The top-level BBD for a Half Adder (HA). 

OP_A OP_B SUM CO 

0 0 0 0 

0 1 1 0 

1 0 1 0 

1 1 0 1 
 

Figure 10.11: Truth table for the HA. 

BOPAOPBOPAOPSUM ____   
BOPAOPCO __   

Equation 10.1: The final equations for a HA. 

From inspection of Equation 10.1, the SUM output is an XOR function and the CO is an AND function. You 
need to inspect equations quite often in digital design as no one delivers items such as XOR functions on 
flaming pies8. Figure 10.12(a) shows the resulting circuit. Figure 10.12(b) shows the final circuit from the first 
time we did this problem. The result is two devices for the XOR enabled HA compared to six devices for the 
original version. The world is saved.  

  

(a) (b) 

Figure 10.12: The HA using the newer gates (a) and older gates (a). 

 

 

  

                                                           

8 For you pop music fans out there, this is a historical reference.  
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Example 10.2: Extracting XOR Functions from Boolean Equation 

Show that the following equations contain XOR functions.  

CABCBACBACBACBA  C)B,F(A,  

Solution: There is no easy way to do this problem; you need to stare at it for a while and then see what XOR-
type functions you can factor out. Factoring using Boolean algebra is something none of us wants to do, but 
sometime we must do it. Here we go.  

The starting point we’re looking for is a something that we can factor. This problem happens to be set up 
nicely in that the natural ordering of the terms makes the problem easier. Without too much description,  

𝑭 𝑨, 𝑩, 𝑪 𝑨𝑩𝑪 𝑨𝑩𝑪 𝑨𝑩𝑪 𝑨𝑩𝑪 𝑨𝑩𝑪 

𝑭 𝑨, 𝑩, 𝑪 𝑨𝑩𝑪 𝑪 𝑨𝑩 𝑨𝑩 𝑨 𝑩𝑪 𝑩𝑪  

𝑭 𝑨, 𝑩, 𝑪 𝑨𝑩𝑪 𝑪 𝑨 𝒙𝒐𝒓 𝑩 𝑨 𝑩 𝒙𝒐𝒓 𝑪  

Figure 10.13 shows the final solution. Including the XOR function significantly reduced the amount of logic in 
the final Boolean equation. My apologies for failing to find a proper XOR operator in the text editing software.  

𝑭 𝑨, 𝑩, 𝑪 𝑨𝑩𝑪 𝑨𝑩𝑪 𝑨𝑩𝑪 𝑨𝑩𝑪 𝑨𝑩𝑪 

𝑭 𝑨, 𝑩, 𝑪 𝑨𝑩𝑪 𝑪 𝑨𝑩 𝑨𝑩 𝑨 𝑩𝑪 𝑩𝑪  

𝑭 𝑨, 𝑩, 𝑪 𝑨𝑩𝑪 𝑪 𝑨 𝒙𝒐𝒓 𝑩 𝑨 𝑩 𝒙𝒐𝒓 𝑪  

Figure 10.13: The factoring of the equation to extract an XOR function. 

 

 

 

Example 10.3: A RCA with Extra Functionality 

Design a circuit that adds two 4-bit digital values. If the addition operation generates a carry-out, the 4-
bit sum output is all zeros; otherwise, the 4-bit output shows the sum of the two 4-bit input values. Also, 
state what controls the circuit. 

Solution: The first step in this solution is to draw a BBD; Figure 10.15 shows the BBD for this problem.  
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Figure 10.14: Black box diagram for this problem. 

The next step is to discern if this circuit requires control and what that control needs to be. The problem 
implicitly states that this circuit requires control because the circuit output can be one of two values: all zeros 
or the summation of the circuit inputs. What is going to make this decision? Once again, the answer is in the 
problem statement. If the result of the addition generates a carry-out, we design the circuit to output to be all 
zeros; otherwise, the circuit outputs the summation. This means that an internal signal provides the control for 
this problem; that signal must be the carry-out signal. We use an RCA in this problem, as the RCA adds two 
numbers and provides a carry-out.  

We know this circuit includes an RCA. However, to obtain the proper output of the circuit, there must be some 
other circuitry involved. We don’t know what exactly that entails right now, but we know enough to draw a 
BBD at a lower level that the top-level BBD. Figure 10.15 shows the result of our thought process thus far. 
Figure 10.15 shows that we plopped down a BBD and labeled it CKT; we did this as a placeholder, as we still 
don’t know what’s in the CKT box.  

 

Figure 10.15: A lower-level black box diagram for this problem. 

Now we need to think about the requirements of the black box labeled “CKT”. What this module must to do is 
pass the SUM output along if there is no carry or make all the SUM bits a logical ‘0’ if there is a carry. What 
this operation describes is to pass the SUM signals along if the carry-out is ‘0’; otherwise clear all of the sum 
bits. This operation describes the classic switch action, under control of the carry-out. There is a gate that 
implements such an operation: the AND gate.  

Figure 10.16 shows the final solution for this problem using AND gates. We needed to first invert the carry-out 
signal in order for it to have the correct effect on the associated AND gates. The method we use to connect the 
AND gates ensures that their output is ‘0’ when the carry-out signal is a ‘1’ is to invert the carry-out before 
inputting it to the AND gates. We indicate the expansion of the SUM bundle by using parenthetical notation on 
the signal contained in the bundle. 
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Figure 10.16: Schematic diagram for the box labeled CKT. 

This problem is significant for one important reason: it’s the first problem that we’ve worked with that has 
some type of a “control” feature. The problem uses the Cout from the RCA as a control input to the CKT block 
so that the state of the Cout output from the RCA controls what the final output of the circuit. We refer to this 
control as “internal control”, which is one of four approaches to controlling a digital circuit.  
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10.5 Chapter Summary 

 

 NAND and NOR are formed from complimenting the outputs of the AND & OR gates, respectively. 
NAND and NOR gates are generally used more often that AND & OR gates in digital design.  

 Exclusive OR (XOR) and exclusive NOR (XNOR) are two additional standard gates used in digital logic. 
These functions are somewhat useful for some basic digital circuits such as the Full Adder (FA).  

 NAND and NOR gates are considered to be functionally complete which means that a NAND gate can be 
used to generate an AND function, an OR function, or an inversion function. AND & OR gates, however, 
are not functionally complete.  

 We can connect basic logic gates to work as inverters, switches, and buffers. These connections represent 
an extended functionality of basic gates and are quite useful in digital design.  
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10.6 Chapter Exercises 

 

1) Briefly describe why XOR and XNOR gates can only have two inputs.  

2) Briefly describe why AND & OR gates are not considered functionally complete 

3) Briefly describe whether you feel XOR gates are considered functionally complete? 

4) Explicitly describe how to make a NOR gate into an inverter. Explicitly show the inverter functionality in 
the NOR gate truth table.  

5) Explicitly describe how to make a NAND gate into an inverter. Explicitly show the inverter functionality 
in the NAND gate truth table.  

6) Draw a diagram of a 4-input NAND gate that has been configured as an inverter. Don’t combine inputs for 
this problem. 

7) Draw a diagram of a 4-input NOR gate that has been configured as an inverter. Don’t combine inputs for 
this problem. 

8) What extended functionality can be obtained from a XNOR gate by connecting one input to either ‘1’ or 
‘0’? Briefly explain. 

9) What extended functionality can be obtained from a XOR gate by connecting one input to either ‘1’ or 
‘0’? Briefly explain. 

10) Write a reduced Boolean equation in SOP form for each of the following functions. Make sure you pull 
out the XOR functions where humanly possible.   

a) 𝐹 𝐴, 𝐵, 𝐶  �̅�𝐵�̅�  �̅�𝐵𝐶  𝐴𝐵�̅� 𝐴𝐵𝐶  �̅�𝐵�̅� 

b) 𝐹 𝐴, 𝐵, 𝐶  𝐴𝐵𝐶  �̅�𝐵𝐶 𝐴𝐵𝐶 

c) 𝐹 𝐴, 𝐵, 𝐶  �̅�𝐵�̅�  �̅�𝐵𝐶  𝐴𝐵�̅�  𝐴𝐵𝐶 

 

11) Why are there 3-input AND gates but no 3-input XOR gates? Briefly describe why. 
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10.7 Design Problems 

 

For the following problems:  

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution 

 Minimize the use of hardware in your solution 

 State the types of control your circuit uses (“no control”, “internal control”, and/or “external control”). 

 

1) Design a circuit that controls the locking mechanism of a room that contains three doors: door A, door B, 
and door C. Each door allows only one person into the room when the controller you’re designing unlocks 
the lock on that door. For this circuit, the door remains locked under the following conditions:  

 When one person wants into each door 

 When no people want in any door 

 When one person wants in Door B but no one wants in any other door 

 When two people want in but no one wants in at Door B.  

For this problem, provide an equation and a final circuit diagram for your solution. Be sure to extract any 
exclusive OR-type functions that may be present in your equations.  

2) Design a circuit that controls the watering controller for your three precious plants. Assume each of your 
girls contain a sensor that indicates to the controller when each individual plant requires water. You’ve 
consulted the horticulturist and they told you that the water should only turn on when two and only two 
plants require watering; the water should be off at all other time. For this problem, provide an equation and 
a final circuit diagram for your solution. Be sure to extract any exclusive OR-type functions that may be 
present in your equations. 
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11 Circuit Forms 

 

11.1 Introduction 

There are many functionally equivalent ways to represent Boolean expressions.. The underlying notion of 
being able to represent a function in various forms is that one form may have an advantage over other forms. If 
you can find a functionally equivalent form that you can implement faster, requires less power, is cheaper, 
etc.1, then you’re most likely going to use that form.  

Main Chapter Topics 

CIRCUIT FORMS: Previous chapters presented various functionally equivalent 
representations of circuit. This chapter presents the theory behind generating several 
new forms and outlines when such forms are most useful. The new circuit forms 
presented in this chapter are some of the most widely used representations of 
circuits.  

MINIMUM COST CONCEPTS: Being that there are many different ways to represent 
functions, the question arises when you should use one representation over another. 
This chapter outlines minimum concepts as they apply to function representations.  

 

Chapter Acquired Skills 

 Be able to generate the eight standard circuit forms from a given Boolean equation  

 Be able to find a minimum cost circuit from the set of eight standard circuit forms  

 

11.2 Circuit Forms 

The term “circuit forms” is a common term in digital logic design. This term generally refers to the fact that 
you can implement any given digital logic function using physically different but functionally equivalent 
circuits. In digital systems, the term functionally equivalent refers to the fact that the input/output relationship 
of the circuit is preserved but the implementation details are different.  

There are many reasons why you would want to use one circuit form over another; we usually base the more 
desired form on the notion of “efficiency” of the implemented circuit. The definition of efficiency is a digital 
circuit is not absolutely definable; we typically base the definition of efficiency on circuit characteristics such 
as fewer gates, fewer inputs, fewer IC etc. than another. This section discusses forms that we can generate with 
successive applications of DeMorgan’s theorem. This approach is somewhat standard and generates the most 
commonly seen circuit forms. In reality, there are only about four common circuit forms.  

11.2.1 The Standard Circuit Forms 

We use the term “standard circuit forms” to refer to eight circuit forms that we can easily derive using 
DeMorgan’s theorem. If you examine other digital design textbooks, you’ll find that they list bunches of 

                                                           

1 And also many other reasons not listed here; hopefully you’re getting the idea.  
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strange circuit forms; we opt to stick to the “standard” eight types, which you generate from successive 
applications of DeMorgan’s theorem.  

Equations 1(a) and 2(a) of Table 11.1 show the compact minterm and compact maxterm forms of an arbitrary 
function, respectively. A reduced version of these equations appears in 1(b) and 2(b). The resulting equations 
serve as the starting point to generate other forms. The following steps describe how to generate the set of eight 
standard forms from the two compact forms. Table 11.2 provides a written description of this procedure.  

1(a)  2(a)  

    

 AND/OR Form  OR/AND Form 

1(b)  2(b)  

  2(c)  

  2(d)  

  2(e)  

    

 NAND/NAND Form  NOR/NOR Form 

1(c)  2(f)  

1(d)  2(g) 

 

 

    

 OR/NAND Form  AND/NOR Form 

1(e)  2(h)  

    

 NOR/OR Form  NAND/AND Form 

1(f) 2(i)  

Table 11.1: The generation of standard circuit forms by using DeMorgan's theorem. 

 

  15,14,13,11,10,9,5,4,1F   12,8,7,6,3,2,0F

CBADCCAF  F AC AC D A B D  

 F AC AC D A B D  

     F AC AC D A B D  

     F A C A C D A B D       

CBADCCAF       F A C A C D A B D       

     CBADCCAF       F A C A C D A B D       

     CBADCCAF       F AC AC D A B D  

     CBADCCAF       F AC AC D A B D  



Free Range Digital Design Foundation Modeling Chapter 11 

 

 - 159 -  

 

AND/OR Form OR/AND Form 

The form in 1(b) is the AND/OR form, which we 
refer to as the Sum of Products (SOP) form. We 
obtain this form by writing a product term for 
every ‘1’ in the truth table modeling the given 
circuit. The final function represents a logical 
summing of the associated product terms. 

We obtain the form in 2(b) writing a product 
term for every ‘0’ in the truth table, which gives 
us an expression for the complement of the 
function (!F). The expression is in AND/OR 
form, but we massage it into a different form by 
writing an expression for F rather than !F in 2(b) 
by complementing both sides of the expressions, 
in equation in 2(c). Dropping the double 
complement on the left side of equality generates 
the equation in 2(d). An application of 
DeMorgan’s theorem generates the expression 
on the right side of the equality. The equation in 
2(e) shows the final OR/AND form which is the 
Product of Sums (POS) form. 

NAND/NAND Form NOR/NOR Form 

We obtain the NAND/NAND form in 1(c) from 
the AND/OR form by double-complementing 
both sides of the equation in 1(b). The double 
complement on the left side of the equation 1(c) 
drops out. One of the overbars on the right side 
of equation 1(c) DeMorganizes the expression. 
The equation in 1(d) shows the NAND/NAND 
form of the expression, which refers to each of 
the individual product terms have overbars (a 
NAND function). These individual terms are 
ANDed together and complemented which 
effectively changes it from an AND function to 
an NAND function. 

We obtain the form in 2(f) from the OR/AND 
form by double complementing both sides of the 
equation in 2(e). The double complement on the 
left side of the equation 2(f) drops out. On the 
right side of equation 2(f), we use one of the 
complements to DeMorganize the expression. 
The equation in 2(g) shows the NOR/NOR form 
of the expression. We refer to this as NOR/NOR 
form because each of the individual sum terms 
have overbars (a NOR function). These NOR 
functions are ORed together and complemented 
which changes it to a NOR function. 

OR/NAND Form AND/NOR Form 

We obtain the OR/NAND form in 1(e) by 
DeMorganizing the individual terms in 1(d) to 
change them from product terms to sum terms. 
The expression retains the overbar over the 
entire term. 

We obtain the AND/NOR form in 2(h) by 
DeMorganizing the individual terms in 2(g) to 
change them from sum terms to product terms. 
The expression retains the overbar over the 
entire term. 

NOR/OR Form NAND/AND Form 

We obtain the NOR/OR form in 1(f) by 
DeMorganizing the entire OR/NAND form of 
1(e), which distributes the overbar on the right 
side of the equals sign to the individual terms in 
the equation.  

We obtain the NAND/AND form in 2(i) by 
DeMorganizing the AND/NOR form in 2(h), 
which distributes the overbar on the right side of 
the equals sign to the individual terms in the 
equation. 

Table 11.2: Written description of the circuit forms and derivations in Table 11.1. 
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11.3 Minimum Cost Concepts 

The best approach to implement circuits is implementing them at a minimum cost. This is an open-ended 
concept because minimum cost approach requires a proper definition of the word “minimum”. There are about 
a bajillion definitions of the word “minimum” in terms of implementing a circuit. For digital design courses, 
this definition usually refers to the number of devices (gates and inverters) in the implemented circuit. 
“Minimum” can also mean the number of integrated circuits (ICs) you use in your circuit2, or the number of 
transistors you use in the ICs in the circuit, etc. The fact you’re your company may already have a bajillion ICs 
on hand that you can use further obscures the definition of minimum cost, as it would be cheaper to use them 
for your circuit. It’s all strange and somewhat obscure stuff. The final word on minimum cost is this: if 
someone tells you to apply minimum cost concepts to your design, make sure they provide you with a 
definition of “minimum”.  

Up to this point, you’ve learned to implemented functions with many different forms. When the concept of 
minimum cost arises, you generally examine both POS and SOP forms. But wait, it gets worse. Now that you 
know a bunch of other forms (such as NAND/NAND and NOR/NOR), you generally need to check all those 
forms also3. Unless given other specific directions, the form that uses the least amount of gates is generally the 
minimum cost solution.  

 

Example 11.1: Minimum Cost Issues 

Which of the eight standard forms would result in a minimum cost implementation in term of 
a) device count (gates and inverters), and, b) gate count for the following function. Assume 
you can use gates with any number of inputs.  

 

Solution: Lucky for us, this function is the same function that we used to describe the original eight forms. 
That means we previously did most of the work of the grunt work associated with this problem. Going back 
and examining Table 11.1, you’ll be able to generate the information in Table 11.3; it has all the info we need 
if we know where to look.  

From Table 11.3, the two best forms for the a) part of this example are OR/AND and NOR/NOR forms 
because they require six devices while other forms require more. For part b), all of the forms require the same 
number of gates; no particular form has any obvious advantage.  

Form a) Number of Gates & Inverters b) Number of Gates only 

AND/OR (SOP)  7 4 
OR/AND (POS) 6 4 
NAND/NAND (SOP) 7 4 
NOR/NOR (POS) 6 4 
OR/NAND 7 4 
AND/NOR 8 4 
NOR/OR 8 4 
NAND/AND 8 4 

Table 11.3: The whole enchilada for Example 11.1. 

 

                                                           

2 There are many ICs out there containing different flavors of standard gates such as AND, OR, NAND gates, etc.  
3 Though this seems somewhat excessive, it’s not as strange as it seems. When you’re building one circuit, saving a gate 
here and there is not going to make a lot of difference. However, if your circuit is going to go into production, and they’re 
planning to build a million units of your circuit, the savings of one cent in a million circuits equates to as much money as 
the typical college president makes in a day.  

  15,14,13,11,10,9,5,4,1F
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11.4 Chapter Summary 

 

 Circuit forms are used to implement logic functions using functionally equivalent expressions. Although 
there are an effectively infinite number of ways to represent a function, there are only a few standard 
ways. These standard ways are referred to as circuit forms and can be derived from repeated applications 
of DeMorgan’s theorem. The most popular forms are SOP-type forms (AND/OR, NAND/NAND) and 
POS-type forms (OR/AND, NOR/NOR).  

 Minimum cost concept pertains to the many functionally equivalent forms of circuits. When many circuit 
forms are possible, the circuit with the minimum cost is often the one that is implemented. Many factors 
can determine the minimum cost of a given function. If you are required to implement a minimum cost 
solution for a given function, the term “minimum cost” must first be explicitly defined.  

 



Free Range Digital Design Foundation Modeling Chapter 11 

 

 - 162 -  

 

11.5 Chapter Exercises 

 

1) Write the eight standard forms associated for the following function:  

a)  𝐹 𝐴, 𝐵, 𝐶  ∑ 0,1,4,6  

b) Draw the circuit for the NAND/NAND & NOR/NOR forms using inverters where necessary.  

 

2) Show all four AND/OR related forms of the following equation:  𝐹 𝐴, 𝐵, 𝐶, 𝐷 𝐴𝐵𝐶 𝐵𝐷 �̅�𝐵𝐷 

3) Show all four OR/AND related forms for the following equation:  

𝐹 𝐴, 𝐵, 𝐶, 𝐷 𝐵 𝐶 𝐷 �̅� �̅� 𝐴 𝐵 𝐷  

 

4) Show all four AND/OR related forms for the following equation:  

𝐹 𝐴, 𝐵, 𝐶, 𝐷 𝐴 𝐵 �̅� �̅� 𝐵 𝐶 𝐷  

 

 

5) Show all four AND/OR related forms for the following equation:  

𝐹 𝐴, 𝐵, 𝐶, 𝐷 𝐵𝐷  𝐴𝐷  𝐵𝐶𝐷  

 

6) Draw a circuit for the following equations using only NAND gates and inverters. 

a) 𝐹 𝑋, 𝑌, 𝑍 𝑋𝑌 𝑋𝑌𝑍 𝑌𝑍 

b) 𝐹 𝐴, 𝐵, 𝐶 𝐵�̅� 𝐴𝐵𝐶 �̅�𝐶 

c) 𝐹 𝐴, 𝐵, 𝐶 𝐴𝐵�̅� 𝐴𝐵𝐶 �̅�𝐵𝐶 

 

7) Draw a circuit for the following equations using only NOR gates and inverters:  

a) 𝐹 𝐴, 𝐵, 𝐶 𝐴 𝐵 �̅� 𝐶 𝐴 𝐵 �̅�  

b) 𝐹 𝑋, 𝑌, 𝑍 𝑋 𝑌 �̅� 𝑋 �̅� 𝑌 �̅�  

c) 𝐹 𝐴, 𝐵, 𝐶 �̅� 𝐴 𝐵 𝐴 𝐵 �̅�  

 

8) Show the four standard AND/OR-type Boolean equation forms for the following circuits.  

 
 

(a) (b) 
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9) Show the four standard OR/AND Boolean equation forms for the following circuits.  

 

 

(a) (b) 
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11.6 Design Problems 

 

For the following problems:  

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution 

 Minimize the use of hardware in your solution 

 State the types of control your circuit uses (“no control”, “internal control”, and/or “external control”). 

 

1) Design a circuit that indicates special conditions on a 4-bit input. Consider the 4-bit input to be a binary 
number. This circuit has two outputs. One output indicates when the input is an even multiple of four and 
greater than zero. The other output indicates when the input is greater than 2 and less than 11. Design this 
circuit any way you deem appropriate.  

a) Use nothing other than NOR gates and inverters in your final circuit 

b) Use nothing other than NAND gates and inverters in your final circuit.  
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12 Signed Binary Representations 

 

12.1 Introduction 

The binary numbers we’ve worked with up until now have all been unsigned representations. This chapter 
presents three methods for representing signed binary numbers, which then allows us to start designing 
complex circuits that implement meaningful mathematical operations.  

Main Chapter Topics 

BINARY NUMBER REPRESENTATIONS: This chapter presents common representations 
of signed binary number including sign magnitude, radix complement, and diminished 
radix complement.  

 

Why This Chapter is Important 

 Be able to change the sign of numbers in SM, DRC, and RC format.  

 Be able to convert form numbers in one representation to numbers in other 
representations.  

 Be able to describe the number ranges for a given number of bits for signed and 
unsigned binary numbers in SM, DRC, and RC formats 

 

12.2 Signed Binary Number Representations 

Computers can only represent numbers with ones and zeros, which means we must also represent negative 
numbers using ones and zeros as well. There is no problem when you’re simply writing numbers on a piece of 
paper because all you do is drop a “-“ in front of the number and everyone agrees the number is negative. 
Computers don’t have an easy and efficient way to use a “-“ sign to represent negative number. This section 
describes how to represent signed numbers using only the binary values.  

There are a few standard ways to represent signed binary numbers. In particular, there are three representations 
of interest: sign magnitude (SM), diminished radix complement (DRC), and radix complement (RC). The most 
widely used is RC notation, but we’ll be working with all three and classify the work we do with the less used 
notations as a wicked academic exercise.  

The easiest and most efficient approach to represent sign numbers is to use a single bit, such as a ‘1’, to 
indicate that a particular number is negative. The key to this method is to agree upon a standard location for 
this bit, which is the left-most bit position of the number. The left-most-bit in every signed number 
representation in this text is the sign bit. If the sign bit is a ‘1’, then we interpret the number as negative; if the 
sign bit is a ‘0’, the number is positive. Figure 12.1 provides a visual representation of the bit positions of the 
sign and magnitude bits.  

 

Figure 12.1: Some generic nine-bit number that we interpret as being a signed value. 
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12.2.1 Sign Magnitude Notation (SM):  

In SM notation, the sign bit indicates the sign of the number, while the other bits represent the magnitude of 
the number. Table 12.1 lists everything you need to know about tweaking SM numbers. 

Operation Procedure 

Multiply number by -1 toggle (change state) the sign bit 

Convert positive SM to 
decimal equivalent 

apply binary-to-decimal conversion on magnitude bits 

Convert negative SM to 
decimal equivalent 

1) note that the number is negative 
2) do binary to decimal conversion on magnitude bits 
3) add in minus sign (from step 1) 

Table 12.1: Standard operations on binary numbers represented in SM. 

 

 

Example 12.1: Changing the Sign of Numbers in SM Form 

Change the sign of the following binary numbers represented in SM: 

a) 011000012  

b) 1100112  

Solution: Changing the sign involves toggling the sign bit and doing nothing to the magnitude bits. You don’t 
need to know the decimal equivalents of these binary numbers in order to complete this problem.  

a) 111000012 

b) 0100112 

 

 

 

Example 12.2: Converting Numbers in SM Form to Decimal 

Convert the following binary numbers represented in SM to their decimal equivalents:  

a)  011000012 

b)  1100112 

Solution: a) This number is an 8-bit positive number. The number converts directly to decimal since the sign 
bit is zero and thus adds nothing to the final decimal number. The answer is 97.  

b) This number is a negative 6-bit binary number. We convert the number to decimal by first noting that the 
number is negative and then performing a binary-to-decimal conversion on the magnitude bits. The magnitude 
bits are 100112, which represent 19 in decimal. Adding the negative sign complete the solution: -19. 
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12.2.2 Diminished Radix Complement (DRC) 

We can best explain the DRC representation by the operations required to change the sign of the number, 
which only requires that we toggle all the bits in the binary number (which we refer to as a 1’s complement). In 
DRC notation, the sign bit indicates the sign of the number and the other bits represent the magnitude of the 
number (but positive and negative numbers represent their magnitudes differently). Table 12.2 lists everything 
you need to know about tweaking DRC numbers. 

Operation Procedure 

Multiply number by -1 toggle all the bits (1’s complement) 

Convert positive DRC to 
decimal equivalent 

do binary to decimal conversion on magnitude bits  

Convert negative DRC to 
decimal equivalent 

1) note that the number is negative 
2) toggle all the bits (1’s complement) 
3) do binary to decimal conversion on magnitude bits 
4) add in minus sign (from step 1) 

Table 12.2: Standard operations on binary numbers represented in DRC. 

 

Example 12.3: Changing the Sign of Numbers in DRC Format 

Change the sign of the following binary numbers represented in DRC:  

a)  011100012  

b)  10011012 

Solution: Changing the sign involves toggling all the bits. This problem is doable without knowing the decimal 
equivalents of the binary numbers.  

a) 100011102 

b) 01100102 

 

 

 

Example 12.4: Converting Numbers in DRC Format to Decimal 

Convert the following binary numbers represented in DRC to their decimal equivalents: 

a)   011100012 

b)   1100112 

Solution: a) This number is an 8-bit positive number. We can convert to decimal directly using standard 
binary-to-decimal conversion techniques since the sign bit is zero and adds nothing to the final decimal 
number. The answer is 113. 

b) This number is a negative 6-bit binary number. Convert it to decimal by 1) noting that the number is 
negative, 2) toggling all the bits, 3) doing a decimal-to-binary conversion on the resulting number, and 4) 
adding the negative sign.  

1) Yep, its negative 
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2) 1100112  0011002 

3) 0011002 represents 12 in decimal  

4) Adding the negative sign completes the solution: -12 

 

12.2.3 Radix Complement (RC):  

We can best explain RC representations by the operations required to toggle the sign of the number. In RC 
notation, the sign bit indicates the sign of the number, but it has a unique way of also being part of the 
magnitude for negative numbers. We once again interpret the magnitude bits differently for positive and 
negative numbers. For positive numbers, we interpret the magnitude bits directly as a simple binary number. If 
the number is negative, we consider the magnitude bits to be in a two’s complement representation. Table 12.3 
lists everything you may want to know about tweaking RC numbers. 

Operation Procedure 

Multiply number by -1 take the two’s complement of the number 

Convert positive RC to 
decimal equivalent 

do binary to decimal conversion on magnitude bits  

Convert negative RC to 
decimal equivalent 

1) note that the number is negative 
2) take the two’s complement of the number 
3) do binary to decimal conversion on magnitude bits 
4) add in minus sign (from step 1) 

Table 12.3: Standard operations on binary numbers represented in RC. 

Finding the two’s complement of a number can be done by hand in two different ways. We define the two’s 
complement as “one greater than the 1’s complement”. This means that to find the 2’s complement of a binary 
number, you toggle all the bits (the 1’s complement) and then add 1 to the result. Though this works fine, it can 
sometimes lead to errors since you’ll possibly need to deal with a carry bit across the span of the number.  

The easiest way to find the 2’s complement of a number is to apply the following algorithm: starting from the 
right-most bit in the binary number, examine each bit from right to left. When you encounter a ‘1’, toggle 
every bit after the first ‘1’ bit that is found (but don’t toggle the first ‘1’ bit). Figure 12.2 shows just about 
every case you’ll ever hope to run across. In Figure 12.2, NC stands for “no change” while TOG stands for 
“toggle”.  
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(a) (b) 

  

  

(c) (d) 

Figure 12.2: Four examples showing the 2's complement conversion algorithm. 

 

Example 12.5: Changing the Sign of Numbers in RC Format 

Change the sign of the following binary numbers represented in RC: 

a) 001101012,  

b) 10011012.  

Solution: Changing the sign involves taking the two’s complement of the numbers. You don’t need to know 
the decimal equivalents of these numbers in order to complete this example.  

a) 110010112 

b) 01100112 

 

 

 

Example 12.6: Converting Numbers in RC Format to Decimal 

Convert the following binary numbers represented in RC to their decimal equivalents: 

a)   001101012 

b)   10011012 

Solution: a) This number is an 8-bit positive number. We can convert to decimal directly using standard binary 
to decimal conversion techniques since the sign bit is zero and adds nothing to the final decimal number. The 
answer is 53. 
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b) This number is a negative 7-bit binary number. Conversion to decimal is done by 1) noting that the number 
is negative, 2) taking the two’s complement, and 3) doing a decimal to binary conversion on the resulting 
number, and 4) tacking on a negative sign to the result.  

1) Yep, by golly, its negative 

2) 10011012  01100112 

3) 01100112 represents 51 in decimal 

4) Adding the negative sign completes the solution: -51 

 

12.3 Number Ranges in SM, DRC, and RC Notations 

Representing sign numbers in binary requires that we use an extra bit (the sign bit) to represent the sign. It 
seems that if we use one less bit to represent the magnitude of the number, we can only represent one-half as 
many numbers by the same amount of bits1. This is not the case. The reality is that, generally speaking, the 
ranges of numbers that are representable with an unsigned binary number shift downwards when representing 
signed numbers. The resulting range is still the same but it no longer starts at zero (as it does for an unsigned 
binary number); the range of a signed binary number is now roughly centered about zero. Figure 12.3 shows 
what the last few sentences are attempting to convey.  

Unsigned Binary Number Range Signed Binary Number Ranges 

 SM and DRC 

  

 RC 

 

 

Figure 12.3: Number ranges for signed and unsigned binary numbers (n=8). 

The key to understanding Figure 12.3 is that the letter n represents the number of bits in the binary number. 
The smaller numbers in parenthesis in Figure 12.3 shows the number ranges when n=8. Note in Figure 12.3 
that with SM and DRC representations, we can only represent 2n-1 out of the 2n possible values for a given 
value of n. However, with RC, we can represent all 2n possible values. This is a major reason why computers 
commonly use RC for signed binary number representations, as having two values representing zero is 
challenging for the hardware performing mathematical operations on those numbers.  

Twos complement math is an area in digital design that just about everyone is weak in. People generally get by 
because they rely on some other entity to mask their lack of understanding of the concepts. Don’t be one of 
these people.  

 

                                                           

1 If this does not make sense, think about it for a minute. If there is one bit dedicated to the sign bit, doesn’t that mean that 
there is one less bit to have a “weighting” in the number?  
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12.4 Extending Data Widths 

You’ll often times find that your design must change data width of a number without changing the value of the 
number. The most common of these changes is when you need to extend the width of the data without 
changing the numeric value of that data. You’ve probably done this many time using decimal numbers, where 
you add as many 0’s to the front of the number (the digits with the largest weights).  

12.4.1 Unsigned Binary  

Extending the bit-width with unsigned binary numbers is the most straightforward as it is similar to decimal 
numbers. It is straightforward because we don’t need to deal with the sign bit. For unsigned binary number we 
simply add as many zeros as we need to the number to attain the desired width. The numbers we add become 
the most significant digits of the number, meaning we add the zeros to the left side of the existing bits. We 
refer to this form of bit stuffing as “zero-extending”, or “zero-stuffing”, or simply “bit stuffing”. Table 12.4 
provides a few examples of extending the bit-width of unsigned number from four to eight bits.  

Decimal 
Unsigned Binary 

(4-bit) (8-bit) 

9 1001 00001001 

3 0011 00000011 

15 1111 00001111 

1 0001 00000001 

Table 12.4: Examples of extending bit-widths of unsigned binary numbers. 

12.4.2 Signed Binary (RC Form) 

Extending the bit-width of signed numbers is slightly more involved than the same action with unsigned 
number. We only consider signed numbers in radix complement format (RC) for this discussion.  

The main issue when dealing with signed numbers is working with the sign bit. It seems natural that zero-
extending the any value can’t possibly change that value, but it can when dealing with signed numbers. For 
example, if we zero-extend a negative number, the sign bit of the smaller bit-width is no longer the left-most 
bit; the new sign bit is ‘0’, which makes the number positive, which is clearly not what we want. The solution 
when working with signed number is to “sign-extend” the number. Sign extension means that all the extra bits 
we add to the number need to be the same value as the sign bit. In short, we bit-stuff the number with 1’s if the 
smaller width number is negative; otherwise we bit-stuff it with 0’s. Table 12.5 provides a few examples of 
extending the bit-width of signed binary numbers (RC format) from four to eight bits, which we refer to as sign 
extension.  
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Decimal 

Signed Binary (RC) 

4-bits 8-bits 

-7 1001 11111001 

3 0011 00000011 

-1 1111 11111111 

-8 1000 11111000 

1 0001 00000001 

Table 12.5: Examples of extending bit-widths of signed binary 
numbers (RC format). 
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12.5 Chapter Summary 

 

 Signed binary numbers typically use a sign-bit to indicate the sign (negative or positive) of a given 
number. Signed binary numbers commonly use one of three representations: sign magnitude (SM), 
Diminished Radix Complement (DRC), or Radix Complement (RC). 

 Each of the methods used to represent binary numbers have their own ranges of values that those methods 
can represent. Although the different number formats can represent roughly the same quantity of unique 
number, signed numbers are typically centered about zero, while unsigned numbers start at zero.  

 Extending the bit-widths of unsigned and signed binary numbers is different. Typically, unsigned numbers 
can be bit-stuffed with zeros without changing the value of the number (zero-extended). Signed numbers 
must take into account the sign bit. Specifically, signed number in RC format are signed extended when 
the number requires an increase in bit-width.  
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12.6 Chapter Exercises 

 

1) Complete the following table:  

# bits unsigned binary range signed binary range (RC) 

4   

6   

8   

10   

11   

12   

14   

15   

16   

 

2) Which of the following two signed binary (SB) numbers have a greater magnitude? Assume the numbers 
are given in radix complement (RC) form.  

a) 1110 1110    0000 0010 

b) 1000 1101   0111 0111 

c) 1110 1110  0001 0011  

 

3) Which of the following three SB numbers has the largest magnitude?  

a) 1110 0001(SM),  1001 1101 (DRC), 1001 1100 (RC) 

b) 1001 1110 (SM),  1000 1101(DRC),   1001 1111(RC) 

 

5) The three numbers below are listed in hex but they represent 8-bit signed binary numbers in the given 
formats. Which of the three numbers is the most negative?  

a) B4(SM), CC(DRC), D1(RC) 

b) F3(SM), EC(DRC), DD(RC) 

 

6) Write the decimal equivalents of the following numbers for SM, DRC, and RC formats 

a) BC16 

b) 4A16 

c) D216 

 

7) Extend the bit-widths of the following unsigned binary values from 8 to 12-bits. Write the answers as 
binary values.  

a) A716 

b) 4A16 
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c) C416 

 

8) Extend the bit-widths of the following unsigned binary values from 8 to 16-bits. Write the answers in 
hexadecimal format.  

a) AF16 

b) 4A16 

c) C416 

 

9) Extend the bit-widths of the following signed binary values (RC format) from 8 to 12-bits. Write the 
answers as binary values.  

a) A716 

b) 4A16 

c) C416 

d) 0216 

 

10) Extend the bit-widths of the following signed binary values (RC format) from 8 to 16-bits. Write the 
answers in hexadecimal format.  

a) 0xDE 

b) 0x3F 

c) 0xC4 

d) 0x99 
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12.7 Design Problems 

 

For the following problems:  

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution 

 Minimize the use of hardware in your solution 

 State the types of control your circuit uses (“no control”, “internal control”, and/or “external control”). 

 

1) Design a circuit the changes the sign of an 8-bit signed binary number in sign magnitude form.  

2) Design a circuit the changes the sign of an 8-bit signed binary number in diminished radix complement 
form. 

3) Design a circuit that changes the sign of an 8-bit signed binary number in radix complement form.  

4) Design a circuit that inputs an 8-bit signed binary number in RC format. If the input is positive, the circuit 
outputs the input number; otherwise, the circuit outputs all zeros.  

5) Design a circuit that inputs an 8-bit signed binary number in RC format. If the input is positive, the outputs 
a negative version of the input; otherwise the circuit outputs all zeros. 
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13 Binary Mathematics 

 

13.1 Introduction 

Now that you’ve seen various number systems and various manipulations of numbers in various radii, we can 
now start of doing basic math with binary numbers. This introduction provides the background you can use for 
designing circuits that performs math operations.  

Main Chapter Topics 

BINARY ARITHMETIC: This chapter presents the basics of binary arithmetic using 
signed and unsigned binary numbers. The emphasis is on fixed number lengths and 
detection of result validity after mathematical operations.  

 

Chapter Acquired Skills 

 Be able to perform addition and subtraction with signed binary numbers in RC 
format.  

 Be able to determine the validity of results when performing addition and subtraction 
on numbers in RC format.  

 

13.2 Binary Addition and Subtraction 

The topic of binary arithmetic and computers is a deep subject that many people spend their entire lives 
studying. If you design a computer that performs efficient mathematical operations, you’ll have a good 
computer. The problem is that there are a bunch of trade-offs along the way; you’ll run into some of these 
topics later in your digital/computer education but they’re beyond the scope of this discussion. We limit this 
discussion to the addition and subtraction of signed and unsigned binary numbers.  

Recall that digital circuits comprise of a fixed set of hardware. What this means is that we generally perform 
arithmetic operations with fixed sized circuits (fixed data widths). For example, a 12-bit RCA will have trouble 
adding two numbers of 14 bytes each.   

The ramification of a fixed hardware size is that your mathematical operations must stay within these limits in 
order for the result to be valid. If you stay within these limits, your result is valid; if you exceed these limits, 
you’re result is invalid. The crux of this discussion is that you need to know when you’ve exceeded these limits 
so you can know whether your answer is valid or not. There are two main ways to exceed these limits: 1) go 
over the stated number range for the size of the data you’re using, or 2) go under the stated range of data you’re 
using.  

13.2.1 Binary Subtraction 

One of the many recurring themes in digital design is that you always want to design your circuits to do what 
they need to while as little hardware as possible. Mathematical operations in computers do not come free: the 
underlying hardware performs the operations. Hardware, or digital circuitry, requires up space, consumes 
power, and makes your design more complex as you use more of it.  

Design factors such as power consumption and circuit real estate play out directly in this discussion in the 
context of binary subtraction. Although we could design a circuit that performs subtraction, the better approach 
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is using a circuit we already designed to perform subtraction. The approach we take is to use our RCA to apply 
indirect subtraction by addition. Equation 13.1: shows the basic formula for this approach.  

N1 - N2 = N1 + (-N2) 

Equation 13.1: Indirect subtraction by addition. 

Changing the sign of a number is straightforward when dealing with RC numbers: you take the two’s 
complement. In order to subtract one binary number from another you must first take the two’s complement of 
that number being subtracted and add it to the other number (as Equation 13.1 says). After this addition 
operation, you need to examine some signals in order to determine if the result is valid or not, as the result may 
exceed the given number determined by the hardware.  

Consider adding two numbers A and B with a result C: A + B = C. We refer to variable A as the augend, B as 
the addend, and C as the sum. Consider subtracting one number B from another number A with a result C. In 
case, we refer to A as the minuend, B as the subtrahend, and C as the difference. This knowledge could be 
valuable if you were to find yourself on Jeopardy but it does not get a lot of mileage outside of this discussion.  

13.2.2 Addition and Subtraction on Unsigned Binary Numbers 

The results of your mathematical operation can either underflow or overflow the given number range when 
working with unsigned binary numbers. Underflow would be the result of subtracting a binary number from a 
smaller binary number (the result would be negative which would violate the unsignedness of the number). 
Overflow would result when the addition of two numbers exceeds the top-end of the given range1. Table 13.1 
and Table 13.2 list everything you need to know about the overflow and underflow of binary numbers.  

Overflow in Unsigned Binary Addition 

Description The sum of two binary numbers exceeds the range associated with the data width 

Indicator The carry-out from the MSB addition is ‘1’. 

Example 13.1 
 

1001 + 0011 = ?  
 1001 
+ 0011 
0 1100 

 

The carry from the MSB is 0, which 
indicates there was no carry. The 
sum (the four-bit result) is a valid. 

Example 13.2 
 

1011 + 0111 = ?  
 1011 
+ 0111 
1 0010 

 

The carry out of the MSB is 1, which 
indicates there was a carry. 
Therefore, the sum (the four-bit 
result) is not valid. 

Table 13.1: The low-down on unsigned overflow. 

 

                                                           

1 An issue here is that we often use “overflow” to describe both underflow and overflow. The notion here is that you can 
exceed, or “overflow”, the given range in either direction.  
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Underflow in Unsigned Binary Subtraction 

Description 
The difference of between two binary numbers is below the range associated with 
the data width  

Indicator The carry-out from the MSB addition is ‘0’.  

Example 13.3 
 

 
1001 - 0011 = ?  

add the negation of 0011 
(two’s complement) 
 

 1001 
+  1101 
1 0110 

 

The carry from the MSB is ‘1’, 
which indicates there was a 
carry. There was no underflow 
and the difference (the four-bit 
result) is a valid.  

Example 13.4 
 

 
0111 - 1100 = ? 

add the negation of 1100 
(two’s complement) 
 

 0111 
+  0100 
0 1011 

 

The carry out of the MSB is ‘0’, 
which indicates there was no 
carry. An underflow has occurred 
and the difference (the four-bit 
result) is not valid.  

Table 13.2: The low-down on unsigned underflow. 

 

13.2.3 Addition and Subtraction on Signed Binary Numbers 

The results of your mathematical operations on signed binary numbers can either underflow and overflow the 
given number range. The approach to dealing with operations on signed binary number is more intuitive than 
dealing with unsigned binary numbers. The list below describes the two main concepts.  

 Overflow can never occur if you’re adding a positive number to a negative number; the result from 
the operation A - B is always valid if both A and B are positive numbers or both negative numbers. 
Therefore, if the two numbers have different sign bits before the addition2, the answer is always valid.  

 Overflow and underflow only occurs when you add to numbers that have equivalent sign bits but the 
result has a sign bit of a different value. Overflow and underflow can only happen in two scenarios:  

o Overflow: Adding a positive number to a positive number. However, due to the indirect 
subtraction by addition, this can include subtracting a negative number from a positive 
number.  

o Underflow: Subtracting a positive number from a negative number. Also due to indirect 
subtraction by addition, this can include adding a negative number to a negative number.  

                                                           

2 Keeping in mind that either we can add two numbers of different signs, or, we’ll have to change the sign of one of the 
numbers when doing subtraction (indirect subtraction by addition).  
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Overflow in Signed Binary Addition and Subtraction 

Description 
The result of an operation between two binary numbers is beyond the range 
associated with the bit width.  

Indicator 
Two numbers of the same sign are added and the result is a number of a different 
sign (this is the direct addition of two numbers or the addition associated with 
the indirect subtraction by addition method). We never consider the carry-out. 

 
Example 13.5 
 

 
0011 + 0010 = ?  

 
 0011 
+  0010 
0 0101 

 

The sign of addend and augend 
are positive and the sign of result 
is positive. The result is valid.  

 
Example 13.6 
 

 
0100 + 1110 = ? 

 
 0100 
+  1110 
1 0010 

 

The sign of addend and augend 
are different so there can be no 
overflow or underflow. The 
result is valid.   

 
Example 13.7 
 

 
0110 + 0101 = ? 

 
 0110 
+  0101 
0 1011 

 

The sign of the addend and 
augend are the same but are 
different from the sign of the 
result. The result is not valid. 

 
Example 13.8 
 

 
0100 - 1110 = ? 

add the negation of 1110 
 

 0100 
+  0010 
0 0110 

 

The sign of addend and augend 
are positive and the sign of result 
is positive. The result is valid.  

 
Example 13.9 
 

 
0100 - 0011 = ? 

add the negation of 0011 
 

 0100 
+  1101 
1 0001 

 

The sign of addend and augend 
are different so there can be no 
overflow or underflow. The 
result is valid. 

 
Example 13.10 
 

 
0100 - 1100 = ? 

add the negation of 1100 
 

 0100 
+  0100 
0 1000 

 

The sign of the addend and 
augend are the same but are 
different from the sign of the 
result. The result is not valid  

Table 13.3: The low-down on overflow in signed binary numbers. 
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Underflow in Signed Binary Addition and Subtraction 

Description 
The result of an operation between two binary numbers is below the range 
associated with the bit width.  

Indicator 
Two numbers of the same sign are added and the result is a number of a different 
sign (this is the direct addition of two numbers or the addition associated with 
the indirect subtraction by addition method). We never consider the carry-out.  

 
Example 13.11 
 

 
1111 + 0010 = ?  

 
 1111 
+  0010 
1 0001 

 

The sign of addend and augend 
are different so there can be no 
overflow or underflow. The 
result is valid.  

 
Example 13.12 
 

 
1110 + 1111 = ? 

 
 1110 
+  1111 
1 1101 

 

The sign of the addend and 
augend are the same and match 
the sign of the result. The result 
is valid.  

 
Example 13.13 
 

 
1100 + 1001 = ? 

 
 1100 
+  1001 
1 0101 

 

The sign of the addend and 
augend are the same but are 
different from the sign of the 
result. The result is not valid.  

 
Example 13.14 
 

 
1110 - 1111 = ? 

add negation of 1111 
 

 1110 
+  0001 
0 1111 

 

The sign of addend and augend 
are different so there can be no 
overflow or underflow. The 
result is valid. 

 
Example 13.15 
 

 
1100 - 0011 = ? 

add negation of 0011 
 

 1100 
+  1101 
1 1001 

 

The sign of the addend and 
augend are the same and match 
the sign of the result. The result 
is valid.  

 
Example 13.16 
 

 
1001 - 0110 = ? 

add negation of 1101 
 

 1001 
+  1010 
1 0011 

 

The sign of the addend and 
augend are the same but are 
different from the sign of the 
result. The result is not valid.  

Table 13.4: The low-down on underflow in signed binary numbers. 

13.3 Special Cases of Validity for RC Numbers 

The validity check presented in the previous section unfortunately fails in one case, which is a known issue 
when working with addition and subtraction using numbers in RC format. The RCA we use in this text has two 
inputs: A & B. The RCA only adds number so it always adds the values of A & B. When we work with 
numbers in RC format, one or both of these two inputs can be negative.  

The case that causes trouble is with when the B input is a negative number of the largest magnitude associated 
with the bit-width of B, and B is being subtracted from A. In this case, the validity check this chapter presented 
does not provide the correct answer. There are ways to modify the validity check to work in all cases, but we 
choose not to in this text in order to keep the conversation relatively simple. So as a result, this text never 
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considers this case when checking validity of operations on RC numbers. In the end, creating the circuitry that 
makes the validity correct in all cases becomes a nice little design problem.   
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13.4 Chapter Summary  

 

 We generally do all of our mathematical operations using radix complement (RC) notations of numbers. 
While you can do math operations with other number representations, RC format has some definite 
advantages.  

 Binary addition and subtraction has special meaning in the context of signed binary number 
representations. One of the key concerns when performing binary arithmetic operations is whether the 
result is valid or not. The validity of the result is based on the range of values that a given set of bits can 
represent.  

 We often perform binary subtraction by using addition. We refer to this technique as the indirect 
subtraction by addition method. The accepted advantage of this approach is that the hardware used for 
addition can also be used for subtraction (after adding hardware that implements changing the sign of the 
hardware). 
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13.5 Chapter Exercises 

 

1) Briefly explain why adding two numbers of a different sign will always result in a valid number in terms 
of fixed hardware widths. 

2) Briefly explain why “underflow” is sometimes classified as “overflow”. 

3) Briefly explain the difference between the concept of overflow/underflow and the concept of carry-out. 

4) Briefly explain what is meant by the notion of “fixed hardware widths”.  

5) Complete the following mathematical operations on the unsigned binary numbers. Indicate which results 
are valid based on the given number range.  

a) 001100 + 000011 

b) 001110 + 000111 

c) 100101 + 101010 

d) 001000 + 111100 

e) 000100 + 101111 

6) Complete the following mathematical operations on the unsigned binary numbers. Indicate which results 
are valid based on the given number range.  

a) 001100 + 000011 

b) 001110 + 000111 

c) 100101 + 101010 

d) 001000 + 111100 

e) 000100 + 101111 

 

7) Complete the following mathematical operations on the unsigned binary numbers. Indicate which results 
are valid based on the given number range. 

a) 001100 - 000111 

b) 100101 - 001000 

c) 111010 - 111100 

d) 010001 - 011011 

e) 010010 – 000110 

 

8) Complete the following mathematical operations on the unsigned binary numbers. Indicate which results 
are valid based on the given number range. 

a) 01001010 + 00010000 

b) 11110000 + 00010001 

c) 11100100 + 00100101 

d) 01000000 + 01110000 

e) 01001000 + 01111111 
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9) Complete the following mathematical operations on the unsigned binary numbers. Indicate which results 
are valid based on the given number range. 

a) 01000001 - 00111100 

b) 11000000 - 01001110 

c) 00100101 - 10001110 

d) 10000001 - 11000010 

e) 11010011 – 11111100 

 

10) Complete the following mathematical operations on the signed binary numbers (RC representation). 
Indicate which results are valid based on the given number range. 

a) 00011 + 00111 

b) 01110 + 00011 

c) 01001 + 00100 

d) 01010 + 00111 

e) 01011 + 01001 

f) 00011 - 00111 

g) 01110 - 00011 

h) 01001 - 00100 

i) 00110 - 10100 

j) 00111 - 11100 

k) 01010 - 11000 

l) 01010 - 11110 

m) 01110 – 11001 

10) Complete the following mathematical operations on the signed binary numbers (RC representation). 
Indicate which results are valid based on the given number range. 

a) 10111 + 01000  

b) 11001 + 01111 

c) 11101 + 00100 

d) 11010 - 01010 

e) 11101 - 00100 

f) 11010 - 01110 

g) 10100 - 01110 

h) 11111 - 01001 

i) 10111 - 10111 

j) 11101 - 11010 

k) 11000 – 11110 

11) Describe two different algorithms for finding the 2’s complement of a signed binary number.  
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12) Consider the case where a Ripple Carry Adder is used to perform addition or subtraction on two n-bit 
signed binary numbers in radix complement form. Does the value of the carry-out affect the validity of the 
n-bit sum output of the RCA? Explain fully but briefly.  
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13.6 Design Problems 

 

For the following problems:  

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution 

 Minimize the use of hardware in your solution 

 State the types of control your circuit uses (“no control”, “internal control”, and/or “external control”). 

 

1) Design a circuit that always does the following operation: A – B. Consider both inputs and the output to be 
10-bit binary numbers in RC format. For this problem, assume the result will always be valid.  

2) Repeat the previous problem but include an output named: VALID. The VALID output is a ‘1’ when the 
10-bit result of the subtraction operation is correct (valid); if the result is not correct, the VALID output 
should be a ‘0’. Keep in mind that depending on the values of the two inputs, the result could exceed the 
range of the 10-bit output, in which case the value on the output is not correct. In other words, there is 
always a number on the output; we’re designing an extra output (the VALID signal) to indicate when the 
number on the result is correct or not.  
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14 Mixed Logic 

 

14.1 Introduction 

Good digital designers understand mixed logic. While you can go a long way by pretending you understand 
mixed logic, you’ll be bummed out when you realize that you don’t really understand it. It’s highly unlikely 
that any digital system you work with only uses one type of logic, so you need to be able to design and/or 
interface digital circuits in a mixed logic environment.  

The thing that stands out most about mixed logic is a comment my digital design instructor made: “nobody 
really understands mixed logic”1. What I’ve come to realize is that the reason that “nobody understands” this 
stuff is two-fold. First, I’ve never seen a textbook that explains the topic in a manner that I could understand. 
Secondly, it’s a topic that that you can avoid understanding by learning a few tricks to deal with the topic when 
you need to. It’s better to truly understand the topic.  

Main Chapter Topics 

MIXED LOGIC: This chapter provides an in-depth summary of mixed logic digital 
design. This introduction includes a description of the underlying theory, which we later 
apply in both circuit design and circuit analysis problems.  

 

Why This Chapter is Important 

 Be able to describe the importance of being able to work in mixed logic systems. 

 Be able to generate all alternative forms of AND, OR, NAND, and NOR gates 

 Be able to analyze mixed logic circuits and generate Boolean equations describing 
those circuit  

 Be able to design mixed logic circuits from given Boolean equations 

 

14.2 Mixed Logic Overview 

The underlying theme of all digital logic is the basic interpretation of signals. A signal in a digital circuit is 
either at a high or low voltage level2. We’ve been modeling these high and low voltage levels thus far with a 
‘1’ or a ‘0’. A given signal is generally the output of one device in the circuit as well as the input to another 
device in the circuit.  

Digital circuits are extraordinarily dumb: the gates in digital circuits have outputs that react to the inputs. 
Here’s the whole story in a few sentences: the way we’ve been modeling our circuits so far is that a ‘1’ 
represents the action state or active state of things while ‘0’ represents the non-action state or inactive state. In 
other words, when the circuit’s inputs represent a combination that we were interested in, we assign a ‘1’ to the 
output; the ‘1’ or the high state generally means something affirmative or positive occurred in the circuit. We 
refer to this as positive logic.  

                                                           

1 Spoken by Dr. Marty Kaliski sometime in the late 1980’s. 
2 We stay general here by not mentioning the exact voltage levels; we don't need to say anything other than high and low 
voltage. The notion here is that some external entity has pre-decided what the voltage levels are.  
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The notion of mixed logic is that fact that sometimes ‘1’ does not represent the active state; sometimes the ‘0’ 
state is the active state and ‘1’ represents the inactive state. While you have a choice of designing your circuits 
with negative and/or positive logic, sometimes your design needs to interface with another circuit that is 
interpreting the 1’s in 0’s differently than your circuit. Thus, you’re facing not just coming up with a digital 
design, you’re facing coming up with a mixed logic design.  

The following bullets represent most of the terminology associated with mixed logic. The definitions below are 
somewhat brief, but they start making sense when we use them in the various explanations in this chapter.   

 Positive Logic: positive logic is when the ‘1’ state of a signal represents the active state.  

 Negative Logic: negative logic is when the ‘0’ state of signal represents the active state.  

 Mixed Logic: a term referring to the use of both negative and positive logic in a digital circuit 
or system. 

 Assertation Levels: assertation levels are an indirect reference to the form of logic used in a 
circuit. These definitions lead to a common digital vernacular in referring to a signal as being 
“asserted” or “not asserted” (defined below). 

 Asserted High: A way to refer to a positive logic signal 

 Asserted Low: A way to referring to a negative logic signal 

 Logic Levels: same thing as assertation levels 

 Asserted Signal: a signal that is currently in its active state (independent of the logic levels). A 
positive logic signal is asserted when it’s in a high state; a negative logic signal is asserted when 
it is in a low state.  

 Not-Asserted Signal: a signal that is currently in its non-active state (independent of logic 
levels). A positive logic signal is not-asserted when it’s low; a negative logic signal not asserted 
when it’s high.  

You first need to convince yourself that the circuits you’ve been working with thus far have all been positive 
logic circuits. Figure 14.1(a) shows a circuit that you’re used to working with. What you may not realize is that 
by the way the circuit appears in Figure 14.1(a), the inputs and the output of the circuit are all positive logic. A 
‘1’ appearing on the circuit inputs and/or the circuit output indicates an active state. When a ‘1’ appears on the 
output of the circuit, the circuit is indicating some positive condition (‘0’ indicates a negative condition).  

How exactly do we represent negative and positive logic in a circuit? There are two ways: the Positive Logic 
Convention (PLC) and Direct Polarity Indicators (DPI). For this discussion, we only use DPI since it is easier 
to work with while learning mixed logic. Once you understand the DPI convention, using either DPI or PLC 
(or both) won’t be a problem. 

Up until now, you’ve only dealt with PLC. The PLC uses overbars on signals to indicate that they are negative 
logic (not having overbars represents positive logic). For example, the circuit in Figure 14.1(a) contains three 
input variables and one output variable. Since none of these variables has overbars on them, we interpret them 
as being positive logic. While it is tempting to interpret the overbars on the signal names as the state of the 
signal, the overbar (or lack thereof) refers to logic levels and says nothing regarding whether the signal is high 
or low. Recall that signals are variables: the can take on a value of ‘1’ or ‘0’.  

Figure 14.1(b) shows an example of a similar circuit that uses mixed logic. Two of the circuit’s inputs contain 
overbars, which indicate that signal A is a positive logic while signals B and C are negative logic. All signals 
in both of these figures are Boolean variables, which means they can be either 1’s or 0’s.  

The confusing aspect of mixed logic design lies in the fact that the logic gates only react to voltage levels and 
know nothing of the logic levels intended by the circuit designers. Although the two circuits in Figure 14.1 
look similar, the point is that they perform different logic functions. What exact logic functions they perform is 
what we figure out in the remainder of chapter.  
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(a) (b) 

Figure 14.1: Some similar looking but very different circuits. 

14.3 The Inverter and Mixed Logic 

We think of inverters as devices that change 1’s to 0’s and 0’s to 1’s. While this is a valid interpretation of an 
inverter, we need to model them differently in order to gives us a foundation for understanding mixed logic. 
Figure 14.2 shows our new approach to modeling an inverter.  

Figure 14.2(a) shows an inverter as you’re used to seeing it. The thing that is new about this diagram is that we 
provide the PLC and DPI indicators above and below the signals, respectively. We use this notation to indicate 
that we’re no longer thinking of the inverter as a device that toggles a signal value; we now view it as a device 
that changes the logic level of a signal. In other words, if the input to an inverter is a positive logic signal, the 
output of the inverter is a negative logic signal (and vice versa).  

With the PLC convention (the notation above the signal lines), the A without the overbar indicates the signal is 
positive logic. On the output of the inverter, the A has an overbar, which indicates it is a negative logic signal. 
We can also express the same model using DPI notation, which we list under the signal in Figure 14.2(a). With 
the DPI notation, we indicate the A signal with a directly polarity indicator of H (indicating positive logic) on 
the input of the inverter. Once the signal passes through the inverter, the direct polarity indicator changes to L 
(indicating negative logic).  

  

(a) (b) 

Figure 14.2: A different approach to modeling an inverter.  

14.4 Equivalent Signals for DPI Notation 

We need some tools to work with the mixed logic circuits. Our first tool is to rewrite a negative logic signal as 
a positive logic signal without officially “changing” the signal. Figure 14.3 shows the equivalent signals we 
use. The equations in Figure 14.3 show there is more than one way to represent negative and positive logic 
using the DPI convention. You can indicate a positive logic signal as an equivalent negative logic signal 
(Figure 14.3(a)) and you can write a negative logic signal as an equivalent positive logic signal (Figure 
14.3(b)). These equations represent equivalent forms of the signals.  

  

(a) (b) 

Figure 14.3: Equivalent signals relating to inversion.  

Now we apply the equivalent signals approach in a simple circuit. Figure 14.4(a) shows a two-input AND gate 
with an inverter in front of one of the inputs; we re-analyze it using mixed logic concepts. We attach a DPI 
convention to the inputs and outputs of this device; both inputs and the single output are positive logic signals. 

)()( LAHA  )()( HALA 



Free Range Digital Design Foundation Modeling Chapter 14 

 

 - 191 -  

 

The inverter changes the logic level of the B signal before it enters the AND gate. In the end, as you’re used to 
thinking about it, we implement the (A∙!B) logic expression.  

Recall that an AND gate’s output is a ‘1’ when both inputs are ‘1’. The question that arises is this: what is the 
relation between the product term (A∙!B) and the notion of having both inputs being a ‘1’ in order for the 
output to be a ‘1’? What we need to do in this product term is have the output be a ‘1’ when both inputs are in 
their active state.  

The way it’s drawn indicates that the AND gate expects to receive two positive logic inputs. The two inputs are 
both positive logic but the B signal goes through an inverter before it reaches the input of the AND gate. This 
means that that the B input is now a negative logic input when it is input to the AND gate; this presents an 
issue as the AND gate expects positive logic inputs in order to perform the AND function. .  

The solution is to rewrite the logic level of the B signal using equivalent signals. Once we change the logic 
level of B from the original positive logic to negative logic, ‘0’ is then be the active level of the signal; or to 
use our new terminology, the signal is active low. We need to rewrite the signal representation after it exits the 
inverter to make it “look” like positive logic. Figure 14.4(b) shows the logic levels of the signal after it passes 
through the inverter written in using an equivalent form from Figure 14.3. Once we have the newly labeled 
signal in place, we can write the equation for the circuit by inspecting the circuit. In official terms, the output 
of the gate is asserted when the both the A and B inputs are asserted.  

 
 

(a) (b) 

Figure 14.4: A mixed logic approach to analyzing familiar functions.  

Figure 14.5 shows that there are two ways of writing the equation for the final circuit. Figure 14.5(a) shows the 
equations in DPI form while Figure 14.5(b) shows the equation in PLC form.  

𝐹 𝐻 𝐴 𝐻 ∙ 𝐵 𝐻  𝐹 𝐴 ∙ 𝐵 

(a) (b) 

Figure 14.5: Two resulting forms of our analyzed mixed-logic circuit.  

14.5 Mixed Logic-Based Gate Forms 

Let’s re-examine the logic gates we’ve dealt with up to this point. Using a strange mixture of mixed logic 
concepts and Boolean algebra, we generate alternative forms of these gates and then use these alternative forms 
in mixed logic problems.  

The simplest approach to understanding mixed logic is to examine basic logic gates. Until now we 
implemented our gate-level designs using primarily AND, NAND, OR, NOR gates and inverters. Remember 
those bubbles on the outputs of the NAND and NOR gates (and inverters too)? They’re somewhat important, 
and if you understand their actual purpose, you’ll be on your way to understanding mixed logic. The simplest 
digital device is the inverter, which is why we started the discussion there. The following figures describe 
mixed logic concepts at the gate level. 
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This AND provides an AND function with a positive logic output, 
which you know because you see that familiar AND gate shape. The 
AND gate performs an AND function on the two positive logic 
inputs. Since there are no bubbles on the back of the gate, this AND 
gate expects positive logic inputs. This is the AND form of an AND 
gate.  

 

 

Figure 14.6: A mixed logic view of an AND gate. 

 

This gate is an AND gate, because you can use DeMorgan’s theorem 
to generate a different equation describing the gate. You derive the 
new gate form by double complementing the AND function equation 
and then DeMorganizing the resulting equation. The distinctive 
symbol results from the two equations on the left. The key to 
understanding this gate is to examine both the bubbles and the gate 
form. If you feed this gate two negative logic inputs, it performs an 
OR function on those inputs and generates a negative logic output. 
We use bubbles to indicate the negative logic inputs (as indicated by 
the (L) polarity indicators) and negative logic output of the final 
equation. You can thus use an AND gate to perform an OR function. 
We refer to this gate as the OR form of an AND gate. 

 

 

 

 

Figure 14.7: A different mixed logic view of an AND gate 

 

The OR gate provides a high output when either of the gates two 
inputs is high. If you provide the gate with positive logic inputs, it 
performs an OR function and generates a positive logic output. The 
equations on the left show this characteristic. Since there are no 
bubbles on the back of the gate, this OR gate expects positive logic 
inputs. Since there is no bubble on the gate output, this gate delivers 
a positive logic output. This gate is the OR form of an OR gate.  

 

 

Figure 14.8: A mixed logic view of an OR gate. 

 

The gate on the left is an OR gate. We derive this new gate form from 
double complementing the equation describing the OR function and 
DeMorganizing the resulting equation. We derive this distinctive 
symbol from the bottom two equations. This gates looks like an AND 
gate; if you feed this gate two negative logic inputs, it performs an 
AND function on those inputs and generates a negative logic output. 
We use bubbles on the resulting gate to indicate the negative logic 
inputs (as indicated by the (L) polarity indicators) and negative logic 
output of the final equation. You can thus use an OR gate to perform 
an AND function. This gate is the AND form of an OR gate.  

 

 

 

 

Figure 14.9: A different mixed logic view of OR gate.  
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You know the NAND gate as a AND gate with an inverted output. In 
a mixed logic sense, this gate performs an AND function on the 
positive logic inputs and provides a negative logic output. We 
consider the inputs to be positive logic due to the absence of bubbles 
on the inputs; the output is a negative logic output since there is a 
bubble on the output. One way to view this circuit is that the output 
of ‘0’ is now the active state rather than the ‘1’ output, which is the 
active state from a normal AND gate. This is the AND form of a 
NAND gate.  

 

 

Figure 14.10: A mixed logic view of an NAND gate.  

 

This gate is a NAND gate. If we apply DeMorgan’s theorem to the 
gate we arrive at a new equation describing the gate. The final two 
equations on the left describe this gate in the context of mixed logic: 
this gate performs an OR function on its two negative logic inputs 
and returns a positive logic output. Seeing the distinctive OR 
symbols implies that this gate performs an OR function; this gate 
only performs an OR function if the two input values are in negative 
logic format. The bubbles indicate the negative logic input format; 
the absence of a bubble on the output indicates positive logic. The 
polarity indicators in the final equation on the left show the logic 
level of this gate’s inputs and output. This is the OR form of a 
NAND gate.  

 

 

 

Figure 14.11: Yet another mixed logic view of an NAND gate.  

 

This gate is a NOR gate; you’re used to thinking of this gate as an 
OR gate with an inverted output. In a mixed logic context, this gate 
actually performs an OR function on its two positive logic inputs and 
outputs a negative logic result. The absence of bubbles on the inputs 
indicate that the inputs are positive logic; the gate’s output is a 
positive logic output due to the presence of the bubble on the output. 
This is the OR form of a NOR gate.  

 

 

Figure 14.12: A mixed logic view of a NOR gate.  

 

This gate is a NOR gate; we can apply DeMorgan’s theorem to the 
equation describing the NOR gate and arrive at a new equation. The 
final two equations on the left describe the operation of this gate 
using mixed logic. This gate performs an AND operation (note the 
AND symbol) if we provide two negative logic signals as inputs; the 
resulting output of the AND operation is positive logic. Since there 
are bubbles on the inputs, this gate only performs the AND operation 
if the two inputs are negative logic. Since the output contains no 
bubble, the output of the gate is a positive logic signal. This is the 
AND form of the NOR gate.  

 

 

 

Figure 14.13: A mixed logic view of a NOR gate.  

Figure 14.14 shows a summary of all the standard gates forms. At this point, you may be wondering why there 
are some many forms of gates out there. The short answer is that in some situations, we need flexibility in 
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implementing logic functions. We always need to choose the gate that most appropriately represents the logic 
function we are performing, which is trickier in a mixed logic environment. In reality, there are still only AND, 
OR and inversion functions out there; we need to draw our circuits such that they express whether we are 
performing an AND function or an OR function. The relatively large set of gates guarantees that we’ll be able 
to accurately display the actual logic functions we’re performing in a mixed logic environment. If you don’t 
use the proper gate in your design, you may have a working circuit but no one can understand your circuit.  

Standard Gate Forms 

AND functions OR functions 

  

AND form of AND gate OR form of OR gate 

  

AND form of OR gate OR form of AND gate 

  

AND form of NAND gate OR form of NOR gate 

  

AND form of NOR gate OR form of NAND gate 

Figure 14.14: The giant summary of the strange new gate forms. 

14.6 AND/OR and NAND/NAND Forms 

The AND/OR, NAND/NAND, OR/AND, and NOR/NOR forms are the most common forms. The relationship 
between these forms is nicer than you may be initially thinking after plodding through the algebraic 
manipulation in Table 11.1. Let’s examine the AND/OR form and it’s relation to the NAND/NAND form.  

Figure 14.15 shows the common AND/OR form circuit implementation. In this implementation, overbars on 
the input signals replace the inverters in an effort to save me time drawing the circuit. The form in Figure 14.15 
matches the equation in equation 1(b). Figure 14.16(a) shows the subsequent NAND/NAND circuit 
implementation as it appears in Equation 1(d). While the circuit implementation is correct in that it only uses 
NAND gates, it is misleading because it no longer resembles the AND/OR form it originated from.  
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Figure 14.15: The beloved AND/OR form.   

There are two forms of NAND gates as Figure 14.16(b) indicates. Since the right-most NAND gate of Figure 
14.16(a) is actually implementing an OR function, you should use some type of OR-looking gate. Since this is 
a NAND/NAND form, the solution is to remove the right-most AND form of a NAND gate and replace it with 
an OR form3 of a NAND gate as Figure 14.16(b) shows.  

Another thing that is disconcerting about the circuit of Figure 14.16(a) is that the bubbles “don’t match”4. This 
is an indicator that something may be wrong. Although the implementation in Figure 14.16(a) is truly correct, 
someone not familiar with the circuit may have doubts. In summary, you should not the similarities between 
the circuit of Figure 14.15 and Figure 14.16(b). Generally speaking, when you are asked to provide the circuit 
diagram for a function in NAND/NAND form, the best choice is to draw the circuit of Figure 14.15 and add 
the bubbles in the appropriate location to make the circuit appear like that of Figure 14.16(b). I like calling this 
the no-brainer approach to circuit forms5. Moreover, these are two of the most popular circuit forms, with the 
NAND/NAND form being the most popular form.  

  

(a) (b) 

Figure 14.16: The confusing (a) and clear (b) approach to NAND/NAND representations.  

14.7 OR/AND & NOR/NOR Forms 

A similar type of argument can be made for the OR/AND & NOR/NOR circuit forms. Figure 14.17 shows the 
circuit implementation of the OR/AND form in Equation 2(b). We omit the inverters and replace them with 
complemented input signals (don’t try this at home). If we implement this circuit in the NOR/NOR form of 
2(f), you would end up with the circuit in Figure 14.18(a).  

While the circuit in Figure 14.18(a) is technically correct, digital designers generally avoid this form because it 
is misleading, especially those digital designers who understand basic mixed logic principles6. A better 
NOR/NOR implementation appears in Figure 14.18(b). In this implementation, the right-most NOR gate is 

                                                           

3 Don’t worry about this wording for now.  
4 The “bubbles” are polarity indicators. This is a deep and often confusing subject (mixed logic) that we’ll address in a later 
chapter. For now, just go with it and do your best to “match bubbles”.  
5 In this case, the “no-brainer” thing is temporary; we’ll fill in the details later. Not having brains is not necessarily a bad 
thing as academic administrators wear brainlessness like a badge of honor.  
6 Mixed logic is an important concept that is covered in a later chapter.  
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implemented using the AND7 version of the NOR gate. The comforting thing here is that the NOR/NOR form 
implementation of Figure 14.18(b) is strikingly similar to that of Figure 14.17. Once again, if you implement a 
function in NOR/NOR form, the circuit in Figure 14.18(b) is the best approach.  

 

Figure 14.17: The good’ole OR/AND form.  

 

  

(a) (b) 

Figure 14.18: The confusing (a) and totally clear (b) approach to NOR/NOR representations.  

14.8 Mixed Logic Analysis 

Yes, this is somewhat strange. The best way to learn about mixed logic is to use it in some actual examples. 
This section contains a few simple examples that show you the power of mixed logic analysis.  

 

Example 14.1: Mixed Logic Analysis 

Write equations describing the following circuit for the cases when the output is: 

a) positive logic  

b) negative logic 

 

Solution: The first thing you should note is that the both inputs in this circuit are positive logic. The second 
thing you should notice is that there is no indication of the output logic level. We left out the output logic level 
so that we can analyze the circuit using both negative and positive logic outputs8.  

                                                           

7 Once again, don’t worry about this wording for now; this is another reference to mixed logic. 
8 Not listing the output logic level is a horrendously bad thing.  
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(a) (b) 

Figure 14.19: Mixed logic analysis where (a) & (b) show the positive and negative logic 
interpretations of the output, respectively.  

(a) Figure 14.19(a) shows the case where the output is positive logic; the direct polarity indicator shows the 
logic level of the output. Note here that the polarity indicator on the output of the gates matches what the 
gate states it is providing: since there is no bubble on the gate, we consider the output logic level as 
positive logic. This gate is an AND gate and performs an AND function on the two inputs are both 
positive logic (note the absence of bubbles on the gate inputs).  

The first thing we need to do is to write the inputs such that they indicate a positive logic signal as this is 
what the AND gate is expecting. The A input is in correct form already because it is a positive logic 
signal. The B signal, however, passes through an inverter before entering the AND gate. Although the 
inverter changes the logic level from positive to negative, the AND gate is still expecting a positive logic 
input. In other words, if you were to input a B(L) signal to the AND gate, it would not look correct would 
lead to mass confusion and hysteria. The solution is to use an equivalent signal representation for the B(L) 
signal, which allows us to list the signal as positive logic because this is what the gate expects. Once we 
write both inputs in positive logic form, we can write the resulting equation (shown under the circuit in 
Figure 14.19(a)). Note in this equation that the polarity indicators on both sides of the equation match. If 
the polarity indicators did not match, the equation would make no sense.  

(b) Let’s analyze this circuit as having a negative logic output as in Figure 14.19(b). In other words, we want 
to know what logic function the circuit executes if we interpret the output as negative logic. The first step 
is to redraw the gate such that there is a bubble on the output. Simply adding a bubble to the output would 
effectively change the gates, which is not what we want. We need to replace the original AND gate with 
an equivalent gate that has a bubble on the output.  

Figure 14.19(c) shows that the equivalent gate form for an AND gate is the OR form of an AND. Once we 
replace the gate and the bubble appears on the output, we rewrite the output of the gate to show that it is 
negative logic. The inputs to the new gate form need some modification also. The new gate form performs 
an OR function when both of the two gate inputs are provided in negative logic. This requires that we 
rewrite the input logic levels in forms that reflect the negative logic levels. The B input is positive logic 
and the inverter changes it to negative logic; this input requires no modifications. The A input is also 
positive logic but must be in negative logic as the bubbled input to the gate indicates. Since there is no 
inverter on this input, the approach we take is to rewrite the signal with an equivalent signal name; Figure 
14.19(b) shows the result. The equivalent signal names contain a polarity indicator that indicates the gate 
receives a negative logic signal as the gate expects. Figure 14.19(b) shows the resulting equation below the 
circuit diagram.   
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Example 14.2: Mixed Logic Analysis 

Write equations describing the following circuit for the cases when the output is: 

a) negative logic  

b)  positive logic  

 

Solution: This example differs from the previous example in that the inputs are in a true mixed logic form: the 
A and B inputs are in negative and positive logic forms, respectively.  

  

  

(a) (b) 

Figure 14.20: An example of mixed logic analysis.  

a) The circuit in Figure 14.20(a) has two inputs, one is positive and the other is negative logic. The circuit in 
Figure 14.20(a) assumes the output is asserted low, which is the implication from the original drawing of 
the gate (because of the bubbled output). The gate provides an OR function with an asserted low output 
under the conditions that the two inputs are positive logic. Since the A input is negative logic, we must re-
write it in positive logic form in order for us to know what logic function the gate is performing; Figure 
14.20(a) shows that we do this by using an equivalent signal for the A input. The B input is in positive 
logic but the inverter changes its logic level. Once again, we rewrite the negative logic signal for B in 
positive logic form using equivalent signals. Once the two inputs are both in positive logic forms, we 
satisfy the gate inputs and we can then write the equation for the circuit. 

b) We first need to represent that condition with a gate that has no bubble on the output; we do this by using 
an equivalent gate form for the NOR gate. In this case, we show the equivalent gate in Figure 14.20(b), 
which is the AND form of a NOR gate. This gate performs an AND function with a positive logic output if 
the two inputs are negative. The A input requires no modification because it is already in negative logic. 
The B input is originally in positive logic format but the inverter changes the logic level to negative logic. 
Once the inputs to the circuit are in negative logic form, we can write the equation performed by the gate.  

 

The two previous examples provided us with a choice of how to interpret the output of the circuit. The analysis 
of the circuit entailed using equivalent gates and equivalent signals in order to discern the logic function 
performed by the gate. Here are a few key things to note about this form of analysis. 

 The output logic level always matched the gate output level. If there is a bubble on the output of 
the gate, the gate is providing a negative logic signal. If there is not bubble on the gate output, 
the gate is providing a positive logic signal.  

 We only used the polarity indicators in the final equation for the output; we did not carry around 
the polarity indicators for the internal signals. The assumption we make is that we matched all 
the interior logic levels so there is no need to include them in the final equation.  
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 In the final equation, the polarity indicators of the inputs and outputs match. If they did not 
match, the equation would not make sense; it would be evil confusion.   

 Although we only had one circuit, we seemed to have generated two equations from it. This is 
true because we base the two final equations for these circuits on our interpretation of the 
circuit’s output. In other words, depending on how we interpret the logic level of the circuit 
output, we are able to consider the function as implementing two different functions. The reality 
is that the two equations have sort of a complementary relationship (think DeMorgan’s 
theorem). 

 

 

Example 14.3: Mixed Logic Analysis 

Write equations describing the following circuit for the cases when the output is: 

a) negative logic  

b) positive logic   

 

Solution: This solution to this example is similar to the previous examples, so we omit the bloviated 
explanation. Once again, we matched all the logic levels in the circuit (input and output assertation levels 
match the presence (or lack thereof) of bubbles and the assertation levels of the final equation match.   

  

  
(a) (b) 

Figure 14.21: The total mixed logic analysis approach.  

For the circuit in Figure 14.21(a), we need the output to be negative logic; the NAND gate provides a negative 
logic output as evident from the bubble on the output. The NAND gate has positive logic inputs; the circuit is 
thus properly configured because the two OR gates provide positive logic output. The final step in this part of 
the solution is to use equivalent signals to re-write the gate inputs to all be in positive logic at the OR gate 
inputs. Only B is in proper form; we use equivalent signals on the other three input signals. We complete the 
problem by reading the circuit and writing the final equation.  

For the circuit in Figure 14.21(b), we need to provide a gate that with no bubble on the output so that we can 
write the output in positive logic form. We can’t simply remove the bubble, be we can use an equivalent gate 
with no bubble on the output. We do this by changing from the AND form of the NAND gate to the OR form 
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of the NAND gates. When we make this change, the inputs to the NAND gate are now negative logic, which 
does not match the outputs of the OR gates. What we now must do is substitute the OR form of the OR gate 
with the equivalent AND forms of the OR gate, which provides negative logic outputs. The final step in this 
part of the solution is to use equivalent signals to re-write the gate inputs to all be in negative logic at the OR 
gate inputs. We complete the problem by reading the circuit and writing the final equation.    

14.9 Mixed Logic Design 

Up to now, we have been analyzing mixed logic circuits. Let’s switch to the opposite approach and design 
some circuits based on mixed logic. The following examples provide such a design problem.  

 

 

 

Example 14.4: Mixed Logic Design  

Design a circuit that implements the following function: 

 

For this problem consider the A and B inputs and the output as asserted low; all other 
inputs are positive logic. Implement this function using any type of gates. 

Solution: The first thing to do with this solution is to list the parameters in DPI form. We represent the 
negative logic signals by A(L), B(L); we represent the F output as F(L). We represent the two positive logic 
signals by C(H) and D(H). The best approach to problems such as these is to start at the output and work 
backwards. The following verbage shows this systematic approach.  

Step 1: Draw and label the output. Since we know 
the output is asserted low, draw a bubble, and label 
it to support the original problem description.  

 

Step 2: Draw a gate such that it satisfies the logic 
function. The required logic function is an OR 
function so we draw a gate that looks like an OR 
gate. The example does not specify a gate type, so 
we use a NOR gate, which provides an OR 
function with a negative logic output.  

 

Step 3: The equation includes two product terms, 
which we implement with an AND form of an 
AND; this gate is sufficient because the input to 
the OR gate is expecting positive logic inputs (note 
the absence of bubbles on the input). The AND 
gates provide positive logic outputs. The bubbles 
(or lack thereof in this case) match.  

 

Step 4: We’re ready to assign some logic for the 
inputs to the AND gates. Write the logic that the 
AND gates expect based on the problem’s 
equation. The AND gates expect positive logic 
inputs, so list all the inputs in positive logic form.   
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Step 5: We now include the input signals with the 
logic levels stated by the problem. The dotted lines 
mean nothing in particular; we draw them to refer 
to what each AND gate requires relative to the 
original equation and the logic levels of the inputs 
from the outside world.   

Step 6: In the previous step, some of the input 
signals are not at the correct level required by the 
AND gates. For these cases, we need an inverter in 
order to switch the logic levels. Our approach was 
to switch some signal directly using inverter, and 
rewrite others using equivalent signal forms.   

 

One of the key elements in the previous problem is that we had the luxury of using any type of gate we could 
in the implementation. Let’s redo the previous problem, but this time restrict our gate usage to NOR gates and 
inverters. As you’ll see in the section on circuit forms, we usually must implement functions using only one 
type of gate.  

 

Example 14.5: Mixed Logic Design 

Design a circuit that implement the following function:  

 

For this problem consider the A and B inputs and the output as asserted; all other inputs are 
positive logic. Implement this function using only NOR gates and inverters. 

Solution: We take a few short cuts in this problem since we already choose a NOR gate for the output stage of 
this circuit in the previous problem.  

Step 4: We jump in at Step 4 because the first 
three steps are the same as the previous problem. 
We now need to choose NOR gates for the input 
gates rather than the AND gates. We need to 
choose a NOR gate that performs an AND 
function, so we choose the AND form of an NOR 
gate. This gate performs an AND function if the 
inputs are in a negative logic format. The diagram 
shows the signal requirements as they relate to the 
problem. We list each of the polarity indicators on 
the input signals as L as required dictated by the 
bubbles on the gate inputs.  

 

 

Step 5:. We need to make sure that we align the 
provided signals and their logic levels to the 
function we’re implementing. We list the input 
requirements of the signal we’re implementing on 
the inputs of the NOR gates.  
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Step 6: The last step is matching the logic levels 
of the provided signals to those of the require 
function. We once again do this by a combination 
of inverters and equivalent signals.  
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Example 14.6: Mixed Logic Design 

The previous two examples implemented the same equation using two different, but 
functionally equivalent circuits. Comment as to which circuit is “better”.  

Solution:  This is somewhat of a trick problem, because the problem does not define the notion of “better”. 
The truth is that “better” can mean about anything. The circuit of previous example uses four devices (three 
gates and one inverter). The circuit in the example before that uses seven devices (three gates and four 
inverters). From the standpoint of device count, the circuit implemented with four devices is clearly better. 
Therefore, from the standpoint of minimum device count, one circuit is “better”.  

 

 

 

Example 14.7: Generic Switch Controller 

Design a circuit that controls an unspecified output according to the following description. 
If the MASTER_OVERRIDE switch is asserted, the output is always asserted. Otherwise, 
if the LOCAL_OVERRIDE switch is asserted, the output is also asserted. If both the 
override switches are not asserted, the output is only asserted when SW1 and SW2 are both 
asserted. For this problem, consider the output to be active low. The two override switches 
are active low also; SW1 and SW2 are active high. Specify the solution using POS form.  

Solution: This problem is similar to other switch problems you’ve done but with the twist added of working 
with both negative and positive logic. Since there are not too many inputs, you can take the truth table 
approach to designing this problem. Figure 14.22 shows the empty truth table.  

 

MO LO S1 S2 F 

0 0 0 0  
0 0 0 1  
0 0 1 0  
0 0 1 1  
0 1 0 0  
0 1 0 1  
0 1 1 0  
0 1 1 1  
1 0 0 0  
1 0 0 1  
1 0 1 0  
1 0 1 1  
1 1 0 0  
1 1 0 1  
1 1 1 0  
1 1 1 1  

Figure 14.22: Truth table for Example 14.7. 
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The problem with this problem is that we need to deal with mixed logic. Although there are many approaches 
to dealing with mixed logic, the approach we take here is somewhat more straightforward than other 
approaches. Since we’re more used to dealing with positive logic, let’s convert the negative logic signals to 
positive logic before we assign the output values. We also convert the negative logic output to positive logic. 
Once we specify the output, we complement it before we generate the subsequent logic. We don’t need to do 
anything with the inputs at that point since the inputs still reflect the ordering (but not the numbering) used in a 
truth table.   

 

!MO !LO S1 S2 !F 

1 1 0 0 1 
1 1 0 1 1 
1 1 1 0 1 
1 1 1 1 1 
1 0 0 0 1 
1 0 0 1 1 
1 0 1 0 1 
1 0 1 1 1 
0 1 0 0 1 
0 1 0 1 1 
0 1 1 0 1 
0 1 1 1 1 
0 0 0 0 0 
0 0 0 1 0 
0 0 1 0 0 
0 0 1 1 1 

 

!MO !LO S1 S2 F 

1 1 0 0 0 
1 1 0 1 0 
1 1 1 0 0 
1 1 1 1 0 
1 0 0 0 0 
1 0 0 1 0 
1 0 1 0 0 
1 0 1 1 0 
0 1 0 0 0 
0 1 0 1 0 
0 1 1 0 0 
0 1 1 1 0 
0 0 0 0 1 
0 0 0 1 1 
0 0 1 0 1 
0 0 1 1 0 

(a) (b) 

Figure 14.23: The modified truth tables with negative (a) and positive (b) logic outputs. 

The final logic we’re looking for is in Figure 14.23(b). Once you toss the column for F into a truth table, you’ll 
arrive at the POS equation in Figure 14.24.  

𝐹 𝑀𝑂  ∙  𝐿𝑂 𝑆1 𝑆2  

Figure 14.24: The final equation for this problem. 
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14.10 Chapter Summary 

 

 The concept of mixed logic is based upon the “action” state of a digital signal. In all cases, either the ‘1’ or 
‘0’ state is considered to be the action state if a digital signal. If a ‘1’ is considered the action state, the 
design is considered to be positive logic while if the ‘0’ is the action state, then the design is considered to 
be negative logic. A mixed logic system is a digital system that uses both negative a positive logic in the 
design.  

 Most gate-level circuits deal with mixed-logic concepts at some level. Although mixed logic concepts are 
often initially confusing the digital designers, having a basic understanding of the mixed logic is generally 
enough for survival in digital design land.  

 Logic levels in digital circuits are represented by either the Positive Logic Convention (PLC) or Direct 
Polarity Indicators (DPI). Logic levels in a circuit are often referred to as assertation levels.  
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14.11 Chapter Exercises 

 

1) Write an equation for F(H) that describes the following circuit. Put your answer in DPI form. 

 

 

2) Write an equation for F(W,X,Y,Z) in NAND/NAND form.   

 

 

3) Write an equation for F(L) that describes the following circuit using DPI.  

 

 

4) Without altering the function implemented by the circuit below, redraw the circuit using only OR gates 
and inverters. Minimize device count where possible.  
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5) Without altering the function implemented by the circuit below, redesign this circuit using only NAND 
gates and inverters. Minimize device count where possible.  

 

 

 

6) Using only NAND gates and inverters, design a circuit that implements: 

 

Consider the inputs and outputs to be: A(L), B(L), C(L), D(H), F(H). 

 

7) Using only NOR gates and inverters, design a circuit that implements: 

 

Consider the inputs and outputs to be: A(L), B(H), C(L), D(H), F(L). 

 

8) Design a circuit that implements the following function:  

 

Consider the inputs to be: A(H), B(L), C(L), D(L); use only standard gates and inverters in your solution. 

 

9) Design a circuit that implements the following function. Use only standard gates and inverters in your 
solution. 

 

Consider the inputs to be: A(L), B(L), C(H), D(L);  

 

10) Design a circuit that implements the following equation using any type of gate and inverters. Minimize the 
device count in your implementation. Consider the inputs and outputs to be: A(H), B(L), C(H), D(H), 
E(L), F(L). 

 

 

11) Design a circuit that implements the following function; use only NAND gates in your solution. Consider 
the inputs to be: A(L), B(H), C(H), D(L). Show a gate-level schematic of your solution 

F A, B, C, D H A ∙ B B ∙ C ∙ D H  

 

  

CD)(H)BAB(F(H) 

CD)(L)BBA(F(L) 

BC)(L) DBA(F(L) 

)](H)C  A)(D  B A([ F(H) 

E)](L)DC)(BA[(F(L) 
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12) Design a circuit that implements the following function. Consider the inputs to be: A(L), B(H), C(H), 
D(L). Show a gate-level schematic of your solution; Use only NOR gates in your solution.  

F A, B, C, D H A B B C D H  

 

13) Provide a circuit diagram that implements the following mixed logic Boolean equation. Consider the logic 
levels of the input to be A(L), B(L), C(H). Use any type of gates you want but minimize the number of 
gates you use.   

  )()()()( LCBBALF   

 

14) Write a Boolean equation in DPI form that describes the following circuit. As the diagram indicates, make 
sure your answer is written in positive logic form.  

 

  

(a) (b) 

 

15) Write a Boolean equation that describes the following circuit. The equation you generate should use 
proper and complete direct polarity indication. In other words, write the other side of the following 
equation: F(H) = ??  Do not attempt to reduce the final circuit equation; make sure your final equation is in 
proper form. 

  

(a) (b) 
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16) Write a Boolean equation that describes the following circuit. The equation you generate should use 
proper and complete direct polarity indication. In other words, write the other side of the following 
equation: F(H) = ??  Do not attempt to reduce the final circuit equation; make sure your final equation is in 
proper form.  

  

(a) (b) 

 

17) Write a Boolean equation that describes the following circuit. The equation you generation should use 
proper direct polarity indication. In other words, write the other side of the following equation: F(L) = ??  
Do not reduce the final circuit equation. 

  

(a) (b) 

 

18) Change the following circuit from AND/OR form to NAND/NAND form.  

 

 

(a) (b) 
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14.12 Design Problems 

 

For the following problems:  

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution 

 Minimize the use of hardware in your solution 

 State the types of control your circuit uses (“no control”, “internal control”, and/or “external control”). 

 

1) A logic network is to be designed to implement a seat belt alarm that is required on all new cars. A set of 
senor switches is available to supply the inputs to the network. One switch will be turned on if the gear 
shift is engaged (not in neutral). A switch is placed under each front seat and each will turn of if someone 
sits in the corresponding sear. Finally, a switch is attached to each front seat which will turn on if and only 
if the seat below is fastened. An alarm buzzer is to sound (LED display light) when the ignition is turned 
on and the gear shift is engaged, provided that either of the front seats is occupied and the corresponding 
seat belt is not fastened.  

Alarm (sound) - A(H) 

Ignition (on) – I(L) 

Gearshift (engages) – G(L) 

Left Front Seat (occupied) – LFS(H) 

Right Front Seat (occupied) – RFS(H) 

Left Seat Belt (fastened) – SBL(H) 

Right Seat Belt (fastened) – SBR(H) 

 

2) There are four parking slots in the Acme Inc. executive parking area. Each slot is equipped with a special 
sensor whose output is active low when a car is occupying the slot. Otherwise, the sensor’s output is at a 
high voltage. You are to design and draw schematics for a decoding system that generates a low output 
voltage if and only if there are two (or more) adjacent vacant slots. 
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15 Modular Design 

 

15.1 Introduction 

Up until now, we’ve used either brute force design (BFD) or iterative modular design (IMD) to design our 
digital circuits. This chapter outlines our final approach to digital design: Modular Design, or MD. MD is the 
most powerful approach to digital design, though you won’t see a lot of that power in this since we still need to 
introduce more digital design foundation modules.  

Main Chapter Topics 

MODULAR DESIGN: This chapter presents the basics of Modular Design (MD) 
starting with an overview and ending with design examples that we can best solve 
using the MD approach.  

 

Why This Chapter is Important 

 Be able to describe the differences between BFD, IMD, and MD approaches to 
digital design.  

 

15.2 The Big Digital Design Overview  

Because of your increased your knowledge and abilities, you’re ready for a more powerful design approach. 
However, before we do this, it seems worthy to put the new design approach into a context of what we already 
know.  

There are three approaches to digital design; any possible digital design you do fit into one of these 
approaches. The following list highlights the three design approaches and includes some modest explanation as 
well. Table 15.1 compares and contrasts these three approaches.  

BRUTE FORCE DESIGN (BFD): This was the first design approach we worked with; it involves 
assigning a single output to every possible input combination via a truth table. The tabular format 
(truth tables) limits this approach to designs with a four or less inputs.  

ITERATIVE MODULAR DESIGN (IMD): This was the second approach to design we worked with. 
Most appropriately, IMD would be included as a subset of modular design, but we’re opting to 
call it a design approach all its own. This design approach allowed us to bypass the truth table 
approach of BFD and enabled us to create mildly complex circuits such as the RCA.  

MODULAR DESIGN (MD): We applied this approach in a few problems, though you did probably 
not realize it. This approach involved drawing bunches of black boxes to model our designs. We 
also drew boxes within boxes within boxes, which we labeled as hierarchical design. It turns out 
that hierarchical design is a form of modular design.  
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Design Approach Pros Cons 

Brute Force Design Straight forward Limited by number of inputs 

Iterative Modular Design Straight forward Not applicable to all designs 

Modular Design Massively powerful Requires a working brain1 

Table 15.1: Matrix explaining why Modular Design can save the world. 

15.3 Modular Design Overview 

Modern digital design primarily uses Modular Design. You perform modular design by plopping down black 
boxes and connecting them up in intelligent ways such that they solve problems. Modular design involves 
keeping a bag full of standard digital modules (which we refer to as the digital design foundation modules) and 
assembling those modules in such a way as to solve digital design problems. The half-adder, the full-adder, and 
the ripple carry adder (RCA) are first modules we worked with; the RCA was our first digital design 
foundation module.  

The overall approach of MD is to abstract circuits to a higher level in order to increase your efficiency in the 
digital design process. The potential problem with designing at high levels is that the designer can make too 
many assumptions in the design process and not properly convey these assumptions to other entities. Because 
MD is model based, you must make sure that the entity reading your design2 can fully comprehend what you’re 
attempting to convey. Here are some guidelines you must follow when doing the MD thang:   

Be Clear and Concise: A messy BBD hinders efficient information transfer. Use a ruler if you’re 
modeling by hand, but there is no big need to use a drawing program if your BBD is neat.  

State All Assumptions: Any unstated assumption you make could quickly confound your design 
if the reader does not know and/or understand you’re assumptions  

Label Everything: Make labels help prevent readers from making assumptions about the circuit.  

Provide a definition for all black boxes: Every box you use in your model should either be 
clearly defined somewhere or be a digital design foundation module. If you call out a foundation 
module in your design, everyone knows what it is and there is no need to define it at a lower level. 
Be aware that you must use these modules exactly as we originally defined them, or people can’t 
be sure of what you’re modeling. Table 15.2 shows a visual representation of this point.  

                                                           
1 Thus, you will not find viable digital designers in an academic administrative setting.  
2 It could be a person or a computer (such as the HDL synthesizer).  
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Model Comment 

 

This model sort of looks like a 3-input OR gate, but having two 
outputs makes it non-standard. Being non-standard, the circuit's 
output characteristics are a mystery. This is an invalid model.  

 

This is a true digital box. Since we know what an RCA is, and 
the inputs and outputs of the box labeled RCA match what we 
know about RCAs, we know exactly how it works. This is a 
valid model and there is no need to define it anywhere else in 
your model. This RCA does not show a carry-in input, but it’s 
still an RCA. 

 

This is also a true digital box. If you replace the HA in a RCA 
with a FA, you have the extra carry-in input as is listed in this 
model. Having this input is very handy in various digital design 
applications. This is a valid model. 

 

This circuit has the RCA label, but since we know RCAs to 
have multiple inputs (bundles) for the addend and augend, 
we’re left scratching our heads. You could assume it’s a RCA 
but you could be wrong. The SUM output has the same issue. 
This is an invalid model.  

 

This has all the correct inputs for an RCA, but since it has the 
ADDER label, we can’t assume we know exactly what this box 
is doing. This is an invalid model. You could make this model 
valid by providing an ADDER definition in your design.  

Table 15.2: Some good and bad example of standard digital black boxes. 

Not that rules are good things, but they can help when first embarking on the MD approach to digital design. 
There is one excellent quality regarding MD: the problems have a strange way of doing themselves based 
primarily on the problem description. We outline this approach in Figure 15.1 and apply this approach in the 
design examples that follow. The final comment: you need to be creative and clever with your solutions, as you 
will inevitably run into situations that you have not seen in a previous example.  
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 Read the problem: Yes, a great start.  

 Draw a high-level black box diagram that shows the design’s interface (I/O): This is not 
always an easy step based on the problem statement as sometimes the important information 
buries itself deep in the problem description. Completing this step is that it inevitably helps you 
understand the overall problem.  

 Make an inventory of the modules your solution requires: This can be a straightforward step 
because the problem typically provides major clues. For example, if a problem says something 
like “add” or “sum”, you know your design requires an RCA.  

 Connect the Lower-level Design Entities: The previous step leaves you with a bunch of black 
boxes in your design; this step entails connecting those black boxes in an intelligent manner.  

 Provide Adequate Models for Any Non-Standard Black Boxes used in the Design: Use as 
many standard digital design boxes as possible in your design. However, don’t hesitate to create 
new boxes with “special” functionality that helps you solve the problem at hand. You must, 
however, you completely describe any non-standard module you use in your design. 

 Check your final diagram for the following:   

o Make sure the highest-level black box has an appropriate label 

o Make sure all module inputs connect to something 

o Make sure all signals include appropriate labels  

o Make sure to label all bundle widths 

o Make sure all lower-level design entities include labels  

o Make sure all labels in diagram are self-commenting in nature  

 

Most importantly: DON’T GET STUCK! Digital design is an inherently iterative process. Also, 
recall Mealy’s Fourth law of digital design that states the design process is circular, not linear. Do 
your best to complete all the bullets listed above in the order, but realize the main goal is to solve the 
problem. If you leave something out of your design, simply add it when you realize it’s missing. 
Lastly, realize that the listed bullets are one person’s view of digital design. If you want to become a 
good digital designer, YOU MUST DEVELOP YOUR OWN STYLE! The only constraint is that 
you solve the problem in a reasonably efficient way and in a reasonable amount of time.  

Figure 15.1: The desired approach to solving modular design problems. 

The notion of modularity in digital design is so important, we coin yet another one of Mealy’s laws:  

 

Mealy’s Fifth Law of Digital Design: Model circuits using many smaller sub-modules as 
opposed to fewer larger sub-modules; as this approach supports testing and increases the 
chances module reuse. 
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Example 15.1: RC Sign Changer 

Design a circuit that changes the sign of an 8-bit signed binary number in radix complement form. 
Provide your solution in the form of a black box model. Minimize your use of hardware in your final 
model. If you use something other than foundation modules in your solution, provide an adequate 
description. State what controls the circuit in your solution.  

Solution: The first step is to draw the high-level BBD; Figure 15.2 shows a nicely labeled model for this 
problem.  

 

Figure 15.2: Black box diagram for the RC Sign Changer. 

The next step is to gather in what you know about changing the sign of binary numbers in RC format. The 
standard method we know is the visual algorithm method of starting at the right-most bit in the number and 
looking for the first ‘1’ etc. Although this worked great on paper, it does not work for digital hardware. We 
need to use the other approach to changing the sign which, was taking the 1’s complement and then adding ‘1’. 
Taking the 1’s complement of the input requires an inverter for each individual bit input to the circuit.  

The next step in this problem is to make of initial inventory of the modules the final circuit requires. Taking the 
2’s complement requires that we add three values, which means this circuit needs an RCA. It seems for now 
that’s all the circuit needs, but if we later find that the circuit requires other modules, we add them. The making 
an inventory step in digital design is always going to be an iterative step; we give the BBD our best shot, but 
we know can always add more modules learn more about the problem during our progression towards the 
solution (digital design is circular, not linear). Figure 15.3 shows the lower-level BBD for this example. We list 
a few more interesting things about this circuit below:  

 

Figure 15.3: Black box diagram for RC Sign Changer. 

 The box in Figure 15.3 is consistent with the box in Figure 15.2: the inputs and outputs match in 
both bundle size and name.  

 The bundle notation in Figure 15.3 appears on both the inside of the RC_SGN box as well as the 
outside; either listing is fine.  

 It appears that the 8-bit bundle uses a single inverter. This is a common shorthand notation for 
indicating the inversion of every signal in the bundle. We could have drawn eight inverters but it 
would have cluttered our diagram.   

 The Cin signal has a funny thing connected to it; the funny thing indicates that the Cin input to 
the RCA is connected to ‘1’. You see this notation often; sometimes you also see a “Vcc” or a 
“Vdd” which indicates the signal is connected to the higher voltage in the circuit, which we 
consider to be a ‘1’.  
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 There is a funny shape connected to the B signal, which indicates that the B input of the RCA is 
connected to “ground” or a logical ‘0’. This notation indicates that each of the eight individual 
signals in the bundle connects to ground.  

 The Cout signal of the RCA is unconnected; which is no big deal, as your design does not use 
it. Although you always need to connect your inputs to something, you don't need to connect the 
outputs if the circuit does not use them.   

 The RCA as drawn in this problem uses a FA for the LSB. This means that the total equation for 
the RCA is: SUM = A + B + Cin. The way we connected the circuit in this problem is that the B 
value is always zero, the A signal is always inverted, and Cin is always ‘1’. The final 
implemented equation is therefore: SUM = !A + 1.  

This circuit has no control because the RCA has no control inputs; the output reacts to the input 
independent of the input values. 

As a final note, there are two ways to configure the RCA in this problem. The goal for this problem was 
to output (!A + 1); the solution does this by grounding one of the bundled inputs to the RCA and using 
the Cin to provide the ‘1’. Another equivalent approach would be to ground the Cin input and then 
connect a one to the B input of the RCA. The “one” on the B input would be “00000001”, as that RCA 
input expects 8-bit data.  

 

 

 

Example 15-2: Special RC Addition Circuit 

Design a circuit that adds ‘2’ to an 8-bit signed binary number in radix complement form. This circuit 
has an output signal VALID that is ‘1’ when the addition operation is valid. Minimize your use of 
hardware in your final model. If you use something other than a standard digital circuit, make sure you 
adequately provide an adequate description. State whether the circuit has “no control”, “internal 
control”, or “external control”. 

Solution: The solution starts with drawing a BBD of your solution, as we nicely show in Figure 15.4.  

 

Figure 15.4: Black box model for the solution. 

The next step is to make an inventory of the modules that go inside the top-level BBD. We do this by first 
looking back at the problem description for clues. The first clue is that you’ll be adding a number to another 
number, which means that you’re going to need an RCA. The next thing we need is some type of circuitry 
indication when the solution is valid or not. We refer to this “control” circuitry. OK… let’s put it down; check 
out Figure 15.5. 
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Figure 15.5: The next step in the solution. 

Here are some interesting to note about Figure 15.5 that helps you move toward the solution. Figure 15.6 
shows the result of listing all of these items.  

 The RCA adds two things: the IN_VAL and the number “00000010” (which is 2 represented as 
an 8-bit in signed binary number). Therefore, we can connect IN_VAL to one of the RCA 
operands and “hardwire” a binary “2” to the other operand. We indicate this in the diagram by 
listing “00000010” near the bundle in question.  

 The output of this circuit is the result of the addition so we can connect the output of the RCA 
to the OUT_VAL signal.  

 The CTRL circuit indicates if the operation was valid or not. Although the inputs to the CTRL 
box are still unknown, we know the output is the VALID signal.  

 The big question is how are we going know if the addition operation is valid or not? The 
answer lies in the fact that since we’re adding two signed binary numbers in RC form, the 
answer is only invalid if the two input operands have the same sign but generate a result of a 
different sign. Therefore, the CTRL box needs three inputs: the sign bits of the two RCA 
operands and the sign-bit of the SUM operand.  

 We don’t need the Cout signal for our approach to this solution so we can leave it unconnected 
since it’s an output.  

The next step in the solution is to design the interior of the CTRL box; one way to do with is with a truth table. 
The result of the binary addition is only going to invalid when the sign bits of the operands are the same and 
the sign bit of the result is different. Figure 15.7 shows the resulting truth table. Because the sign-bit of the A 
input is always ‘0’, we list the table entries of A=1 as don’t cares (dashes).  

 

Figure 15.6: The next step in the solution. 
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A B S VALID 

0 0 0 1 
0 0 1 0 
0 1 0 1 
0 1 1 1 
1 0 0 - 
1 0 1 - 
1 1 0 - 
1 1 1 - 

 

Figure 15.7: The truth table modeling the CTRL box. 

The equation describing the truth table of Figure 15.7 is VALID = B + !S. We did not need the A sign-bit input 
after all. In the end, the fact that the sign bit of the A input to the RCA does not affect the problem makes sense 
if you think about it for a few minutes.  

Figure 15.8 and Figure 15.9 show the final solution. There are two parts to the solution; each of these parts 
represents a different level of the design. Figure 15.8 represents the higher-level portion of the solution while 
Figure 15.9 represents the lower level of the solution Additionally, this circuit has no type of control; the 
output react to the input in the same manner independent of the input values. 

 

Figure 15.8: The final solution to this example. 

 

Figure 15.9: The other part of the final solution to this example.  

This is a true hierarchical design. It did not need to be a hierarchical design; we could have placed the OR gate 
of Figure 15.9 into the black box diagram of Figure 15.8. However, this approach is clearer. We didn’t have an 
idea of the final solution when we started the problem; we instead just started working towards a solution 
starting with what little we knew about the problem. This is an important concept because you may not have a 
good idea about the solution, but you’ll have a direction to go in. As you go in that direction, you’ll pick up 
clues to the solution, or maybe toss your approach and start over. This is a circular approach to design, which is 
much better than attempting to force a linear approach, as many technical people often do.  
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Example 15-3: 8-Bit Adder/Subtractor 

Design a circuit that acts as both an adder and subtractor. This circuit has a control input SUB and two 
eight-bit signed binary inputs A and B (RC format). When the SUB input is high, the 8-bit signed 
binary output (RC format) indicates the result of B subtracted from input A. Otherwise, the output of 
the circuit indicates of addition of the A and B. For this problem, assume that the result is always valid. 
Use any support logic you may require but minimize the amount of hardware used in this circuit. Use 
the modular design approach and provide a top-level and lower-level BBD for your solution. State 
whether the circuit has “no control”, “internal control”, or “external control”. 

Solution: The first step is drawing a BBD of the circuit; Figure 15.10 shows this step.  

 

Figure 15.10: Black-box diagram of the Adder/Subtractor circuit.  

Our approach is to recall that we can perform subtraction in binary by first multiplying one operand by -1 and 
then adding the result to the other operand. This means performing a two’s complement on one operand when 
using numbers in RC format, which is the indirect subtraction by addition approach. We obtain the two’s 
complement by taking a 1’s complement and adding 1. Equation 15.1 shows the RCA’s operation; the task in 
this problem is to change the sign of the B input when the circuit must perform subtraction.  

SUM = A + B + Cin 

Equation 15.1: What the RCA is adding. 

The SUB input to the circuit has two functions: 1) to select the complemented or non-complemented operand 
to one of the RCA’s inputs, and 2) to select a ‘1’ for the Cin input on the RCA_FA. The final circuit is thus 
going to look something like the circuit in Figure 15.11. Another way to view this circuit is that the value of 
the SUB signal is always included in the addition operation of the RCA_FA. If the SUB = ‘0’, thus indicating 
an addition operation, it has no effect on the result. 

 

Figure 15.11: The final circuit. 

The final step in this problem is defining the B_LOGIC block in Figure 15.11. There is a well-known approach 
to this problem, which is to notice that signal B sometimes requires inversion before it connects to RCA_FA 
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and sometimes it does not. When SUB is a ‘1’, the ADD_SUB module performs an A – B operation which 
means we want to invert B and add ‘1’ to the RCA_FA module via the Cin input. This circuit uses the SUB 
input as a control input as it decides what value is output on the result signal.  

For the B_LOGIC, we need to invert individual signals in B before they are sent to the RCA_FA when SUB is 
a ‘1’. The most straightforward way to do this is to use known properties of the XOR gate; specifically, when 
one input to an XOR gate is ‘1’, the output of gate is an inversion of the other input. Similarly, when one input 
to a XOR gate is a ‘0’, the other input effectively passes through the XOR gate output. Therefore, the XOR 
gate here is ether an inverter or buffer. 

Figure 15.12 shows the final circuit for the B_LOGIC block with a few interesting features worth noting. First, 
we decompose signal B into its parts on the diagram with the assumption that B(7) is the MSB while B(0) is 
the LSB. We reassemble the output from its parts back into a bundle.  

SUB value RCA_FA operation Operation 

‘0’ 0 BASUB  A + B 

‘1’ 1 BASUB  A - B 

Table 15.3: Tabular view of RCA_FA operation. 

 

Figure 15.12: The schematic for the B_LOGIC block. 

This is a well-known solution to this problem. Figure 15.13 shows a better approach to the final solution of this 
problem; this solution is better because it was easier to draw. Figure 15.13 uses a special shorthand notation; 
although XOR gates only have two inputs, Figure 15.13 seems to indicate that the XOR gate can accept a 
bundle input. In actuality, the special XOR gate in Figure 15.13 is the same circuit as the B_LOGIC block in 
Figure 15.12.  



Free Range Digital Design Foundation Modeling Chapter 15 

 

 - 221 -  

 

 

Figure 15.13: An alternate and popular approach to the final circuit. 

 

 

 

Example 15.4: Timing Diagrams  

Based on the solution to Example 15-3, complete the following timing diagram.  

 

Solution: The problem states the value on B is either subtracted from or added to A based on the value of 
signal B. Figure 15.14 shows the final solution to this problem keeping in mind that when SUB is a ‘0’, the 
RESULT signal represents an addition of signal A & B.  

 

Figure 15.14: The solution to Example 15.4. 
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15.4 Chapter Summary  

 

 There are three basic approaches to digital design 1) Brute Force Design (BFD), 2) Iterative Modular 
Design (IMD), and 3) Modular Design (MD). By far, Modular Design is the most powerful, particularly 
since hierarchical design is a form of MD.  

 The general rules for creating hierarchical BBDs are:  

o Be Clear and Concise:.  

o Label All Assumptions:  

o Label Everything:  

o Provide a definition for all black boxes:  

 All black box diagrams should be a simple as possible. If you need to create some special notation for your 
solution, be sure to describe it fully.  

 MD is an inherently iterative design process; don’t expect to complete a working design in one pass.  

 An overview of the approach to MD-type problems can be stated as:  

o Read the Problem 

o Draw a High-level Black-box Interface Diagram 

o Create an inventory of  the Lower-level Design Entities 

o Connect the Lower-level Design Entities 

o Provide Adequate Models for Any Non-Standard Modules 

o Check Your Final Diagram for All Important Details 
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15.5 Chapter Exercises 

 

1) Briefly explain what exactly the notion of a modules “interface” refers to.  

2) Why do we consider IMD to be a subset of MD? Briefly but fully explain. 

3) List several advantages to using a self-commenting style in your black box diagrams. 

4) Describe why MD is more powerful than BFD.  

5) Explain why you don’t need to provide models for underlying foundation modules but you do need to 
provide models for all other modules you use in your designs.  

6) Briefly describe why the best approach is to use as many foundation modules as possible in your designs 
as opposed to defining new modules.  

7) Briefly describe why “brute force design” or “iterative design” was a limited and inefficient design 
approach?  

 



Free Range Digital Design Foundation Modeling Chapter 15 

 

 - 224 -  

 

15.6 Design Problems 

 

For the following problems:  

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution 

 Minimize the use of hardware in your solution 

 State the types of control your circuit uses (“no control”, “internal control”, and/or “external control”). 

 

1) Design a circuit that subtracts ‘3’ from an 8-bit signed binary number. Assume the number is in radix 
complement form and that the output is an 8-bit value in RC format. . This circuit has an output signal 
VALID that is ‘1’ when the subtraction operation is valid.  

2) Design a circuit that multiplies an 8-bit signed binary number by two. Assume the number is in radix 
complement form and that the output is an 8-bit value in RC format. This circuit has an output signal 
VALID that is ‘1’ when the operation is valid.  

3) Design a circuit that multiplies an 8-bit signed binary number by three. Assume the number is in radix 
complement form and that the output is an 8-bit value. This circuit has an output signal VALID that is ‘1’ 
when the operation is valid.  

4) Design a circuit that can add four 10-bit values and generates a 10-bit output. If any of the four inputs 
values is greater than 255, then the output is always 0; otherwise the output reflects the summation of the 
four values. Assume that the inputs and output s are in unsigned binary format.  

5) Design a circuit that can add four 8-bit values and generates an 8-bit output. This circuit also has a VALID 
output that indicates when the value on the 8-bit output is correct.  

6) Design a circuit that can add four 8-bit values and generates a 9-bit output. This circuit also has a VALID 
output that indicates when the value on the 9-bit output is correct. Assume that the inputs and outputs are 
in unsigned binary format.  

7) Design a circuit that has two 8-bit signed binary (RC format) inputs. The circuit has four outputs, which 
includes the value of A+B and a signal to indicate if the value is correct or not, and the value of A-B and a 
signal to indicate whether the output is valid or not. Assume the results of the sum & subtraction are both 
8-bit values in RC format.  

8) Design a circuit that performs the following operation: C – A – B (the values of A & B are subtracted 
from C). Assume that A, B & C are 10-bit signed values in RC form. This circuit has two outputs: RES, 
which is a 10-bit result (also in RC form) and VALID, which indicates if the 10-bit RES output is value 
is valid based on the math operations performed by the circuit. Feel free to use the 2sCOMP and 
VALID_CKT box provided below. Include a block box diagram for both the top-level circuit as well as 
the underlying circuitry. 

 

 

 

9) Design a circuit that adds four unsigned 10-bit numbers (A, B, C, D). The result should have the minimum 
number of bits while generating the correct result (including number of bits) of the addition operations. 
Use no more than three 10-bit RCAs in your design.  
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10) Design a circuit that adds five 10-bit unsigned binary numbers, A,B,C,D, and E. No matter what, the final 
sum should always be output, but this sum output is only a 10-bit number also. The catch is that this circuit 
has a “VALID” output indicates when the 10-bit output is a valid represents the actual sum of the five 
input values. You can only use 10-bit RCAs for this circuit.  
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16 Decoders 

 

16.1 Chapter Overview 

Decoders provide one of the most straightforward ways of modeling certain types of digital circuits. Up until 
now, we’ve primarily been dealing with logic functions in the form of Boolean equations. This is a good 
beginning approach, but using Boolean equations as a basis for digital design limits the complexity of the 
circuit. Digital design rarely has much to do with Boolean functions as it represents a low-level and thus 
inefficient approach to digital design. We’re ready to generate our designs at a higher level because that is the 
most efficient approach.  

Main Chapter Topics 

DECODERS: The chapter introduces the decoder, which is a standard digital circuit. 
We divide decoders into one of two types: standard and generic decoders. Because 
of their inherent genericity, decoders are quite versatile in digital design.  

 

Chapter Acquired Skills 

 Be able to describe the differences between generic and standard decoders  

 Be able to use generic and standard decoders in digital designs  

 Be able to describe the underlying hardware of a simple standard decoder 

 

16.2 Introduction to Decoders 

We use the word generic decoder, or just decoder, to refer to the standard digital device where the values of 
the decoder’s input always produce the same values on the decoder’s output. This is a generic definition of a 
decoder, thus we refer to most decoders as “generic” if we can model them in tabular format (a truth table). 
The basis of all things digital are basic gates, which we defined using tables; we can thus consider basic logic 
gates as decoders because of their tabular definitions.  

In addition to the generic decoder, there is a standard decoder. The terms “generic” and “standard” decoders 
are terms that you won’t find in other digital design texts; I created these names to simplify the digital design 
paradigm. The standard decoder is a special type of a generic decoder and has a special relationship between 
the inputs and outputs. Figure 16.1 shows that, a standard decoder is a subset of a generic decoder. Standard 
decoders have specific uses while generic decoder usage is open-ended.   

 

Figure 16.1: Venn diagram showing the hierarchy of decoders. 



Free Range Digital Design Foundation Modeling Chapter 16 

 

 - 227 -  

 

Modeling digital circuits using tables is powerful because we can easily translate the tables to a hardware 
description language (HDL). You may have a notion of the “power of tables” from your programming career 
in that using “look-up-tables” or “LUTs”; the same usefulness of LUTs applies to hardware modeling. The 
approach in modern digital design is to allow the development tools to do the work for you. Thus, modeling 
circuits using decoders (LUTs) hands a significant portion of the circuit implementation effort to the tools. If 
you need to implement some “logic” using an HDL, the best approach is to model the function in tabular 
format, then allow the tools to do the rest.  

Our new working definition of a generic decoder is this: any digital device that establishes a functional 
relationship between the device input(s) and output(s). We use generic decoders to model LUTs. This is 
important, so we need to coin yet another one of Mealy’s new laws. You should always be on the lookout for 
opportunities to use decoders rather than trying to generate some fancy logic. 

Mealy’s Seventh Law of Digital Design: Always first consider modeling a digital circuit or 
part of a digital circuit using some type of a look-up table (LUT). 

 

16.3 Generic Decoders 

Generic decoders are so general, it’s tough to say much useful about them. If you can describe a circuit in 
tabular format, you’ve officially modeled a decoder. Figure 16.2 shows a black box diagram of a generic 
decoder. There can be any non-zero number of inputs and outputs; the number of inputs and outputs don’t need 
to match.  

 

Figure 16.2: A black box diagram of a generic decoder.   

You can define two general types of tables: 1) complete tables, and, 2) incomplete tables. Both tables are 
equally straightforward to model using an HDL. We define a complete table as a table that has a row for every 
unique combination of the circuit’s inputs; a non-complete table is any table that is not a complete table. We 
make this distinction so you realize that you don’t need to completely specify every possible input combination 
for generic decoders. Additionally, HDLs have solid support for modeling incomplete tables.   

Figure 16.3 shows completely and incompletely specified tables. The table in Figure 16.3(a) has three inputs; 
because there are eight rows in Figure 16.3(a), we consider this table completely specified. The table in Figure 
16.3(b) has three inputs, but only five of those three inputs combinations have outputs. Not declaring outputs 
indicates that for the missing input combinations, the designer for some reason does not care about the outputs. 
Another approach to non-complete tables is to list the missing inputs and state the outputs as don’t cares, which 
we do in Figure 16.3(c).  



Free Range Digital Design Foundation Modeling Chapter 16 

 

 - 228 -  

 

A B C VAL 

0 0 0 011 
0 0 1 110 
0 1 0 010 
0 1 1 011 
1 0 0 111 
1 0 1 100 
1 1 0 000 
1 1 1 111 

 

X Y Z VAL 

0 0 0 011 
0 0 1 110 
1 0 1 100 
1 1 0 000 
1 1 1 111 

 

X Y Z VAL 

0 0 0 011 
0 0 1 110 
0 1 0 - - - 
0 1 1 - - - 
1 0 0 - - - 
1 0 1 100 
1 1 0 000 
1 1 1 111 

 

(a) (b) (c) 

Figure 16.3: A completely specified table (a), and an incompletely specified table (b) & (c).   

16.4 Standard Decoders 

Before we study the internals of a standard decoder, we first need to review some characteristics of a few basic 
gates: the basic AND & OR logic gates. You can effectively kill the output of a AND & OR gates by 
connecting an input to ‘0’ and ‘1’, respectively. Figure 16.4 shows a gate-level depiction of the gate-killing 
functionality. The circuit in Figure 16.4(a) uses an inverted arrowhead to indicate a connection with ground 
(‘0’). Figure 16.4 (b) shows the slanted T symbol to indicate a connection to the circuit’s high voltage (‘1’).  

  

(a) (b) 

Figure 16.4: Killing the AND (a) and OR (b) gates. 

While generic decoders have an unspecified number of inputs and outputs, standard decoders have a 
“standard” relationship between the number of inputs and outputs, as well as the form of the outputs. When 
you hear the word “decoder”, it does not refer to a specific type of input/output relationship for the circuit. As a 
result, we choose to model decoders are either generic or “standard” decoders. When you hear decoder, you 
don’t know much about the circuit; if you hear “standard decoder”, you know something about the circuit.  

The standard decoder fixes the relationship between the number and form of circuit inputs and outputs. Figure 
16.5(a) shows a gate-level model of a 2:4 standard decoder. Due to the configurations of the inputs S1 and S0 
in Figure 16.5(a), only one of the AND gates is non-dead at a given time. Thus at any given instance in, only 
one of the outputs F0, F1, F2 or F3 is a ‘1’, while the three others are ‘0’. The condition that makes this a 
standard decoder is the relationship between the number and form of the inputs and outputs. The bulleted items 
below highlights these main attributes:  

 Standard decoders always have a binary-type relationship between the number of inputs and 
outputs. For example, standard decoders come in flavors such as 1:2, 2:4, 3:8, 4:16, etc. This 
progression has an n:2n relationship. The first digit refers to the number of inputs to the circuit 
(control variables) while the second variable refers to the number of circuit data outputs. The 
“n” input variables can reference 2n unique output combinations.  

 Although the schematic diagram of circuit of Figure 16.5(b) is adequate to describe a standard 
decoder, the schematic diagram of Figure 16.5(c) is more common. The small numbers 
associated the circuit inputs and outputs in Figure 16.5(b) indicate a weighting on those inputs 
and outputs. You must attach these numbers unless you use the bundle notation in Figure 
16.5(c).  
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 Only one output of the standard decoder is active at a given time because we configure the 
control variables such that only one of the internal AND gates is non-dead. All of the outputs 
except one are high at a given time while the other output is low. The 2:4 decoder has four 
possible output combinations: “0001”, “0010”, “0100”, “1000”, which is a one-hot code.  

 

 
 

(a) (b) (c) 

Figure 16.5: A standard 2:4 decoder in schematic and circuit forms. 

Figure 16.6 shows the circuit and the associated schematic diagram for a NAND gate-based standard decoder. 
The final result of the NAND-based decoder is the opposite of the AND-based decoder in that only one of the 
outputs is ‘0’ at a given time while the other outputs are in a ‘1’ state. The bubbles on the output of the Figure 
16.6(b) are roughly the same bubbles on the NAND gates. This version of the 2:4 decoder has four possible 
output combinations: “1110”, “1101”, “1011”, “0111”. We refer to this as a “one-cold” code; an ingenious 
name. 

 

 

(a) (b) 

Figure 16.6: A standard 2:4 decoder with inverted outputs.  
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Example 16.1: Timing Diagram for a Standard Decoder 

Use the following black box model for a standard 2:4 decoder to complete the following 
timing diagram.  

 

 

Solution: Since the problem states that this is a standard decoder, the S input must be the selector inputs while 
the F are the outputs. The selection input bundle is two bits wide, which enables it to select one of four 
different possible outputs. The problem description uses bundle notation in order to simplify the problem.  

There are only two selector bits, but the solution uses hex notation; the unused bits are all zero. For example, 
the hex value of “0x3” represents “0011”, but the first two bits do not affect the output selection; this problem 
uses only the two lower bits of the hex notation.  

Figure 16.7 shows the final solution to this example; the solution opts to use hex notation. The solution has a 
nice binary relationship between the selector inputs and the outputs. Figure 16.8 shows an alternate solution to 
this example, which clearly shows that only one output is a ‘1’ at any given time.  

 

Figure 16.7: The solution to this example.  

 

Figure 16.8: An alternate solution to for this example.   
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Example 16.2: Timing Diagram for a Standard Decoder 

Use the following black box model for a standard 2:4 decoder to complete the following 
timing diagram.  

 

 

Solution: We start this problem by knowing what the output values are. We need to determine the values of the 
selector input S that generates the given output values. Since this is a standard 2:4 decoder, there can only be 
four output values. This solution also uses bundle notation. Fun stuff.  

 

Figure 16.9: The solution to this problem.  

 

 

 

 

Example 16.3: Standard Decoder with Enable Input 

Design a standard 2:4 decoder that has an EN input (enable). When the EN input is ‘1’, the 
decoder outputs are all ‘0’. When the EN input is ‘0’, the decoder outputs follow the 
accepted definition of a standard decoder.  

Solution: Standard decoders often include more than the standard control inputs. One of the typical controls on 
the decoder’s inputs is an enable signal. Once standard decoders add more input control signals, the underlying 
circuitry becomes more complicated and not worth drawing. We provide a table that describes the behavior of 
such a circuit. Figure 16.10(a) and Figure 16.10(b) show a schematic symbol and a table describing the 
operation of a standard decoder with an enable input, respectively.  
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EN S F 
0 - - 0 0 0 0 
1 0 0 0 0 0 1 
1 0 1 0 0 1 0 
1 1 0 0 1 0 0 
1 1 1 1 0 0 0 

 

(a) (b) 

Figure 16.10: A 2:4 decoder with an enable (a) and its behavior described in tablature format (b).  

Figure 16.11 shows a timing diagram that describes the behavior of the circuit described in this example.  
There are two main features worth noting in this timing diagram.  

 The F bundle output is only all ‘0’s when the enable input (EN) is ‘0’.  

 Any time the EN input is ‘1’, one and only one of the F bundle output signals are ‘1’ while the 
remainder of the signals are ‘0’. This characteristic provides a quick but excellent method to 
verify proper operation of the decoder.  

 

Figure 16.11: An example timing diagram for this example.  

 

16.5 Digital Design Foundation Notation: Generic Decoder 

We consider the generic decoder to be one of our Digital Design Foundation circuits. We consider the 
generic decoder to be a controlled circuit; Figure 16.12 shows the generic decoder in appropriate 
foundation notation. The generic decoder models a table, so the DATA_IN inputs act as the 
independent variables and the DATA_OUT signals are the dependent variables. We consider the 
generic decoder does not have either control inputs or status outputs. Table 16.1 provides a description 
of all the inputs and outputs to the generic decoder.  
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Figure 16.12: Data signals for a generic decoder.  

 Signal Name Description 

IN
P

U
T

 
D

A
T

A
 

DATA The independent variable of the look-up-table    

O
U

T
P

U
T

 
D

A
T

A
 

DATA The dependent variable of the look-up-table  

C
O

N
T

R
O

L
 

n/a - 

S
T

A
T

U
S

 

n/a - 

Table 16.1: The foundation matrix for a generic decoder.  

16.6 Digital Design Foundation Notation: Standard Decoder 

We consider the generic decoder to be one of our Digital Design Foundation circuits. We consider the 
standard decoder to be a controlled circuit; Figure 16.12 shows the standard decoder in appropriate 
foundation notation. The standard decoder has no data inputs; the only inputs are the SEL inputs, 
which decide the exact format of the DATA_OUT signals. By definition, the DATA_OUT signals 
form a one-hot code. Table 16.2 provides a description of all the inputs and outputs to the standard 
decoder.  

 

Figure 16.13: Control and status signals for a 2:4 standard decoder.  
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 Signal Name Description 

IN
P

U
T

 
D

A
T

A
 

n/a - 
O

U
T

P
U

T
 

D
A

T
A

 

n/a -  

C
O

N
T

R
O

L
 

SEL The inputs that select the desired form of the output.  

S
T

A
T

U
S

 

S(3:0) The output signals chosen by the SEL input.   

Table 16.2: The foundation matrix for a standard decoder.  
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16.7 Chapter Summary 

 

 The official definition of a decoder: combinatorial (or non-sequential) digital device that establishes a 
functional relationship between the device input(s) and output(s). This definition defines a generic 
decoder, which is not to be confused with the standard decoder. We typically refer to any circuit we can 
model using a table (such as a truth table) a decoder.  

 Standard decoders are a special type of decoder. The inputs and outputs of the standard decoder exhibit an 
n:2n relationship. In particular, if a standard decoder has n inputs, it necessarily has 2n outputs. We often 
use standard decoders in conjunction with hardware designed to access memory. 

 Mealy’s Seventh Law of Digital Design: Always first consider modeling a digital circuit using some type 
of a look-up table (LUT). 
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16.8 Chapter Exercises 

 

1) Implement the following functions using a generic decoder.    

 

 

(a) (b) 
 

 

2) Use the following black box model for a standard 2:4 decoder to complete the following timing diagram. 

 

 

 

 
 

 

3) Use the following black box model for a standard 2:4 decoder to complete the following timing diagram 

.  
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4) Use the following black box model for a standard 2:4 decoder to complete the following timing diagram. 

 

 

 

 
 

 

5) Based on the standard 2:4 Decoder below, complete the following timing diagram by entering the values 
for signals s1 and s2 that would generate the listed output waveforms. Assume that propagation delays are 
negligible. Be sure to annotate you solution to this problem. 

 

 

 

 

6) Briefly describe the differences between a generic and standard decoder.  
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7) Use the schematic diagram to complete the F2 and F1 outputs of the provided timing diagram. Consider 
the decoder to be a standard 2:4 decoder. Assume that propagation delays are too small to worry about. 
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16.9 Design Problems 

 

For the following problems:  

 Use some type of decoder in your design; you can use other foundation modules when appropriate, 
but minimize your use of simple logic gates in favor of decoders.  

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution 

 Minimize the use of hardware in your solution 

 State the types of control your circuit uses (“no control”, “internal control”, and/or “external control”). 

 

1) Design a 2’s complement validity checking circuit for an RCA module. The single output of the circuit 
indicates when the result of the addition is valid.   

2) Design a BCD-to-7 segment decoder. The circuit converts a number in BCD format to a form that can be 
used to indicate that number on a 7-segment display.  

3) Design a BCD-to-7 segment decoder. The circuit converts a number in BCD format to a form that can be 
used to indicate that number on a 7-segment display and look like proper decimal digits when read in a 
mirror.   

4) Design a circuit that has three inputs and two outputs. One of the outputs indicates when the 3-bit input 
value is less than three; the other output indicates then the input is greater than five.  

5) Design a circuit that has four inputs and two outputs. One output indicates when the four inputs 
(considered a binary number) are even and less than 8; the other output indicates when the four input bits 
are odd and greater than 10.  

6) Design a circuit whose 3-bit output is two greater than the 3-bit input. The binary count should wrap when 
the output value is greater than 1112.  

7) Design a circuit that has four inputs and three outputs. The four inputs are considered two 2-bit inputs. 
One output consider the two inputs to be binary numbers and indicates when the two input number are not 
equivalent. The other output considers the two inputs to be stone-age binary inputs and indicates when the 
two binary inputs are equivalent. The third output indicates when the previously described outputs are both 
in an “on”.  

8) Design a circuit that has an output that indicates when the four-bit binary number on the input is a prime 
number. For this problem: 

 assume an input value of “0000” never occurs (be sure to note this fact where appropriate) 

 assume the decimal value of 1 is a prime number  

9) Design a circuit whose unsigned binary output represent the square of the circuit’s 4-bit unsigned binary 
input.   

10) Design a circuit whose outputs represent the square root of the circuit’s 4-bit input. Round the output 
either up or down when necessary. 

11) A given circuit has four inputs. Two of the inputs are considered the fractional portion of a binary number 
while the other two inputs are considered the integral portion of the binary number. The outputs of this 
circuit should represent a 2-bit binary number associated with the 4-bit input but with rounding up and 
down. In other words, if the input is greater or equal to 0.5, the output should represent the input rounded 
up. Otherwise, the output should represent the input rounded down to the nearest integer. 

12) Design a circuit whose unsigned binary output represent the square of the circuit’s 4-bit signed binary 
input (RC format).  
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13) Design a circuit that converts a three-digit decimal number to an 8-bit unsigned binary number. This 
circuit has three BCD inputs, which means four bits for the 100’s, 10’s, and 1’s digit. The 8-bit output will 
always be sufficient to encode the three digital input value.  

14) Design a circuit in with the following specifications: if the RND input is asserted, the 24-bit input is 
rounded down to the nearest multiple of 8; otherwise the input is passed through unchanged to the output.  

15) Design a circuit that adds two unsigned 10-bit numbers (which generates an 11-bit result including the 
carryout) and is then “scaled” by removing the three least significant bits to form an 8-bit result. 
Regarding the three least significant bits removed, an input to this circuit decides whether the 8-bit output 
is the result of a rounding up or truncation operation (for example 31.5 rounds up to 32 and truncates to 
31). HINT: 0.12 = 0.510.  

 



Free Range Digital Design Foundation Modeling Chapter 17 

 

 - 241 -  

 

17 Multiplexors 

 

17.1 Introduction 

Our approach to digital design has been somewhat limited because we are missing one of the most basic 
modules in digital design: the multiplexor. This chapter introduces the multiplexor at a low level, then quickly 
abstracts to the module-level in order to retain the simplicity of the device’s operation.   

Main Chapter Topics 

DIGITAL DESIGN FOUNDATION MODULE: THE MULTIPLEXOR: This chapter 
introduces the notion of a multiplexor from both a low-level and user-level 
standpoint. The low-level multiplexor hardware is instructive but is multiplexors 
quickly become complex as they increase in complexity.   

 

Chapter Acquired Skills 

 Be able to describe the basic operation of a multiplexor  

 Be able to use multiplexors in digital designs  

 Be able to describe the underlying hardware of a simple multiplexor 

 

17.2 Making Decisions in Hardware and Software  

Because computer programs generally “react” to various things, there are programming constructs that handle 
these reactions. The general notion in programming is that there is one processor and this processor does one 
thing at a time1. Computer programs make decisions based on the current conditions in a program: the program 
either executes one set of instructions or “decides” to execute another set of instructions. A “conditional 
statement” is the mechanism the program uses to choose one path of execution over another.  

Hardware design is similar to software design. Your hardware must be able to react to certain conditions in the 
circuit and choose one “result” over another “result” based on those conditions. A multiplexor allows the 
hardware to choose one thing over another thing in digital circuits. There is a huge difference between 
decisions making in software vs. decision making in hardware. The notion in software design is that the 
computer program chooses one path of execution over another path; it would be inefficient to “execute” both 
paths and then choose the result of interest.  

The problem arises in hardware when you choose between two “results“. In hardware, the circuitry generates 
all options in parallel (or concurrently). The multiplexor inputs all the options, and then allows a signal to 
choose which of the inputs appears on the output of the multiplexor. If you need to choose between two 
different results, the hardware generates both results and then chooses the desired result based on some signal 
(condition) in the circuit. Therefore, when you’re designing “choosing” operations in hardware, you must 
generate every possible "desired result" and then choose the result you need.  

                                                           

1 Generally speaking, a processor executes one instruction at a time; it executes one instruction and then moves on to the 
next instruction.  
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17.3 Multiplexors  

The multiplexor is another Digital Design Foundation module. When you hear the word multiplexor, or MUX 
as most people refer to it2, you need to think “selector circuit”. A MUX is a generally a circuit with many 
inputs and one output; the single output of the device represents a direct transfer of one of the inputs to the 
output under direction of the MUX’s control input.  

The first step in developing the MUX is the selection circuitry in Figure 17.1(a), which you should recognize 
as a standard decoder. Two variables S1 and S0 serve as selection variables, so only one of the Px outputs is a 
‘1’ at any given time . In Figure 17.1(a), three of the AND gates are dead, which officially creates a one-hot 
code on the Px outputs.  

Figure 17.1(b) shows the final portion of the MUX circuitry. Knowing that three of the AND gates are dead, 
the only way that the circuit output F can be a ‘1’ is if the Dx input on the un-dead AND gate is a ‘1’. If the D 
input on the non-dead gate is a ‘0’, all of the AND gates are dead and the F output is a ‘0’. If however, the D 
input on the non-dead gate is a ‘1’, then the non-dead AND gate output is a ‘1’, the OR gate has an input of ‘1’, 
so the OR gate output F is ‘1’. The circuit in Figure 17.1(b) effectively transfers the value of one D input to the 
output F. The MUX thus selects one of the D inputs to appear on the F output. The D input that appears on the 
F output depends upon which AND gate is un-dead, which depends on the values of the S1 and S0 data 
selection inputs.  

  

(a) (b) 

Figure 17.1: The MUX input circuitry (a) and the complete MUX (b). 

We refer to the MUX in Figure 17.1(b) as a 4:1 MUX because the device chooses between one of four inputs 
to appear on the single output. MUXes generally have a binary relationship between the number of selection 
variables and the number of data inputs; common flavors of MUXes include 2:1, 4:1, 8:1, 16:1 etc. This is the 
most basic form of a MUX. In reality, MUXes come in many different flavors and quickly become complex 
enough that you’ll avoid modeling them on the gate-level.  

 

                                                           
2 And for the record, the correct pronunciation is “mucks” and not “mooks”.  
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Example 17.1: 4:1 MUX Timing Diagram 

Use the following block diagram to complete the provided timing diagram. For this problem, 
consider the block diagram to represent a 4:1 MUX containing no surprises.  

 

 

 

Solution: Since this is a 4:1 MUX, the output matches one of the four data inputs depending upon which input 
the selector inputs select. The SEL input is in bundle notation while we expand the D input bundled to make 
the problem clearer. Figure 17.2 shows the solution to this example.  

 

Figure 17.2: The solution to Example 17.1. 
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Example 17-2: 4:1 Bundle-Based MUX Timing Diagram 

Using the following diagram of a 4:1 MUX, complete the provided timing diagram.  

 

 

 

Solution: First, the schematic uses a new and distinctive shape for the MUX. Circuit diagrams always use this 
shape to represent MUXes as the shape transfers information to the person reading the diagram. When you see 
this shape in a schematic, you’ll immediately know the purpose of the device: choosing which input appears on 
the output.  

It is important that the MUX’s data inputs also contain indexing numbers. The numbers associated with the 
data inputs range from [0,3], which by design corresponds to the numbers that you can represent by the two 
control inputs. If the data inputs are not numbered, you’ll not know which input appears on the output. Figure 
17.3 shows the solution to this example. Using vertical dotted lines helps you generate the solution. 
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Figure 17.3: The solution to this example. 

 

 

 

Example 17.3: Selection Circuit #1  

Design a circuit that has three 8-bit unsigned binary inputs A, B, and C. The circuit outputs A + B if 
the circuit’s button inputs is asserted (BTN=’1’); otherwise, the circuit outputs A + C. The circuit’s 
output is also an 8-bit unsigned binary value. Don’t worry about the validity of the sum outputs. 
Provide the top two levels of BBDs for this problem. Use no more than one RCA in your design, but 
in general, minimize your use of hardware for this design. Also, state what is controlling this circuit. 

Solution:  The first step is drawing a block diagram of the final circuit as we show in Figure 17.4. 

 

Figure 17.4: Top-level BBD for the solution.  

The next step is to make an inventory of modules this circuit requires to solve the problem. The problem states 
not to use more than one RCA, so you know there is an RCA. This means that we must configure the RCA to 
do both of the addition operations. The problem states that we need to add A to either B or C dependent upon a 
button press; this means there is a “selection” happening in the circuit. Anytime a circuit is “selecting” 
something, the circuit requires a MUX . Examining the two summing operations shows that we’re always 
adding A; the item we need to select is the value we’re adding, which is either B or C. This means the inputs to 
the MUX are B & C, the output of the MUX becomes the second input to the RCA, and the circuit’s BTN 
input connects to the MUX control. Figure 17.5 show the lower-level BBD for this problem.  
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Figure 17.5: The final circuit solution for this example. 

The circuit in Figure 17.5 has external control. The MUX contains a control input, which connects to a signal 
external to the circuit.  

We could have done this problem using two RCAs. In this case, each RCA would be responsible for the one of 
the two addition operations; the MUX would then choose between the desired sums for the circuit’s outputs. 
This solution would be less desirable than our solution because the circuit requires two RCAs, whereas our 
solution requires one RCA.    

 

 

 

Example 17.4: Selection Circuit #2 

Design a circuit that has three 8-bit unsigned binary inputs A, B, and C. The circuit outputs A + B if 
that addition operation does not generate a carry; otherwise the circuit outputs A+ C. The circuit’s 
output is also an 8-bit unsigned binary value. Don’t worry about the validity of the sum outputs. 
Provide the top two levels of BBDs for this problem. Minimize your use of hardware for this design. 
Also, state what is controlling this circuit. 

Solution: The first step is drawing a block diagram of the final circuit as we show in Figure 17.6. 

 

Figure 17.6: Top-level BBD for the solution.  

The next step is to make an inventory of modules this circuit requires to solve the problem. The problem states 
that we need to output the result of one of two additions. Unlike the previous example, this problem does not 
constrain us to using only one RCA, which is fortunate because we could not solve the problem otherwise. The 
condition that needs to select the output is dependent upon one of the addition operations, which means the Co 
from that particular RCA chooses either the A + B or A +C results. Because something in this circuit is being 
“chosen”, our circuit also requires a MUX. The MUX in this problem chooses the outputs of one of two RCAs 
to appear on the circuit’s output. Figure 17.7 shows the final lower-level BBD for this problem.  

The MUX in this circuit has a control input, which connects to the Co output of the one of the circuit’s RCAs. 
Because of this internal connection, this circuit has internal control.  
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Figure 17.7: The final circuit solution for this example. 

 

 

 

Example 17.5: Selection Circuit #3 

Design a circuit that has three 8-bit unsigned binary inputs A, B, and C. The circuit outputs A + B if the 
circuit’s button inputs is asserted (BTN=’1’); otherwise, the circuit outputs A + C. The circuit’s output 
is also an 8-bit unsigned binary value. If the summation generates a carry-out, then the circuit outputs 
zero. Provide the top two levels of BBDs for this problem. Minimize your use of hardware for this 
design. Also, state what is controlling this circuit. 

Solution:  The first step is drawing a block diagram of the final circuit as we show in Figure 17.8. 

 

Figure 17.8: Top-level BBD for this problem.  

The next step is to make an inventory of modules this circuit requires to solve the problem. This problem is a 
combination of the previous two problem, as we’re both choosing the addition operation and we’re choosing 
between the result of the chosen operation or zero to appear on the circuit output based on whether the circuit 
generated a carry-out or not. This means we only need one RCA; we use a MUX to choose the addition 
operation, which the BTN input controls. We also require a second MUX to choose between the result of the 
addition operation or zero, which depends upon whether the chosen addition operation generated a carry or not. 
Figure 17.9 shows the lower-level BBD for our solution.  

This circuit has two MUXes; an external input controls one MUX while an internal input controls the other 
MUX. This circuit thus has both external and internal control.  
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Figure 17.9: The final circuit solution for this example. 

 

17.4 Digital Design Foundation Notation: MUX 

We consider the MUX to be one of our Digital Design Foundation circuits. The MUX is a controlled 
circuit; Figure 17.10 shows the MUX in appropriate foundation notation. The SEL signal is a control 
input and decides which DATA_IN signal becomes the DATA_OUT signal. The MUX thus has a 
control input but has no status outputs. Table 17.1 provides a description of the MUX’s inputs and 
outputs.  

 

Figure 17.10: Data and control signals for a 4:1 MUX.  
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 Signal Name Description 

IN
P

U
T

 
D

A
T

A
 

A, B, C, D 
Data inputs to the MUX; MUXes can have any number of data inputs. One of 
these data inputs becomes the single data output.  

O
U

T
P

U
T

 
D

A
T

A
 

F A single output, which is one of the inputs as selected by the SEL signal. 

C
O

N
T

R
O

L
 

SEL 
Selects which data input appears on F. The width of the SEL signal is such that 
2SEL ≥ to the number of data inputs.  

S
T

A
T

U
S

 

n/a - 

Table 17.1: The foundation matrix for a MUX. 
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17.5 Chapter Summary 

 

 The multiplexor, or MUX, is a standard digital circuit used to “select” a value. In general, the output of the 
MUX is one of the data inputs as chosen by the selector inputs. Simple MUX designs are possible using 
gate-level implementations.  

 The MUX has a distinctive shape when it appears in circuit diagram; this shape is always used in circuit 
diagrams in order to let the reader know a “selection” operation is taking place.  

 Digital design generally uses MUXes as selection devices. Contrary to computer programming, digital 
design typically uses hardware to generate all possible results for a given problem and then “selects” the 
correct result (via a MUX) based on the value of the signal connected to the MUX’s data selection inputs.  
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17.6 Chapter Exercises 

 

1) Briefly describe the special relationship between a MUX and a standard decoder. 

2) Use the following block diagram to complete the provided timing diagram. For this problem, consider the 
block diagram to represent a basic 4:1 MUX.  

 

 

 

3) The following timing diagram completely defines a function F(A,B,C) that has been implemented on an 
8:1 MUX. The control variables are A, B, and C (A is the most significant bit and C is the least significant 
bit) and the output is F. Write an expression for this function in reduced NAND/NAND form. Assume 
propagation delays are negligible.  
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4) Use the following block diagram to complete the provided timing diagram. For this problem, consider the 
block diagram to represent a basic 4:1 MUX.  

 

 

 

5) Use the listed circuit to complete signal F in the following timing diagram.  
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6) Using the following diagram of a 4:1 MUX, complete the provided timing diagram.  
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7) Use the following circuit diagram to complete the empty rows on the accompanying timing diagram. Use 
bus notation for all bundles (Co is the only non-bundle signal; 0x indicates hexadecimal). 
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8) Use the following circuit diagram to complete the empty rows on the accompanying timing diagram. Use 
bus notation for all bundles. Assume the inputs and outputs are unsigned binary.  

 

 

 

 

 

 

9) Briefly describe the special relationship between a MUX and a standard decoder.  
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17.7 Design Problems 

 

For the following problems:  

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution 

 Minimize the use of hardware in your solution 

 Use only digital design foundation modules in your solution 

 State the types of control your circuit uses (“no control”, “internal control”, and/or “external control”). 

 

1) Design a circuit that translates an 8-bit number in signed magnitude form to an 8-bit number in diminished 
radix complement form. 

2) Design a circuit that translates an 8-bit number in diminished radix complement form to an 8-bit number 
in signed magnitude form.  

3) Design a circuit that translates an 8-bit binary number in radix complement form to an 8-bit number in 
diminished radix complement form. For this problem, assume the RC number will always be less than 
zero.  

4) Design a special 4-bit RCA with the following specifications. This circuit has an input named INV_OUT; 
when this input is in the ‘1’ state, the output of the RCA is inverted from what it would normally be.  

5) Design a circuit that adds two 8-bit values. If the summation generates a carry-out, the output then 
displays all zeros; otherwise, the output displays the 8-bit summation result.  

6) Design a circuit that calculates the absolute value of a 10-bit signed binary number in RC form.  

7) Design a circuit that provides the absolute value for an 8-bit signed binary number. Assume the number is 
in sign magnitude form.  

8) Design a circuit that provides the absolute value for an 8-bit signed binary number. Assume the number is 
in diminished radix complement form.  

9) Design a circuit that performs the following operation: if a button is pressed, the circuit outputs the results 
of A+B; otherwise the circuit outputs the value of A-B. Consider the values of A & B to be 8-bit signed 
binary values in RC form. This problem does not check the validity of the result. For this problem, assume 
the pressed button generates a ‘1’.  

10) Design a circuit the checks the validity of a the result of an addition operation on two 10-bit signed binary 
numbers in RC form.  

11) Design a circuit that can add two numbers according to the following specifications. If the sum of A & B 
generates a carry, the circuit outputs A; otherwise the circuit outputs the sum of A & B. Assume A, B, & 
the sum are unsigned 8-bit values.  

12) Design a circuit that outputs the sum of A & B if both A & B are both less than 128; otherwise the circuit 
outputs B. Assume A, B, & the sum are unsigned 8-bit values. No need to deal with carry generation.  

13) Design a circuit that outputs the sum of A & B if and only if one of the operands is negative; otherwise the 
circuit outputs A-B. Assume A, B, and the result are all signed 8-bit binary numbers in RC (2’s 
complement) format. If the result is not valid, the circuit output zero and turns on an LED.  

14) Design a circuit that outputs the result of the following operation if the operation does not generate a carry: 
A+B+C (addition); otherwise, the circuit should output C. The circuit has an extra output that indicates 
which result is being output. For this problem, assume A, B, C, & the result are al 12-bit unsigned binary 
numbers.  
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15) Design a circuit that adds three 10-bit unsigned binary numbers and outputs the correct result under all 
circumstances.  

16) Design a circuit on a block diagram level that performs one of several mathematical operations. Your 
design should use the standard circuits you’ve learned about thus far in digital design. Minimize the use of 
hardware in your design; use no more than one adder. Be sure to label everything! The circuit operates as 
follows: 

Depending on the value of the two select inputs, the single output should reflect the result of one of the 
following operations. It does not matter which select values select which operation but make sure the 
combinations associated with the select inputs can generate each of the following operations:   

RES = A + A; SEL = “00” 

RES = A + C; SEL = “01” 

RES = A + B; SEL = “10” 

RES = B + C; SEL = “11” 

 

For this problem:   

 Assume inputs A, B, C and the output are all 12-bit unsigned binary values 

 Assume there are no issues or problems with carry out values 

 

17) Repeat the previous problem but use only one RCA in your design 

18) Design a circuit on a block diagram level with an output that represents either a mathematical operation or 
another input. The circuit operates as follows: 

if input SEL equals ‘1’, then the circuit outputs the result of the operations A + B + C 

if input SEL equals ‘0’, then the circuit outputs the value of D directly.  

For this problem:  

 Assume inputs A, B, C, D, and the output are all 12-bit values 

 Assume there are no issues or problems with carry out  values 

 

19) Design the following digital circuit: if the two 8-bit binary numbers (RC) are both positive, they are added 
and the result of the addition becomes the 8-bit output of the circuit. Otherwise, the circuit’s 8-bit output is 
set to 0. The circuit also has a VALID output that indicates when the result of the addition is valid or not.  

20) Design a circuit that performs as follows: If both A and B inputs are both positive or both negative, the 
circuit outputs a -1 (in signed binary radix complement form); otherwise the circuit outputs the sum of A + 
B. Consider both the inputs and outputs to be 8-bit signed binary numbers in radix complement form. For 
this problem, disregard any issues having to do with a carry-out.  

21) Design a circuit that has one 8-bit input, A, and two 8-bit outputs. Both the inputs and outputs are signed 
binary numbers in radix complement form. The circuit’s two outputs, POS_A and NEG_A, represent the 
negative and positive version of the input value, respectively. 

22) Design a circuit that has two 8-bit signed binary inputs and one 8-bit signed binary output. If both inputs 
are negative, and the sum of A + B generates a carry-out, then the sum of A + B is output; otherwise, the 
value of B is output. The circuit also has a VALID output that indicates when the result of the addition is 
valid or not.  
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23) Design a circuit that performs as follows: If the sum of the circuit’s two 10-bit unsigned binary inputs (A, 
B) generates a carry-out, and both of the two 10-bit inputs are odd, the then the circuit outputs the A input; 
otherwise, the circuit outputs B input.  

24) Design a circuit that adds the magnitude of the three 4-bit signed binary numbers (RC form). The circuit’s 
output should be in unsigned binary form with a sufficient amount of bits to accurately represent the 
required summation. For this problem, assume that -8 will never be included an input value. 

25) Design a circuit that performs as follows: The circuit contains a single button input (BTN) and a single 4-
bit  binary input. The circuit contains one single-bit output. When the button is pressed (input value is a 
‘1’), the circuit treats the 4-bit input as an unsigned binary number; the output indicates when the 4-bit 
input is greater than 7. When the button is not pressed, the circuit treats the 4-bit input as a signed binary 
number in RC form and the circuit output indicates when this number is negative and odd.  

26) Design a circuit that adds two unsigned 10-bit numbers (which generates an 11-bit result including the 
carryout) and is then “scaled” by removing the three least significant bits to form an 8-bit result. 
Regarding the three least significant bits removed, an input to this circuit decides whether the 8-bit output 
is the result of a rounding up or truncation operation (for example 31.5 rounds up to 32 and truncates to 
31).  

27) Design a circuit that adds four unsigned 10-bit numbers (A, B, C, D). The result should have the minimum 
number of bits while generating the correct result (including number of bits) of the addition operations. 
Use no more than three 10-bit RCAs in your design. If all the inputs values are not even multiples of 8, 
then the circuit outputs all zeros.  

28) Design a circuit that adds two signed 12-bit numbers A & B. If this operation generates no carry and no 
overflow, then the circuit outputs the result of the operation (A + B). If only a carry is generated without 
an overflow, the circuit outputs !A; if only an overflow is generated with no carry generated, the circuit 
outputs !B; if the operation generates both an overflow and carry, the circuit outputs 0x000 (hex). The 
circuit has an output NO_ERR that indicates when no overflow and no carry is generated. Use the 
overflow generator model listed below (be sure to connect it properly; you don’t need to describe it at a 
low level). The notion of overflow is the same as the answer being valid, meaning that if there is an 
overflow, the result is not value. If there is no overflow, the answer is valid.  

29) Design a circuit that adds two signed 12-bit numbers A & B in radix complement form.  

 if (A + B) generates no carry and no overflow, then the circuit outputs (A + B)  

 if (A + B) generates a carry without an overflow, the circuit outputs !A 

 if (A + B) generates an overflow without a carry, the circuit outputs !B 

 if (A + B) generates both an overflow and a carry, the circuit outputs (A – B)  

 

30) Use as many 2:1 MUXes as you need to effectively create a 4:1 MUX. For this problem, consider all 
MUX inputs to be one-bit wide signals.   

31) Use as many 2:1 MUXes as you need to effectively create an 8:1 MUX. For this problem, consider all 
MUX inputs to be one-bit wide signals.   

32) Design a circuit that outputs the sum of A + C when a button is pressed, otherwise outputs the sum of A + 
B. Consider A, B, C, and the SUM to be 10-bit unsigned binary outputs. Assume the addition does not 
generate a carry.  Consider a pressed button to output a ‘1’.  

33) Design a circuit that adds two 8-bit unsigned binary values. If the addition operation generates a carry, the 
circuit outputs zero and turns on an LED; otherwise the circuit outputs the sum of the two values and turns 
the LED off. Assume the addition does not generate a carry.  
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34) Design a circuit that performs as follows: The two-bit SEL input selects which one of four operations 
appears on the output as indicated to the right. The circuit also has an output Z that indicates when the 
output is zero. Consider the inputs and the non-Z output to be 10-bit signed binary values (RC format). 
Also, include a VALID output that indicates when the output is valid. Use only one RCA in your design.  

SEL Operation  
“00” 2A 
“01” 2B 
“10” A+B 
“11” -1 

 

35) Design a circuit that adds two signed 12-bit numbers A & B in radix complement form.  

 if (A + B) generates no carry and no overflow, then the circuit outputs (A + B)  

 if (A + B) generates a carry without an overflow, the circuit outputs A  

 if (A + B) generates an overflow without a carry, the circuit outputs B   
 if (A + B) generates both an overflow and a carry, the circuit outputs (A – B)  

The also circuit has an output NO_ERR that indicates when no overflow and no carry is generated. Feel free to 
use the overflow generator (OFLOW) and/or 2’s complement (2sComp) models listed below in your design.  

  

 
 

 

36) Design a circuit that inputs two 6-bit unsigned values and outputs one 6-bit unsigned value. If both inputs 
are even and one input is ≥ 32 while the other input is < 32, output the sum of the two inputs; otherwise 
output zero. Don’t worry about any carry-out issues.  

37) Design a circuit that performs as follows: The circuit has two 10-bit unsigned binary inputs (A,B). If the 
value of A + 2 (addition) is greater than or equal to B + 5 (addition), the circuit outputs the unchanged A 
value; otherwise, the circuit outputs the unchanged B value. For this problem, assume the result of the 
addition operations are always valid.  

38) Design a circuit (provide a block diagram) that performs the following operations. If the BTN is asserted, 
the circuit outputs 2A + 2B; otherwise, the circuit outputs 2A – 2B. Assume that A & B are 10-bit signed 
values in RC form. This circuit has two outputs: RES, which is a 10-bit result (also in RC form) and 
VALID, which indicates if the 10-bit RES output is value is valid based on the math operation performed 
by the circuit. Feel free to use the provided 2sCOMP (does a 2’s compliment) and VALID_CKT (checks 
for validity) boxes below (no need to define them).  

  

 

 

 

39) Design a circuit that performs as follows: The circuit contains three 5-bit binary inputs and one 5-bit 
binary output; both inputs and output are in RC form. The circuit outputs the input value that has the 
largest magnitude of the three inputs.  
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40) Design a circuit that has two 8-bit unsigned binary inputs A & B, and one 8-bit unsigned binary output. If 
both inputs are represent even numbers, are not equal, and the sum of A + B does not generate a carry-out, 
then the sum of A + B is output; otherwise, the value of B is output. For this problem, disregard the carry-
out on the final sum output of the circuit. Use o 

41) Design the following digital circuit; consider all inputs to be 12-bit unsigned binary numbers. If the A and 
B inputs are equal, and the C and D inputs are equal, the 12-bit output of the circuit is the sum of A and B. 
Otherwise, the 12-bit circuit output is the sum of C and D. Include a VALID output the indicates if the 
output value is valid.  

42) Design a circuit that performs as follows: If both A and B inputs are both positive or both negative, the 
circuit outputs a -1 (in signed binary radix complement form); otherwise the circuit outputs the sum of A + 
B. Consider both the inputs and outputs to be 8-bit signed binary numbers in radix compliment form. 
Include a VALID output that indicates if the output value is valid. 

43) Design a circuit that has one 8-bit input and three 8-bit outputs. Both the inputs and outputs are signed 
binary numbers in radix complement form. The circuit’s three outputs represent two less than, two greater 
than, and four greater than the circuit’s input, respectively. For this problem, assume the input value is 
always between 2010 and 12010. Use only foundation modules in your design. 

44) Design the following circuit. The circuit has three 8-bit unsigned binary inputs A, B, & C. If the result of 
A + B generates a carry-out and the A & B are not equivalent, the circuit outputs C; otherwise the circuit 
outputs the sum of A + B. This circuit also has an output GT that indicates when the output is greater than 
E416. Use only standard digital modules in your design. Assume the sum will always be valid.  

45) Design a circuit that has one 8-bit input A, a single bit input BTN3, and one 8-bit output F. Both 8-bit 
input and output are signed binary numbers in radix complement form. If the value of A is equal to zero, 
the circuit outputs zero. Otherwise the circuit outputs A if BTN3 is pressed or –A if BTN3 is not pressed. 
Assume that a button press generates a ‘1’ value for the input. 

46) Design a circuit that performs as follows: The circuit contains a single button input (BTN) and a single 4-
bit binary input. The circuit contains one single-bit output. When the button is pressed (input value is a 
‘1’), the circuit treats the 4-bit inputs as an unsigned binary number; the output indicates when the 4-bit 
input is greater than eight. When the button is not pressed, the circuit treats the 4-bit input as a signed 
binary number in RC form and the circuit output indicates when this number is odd (as in odd vs. even, not 
normal vs. strange).  

47) Design a circuit that performs as follows: If the sum of the circuit’s two 10-bit unsigned binary inputs (A, 
B) generates a carry-out, and both of the two 10-bit inputs are odd, the then the circuit outputs the A input; 
otherwise, the circuit outputs B input. 

48) Design a circuit that adds the magnitude of the three 4-bit signed binary numbers (RC form). The circuit’s 
output should be in unsigned binary form with a sufficient amount of bits to accurately represent the 
required summation. For this problem, assume that -8 will never be included an input value.  

49) Design the following digital circuit: if the two 8-bit binary numbers (RC) are both positive, they are added 
and the result of the addition becomes the 8-bit output of the circuit. Otherwise, the circuit’s 8-bit output is 
set to 0. Assume the result of the addition will always be valid.  
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18 Comparators 

 

18.1 Introduction 

The comparator is a simple but versatile circuit. The comparator is one of our digital design foundation 
circuits, and is the second circuit that we design using the iterative modular design (IMD). Basic comparators 
are simple and instructive to design on the gate level, but their design quickly becomes complicated as we add 
more features.  

Main Chapter Topics 

COMPARATORS: This chapter introduces the comparator circuit, one of the digital 
design foundation circuits.  

 

Chapter Acquired Skills 

 Be able to describe gate-level implementations of simple comparators 

 Be able to use comparators in digital design solutions   

 

18.2 Comparators 

The comparator is a common device in digital-land and we consider it one the digital design foundation 
circuits. Modeling complex comparators is relatively effortless using an HDL, which is why we only spend 
time discussing the design of basic comparators. The derivation of a gate-level implementation of a basic 
comparator provides you with some useful practice dealing with XOR-type functions and function reduction 
using factoring. Basic comparator design also provides us with another application of IMD. 

 

Example 18.1: 2-Bit Comparator 

Design a circuit that compares the values of two unsigned 2-bit binary inputs and indicates 
when the input values are equal.  

Solution: We refer to this circuit as a “2-bit comparator”; we initially use the BFD approach for this design. A 
2-bit comparator compares two 2-bit binary numbers; the single output indicates when the two 2-bit inputs are 
equivalent. Step one is drawing the BBD; Figure 18.1(a) shows the BBD using bundles notation while Figure 
18.1(b) shows an equivalent version we use in our solution.  
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(a) (b) 

Figure 18.1: Two different forms of a 2-bit comparator.  

Next, we generate a truth table and entering the desired output values. Figure 18.2 shows that we arbitrarily list 
the A inputs as the two left-most columns in the truth table. The A1 and B1 inputs have a higher weighting 
than the A0 and B0 inputs1. Figure 18.2 shows the completed the truth table and indicates when the two inputs 
are equal with a ‘1’ in the EQ column.  

A1 A0 B1 B0 EQ 

0 0 0 0 1 
0 0 0 1 0 
0 0 1 0 0 
0 0 1 1 0 
0 1 0 0 0 
0 1 0 1 1 
0 1 1 0 0 
0 1 1 1 0 
1 0 0 0 0 
1 0 0 1 0 
1 0 1 0 1 
1 0 1 1 0 
1 1 0 0 0 
1 1 0 1 0 
1 1 1 0 0 
1 1 1 1 1 

Figure 18.2: The truth table for the 2-bit comparator. 

The next step is to use the truth table to generate a set of equations representing the EQ output and use Boolean 
algebra to reduce the equation. Figure 18.3 shows this derivation, which is important to understand, as you’ll 
occasionally need to perform similar algebraic manipulations in digital design. Note the relationship between 
the final equation of Figure 18.3 and the circuit implemented in Figure 18.4.  

                                                           
1 The reality is that we can place the inputs in different columns the truth table; as long as you’re consistent with the 
number values, all choices lead to the same answer. 
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(a) )0101()0101()0101()0101( BBAABBAABBAABBAAF   

(b) )0000)(11()0000)(11( BABABABABABAF   

(c) )00()11()00()11( BABABABAF   

(d) )1111()00( BABABAF   

(e) )11()00( BABAF   

Figure 18.3: The ugly details of the final equation derivation for the 2-bit comparator. 

 

 

Figure 18.4: The final circuit for the 2-bit comparator as equation (e) in this example. 

 

Although the circuit in Figure 18.4 seems to be nothing special, the circuit implicitly indicates a possibility to 
apply the IMD. First, apply some horse-sense to understanding this circuit. What the circuit is saying is that 
each of the bits of the same weighting must be equal in order for the two numbers to be equal. In terms of the 
hardware, the AND gate is only satisfied when each of its inputs are a ‘1’. Each of the AND gate’s inputs are 
an output of the individual XNOR functions. Recalling that an XNOR gate is also an “equivalence gate”, so 
each bit position must be equivalent in order for the final number to be equivalent.  

 

Example 18.2: A 4-Bit Comparator 

Design a circuit that compares the values of two 4-bit inputs and indicates when the input 
values are equal. Show the resulting circuit diagram.  

Solution: For this problem, the circuit has two 4-bit inputs for a total of eight inputs. If we were to take the 
same approach as the previous example, we would require a truth table having eight independent variables or 
256 rows (28). Would this be possible? Yes. Would anyone really do it? No. The key here is to realize that 
making a 4-bit comparator is a matter of adding two XNOR gates to a 2-bit comparator; this approach is a 
classic application of the iterative-modular design (IMD) approach; Figure 18.5 shows the final circuit diagram 
for a 4-bit comparator.  
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Figure 18.5: The final circuit for a 4-bit comparator. 

 

In order to simplify the previous problem, we described a comparator with only one status output that indicates 
when the two inputs were equal. Comparators typically have other status outputs as well. Figure 18.6 shows a 
BBD for a generic comparator having three status outputs. In addition to EQ, there is now an LT (less than) 
and GT (greater than) output to provide more information regarding the relationship between the circuit’s two 
data inputs. LT is asserted when A<B, and GT is asserted when A>B; this relationship is important, but 
arbitrary. We could generate Boolean equations for LT and GT, but doing so is not instructive, and it’s 
straightforward to design comparators using an HDL.  

 

Figure 18.6: Block diagram for a generic comparator. 

 

Example 18.3: Timing Diagrams and the 4-Bit Comparator 

Use the following black box diagram to complete the accompanying timing diagram.  

 
 

 

Solution: A timing diagram shows the solution to this problem without a significant amount of verbal 
description. Check out Figure 18.7 for all the gory details.  
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Figure 18.7: The solution to this example. 

 

 

 

 

Example 18.4: SM Magnitude Comparator 

Design a circuit that compares the magnitude of two 8-bit binary numbers in signed magnitude form. 
The circuit’s one indicates when the two inputs have equivalent magnitudes. Minimize your use of 
hardware. Provide two levels of BBDs for your solution. Also, state what controls this circuit. 

Solution: The first step is to draw the top-level BBD for the circuit. The circuit has two 8-bit inputs for the two 
binary numbers and one output. Figure 18.8 shows the final BBD.  

 

Figure 18.8: A block box diagram that supports the description of this problem. 

The next step is to make an initial inventory of the circuit’s internal modules. The circuit needs to compare two 
numbers, so we need to include a comparator. The circuit needs to massage the input value so that the 
comparator is comparing magnitudes, but we deal with that in another step.  

Since binary numbers in SM form use all but the sign-bit to represent the magnitude, we only need to compare 
the magnitude portion of the number, which we do by feeding only the magnitude bits of the two input values 
to a comparator; the comparator then only needs be a 7-bit comparator. Figure 18.9 shows the final solution to 
this problem. The internals of this circuit is a comparator. The comparator is a device that has no control 
inputs, so the final circuit is not controlled.  
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Figure 18.9: The final solution for this example. 

Note in Figure 18.9 that we “made up” our own terminology for this problem. We put a connection dot on the 
bundle in an effort to indicate that we are modifying the bundle. Next, we changed the effective width of the 
bundle and indicated in an arbitrary, but clear manner that we are only inputting the seven lower-order bits (the 
magnitude bits) of the 8-bit bundle to the comparator. Whenever you do something “different”, you need to 
document it.  

 

 

 

Example 18.5: Sorting Circuit 

Design a circuit that has two 8-bit inputs A and B, and two 8-bit outputs GT and LT. 
If the A input is greater than or equal to the B input, the A input appears on the GT 
output and the B input appears on the LT output. Otherwise, the B input appears on 
the GT output and the A input appears on the LT output. Provide the top two levels of 
BBDs for your solution. Minimize your use of hardware in your solutions. Also, state 
what controls this circuit.  

Solution:2. Let’s start this solution with a top-level BBD; the BBD in Figure 18.10 satisfies the problem’s 
requirements.  

 

Figure 18.10: Block diagram for Example 18.5. 

The next step is to create an inventory of the underlying modules our circuit requires. Note that this problem 
performs a sort on the input values; the key to this classic sorting circuit problem is noticing that there is 
something similar to a comparator present in the problem as well as some selection logic. For this problem, we 
use the version of a comparator that includes the LT and GT status outputs. 

The second key to this problem is that there is some “selection” happening in order to “select” the inputs to 
feed to the correct outputs. This implies that the design requires a MUX. Since the circuit we’re trying to 
design has two outputs, and both of the outputs need the ability to display either of the numbers, we need two 
2:1 MUXes for our solution.  

                                                           

2 Sorting is a common problem in computer programming, and always makes for a good hardware design problem (it’s 
faster in hardware, anyway). If you want to excite a computer scientist, say the word “sort” to them.  



Free Range Digital Design Foundation Modeling Chapter 18 

 

 - 267 -  

 

The problem did not state there was external control of the sorting, such as a button, so we know the internal 
circuitry must provide the control inputs to the MUXes in the circuit. We are interested in the condition where 
the A input is greater than or equal to the B input. What we could do for the final circuit is control the data 
selection function of the two MUXes with an ANDing of the comparator’s GT and EQ signals. However, a 
more clever way to do this would be to use the LT signal on the comparator to directly control the two 
MUXes.  

We need two MUXes, and they always need to choose different outputs. We could do this by connecting the 
circuit’s inputs identically to the MUXes and complementing the MUX control signal from one of the MUXes. 
A better solution is to skip the inverter and connect the data inputs to the MUXes such that the same value 
from the comparator serves as a control for both MUXes. Figure 18.11 shows a diagram of the final circuit. 
Any problem using a MUX must also include the number associated with the MUX’s data inputs.  

This circuit can have different outputs, so “something” is controlling the circuits. This circuit uses internal 
control because the LT output of the comparator connects to the select inputs of the MUXes, which are the 
control inputs.  

 

Figure 18.11: The diagram of the final circuit. 

 

 

 

Example 18.6: Three-Value 10-Bit Comparator 

Design a circuit that compares three 10-bit values. If all three 10-bit values are equivalent, the EQ3 
output of the circuit is a ‘1’, otherwise the circuit output is a ‘0’. Use only standard comparators in this 
design. Use any support logic you may require but minimize the amount of hardware you use in your 
solution. Provide two levels of BBD for your solution. Minimize your use of hardware. Also, state what 
is controlling this circuit.  

Solution: The main constraint in this problem is that it requires the use of standard comparators in the solution. 
It’s an old math thang to say, “if A = B and B = C then A = C”. Your mission is then to translate that 
intuitiveness to digital hardware. Start with drawing a black box diagram as in Figure 18.12.  



Free Range Digital Design Foundation Modeling Chapter 18 

 

 - 268 -  

 

 

Figure 18.12: Black box diagram for the solution. 

Since a standard comparator only compares two numbers, you’ll need two comparators to determine if all three 
inputs are equivalent. From this point in this problem, the problem directly states the required extra logic in the 
quoted statement in the previous paragraph: the “and” indicates that this solution requires an AND gate. Figure 
18.13 shows the final block diagram for this problem. Finally, none of the circuit elements in this circuit have 
control inputs, thus this circuit has no control features.  

 

Figure 18.13: The final circuit for this solution. 

 

 

 

Example 18.7: Special Arithmetic Circuit  

Design a circuit that has three 8-bit inputs A, B, and C. The single output of the circuit indicates 
whether the sum of A and B is equal to the sum of B and C. For this problem, assume that the addition 
of the two input values never generate a carry out. Provide two levels of BBD for your solution. 
Minimize your use of hardware for this design. Also, state what is controlling this circuit. 

Solution:  The first step is drawing a block diagram of the final circuit as we show in Figure 18.14. 

 

Figure 18.14: Block diagram of the final circuit. 

The next step is making an inventory of the modules this circuit requires. From the problem statement, you can 
see that the final circuit to requires two RCAs in order to perform the two required addition operations (A + B  
&  B + C). The second clue given in the problem statement is that some things need comparing. In this case, 
you’ll need to check whether the results of the two addition operations are equivalent. For this problem, you’ll 
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need two RCAs and one comparator. The problem statement itself provides many of these clues. Figure 18.15 
shows the final circuit. None of the circuit elements has control inputs, so this circuit has no control.  

 

Figure 18.15: The final circuit solution for this example. 

 

 

 

Example 18.8: Arithmetic Circuit Timing Diagram 

Based on the solution to the previous example, complete the following timing diagram. 

 
 

Solution:  The problem states that the EQ output is a ‘1’ whenever A = C. Figure 18.16 shows the final 
solution to this example. Signal B does not affect the answer. Also, the carry-outs from the RCAs do not affect 
the outputs, as they do not change the value of the RCA sum outputs.  

 

Figure 18.16: The solution to this example. 
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18.3 Digital Design Foundation Notation: Comparator 

We consider the comparator to be one of our Digital Design Foundation circuits. The comparator is a 
controlled circuit. Figure 18.17 shows the appropriate digital design foundation notation for the comparator. 
Comparators always have two inputs, but we can choose between which comparator outputs we want to 
include in our design (so our comparator module has at least one, but not greater than three outputs). The LT 
output indicates when the A input is less than B (A<B), while the GT input indicates when A>B. The EQ 
output indicates that A = B.  

 

Figure 18.17: Typical data, and status signals for a comparator.  

 

 Signal Name Description 

IN
P

U
T

 
D

A
T

A
 

A, B Two values to be compared; these values have equivalent data widths.  

O
U

T
P

U
T

 
D

A
T

A
 

n/a - 

C
O

N
T

R
O

L
 

n/a - 

S
T

A
T

U
S

 

EQ, LT, GT 
Signals that indicate a relation between the two inputs A & B. EQ is asserted 
when A=B, LT is asserted when A<B, GT is asserted when A>B.    

Table 18.1: The foundation matrix for a comparator. 
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18.4 Chapter Summary 

 

 Comparator: arithmetic circuit used to determine equality of two digital signals of equivalent data widths 

 Typical comparator outputs are LT (less than), GT, (greater than), and EQ (equal), which provide 
information about the mathematical relations between the two inputs.  

 We can design basic comparators (comparators with only EQ status outputs) using the IMD approach. 
When our designs require more complex comparators, we switch to modeling them with an HDL.  
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18.5 Chapter Exercises 

 

1) Complete the timing diagram below considering the given schematic symbol.  

 

 

 
 

 

2) Use the following circuit to complete the unlisted signals in the timing diagram. For this problem, 
assume there are no propagation delays. 
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3) Describe the difference, if any, in comparing RC of unsigned binary numbers.  
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18.6 Design Problems 

 

For the following problems:  

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution 

 Minimize the use of hardware in your solution 

 State the types of control your circuit uses (“no control”, “internal control”, and/or “external control”) 

 Fully describe any non-foundation modules you use in your design.  

 

1) Design an 8-bit comparator using only standard logic gates. The output of this comparator has only one 
output that indicates whether the two input values are equal or not.  

2) Design a 2-bit comparator in that compares two inputs, A & B; the output should indicate when A = B, A 
< B, and A > B. You’ll need to use the IMD approach with this design. For this problem, use a BFD 
approach, but implement whatever circuit modules you feel necessary using a decoder.  

3) Modify a high-level BBD of a 10-bit comparator such that the outputs are A=B, A≤B, A≥B.  

4) Design a circuit that has one 8-bit input A, a single bit input BTN3, and one 8-bit output F. Both 8-bit 
input and output are signed binary numbers in radix complement form. If the value of A is equal to zero, 
the circuit outputs zero. Otherwise the circuit outputs A if BTN3 is pressed or –A if BTN3 is not pressed. 
Assume that a button press generates a ‘1’ value for the input.  

5) Design a circuit that outputs one 8-bit value. If the sum of the circuit’s two 8-bit inputs, A & B, generate a 
carry out and are equal, the value of 2A is output; otherwise, the sum of 2B is output. Consider the output 
value to be an 8-bit number also; don’t worry about carry-outs on the output operations.  

6) Design a circuit that compares the sums of magnitudes of four 16-bit input values in RC format: A, B, C, 
& D. The circuit has two outputs: one output indicates when the four magnitudes are equivalent. The other 
output indicates when the sum of magnitudes of A+B equals the sum of magnitudes C+D are equivalent 
(when a button is pressed), or when the sum of magnitude A+C equals B+D (when button is not pressed). 
For this problem, assume a button press is associated with a ‘1’.  

7) Design a circuit that performs as follows: The circuit has six 10-bit binary inputs (A,B,C,D,E,F). 
Comparisons are made between (A,B), (C,D), and (E,F) pairs. If two and only two of these number pairs 
are equal, then the circuit’s one output is ‘1’; otherwise the circuit’s output is a ‘0’.  

8) Design a circuit that does the following. If the circuit’s two 2-bit values (A & B) are not equivalent, then 
the 8-bit value AA will show up on the circuit’s output; otherwise, the 8-bit value BB will show up on the 
output. Consider AA and BB to be inputs to the circuit.  

9) Design a circuit that outputs one 8-bit value. If the circuit’s two 8-bit inputs, A & B are equivalent, then 
the sum of A & B are output; otherwise, the value of A + A is output. Use no more than one RCA in your 
design.  

10) Design a circuit that has two 8-bit inputs A and B, and one output. The output value is a ‘1’ when the A 
input value is one greater than, equal to, or one less than the B input value; otherwise, the output is a ‘0’. 
Consider both inputs to be signed binary numbers in radix complement form. For this problem, assume 
both input values are always between 20 and 120. Assume inputs and outputs are in RC format.  

11) Design a circuit that compares the magnitude of two 12-bit signed binary numbers in diminished radix 
form. Assume the outputs of this circuit are the same as the outputs of a standard comparator.  

12) Design a circuit that compares three 8-bit values. This circuit has one output that indicates when the three 
values are equal. Consider the inputs to be in unsigned binary format.  
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13) Design a circuit that acts as a special comparator to two 8-bit unsigned binary values. If a button is 
pressed, the circuit outputs normal standard comparator outputs. If the button is not pressed, the circuit 
output GT=’1’ when B>A and LT=’1’ when A>B (EQ always indicates equality) 

14) Design an 8-bit magnitude comparator. This circuit compares the magnitude of two 8-bit signed binary 
values in RC format. The circuit outputs a single signal to indicate whether the two signals are equivalent 
or not 

15) Design a circuit that output A if A≥B; otherwise the circuit output s zero. Consider the A&B inputs to be 
10-bit unsigned binary values.  

16) Design a circuit that does the following: if a button is pressed, the circuit output A when A>B; otherwise 
the circuit outputs zero. If the button is not pressed, the circuit outputs B when A<B or 0xFF otherwise. 
Consider A, B, and the outputs to be 8-bit unsigned binary numbers.   

17) Design the following digital circuit; consider all inputs to be 12-bit unsigned binary numbers. If the A and 
B inputs are equal, and the C and D inputs are equal, the 12-bit output of the circuit is the sum of A and B. 
Otherwise, the 12-bit circuit output is the sum of C and D. Don’t worry about overflow in this design. 

18) Design a circuit that has two 8-bit unsigned binary inputs (A & B) and one 8-bit unsigned binary output. If 
both inputs are represent even numbers, are not equal, and the sum of A + B does not generate a carry-out, 
then the sum of A + B is output; otherwise, the value of B is output. For this problem, disregard the carry-
out on the final sum output of the circuit.  

19) Design a circuit that does the following. If the sum of the A input added to the B input is less than or equal 
to the C input, then the circuit outputs the value of A + C; otherwise, the circuit outputs the value of  B + 
C. Assume all input and output values are 8-bits. Assume the values are all unsigned binary; don’t worry 
about carry-out issues for this problem.  

20) Design a circuit that outputs one 8-bit value. If the sum of the circuit’s two 8-bit inputs, A & B, generates 
a carry out and the two inputs are not equal, the value of 2A is output; otherwise, the sum of 2B is output. 
Consider the output value to be an 8-bit number also. Don’t worry about carry-out issues of 2A & 2B.  

21) Design a circuit that has one 8-bit input and three 8-bit outputs. Both the inputs and outputs are signed 
binary numbers in radix complement form. The circuit’s three outputs represent two less than, two greater 
than, and four greater than the circuit’s input, respectively. For this problem, assume the input value is 
always between 2010 and 12010.  

22) Design a circuit that performs as follows: If the circuit’s two 10-bit signed binary inputs (A,B) are 
equivalent, the circuit changes the sign of each number before they are output; otherwise, the circuit 
outputs the two inputs without changing them. For this problem, you can use a box labeled (2_COMP) 
which inputs a 10-bit number and outputs the 10-bit 2-s complement representation of that number.  

23) Design a circuit that performs as follows: The circuit has two 10-bit unsigned binary inputs (A,B). If the 
value of A + 2 (addition) is greater than or equal to B + 5 (addition), the circuit outputs the unchanged A 
value; otherwise, the circuit outputs the unchanged B value. Make this problem work for all possible 
values.  

24) Design a circuit that performs as follows: The circuit contains three 5-bit binary inputs and one 5-bit 
binary output; both inputs and output are in RC form. The circuit outputs the input value that has the 
largest magnitude of the three inputs.  

25) Design the following circuit. The circuit has three 8-bit unsigned binary inputs A, B, & C. If the result of 
A + B generates a carry-out and the A & B are not equivalent, the circuit outputs C; otherwise the circuit 
generously outputs the sum of A + B. This circuit also has an output GT that indicates when the output is 
greater than E416.  

26) Design a circuit that does the following. If the circuit’s two 2-bit values (A & B) are not equivalent, then 
the 8-bit value AA will show up on the circuit’s output; otherwise, the 8-bit value BB will show up on the 
output. Consider AA and BB to be inputs to the circuit.  
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27) Design a circuit that performs as follows: If the circuit’s two 10-bit signed binary inputs (A,B) are 
equivalent, the circuit changes the sign of each number before they are output; otherwise, the circuit 
outputs the two inputs without changing them. For this problem, you can use a box labeled (2_COMP) 
which inputs a 10-bit number and outputs the 10-bit 2-s complement representation of that number.  

28) Design a circuit that performs as follows: The circuit has six 10-bit unsigned binary inputs (A,B,C,D,E,F). 
Comparisons are made between (A,B), (C,D), and (E,F) pairs. If two and only two of these number pairs 
are equal, then the circuit’s one output is ‘1’; otherwise the circuit’s output is a ‘0’. 

29) Design a circuit that performs as follows: The circuit has three 4-bit unsigned binary inputs (A,B,C). If the 
value of A + 2 (addition) equals B and the value of A + 3 (addition) equals C, and neither A+2 or A+3 is 
greater than 15, the circuit outputs B; otherwise, the circuit outputs C.  

30) Design a circuit that adds two signed 12-bit numbers A & B. If this operation generates no carry and no 
overflow, then the circuit outputs the result of the operation (A + B). If only a carry is generated without 
an overflow, the circuit outputs !A; if only an overflow is generated with no carry generated, the circuit 
outputs !B; if the operation generates both an overflow and carry, the circuit outputs 0x000 (hex). The 
circuit has an output NO_ERR that indicates when no overflow and no carry is generated. Use the 
overflow generator model listed below (be sure to connect it properly); you don’t need to describe it at a 
low level. 

 

31) Design a circuit that has two 8-bit inputs A and B, and one output. The output value is a ‘1’ when the A 
input value is one greater than, equal to, or one less than the B input value; otherwise, the output is a ‘0’. 
Consider both inputs to be signed binary numbers in radix complement form. For this problem, assume 
both input values are always between 2010 and 12010.  

32) Design a circuit that outputs one 8-bit value. If the circuits two 8-bit inputs, A & B are equivalent, then the 
sum of A & B are output; otherwise, the value of A + A is output. 
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19 Parity Generators and Checkers 

 

19.1 Introduction  

The parity generator and parity checker are two common digital circuits. We consider the parity generator a 
digital design foundation module, and is another circuit that we design using IMD. Basic parity generators are 
simple and instructive to design on the gate level and are yet another circuit known for having XOR functions 
in their design.  

Main Chapter Topics 

PARITY GENERATORS: This chapter introduces the notion of parity and the design of 
parity generators and parity checking circuits.  

 

Chapter Acquired Skills 

 Be able to describe the concept of parity  

 Be able to describe the most common use of parity in a real-world applications 

 Be able to describe a parity generator at the gate level 

 Be able to use parity generators and parity checkers in digital circuits  

 

19.2 Parity Generators and Parity Checkers 

Parity generators and parity checkers are two standard digital circuits that we often use in digital 
communications. We can apply the concept of parity to a set of bits, which can either exist at one moment in 
time in a parallel configuration or the bits can exist over several set times in a serial configuration. Figure 
19.1(a) and Figure 19.1(b) show an example of both parallel and serial configurations, respectively. In Figure 
19.1 (a), the values of the bits in question exist at one instance in time. Figure 19.1(b) shows that we can also 
apply parity to a single signal over a given time span. The parity concept applies to the set of bits in that are the 
values of the SIG signal at five different instances in time.  

 
 

(a) (b) 

Figure 19.1: An example of parallel signals and serial signals. 

Once we assemble the bits in question are gathered, parity refers to the result of a modulo-2 addition of the 
bits. Although modulo-2 addition sounds intimidating, the concept is straightforward. Modulo-2 addition refers 
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to a bit-oriented addition operation: the result of this addition is either ‘0’ or ‘1’; modulo-2 addition has no 
concept of a carry, so we discard any carry resulting from the addition. Thus to perform a modulo-2 addition 
on a set of bits, you add all the set bits and your result is either ‘0’ or ‘1’. If the sum of the set of bits is ‘0’, the 
result of the addition is even (even parity). If the sum of bits is not even, then the sum must be odd (odd 
parity). The XOR gate inherently performs modulo-2 addition on its two inputs1. The concept of odd and even 
parity has nothing to do with odd and even numbers. 

Parity is particularly useful in digital communications; Figure 19.2 shows a simple example of a 
communication system that uses parity. This example shows four bits that require transferring in parallel across 
some of medium. The medium is immaterial; the important things is the four data bits that need transferring: 
three data bits and a parity bit. The Data Generator box generates the data that requires transferring.  

The Parity Generator box is a circuit that imposes either an odd or an even parity to the three data lines. The 
system then includes the parity bit with the data bits that the circuit sends in the communication channel. The 
Parity Generator assigns its output (the parity bit) to make sure that the set of data and parity bits (A, B, C, & 
D) are either odd or even parity, depending on how you design the circuit. Once these bits transfer across the 
medium (once they are received), the parity needs to be the same as it was prior to transferring the bits. If the 
bits were sent with even parity and arrive with odd parity (or vice versa), an error occurred during 
transmission. If the bits were originally sent with odd parity and arrive with odd parity, there is a good chance 
that there was not an error during transmission2.  

The circuit in Figure 19.2 provides 1-bit error detection for the data bits sent across the mediums. The circuitry 
on the receiving end expects either odd or even parity (as designed into the circuitry); if the parity of a received 
message is different from the parity of the sent message, the circuit indicates an error on the PR output of the 
Parity Checker3. 

 

Figure 19.2: An example of parity generation and checking. 

The circuitry for parity generators and parity checkers is straightforward. The approach we take is to design a 
small circuit using BFD, then we can use IMD to create a larger circuit.  

 

Example 19.1: 3-Bit Even Parity Generator 

Use BFD to design a circuit that generates a parity bit that indicates when three bits are even parity. 
Consider the data bits to be A, B, & C. Consider the parity bit to be D.  

                                                           

1 We consider the condition when zero or no bits that are ‘1’ to be even (even parity). 
2 As you would probably guess, if two bits change, the parity would still be correct but two of the bits would be incorrect 
and thus your entire message was garbage. The probability that two bits are erroneous is significantly less than the 
probability that one bit was in error, which is why parity is an effective error detecting measure.  
3 Implicit in the description is the fact that the parity generator and parity checker must agree on either odd or even parity 
before this “system” is set up.  
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Solution: We need to design a Parity Generator such that the circuit generates even parity based on the data 
bits A, B, and C. We thus need to assign D to ensure that the set of bits A, B, C, and D have even parity. 
Figure 19.3 shows the BBD for our circuit.  

 

Figure 19.3: The truth table for a 3-bit even parity generator. 

We start with a truth table and examine bits A, B, and C; if these bits have odd parity, the parity bit is set to 
‘1’. In this way, if the modulo-2 sum of the data bits (A,B,C) is ‘1’, then the parity bit is set to ‘1’ which makes 
the parity of all four bits ‘0’ (even parity). In other words, parity from bits (A, B, C = ‘1’) + ‘1’ (from the 
parity bit D) is ‘0’. With a final modulo-2 addition of ‘0’, the parity of bits A, B, C, and D is even.  

The truth table in Figure 19.4 shows the parity concept in tabular form; we assigned the D column to ensure 
that the four bits in each row have even parity. Table 19.1 shows that we can factor the equation generated 
from Figure 19.4 to simplify the equations, which allows us to extract XOR equations. Figure 19.5 shows the 
circuit associated with the final equation of Table 19.1. 

A B C D 
0 0 0 0 
0 0 1 1 
0 1 0 1 
0 1 1 0 
1 0 0 1 
1 0 1 0 
1 1 0 0 
1 1 1 1 

 

Figure 19.4: The truth table for a 3-bit even parity generator. 

 

(a) ABCCBACBACBAD   

(b) )()( BCCBACBCBAD   

(c) )()( CBACBAD   

(d) )( CBAD   

Table 19.1: Derivation of the even parity generating circuit. 
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Figure 19.5: The final circuit for a 3-bit even parity generator. 

 

On the receiving side of the circuit, we need to design a circuit that checks the incoming bits to ensure that they 
are even parity as was sent by the sending end of the circuit. This circuit essentially needs to generate the 
modulo-2 sum of the four received bits, which we can easily do using a truth table. Figure 19.6 shows the 
required truth table. In this truth table, the PR column indicates an error if the parity of the received bits is odd. 
Since the bits were sent with even parity, the arrival of bits having an odd parity indicates that an error 
occurred in transmission. If you were to grind out the equations for this truth table, Figure 19.7(a) lists the final 
equation, while Figure 19.6(b) shows the resulting circuit. 

As a final note in this saga of parity generation and checking, you should notice a similarity between the final 
equation of Table 19.1(d) and equations in Figure 19.7(a). The only difference between a 3-bit even parity 
generator and a 4-bit even parity generator is the addition of one more XOR term. This similarity allows you to 
apply IMD to create parity generators and checkers for any number of bits.  

A B C D PR 

0 0 0 0 0 
0 0 0 1 1 
0 0 1 0 1 
0 0 1 1 0 
0 1 0 0 1 
0 1 0 1 0 
0 1 1 0 0 
0 1 1 1 1 
1 0 0 0 1 
1 0 0 1 0 
1 0 1 0 0 
1 0 1 1 1 
1 1 0 0 0 
1 1 0 1 1 
1 1 1 0 1 
1 1 1 1 0 

 

Figure 19.6: The truth table for the 4-bit even parity checker. 
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)()( DCBAPR   

 

DCBAPR   
 

(a) (b) 

Figure 19.7: The equations (a) and circuit (b) for the 4-bit even parity generator. 

 

 

Example 19.2: 4-Bit Even Parity Generator 

Design a circuit that generates a parity bit that indicates when four bits are even parity.  

Solution: This problem is describing an even parity generator; there are two ways to view the parity bit that 
this circuit generates. One way to view the parity bit is that it indicates with a ‘1’ when the four input bits are 
odd parity. Another way to view the parity bit is that we assign the parity bit such that the five bits (the four 
input bits and the parity bit) always exhibit even parity.  

Figure 19.8 shows the top-level BBD for this problem. There are four input bits; the output labeled “PR” is the 
parity bit.  

 

Figure 19.8: The block diagram for this example. 

We could use the BFD approach to solving this problem, but we would rather use the IMD approach to save us 
time. Recall when we first described parity, we designed a 3-bit even parity generator. Figure 19.9(a) shows 
the final solution to that problem once again. In order to extend this circuit to be a 4-bit even parity generator, 
we add another XOR gate as we show in Figure 19.9(b). For this problem, the communications channel would 
now be sending five signals: A, B, C, D, & PR. The receiving end of the channel examines these five signals in 
order to verify that the received signal exhibits even parity.  

 
 

(a) (b) 

Figure 19.9: The circuit solution for a 3-bit even parity generator (a) and the solution to this 
example for a 4-bit even parity generator. 
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Example 19.3: Timing Diagrams and an 4-Bit Odd Parity Generator 

Use the black box diagram to complete the accompanying timing diagram. Consider the black box to 
generate odd parity based on the four input bits.  

 

 

 

 

Solution: For this problem, the ODD_PAR signal generates a ‘1’ when the sum of “1’s” on the IN_SIG signal 
is even; otherwise, ODD_PAR generates a ‘0’. Figure 19.10 shows the final timing diagram.  

 

Figure 19.10: The solution to this example. 

 

 

 

Example 19.4: Parity Design Problem #1 

Design a circuit that inputs one 8-bit value. If the input value is even and has odd parity, the circuit 
outputs the input value; otherwise, the circuit outputs the 2’s complement of the input value. Consider 
the input value to be in RC format. Feel free to use BBDs for the 2’s complement and parity circuit 
without providing descriptions of the underlying implementations, but be sure to label them 
accordingly. Minimize your use of hardware. Provide the top-two levels of BBD for your solution. 
State what controls the circuit. 

Solution: We start this problem by creating a BBD for the solution based on the problem description. Figure 
19.11 shows the top-level BBD for this problem. The fun stuff is on the inside of the box.  
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Figure 19.11: The block diagram for this example. 

The next step is to make an inventory of the modules we need to solve this problem. Note that the circuit 
outputs one of two values; this means the solution includes a MUX. The circuit chooses between either the A 
input or the 2’s complement of the A inputs, which means the circuit requires a module to perform a 2’s 
complement. The control input to the MUX is a combination of the LSB and an indicator of the parity of the A 
input. We need an odd parity checker circuit to indicate when the A input is has odd parity. We also need to 
examine the LSB of the A input to determine if the value is even. Because the A input is even when the LSB of 
A is ‘0’, we invert that value and then AND it with the output of the parity checker to form the control input to 
the MUX. Figure 19.12 shows the final circuit diagram for our solution.  

 

Figure 19.12: The final lower-level BBD for our solution.  

 

 

 

Example 19.5: Parity Design Problem #2 

Design a circuit that inputs two 8-bit values (A & B), both in RC format. If the parity of the two values 
is different, the circuit outputs A + B; otherwise the circuit outputs A –B. The result output is an 8-bit 
value in RC format. The circuit also contains a VALID output that indicates when the result of the 
given operation is valid. For this design, you can use “2’s comp” and “valid” modules without 
providing descriptions of the underlying implementations, but be sure to label them accordingly. 
Minimize your use of hardware. Provide the top-two levels of BBD for your solution. State what 
controls the circuit.  

Solution: We start this problem by creating a BBD for the solution based on the problem description. Figure 
19.13 shows the top-level BBD for this problem. The fun stuff is on the inside of the box. 
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Figure 19.13: The block diagram for this example. 

The next step is to make an inventory of the modules the final circuit requires in order to solve the given 
problem. This circuit has a relatively large number of modules; we list them below.  

 The circuit indicates a sum or difference of the inputs, so we need an RCA.  

 The circuit performs a subtraction, so we need a 2’s complement module.  

 The circuit chooses between adding or subtracting the B input, so we need at least one MUX.  

 The circuit needs to determine the parity of both inputs, so we need two even parity checker 
modules.  

 The circuit adds or subtracts based on the parity of the two inputs, which results in some extra 
logic. In this case, we need an XOR gate.  

 The final circuit output is either the result of the mathematical operation or zero, based on the 
validity of the chosen operation. This means we need a second MUX, which we control with the 
output of the validity circuit.  

Figure 19.14 shows the final lower-level BBD for this problem. We include annotations with the BBD to 
indicate information regarding the inputs to the “valid” module. If we omit this note, the circuit would not be 
complete.  

 

Figure 19.14: The final lower-level BBD for our solution. 

 

19.3 Extra Parity Details 

As a final note, you’re correct in thinking that the idea of parity generation and parity checking is somewhat 
confusing. The basic concepts are straightforward; the problem is with the associated vernacular. Here is a 
basic overview of the confusing vernacular.  

 If you’re generating odd parity, your parity generator uses a ‘1’ to indicate when the input bits have 
even parity. Including the ‘1’ makes the even parity of the signals into odd parity.  
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 If you’re generating even parity, your parity generator uses a ‘1’ to indicate when the input bits have 
odd parity. Including the ‘1’ makes the odd parity of the signals into even parity.  

19.4 Digital Design Foundation Notation: Parity Generator 

We consider the parity generator to be a Digital Design Foundation circuits. The parity generator is a 
controlled circuit. Figure 19.15 shows the appropriate digital design foundation notation for the parity 
generator. We only list the data input as a bundle, which implies the parallel version of data rather 
than serial data. The single status output is the PAR signal, which indicates the parity of the input 
data. When you use this diagram in your design, the status signal’s name should also indicate either 
odd or even parity.   

 

Figure 19.15: Typical data, control and status signals parity generator.  

 Signal Name Description 

IN
P

U
T

 
D

A
T

A
 

DATA The value that the device generates a parity bit for the given “m” input bits.  

O
U

T
P

U
T

 
D

A
T

A
 

n/a - 

C
O

N
T

R
O

L
 

n/a - 

S
T

A
T

U
S

 

PAR The bit that creates the appropriate parity for the DATA & PAR aggregate value. 

Table 19.2: The foundation matrix for a parity generator.  
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19.5 Chapter Summary 

 

 The notion of parity describes a characteristic of a set of signal or a sequence of signals. Parity is defined 
as the modulo-2 addition of the ‘1’ bits of the signals in question. Parity can be either even or odd. Parity 
generators are used to generate a parity bit that ensures a group of signals exhibit even parity or odd parity.  

 Parity checkers are essentially the same circuit as parity generators: we implement both circuits on the 
gate-level using exclusive-OR type gates.  

 Odd and even parity has no relation to the numerical attributes of “odd” and “even”.  
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19.6 Chapter Exercises 

 

1) Complete the timing diagram below considering the given schematic symbol. Consider the circuit to 
generate even parity for the eight input bits.   

 

 

 

 

 

 

2) Use the following circuit to complete the listed timing diagram. 
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3) Use the following circuit to complete the listed timing diagram 

 
 

 
 

 

4) Can a given unsigned binary number be even but have odd parity? Briefly explain.  

5) Does the notion of parity apply equally to unsigned and signed binary numbers? Briefly explain.  

6) Consider the case where two n-bit unsigned binary numbers are added together using a Ripple Carry 
Adder (RCA). If the two numbers being added together both have odd parity, will the result necessarily 
have even parity? For this question, consider the addition will never generate a carry-out. Explain fully but 
briefly. 
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19.7 Design Problems 

 

For the following problems:  

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution 

 Minimize the use of hardware in your solution 

 State the types of control your circuit uses (“no control”, “internal control”, and/or “external control”). 

 

1) Design a 3-bit odd parity generator using BFD. Specifically, this circuit uses the single-bit output to make 
the combination of the input plus the output even parity. Assume the 3-bit inputs are in a parallel 
configuration. Use Boolean algebra to reduce the resulting equations.  

2) Using the design from the previous problem, design an 8-bit even parity generator using IMD. Assume the 
8-bit input is in a parallel configuration.  

3) Design a 3-bit odd parity generator using BFD. Specifically, this circuit uses the single-bit output to make 
the combination of the input plus output odd parity. Assume the 3-bit inputs are in a parallel configuration. 
Use Boolean algebra to reduce the resulting equations. 

4) Using the design from the previous problem, design an 8-bit odd parity generator using IMD. Assume the 
8-bit input is in a parallel configuration.  

5) Design a 4-bit even parity checker. This circuit indicates when the parallel 4-bit input is even parity. Use 
Boolean algebra to reduce the resulting equations.  

6) Using the design from the previous problem, design an 8-bit even parity checker using IMD. Assume the 
8-bit input is in a parallel configuration.  

7) Design a circuit that has one 8-bit input. If a button is pressed, the circuit’s single output makes the 8-bit 
input value plus the output even parity; otherwise, the circuit’s single output makes the 8-bit input odd 
parity. You can use BBDs for the parity generators.  

8) Design a circuit that has one 12-bit input A in RC format. If a button is pressed, the circuit outputs –A. If 
the button is not pressed, the circuit outputs !A if the A input has odd parity or A if the input has even 
parity. Assume the 12-bit output is also in RC format. You can use BBDs for the parity generators. 

9) Design a circuit that has two 10-bit binary inputs and one 10-bit output, all in RC format. If A-B is both 
valid and has even parity, the circuit outputs the result of A-B. If the result is odd parity and valid, the 
circuit outputs A. If the result is not valid, the circuit outputs B if the button is pressed or zero if the button 
is not pressed. You can use BBDs for the parity generators. 

10) Design a circuit that has two 8-bit signed binary inputs (RC format) A & B. If the two inputs have the 
same parity, the circuit outputs A+B if a button is pressed or A-B if the button is not pressed. If the two 
inputs are of different parity, the circuit outs A if the button is pressed or B if the button is not pressed. 
Use no more than one RCA in your design. The circuit also has a VALID output to indicate if the result of 
the mathematical operations is valid. Assume the output is also an 8-bit value in RC format. You can use 
BBDs for the parity generators. 

11) Design a circuit that inputs two 10-bit values, A & B, in RC format. If both values are positive and both 
values exhibit odd parity, the circuit output A-B. If both values are of different sign and both values 
exhibit even parity, the circuit outputs A+B. If the above two conditions are not met, the circuit outputs 
zero. Assume the 10-bit output is in RC format and is always valid. You can use BBDs for the parity 
generators. 
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12) Design a circuit that has one 17-bit input A in RC format. When the input is odd parity but not all 1’s, the 
circuit outputs A. If the circuit is even parity and not all 0’s, the circuit outputs –A. If neither of the above 
two conditions are met, the circuit output !A. Assume the 17-bit output is also in RC format. You can use 
BBDs for the parity generators. 

13) Design a circuit that has one 16-bit input in RC format. If the bottom byte if the input is evenly divisible 
by 8 and has odd parity, one of the circuit’s 8-bit outputs has the lower 8-bits of the input; otherwise it 
outputs zero. If the upper byte of the input positive and evenly divisible by 4, the circuit’s other 8-bit 
output has the 8-bits of the inputs, otherwise it show zero. You can use BBDs for the parity generators. 
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20 Introduction to Sequential Circuits 

 

20.1 Introduction 

There are two major classes of digital circuits; we’ve dealt with only one type of circuit: combinatorial, or 
combinational circuits. The other major type of digital circuits is sequential1 circuits; most digital circuits use a 
combination of both circuit types. This chapter introduces the basic concepts behind sequential circuits.  

Main Chapter Topics 

SEQUENTIAL CIRCUITS: There are two types of digital circuits: combinatorial and 
sequential. Previous chapters dealt only with combinatorial circuits. We generally 
characterize sequential circuits as having the ability to store information. This 
chapter describes basic latches, which are of basic digital storage elements.  

STATE REPRESENTATIONS: We characterize circuits with memory by the “state” of 
the circuit. We define the state of the circuit by the values stored in the circuit’s 
storage elements.  

SEQUENTIAL CIRCUIT REPRESENTATION: We can represent basic digital storage 
elements in various ways. This chapter outlines the analysis and representations 
methods of basic sequential circuits.  

 

Chapter Acquired Skills 

 Be able to describe the main qualities of combinatorial and sequential circuits.  

 Be able to describe the concept of “state” in the context of digital circuits 

 Be able to describe what generates memory in a digital circuit 

 Be able to describe the basic operation of NOR & NAND latches 

 Be able to use state diagrams to discern the operation of NOR & NAND latches 

 Be able to use PS/NS tables to describe the operation of NOR & NAND latches 

 

20.2 Sequential vs. Combinatorial Circuit 

Let’s look back at one of the first figures we used in this text. We claimed that Figure 20.1 provided a high-level 
model of all the circuits that we would use in digital design. Up until now, this definition has been 100% correct: 
the outputs of all the circuits were direct functions of the circuit inputs. A more accurate description of the 
circuits we’ve worked with up until now is that a change in the circuit’s input always causes the same reaction 
(change or no change) in the circuit’s output.  

                                                           
1 The term sequential used in the context of digital circuit should not be confused with sequential statements in the VHDL 
language: they are completely different concepts.  
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Figure 20.1: Digital Design in a nutshell 

The input/output relationship in a sequential circuit is different from that of combinatorial circuits. The name 
sequential hints to the major attribute of a sequential circuit in terms of the input/output relationship: the 
sequence of inputs determines the outputs of a sequential circuit. Relative to a combinatorial circuit, this 
definition means that at one point in time, an input change may cause a certain change in circuit outputs, but at 
another point in time, the same input change may cause a different change in the circuit outputs. Thus, the output 
of a sequential circuit is based on the history of inputs and not the inputs themselves. This description implies 
that sequential circuits have an attribute responsible for its output behavior; we refer to this attribute as memory.  

If you only remember one thing from digital design, the difference between combinatorial and sequential circuits 
should be that thing2. Table 20.1 shows the true differences between sequential and combinatorial circuits.  

Sequential Circuits Combinatorial Circuit 

Definition: The circuit’s outputs are a function 
of the sequence of the circuit’s inputs 

Definition: The circuit outputs are a 
function of the circuit inputs 

Characteristics: The circuit has at least one 
single-bit memory element 

Characteristics: The circuit does not have 
memory 

Table 20.1: The main attributes of sequential and combinatorial circuits.  

In digital design, the notion of “state” has a specific definition. We haven’t needed to use the term “state” yet 
because our circuits up to this point did not have a “state” (they were all combinatorial). We can now refer to the 
state of a sequential circuit. We define the “state” of a digital circuit as the value(s) that the circuit is currently 
storing in its memory element(s). The notion of state is important because it’s virtually impossible to describe 
sequential circuits without mentioning the state of the circuit.  

20.3 Sequential Circuits: Low-Level Basics 

Let’s start examining sequential circuits by analyzing the seemingly simple circuit in Figure 20.2. While this 
circuit does not appear different from other circuits we’ve been dealing with, the circuit contains one distinct 
difference: there is a connection from the circuit’s output to the circuit’s input, which we refer to as feedback. In 
other words, the Q output “feeds back” and becomes a circuit input. This feedback is what ultimately gives 
circuits the ability to store data.  

 

Figure 20.2: A seemingly simple circuit.  

                                                           
2 This is a common interview question and one that is easily asked by a Human Resource person (or someone else who knows 
nothing about technology or probably anything else for that matter) conducting the interview.  
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Analyzing the circuit in Figure 20.2 will show it has some interesting properties. In order to analyze this circuit, 
we’ll consider the circuit elements as non-ideal devices. In order to simplify the analysis, let’s combine the 
delays associated with the two NOR gates into one delay; we model the propagation delays with the box labeled 
td in Figure 20.3. The circuit model of Figure 20.3 provides a time delay between two of the circuit’s signals, 
which we arbitrarily refer to as: Q+ and Q. Even though Q+ and Q are essentially the same signal, modeling them 
as different signals simplifies the analysis.  

The signal names of Q+ and Q are special signal names with special symbology. The output that interests us is 
Q, as it’s the true output of the circuit. In order to analyze this circuit, we need to consider the values of Q as 
well as the S and R inputs. However, since we also need to consider how the value of Q changes, we need some 
way to represent the new value of Q; we use the “Q+” symbology to represent the new value of Q, after the S, R, 
and Q outputs act to alter the circuit output.  

 

Figure 20.3: The seemingly simple circuit modeled in such a way as to facilitate analysis. 

Figure 20.3 shows a circuit that has three inputs, Q, S, and R, and one output, Q+. Since there are only three 
inputs, we can analyze this circuit using a truth table. Figure 20.4 shows the empty truth table we use in this 
analysis. To fill in the Q+ column of this truth table, we treat Q, S, and R as independent variables and use them 
to generate the final value of Q+. We’ll do a couple of rows and you can do the others at your leisure, if you have 
any. Figure 20.4(b) shows the completed truth table for the circuit of Figure 20.3. Here are details in analyzing 
three rows of the table:  

 Truth Table Row #0: Since both Q and S are ‘0’, the output of the first NOR gate is ‘1’. 
Anytime there is a ‘1’ input to a NOR gate, the output is ‘0’. Therefore, don’t need to consider 
the value of the R input; the output for this row: Q+ is ‘0’.  

 Truth Table Row #2: Since the S input is a ‘1’, the output of the first NOR gate must be a ‘0’ 
and we don’t need to consider the Q input value. The R input is also has a ‘0’ value; since the 
second NOR gate’s inputs are both ‘0’, the Q+ output is therefore a ‘1’.  

 Truth Table Row #6: Since one of the inputs to the first NOR gate is a ‘1’, the output of the first 
NOR gate must be ‘0’. The R input value is also ‘0’, which causes the output of the second 
NOR gate a ‘1’. For this row, the Q+ output value is a ‘1’.  

Q S R Q+ 
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  

 

Q S R Q+ 
0 0 0 0 
0 0 1 0 
0 1 0 1 
0 1 1 0 
1 0 0 1 
1 0 1 0 
1 1 0 1 
1 1 1 0 

 

(a) (b) 

Figure 20.4: The empty (a) and completed truth table (b) for the seemingly simple circuit. 

Figure 20.5(a) shows a truth table of Figure 20.4(b) after we translate the truth table into a more usable form. In 
this new truth table, we re-arrange the independent variables in order to clearly show the relationship between 
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the Q and Q+. The values of Q and Q+ in Figure 20.5 represent the output of the circuit but at different times. 
More specifically, the value of Q represents the current state (or output) of the circuit while the value of Q+ 
represents the state of the circuit after a time delay. In sequential circuit terms, the value of Q represents the 
current or present state of the circuit while the value of Q+ represents the new state of the circuit after a time 
delay, or the next state. The state changes in the circuit define the circuit.  

The following verbage describes the rows of the truth table in Figure 20.5(a). Comparing and contrasting this 
analysis to the timing diagram in Figure 20.6 helps you understand the circuit’s important attributes.  

 

 

(a) (b) 

Figure 20.5: Useful form of the truth table of Figure 20.4 in normal (a) and compressed form (b). 
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Row Comment 

(a) 

This is the do-nothing state3, though we refer to this state as the hold condition. A hold 
condition is evident from examining the Q and Q+ columns of the two (a) rows of Figure 
20.5(a). The output does not change from the present state (Q) to the next state (Q+), so the 
present state is being “held”. The next state is dependent on the present state since it’s the next 
state that is being “held”; the output can be held in either the ‘1’ or ‘0’ state. The state change 
(Q → Q+) associated with these input conditions are 0 → 0 & 1 → 14.  

(b) 

This is the clear state, or reset state. In this state, the next state (Q+) is always ‘0’ independent 
of the present state (Q), so if the S and R inputs are equal to ‘0’ and ‘1’, respectively, the next 
state of the circuit is a ‘0’. The word “clear” is important in digital design; as a noun, it refers to 
the ‘0’ condition of a circuit output. Therefore, if the circuit output is cleared, the circuit output 
is currently in a ‘0’ state. As a verb, clear refers to the placing the circuit output into the ‘0’ 
state. Clearing a sequential circuit refers to the act of making the circuit output a zero. The state 
changes (Q → Q+) associated with the SR = “01” inputs are 0 → 0 & 1 → 0. 

(c) 

This state is the set state. In this state, the next state (Q+) is always ‘1’ and is independent of the 
present state (Q) of the circuit. If the S and R inputs are equal to ‘1’ and ‘0’, respectively, the 
next state of the circuit is a ‘1’. The word “set” is another important word in digital design. As a 
noun, the word set refers to the ‘1’ condition of a circuit output. If a circuit output is set, the 
output is currently a ‘1’. As a verb, “set” refers to the action of placing the circuit output into 
the ‘1’ state. Setting the circuit refers to the act of making the output a ‘1’. The state change (Q 
→ Q+) associated with the inputs conditions are 0 → 1 & 1 → 1. 

(d) 

This is the forbidden state. We soon mention the reason we refer to this state as forbidden. To 
stay out of the forbidden state, you need to make sure your S and R circuit inputs do not 
simultaneously have the values of ‘1’. Nothing dangerous happens if this condition occurs in 
your circuit but the digital gods will be annoyed.  

Table 20.2: Detailed explanation of the main points in Figure 20.5.  

The truth table of Figure 20.5(a) becomes clearer by compressing it. Figure 20.5(b) shows the compressed truth 
table for the circuit of Figure 20.3. The output in the Q+ column of Figure 20.5(b) is (a)Q, (b)0, (c)1, and (d)0. 
The Q in the (a) row refers to the fact that the next state (Q+) is the same as the present state (Q). The ‘0’ and ‘1’ 
in the (b) and (c) rows refer to the fact that the next state will always be ‘0’ and ‘1’, respectively. It does not 
matter what’s going on in the (d) state since you should not be there.  

The true ramifications of Figure 20.5 are not obvious. Recall that we’re describing a sequential circuit, which has 
the ability to remember a single bit. Instead of speaking of what the circuit is remembering, we refer to the 
“state” of the circuit. Figure 20.6 shows a timing diagram that tells the whole story; Table 20.3 provides an 
analysis of that timing diagram. 

                                                           
3 Unfortunately, academic administrators spend most of their lives in this state. 
4 Generally speaking, we refer to the state changes of 0 → 0, and 1 → 1 as state changes even though the output does not 
really change.  
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Figure 20.6: A timing diagram showing the three conditions and two states of the given circuit. 

 

time 
slot Comment 

(a) 
This is a hold condition, which means that the present-state (Q) does not change as long as both 
the S and R inputs are both ‘0’. The timing diagram provides an arbitrary initial value for Q.  

(b) 
The S input sets at the beginning of the (b) time slots. The values of S and R are now ‘1’ and ‘0’, 
respectively. The SR = “10” represents the set condition for the circuit and causes the output Q 
to transition from ‘0’ to ‘1’. The output state remains set while SR = “10”.   

(c) 
The S input clears at the beginning of the (c) time slot. The SR inputs now equals “00”, which is 
the hold condition, so the output at the start of the (b) time slots remains set. The fact that the ‘1’ 
remains on the output after the SR inputs are both cleared represents the circuit’s memory.   

(d) 
The R input sets at the beginning of the (d) time slot. The SR is now “01”, which is a clear 
condition, so the output Q transitions from ‘1’ to ‘0’. The output of the device is “cleared” by 
this action and remains cleared as long as the SR = ”01” remains on the circuit inputs.  

(e) 
At the beginning of the (e) time slots, the R input clears. Since the both the S and R inputs are 
once again ‘0’, a hold condition is present on the circuit inputs. This hold condition causes no 
change from the present circuit outputs; the circuit is thus remembering a ‘0’.  

Table 20.3: Detailed description of the timing diagram in Figure 20.6.  

The timing diagram in Figure 20.6 only provides the Q output. Recall that when we first model the original 
circuit, there was both a Q and a Q+ value. The concept of Q and Q+ enables us to model the present and next 
state of the circuit, respectively, but it wouldn’t provide any useful information to include both a Q and Q+ in a 
timing diagram because the Q value inherently contains both of these values. For any given time in Figure 20.6, 
the present state is the state of Q at those times. The next state is the state of the circuit after the present state (a 
concept that is hard to describe in terms of a timing diagram).  

20.4 The NOR Latch 

Figure 20.2 shows a classic circuit in digital design, but Figure 20.7(a) shows the more common depiction of this 
circuit. While the diagram of Figure 20.2 only shows the Q output, the circuit in Figure 20.7(a) has both a Q 



Free Range Digital Design Foundation Modeling Chapter 20 

 

 
- 297 -  

 

output and !Q output. One common name for this circuit is the cross-coupled NOR cell. We also refer to this 
circuit as a NOR latch, or simply latch.  

Once you draw the circuit in Figure 20.7(a) a few times, you’ll instead abstract it to a higher-level and draw it as 
the BBD in Figure 20.7(b). The lower output of the diagram in Figure 20.7(b) contains a bubble on one of the Q 
outputs to indicate that it is active low. The Q output of the NOR cell is available in both positive logic and 
negative logic forms. How convenient.   

 
 

(a) (b) 

Figure 20.7: The cross-coupled NOR cell (a) and its black box representation (b).  

20.4.1 Latch Terminology 

The term “latch” is a common term in digital design. The term latch is similar to “set” and “clear” in that it has 
two different definitions depending on whether you’re using the word as a verb or a noun. As a noun, a “latch” 
represents a one-bit level-sensitive storage element. As a verb, the notion of “to latch something” means to store 
a given digital value into a storage element. For the verb version of “latch”, the storage element is not limited to 
a single-bit storage element.  

20.5 State Diagrams 

We can enhance our understanding of sequential circuits using a state diagrams. While tabular representations of 
sequential circuits are interesting, they can be hard to interpret, especially as circuits become more complex. 
Truth tables do not present information efficiently; humans are more adept at viewing images such as state 
diagrams.  

State diagrams are often the most useful way to describe the operation of sequential circuits. State diagrams are 
relatively simple, but they require learning a new terminology and symbology. We use state diagrams 
extensively, so we first examine one in the context of the simplest sequential circuit: the NOR latch. We present 
state diagrams in more detail in later chapter.  

Figure 20.8 shows two versions of the state diagram associated with the NOR latch. An explanation follows but 
first we must issue this disclaimer. Unlike syntactical languages such as C or Java, there are no set rules for 
drawing state diagrams. Here is the one rule you should follow: good state diagrams transfer the most 
information in the shortest amount of time to the entity examining the state diagram. There are many ways to 
draw state diagrams. If you use strange techniques to draw your state diagrams, be sure to adequately explain 
them5.  

                                                           
5 In other words, be sure to annotate your state diagrams.  
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(a) (b) 

Figure 20.8: Two state diagrams representing the NOR latch.  

The state diagrams in Figure 20.8 completely describes the operation of the NOR latch. This means that the 
information in Figure 20.8 is the same information in Figure 20.5, but with a different presentation. State 
diagrams have some important features. Here they are:  

 Each circle in state diagram refers to a different state in the circuit; we refer to these circles as state 
bubbles. The NOR cell stores one bit of information, there are two states in the associated state 
diagram: the Q=0 and the Q=1 state. 

 The singly directed arrows, or just arrows in the state diagram represent the state transitions. There are 
four possible state transitions in the NOR cell: 1) 0→0,  2) 0→1,  3) 1→0,  4) 1→1. We represent the 
0→0 and 1→1 transitions by self-loops in the diagram (arrows ending in the same state they started 
from). We represent the other transitions by arrows emanating from one state bubble and ending in 
another state.   

 Each state transition (arrow) includes a list of conditions that allows that state transition to occur. We 
can represent these conditions in a variety of forms; the forms in the circuit of Figure 20.8(a) happen to 
be a logic-type form where the “+” symbol represents a logical OR.  

 We include the forbidden states of the circuit inputs in Figure 20.8(a), but we cross them out. We 
include it the state diagram for completeness.  

 Figure 20.8(a) shows there are eight product terms, which correspond to the eight rows of the truth table 
in Table 20.4(b).  

 The state diagram of Figure 20.8(b) is functionally equivalent to the state diagram of Figure 20.8(a) but 
we reduced some Boolean equations and didn’t include the forbidden states.  

20.6 PS/NS Tables 

The present state/next state table (PS/NS table) is another important sequential design element. This table is 
essentially nothing more than a truth table that lists both the present and next states of the circuit. The PS/NS 
table is a common tool in describing relatively simple digital circuits such as the NOR latch.  

We already worked with a PS/NS table in the design of the NOR latch; the table of Figure 20.4(b) is a basic 
PS/NS table, which represents a more formal presentation of the table in Table 20.4(b). We often refer to the 
PS/NS table to as a characteristic table since they completely define the set of characteristics of a given device.  
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PS/NS Table NOR Latch 

     
  (PS) (NS)  

S R Q Q+ Comment 
0 0 0 0 hold 

condition 0 0 1 1 
0 1 0 0 reset 

condition 0 1 1 0 
1 0 0 1 set 

condition 1 0 1 1 
1 1 0 x 

forbidden 
1 1 1 x 

Table 20.4: The PS/NS table for the NOR latch. 

20.7 Excitation Tables 

Excitation tables are useful for describing the operation of some sequential devices. Excitation table are 
straightforward in that they represent a rearranging of the columns in a compressed PS/NS table for a given 
device. The excitation table provides is a list of input conditions that cause a given state transition. We list the 
state transitions as the change from the present state (Q) to the next state (Q+); we the list the input conditions 
that allow those state transitions to occur. Figure 20.9(a) shows a compressed PS/NS table for a NOR latch while 
Figure 20.9(b) shows the associated excitation table. Table 20.5 provides a detailed description of the excitation 
table.  

S R Q+ 

0 0 Q 
0 1 0 
1 0 1 
1 1 X 

 

state 
transitions 

input 
conditions 

 

Q Q+ S R Comment 

0 0 0 - (a) 
0 1 1 0 (b) 
1 0 0 1 (c) 
1 1 - 0 (d) 

 

(a) (b) 

Figure 20.9: A compressed PS/NS table (a) and an excitation table (b) for a NOR latch.   
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row 

state change 
Q → Q+ 

 
Comment 

(a) 0 → 0 

Two SR input conditions cause this state transition: either a hold condition 
(SR = “00”) or a clear condition (SR = “01”). Thus, this state transition 
occurs when the S input is ‘0’; the R input does not matter because the state 
change occurs when R is either a ‘1’ or a ‘0’.  

(b) 0 → 1 
Only one SR input combination that causes this transition: SR = “10”. This is 
the “set condition” of the NOR latch. This state transition occurs when the 
SR inputs are in the “01” state.  

(c) 1 → 0 
Only one SR input combination causes this transition: SR = “01”. This is the 
clear condition of the NOR latch. We sometimes refer to the clear condition 
as a “reset condition”.  

(d) 1 → 1 

Two SR input conditions cause this state transition: either a hold condition 
(SR = “00”) or a set condition (SR = “10”). This state transition occurs when 
the R input is ‘0’; the S input does not matter because the state change occurs 
when the S input is either a ‘1’ or a ‘0’.  

Table 20.5: An explanation of the NOR cell excitation table of Figure 20.9(b).  

20.8 The NAND Latch 

Since we’ve gone through the design and description steps for the NOR latch at a detailed level, we won’t to go 
through the same steps for a similar bit-storage circuit known as the NAND latch. There are many similarities in 
the derivation of the NOR and NAND latch, so we leave the derivation of the NAND latch as an exercise.  

Figure 20.10(a) shows a diagram of the NAND latch. There is one major difference between the NOR and 
NAND latches: the inputs to the NOR latch are active high while the inputs to the NOR latch are active low. 
Figure 20.10(b) uses bubbles to show that the inputs to the NAND latch are active low.  

 
 

(a) (b) 

Figure 20.10: A circuit diagram of a NAND latch (a), and the associated schematic diagram (b).  

20.9 NOR and NAND Latch Summary 

Table 20.6 provides the big summary of the various representations of NOR and NAND latches. We refer to 
both the NOR or NAND latches as a “SR latches” based on the fact that they can “set” and “reset”. The 
ramifications of the SR latch is that if someone mentions “SR latch”, you’ll know that you’re dealing with a 1-bit 
storage element but you will not know whether it is a NOR or NAND latch.  
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Item NOR Cell NAND Cell 

Circuit Form 

  

PS/NS Table 

S R Q Q+ Comment 

0 0 0 0 
hold 

0 0 1 1 
0 1 0 0 

reset 
0 1 1 0 
1 0 0 1 

set 
1 0 1 1 
1 1 0 x 

forbidden 
1 1 1 x 

 

S R Q Q+ Comment 

0 0 0 x 
forbidden 

0 0 1 x 
0 1 0 1 

set 
0 1 1 1 
1 0 0 0 

reset 
1 0 1 0 
1 1 0 0 

hold 
1 1 1 1 

 

Compressed 
PS/NS Table 

S R Q+ 

0 0 Q 
0 1 0 
1 0 1 
1 1 x 

 

S R Q+ 

0 0 x 
0 1 1 
1 0 0 
1 1 Q 

 

Excitation 
Table 

Q Q+ S R 

0 0 0 - 
0 1 1 0 
1 0 0 1 
1 1 - 0 

 

Q Q+ S R 

0 0 1 - 
0 1 0 1 
1 0 1 0 
1 1 - 1 

 

Block Diagram 

  

State Diagram 

  

Table 20.6: The Big Summary of NOR and NAND latches. 
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20.10 Chapter Overview 

 

 The two main types of digital circuits include combinatorial circuits and sequential circuits. Sequential 
circuits have the ability to store bits of information while combinatorial circuits do not. Sequential circuits 
obtain their memory storage ability circuits by feeding output signals back to the circuit’s inputs, a condition 
we refer to as feedback.  

 Latches are the most basic storage elements in digital logic. The two main types of latches are the NOR 
latch and the NAND latch. Although we construct these latches with different logic gates, the only 
difference between these two latches at a higher-level is the logic levels of the S and R inputs.  

 Since sequential circuits can store information, we consider them as having a state. The data a sequential 
circuit stores determines the state of the circuit. We use the concept of present state and next state to 
describe changes in the values stored by the circuit at the present time.  

 We typically describe sequential circuits by PS/NS tables, characteristic equations, excitation tables, and 
state diagrams. Probably the most useful of these representations is the state diagram. Transitioning from 
any of these representations to any other of these representations is a straightforward process.  

 We consider a latch as an level-sensitive device since the outputs can change any time the inputs change. 
When we add special control inputs to latches, name a clock input, and changes in the state of the circuit can 
only happen when certain conditions are present on the circuit inputs..  
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20.11 Chapter Exercises 

 

1) Briefly describe what is meant by the term “state” in a digital circuit.  

2) Briefly describe what specific condition gives a digital circuit the ability to have state.  

3) Briefly describe why the “forbidden” state is considered forbidden.  

4) Briefly explain what is the worst thing that could possible occur if your circuit finds itself in the forbidden 
state.  

5) Briefly define the word “set” as both a verb and a noun.  

6) Briefly define the word “clear” as both a verb and a noun.  

7) Derive the tables of Figure 20.5 for a NAND latch.  

8) Provide an accepted synonym for the word “clear” as it relates to digital design.  

9) Briefly describe why is it hard to describe the concept of “next state” in a timing diagram.  

10) Briefly describe the main attribute of a good state diagram.  

11)  Briefly the physical circuit characteristic that created the notion of “memory” in a circuit.  

12) Briefly describe why it makes no sense to describe the “state” of a combinatorial circuit. 
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20.12 Design Problems 

 

For the following problems:  

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution 

 Minimize the use of hardware in your solution 

 State the types of control your circuit uses (“no control”, “internal control”, and/or “external control”). 

 

1) Design a circuit that contains a NOR latch and only allows the outputs to change when the button is pressed. 
The circuit’s inputs and outputs should be the same as a NOR latch except for the addition of the button 
input. Assume a button press equals a logical ‘1’.  

2) Design a circuit that contains a NAND latch and only allows the outputs to change when the button is 
pressed. The circuit’s inputs and outputs should be the same as a NAND latch except for the addition of the 
button input. Assume a button press equals a logical ‘1’.  

3) Design a circuit that adds two 8-bit inputs in RC format. The circuit outputs A+B or A-B. The outputs A+B 
when BTN1 is pressed and keeps outputting that value until BTN2 is pressed. When BTN2 is pressed, it 
outputs A-B and keeps outputting that value until BTN1 is pressed again, at which time it outputs A+B 
again. Assume BTN1 and BTN2 will never be pressed simultaneously. Assume the result of the 
mathematical operations will always be valid.  
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21 Flip-Flops 

 

21.1 Introduction 

The previous chapter’s introduction to sequential circuits entailed the simple latch. This chapter presents the 
notion of a one-type of flip-flop1, which is nothing more than a latch with added control features. The notion of 
flip-flops is somewhat “dated” as modern digital design no longer uses all flavors of flip-flops.  

Main Chapter Topics 

The Flip-Flops: This chapter describes the basic operation of a D flip-flop, which is 
nothing more than an edge-sensitive latch.  

 

Chapter Acquired Skills 

 Be able to describe the basic terminology associated with clocked digital circuits 

 Be able to describe the basic operation of a D flip-flop 

 Be able to describe the difference between synchronous and asynchronous flip-flop 
inputs 

 Be able to describe the associated features of D flip-flops as they apply to timing 
diagrams  

 

21.2 Clock Vernacular 

In order to understand this chapter, we first must toss out some definitions regarding “clock” signals. We fill in 
more details in a later chapter.  

 Unless stated otherwise, clocks are periodic signals, which means that the output waveform of 
the signal repeats itself after a finite amount of time. 

 We refer to the time it requires for periodic signals to repeat themselves as the period.  

 A periodic signal by nature some amount of time high and some amount of time low. We refer 
to the transition from low-to-high as the “rising edge” of the signal, and refer to the transition 
from high-to-low as the “falling edge” of the signal.  

 We refer to the ratio of the time the signal is high to the time the period of the signal as the 
duty cycle. The duty cycle is unit-less value.  

                                                           

1 There are three standard types of flip-flops out there; this text only deals with one type: the D flip-flop.  
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Figure 21.1: Everything you wanted to know about periodic signals but were afraid to ask.  

21.3 Flip-Flops 

A flip-flop is essentially an edge-sensitive latch, which means that the flip-flop’s outputs can only change 
simultaneously to an active edge of a particular input signal. The primary difference between flip-flops and 
latches is that fact that latches are level-sensitive (state can change anytime inputs change) while flip-flops are 
edge sensitive (state changes are synchronized with an active edge of a control signal).  

Most sequential devices have an input that we refer to as a clock; a flip-flop bases its edge-sensitivity on that 
clock edge. Additionally, we refer to flip-flops as synchronous circuits, which means that the changes to the state 
of the circuit are synchronized with an active clock edge. The active clock edge can be either the rising or falling 
edge of the clock. We refer to devices whose state changes on the rising clock edge as “rising-edge-triggered” 
devices (RET) and devices whose state changes on the falling clock edge as “falling-edge-triggered” devices 
(FET)2.  

21.4 The D Flip-Flop 

The most common flip-flop is the D flip-flop. The D stands for data, so the D flip-flop is a data flip-flop. The 
characteristic of a D flip-flop is that the output of the flip-flop follows the D input. Figure 21.2(a) shows a 
schematic symbol for a simple D flip-flop. The new feature to notice about the D flip-flop symbol is the 
triangular shape on the CLK input, which means that the device is edge-triggered. Since there is no bubble 
attached to this triangle, the device is a rising-edge-triggered (RET) D flip-flop. Had there been a bubble on the 
CLK input, we would consider this device a falling-edge-triggered (FET) device. The standard D flip-flop 
outputs both the positive and negative logic versions of the flip-flop’s state (Q & !Q).  

Figure 21.2(b) shows the characteristic table of the D flip-flop, which shows that the next state (Q+) of the flip-
flop follows the D input to the flip-flop. By inspection of the characteristic table, you can generate the 
characteristic equation in Figure 21.2(b). Figure 21.2(c) shows the excitation table for the D flip-flop. From this 
table, you can see what the value of the D input needs to be in order to force the listed state change (Q → Q+) to 
occur.  

Figure 21.2(d) shows the state diagram that models the D flip-flop. This state diagram looks very similar to the 
state diagram for the latch presented earlier; however, there is one significant: because the D flip-flip is a 
synchronous device, the state of the flip-flop can only change on clock edges. This means that the singly directed 
arrows in Figure 21.2(d) are implicitly associated with the clock edge. Unless stated otherwise, from now on, 
state-to-state transitions in state diagrams are synchronized with the active clock edge.  

                                                           

2 Most digital logic texts include the derivation of the actual circuitry that creates the “edge sensitivity”. The circuitry that 
creates edge triggering is somewhat complicated, so we omit it in favor of keeping things abstracted to higher levels.  
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D Q Q+ 

0 0 0 
0 1 0 
1 0 1 
1 1 1 

Q+ = D 

 

Q Q+ D 

0 0 0 
0 1 1 
1 0 0 
1 1 1 

 

(a) (b) (c) (d) 

Figure 21.2: The schematic symbol (a), characteristic table and characteristic equation (b), and 
excitation table (c), and the state diagram for the D flip-flop. 

The timing diagram in Figure 21.3 demonstrates the operation of the RET D flip-flop in Figure 21.2(a); here’s a 
list of the items to note in the timing diagram:  

 Outputs can only change on the rising-edge of the clock signal. Figure 21.3 uses vertical dotted 
lines to show the rising edges of the clock across the signals. 

 The initial state of the flip-flop is ‘0’. Since the D flip-flop is a sequential circuit, the timing 
diagram must provide the initial value of the output.  

 At the first rising edge, the D input is a ‘1’, which transfers to the output and becomes the 
official “state” of the flip-flop. At the second rising edge, the D input is high again so no state 
change occurs.  

 During the interval between the first and second rising edges, the D input changes twice. The 
circuit ignores these changes because the output can only change on the rising-edge of the clock.  

 At the third rising edge, the D input is in a low state, which causes the output of the flip-flop to 
change from high to low.  

 At the fourth rising clock edge, the output is low again and the flip-flop remains in a low state.  

 At the fifth clock edge, the D input is high, which in-turn causes the state of the flip-flop to 
change from low to high.  

 

Figure 21.3: An example timing diagram for the D flip-flop.  

21.5 Synchronous and Asynchronous Flip-Flop Inputs 

The flip-flops we’ve described up to this point were synchronous circuits. In the context of flip-flops, 
“synchronous” refers to the fact that the changes in the state of the flip-flop are synchronized to the active clock 
edge. Many flip-flops have the ability to change state either synchronously (synchronized to the clock input) or 
“asynchronously”. Asynchronous inputs cause state changes that are not synchronized with the clock edge. 
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There are two different things you can do to a flip-flop’s output, namely set it or clear it. Not surprisingly, there 
are usually two different asynchronous control inputs to a flip-flop: the set and reset input. These inputs are 
usually active low, which means when the asynchronous input signal is low, the flip-flop can change state. Flip-
flop diagrams use a bubble to indicate the logic level of the inputs. Flip-flops use an S and R inputs to represent 
signals that asynchronously set and clear the state of the flip-flop, respectively.  

21.5.1 D Flip-Flop with Reset 

A D flip-flop with an asynchronous input is relatively simple, so we model it with a state diagram in Figure 
21.4(b). The schematic in Figure 21.4(a) shows most of what we need to know about the D flip-flop, but it does 
not show whether the R input is asynchronous or not; someone or something needs to state this fact. Here are a 
few other things to note.  

 The flip-flop has complementary outputs, which the diagram in Figure 21.5(a) indicates with 
two Q outputs; the Q with the bubble is the active low version of Q.  

 We generally assumed the R input to be a “reset” control input 

 The R input has a bubble, which indicates that the input is active low 

 While the R input is active low, someone needs to tell you whether it is synchronous or 
asynchronous. For this example, we assume the R input is asynchronous.  

The state diagram in Figure 21.5(b) is nearly identical to the state diagram in Figure 21.2(d), but with one major 
difference: how we represent the R input. Here is a complete description of that difference.  

 We represent asynchronous inputs with a new type of arrow. We represent synchronous state 
transitions with “state-to-state” arrows (starts in a state and ends in a state), while we represent 
asynchronous transitions with “coming-out-of-nowhere-to-state” arrows (starts nowhere, and 
ends in a state).  

 We represent the fact that the R input is active low in the schematic by using a bubble on the 
input and by placing an overbar on the signal in the state diagram.  

  

(a) (b) 

Figure 21.4: Timing diagram associated D Flip-flop with asynchronous active low reset. 

Figure 21.5 shows a timing diagram we use to model the operation of the flip-flop. For this timing diagram, 
assume the R input as precedence of the D input. Here are things to note about the timing diagram.  

 Because the R input is low at the start of the timing diagram, the output of the flip-flop is in the 
reset state.  

 On the first rising clock edge (1) , the D flip-flop acts as you expect. In this case, the model 
ignores the R input because it is a ‘1’ (its non-active state); the model then evaluates the other 
inputs. Because the D input is ‘1’ on this clock edge, ‘1’ becomes the new state of the flip-flop.  

 On the second clock edge, the flip-flop does not change state. The D input is at ‘1’ on this clock 
edge, the flip-flop output does not change because the flip-flop is currently in the Q=1 state.  
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 Between the second and third clock edges, the R input asserts (goes low); so the flip-flop 
immediately resets3, as the causality arrows indicate. The R input returns to its non-active state 
(the ‘1’ state) soon afterwards. Returning the R input to the non-active state has no effect on the 
state of the flip-flop, meaning that the flip-flop stays reset.  

 The pulses on D between the third and fourth clock edges have no effect because they did not 
occur on an active clock edge.  

 On the fifth clock edge, the flip-flop sets as the causality arrows indicate. Soon after that clock 
edge, the flip-flop resets are a result of the R input becoming active (R=’0’).  

 

Figure 21.5: Timing diagram associated D Flip-flop with asynchronous active low reset. 

21.5.2 D Flip-Flop with Set Input 

D flip-flops often have a control input that allows the flip-flop to be set. The D flip-flop in Figure 21.6(a) has an 
S input as a control signal that sets the flip-flop. We also need to state that the S input is synchronous. Figure 
21.6(a) shows that the S input is active low and that the device is rising-edge-triggered.  

The state diagram in Figure 21.6(b) is different from the state diagram in Figure 21.4(b) because the set input is 
synchronous. Because it’s synchronous, the S control input is now associated with the state-to-state-type 
transition arrows rather than the coming-out-of-nowhere arrows. There are a few new issues to describe in the 
state diagram of Figure 21.6(b); these issues involve the presence of logic and the S control input in the state 
diagram. There are now two conditions associated with the state transitions: the D and the S inputs.  

 The logic shows that we can attain the 1 → 1 transition in two different ways: when the D 
input is asserted (D=’1’) or when the S input is asserted (S=’0’).  

 The logic shows that we can attain the 0 → 0 transition when the D input is not asserted 
(D=’0’) at the same time as when the S input is not asserted (S=’1’).  

 The logic shows that we can attain the 0 → 1 transition in two different ways: when the D 
input is asserted (D=’1’) or when the S input is not asserted (S=’0’).  

 The logic shows that we can attain the 1 → 0 transition when the D input is not asserted 
(D=’0’) at the same time as when the S input is not asserted (S=’1’).  

                                                           
3 There is actually an associated propagation delay associated with this state transition but we’re still modeling these flip-
flops using an ideal model.  
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(a) (b) 

Figure 21.6: Timing diagram associated D Flip-flop with asynchronous active low set. 

Figure 21.7 shows a timing diagram associated with Figure 21.6. Here are a few things to note:  

 The problem provides the starting state of Q, which the problem description did not state.  

 The flip-flop ignores the S pulse between the first and second rising clock edge because the S 
input in this example is synchronous. The same is true of the S pulse between the third and fourth 
clock edges.  

 The flip-flop output sets on the fifth clock edge because the S input was in its active state at the 
arrival of the active clock edge.  

 

Figure 21.7: Timing diagram associated with this example. 

 

21.6 Flip-flops with Multiple Control Inputs 

Flip-flops can also have multiple control inputs, such as the flip-flop in Figure 21.8(a). This flip-flop has active-
low asynchronous set and reset inputs. Figure 21.8(b) shows the state diagram modeling the flip-flop’s operation. 
Here are a few things to note about the state diagram.  

 Both the S and R inputs are asynchronous and active low; the complemented signal names 
indication they are active low while the “arrow from nowhere” indicate the asynchronicity of 
the inputs.  

 Problems such as this must state what happens when both the S and R inputs assert 
simultaneously; the state diagram does not make sense unless we provide this information. For 
this problem, we declare that the S and R inputs won't be simultaneously asserted.  

We base the timing diagram in Figure 21.9 on the schematic diagram of Figure 21.8(a). Here are a few items of 
interest in the timing diagram.  

 The output of the D flip-flop goes to the ‘1’ state with the initial low pulse on the S input.  

 The first and second clock edges transfer the D inputs of ‘0’ and ‘1’ to the output of the device.  
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 The first low pulse of the R signal represents a reset, which makes the state of the device a ‘0’ 
independent of the active edge of the clock. When R returns to the ‘1’ state, the output of the 
device remains in the ‘0’ state.  

 The second low pulse on R does not affect the state of the flip-flop since the flip-flop is current 
in a ‘0’ state.  

 The final low pulse on the S signal sets the output of the flip-flop.  

  

(a) (b) 

Figure 21.8: Timing diagram associated D Flip-flop with asynchronous active low clear. 

 

Figure 21.9: Example timing diagram for a RET D flip-flop with active low asynchronous preset 
and clear for this example.   
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21.7 Chapter Overview 

 

 While a latch is considered a level-sensitive device since the outputs can change any time the inputs change. 
When special control inputs are added to latches, name a clock input, and changes in the state of the circuit 
can only happen on a clock edge, the circuit is considered a flip-flop. There are three main types of flip-
flops: the D, T, and JK flip-flops; this text does not consider T and JK flip-flops.  

 Flip-flops are generally considered synchronous circuits in that the state of the flip-flop is synchronized to 
the active clock edge. Flip-flops can also contain inputs whose effects are not synchronized to the clock 
edge; we refer to these inputs to as asynchronous inputs.  

 We use state diagrams to represent the operation of D flip-flops, which provide a visual description 
describing the operation of the device.  

 State diagrams don’t include clock signals, as we understand most transitions to be associated with the 
device’s active clock edge. We represent asynchronous transitions with singly directed arrows emanating 
from nowhere and ending up in a state in the state diagram.  
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21.8 Chapter Exercises 

 

For the following problems, assume all inputs and outputs are positive logic, unless stated otherwise.  

 

1) Briefly describe the difference between a flip-flop and a latch.  

2) Briefly describe the difference between synchronous and asynchronous inputs on a D flip-flop.  

3) Briefly describe the what the “D” in D “flip-flop” stands for.  

4) Provide the Q output (sometimes labeled as OUTPUT) signal using the associated flip-flops listed below. 
Consider all S and R inputs to be asynchronous. The asynchronous inputs take precedence over the 
synchronous inputs. Assume that propagation delays are negligent.  

 

(a) 

 

 

 

(b) 

 

 

 

(c) 
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(d) 

 

 

 

(e) 

 

 

  

 

(f) 

 

 

  

 

5)  Provide a state diagram and a PS/NS table that describes the following circuit.  

  

 

6) Briefly describe the karmic potential of a D flip-flop.  

7) Briefly describe the distinct relationship between D flip-flops and popsicles.  
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21.9 Design Problems 

 

1) Using only one extra device, use a D flip-flop to blink an LED at half the D flip-flops clock frequency.  

2) Design a circuit with two LED outputs. Both outputs blink at half the input clock frequency, but the two 
LEDs are never simultaneously on.  

3) Use a D flip-flop to blink an LED at half a D flip-flop’s clock frequency. This circuit also had a button that 
holds (prevents the outputs from changing) the circuit’s outputs. Assume a pressed button outputs a ‘1’. 

4) Design a circuit with two LED outputs. Both outputs blink at half the input clock frequency, but the two 
LEDs are never simultaneously on. This circuit also has a positive logic control input that turns off both 
LEDs when asserted. Assume a pressed button outputs a ‘1’. 

5) Design a circuit with two LED outputs. Both outputs blink at half the input clock frequency, but the two 
LEDs are never simultaneously on. This circuit also has a negative logic control input that toggles both 
LEDs when asserted.  

6) Design a circuit that shows the previous three values present on the VAL input on the rising edge of the 
circuit’s clock input.  

7) Design a circuit that shows when the previous three values present on the VAL1  and VAL2 inputs on the 
rising edge of the circuit’s clock input are equivalent.  

8) Design a circuit that has two data inputs: VAL1 & VAL2. The circuit also has a control input show chooses 
whether to display the previous three values on the VAL1 input, or the previous three values on the VAL2 
input. The control signal is positive logic; a value of ‘0’ on this signal directs the circuit to display the VAL1 
associated sequence.  
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22 Registers 

 

22.1 Introduction 

Registers could be the most widely used circuit in digital design. The concept of registers is straightforward, 
particularly since you have already been working with a 1-bit register (the D flip-flop). This chapter describes 
multi-bit registers; we work with other common types of registers in later chapters.  

Main Chapter Topics 

SIMPLE REGISTERS AND REGISTERS “WITH FEATURES”: This chapter defines and 
describes basic multi-bit registers and their common features.    

 

Chapter Acquired Skills 

 Be able to describe the construction and function of a register in terms D flip-flops 

 Be able to describe the basic synchronous nature of flip-flops. 

 Be able use basic register control features such as load and clear 

 Be able to describe the basic operation of registers in timing diagrams  

 Be able to use simple registers in solutions of digital design problems  

 

22.2 Registers 

Registers are multi-bit storage elements modeled as a parallel configuration of D flip-flops that share a common 
clock signal. When we refer to “registers”, we refer to simple registers; we refer to other common register types 
by their names: counters and shift registers (topics for later chapters).  

Figure 22.1 shows four D flip-flops assembled to act as a simple multi-bit register. In particular, Figure 22.1(a) 
shows the block diagram for a 4-bit register and Figure 22.1(b) shows the underlying circuit. Here are a few 
things to note about Figure 22.1:  

 The block diagram in Figure 22.1(a) shows that this register is rising-edge triggered. This 
means that all changes in the state of the register are synchronized with the rising clock edge.  

 Figure 22.1(b) shows that each flip-flop in the register shares a common clock signal, which 
allows all flip-flops to simultaneously latch their data.  

 We label the four input signals, Dx & Qx, respectively, with numbers. We often consider the 
left-most bit the MSB and the right-most bit the LSB.  
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(a) (b) 

Figure 22.1: A block diagram for a 4-bit register (a), and the associated lower-level model (b).  

Figure 22.2(a) shows the block diagram for a generic n-bit register; Figure 22.2(b) shows the underlying details. 
We typically model the LSB with an index of ‘0’, and the MSB with an index of “n-1”.  

 
 

(a) (b) 

Figure 22.2: A block diagram of an n-bit register (a), and the underlying circuitry, (b). 

 

Example 22.1: A Simple Register 

Using the block diagram on the right to complete the 
timing diagram provided below. Ignore all 
propagation delay issues.  

 

 
 

Solution: From the problem description, we know the block diagram represents an 8-bit register that is active on 
the rising clock edge. We only need to examine only the portions of the timing diagram aligned to the rising edge 
of the clock, which is when the register’s input data latches into the register, thus allows the data to appear on the 
output. Figure 22.3 shows the solution for this example; here are a few items worth noting.  

 The solution adds dotted vertical lines on the rising clock edges 

 The problem did not provide an initial value (state) of the register, which is why the first 
value on the Q line contains question marks.  
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Figure 22.3: The solution for this example. 

 

In real digital circuits, you rarely see registers as simple as the register in the previous example as they lack the 
“control” to make them useful. Useful registers that are more useful contain a signal that controls when the 
register latches the data, so that the register is not loading data on every active clock edge. Control signals for 
such registers are associated with the word “load” (and the acronym LD); the vernacular is registers “load” the 
input data into the register. Figure 22.4 shows an example of a register with a LD control. In order for this 
register to latch the input data into the register, it requires both an active clock edge and an asserted LD signal.  

 

Figure 22.4: A register with a load control (LD). 

 

Example 22.2: A Register with Load Control 

Using the block diagram on the right to complete 
the timing diagram provided below. Ignore all 
propagation delay issues. 

 

 
 

Solution: We need to examine the times where the both the rising edge of the CLK signal occurs and where the 
LD signal is asserted. Figure 22.5 shows the solution for this example; some interesting things to note surely 
follow as well. Here are a few more items of interest in Figure 22.5  

 The LD signal is “level sensitive”, so the register can only load the input data when the LD 
input is asserted at the same time there is an active clock edge. 
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 The first rising clock edge latches the data on the D input to the register because of the LD input 
being asserted.  

 On the second rising clock edge, the state of register does not change because the LD input is 
not asserted.  

 At the time marked with the circled “1”, the LD signal asserts and then de-asserts, which has no 
effect on the register because there was no rising clock edge when the LD signal was asserted.  

 

Figure 22.5: The solution for Example 22.2. 

 

Registers can have other control inputs as well. Figure 22.6 shows a register that has both a load and a clear 
input. The CLR input, like the LD input, is a control signal. We can generally assume the register’s LD signal 
be synchronous, while signals such as CLR are usually asynchronous. The CLR input, as Figure 22.6 shows, is 
active low as the bubble on the input indicates. We don’t know from looking at Figure 22.6 whether the CLR 
signal is asynchronous or not; circuits you work with need to provide that information.  

 

Figure 22.6: A register with a load control and clear input (CLR). 
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Example 22.3: A Register with Synchronous and Asynchronous Control 

Using the block diagram on the right to complete the timing 
diagram below. The LD input is a synchronous parallel load 
input while the CLR signal is an asynchronous active low 
signal that clears the register when asserted. Ignore all 
propagation delays.   

 
 

Solution: Although this solution is straightforward, it provides a few new tidbits of information regarding the 
operation of registers.  

 The asserted CLR signal at the beginning of the timing diagram makes the register’s state 
known; the register is initially storing zero, or “cleared”.  

 Though you can’t tell from the first instance of the asserted CLR, the second instance shows 
that the CLR signal is asynchronous. We know this because the clearing of the output register 
occurs when the CLR signal asserts.  

 

Figure 22.7: The final solution to Example 22.3. 
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Example 22.4: Three-Value Serial Equivalency Detector 

Design a circuit that detects when three consecutive values are equivalent. The circuit 
examines the circuit’s 8-bit input value on each rising clock edge. If three consecutive 
values are equivalent, the circuit’s EQ output is a ‘1; otherwise the EQ output is ‘0’. 
Also, state what controls the circuit’s operation.  

 

Solution: The first step in this example is to discern the inputs and outputs from the problem description and 
draw a top-level BBD. Figure 22.8 shows this first step in our solution.  

 

Figure 22.8: The top-level BBD for this example.  

The next step is to create an inventory of modules the solution requires. We need to compare three 8-bit values, 
yet the circuit only receives one value per rising clock edge. This means that we need to store two previous 
values and compare them to the current value, which requires two registers. We also need to compare two 
different pairs of values, so the circuit requires two comparators. The circuit’s EQ output is asserted when both 
comparators indicate their input values are equal, which requires an AND gate.  

The key to making this circuit work is ensuring the two registers are always holding the two previous data input 
values. We accomplish this by connecting the data input of the first register to the incoming data; we then 
connect the output of this register to the input of the second register. One comparator the compares the incoming 
data with the previous data, while the other comparator compares the data latched on the previous clock edge to 
the data latched two clock cycles previously. 

The next step in this solution is to assemble the modules we previously identified and connect them to make the 
circuit satisfy the problem description. Figure 22.9 shows the final BBD for this problem.  

 

Figure 22.9: The lower-level BBD for this example. 

The two registers are the only devices in this circuit containing control inputs. The circuit hardwires 
these control inputs to ‘1’, which provides internal control for the circuit. Additionally, Figure 22.10 
shows an example timing diagram for this solution.  
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Figure 22.10: An example timing diagram for this problem. 

 

22.3 Special Register Circuits: The Accumulator 

The accumulator is a useful and common circuit in digital design. We present accumulators in this chapter 
because it is a relatively simple combination of a register and an RCA.  

The accumulator does what its name implies: it accumulates. In digital design is that we can only add two 
numbers at a time, but often we need to add more than two numbers. In this case, we still can only add two 
numbers at time, but we add the successive values to a “running total”. The resulting circuit is relatively simple: 
we need a device to store the running total (a register) and a device to do the adding (an RCA). Since we have 
flexibility in the features we add to the register, when we design an accumulator, we need to make sure of the 
following items:  

 We need to ensure we can clear the register, as anytime we’re accumulating something, we 
typically start accumulating with a register value of zero.  

 We need to ensure the width of the register is wide enough to hold the maximum possible 
value based on the width of the values we’re adding and the maximum quantity of values we 
need to add. For the sake of simplicity, the width of the accompanying RCA generally has the 
same data widths as the register, which requires bit-stuffing of the input RCA’s data-widths.  

Figure 22.11 shows a diagram of a generic accumulator. Note that some other entity needs to issues control 
signals to the counter (CLR, LD, & CLK). For this example, we’re not connecting these signals, but we do in 
later examples that use finite state machines (FSMs). Here are some important details.  

 The register is a synchronous circuit; we indicate this with the triangle on the register module; 
we don’t route the clock line in order to keep the diagram readable.  

 The register has a CLR control input so that we can clear the value stored in the circuit before 
we commence accumulating   

 The circuit also has a LD control input, which some other entity provides  

 We list the output data width as “n” bits and the input data width as “m” bits. The notion here 
is that we’ll be adding a bunch of numbers of width “m”. In doing this we need to do two 
things:  

1. Ensure the output data width “n” is wide enough to handle the maximum possible value 
of the accumulation 

2. Bit-stuff the “m” width input data to match the “n” width of the output. We do this 
because we expect both inputs of the RCA to have the same data width. Figure 22.11 
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indicates this bit-stuffing with the square containing the “+”. For this diagram, we are 
stuffing (n-m) bits to the DATA input.  

 

Figure 22.11: Generic circuit for an n-bit accumulator.  

 

Example 22.5: Data Width Expansion: #1 

A given circuit must accumulate eight unsigned 10-bit values. What is the minimum width of 
the accumulator output such that the accumulator can accurately represent the sum of the eight 
input values? Show your calculations for this problem.  

Solution: We need to add eight 10-bit values, so we need to consider how many bits we need to represent that 
number. The maximum value associated with a 10-bit unsigned value is 210-1, but in order to simplify this 
problem, we consider the maximum value to be 210. We can have eight 10-bit values, so here is the final 
calculation:  

8 (number of inputs) * 210  (max value on any one input)= 23 * 210 = 213 

Thus, in order to accurately represent the sum of the eight values, the accumulator’s register requires 13 bits.  

 

The previous problem was set up nicely in that the number of values we accumulated was an exponential factor 
of two. This won’t always be the case. For those of you who are searching for a formula of how to calculate the 
width of the output based on the number of inputs, we can provide one. 

Number bits required to represent a given unsigned binary value: ⌈𝐥𝐨𝐠𝟐 𝒎𝒂𝒙 𝒗𝒂𝒍𝒖𝒆 ⌉ 

Figure 22.12: The number of bits required to represent a decimal value. 

 

Example 22.6: Data Width Expansion: #2 

A given circuit must accumulate 12 unsigned 16-bit values. What is the minimum width of the 
accumulator output such that the accumulator can accurately represent the sum of the 12 input 
values? Show your calculations for this problem.  

Solution: Instead of reasoning this one out, we use the formula in Figure 22.12. Here is the calculation:  

Width of accumulator output = ⌈𝐥𝐨𝐠𝟐 𝟏𝟐 ∗ 𝟐𝟏𝟔 𝟏 ⌉ 𝟐𝟎 
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Example 22.7: Data Width Expansion: 3 

A given accumulator has a 16-bit output. What is the maximum number of unsigned 6-bit 
inputs values this circuit can accurately represent? Show your calculations for this problem.  

Solution: This is a similar problem but we take a different approach to the solution and use basic algebraic 
manipulation (and other magic) to arrive at the solution. We solve the following equation for VALUE.  

𝟏𝟔 ⌈𝐥𝐨𝐠𝟐 𝑽𝑨𝑳𝑼𝑬 ∗  𝟐𝟔 𝟏 ⌉ ; remove the ceiling function 

𝟏𝟔  𝐥𝐨𝐠𝟐 𝑽𝑨𝑳𝑼𝑬 ∗ 𝟐𝟔  

𝟐𝟏𝟔 𝑽𝑨𝑳𝑼𝑬 ∗ 𝟐𝟔  

𝑽𝑨𝑳𝑼𝑬  
𝟐𝟏𝟔

𝟐𝟔  𝟐𝟏𝟎 𝟏𝟎𝟐𝟒 

 

22.4 Registers: The Final Comments  

The use of registers is quite common in digital design; this chapter presented only a basic register. Other popular 
flavors of registers include shift registers and counter, which are the main topics in upcoming chapters. The 
Venn diagram in Figure 22.13 shows how the various flavors of registers relate to each other.  

 

Figure 22.13: Venn diagram for the register family.  
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22.5 Digital Design Foundation Notation: Registers 

The register is a controlled circuit and is one of our Digital Design Foundation modules. Figure 22.14 
shows the appropriate digital design foundation notation for the register with a basic set of control 
features. Registers typically have both data inputs and data outputs. The typical set of controls for a 
register includes synchronous load signals (LD) and an asynchronous clear input. Table 22.1 show a 
complete description of the registers input and output signals.  

 

Figure 22.14: Typical data and control signals for a register.   

 

 Signal Name Description 

IN
P

U
T

 
D

A
T

A
 

DATA_IN The data that can be latched into the register’s storage elements..  

O
U

T
P

U
T

 
D

A
T

A
 

DATA_OUT 
The DATA_OUT signal is the data currently being stored in the counter’s 
storage elements.  

C
O

N
T

R
O

L
 

CLK 
Registers are synchronous circuits, in that the loading of data to the register 
happens on the clock edge. 

LD 
Allows the latching (loading) of the DATA_IN signal to the counters storage 
elements. This signal is always synchronous.  

CLR 
Latches 0’s into each of the register’s storage elements; can be synchronous or 
asynchronous.  

S
T

A
T

U
S

 

n/a -   

Table 22.1: The foundation description for a simple register. 
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22.6 Chapter Summary 

 

 A register is a sequential circuit that we can model as a parallel combination of single-bit storage elements. 
We model these storage elements as a specific number of D flip-flops that share a common clock signal and 
possibly other control signals typically associated with D flip-flops (such as clear signals). We typically the 
register to “latch” (and thus remember) an n-bit wide set of data on the active clock edge of the device.  

 When we refer to the state of the register, we are referring to the data currently stored in the register’s 
underlying memory elements.  

 We consider register inputs such as CLR (clear), CLK, and LD (load) to be control signals, in that they 
control the operation of the register.  

 A common use for registers is in accumulators. An accumulator is a combination of a register and an RCA 
configured in such a way as to add a list of numbers. Digital circuits can only add two values at a time, so 
we use an accumulator to add lists of number, which it effectively does by keeping a running total of the 
numbers being summed. The key to obtaining the correct answer with an accumulator is to make sure you 
clear the underlying register before the summing operations commence.  
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22.7 Chapter Exercises 

 

1) Using the block diagram on the right to complete the 
timing diagram provided below. Consider the register to 
be rising-edge triggered and ignore all propagation delay 
issues.  

 
 

 

2) Using the block diagram on the right to complete the 
timing diagram provided below. The LD input must be 
asserted in order for the register to load the input signal. 
Consider the register to be rising-edge triggered and 
ignore all propagation delay issues.   

 
 

3) Using the block diagram on the right to complete the timing 
diagram provided below. The LD input must be asserted in order 
for the register to load the input signal. The CLR input is an 
asynchronous input that clears the register when asserted and has a 
higher precedence than the LD input. Consider the register to be 
rising-edge triggered and ignore all propagation delay issues.   
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4) Using the block diagram on the right, provide a schematic 
diagram detailing how you would use this device to create a 
32-bit register with all the same features listed on the 16-bit 
device.  

  

 

5) Briefly explain why a register is a major component of an accumulator.  

6) We often refer to accumulators that only have RCAs (and no registers) as a “random number generator”. 
Briefly explain why this is the case.  

7) The registers associated with accumulators always have the ability to either clear the memory in the register, 
or load the register with zero. Briefly explain why the registers in accumulators require clear control signals.  

8) A given circuit must accumulate four unsigned 20-bit values. What is the minimum width of the 
accumulator output such that the accumulator can accurately represent the sum of the given number of input 
values? Show your calculations for this problem. 

9) A given circuit must accumulate 16 unsigned 18-bit values. What is the minimum width of the accumulator 
output such that the accumulator can accurately represent the sum of the given number of input values? 
Show your calculations for this problem. 

10) A given circuit must accumulate 13 unsigned 11-bit values. What is the minimum width of the accumulator 
output such that the accumulator can accurately represent the sum of the given number of input values? 
Show your calculations for this problem. 

11) A given circuit must accumulate 17 unsigned 7-bit values. What is the minimum width of the accumulator 
output such that the accumulator can accurately represent the sum of the given number of input values? 
Show your calculations for this problem. 

12) A given accumulator has a 13-bit output. What is the maximum number of unsigned 5-bit unsigned binary 
input values this circuit can accurately represent? Show your calculations for this problem. 

13) A given accumulator has a 20-bit output. What is the maximum number of unsigned 8-bit unsigned binary 
input values this circuit can accurately represent? Show your calculations for this problem. 

14) A given accumulator has a 39-bit output. What is the maximum number of unsigned 16-bit unsigned binary 
input values this circuit can accurately represent? Show your calculations for this problem. 
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22.8 Design Problems 

 

For the following problems:  

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution 

 Minimize the use of hardware when problem require extra hardware 

 Assume all inputs and outputs are positive logic unless stated otherwise 

 State all forms of control for your solution.  

 

1) Design a circuit that stores an 8-bit value when the circuit’s three single-bit inputs (A, B, and C) are 
asserted. The circuit has an 8-bit output that shows the current value that is stored in the circuit. The loading 
of input data is synchronized with a rising clock edge. Assume the clock is periodic.  

2) Design a circuit that stores one of two 8-bit inputs X & Y. The circuit loads the value when one and only 
one of the A & B inputs (single-bit) are asserted. The circuit loads the X value under those conditions if the 
SEL input is asserted; otherwise, it loads the Y input. Assume the SEL input is positive logic. The loading of 
input data is synchronized with a rising clock edge. Assume the clock is periodic. 

3) Design a circuit that stores an 8-bit input when only one of three single-bit signal A, B, & C is asserted. 
Assume the three inputs are negative logic. The circuit also clears asynchronously when two single-bit 
inputs T & U are both asserted. Assume the T input is positive logic while the U input is negative logic. The 
loading of input data is synchronized with a rising clock edge. Assume the clock is periodic. 
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23 Finite State Machines 

 

23.1 Introduction 

If you look-up the definition of a finite state machine (FSM) on Wikipedia, you’ll find a description that is based 
in abstract mathematics. While this is all good and fine, I’ve never understood those types of definitions when 
dealing with digital devices. All the digital devices I know about are simple, intuitive, and straightforward to 
understand. A FSM is a relatively simple, but incredibly useful circuit.  

This chapter presents FSMs using low-level circuity and in an intuitive manner so that you can build a strong 
understanding of their operation. The primary use of FSMs in digital design is as a digital circuit that controls 
another digital circuit; it’s a controller circuit. We present FSMs as true controller circuits in a later chapter. An 
FSM is a combination of other circuits that we already looked at: registers and decoders.   

Main Chapter Topics 

FSM CONSTRUCTION: We describe the basic digital modules that form a FSMs 

FSM OPERATION: We describe how the basic construction of FSMs determines the 
characteristics of how they operate.  

FSM MODELING USING STATE DIAGRAMS: We can describe the operation of FSM 
using state diagrams. This description includes representing state transitions, input 
representations, and both Moore and Mealy-type outputs.  

FSM ILLEGAL STATE RECOVERY: This chapter describes the notion of hang states 
and provides techniques on how to avoid this unwanted behavior in FSM. 

 

Chapter Acquired Skills 

 Describe the basic subsystems of a FSM 

 Describe the attributes of Moore and Mealy outputs on an FSM 

 Design FSM-based counters at a low level using the basic subsystems of a FSMs 

 Design FSMs with built-in illegal state recovery 

 Describe the four basic parts of a state diagram  

 

23.2 FSM Design: Start with What You Know 

There are many different approaches to understanding FSMs; the approach we take is to develop simple FSMs 
from what we already know and then build up our knowledge using more feature-laden examples. This chapter 
provides everything you need to know about FSMs using simple examples that leverage hardware and topics we 
previously discussed. This approach gives you a solid foundation for understanding FSMs, and helps you realize 
that FSMs are relatively simple devices. FSMs are most interesting when we use them as controller circuits, but 
this chapter develops non-controller FSMs; we move to controller-type FSMs in a later chapter. 
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Example 23.1: FSM Design #1: 2-Bit Up Counter  

Using the diagram on the right, design a FSM that implements a 
2-bit binary counter. The counter’s increments are synchronized 
with the rising-edge of the CLK input. This counter counts 
endlessly using this sequence in binary: …0,1,2,3,0,1,… 
Provide a circuit diagram and a state diagram.   

 

Solution: A counter is a device that counts in a repeating sequence. There are many types of counters; this 
problem deals with a 2-bit binary up counter. The counter is binary because all digital circuits are inherently 
binary. The counter is a 2-bit counter because that is the minimum number of bits we need to represent the given 
sequence in binary. We refer to this as an “up counter” because the sequence is always counting up by one, 
which is another way of saying the counter always increments on each rising edge of the clock.  

A counter is a simple register with some added external circuitry that makes it into a counter. This circuit 
requires memory elements because the output is dependent on the past inputs. There is only one input, the CLK 
signal, but the outputs change every clock cycle (synchronized with every rising-edge) as the counter steps 
through the count sequence.  

Since this is a FSM, we can model it using a state diagram. Figure 23.1 shows a state diagram that describes the 
FSM we’re creating to solve this problem. This state diagram completely describes the functionality of the given 
FSM; here is a list of the important features of the state diagram:   

 The state diagram has four states: one state for each unique value in the given count sequence 

 We could represent the count with two or more bits, but it makes the most sense to represent the 
counter with using two bits; we can arrange two bits in four unique combinations. 

 Each state bubble includes both a descriptive label (the top part of the bubble) and a value for 
the output (the body of the bubble). The labels are descriptive, which makes the state diagram 
self-commenting, which in turn makes the diagram more understandable to humans.  

 The state diagram has singly directed arrows indicating state transitions. The “-“ character 
associated with each arrow indicates the given state transition is unconditional. In state 
diagrams, all state transitions must explicitly list the conditions under which the transfer occurs, 
or list a “-“ if the transition is unconditional.  

 Although the circuit has a CLK input, there is no mention of the CLK signal in the state 
diagram. This implies the state transitions in the diagram are synchronized to the active clock 
edge of the circuit.  

 

Figure 23.1: The state diagram to support our solution.  

The circuit for this problem requires two rising-edge triggered (RET) D flip-flops. These D flip-flops are 
memory elements, which we use to represent the “state” of the circuit, which means the D flip-flops hold the 2-
bit binary count that the problem is asking for.  

We need to make the D flip-flops sequence through the 2-bit binary count. That means, for example, when the 
state of the circuit (thus the output) is “10”, we want the next state to be “11”. We accomplish this by placing 
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some circuitry in front of the D flip-flop inputs. Since we don’t exactly know what this circuitry is, we hedge our 
bets and use a decoder. Figure 23.2(a) shows the circuit we’ve described up to this point.  

We now need to define the transitions we need to happen in order to make the count sequence appear on the 
circuit’s outputs. The best way to do this is to define the circuit transitions in tabular format; we need to show the 
present state of the circuit and the circuit’s desired next state. The accepted vernacular for this is to create what 
we refer to as a PS/NS table, where PS and NS stand for present state and next state, respectively. The present 
state of the circuit is the value currently on the outputs of the circuit (which is the same value as stored in the 
circuit); the next state of the circuit are the values on the D inputs to the circuit’s two D flip-flops. Figure 23.2(a) 
uses the term Y0 & Y1 for the present state (PS) of the circuit and Y0+ & Y1+ for the next state (NS) of the 
circuit. 

We now need to define the PS/NS table. Once we describe the required transitions from present state to next 
state (PS→NS) in tabular format, we have ourselves a generic decoder that we can use to complete the circuit. 
Figure 23.2(b) shows the PS/NS table we’re looking for, as this table lists the present states of interest and their 
corresponding next states. Note that this PS/NS table does not include any mention of the CLK signal because 
we assume all state transitions in the table are synchronized to the rising-edge of the CLK signal.  

 

PS 
Y1  Y0 

NS 
Y1+ Y0+ 

0  0 0  1 
0  1 1  0 
1  0 1  1 
1  1 0  0 

 

(a) (b) 

Figure 23.2: A block diagram for our solution (a), and the associated PS/NS table (b).  

Figure 23.3 shows a timing diagram for this circuit; this diagram lists the outputs in both an aggregate form 
(CNT) as well as its constituent parts (Y1 & Y2). The CNT output arbitrarily shows the output count in decimal 
format. Note in this diagram that the rising-edge of the clock synchronizes changes in the CNT output because 
of using RET D flip-flops for the storage elements, which we refer to as state registers. Wildly interesting. 

 

Figure 23.3: A timing diagram showing an example of the circuit’s operation. 
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Example 23.2: FSM Design #2: 2-Bit Up Counter with Asynchronous Reset 

Using the diagram on the right, design a FSM that implements a 
2-bit binary counter. The counter’s increments are synchronized 
with the rising-edge of the CLK input. This counter counts 
endlessly using this sequence: …0,1,2,3,0,1,… The counter has 
an active-low asynchronous RST input that resets (makes the 
count zero) the counter when asserted. Assume the RST input 
takes precedence over the normal count operations. Provide 
both a circuit diagram and state diagram for your solution. 

 

 

Solution: This problem is similar to the previous problem, but now has an added reset feature. The RST signal is 
an active-low signal that causes the FSM to immediately transition to the “00” state when the RST signal is 
asserted. The state transition associated with the asserted RST signal is asynchronous, which means the state 
transition happens whenever the signal is asserted and is not synchronized with the active clock edge.  

Figure 23.4 shows that we do not model the RST-based transition as a state-to-state transition; we model it as a 
“nowhere-to-state” transition. Also note in Figure 23.4 that the signal RST signal includes an overbar to 
indicated that the signal is an active low.  

 

Figure 23.4: The state diagram to support our solution.  

Our next concern is to draw a lower-level BBD for our solution. We opt to replace the simple D flip-flops in the 
previous example with D flip-flops that include asynchronous active-low clear inputs. Figure 23.5(a) shows our 
new solution. This solution is similar to the previous problem’s solution, the only difference being that we 
include a RST input that connects to the CLR inputs of each D flip-flop. From Figure 23.5(a), we know that the 
D flip-flop’s CLR inputs are active low (as indicated with the bubble on the input), but for a complete solution, 
we must somewhere state that the D flip-flop’s CLR inputs are asynchronous.  

Figure 23.5(b) shows the PS/NS table for the solution. Note that the table does not include the RST input or the 
CLK input. We assume state-to-state transitions are synchronized with the CLK edge, so we omit it from the 
PS/NS table. We omit the RST signal from the PS/NS table for two reasons. First, because asynchronicity is 
hard to indicate in PS/NS tables because the other signals in the table are synchronous. Second, because we 
already directly handled the RST input via the CLR control input to the D flip-flops on the underlying hardware 
(see Figure 23.5(a)). 
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PS 
Y1  Y0 

NS 
Y1+ Y0+ 

0  0 0  1 
0  1 1  0 
1  0 1  1 
1  1 0  0 

 

(a) (b) 

Figure 23.5: A block diagram for our solution (a), and the associated PS/NS table (b).  

Figure 23.6 shows a timing diagram for this circuit; we arbitrarily list the CNT output in decimal. Here are a few 
important things to note about Figure 23.6.  

 We list the RST signal with an overbar, which indicates it’s an active-low signal.  

 RST signal is initially asserted when puts the FSM into the ZER state. We do this in so 
that we don’t need to provide an initial state of the circuit.  

 The CNT value represents the current content of the state registers (D flip-flops); we 
arbitrarily list the count in decimal.  

 The second and third time the RST signal is asserted causes an immediate transition the 
ZER state (see Figure 23.4), which in turn causes the CNT to be “00”.  

 The third assertion of the RST signal overlaps an active clock edge. Asynchronous inputs 
have precedence over synchronous inputs in sequential circuits. You can design D flip-
flops either way, or read the spec sheet if you’re using an off-the-shelf flip-flop.  

 

Figure 23.6: A timing diagram showing an example of the circuit’s operation. 
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Example 23.3: FSM Design #3: 2-Bit Up Counter with Synchronous Reset 

Using the diagram on the right, design a FSM that implements a 
synchronous 2-bit binary up counter. The counter has an active-
low synchronous RST input that resets the counter when 
asserted. The RST input takes precedence over the counter’s 
basic count operation. Consider the rising edge to be the CLK 
signal’s active clock edge. Use D flip-flops with only D and 
CLK inputs for your FSM’s storage elements. Provide both a 
circuit diagram and state diagram for your solution. 

 

 

Solution: This problem is similar to the previous problem, but the synchronous reset signal changes how we 
approach the problem. Because the reset signal is synchronous, it only takes effect on the circuit’s active clock 
edge. Additionally, the problem needed to state whether the count operation or the reset operation has 
precedence when the RST signal is asserted on the CLK’s active edge. Finally, the problem states that we must 
use only plain D flip-flops for the state registers, which means we can’t rely on a D flip-flop’s CLR input to 
complete this problem. The first place to start with this problem is the by drawing a state diagram, which we 
show in Figure 23.7. Here are some important features from the state diagram.  

 Most of the signal transitions are no longer unconditional; the state-to-state transitions only 
occur when the RST signal is unasserted, which is when RST=’1’.  

 The ZER state is the only state that contains a self-loop; in all other cases, either the FSM 
returns to the ZER state or transitions to the next state in the count sequence.  

 The transition from the THR state to the ZER state is unconditional because the FSM always 
transition from the THR state to the ZER state on the next clock edge.  

 Each state has two condition arrows leaving the state: one transition for each value of the 
RST signal. The "don’t care" effectively implements the Boolean equation: (RST +!RST), 
which says the expression is always true, thus the transition happens unconditionally.  

 

Figure 23.7: The state diagram to support our solution.  

Figure 23.8(a) shows the underlying circuit schematic for the solution. The RST signal is now an input to the 
decoder. We must explicitly state that the RST signal takes precedence over the circuit’s active clock edge. 
Figure 23.8(b) shows that the PS/NS table for this solution is also significantly different from the previous 
solution. Because the RST is synchronous, we can represent the signal in the table. Here are some other notable 
items regarding the PS/NS table:  

 We’re using an exclamation mark (“bang” notation) to indicate that RST is negative logic.  

 When the RST signal is low (active), the next state is always the “00” state; the first four rows 
of the table show this characteristic.  
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 The bottom four rows of the PS/NS table show the normal binary count sequence where the 
count increments on each active clock edge.  

 The fact that transitions indicated in the fourth and eighth rows of the table are always from the 
“11” state to “00” state essential make that transition unconditional, which means the transition 
does not depend on the RST signal. We indicate this condition what the “-“ associated with the 
THR to ZER transition in the state diagram.  

 

PS 
!RST Y1  Y0 

NS 
Y1+ Y0+ 

0      0  0 0  0 
0      0  1 0  0 
0      1  0 0  0 
0      1  1 0  0 
1      0  0 0  1 
1      0  1 1  0 
1      1  0 1  1 
1      1  1 0  0 

 

(a) (b) 

Figure 23.8: A block diagram for our solution (a), and the associated PS/NS table (b).  

Figure 23.9 shows an example timing diagram associated with the FSM. Here is the fun stuff to note in the 
timing diagram.  

 The CNT arbitrarily starts at “2”; representing the CNT in decimal is also arbitrary.  

 The RST signal is asserted at the start of the timing diagram. Because the signal is 
synchronous, it does not take effect until the first active clock edge.  

 The third time the RST signal is asserted is between active clock edges, and thus has no 
effect on the state of the FSM.  

 

Figure 23.9: A timing diagram showing an example of the circuit’s operation. 
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Example 23.4: FSM Design #4: 2-Bit Up Counter with Counter Enable 

Using the diagram on the right, design a FSM that implements 
a synchronous (RET) 2-bit binary up counter. This counter 
counts up when the CE (count enable) input is a ‘1’ and holds 
the previous count when the CE signal is ‘0’. Provide both a 
circuit diagram and state diagram for your solution.   

 

Solution: The best place to start is defining the state diagram. This is a standard 2-bit binary up counter with the 
added feature of a control input that allows the counter to progress through its count sequence (CE). The 
problem description states that the counter is synchronous, which means changes in the count output are 
synchronized with the active clock edge. The black box diagram from the problem description indicates that the 
device is rising-edge triggered. Figure 23.10 shows the state diagram for our solution. Here are a few important 
things to note about the state diagram.  

 The state diagram indicates that the CE input controls whether the FSM transitions to different 
state or stays in the current state. The CE with an overbar indicates the CE signal is not 
asserted, and thus the counter output does not change. The FSM accomplishes the “no change” 
in the counter output by not changing state, as the state diagram indicates with the “self-loop”.  

 Three items determine the state transitions: 1) the CE input, 2) the current state, and 3) the CLK 
signal.  

 The FSM has one control input: CE. That means we must account for two arrows leaving each 
state: one for both the CE asserted and CE not asserted. If we did not list both options, the state 
diagram would not be completely specified and thus be incorrect. 

 

Figure 23.10: The state diagram to support our solution.  

The next step is to layout the underlying hardware. Figure 23.11(a) shows a set of hardware that does the job for 
us. Here are a few things to note about this hardware.  

 We essentially abstracted the hardware to a higher level by replacing the two flip-flops from a 
previous example with a “state reg” model. This module is officially the state registers for the 
FSM, and is responsible for holding the state of the FSM. This module is a simple a 2-bit 
register that does not contain a LD input.  

 The next state decoder (NS DCDR) explicitly shows that the next state of the FSM is a function 
of the CE input and the current state. The decoders two output bits (CNT+) provide the data 
inputs to the 2-bit state registers. The CE input controls whether the FSM does a self-loop (CE 
= ‘0’) or transitions to the next state (CE = ‘1’). The current state determines which state the 
FSM transitions to when CE is asserted.  

At this point, we described everything there is to know about this FSM. But wait, there’s more. Figure 23.11(b) 
shows the associated PS/NS table for the FSM. The most important thing to note from Figure 23.11(b) is that the 
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present state (PS) is the output of the state registers, while the next state (NS) is the output of the next state 
decoder (NS DCDR).  

 

PS 
CE CNT 

NS 
CNT+ 

0   0  0 0  0 
0   0  1 0  1 
0   1  0 1  0 
0   1  1 1  1 
1   0  0 0  1 
1   0  1 1  0 
1   1  0 1  1 
1   1  1 0  0 

 

(a) (b) 

Figure 23.11: A block diagram for our solution (a), and the associated PS/NS table (b). 

Figure 23.12 shows an example timing diagram for the FSM. Things to note about this timing diagram include 
the following fun information.  

 We need to provide a starting state, which is the “2” on the left side of the CNT signal. Unlike a 
previous example that had a reset input, this FSM has no way to force the FSM to a given state.  

 When the CE input is not asserted (CE = ‘0’), the output transitions back to the current state. 
We opt to leave the signal changing symbology on the first clock edge, but the signal does not 
change (it remains at ‘2’). This symbology saves time when drawing the CNT signal.  

 When the CE signal is asserted between the third and fourth rising clock edge, the circuit 
ignores the CE signal. The only time the FSM considers the CE signal is on the active edge of 
the CLK signal.  

 

Figure 23.12: The solution for this example. 

 

 

 

Example 23.5: FSM Design #5: 2-Bit Up/Down Counter  

Using the diagram on the right, design a FSM that 
implements a 2-bit synchronous binary up/down counter. 
This counter counts up when the UP input is an asserted, and 
down when the UP input is not asserted (both on the rising 
clock edge). Assume the UP input is positive logic. Provide 
both a circuit diagram and state diagram for your solution.  
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Solution: This is yet another version of the 2-bit counter. This counter can count up or down based on the UP 
input. Because the UP input controls the count direction of the counter, we consider it a control input the 
module. Although the problem uses the one control signal (UP) to control the direction of the count, we could 
have used two signals for the same effect, specifically, we could have both “UP” and “DOWN” inputs to the 
circuit. Figure 23.13 shows the state diagram describing a solution this problem. Here are the important things to 
note from the state diagram.  

 We consider the counter to be “circular” because it automatically rolls over and under. 
The counter rolls over from 3→0 when counting up and from 0→3 when counting down.  

 The FSM has one control input: UP, which means that we must account for two arrows 
leaving each state: one for both the UP asserted and not asserted cases. Each state bubble 
has two transition arrows exiting it.  

 

Figure 23.13: The state diagram to support our solution.  

Figure 23.14(a) shows the underlying block diagram for the solution. In this diagram, that we use the output of 
the state registers as the desired count output (CNT). Figure 23.14(b) shows the PS/NS table. The PS/NS table 
lists the operation of the FSM in tabular format. All the information in Figure 23.14(b) is the same information 
found in the associated state diagram, but in a different format.  

 

PS 
UP CNT 

NS 
CNT+ 

0   0  0 1  1 
0   0  1 0  0 
0   1  0 0  1 
0   1  1 1  0 
1   0  0 0  1 
1   0  1 1  0 
1   1  0 1  1 
1   1  1 0  0 

 

(a) (b) 

Figure 23.14: A block diagram for our solution (a), and the supporting PS/NS table.  

Figure 23.15 shows an example timing diagram for the FSM of this example. A few worthy things to note about 
this diagram include the following:  

 We arbitrarily started the CNT signal at ‘2’. This represents the state of the circuit; we 
had to provide this information explicitly as the circuit has no other control inputs to put 
the FSM into a known state.  

 All state changes (changes in the CNT signal) are synchronized to the rising edge of the 
CLK signal. 
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Figure 23.15: The solution for Example 4.8. 

 

 

 

Example 23.6: FSM Design #6: 2-Bit Up/Down Counter with Count Enable  

Using the diagram on the right, design a FSM that implements 
a synchronous 2-bit binary up/down counter. This counter 
counts up when the UP input is a ‘1’, and counts down when 
the UP input is ‘0’. The counter also has a CE input (control 
enable), which allows the counter to “count” when asserted. 
Assume the CE input is positive logic. Provide both a circuit 
diagram and state diagram for your solution. 

 

 

Solution: From examining the BBD for the problem, we see that changes in the circuit’s output are synchronized 
with the rising edge of the clock. This problem also differs from previous problems in that there are now two 
control inputs (CE and UP), which means there are four conditions that determine the next state of the FSM: 
CE, UP, and the 2-bit value for the present state of the FSM (which is also the CNT signal for this problem). 
Figure 23.16 shows the state diagram associated with this solution. Some other things to note include the 
following.    

 When the CE is not asserted the FSM does not change state. We indicate this condition is 
indicated with !CE (the complemented, or unasserted CE signal) associated with the self-
loop.  

 Because there are two signals associated with the state transitions (not including the PS), 
there should be four arrows leaving each state. The state diagram only shows three arrows 
leaving each state, which is because we opted to not include the UP signal in the self-loops. 
We can do this because if CE is not asserted, the UP input does not matter (it’s a “don’t 
care”); omitting it from the state diagram does not alter the function of the state diagram 
and make the diagram more readable. In this FSM, !CE is equivalent to: !CE∙UP 
+ !CE∙!UP, which factors to: !CE.  

 The conditions associated with each state-to-state transition are now more than a signal; 
they are now a logic expression. The dot means AND, so both conditions need to be true in 
order for the transition to occur. For example, to transition from state ONE to state TWO, 
both the CE and UP signal must be asserted. Similarly, to transition from state THR to state 
TWO, both CE signal needs to be asserted and the UP signal needs to be unasserted.  
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Figure 23.16: The state diagram to support our solution.  

Figure 23.17(a) shows the schematic associated with this solution while Figure 23.17(b) shows the associated 
PS/NS table. The PS/NS table has four inputs: CE, UP, and the 2-bit CNT signal (the present state). The next 
state is dependent upon each of these four signals, which is why the PS/NS table is a 4-input table. The PS/NS 
table has four inputs and thus 16 rows. The NS column of the PS/NS table shows the inputs to the state registers, 
which become the next state on the next rising clock edge.  

 

PS 
CE UP CNT 

NS 
CNT+ 

0    0   0  0 0  0 
0    0   0  1 0  1 
0    0   1  0 1  0 
0    0   1  1 1  1 
0    1   0  0 0  0 
0    1   0  1 0  1 
0    1   1  0 1  0 
0    1   1  1 1  1 
1    0   0  0 1  1 
1    0   0  1 0  0 
1    0   1  0 0  1 
1    0   1  1 1  0 
1    1   0  0 0  1 
1    1   0  1 1  0 
1    1   1  0 1  1 
1    1   1  1 0  0 

 

(a) (b) 

Figure 23.17: A block diagram for our solution (a), and the associated PS/NS table.  

Figure 23.18 show and example timing diagram for the circuit. All state transitions only occur on the active 
clock edges when CE is asserted.  
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Figure 23.18: The solution for Example 4.8. 

 

 

 

Example 23.7: FSM Design #7: 3-Bit Stoneage Unary Up Counter 

Using the diagram on the right, design a FSM that implements a 
synchronous 3-bit stoneage unary up counter. The counter also 
has a control enable (CE) input that allows the counter to count. 
Assume CE is a positive logic signal. Do not use more than two 
bits of storage in your FSM design. Provide both a circuit 
diagram and state diagram for your solution. 

 

 

Solution: This problem seems similar to previous examples, but the problem constrains the memory usage to 
two bits. In the context of FSMs, the memory is associated with the state registers. In addition, it’s still a 
synchronous binary up counter, but the count is now something special: the infamous stoneage unary count. 
Recall that a 3-bit stoneage unary count sequence is: …“000”, “001”, “011”, “111”, “000”…. The first part of 
this problem involves generating the state diagram, which we show in Figure 23.19. The state diagram is similar 
to previous state diagrams for the 2-bit binary up counter with a count enable, but the individual states list the 
CNT output in the requested stoneage unary format. The state diagram supports the answer because there only 
four states, we represent using two bits of memory. The trick here is to convert the two bits of state memory to 
the desired 3-bit output.  

 

Figure 23.19: The state diagram to support our solution.  

Next we need to deal with is converting a 2-bit value into a three bits value in the circuit. This is not a big deal 
once you realize we’ve been doing this with the NS decoder in all the problems up until now. Anytime you have 
an issue such as this, you should think: “decoder”. Thus, the solution is to include what we refer to as an “output 
decoder”. This output decoder essentially translates the state of the FSM (the present state, which is the value of 
the state registers) to our desired output. It’s a decoder; it’s not a big deal.  



Free Range Digital Design Foundation Modeling Chapter 23 

 

 
- 343 -  

 

Figure 23.20(a) shows the circuit schematic for our solution, including the special placement of the output 
decoder. Figure 23.20(b) shows the PS/NS table, which is associated with the next state decoder.  

 

PS 
CE ST 

NS 
ST+ 

0   0  0 0  0 
0   0  1 0  1 
0   1  0 1  0 
0   1  1 1  1 
1   0  0 0  1 
1   0  1 1  0 
1   1  0 1  1 
1   1  1 0  0 

 

(a) (b) 

Figure 23.20: A block diagram for the circuit (a), and the associated PS/NS table. (b).  

The new item we need to define for this problem is the output decoder. Since it’s a decoder, we only need to 
place the required information in a tabular format. Figure 23.21 shows the table we so eagerly seeking. In the 
table, the ST column is the output of the state registers, which makes it the present state of the FSM, while the 
CNT output is the stoneage unary output that the problem is looking for.  

ST CNT 
0  0 0 0 0 
0  1 0 0 1 
1  0 0 1 1 
1  1 1 1 1 

 

Figure 23.21: The definition of the output decoder for this solution.  

The outside world only sees the CNT output; the outside world does not know or care about the particular values 
of the state variables. This problem needs a binary count on the circuit’s output. Thus, the particular choice of 
state variables is not important, so long as we keep it to no more than two bits of storage. This being the case, the 
output decoder definition in Figure 23.22 is equally as valid as the output decoder definition of Figure 23.21 

ST CNT 
1  0 0 0 0 
0  0 0 0 1 
1  1 0 1 1 
0  1 1 1 1 

 

Figure 23.22: Another possible definition of the output decoder for this solution.  

Figure 23.23 shows an example timing diagram for this solution. You’ve seen most of this information before. 
This only thing worth noting here is that the CNT output arbitrarily starts at “001” for no apparent reason.  
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Figure 23.23: An example timing diagram for this solution. 

 

 

 

Example 23.8: FSM Design #8: 3-Bit Stoneage Unary Up Counter with Status Output 

Using the diagram on the right, design a FSM that implements a 
synchronous 2-bit stoneage unary up counter. The counter also 
has a control enable (CE, positive logic) input that allows the 
counter to count up. The counter also contains a “ripple carry 
out” output signal that indicates when the counter is currently 
outputting its maximum count value. Do not use more than two 
bits of storage in your FSM design. Implement the positive logic 
RCO signal with the next-state decoder and not with logic 
external to the FSM. Provide both a circuit diagram and state 
diagram for your solution.   

 

 

Solution: This problem is similar to a previous problem, but now there is an RCO output, which states when the 
counter output is at its maximum count value. The use of RCO-type signals are common with counters as they 
are a status output, which provides useful information about the counter’s state. If this counter did not have an 
RCO output signal, the digital designer would need to add logic external to the counter to generate the signal.  

The problem constrains the solution to using only two bits of storage, which forces us to use an output decoder to 
generate the proper 3-bit stoneage unary output count (CNT). The new issue with this problem is how we 
represent the RCO signal in the state diagram. Figure 23.24 shows the state diagram for our solution. The RCO 
signal is a function of the count only; the count is a function of the present state. In Figure 23.24 we choose to 
represent RCO as a Boolean logic variable, rather than write an equation such as “RCO=’1’ ”. While either 
approach is acceptable, the approach in Figure 23.24 makes the state diagram more readable.  

 

Figure 23.24: The state diagram to support our solution.  

The next step is to generate a circuit diagram, which we show in Figure 23.25(a). The state registers module 
consists is two bits wide as the problem specifies. The PS/NS decoder does not change from previous problems 
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in that this problem only added a new output signal. Figure 23.25(b) shows that the output signal is an output 
from the output decoder, which makes sense because RCO is only dependent upon the present state.  

 

PS 
CE ST 

NS 
ST+ 

0   0  0 0  0 
0   0  1 0  1 
0   1  0 1  0 
0   1  1 1  1 
1   0  0 0  1 
1   0  1 1  0 
1   1  0 1  1 
1   1  1 0  0 

 

(a) (b) 

Figure 23.25: A block diagram for our solution (a), and the associated PS/NS table.  

The problem requires an output decoder that outputs the correct CNT and RCO values. Figure 23.26 only shows 
the output decoder for our solution. The two outputs are dependent upon the present state. The CNT column 
shows the stoneage unary outputs for the corresponding state (which is a 2-bit binary sequence); the RCO 
column shows that the RCO signal is only asserted the CNT value is “111”, which is the maximum count value 
for this counter.  

ST CNT  RCO 
0  0 0 0 0         0 
0  1 0 0 1         0 
1  0 0 1 1         0 
1  1 1 1 1         1 

 

Figure 23.26: The decoder definition for this solution.  

Figure 23.27 shows an example timing diagram for this solution. This timing diagram is similar to previous 
solutions but there is now a RCO signal. The timing diagram shows that the RCO signal asserts when the count 
is at its maximum value, which for this counter is “111”.  

 

Figure 23.27: An example timing diagram for this solution. 
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Example 23.9: FSM Design #9: Specialty Up Counter 

Using the diagram on the right, design a FSM that implements a 
synchronous counter that has both a 2-bit binary (BCNT) and a 3-
bit stoneage unary (SBCNT) output. The FSM also has a count 
enable input (CE), which serves two functions. When the CE is 
asserted, both counter outputs increment of the active clock edge. 
When CE is not asserted, the neither count is incremented. 
Additionally, the binary count (BCNT) outputs “00” when CE is 
not asserted, but returns to its original value when CE is reasserted. 
The SBCNT output does not increment, but does not go to zero 
when the CE input is not asserted (as does the BCNT output). 
Provide both a circuit diagram and state diagram for your solution. 

 

 

Solution: The counter has two different count outputs: binary and stoneage unary. In terms of counting, they 
both react to the same to the CE input, meaning that they both increment their counts on the active clock edge 
when CE is asserted. There is, however, a major difference in how the two count outputs react to the CE input.  

The SBCNT essentially does not react to the CE input, and is thus similar to the count outputs in previous 
examples. The BCNT output needs to react to the CE input: when the CE input is asserted, it outputs its count 
value; when the CE input is not asserted, it outputs zero (“00”). What this is officially describing is that the 
SBCNT output is a function of only the state (state variables) of the FSM, while the BCNT output is a function 
of the state and the CE input. The ramifications of this are the SBCNT output can only change when the state 
changes, which is synchronized with the clock, while the BCNT output can change when CE changes as well as 
when the state changes. Thus, changes in the BCNT output are not necessarily synchronized with the circuit’s 
active clock edge because it is also a function of the CE input. We address these special output characteristics 
more formally later in this chapter.  

Because the two outputs in this example have significantly different characteristics, we would expect some new 
symbology associated with state diagrams to model those output characteristics. Figure 23.28 shows this new 
symbology along with a description below.  

 The value of the SBCNT output only depends on the present state of FSM, so we can express 
the SBCNT output inside of the state bubbles. We can do this because the SBCNT output is 
only a function of the present state of the FSM.  

 The value of the BCNT output depends on both the CE input as well as the state. Because it 
is not a strict function of the present state of the FSM, we can’t list it inside the state bubble as 
we did for SBCNT. The CE signal has two functions in this FSM: 1) it controls the state 
transitions, and 2) it controls the BCNT output. Because we already used the CE signal in 
conjunction with the transition arrows to describe the state-to-state transitions, we need to 
then include the BCNT output next to the CE input that are associated with the state 
transitions, which is what we did in the state diagram of Figure 23.28. This symbology 
requires getting used to, but the underlying approach is straightforward. The main item you 
must realize when working with these state diagrams is differentiating between the inputs and 
outputs. Because the output (BCNT) is dependent upon the input (CE), we list the output 
with the input. When we list outputs next to the state transition arrow, that output is then 
associated with the state the transition arrow is leaving. Finally, the BCNT output can change 
whenever CE changes; but a change in CE does not necessarily cause a state transition 
because state transitions can only happen on active clock edges.  
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Figure 23.28: The state diagram to support our solution.  

Figure 23.29(a) shows the block diagram for our solution. The block diagram of is similar to the previous 
example, the only difference being the output decoder now includes the CE signal as an input. The output 
decoder must include CE as an input because that inputs controls whether the BCNT is outputting the current 
count value, or outputting zeros. The CE input to output decoder changes the structure of the output decoder, but 
the next-state decoder remains unchanged. The next-state decoder of Figure 23.29(b) is the same as a previous 
example even though the output of the FSM is now responsible for two different count outputs.  

 

PS 
CE  ST 

NS 
ST+ 

0   0 0 0  0 
0   0 1 0  1 
0   1 0 1  0 
0   1 1 1  1 
1   0 0 0  1 
1   0 1 1  0 
1   1 0 1  1 
1   1 1 0  0 

 

(a) (b) 

Figure 23.29: A block diagram for the FSM (a), and a description of the next-state decoder (b).  

The next part of this solution is to model the output decoder. This is a decoder, so we need to generate a table 
that describes the output in such a way as to solve the problem. Looking at the output decoder module in Figure 
23.29(a) shows that the decoder has two input signals: ST (a 2-bit bundle) and CE; the output decoder has two 
outputs BCNT (a 2-bit bundle) and SBCNT (a 3-bit bundle). Figure 23.30 shows the final decoder definition. 
This table looks a bit different. We formatted the table slightly different in order to show some important details, 
which we describe below.  

 ST in Figure 23.30 is the present state (not the next state); the output decoder always bases its 
output on the present state.  

 The decoder has three inputs: two bits of state information (ST) and the CE input. We place 
the state values before the CE values so that the state values don’t change with every row 
change. The CE input changes with every row in the table because we list it as the LSB. The 
arrangement of the signals in the table is arbitrary, but we always list them in the most 
understandable manner.  

 The states now come in pairs; the first two rows are associated with the “00” state, the next 
two rows are associated with “01” state, etc. The table uses double lines to emphasize the 
changes in state variables (ST).  
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 The SBCNT changes only when the state changes. This is another way of saying the value of 
the SBCNT output is only dependent upon the state: it’s not dependent upon the CE input. 
You can see that for each of the pair between the double horizontal lines in the table, neither 
the state (ST) nor the SBCNT output changes. Because SBCNT is a function of only the 
present state of the FSM, the SBCNT can only change when the state changes. In other 
words, changes in the SBCNT output are synchronized with the active edge of the state 
register’s clock signal.  

 The value of the BCNT output changes for each of the state pairs (except for the ST=”00” 
case). This is another way of saying that the BCNT output is dependent upon both the state of 
the FSM (ST) and the CE input. Recall that when the CE signal is not asserted (CE=’0’), the 
FSM outputs “00” for BCNT; otherwise when CE is asserted, the FSM outputs the associated 
count (which happens to be the same as the state variables, or ST). Because the BCNT output 
is a function of both the present state and the CE input, it can change when either the state 
changes, or when the CE input changes. Changes in the BCNT output are not necessarily 
synchronized with the state register’s clock; because it is function of the CE input, BCNT can 
change anytime CE changes.  

ST CE SBCNT BCNT 

0 0   0 0 0 0 0 0 

0 0   1 0 0 0 0 0 

0 1   0 0 0 1 0 0 

0 1   1 0 0 1 0 1 

1 0   0 0 1 1 0 0 

1 0   1 0 1 1 1 0 

1 1   0 1 1 1 0 0 

1 1   1 1 1 1 1 1 
 

Figure 23.30: The output decoder definition for this example.  

Figure 23.31 shows an example timing diagram for our solution, which could be the most important timing 
diagram in this text up until now. Here is some helpful verbage.  

 The most striking feature is the difference between the BCNT and SBCNT outputs. The 
output values are different, as they are two different counts. Note when these counts change 
values. The SBCNT only changes value on a rising clock edges. The BCNT can change 
values both on the rising clock edges and when the CE signal changes. Regardless of the 
rising clock edge, an unasserted CE signal causes the BCNT output to be “00”. In other 
words, BCNT is a function of both the present state and the CE signal; changes in CE cause 
an immediate change to the BCNT output.  

 We use arrows to show how the CE input affects the BCNT output. The first rising edge of 
the CE signal causes a value to appear on the BCNT output. The BCNT value of “01” does in 
fact correspond to the SBCNT value of “001”. The FSM is effectively remembering the state; 
the unasserted CE signal is effectively temporarily clearing the BCNT output, but then 
restoring the BCNT output once the CE signal asserts. We can see this behavior happen 
between the signal edges labels ‘2’ & ‘3’ as well as ‘4’ & ‘5’ in the timing diagram.  
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Figure 23.31: An example timing diagram for our solution. 

 

 

 

23.3 FSM Illegal State Recovery 

The FSMs we’ve examined at this point contained a certain quality that is not always present in all FSMs. Note 
that all FSM designs up to this point used every code available in FSM’s state registers. For example, each 
example we explored contained four states, which was the maximum number of states that we could represent 
using two single-bit storage elements.   

Consider the case where we have a count sequence of five numbers that we implement using a FSM. The FSM 
for this case requires a minimum of three 1-bit storage elements (or a register with a data width of at least three). 
The potential problem here is that with three flip-flops, we can represent up to eight states. What happens to the 
three extra states that are not associated with the desired count sequence?  

If you need to create a super solid FSM design, you need to know what all unused states are doing. The problem 
is that some unforeseen condition may put your FSM in a state that is not part of the desired sequence. Then 
what happens? The idea is to design your FSM to “fix” itself if it by chance finds itself in a state that it was not 
intended to be in. What we need to do is design the FSM such that it has “illegal state recovery”. The next 
example sheds light on the problem.  

 

Example 23.10: Counter Design with Illegal State Recovery 

Design a counter that counts in the following sequence: 0, 5, 7, 3, 6, 0, 5… Use a 
minimum number of storage elements in your design. Direct all unused states to the 
state associated with the zero count.  

Solution: This problem is similar to the other counter problems except there are more numbers in the count 
sequence and those numbers are not in a typical counting order. The first step is to generate a top-level BBD, 
which we show in Figure 23.32.  

 

Figure 23.32: The top-level BBD for this example.  
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The next thing we need to do is to generate a state diagram that models a solution the problem. Figure 23.33 
shows a first pass at the state diagram. We consider this a first pass because while it satisfies the “counting” part 
of the problem, it doesn’t provide illegal state recovery. We need to add illegal state recovery, so we need to 
represent the states not listed in the counting sequence. 

 

Figure 23.33: The initial state diagram for Example 23.10.  

What we’re trying to avoid in this problem is the generation of hang states. In the state diagram, if we do not 
explicitly direct all the unused states back to the desired counting sequence, we may end up with a state diagram 
that inherently contains hang states. Figure 23.34 shows an example of a state diagram with hang states. In 
Figure 23.34, we do indeed have the desired sequence; but the state diagram lists all possible states associated 
with the state register (which is three bits wide).  

In reality, we implement FSMs with real circuitry, which means they are susceptible to various types of noise1. It 
just may happen that the noise places your FSM in a state that is not part of the desire sequence, which according 
to Figure 23.34, puts you in a hang state and you’ll never make it back to the desire sequence. The FSM is thusly 
hung because it is stuck in a hang state. Figure 23.34 shows two flavors of hang states. The “001”-“010” pair is a 
small cycle; the “100” state is a self-looping hang state. In either case, there is no path back to the original 
counting sequence, which may or may not be important to the problem at hand2. Bummer!  

 

Figure 23.34: A state diagram containing hang states and other terrible things. 

The approach that saves the day is to direct the unused states back to a state in the desired count sequence. If for 
some reason your FSM finds itself3 in a hang state, you’ll quickly (in one clock cycle) return to a count value in 
the desired sequence. Figure 23.35 shows the associated state diagram for this approach. The problem 
description states that you should direct all of your unused states back to state “000”. From this point, it is not a 
big deal to generate the PS/NS table using techniques from previous examples.  

                                                           
1 This refers to unwanted electronic effects. A loud stereo will most likely have not effect on your digital circuit designs.  
2 Imagine if your FSM were controlling a heart pacemaker; it would not be good if your FSM got hung in a state that no 
longer directed the heart to beat. This would not matter for academic administrators as they have all had their hearts 
surgically removed as the basic requirement of their employment in academia.  
3 Yes Virginia, FSMs are self-aware (or about as self-aware as the average academic administrator).  
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Figure 23.35: The state diagram with hang-state recovery. 

Figure 23.36(a) shows the underlying hardware for our solution. We can use the output of the state register as the 
CNT output, which means we do not need to include an output decoder in the hardware. Figure 23.36(b) shows 
the PS/NS table, where the shaded rows in represent states not included in the desired sequence. Each of the 
shaded rows do in fact direct the FSM back to ZER (CNT=”000”) state called for in the problem description. 
Now that we include illegal state recovery in our FSM design, we say that the FSM is self-correcting. Making 
your FSM designs self-correcting is important because statistically speaking, you’re going to have unused states 
in your FSM because of the binary nature of the elements that FSMs use to store the state variables.  

 

 

  

 

PS 
CNT 

NS 
CNT+ 

0  0  0 1  0  1 
0  0  1 0  0  0 
0  1  0 0  0  0 
0  1  1 1  1  0 
1  0  0 0  0  0 
1  0  1 1  1  1 
1  1  0 0  0  0 
1  1  1 0  1  1 

 

(a) (b) 

Figure 23.36: A block diagram for our FSM (a), and the PS/NS table (b).  
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Example 23.11: FSM Design #10: Self-Correcting Specialty Counter 

Design a counter that repeatedly counts in the following sequence: {4, 18, 20, 30, 8}. The 
circuit has a HOLD input (positive logic) that stops the counter from counting while 
asserted. When the HOLD input is asserted, the count output is halved. Make the circuit self-
correcting by directing all unused states to count = 4. Outputs associated with unused states 
should be all 1’s. Minimize the amount of memory in circuit. Provide the top two levels of 
circuit diagrams and a state diagram for your solution.  

 

 

Solution: This problem has several interesting attributes that are not patently obvious from reading the problem. 
This problem does not provide you with all the information, as evident from the lack of a BBD. So let’s start 
thinking it out on our way to drawing a high-level black box diagram. The following bullets provide an example 
of issues that you the design must deal with on your way to solving this problem.  

 The maximum value of the output count is 30, which indicates we need five bits on the output to 
represent the count. This may lead you to think that the state registers need to be five bits. 
However, since there are only five unique numbers in the count, the state registers only need to 
be three bits wide.  

 According to the previous bullet, we have three bits for the state registers, but only five states 
that we need to represent the count. This means the FSM has three unused states that we need to 
account for in both the next state decoder and the output decoder.  

 The FSM has one 5-bit output, which is the count. The exact form of this count output depends 
on the value of the HOLD input, thus this is a Mealy-type output.  

At this point, we’re ready to draw the top-level BBD. Figure 23.37 shows where the previous bullets have left us.  

 

Figure 23.37: The top-level black box diagram for this problem.  

The lower-level schematic of our circuit contains the three standard sub-modules of an FSM. Figure 23.38 shows 
the detailed schematic for this solution. Note in Figure 23.38 that the output count is 5-bits and that the output 
decoder is a function of both the present state (ST) and the external input (HOLD).  

 

Figure 23.38: The lower-level BBD to support our solution.  
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The next step is to generate either the state diagram or the definitions for the next-state and output decoders. 
Unlike previous problems we’ve worked with, we use the same table for both the next state decoder and the 
output decoder. This approach can be confusing, so we start by reminding ourselves that the next state (ST+ in 
this case), is only associated with the next-state decoder. Similarly, when we work with defining the output 
decoder, it is always dependent upon the present state.  

We have one more decision to make before we proceed with the generating the table for the decoder. This 
counter has five output values in its count sequence, yet we already established that we’ll represent those five 
values with a 3-bit state register. This means that we must correlate the state values to the output count values. 
How exactly we relate these two sets of values is arbitrary, so we decide to relate them in a way that causes us 
the least confusion.  

Our approach is to relate the individual state values in order {0, 1, 2, 3, 4} to the given order of the count 
sequence {4, 18, 20, 30, 8}. Our only constraint here is that the output count sequence is in the given order. The 
combined decoder table is flexible in the way it can model the FSM, so we always strive to model the FSM in a 
way that reduces our chances of making an error. This means that we associate the first value in the output count 
(4) with the first possible state values (“000”).  

Table 23.1 shows the completed combined next-state & output decoder table. Here are some of the 
important things to notice about this table.  

 We use the abbreviation H for the HOLD input 

 We list the three variables of the PS on the far left of the next-state decoder inputs. This is not 
the only way to do this but this approach makes the table more readable.  

 The table also includes double lines around the same PS states for increased readability.  

 The table includes the outputs in both binary and decimal for increased clarity.  

 The row pairs delineated by double lines representing the states show that for any given state, 
the output can be different because the output is dependent upon the input.  

 We arbitrarily assign the state “101”→”111” (5-7) as the unused states. The table uses 
darkened cross-hatching to indicate this attribute.  

 We direct the unused states back to the “000” state to make the FSM self-correcting. The 
problem stated to make the FSM self-correcting by directing unused states back to the 4 count; 
the 4 count corresponds to the “000” state.  
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PS NS output 

ST     H ST+ CNT 
CNT 
(dec) 

0 0 0   0 0 0 1 0 0 1 0 0 4 

0 0 0   1 0 0 0 0 0 0 1 0 2 

0 0 1   0 0 1 0 1 0 0 1 0 18 

0 0 1   1 0 0 1 0 1 0 0 1 9 

0 1 0   0 0 1 1 1 0 1 0 0 20 

0 1 0   1 0 1 0 0 1 0 1 0 10 

0 1 1   0 1 0 0 1 1 1 1 0 30 

0 1 1   1 0 1 1 0 1 1 1 1 15 

1 0 0   0 0 0 0 0 1 0 0 0 8 

1 0 0   1 1 0 0 0 0 1 0 0 4 

1 0 1   0 1 0 0 1 1 1 1 1  n/a 

1 0 1   1 1 0 0 1 1 1 1 1 n/a 

1 1 0   0 1 0 0 1 1 1 1 1 n/a 

1 1 0   1 1 0 0 1 1 1 1 1 n/a 

1 1 1   0 1 0 0 1 1 1 1 1 n/a 

1 1 1   1 1 0 0 1 1 1 1 1 n/a 
 

Table 23.1: The combined next-state & output decoder definition for this example 

Now that the combined next-state & output decoder table are complete, we can move onto the state diagram. 
While the table description of the FSM in Table 23.1 is complete, it is cumbersome to read; a better option is to 
transfer the information in the table to a state diagram. Figure 23.39 shows the associated state diagram. Here are 
a few important things to note regarding the state diagram.  

 The state diagram is not 100% complete, as it does not represent the fact that our FSM is self-
correcting. We address this later.  

 The FSM does not include how we encode the states. We consider this a low-level 
implementation detail and we are designing at a higher level.  

 We use H to represent the HOLD input in order to save space and clutter in the state diagram.  

 The external input is associated with the state transition arrows because it controls the state 
transitions from a given state.  

 The outputs of the FSM are a function of both the state and external input. In this example, the 
external output is always different in every state as it is a function of the external input. This 
requires that we associate the external outputs with the external inputs.  

 We put in a special annotation to indicate that the binary values are the CNT output.  
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Figure 23.39: The partial (but adequate) state diagram to support our solution.  

The state diagram in Figure 23.39 does not completely represent the information in Table 23.1. To be complete, 
we must include the information associated with the unused states, since our work included making the FSM 
self-correcting. The state diagram in Figure 23.40 represents the complete state diagram for this problem. Here is 
some extra information to note about Figure 23.40:  

 Each of the three unused states unconditionally transition back to state “FOR”, which the 
original problem stated. Directing unused states back to a valid state makes this FSM self-
correcting.  

 We show the CNT output in the top five states as a Mealy-type output, which is because the 
value of H determines the value of the CNT. The CNT in the unused states is always the same, 
so we list that CNT value in the state bubble. Though this listing makes it appear like a Moore-
type output, it is a Mealy-type output based on the five valid states in the FSM.  

 

Figure 23.40: The complete state diagram to support our solution.  

 

23.4 FSM Overview and Summary 

The term “Finite State Machine” has many official meanings and definitions in digital-land. As you saw 
previously, any circuit that has the ability to remember something (namely bits), can be regarded as having a 
“state”. A circuit-oriented definition of a FSM is this: a circuit whose behavior can be modeled using the concept 
of “state” and the transitions between the various states in that circuit. We soon move onto using FSMs 
primarily as controller circuits, or a circuit that control other circuits. 
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People use FSMs in one form or another in many different technical disciplines and each discipline seems to 
have its own particular flavor of representing FSMs. Despite these many flavors to modeling FSM, always keep 
in mind that the best approach is to be clear in a way that expedites the transfer of information. Always 
remember that the state diagram is a model that visually describes the behavior of the FSM.  

23.5 High-Level Modeling of Finite State Machines 

Digital design typically classifies FSMs as one of different two types: Moore-type or Mealy-type. In this text, we 
simplify this definition as follows: there is only one type of FSM, but FSMs can have Moore-type and/or Mealy-
type outputs. All FSMs share the same properties: the only difference is the two types of FSM outputs.  

Figure 23.41 shows a basic model of an FSM. We can abstract the FSM’s internal circuitry into three separate 
blocks: 1) Next State Decoder, 2) the State Registers, and 3) the Output Decoder. The output decoder can have 
two types of outputs, which we refer to as Moore and Mealy-type outputs; Moore-type outputs are a function of 
the present state of the FSM while Mealy-type outputs are a function of both the FSM’s present state and the 
external inputs. Table 23.2 provides a detailed description of the FSM’s individual modules.  

 

Figure 23.41: The lower-level BBD for a generic FSM.  
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Module Description and Comments 

 

State 
Registers  

The State Registers represent the memory elements in the FSM. The term register implies 
the circuit is a synchronous storage element. The state register is the only sequential module 
in an FSM; the other two modules are both combinatorial circuits. The state registers store 
the state variables of the FSM; the value stored in the state registers is the state of the FSM.   

 

Next 
State 
Decoder 

The Next State Decoder is a combinatorial circuit that provides excitation input logic to the 
state register module. The next state logic generally has two types of inputs, which provide 
the excitation inputs to the state registers: 1) the current value of the state variables (the 
present state, and, 2) the inputs from the external world. Excitation inputs to the state 
registers determine the next state of the state register. On the next active clock edge, the data 
inputs to the state registers becomes the next state of the FSM, which is why we refer to 
next state decoder as the next state logic. The external inputs to the next-state decoder 
function as status signals from the world outside of the FSM.  

 

Output 
Decoder 

The Output Decoder is a combinatorial circuit that generates the external outputs of the 
FSM. The output decoder is responsible for generating the two types of FSM outputs: 
Moore-type outputs and Mealy-type outputs. Moore-type outputs are a function of the 
FSM’s state only, while Mealy-type outputs are a function of both the FSM’s state and the 
external inputs to the FSM. The outputs from the output decoder generally serve as control 
signals to the device(s) controlled by the FSM.  

Table 23.2: A detailed description of the three main FSM functional blocks. 

 

23.6 The FSM: Symbology Overview 

Probably the hardest thing about FSMs is understanding the state diagram symbology. The good news is that it’s 
relatively simple once you work with it. Although we developed an intuitive approach to the FSM structure and 
symbology earlier in this chapter, we present it again from a different angle.  

23.6.1 The State Bubble 

FSMs use the state bubble to represent a particular state in an FSM. Figure 23.42(a) shows a typical state bubble. 
The following verbage lists some of the key features regarding the state bubble:  

 A state needs some way to visually delineate it from other states, which is why the state 
bubble contains identifying information. State bubbles provide the state with a symbolic name 
that identifies the purpose of that state to the human reader.  

 Timing diagrams represent the states by the time slots representing the possible states. Figure 
23.42(b) shows that the boundaries of these time slots delineated the associated active edges 
of the FSM’s clock input, which is the clock input to the state registers.. Figure 23.42(b) show 
that the state registers are rising-edge triggered (RET) because the rising clock edge defines 
the state boundaries. 
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(a) (b) 

Figure 23.42: The State Bubble and associated timing diagram. 

23.6.2 The State Diagram  

The state diagram is one of many methods we use to model FSMs. The main purpose of the state diagram is to 
convey meaning and understanding to the human viewer. State diagrams provide four main forms of 
information: 1) the states in the FSM, 2) the state transitions the FSM makes, 3) the input conditions controlling 
the state transitions, and, 4) the output values associated with the FSM. Figure 23.43(a) shows a fragment of a 
state diagram. The following verbage describes some of the key features of this state diagram.  

 We refer to the terminology describing how a FSM goes from one state to another as a state 
transition or just transition. State diagrams use singly directed  “arrows”, directed from the 
source state to the destination state to represent state transitions.  

 There are only two possible state transitions in a state diagram from a given state. On the active 
clock edge, a transition can occur from, 1) one state to another state (indicated by the “state 
change” label in Figure 23.43(a)), or, 2) the FSM can remain in the same state (indicated by the 
“no state change” label in Figure 23.43(a)). We refer to the “no state change” arrow as a “self-
loop”.  

 The state diagram contains no explicit clock signal; the clock signal is implied rather 
specifically listed. The only part of the clock signal we’re interested in is the active clock edge; 
the state transition arrows represent what action occurs on the active clock edge associated the 
FSM.  

 The two states in Figure 23.43(a) have unique names. In real life, you would want to give these 
more meaningful names such as something to indicate why the state exists.  

 The state names in Figure 23.43(a) give no indication how we would represent the states if we 
were to implement the FSM. In other words, the state diagram provides no commitment to the 
actual state variable assignment that disambiguates the states on a hardware level.  

 The relation between the timing diagram in Figure 23.43(b) and the state diagram in Figure 
23.43(a) is the key to understanding state diagrams in general. When we talk of state, we’re 
talking about all the time in-between the active edges of the clock. The state bubble essentially 
represents all the time between any two active edges of the system clock. The state transition 
arrow represents what happens on each of the FSM’s active clock edges. On each clock edge, 
one of two things must necessarily occur: the FSM transitions either to another state or the FSM 
remains in the same state. A state transition occurs on every active clock edge, but sometimes it 
transitions back to the same state.  

 The concept of Present State (PS) and Next State (NS) is somewhat hard to define in a timing 
diagram such as the one in Figure 23.43(b). The problem is that the present state (and hence the 
next state) is constantly changing as you travel from left to right on the time axis. If you declare 
one state as the present state, then you can declare the following state as the next state relative to 
the present state. This definition changes as you traverse the timing diagram. PS/NS tables do a 
better job of presenting present and next-state information.   
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(a) (b) 

Figure 23.43: A state diagram (a) and the associated timing diagram (b) with some interesting 
details. 

23.6.3 State Transitions Controlling Conditions 

As you would guess from examining the state diagram of Figure 23.43(a), there must be some mechanism that 
decides which transition will occur from a given state on the next active clock edge. In Figure 23.43(a), state1 
has two arrows leaving the state, which mean there are conditions associated with those arrows that decide on 
which transition occurs.  

There are two forms of information that determine the transition a FSM takes: 1) at least one of the external 
inputs to the FSM, and, 2) the present state of the FSM4. The external inputs to a FSM are generally status signal 
from the circuit the FSM is controlling. Each state has its own set of conditions that govern transitions, so we’re 
concerned on a state-by-state basis what external input conditions determine the state transitions from a given 
state. Figure 23.44 shows that we indicate the conditions governing transitions by placing the conditions next to 
the state transition arrows. On this note, there are three important things to keep in mind:  

1) The conditions associated with the state transition arrows leaving a given state must be 
mutually exclusive. This means that there can never be the same input conditions associated 
with two different transitions arrows leaving the same state.  

2) The set of conditions associated with a particular state must be complete, meaning it must 
provide a transition arrow for every possible meaningful combination of input conditions. If 
there is a set of conditions in given state not covered by the associated state transition arrows, 
the FSM won’t know what to do5. State diagrams should leave no room for guessing, if they 
do, their behavior will not be deterministic (which is an impressive way of saying your FSM 
won’t always work as you intend).  

3) If the transition is unconditional, then the state diagram indicates this by listing a “don’t care” 
symbol by that transition.   

                                                           

4 Recall that the PS and the external inputs are the inputs to the next-state decoder.  
5 In cases such as these, the tools you’re working with will generally not tell you about such conditions and will arbitrarily 
decide what it wants to do. In general, software design tools are generally make the assumption you know what you’re doing 
and that you always do the right thing. With that assumption, the tools gladly fill in any details that you have unintentionally 
forgotten.  



Free Range Digital Design Foundation Modeling Chapter 23 

 

 
- 360 -  

 

 

Figure 23.44: How state diagrams indicate the conditions associated with state transitions.  

23.6.4 FSM External Outputs 

The external outputs from a FSM are generally “control signals” that are controlling other circuits. The state 
diagram has different states and thus the control signals output from one state are generally not the same as 
control signals output from other states, so the FSM is performing different control functions based on the 
different states.  

There are two different types of outputs in a FSM: Mealy-type outputs and Moore-type outputs. Although these 
outputs are similar in their controlling functions, they have one major difference. The outputs Moore-type 
outputs are a function of the state variables only while the Mealy-type outputs are a function of both the state 
variables and the current external inputs.  

Since Moore-type outputs are a function of the state variables only, we represent them by placing their values 
inside the state bubble. Figure 23.45 shows a state diagram that uses this approach. There can be any number of 
outputs represented inside the bubble.  

 

Figure 23.45: The State Bubble with associated Moore outputs. 

We can’t represent Mealy-type outputs inside the state bubble because they are a function the external inputs as 
well as the state variables. To account for these characteristics in a state diagram, we list the Mealy-type outputs 
next to the external inputs associated with the individual state transition arrows. We separate external inputs and 
outputs with a forward slash. Figure 23.46 shows an example of this approach; we comma-separate multiple 
Mealy-type outputs.   

Figure 23.46 lists two sets of Mealy-type outputs because there are two transitions from state1. The arrows are 
associated with the state transitions, which are based upon the current external inputs; the Mealy-type outputs are 
also a function of those same inputs. Since the Mealy-type outputs are a function of the external inputs, we 
represent them by placing them next to the external inputs. We always associated Mealy-type outputs with the 
state the arrow is leaving (and not the state the arrow is entering).  
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Figure 23.46: Representing Mealy-type outputs in a state diagram.  

In addition, we can represent both Mealy and Moore-type outputs in the same state diagram. Figure 23.47 shows 
an example of a state diagram that contains both Mealy and Moore-type outputs.  

 

Figure 23.47: A state diagram that has both Mealy and Moore-type outputs.  

23.6.5 Non-Important FSM Outputs 

While there are times when you may need to generate a “complete” state diagram, you must remember that the 
state diagram is primarily meant for a human viewer. Combine this notion with the fact that even a modest sized 
FSM can have enough external inputs and outputs to quickly compromise the readability of the state diagram.  

There are generally many outputs from a FSM, but the state diagram does not necessarily need to assign a value 
for every output in every state. If in any state a given output is not assigned, it is assumed to be a “don’t care” in 
the context of that state, which means that output does not affect the external operations associated with that 
state. You can thus omit outputs from a given state if those outputs don’t matter for that state. It is not 
necessarily bad practice to list all external outputs for each state, but your state diagram becomes harder to 
understand.  

23.6.6 Non-Important FSM Inputs 

The external input conditions control the state transitions of the FSM; these conditions must be mutually 
exclusive. This seems like we requires a complete set of inputs for each transition and for every state, but this is 
not the case. In real FSMs, you’ll find that not all external inputs matter in every state. In those cases, we don’t 
need to include the inputs that don’t matter next to the state transition arrow. If we include the inputs that don’t 
matter, we make our state diagrams less readable.  

The example state diagrams we’ve work with so far seem to indicate the FSM states are somehow limited in the 
number or transition arrows that can leave (or enter) the state. There is no limit, though we do need to ensure the 
conditions governing the transitions are mutually exclusive. Figure 23.48 shows a state diagram fragment with 
many arrows leaving the “state1” state. The point Figure 23.48 is making is that there is no limit to the number 
of transition arrows leaving a given state. There are a few key issues to be aware of regarding the transition 
arrows exiting a given state.  
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 Your state diagram must account for every possible set of external input conditions for every 
state. For example, if your FSM has “n” external inputs, every state must necessarily account for 
2n possible combinations of those inputs in order to completely specify the FSM. In reality, the 
2n is the worst-case scenario; you often find that not all inputs matter for all states.  

 You must make sure that all conditions associated with the arrows leaving a given state are 
mutually exclusive, which means that no two arrows can have the same conditions. If two states 
had the same set of conditions, the FSM would know the correct transition.  

 You can’t assume that an FSM stays in the same state if you don’t explicitly and completely 
specify all transition arrows leaving the state. This means that if there is a condition where the 
FSM does not transition to another state, it must indicate this condition with a self-loop, which 
explicitly states the associated conditions.  

For example, what we know from Figure 23.48 is that there must be at least three external inputs to this FSM 
because there are five arrow leaving “state1”. If this FSM only had two external inputs, we could only uniquely 
represent four transitions. With these there external inputs, we could represent up to eight different arrows 
leaving “state1”. Since Figure 23.48 only has five transitions but can handle up to eight transitions, some of the 
arrows in Figure 23.48 must be associated with more than one combination of the three inputs if the state 
diagram is indeed correct.  

FSM are neither magical nor intelligent. FSMs do exactly what you design them to do. This means you must 
never allow the FSM to “make a decision” on its own. It’s quite easy to not completely specify a FSM and get a 
good feeling that the FSM is working properly in all of your testing. Inevitably, if you don’t properly specify the 
FSM, it will fail, and probably fail during a demo of your product to a potential buyer or investor.  

 

Figure 23.48: The State Bubble. 

23.7 The Final State Diagram Summary 

Figure 23.49 provides a quick overview of the relation between the FSM black box and the example state 
diagrams we’ve been working with in this section. What you should be gathering from this diagram is that 
properly designed state diagrams have a particular structure and use a particular symbology.  

 Singly directed arrows represent state transitions  

 The FSM has external inputs that govern the state transitions from a given state 

 Each transition arrow lists the external inputs that control its transition 

 The state bubbles list the Moore outputs since they are only a function of state  

 We list Mealy-type outputs with the external inputs (and hence the state transitions) since they are a 
function of both the present state and the external inputs. 
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Figure 23.49: The relation between the state diagram and the high-level FSM. 

The good news is that once you understand FSMs, and traverse the associated learning curve, you’ll agree that 
there is not much to them. Here is everything in a nutshell.  

 The heart of the FSM is the state registers; the heartbeat of the FSM is the clock signal that 
controls the state-to-state transitions of the FSM.  

 On each active clock edge, the state of the FSM can transition to the present state (self-loop) 
or transition to a different state.  

 The next state is a function of the present state of the FSM and the external inputs, which 
form the inputs to the next-state decoder. 

 The outputs of the next-state decoder are the inputs to the state registers and thus determine 
the next state of the FSM.  

 The FSM’s external inputs are generally status signals from the outside world.  

 The FSM sends the control signals to the outside world via the output decoder.  

 The external outputs from the FSM are a function of the state variables (Moore-type) or a 
function of both the state variables and the external inputs (Mealy-type).  
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23.8 Chapter Summary 

 

 State diagrams use state bubbles to represent the various states of the FSM. The state bubbles generally 
contain a symbolic name that represents the purpose of a given state.  

 State diagrams use singly directed arrows to represent state transitions. Arrows can either be from one state 
to another state or from one state to itself (a self-loop indicating no state change, or a state change from a 
given state back into that state).  

 State-to-state transitions are synchronous and thus occur on the active edge of the clock; we show these with 
an arrow leaving a state and that same arrow entering a state.  

 Asynchronous transitions are “somewhere-to-state” and are not synchronized with an active clock edge; we 
indicate these transitions using an arrow not coming from a state but entering a state.  

 External FSM inputs control state transitions in an FSM. From any given state, transitions are only a 
function of the external inputs. Transitions in the overall FSM are a function of both the external inputs to 
the FSM and the present state of the FSM.  

 FSM can contain both Mealy and Moore-type external outputs. State diagrams represent Moore-type outputs 
inside the state bubble since they are only a function of the current state. State diagrams represent Mealy-
type outputs as functions of the external inputs by placing them next to the state transitions arrows.  

 All transitions from a given state must be mutually exclusive from all other transitions from that state. This 
means that there can be no combinations of external inputs that are represented in more than one transition 
arrow exiting a given state.  

 The state transition arrows must represent all possible external input combinations exiting a given state. Not 
specifying every possible condition causes undefined FSM behavior.  

 State diagrams are easier to understand if they omit external inputs and outputs (both Moore & Mealy) from 
the state diagram under circumstances where they don’t matter (when they are don’t cares relative to a given 
state (output) of given transition (external input).  

 FSMs can end up in hang states under certain circumstances. Designers can avoid this unwanted condition 
by designing the FSM to be self-correcting, which is done by directing all unused states back to a valid state 
in the given FSM.  
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23.9 Chapter Exercises 

 

1) Briefly explain the general purpose of a state diagram.  

2) Briefly explain why do individual states in state diagrams have unique, self-commenting labels.  

3) Briefly explain why we typically omit lock signals from state diagrams.  

4) Briefly explain why we label unconditional transfers with some type of “don’t care” symbol.  

5) Briefly explain why PS/NS tables don’t include clock signals.  

6) Briefly explain how we represent asynchronous signals in state diagrams.  

7) Briefly explain the main function of an FSM’s next-state decoder.  

8) Briefly explain the main function of an FSM’s output decoder.  

9) Briefly explain the main purpose of an FSM’s state registers.  

10) Briefly explain the different between Moore and Mealy-type outputs on FSMs.  

11) Briefly describe why it is most convenient to not place Mealy-type outputs in the state bubbles.  

12) Briefly describe with it is most convenient to place Moore-type outputs in the state bubbles.  

13) Briefly explain what is meant by the term “unused state” in an FSM.   

14) Briefly explain what is meant by the term “hang state” and how an FSM can end up in a hang state.  

15) Briefly explain the difference between a hang state and an unused state in an FSM.  

16) Briefly explain the main strategy behind designing FSM to be self-correcting.  

17) Briefly explain why some FSM designs inherently do not have hang states.  

18) Briefly explain why the transition arrows associated with a given FSM state must have conditions that are 
mutually exclusive. 
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23.10 Design Problems 

 

For each of the following problems:  

 Show all the underlying hardware, but minimize your use of hardware, particularly with the state 
registers 

 Completely specify all decoders with an appropriate table 

 Assume all inputs and outputs are positive logic unless stated otherwise.  

 Provide a state diagram that models the circuit you created to solve the given problem 

 

1) Use a FSM to design a synchronous 2-bit binary counter that has an UP and DN (down) input. When the up 
input is asserted, the counter counts up. When the DN input is asserted, the counter counts down. When both 
the UP and DN inputs are simultaneously asserted, the counter clears (output “00”). If neither the UP or DN 
input is asserted, the counter’s output values does not change.  

2) Use an FSM to design an up counter that counts repeatedly in the following sequence: { “0001”, “0010”, 
“1000”, “1000”…}: . When the counter’s UP input is asserted, the counter counts up; otherwise the counter 
output does not change.  

3) Use an FSM to design a 3-bit binary up counter that counts. When the counter’s UP input is asserted, the 
counter counts up; otherwise the counter output does not change. The counter also has a RCO (ripple carry 
out) output that indicates when the counter has reached its maximum count.  

4) Use an FSM to design a 3-bit binary counter that counts either using 3-bit odd or 3-bit even count values. 
When the counter’s EVN input is asserted, the counter counts up using even number; otherwise the counter 
counts up using odd number.  

5) Use an FSM to design a 3-bit binary counter that counts either using 3-bit odd or 3-bit even count values. 
When the counter’s EVN input is asserted, the counter counts up using even number; otherwise, the counter 
counts up using odd number. The counter has a RCO (ripple carry out) output that indicates when the 
counter has reached its maximum count. Note that the RCO signal is dependent upon there value of the 
EVN input, so that the RCO is asserted when the count is 6 and the EVN signal is asserted; otherwise the 
RCO is asserted when the count is 7 when the EVN signal is not asserted.  

6) Use an FSM to design an up counter that counts repeatedly in the following sequence: { “100001”, 
“110010”, “011000”, “001100”, “101010”…}: . When the counter’s FOR input is asserted, the counter 
counts up; otherwise, the counter output does not change. Design the FSM to be self-correcting.  

7) Use an FSM to design a binary up counter that repeatedly counts in the following sequence: {...0, 2, 4, 6, 8, 
10…}. When the counter’s UP input is asserted, the counter counts up; otherwise, the counter output does 
not change. The counter also has a RCO (ripple carry out) output that indicates when the counter has 
reached its maximum count. Design the counter to be self-correcting.  

8) Use an FSM to design a binary counter that counts in the following sequence: (…2, 17, 23, 11, 30, 2, 17, 
23…). This circuit has an active-low asynchronous RST input that forces the count to be ‘2’ when asserted; 
otherwise allows the circuit to count. Use only simple registers in your design (no LD signal). Make this 
circuit self-correcting by directing unused states to the state associated with the count value 17.  

 

 



Free Range Digital Design Foundation Modeling Chapter 24 

 

 
- 367 -  

 

24 FSM Clocking Issues 

 

24.1 Chapter Overview 

The main topic of this chapter is the timing/clocking issues associated with FSM design. The good thing is that 
these topics apply to all sequential circuits, particularly circuits that use some sort of system clock signal for 
synchronization purposes. While none of these issues is overly complicated, they are important to creating FSMs 
that not only work, but also work at a maximum clock rate.  

Main Chapter Topics 

SEQUENTIAL CIRCUIT ATTRIBUTES:  Many digital circuits contain a system clock. 
This chapter describes the basic terminology associated with clocking signals.  

PRACTICAL DEVICE ASPECTS: Digital circuit elements are physical devices and 
therefore have basic limitations based on device physics. This chapter describes 
some of the attributes in the context of clocking basic FSM circuits.  

 

Chapter Acquired Skills 

 Be able to describe attributes of clocking signals such as period, frequency, and 
duty cycle  

 Be able to describe physical attributes of digital circuits such as set-up & hold times 

 Be able to calculate the maximum clock frequencies of simple sequential circuits 

 

24.2 Clocking Waveforms 

We consider FSMs to be synchronous circuits because they contain synchronous memory elements. The term 
synchronous refers to the fact that changes in the state of the FSM’s state registers are synchronized to the 
FSM’s active clock edge. This section describes some of the important terms involved in clocking digital 
circuits.  

24.2.1 The Period 

The most important aspect of clocking waveforms is that the clock signal is most always periodic. We define a 
periodic clock signal as one that has attributes that remain constant over time; no matter where in time you view 
the waveform, the clock signal always appears to have the same form. Figure 24.1 shows both a periodic (CLK1) 
and a non-periodic waveform (CLK2).  
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Figure 24.1: A periodic (CLK1) and non-periodic (CLK2) waveform.  

A periodic waveform is a waveform that repeats itself “every so often”, or periodically. The period of the 
waveform indicates the amount of time required for the waveform to repeat itself, which makes “time” the unit 
of measure associated with the period. Figure 24.2 shows a periodic waveform where we use the “T” to clearly 
delineated one period. We consider this waveform as periodic because the waveform between (a) and (b) is the 
same as the waveform between (b) and (c). 

 

Figure 24.2: Timing diagram showing a timespan we consider the period.  

24.2.2 The Frequency  

The frequency of the waveform represents the number of times a signal repeats itself over a given amount of 
time. This definition is to general so we usually refine it somewhat to make it more usable. The “span of time” 
we’re usually interested in is one second (1s). Using this one-second time slot simplifies the translation of period 
to frequency.  

Period and frequency have a reciprocal relationship when we consider the amount of time is one second; Figure 
24.3 shows these relationships. The units for frequency are Hertz, or Hz for short. The term Hertz is technically 
defined as the number of cycles per second, which refers to the number of times a given signal repeats itself in 
one second. The term Hertz has units of s-1, which underscores its reciprocal relationship to the period.  

 

 

Units: time (seconds) 

 

 

Units: Hz (seconds)-1 

(a) (b) 

Figure 24.3: The calculations and units for Period and Frequency.  

 

Example 24.1: Waveform Frequency Calculation 

A given waveform has a 40ns period. What is the frequency of this waveform?  

Solution: Taking the reciprocal of the period provides the frequency the calculation in Figure 24.4 shows.   

1)(
1  frequency

frequency
TPeriod 1)(

11  T
TPeriod

frequency
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Figure 24.4: The solution to Example 24.1. 

 

 

 

Example 24.2: Waveform Period Calculation 

A given waveform has a 50M Hz frequency. What is the period of this waveform?  

Solution: Taking the reciprocal of the frequency provides the period. You can find the entire calculation below.  

 

Figure 24.5: The solution to Example 24.2. 

 

24.2.3 Duty Cycle 

All the periodic waveforms we’ve dealt with up to now were symmetrical, which means that the signal was high 
and low for the same percentage of time. Sometimes the clock signal high and low times are not equivalent; in 
these cases, we use the term duty cycle to describe the waveform.  

The duty cycle refers to the percentage of the period that the signal is in its high state. In technical terms, the 
duty cycle is the ratio of the time the signal is high to the period of the signal. Figure 24.6(a) shows the official 
equation for duty cycle. Because the duty cycle refers to a ratio, there are no units associated with duty cycle.  

 

 

Units: none 

(a) (b) 

Figure 24.6: Duty cycle calculations and units.  

 

Example 24.3: Duty Cycle Calculation 

A waveform with a 25% duty cycle is high for 12.5ns. Find the frequency of the waveform.  

Solution: If the waveform is high 25% of the period, than 12.5ns represents ¼ of the period. The entire period is 
then four times longer than the amount of time the signal is high; therefore, the period of the waveform is 50ns. 
The frequency is the reciprocal of the period, or 20MHz.  
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24.3 Practical Synchronous Circuit Clocking 

Most of our FSM discussion thus far dealt with the notion of idealized storage elements, which allowed us to 
focus on the basic functioning of the devices. We now must take into account a few timing considerations in 
order for our sequential circuits to work properly with increasing clock speeds. Many factors prevent digital 
circuits from working properly, but our focus is on two major timing considerations. In addition to propagation 
delays, register have issues associated with the synchronous nature of the circuit that we need to consider.  

24.3.1 Setup and Hold Times 

One of the consequences of properly clocking synchronous circuits is that you need to pay attention to the 
device’s non-clock control inputs near the active edge of the clock. More specifically, control inputs need to 
remain stable for a given amount of time both before and after the active clock edge. We refer to the amount of 
time the control input needs to remain stable before the active clock edge as the setup time and the amount of 
time the control input needs to remain stable after the active clock edge as the hold time.  

Figure 24.7(a) and Figure 24.7(b) show the setup and hold times associated with a rising-edge and falling-edge 
triggered synchronous device, respectively. The control input (such as the “D” input of a D flip-flop) must be 
stable (it must not change) for the duration of the setup time and the hold time. If the control input were to 
change during these times, the output, and thus, the state of the flip-flop would be indeterminate. If your circuit 
violates a setup or hold time, your device may become metastable1, which means the output of the device is 
neither high nor low; it is somewhere in-between and it may stay there for an extended length of time.  

  

(a) (b) 

Figure 24.7: Setup and hold times for rising edge (a) and falling edge (b) triggered flip-flops. 

Setup and hold times are associated with many different types of digital circuits, and the idea is always the same: 
keep a signal stable for a given amount of time both before and after some critical clock edge. We consider a few 
practical aspects of a sequential circuit that use the setup and hold times. But, mark my words… someday you’ll 
be working on a circuit that does not seem to want to work properly. You’ll toil over it for a while and then it 
hits you: you violated a setup and/or hold time.  

24.4 Maximum FSM Clock Frequencies 

In this modern age, faster is generally associated with better; the same is true for digital circuits. Namely, for a 
given circuit, there is always a question of how fast you can clock the circuit and still have the circuit operate 
properly. In other words, what is maximum frequency that the circuit’s sequential elements can operate at 
without violating things such as setup and hold times?  

Figure 24.8 shows a model of an FSM. Recall that there are propagation delays associated all digital circuits; 
there are also issues of setup and hold times associated with sequential logic. From the diagram of Figure 24.8, 
you should sense that the amount of circuitry in the various boxes lowers the maximum rate at which the FSM 
can operate, with the idea that signal requires more time to propagate through larger circuits than smaller 
circuits. Attributes in each of the submodules in Figure 24.8 affect the maximum clock frequency of the circuit.  

For this discussion, we assume that the Output Decoder does not affect the maximum clocking frequency of the 
circuit. What does matter is the propagation delay though the Next State Decoder, the setup times associated 

                                                           
1 And yet again, a digital design word makes it out of digital design land. We often use the word metastable to describe 
people who are unpredictable; the type you’ll do best to avoid. Academic administrators, for example.  
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with the state registers, and some combination of the state register’s hold time and/or the propagation delay 
through the register. These items require time: as the time accumulates, the period for the clock signal becomes 
greater, and hence, the maximum clock frequency becomes lower.  

 

Figure 24.8: The generic FSM model. 

In order to simplify the analysis of FSM circuits, we also make some other assumptions about this circuit. For a 
given flip-flop, we have both a hold time and a propagation delay time that we need to deal with. For these 
problems, we assume that the propagation delay for the state register is greater than the hold time. This allows 
the exclusion of the hold time from the calculation. Once again, the only factors affecting the maximum clock 
frequency (or minimum period) for the circuit are the setup time, the propagation delay through the Next State 
Decoder, and the propagation delay and setup times associated with the state registers. Figure 24.9 provides a 
visual representation of these attributes.  

 

Figure 24.9: The set-up & hold times for a rising and falling clock edge. 

Figure 24.9 shows four time slices that we need to consider when calculating maximum clock frequencies. 
Despite the fact that the timing diagram shows it twice, there is only one tNS_dec. We show this value twice 
because it is a continuation from the portion of the waveform ending with the falling edge on the right side of the 
diagram to the same portion of the waveform on the left side of the diagram. Another factor we include in this 
diagram is the tslop value. The idea here is that you never want to design to the absolute operating boundaries of 
your circuit; you always want to throw in a safety margin to guard against circuit conditions that may adversely 
affect the circuit2. We use these four values to calculate the minimum period as Figure 24.10 shows. Figure 
24.10 shows the minimum period is the reciprocal of the maximum clock frequency.  

Tmin = tns_dec + tslop + tsetup + tpd_ff
 

Frequencymax = (Tmin)-1 

Figure 24.10: Official calculations for minimum period and maximum clock frequency. 

 

                                                           

2 These factors would include ambient temperature variations and physical variations in the device itself.  
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Example 24.4: Maximum Clock Frequency Calculation for FSM 

What is the maximum system clock frequency at which the following sequential circuit can operate? For 
this problem, the flip-flops have a setup time of 10ns and a propagation delay of 13ns, and the next state 
decoder has a worst-case propagation delay of 18ns. For this problem, add a safety margin of 12ns. 
Assume the propagation delay for the flip-flops is greater than the hold time. Assume the X input is 
stable and the outputs drive a circuit that is not sensitive to the maximum clock frequency. 

 

Solution: We don’t need to worry about the X input because the problem states that the X input value is stable. 
The problem also stated that the outputs are another item we don’t need to worry about. What we need to do for 
this problem is total up the various delays in order to find the maximum clock frequency we can drive this FSM 
at and still have it operate properly. The safety margin of 12ns makes of the tslop value. Figure 24.11 shows the 
final solution for this example.  

Tmin = tns_dec + tslop + tsetup + tpd_ff 

Tmin = 18ns + 12ns + 10ns + 13ns 

Frequencymax = (Tmin)-1 = (53ns)-1 = 18.9MHz 

Figure 24.11: The calculations: plug and chug. 
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24.5 Chapter Summary 

 

 Waveforms in digital design are usually periodic in nature. Periodic signals can be described by a given 
waveform that repeats itself after a given amount of time referred to as the period of the signal. Periodic 
signals can also described by the frequency, which is defined as the reciprocal of the period.  

 Periodic waveforms are also described by their duty cycles, which are defined to be the ratio of the time in 
the period that the signal is in a high state to the period of the signal.  

 All clocked digital devices have physical attributes that govern their performance. Two of the attributes 
typically associated with sequential digital circuits are the setup and hold times. The setup time is the 
amount of time that an input signal needs to remain stable before the active clock edge of a device. The hold 
time is the amount of time that the input signal needs to remain stable after the active clock edge.  

 On major concern of FSMs is the maximum clocking frequency that the FSM can use while not 
compromising the operation of the FSM. Using a simple model, the maximum clock frequency is a function 
of the propagation delay of the next state decoder, the propagation delay of the flip-flop, the setup time of 
the flip-flop, and usually some margin of safety.  
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24.6 Chapter Exercises 

 

1) Briefly describe the units associated with the following three clock signal attributes:  

a) Periodic Signal 

b) Period 

c) Frequency 

d) Duty Cycle 

2) Breifly describe whether non-periodic clock signals can have duty cycles.  

3) For the system clock signal displayed below with tx=30ns and ty=25ns, find the period, frequency, and duty 
cycle of the waveform. (1ns = 1x10-9 seconds) 

 

 

4) A system clock signal with a 70% duty cycle is in a high state for 14ns of its period. What is the period and 
frequency of the clock?  (1ns = 1x10-9 seconds). 

5) A system clock if running at 50M Hertz. What amount of time is the signal high if the system clock has a 
40% duty cycle? (1 M Hertz = 1x106 Hertz) 

6) The following clock waveform is in a low state for 80% of the period. Find the duty cycle, period, and 
frequency (its OK to only setup the frequency calculation).  

 

tb = 20ns 

 

7) The following clock waveform is in a high state for a 40% of the period. Find the duty cycle, period, and 
frequency (it’s OK to only setup the frequency calculation).  

ta = 20ns 

 
8) The following clock waveform is in a low state for a 20% of the period. Find the duty cycle, period, and 

frequency (it’s OK to only setup the frequency calculation). The diagram is not drawn to scale. 

 tb = 60ns 

 

9) What is the maximum clock frequency that can be used by the following circuit? For this problem, add a 
safety margin that is 10% of the minimum clock period based on the timing values stated below. Assume the 
Z outputs drive a circuit that is not sensitive to the maximum clock frequency. Assume the X input is stable. 
Use the listed circuit parameters for this problem: 

 



Free Range Digital Design Foundation Modeling Chapter 24 

 

 
- 375 -  

 

 

flip-flop propagation delay: 20ns 

NS DCDR propagation delay: 10ns 

flip-flop set-up time: 6ns 

flip-flop hold time: 7ns 

 

10) For the previous problem, you now need to add a different margin of safety to the clocking operation of the 
circuit. Redo problem 7 and add a 20ns margin of safety, tslop, to the minimum clock period. What is the new 
minimum clock period and new maximum clock frequency? 

11) The following circuit was designed to operate at 20MHz (20x106Hz). Under these conditions, how much of 
a safety margin (if any) has been added to the circuit? Assume the X input is stable and the Z outputs drive a 
circuit that is not sensitive to the maximum clock frequency. Also assume that the propagation delay of the 
flip-flops is much greater than the flip-flops set-up time. Use the listed circuit parameters for this problem: 
 

flip-flop propagation delay: 17ns 

NS DCDR propagation delay: 9ns 

flip-flop set-up time: 8ns 

flip-flop hold time: 7ns 

 

12) What is the maximum clock frequency that can be used by the following circuit? For this problem, add a 
safety margin that is 20% of the minimum clock period based on the timing values stated below. Assume the 
Z outputs drive a circuit that is not sensitive to the maximum clock frequency. Assume the X input is stable. 
Use the listed circuit parameters for this problem: 

 

flip-flop propagation delay: 20ns 

NS DCDR propagation delay: 15ns 

flip-flop set-up time: 5ns  

flip-flop hold time: 7ns 
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25 Introductory Controller-Based FSM Design 

 

25.1 Introduction 

Our previous work with FSMs has primarily been involved with implementing FSM using relatively low-level 
hardware modules. We’re moving towards using FSMs as controller circuits, but we’re first need to gather more 
experience generating state diagrams to solve problems. We know the mechanics of FSMs; now we change our 
focus to state diagram generation.  

Here are the important truths regarding modern FSM design: 1) we rarely implement FSMs using low-level 
hardware, and 2) generating the state diagram represents most of the engineering associated with designing 
FSMs. Although anyone can implement a FSM from a given state diagram, it requires a complete understanding 
of all aspects of FSMs, all aspects of digital design, and a complete understanding of the problem at hand in 
order to generate a state diagram for a given problem.  

This chapter provides an intuitive look at state diagrams and their associated timing diagrams. Having an 
intuitive feel for state diagrams and being familiar with the associated timing diagram renders you ready to 
handle any control problem. Our initial approach to designing FSMs was to design both the underlying logic and 
the associated state diagram. In this chapter, we move away from implementing FSMs with lower-level logic and 
concentrate more on generating the state diagrams.  

Main Chapter Topics 

HISTORICAL PERSPECTIVE OF FSMS AS CONTROLLERS: The chapter provides a 
brief history of FSMs in the context of controlling digital circuits.  

FSM PROBLEM SOLVING: This chapter introduces basic state diagram generation in 
the context of sequence detectors. Sequence detectors provided relatively simple 
problems to understand which allows you to focus your efforts on generating the 
associated state diagram.  

 

Chapter Acquired Skills 

 Be able to solve simple control problems using FSMs as circuit controllers. This set 
of problems includes basic signal synthesis problems and sequence detectors.   

 Describe the history of using digital circuits to control digital circuits.  

 

25.2 FSM Historical Overview 

The world progressed nicely for bajillions of years without having the concept of finite state machines. In recent 
history, we’ve developed a need for low-level control of just about everything in our lives, particularly control 
by tiny electronic things. In regards to FSMs, the following verbage provides an overview of the path that has led 
us to where we are today (though a few details are missing).  

In relatively recent history, digital stuff (computers and things) started happening1. All the new digital stuff 
required some digital circuitry to control it; FSMs were the logical option. You could have used a computer to 

                                                           
1 It actually started happening a long time ago, but until relatively recently, the cost of digital stuff was such that the average 
human could not afford to take notice. 
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control a computer, but computers were big and expensive, and had names like “HAL”2. The problem with 
software-based control was that it increased the complexity of the software and required extra program memory3. 
In order to deal with these issues, we typically farmed out the software control requirements of projects to 
hardware devices, such as FSMs. This approach worked because the required hardware was not prohibitively 
expensive.  

Later, integrated circuits (ICs) started taking over. There were already many ICs out there, but all of a sudden, 
there were many more ICs out there. These new ICs provided more complex functionality, which meant that 
some of the control functions handled by FSMs were built into the ICs. There were also ICs dedicated to 
controlling specific devices (such as memory and interrupt controllers), which became a requirement because 
control requirements were growing in complexity.  

As time went on, microcontrollers (MCUs) started becoming prevalent4. The MCUs were more versatile than 
FSMs in that we could program MCUs to do anything while the FSMs were hardcoded to performing one task. 
This meant that hardware devices could now essentially be under program control (programs run on the MCUs) 
rather than under hardware control (what FSMs are constructed from). The upside of this software control is the 
flexibility in software (namely its re-programmability characteristic). The downside is that using the MCU to 
control hardware requires processing time from the MCU or dedicating an entire MCU to the control task. This 
option also requires someone who possesses the skill to design and program a MCU-based system. Although 
MCUs nicely handle some control tasks, they are not appropriate for all such tasks, particularly as the number of 
control tasks in a given system increase.  

As more time went on, Programmable Logic Devices (PLDs) such as FPGAs and CPLDs hit the market. This 
meant that you could use PLDs to design hardware to handle the control issues. Though PLDs are hardware 
devices, they are flexible because they are reprogrammable. PLDs were powerful and inexpensive, which meant 
transferring control from MCUs to FSMs was not overly costly. Thus, the advent of relatively inexpensive but 
powerful PLDs allows the offloading of control tasks from the system software to external hardware. 

One of the downsides of MCUs is their basic limitation is the number of pins they need to interface to the outside 
world. The pin count generally relates to the cost of the MCU also: the more pins on your MCU, the more you’re 
going to pay for it. Now days, MCUs can do many tasks (generally at the same time, sort of), which is good. The 
downside of having MCUs do many tasks is that the associated software architecture becomes more complicated 
(slower and more error-prone) based on the number of tasks it must control.  

The good news is that FSMs are not quite dead; people still use them quite often to avoid some of the hassles 
created by complicating the software associated with the controlling circuits using MCUs. In addition, not all 
control problems are well suited for MCUs; some control requirements are too small to warrant farming off to an 
MCU. Although you probably don’t know it, there are most likely quite a few FSMs embedded in the amazingly 
complex ICs that control everyday devices such as cell phones, MP3 players, bowling balls and other such 
useless devices that we can’t seem to live without. FSMs generally simplify required control tasks by off-loading 
the software-based control requirements to non-software-based circuitry, namely FSMs. In addition, FSMs can 
help reduce the I/O pin count requirements in MCU-based applications.  

The question arises: How do I use a FSM to control something? The answer is that you must understand the 
following:  

 Understand how the FSM operates in terms of the underlying hardware (such as the state 
registers, output decoding logic, next state decoding logic)  

 Understand the various lingo used when dealing with FSM, such as present state, next state, 
state transitions, external inputs, external outputs, state variables, next state decoder, output 
decoder, Mealy outputs, Moore outputs, self-loops, strike, spare, etc. 

 Understand the symbology used to describe the FSM; namely, the state diagram symbology  

                                                           
2 “Sorry Dave, I can’t do that”.  
3 Keep in mind that back in these days, memory was much more expensive than it was today.  
4 They had actually been around for a while, but they were now less expensive. More importantly, the development 
environments (primarily PC-based) and associated CAD tools were significantly less expensive.  



Free Range Digital Design Foundation Modeling Chapter 25 

 

 
- 378 -  

 

 Understand how to implement the FSM, either with flip-flops and discrete logic components 
or high-level modeling with some type of PLD.  

Figure 25.1 shows the general model of the FSM acting as a controller circuit. The things that are important to a 
controller circuit are the control signals (outputs from the FSM that control external components) and the status 
signals (inputs to the FSM that allow the FSM to know what and how to control the external components). In the 
FSM model of Figure 25.1, the external inputs act as the status signals from the circuit the FSM is controlling, 
while the external outputs act to control the components external to the FSM. A clock input keeps things flowing 
evenly.  

 

Figure 25.1: The general view of a FSM used as a controller circuit. 

25.3 Digital Design Overview 

This section gives an overview of digital design, including Digital Design Foundation Modeling. Much of this 
information was presented in previous chapters; we include it here for completeness.  

Digital design is the process where you create a digital circuit to solve a given problem. There are many 
approaches you can use to solve given problems, designing a digital logic circuit is only one of them. A given 
digital design solves problems by having the outputs react to the inputs in a manner such that it solves the given 
problem. There are two basic types of digital logic circuits:  

 Combinatorial Circuits: circuit outputs are a function of the circuit’s inputs. 
These circuits can’t store information.  

 Sequential Circuits: circuit outputs are a function of the sequence of the circuit’s 
inputs. These circuits can store information.  

 

The two basic tenets of digital logic are:  

 Digital logic circuits are hierarchical: We can describe a digital circuit at various levels; the level at 
which we describe digital logic is generally the one that allows us to transfer as much useful 
information as quickly as possible. Abstracting digital designs to higher levels aids in understanding 
and designing circuits.  

 Digital logic circuits are decomposable into a set of standard digital modules: Although there are 
many ways to describe digital circuits, we strive to make the descriptions an aggregate compilation of 
standard digital circuits in able to help us understand the circuits.   

25.3.1 DDFM Overview 

The focus of DDFM is to present digital design in a simple and organized manner, which facilitates and 
expedites learning the subject matter. These are the main tenets of DDFM:  

 The main purpose of digital design is to solve problems using digital circuits 

 We can best describe digital circuits in a modular and hierarchical manner 

 Digital circuits are a set of digital modules that exchange information under the control of some entity 
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 We perform digital circuit design in a structured5 manner, meaning that we can model any digital 
circuit using a relatively small subset of digital modules, which we refer to as the digital design 
foundation modules. Each foundation module performs a relatively small set of simple operations. 

 We present the digital design foundation modules at a high-level by modeling the modules in terms of 
their data, control, and status signals, which allows us to use the modules in designs, while not requiring 
us to initially understand underlying implementation details.  

 We classify the digital design foundation modules as either “controlled” or “controller” circuits 

 We consider there to be four approaches to controlling a digital circuit:  

5) NO CONTROL (no flexibility in circuit behavior) 

6) INTERNAL CONTROL (controlling circuits using internal signals) 

7) EXTERNAL CONTROL (controlling circuits with devices such as buttons, switches, etc.) 

8) CIRCUIT CONTROL (controlling circuits using FSM or computer).  

 We categorize digital design approaches into three categories:  

4) BRUTE FORCE DESIGN (BFD) 

5) ITERATIVE MODULAR DESIGN (IMD)  

6) MODULAR DESIGN (MD) 

 

Figure 1.2 shows a digital circuit containing various modules. We define a digital circuit as a controlled 
interaction between a set of sequential and combinatorial circuits (the two types of digital circuits). Solving 
problems using digital circuits requires controlling the flow of data through the circuit in such a way that it 
solves the given problem. Figure 1.2 also shows the modularity (the various modules) and the hierarchical 
(modules within modules, or boxes within boxes) characteristics of digital circuits.  

 

Figure 25.2: A generic digital circuit containing a set of digital modules. 

Figure 1.3(a) shows the standard approach to modeling digital circuits, where all digital circuit signals were 
classified as either inputs or outputs. Figure 1.3(b) and Figure 1.3(c) shows how DDFM further classifies inputs 

                                                           

5 This is an analogy to structured computer program design 
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and outputs by first separating digital modules into “controlled circuits” and “controller circuits”. Figure 1.3(b) 
shows that we further classify the inputs to controlled circuits as either “data” or “control” and classify the 
outputs of controlled circuits as either “data” or “status”. This means the various circuit elements in Figure 1.3(b) 
are able to 1) pass data from their data inputs to their data outputs under the direction of the “control” inputs, 
and, 2) describe characteristics of the data transfers using the status outputs. Similarly, the status outputs of the 
controlled circuit form the status inputs of the controller circuit. The controller circuit of Figure 1.3(c) inputs the 
status signals of controlled circuits and manages the controlled circuits by outputting the appropriate control 
signals to control the controlled circuits.  

   

(a) (b) (c) 
 

Figure 25.3: Old digital circuit model (a); models for controlled (b) and controller circuits (c). 

The DDFM paradigm allows us to model all digital circuits as a controller that controls a set of modules. We 
then consider the solution to any digital design problem as a matter of using a controller to properly control the 
dataflow through a set of controllable modules. Figure 1.4 shows an example of many circuit modules controlled 
by a controller circuit; the controller circuit is either a finite state machine (FSM) or some type of computer 
control, such as a microcontroller. Figure 1.4 includes three different module shapes showing that controllable 
modules can either be combinatorial or sequential circuits, as well as off-the-shelf computer peripherals.  

 

Figure 25.4: Our unifying digital circuit model. 

25.3.2 The Three Approaches to Digital Design 

Part of DDFM includes categorizing digital design into three different approaches, which we discuss in more 
detail later in the text. With some combination of these three approaches, you can create any digital circuit.  

BRUTE FORCE DESIGN (BFD): Our first approach to digital design. Although simple, its simplicity 
limits its practicality in non-trivial designs.  

ITERATIVE MODULAR DESIGN (IMD): Our second approach to digital design. Although IMD 
removes some of the limitations of BFD, it is only applicable to a few of circuits.  

MODULAR DESIGN (MD): Our final and most powerful approach to digital design, and is thus 
where this text expends most of its efforts.   
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Figure 25.5(a) shows the basic model of a digital logic circuit; we characterize the signals that the outside world 
sees as either inputs or outputs. Because we need to control the flow of data through the digital circuit, we must 
more specifically define the inputs and outputs of a basic digital circuit module. Figure 25.5 (b) shows that we 
further classify the inputs as either “data” or “control” and classify the outputs as either “data” or “status”. This 
means the various circuit elements in Figure 25.5 (b) are able to 1) pass data from their data inputs to their data 
outputs under the direction of the “control” inputs and, 2) output characteristics of the data transfers using the 
status outputs.  

  

(a) (b) 

Figure 25.5: Models for a basic logic circuit (a), and a more refined basic digital logic circuit (b).  

Something must control the flow of data through the generic digital circuit. We therefore must have some other 
entity that interprets the status signal outputs of the circuit modules and issues control signals to those circuit 
modules. For this beginning digital design text, we consider the controlling circuit to be an FSM. Figure 25.6 
shows a generic model of an FSM. The FSM simply interprets the status signal outputs from various digital 
modules and then outputs the appropriate control signals that are the various digital modules use as control 
inputs. Other interesting characteristics to note include:  

 FSMs generally do not have data inputs and data outputs. You can design FSMs with data inputs 
and outputs, but they tend to be klunky and non-generic.  

 The FSM is a sequential circuit because it has the ability to store bits. The FSM only stores bits 
to represent the “state” of the FSM, which it does in its “state variables”.   

 The underlying model of the FSM includes three primary elements: 1) the next state decoder, 2) 
the output decoder, and, 3) the state registers. The next state decoder is a combinatorial circuit 
that decides the next state based on the given state and status inputs. The output decoder is a 
combinatorial circuit that generates control outputs based on either state only (Moore-type) or 
state and status inputs (Mealy-type). Figure 25.7 shows a model for an FSM with both Moore 
and Mealy-type outputs.  

 

Figure 25.6: A black box model of a FSM.  
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Figure 25.7: A black box model showing the component parts of an FSM. 

 

25.4 Attack of the Blinking LEDs 

Digital designers often use FSMs to aid in the synthesis of signals. This means you can use FSMs to generate 
output signals with specific properties that would not be easy to obtain using any other digital design techniques. 
These FSMs are useful handy because they are relatively straightforward to design for novice FSMers, and 
because they present simple techniques that you often draw upon when using FSMs to solve design problems.  

 

Example 25.1: FSM Design #1: Blinking LED with 50% Duty Cycle 

Use an FSM to blink a single LED with a 50% duty cycle and 
at half the clock frequency of the FSM’s clock. Provide a 
state diagram for your solution.  

 
 

Solution: There are three main design issues associated with this problem. First, we need to blink an LED. 
Second, we need to blink that LED at a 50% duty cycle. Third, the blink frequency needs to be half that of the 
FSM frequency. The FSM handles each of these requirements quite naturally.  

Figure 25.18 shows two versions of a state diagram for our solution. These two solutions are equivalent, and 
represent to different methods of representing the outputs of state diagram. Here is the fun stuff:  

 A Moore-type output nicely implements our solution. This makes sense, particularly since the 
FSM has only one input: the clock.  

 The state diagram has two states: an “on” state and an “off” state. We list the LED output as 
either on or off in the given state. We list the LED output value directly in Figure 25.18(a) by 
specifying the output directly, and somewhat indirectly in Figure 25.18(b) by showing the 
LED label with either an overbar when the LED is off, and no overbar when the LED is on.  

 All transitions are unconditional  

 The state diagram has two states, both with unconditional transitions. This means that the 
FSM always transition from one state to the other, which then means that the LED spends 
half the time on and the other half of time off. This provides the 50% duty cycle as requested.  
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(a) (b) 

Figure 25.8: The different but functionally equivalent state diagrams for our solution.  

Figure 25.9 shows an example timing diagram associated with our solution. Here is some cool stuff to realize 
regarding this timing diagram.  

 The timing diagram arbitrarily starts in the LED_OFF state. 

 On each active clock edge (the rising clock edge) the FSM changes state, as seen in the 
STATE line.  

 The LED changes value every active clock edge. As a result, the frequency of the LED 
blinking is half the frequency of the FSM’s clock signal.  

 

Figure 25.9: An example timing diagram for our solution.  

 

 

 

Example 25.2: FSM Design #2: Blinking LED with Control Features 

Use an FSM to blink a single LED with a 50% duty cycle 
at half the clock frequency of the FSM’s clock when a 
button is not pressed. The circuit’s button input, when 
asserted (positive logic), prevents the LED from changing 
status (off vs. on). Provide a state diagram for your 
solution.  

 

Solution: This problem is similar to the previous problem but we added an external input signal that controls the 
operation of the FSM. When the BTN input is asserted, it prevents the FSM from changing states. The way we 
prevent an FSM from changing states is to not allow it to leave the present state, which means the FSM 
transitions back to the state it is currently in. Figure 25.10 shows the state diagram for this example.  
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Figure 25.10: The state diagram for this example.  

Figure 25.11 shows an example timing diagram for this problem. Here are some special things to note regarding 
this timing diagram.  

 The FSM does not change state on the first two active clock edges because the BTN input is 
asserted.  

 The FSM toggles on the third rising clock edge as the BTN input is not asserted. The FSM 
also toggles on the fifth and sixth clock edge.  

 The LED output follows the LED assignment in the state diagram. The LED is off 
(LED=’0’) when the FSM is in the LED_OFF state; the LED is on in the LED_ON state.  

 The arrows indicate that the CLK input (the active edge) and the BTN input combine to cause 
the state change, and then the state change causes a change in the state of the LED output. The 
arrows indicate that the clock edge and BTN input caused changes in both the LED and state.  

 

Figure 25.11: An example timing diagram for our solution.  

 

 

 

Example 25.3: FSM Design #3: Blinking LED with Control Features 

Use an FSM to blink a single LED with a 50% duty cycle at 
half the clock frequency of the FSM’s clock when the circuit’s 
button is not pressed. This circuit’s BTN input, when asserted 
(positive logic), prevents the LED from changing status if the 
LED is off. Provide a state diagram for your solution.  

 

Solution: In the previous example, when the button was asserted, the FSM could not change state. When the 
BTN signal is asserted in this problem, it causes the FSM to hold state if the FSM is currently in the LED_OFF 
state, but does not cause the FSM to hold the state if the FSM is in the LED_ON state. One other thing to note:  
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 The “-“ listed on the transition arrow from the LED_ON state represents an unconditional transition. 
The conditions associated with the don’t care symbol are officially: !BTN + BTN, which is always true.  

 

Figure 25.12: The associated state diagram for our solution.  

Figure 25.13 shows an example timing diagram for the solution. Here are the so-called highlights listed in the 
order of rising clock edges. .  

1) The state does not change because the BTN input is asserted.  

2) The state changes because the BTN input is no longer asserted.  

3) The BTN input is asserted, but the FSM always transitions from the LED_ON state to the LED_OFF 
state on the next active clock edge.  

4) The BTN input is not asserted so the FSM changes state.  

5) The FSM always changes state when in the LED_ON state.  

6) The FSM changes states because the BTN input is not asserted.  

 

Figure 25.13: An example timing diagram for our solution.  

 

 

 

Example 25.4: FSM Design #4: Blinking LED with Special Duty Cycle 

Use an FSM to blink a single LED with a 33.3% duty cycle at 
a frequency of 60MHz. State the frequency of CLK signal for 
this problem. Provide a state diagram for your solution. 

 
 

Solution: This problem is a similar to the first blinking LED example, but now we have something other than a 
50% duty-cycle. The problem states that we need a 1/3 duty-cycle. Clock signals are generally periodic with 
50% duty-cycles. Thus, what we need to do for this problem is to turn on the LED for 1/3 of the time, and off for 
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2/3 of the time. The best way to do with for FSM problems is to add more states to the state diagram to get the 
LED output timing we’re looking for. Figure 25.14 shows the state diagram for our solution.  

 The state diagram has three states; all state transitions are unconditional  

 The LED is off in two states and on in one state; this provides the desired 33.3% duty cycle.  

 

Figure 25.14: The state diagram associated with our solution.  

The problem asks up to state a CLK frequency in order to blink the LED at 60MHz frequency. Mathematically 
speaking, the period associated with the LED blink rate is three times as long as the period of the system clock. 
Since frequency and period have a reciprocal relationship, the frequency of the CLK signal must be three times 
the frequency of the LED blink rate. The desired clock frequency is thus 180MHz.  

Figure 25.15 shows a timing diagram associated with our solution. The 33.3% duty-cycle is evident by 
examining the LED output. The FSM transitions from one state to another on every rising clock edge.  

 

Figure 25.15: An example timing diagram for our solution.  

 

 

 

Example 25.5: Maximum Value Displayer  

Design a circuit that finds the largest of four 8-bt unsigned binary inputs after a button is 
pressed. The maximum value stays on the output until the circuit detects another button press. 
The circuit also ensures the button is press is released before it is able to find another 
maximum value. Minimize your use of hardware in your design; don’t use more than one 
comparator in your design. Provide a top-level and lower-level BBD for your solution, and a 
state diagram if necessary. Also, describe what controls your final solution. 

Solution: This problem is similar to previous problems we did when before we started working with sequential 
circuits. The main constraint in this problem is that we use no more than one comparator, which essentially 
forces us to design a circuit controlled by an FSM. Figure 25.16(a) show the result of the first step in this 
solution, which is a top-level BBD.  

The next step is to create an inventory of the modules this design requires. Here is the thought process:  
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 Any circuit that establishes maximum and minimum values of a set of data requires a 
comparator.  

 The output of the problem also needs to be persistent, which means we need a register to hold 
the final value.  

 Since we only have one comparator, we need to “select” which input values we are comparing, 
so the circuit also needs a MUX.  

 The circuit requires some type of control, so the circuit needs a FSM.  

 

Figure 25.16(b) shows the lower-level BBD for our solution. Here are some important items to note: 

 The diagram only routes data signals in order to make the diagram more readable. We 
understand that the non-routed signals are status and control signals, which are inputs to and 
outputs of the FSM, respectively. We clearly  label the FSM’s inputs and outputs on both the 
“unrouted” signals to clarify their connectivity.  

 The FSM has two status inputs: 1) the button, and 2) the LT output of the comparator. The FSM 
uses these signals to determine the state transitions in the associated state diagram.  

 The FSM has three outputs: 1) the SEL, 2) the CLR, and 3) the LD signals. The FSM uses 
these signals to control the other circuit elements. The control outputs of the FSM do in fact 
connect to the various control inputs of the other modules.  

 We must state the CLR control input to the register has precedence over the LD input.  

 The comparator compares a value external to the circuit to the current output of the register. 
This circuit then continually updates the current maximum value as it examines the other input 
values.  

 

 

(a) (b) 

Figure 25.16: A block diagram for circuit (a), and underlying circuitry (b).  

Figure 25.17 shows the state diagram that models the circuit’s FSM. Here are some of the finer points 
of the state diagram.  

 In the “wait” state, the FSM waits for a button press to start the process. When the circuit 
receives a button press, the circuit first clears the output register. Clearing the register 
effectively makes the first comparison with zero, which is the smallest possible value for an 
8-bit unsigned binary number. If the circuit determined the minimum value, we would then 
first initially load this register with all 1’s.  
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 We modeled the clearing action of the circuit as a Mealy-type output; we could model it as a 
Moore-type output, but that would have required an extra state in the state diagram.  

 The four “C_x” states use the SEL input of the MUX to step through the four comparisons. 
The FSM’s SEL output differs for each of these four states.  

 It is possible to connect the LT output of the comparator directly to the LD input of the 
counter. We did not do this because we want to be able to disable to the register’s LD control 
when we find and display the max value. If we made the direct connection, we would have no 
way of preventing that the maximum value on the output from changing during the two wait 
states.  

 Once the circuit finds the maximum value, it then waits for a button lift in the “wait_btn” 
state. We do this is because circuits like this one typically operate faster than you can press 
and lift the button. The self-loop in the “wait_btn” state ensures that the circuit only finds one 
maximum values per button press6.  

 

Figure 25.17: The state diagram associated with this example.  

This circuit has both external and circuit control. The BTN input is the external control that serves as a 
status input to the FSM. The control signals on the MUX and the register are outputs of the FSM, 
which is circuit control.  

 

 

25.5 FSMs as Sequence Detectors 

Designing sequence detectors is one of the earliest topics in FSM design  because they are highly instructive and 
spiritually enriching while not being overly complicated. Designing sequence detectors gives you practice 
generating different flavors of state diagrams under limited external input control and with few external outputs.  

Figure 25.18(a) shows the general form of a simple sequence detector. There is one external input X and one 
external output Z; there is also a clock input because this is an FSM. This particular example monitors whether 
the sequence “101” to appears on the X input. Figure 25.18(b) shows a sample input sequence for the X input 
and the resulting outputs for two different ways of examining the input sequence. The data in Figure 25.18(b) is 
the data present when the active clock edge appears on the FSM (each column represents one clock edge).  

                                                           

6 There are also switch-bounce issues that we’re not dealing with here.  
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X:               0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0  

Z (no reset):    0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0  

Z (with reset):  0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0  

Time  

(a) (b) 

Figure 25.18: A black box diagram (a), and sample inputs/outputs for finding “101” sequence (b). 

Figure 25.18(b) lists two types of outputs: one where the FSM does not reset (non-resetting) after finding the 
correct sequence and the other where the Z “resets” (“resetting”) after finding the correct sequence. In this 
context, resetting refers to the ability of the output to reuse past inputs regardless of whether they were part of a 
previously successful7 sequence or not. In the case where there is no reset, the Z output is a ‘1’ anytime the 
previous three X inputs8 are the sequence “101”. For this case, the FSM can use previous X input values from 
other “101” sequences that were previously successfully detected. For the case where the Z does reset, the FSM 
can’t reuse values from other successfully detected sequences can’t in a new sequence.  

The resetting and non-resetting flavors allow for two types of problems. Additionally, because we are designing 
FSM, we can model the Z output as either a Mealy or a Moore-type output. Sequence detector problems can 
have one of four solutions based on the type of FSM output (Mealy or Moore) and whether the machine resets or 
not after detecting the correct sequence.  

The following diagrams works through the example of Figure 25.18(b) thus producing a result in the four 
different methods (“Mealy” vs. “Moore” and “resetting” vs. “non-resetting”). We list less detail in some 
diagrams due to the similarities in the development process. The next four figures show the solutions that 
represent all the possible conditions for the reset/no reset and Mealy/Moore options.  

                                                           
7 Meaning that the sequence led to the finding of desired sequence.  
8 Once again, the most correct wording is that ‘1’ was present on the X input when an active edge clock edge arrived. For 
problems such as these, we generally constrain the X input to only changing no more than once per clock period.  
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The best place to start is before the FSM sees any correct values in the 
sequence. The transition is where the FSM finds the undesired input of 
‘0’, so it stays in the state looking for the desired input of ‘1’. Since 
FSM has not found the correct sequence, the Z output is a ‘0’. We 
arbitrarily assign the state as “a”. 

 

Each state bubble must account for two arrows leaving the state 
representing the possible values of the X input. A ‘1’ on the X input 
causes a transition to the new state. When in state (b), then you know 
you’ve seen the first value of the sequence. There are two arrows 
leaving state (a); conditions associated with those transitions are 
mutually exclusive.  

 

As long as the FSM receives a ‘1’ on the X input in state (b), we stay 
in that state as the self-loop arrow indicates. If the FSM receives more 
‘1s’ in state (b), there is no reason to exit this state. No matter how 
many‘1’s you receive in state (b), you won’t leave, the state since ‘1’ is 
the first value in the desired sequence and ‘0’ is the second value.  

 

Receiving a ‘0’ in state (b) represents the second correct value in the 
sequence. In this case, you must transition to a new state. The output Z 
is still ‘0’ because the complete correct sequence is yet to be found. 
State (b) is complete now that there are two arrows exiting the state.  

 

Being in state (c) indicates you’ve found the first two values in the 
desired sequence. If at this point you were to receive a ‘0’, you would 
essentially need to start the search sequence over which would result in 
a transition back to state (a). Anytime you receive two contiguous ‘0’s, 
you must start again because two zeros are not part of the sequence.  

 

If the FSM receives a ‘1’ in state (c), two things happen. First, you 
found the desired “101” sequence and the output Z is set to ‘1’. 
Second, because the FSM does not reset, you can reuse the one that 
made the “101” sequence a success as the first ‘1’ in a new sequence; 
the transition to state (b) accomplishes this. You could not transition 
back to (b) if the FSM was to reset after finding the correct sequence.  

Figure 25.19: Generation of a state diagram that detects a “101” sequence without resetting. 
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The Moore state diagram for the example problem is similar to 
the Mealy state diagram. The main difference is the Mealy state 
diagram divides the outputs from the Mealy version of this 
problem into two states. Each of the two state bubbles includes a 
different output Z because they’re Moore outputs. This solution 
shows one of the differences between Mealy and Moore-type 
FSMs: the Moore-type FSMs have more states than a Mealy-
type FSM implementing the same functionality.  

(a) (b) 

Figure 25.20: State diagram (a) and explanation (b) for Moore-output (no reset) for “101” 
sequence. 

 

 

Only one state is different from this diagram and the non-
reset diagram. All cases from state (c) return to the start case 
with one output being a ‘0’ to indicate failure and one output 
being a ‘1’ to indicate roaring success. 

(a) (b) 

Figure 25.21: State diagram (a) and explanation (b) for Mealy-output (with reset) for “101” 
sequence. 

 

 

Again, this state diagram is similar to the diagram of the 
Figure 25.20. The two differences are associated with state (d). 
It is interesting to note the strange similarities between this 
state diagram and the state diagram of Figure 25.21. 

(a) (b) 

Figure 25.22: State diagram (a) and explanation (b) for Moore-output (with reset) for “101” 
sequence. 

25.5.1 Sequence Detector Post-Mortem 

Even though you should never simply “follow rules” when you’re solving sequence detector problems, here are a 
few “suggestions” to chew on. As you do more of these designs, you’ll develop your own style and collect your 
own set of tricks that make these problems easier.  
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1) Construct a sample input to clarify problem description.  

2) Construct a path for the correct sequence first; then go back and fill missing transitions.  

3) Try to add new arrows to existing states before adding new states. 

4) Verify each state has one exit path for each value of the input variable (two arrow leaving)  

5) Apply sample sequences to final state diagram to verify proper state diagram operation.  

OK, items two and three are the opposite of each other; choose one or the other or somewhere in between. Keep 
in mind here is that you can easily generate your own sequence detector practice problems.  

25.6 Timing Diagrams: The Mealy & Moore-Type Outputs 

The final step in developing a true understanding of FSMs is to understand the relationship between the state 
diagram and the timing diagram. Sequence detector problems provide simple examples for understanding the 
timing differences between the FSM’s Mealy and Moore-type outputs.  

The FSM we previously worked with asserted the Z output when the sequence “101” appeared on the X input. 
Figure 25.23(a) provides a block diagram of this FSM; Figure 25.23(b) and Figure 25.23(c) show the state 
diagrams for the non-resetting Moore-type and Mealy-type FSMs for this problem, respectively.  

 

 
 

(a) (b) (c) 

Figure 25.23: The block diagram of the sequence detector FSM (a), the associated Moore-type 
output approach (b), and the associated Mealy-type output approach (c).  

The difference between the Mealy and Moore-type state diagram is evident in that the Mealy-type has one less 
state than the Moore-type. This highlights the functional difference between FSMs with Mealy-type or Moore-
type outputs. Here are the two main ramifications.  

1) A FSM implemented with Mealy-type outputs generally have fewer states than a functionally 
equivalent FSM with a Moore-type output. This is because Mealy-type outputs can change in 
the middle of a state (because they are a function of the FSM’s external input) while Moore-
type outputs can only change when the state changes. The FSM with Moore-type outputs must 
have extra states to generate the correct outputs in states that have true Mealy-type outputs.   

2) Mealy-type outputs can change with an external input changes, which means that Mealy-type 
outputs can potentially “react” faster (change output values) because Moore-type outputs need 
to wait until the next clock edge to change the output.  

The main difference between these two diagrams is in the final two states in Moore-type state diagram and the 
final state in the Mealy-type state diagram. One approach to describing this difference is to say that the Mealy-
type diagram divided state (c) into states (c) and (d) in the Moore-type state diagram. We had to do it this way 
because in the Moore-type state diagram, we required a separate state to indicate when the FSM detects the final 
bit in the sequence.  

For the case of the FSM with a Moore-type output, the output Z is asserted for the duration of the state (state d 
Figure 25.23(b)). The corresponding state in the Mealy-type state diagram is state c. From this state, the Z output 
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can be either a ‘1’ or a ‘0’ depending on the value of the X input. Because the output can be either a ‘1’ or a ‘0’ 
in state c, there is no need to break the single state c into two states (states c & d) as in the Moore-type state 
diagram. The output of state c in the Mealy-type state diagram can immediately indicate when the FSM detects 
the final bit of the sequence in the third state in the state diagram (state c). When the X input changes to a ‘1’ in 
the c state, the correct sequence is “found” and the Z output indicates this by transitioning from ‘0’ to ‘1’. 
Conversely, in the Moore-type state diagram, the output waits for the next clock edge to transition to state d 
where the Moore-type output is ‘1’.  

Figure 25.24 shows two example timing diagrams associated with the state diagrams of Figure 25.23(b) and 
Figure 25.23(c). For these two timing diagrams, assume that the FSM’s active clock edge is the rising edge. By 
inspection, you can see that the top timing diagram must be the one associated with the Moore FSM because 
changes in the Z output are always synchronized with state changes. The arrows in the top timing diagram of 
Figure 25.24 show this synchronization.  

The lower timing diagram of Figure 25.24 shows that output of the FSM with Mealy-type outputs. In the timing 
diagram for the Mealy-type outputs, the output Z changes at times other than at the same time as the rising edge 
of the clock. In state c of the low timing diagram of Figure 25.24, the Z input follows the change in the X input. 
Figure 25.23(c) show this characteristic by the two state transitions from state c in the Mealy-type state diagram. 
The transition associated with the X=0 input has an associated output of ‘0’ while the transition associated the 
condition that X=1 has an output of ‘1’. The state diagram thus indicates that the Z output has two possible 
values in state c, as the output is a function of the X input as well as the state.  

 

 

 

Figure 25.24: The timing diagram associated with the FSM with Moore-type outputs (top) and the 
Mealy-type outputs (bottom). Figure 25.23(b) shows the state diagram for the Moore-type FSM 

while Figure 25.23(c) shows the state diagram for the Mealy-type FSM.  
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Example 25.6: FSM Timing  

Use the following state diagram to complete the timing diagram provided below. Show how the 
inputs affect the state transitions and outputs Z by filling in the “state” and “Z” lines in the 
timing diagram. Assume all setup and hold times are met and that propagation delay times are 
negligible. Assume state transitions occur on the rising edge of the clock signal. Assume CLR 
is an asynchronous, active low input. 

 
 

 

Solution: Figure 25.25 shows the solution to this problem. Here is the list of important things to note:  

 The CLR input is initially asserted, which places the FSM in a state A according to the 
asynchronous input in the state diagram.  

 On the first rising clock edge, the FSM transitions to state C because of the asserted X input, 
which we indicate with an arrow emanating from the rising clock edge combined with the dot 
on the X input. In state C, Z1 is always a ‘1’ (as it’s a Moore-type output). Z2 is a Mealy-type 
output, but it is always a ‘1 in state C because the X input remains asserted while in state C for 
this time period.  

 On the second rising clock edge, the FSM does not change state because the X input is a ‘1’.  

 In the time interval labeled (3), the CLR input asserts, which forces a transition back to the state 
A. The state does not change when CLR unasserted in that same cycle. This change in state 
causes changes in the Z1 & Z2 outputs accordingly.  
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 For the other states, the Z1 output is always follows the state as it is a Moore-type output. We 
can characterize the Z2 output by examining interval (6) & (7), and by referring to the state 
diagram. The Z2 output is an inversion of the X input in state A (interval (6)); the Z2 output is 
the same as the X input in state C (interval (7)).  

 

Figure 25.25: The timing diagram solution.  
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25.7 Chapter Summary 

 

 A FSM is generally used as a controller for some other hardware device. The external inputs to the FSM are 
status signals from the circuit being controlled while external outputs from the FSM are used as control 
signals to the device being controlled.  

 FSMs can be used to synthesize specific output signals, particularly to provide signals with duty cycles other 
than 50%.  

 Sequence detector design is one of the most basic FSM design problems since they are instructive and can 
be relatively easy to do using state diagrams as a starting point.  

 Sequence detector problems can be one of four different types based on the notions of Mealy vs. Moore 
machines and “resetting” vs. “non-resetting”. The notion of resetting implies that the FSM can’t “reuse” 
values of previously found sequence in the search for the next sequence while “non-resetting” can reuse bits 
from a previously found sequence.  
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25.8 Chapter Exercises 

 

1) What is the minimum number of states in a state diagram you would need to obtain a 7/17 duty cycle on an 
external blinking LED? Briefly explain the reasoning behind your answer.  

2) Briefly describe an application where a sequence detector would be useful.  

3) Briefly describe the operational difference between a FSM with a Moore-type output and a functionally 
equivalent FSM with a Mealy-type output. Consider both FSMs to have equivalent clock frequencies.  

4) Briefly describe two advantages to using a FSM exclusively Mealy-type outputs over an functionally 
equivalent FSM with exclusively Moore-type outputs.  

5) We often consider FSMs as “reacting”. In the context of controlling a digital circuit, briefly describe what 
we mean by “reacting”. Be sure to describe what the FSM is reacting to and what the ramifications of these 
reactions do in a holistic view of the FSM.  

6) Briefly explain why it is that FSMs with Mealy-type outputs can react faster than an equivalent FSM with 
Moore-type outputs.   

7) Use the following state diagram to complete the two timing diagram provided below. Show how the 
inputs affect the state transitions and outputs Z by filling in the “state” and “Z” lines in the timing 
diagram. Assume all setup and hold times are met and that propagation delay times are negligible. 
Assume state transitions occur on the rising edge of the clock signal. Assume CLR is an asynchronous, 
active low input. 
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8) The following timing diagram completely specifies an FSM. Use the following timing diagram generate the state 
diagram that would generate the listed timing diagram. For this problem, assume the CLR input to be an 
asynchronous active low input that places the FSM into the appropriate state. Assume all setup and hold times 
have been met and that propagation delay times are negligible. Assume state transitions occur on the rising edge 
of the clock signal. 

 

 

9) Use the following state diagram to complete the timing diagram provided below. Show how the inputs affect the 
state transitions and outputs Z by filling in the “state” and “Z” lines in the timing diagram. Assume all setup and 
hold times have been met and that propagation delay times are negligible. Assume state transitions occur on the 
rising edge of the clock signal. Assume CLR is an asynchronous, active low input. 
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Free Range Digital Design Foundation Modeling Chapter 25 

 

 
- 400 -  

 

25.10 Design Problems 

 

For the following problems:  

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution 

 Minimize the number of states in the associated state diagrams 

 Minimize the use of hardware when problem require extra hardware 

 Assume all inputs and outputs are positive logic unless stated otherwise 

 Disregard all setup and hold-time issues 

 For sequence detector problems assume the X input is stable when each clock edge arrives and that X 
can change no more than once per clock period.  

 State all forms of control for your solution.  

 

1) Provide a state diagram and black box diagram (BBD) that blinks a single LED at half the FSM clock 
frequency.  

2) Provide a state diagram and black box diagram (BBD) that blinks a single LED with a 50% duty cycle. If 
the button is pressed, the LED stops blinking and either stays ON or stays OFF depending on when the 
button was pressed.  

3) Provide a state diagram and black box diagram (BBD) that blinks a single LED with a 50% duty cycle. If 
the button is pressed, the LED always turns off.  

4) Provide a state diagram and black box diagram (BBD) that implements a 2-bit binary counter. The output of 
the FSM is two LEDs that represent the 2-bit binary count.   

5) Provide a state diagram and black box diagram (BBD) that blinks a single LED at 40kHz with a 25% duty 
cycle. Also state the required system clock frequency.  

6) Provide a state diagram and black box diagram (BBD) that blinks a single LED at 100Hz with a 20% duty 
cycle. Also state the required system clock frequency.  

7) Design a circuit that outputs a single blinking LED. If the button input to the circuit is ON, then the LED 
blinks at ½ the system clock frequency with a 50% duty cycle; otherwise the LED blinks at ¼ the system 
clock frequency with a 25% duty cycle. Show a BBD and state diagram for this problem. 

8) Design a circuit that outputs a single blinking LED. If the button input to the circuit is ON, then the LED 
blinks at ½ the system clock frequency with a 50% duty cycle; otherwise the LED blinks at ¼ the system 
clock frequency with a 75% duty cycle. Show a BBD and state diagram for this problem. 

9) Design a circuit that has eight 8-bit inputs (A,B,C,D,E,F,G,H). Each input is output for one clock cycle and 
the circuit cycles through the eight inputs continuously so long as the button is pressed. If the button is not 
pressed (button = ‘0’), the circuit outputs then starts over at outputting the eight values starting with the first 
value. Use an FSM in this design. Provide a BBD describing your circuit.  

10) Design a circuit that has eight 8-bit inputs (A,B,C,D,E,F,G,H). Each input is output for one clock cycle and 
the circuit cycles through the eight inputs continuously. If the button is pressed (button = ‘1’), the circuit 
outputs does not increment and displays the same count for as long on the button is pressed. The circuit 
consecutively displays the values in the sequence so long as the button is not pressed. Use an FSM in this 
design. Provide a BBD and state diagram describing your circuit.  
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11) Design a circuit that has eight 8-bit inputs (A,B,C,D,E,F,G,H). Each input is output for one clock cycle and 
the circuit cycles through the eight inputs continuously. If the button is pressed (button = ‘1’), the circuit 
outputs the next values going forward in the sequence (…A,B,C,D…); otherwise the circuit outputs the 
values going backwards in the sequence (…D,C,B,A…). Use an FSM in this design. Provide a BBD and 
state diagram describing your circuit.  

12) Provide a state diagram that can be used to implement a FSM that indicates when the sequence “1011” 
appears on the FSM input (X). The FSM has two inputs (CLK,X) and one output (Z). This FSM does not 
reset when a ‘1’ occurs on the output. The Z output is ‘1’ only when the desired sequence is detected. 
Implement the state diagram two times: one time the output is a Mealy-type, the other time it is a Moore-
type. 

13) Repeat the previous problem but make the FSM reset when the it finds the indicated sequence.  

14) Provide a state diagram that can be used to implement a FSM that indicates when the sequence “01011” 
appears on the FSM input (X). The FSM has two inputs (CLK,X) and one output (Z). This FSM does not 
reset when a ‘1’ occurs on the output. The Z output is ‘1’ only when the desired sequence is detected. 
Implement the state diagram two times: one time the output is a Mealy-type, the other time it is a Moore-
type.  

15) Repeat the previous problem but make the FSM reset when the it finds the indicated sequence. 

16) Provide a state diagram that can be used to implement a FSM that indicates when the number of ‘1’s 
received at the FSM input (X) is divisible by 3. (0,3,6,9…  are divisible by 3). This FSM has two inputs 
(CLK,X) and one output (Z). The Z output is ‘1’ only when the desired sequence is detected. Provide two 
different state diagrams by considering the Z output to be a Mealy-type output and then a Moore-type 
output.  

17) Provide a state diagram that can be used to implement a FSM that indicates when the sequence “101” or 
“110” appears on the FSM input (X). This FSM has two inputs (CLK,X) and one output (Z). This FSM does 
not reset when one of the two given sequences appears. The Z output is ‘1’ only when the desired sequence 
is detected. Implement the state diagram two times: one time the output is a Mealy-type, the other time it is a 
Moore-type.    

18) Provide a state diagram that can be used to implement a FSM that outputs the following sequence: “0100 
110 110 110 …”. This FSM has one input (CLK) and one Mealy-type output (Z). This FSM also includes an 
asychrounous reset input RST that transitions the FSM to the “0100” state.  

19) Provide a state diagram that can be used to implement a FSM that indicates when at least two ‘1’s and two 
‘0’s have appeared on the FSM input (X). Design the state diagram such that the order of occurrence of the 
inputs does not matter. The FSM has two inputs (CLK,X) and one Moore-type output (Z). The Z output is 
‘1’ only when the desired number of ‘1’s and ‘0’s has occurred. 

20) Provide a state diagram that describes a FSM that indicates when the sequence “1101” appears on the FSM 
input (X). The output (Z) is ‘1’ only when this condition is detected. Implement this design as both a Mealy 
and then Moore-type machine. Design this FSM to reset once the sequence is found.  

21) Repeat the previous problem but make the FSM non-resetting when the it finds the indicated sequence. 

22) Provide a state diagram that describes a FSM that indicates when the sequence “11001” appears on the FSM 
input (X). The output (Z) is ‘1’ only when this condition is detected. Implement this design as both a Mealy 
and Moore machine. Design your state diagram so that the FSM resets once the correct sequence is detected.  

23) Repeat the previous problem but make the FSM non-resetting when a ‘1’ occurs on the output. 

24) Provide a state diagram that describes a FSM that indicates when the sequence “10011” appears on the FSM 
input (X). The output (Z) is ‘1’ only when this condition is detected. Implement this design as both a Mealy 
and Moore-type machine. Design your state diagram so that the FSM resets once the correct sequence is 
detected.  

25) Repeat the previous problem but make the FSM non-resetting when the it finds the indicated sequence. 
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26) Provide a state diagram that describes a FSM that indicates when either one of the following two sequences 
are detected on the X input. Your design must use a Moore-type FSM that resets if either sequence is found. 
The Z output is asserted only when either sequence is found. Minimize the number of states you use in your 
solution.  

 

Assume:  

 the X input is stable when each clock edge 
arrives  

 the W input can change when only when the 
proper sequence is found 

 full encoding with three flip-flops will be 
used to encode the FSM (limits state 
diagram to eight states!) 

 

 

 

 

W 
Sequence searched 
for on X Input 

0 1 0 1 1 0 

1 1 0 1 1 1 

 

27) Design a FSM that detects when the sequence  “0101” appears on the FSM input (X). The output (Z) is ‘1’ 
only when this sequence is detected. Implement this design as a Moore machine and resets when the correct 
sequence is found. This FSM has an output P that is a ‘1’ when Z is ‘1’ and when the bits previously 
processed by the FSM have even parity; otherwise the P output is ‘0’ when Z is a ‘1’ and the processed bits 
have odd parity. In other words, this FSM needs to always indicate the proper parity of all the bits 
previously seen when the correct sequence is found.  

Assume the X input is stable when each clock edge arrives and that X can change no more than once per 
clock period. Disregard all setup and hold-time issues. You only need to provide a state diagram for this 
design.  

 

 

28) Provide a state diagram that describes a FSM that indicates when the sequence “10110” appears on the FSM 
input (X). The output (Z) is ‘1’ only when this condition is detected. mplement this design as a Moore 
machine. Design you state diagram so that the FSM is non-resetting once the correct sequence is detected. 
This FSM also has a P output (positive logic) that is asserted when the parity of all the previous bits the 
FSM has seen is either odd (P=0) or even (P=1). Assume the X input is stable when each clock edge arrives 
and that X can change no more than once per clock period. Disregard all setup and hold-time issues.  
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29) Design an FSM that can be used control a car safety device. Unfortunately, you live in an area with lot of 
large hungry birds that like using your car windshield as a target. Your car windshield has three sensors 
attached to it and uses them to sense if bird poop is on your windshield. If a sensor has bird poop over it, it 
outputs a ‘1’; otherwise it outputs a ‘0’.  

For this problem, if one and only one sensor senses poop, the FSM actuates a warning light (LT=’1’) until 
no sensor senses poop. If two sensors sense poop, the FSM turns on the windshield wipers (WW=’1’) until 
less than two sensors sense poop. If all three sensors sense poop, the car engine is automatically shut off 
(KILL=’1’) until no sensors detect poop.  

30) Design a FSM that creates a power-saving control of a set of hallway lights. The hallway has four sensor 
inputs (S1,S2,S3,S4), three light outputs (L1,L2,L3), and two door lock outputs (DA, DB) as indicated by 
the diagram below. The sensors indicate when a person is near and causes the nearest light(s) to turn on. 
When a person first enters the hallway, only one light turns on; as a person walks through the hallway, only 
the two nearest lights turn on. When a person enters the hallway, the FSM locks the two doors from the 
outside so people can only exit (and not enter); both doors are unlocked when no one is inside. For this 
problem, make the following assumptions:  

 The sensors completely sense the 
hallway with no overlap in the 
coverage area  

 Only one person at a time can enter 
the hallway 

 When a person enters one side of the 
hallway, the person will eventually 
exit on the other side 

 

 

 

31) Design an FSM that can be used to control the lock mechanism of a car. The lock mechanism has four 
different button inputs in addition to a clock input (as shown below). In order to unlock the car door, you 
need to input the following code sequence: “enter”, “C”, “BC”, “AC”. Note that you sometimes must 
simultaneously press two different buttons. This FSM uses the clock to automatically reset the sequence (go 
back to the “waiting for an enter state”) if the proper code is not pressed before the next clock edge.  

Provide a state diagram for this design. Be sure to state any assumptions you make for this problem. 
Minimize the number of states in your design.  

 

 

32) Design a circuit that does the following. The circuit checks the values of the A & B inputs on each rising 
clock edge. The circuit always outputs the value of the A input except under the following condition. If the 
circuit detects that the A & B inputs have been equivalent for three simultaneous clock cycles, the circuit 
ignores the values of A & B and outputs B for three clock cycles. After the circuit outputs B for three clock 
cycles, the circuit resumes checking for the A & B equivalency for the previously stated three clock cycles.  
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33) Using the listed circuit, design a FSM that outputs the sum of (A + B) as long as no carry is generated. If a 
carry is present on an active clock edge, the circuit outputs a 0x00 then 0xFF for one clock cycle each, then 
outputs the C value for at least two clock cycles but for as long as A does not equal B. If and when A equals 
B, the circuit once again displays the sum of (A+B), etc. The circuit also asserts ERR output whenever the 
circuit output is not the sum of (A + B). Assume the FSM clock is much faster than then changes in A, B, 
and C.  

 

 

34) Using the listed circuit, design a FSM that outputs the value of the C signal while the values of A and B are 
equal. When A and B are found to be not equal on an active clock edge, the circuit outputs 0xFF then 0x00 
for one clock cycle each, then outputs the sum of  (A + B) as long as no carry is generated. If and when a 
carry is generated, the circuit goes back to outputting the value of C with the conditions previously 
described. The circuit also asserts ERR output whenever the circuit is not the value of C. Assume the FSM 
clock is much faster than then changes in A, B, and C. Disregard all setup and hold-time issues.  

 

 

 

35) Design a circuit that detects when A=B. When it detects that condition, the circuit outputs 0xFF for at least 
three clock cycles, or until a button is pressed, whichever is shorter. When the circuit is not outputting 0xFF, 
it should output the value of A. The circuit does this operation continuously. Consider A & B to be 8-bit 
unsigned binary values.  

36) Design a circuit that compares two 8-bit unsigned binary values. It compares A & B and continues to do so 
until the circuit detects that A>B on three on three consecutive clock cycles. The circuit continues to 
compare A & B and does so continues to do so until the circuit detects A<B on three clock cycles. While the 
circuit is looking for A>B, it turns on an LED; the circuit turns off the LED when it is looking for A<B on 
three clock consecutive cycles.   

37) Design a circuit that continuously outputs the following sequence of operations. A+B, A-B, -A+B, -A-B, on 
consecutive clock cycles. If any of the operations are not valid, the circuit outputs zero and turns on an extra 
single bit signal. Assume the data inputs are 10-bit signed binary (RC format) operations.  
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38) Design a circuit that upon the pressing of BTN1, adds A+B+1 if BTN2 is pressed, or adds A+B if the BTN2 
is not pressed. The results of the addition are displayed on the circuit’s outputs. If three consecutive addition 
results generate a carry, then the circuit outputs zero for the sum until BTN1 is pressed, at which time it 
starts the addition operations again. The circuit outputs zero while it is waiting for a BTN1 press. Consider 
A, B and the result to be 8-bit unsigned binary numbers. The circuit keeps track of the number of times one 
and only one of the MSBs of the two operands are set (equal to ‘1’). This circuit also starts over when this 
count value reaches 31. This count is persistent while waiting for a BTN1 press, but the BTN1 pressed 
clears the counter before proceeding with the additions.  

39) Design a circuit that upon the pressing of BTN1, adds A+B+1 if BTN2 is pressed, or adds A+B if the BTN2 
is not pressed. The results of the addition are displayed on the circuit’s outputs. If two consecutive addition 
results generate a carry, then the circuit outputs zero for the sum until BTN1 is pressed, at which time it 
starts the addition operations again. The circuit outputs zero while it is waiting for a BTN1 press. Consider 
A, B and the result to be 8-bit unsigned binary numbers. 
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26 Counters 

 

26.1 Introduction 

Counters are essentially a register with “features”. A counter is another type of controlled circuit with many uses 
in digital design. We worked with low-level implementations of counters in a previous chapter; we now abstract 
our discussion upwards and discuss counters at the module level.  

Main Chapter Topics 

COUNTERS: Counters are simple registers with “features”: This chapter defines and 
describes counters and their associated functionality and vernacular.  

 

Chapter Acquired Skills 

 Understand the various vernacular associated with counters 

 Understand the various control inputs and status outputs of counters 

 Use various flavors of counters in solutions to digital design problems 

 

26.2 Counters: A Register with Features  

A counter is a type of register, which means it inherits all the attributes of a register. The main new “feature” of a 
counter is that it outputs a given sequence of codewords, which is the “count” sequence. Counters typically 
synchronize their stepping through the count sequence to an active clock edge input to the counter. Counters can 
have one or more typical operational features, which we control with the counter’s “control” inputs. Counters 
can also have status outputs that provide external circuits information about the counter.  

Our approach is to define and describe every word and/or term you typically hear in the context of counters, and 
then do a few example problems. Counters used to be a big deal back when you had to design them yourself 
using discrete logic. Now, discrete ICs have many flavors of counters, and more importantly, HDLs make the 
modeling of counters trivial.  

When you say the word counter, it has a few standard connotations that you can assume are true unless told 
otherwise. The following list describes even more assumptions made when dealing with counters.  

 Because counters are registers, they are a sequential circuit.   

 An active clock edge synchronizes a counter’s traversing of the count sequence; there is one 
count value, or code-word, from the count sequence at each clock cycle.  

 A counter’s output represents a repeatable sequence of a given number of bits. The sequence the 
counter “counts” in does not change; the bit-width of the counter won’t change either.  

 When a counter completes a traversal through its count sequence (either in the up or down 
direction), the counter automatically starts counting over (and is thus “circular”).  
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There are many different types of counters out there, but introductory digital design courses typically only deal 
with a few types, which we handily list below. The less common counters that we do not list include Johnson 
counters, twisted-ring counters, and a few others that I can’t recall now.  

 Binary Counter: A counter that counts in a binary sequence. This means a 4-bit binary count 
sequence goes from 0-15, or 0x0 to 0xF (up direction).  

 Decade Counter: A counter that counts in a binary coded decimal (BCD) sequence. This 
means a 4-bit decade counter counts from 0-9 (up direction).  

 

There is a set of vernacular associated with counters. Digital designer must be fluent with all the new terms 
associated with counters so they can converse with their peers and understand important things such as 
datasheets. Here are the common terms associated with counters:  

 n-bit Counter: A counter that uses n-bits to represent each of the values (or codewords) in its 
count sequence.  

 Up Counter: A counter that counts up (increasing count values in count sequence).  

 Down Counter: A counter that counts only down (decreasing count values in count 
sequence).  

 Up/Down Counter: A counter that can counter either up or down according to a control input 
on the device. 

 Increment: An operation associated with counters where ‘1’ is added to the current value of 
counter.  

 Decrement: An operation associated with counters where ‘1’ is subtracted from the current 
value of counter.  

 Counter Overflow: The notion of a counter being incremented beyond its ability to represent 
values; unless otherwise stated, overflow is generally characterized as the counter 
transitioning from its largest representable value to its smallest value.  

 Counter Underflow: The notion of a counter being incremented beyond its ability to 
represent values; unless otherwise stated, overflow is generally characterized as the counter 
transitioning from its smallest representable value to its largest value.  

 Cascadeable: A characteristic of many digital devices such as counters and shift registers that 
allow you to effectively increase the overall bit-width of devices providing inputs and outputs 
such that you can easily interface the devices. One such output is the “ripple carry out”.  

 Count Enable: A signal on counters that enables the counting operation of the counter when 
asserted and disables the counting when not asserted.  

 Ripple Carry Out (RCO): A signal typically found on counters that indicate when the 
counter has reached its maximum count value (for an up counter) or minimum count (for a 
down counter). Counters often use the term RCO to indicate when the counter has reached its 
terminal count value.  

 Parallel Load: A characteristic of a counter or shift register indicating that all the storage 
elements in the device can simultaneously latch external values.  

 Circular: When counters overflow their maximum or minimum counts, we consider them to 
“overflow”. Counters are typically circular meaning that when the counter reaches the 
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maximum value, it automatically continues counting in the same direction starting at the 
minimum value1. 

 

Example 26.1: Up/Down Counter Timing Diagram 

The block diagram on the right shows a model of an 8-
bit counter. Use the block diagram to complete the 
following timing diagram. Assume propagation delays 
are negligent.  

 

 
 

Solution: This problem shows you everything interesting and useful with counters. Figure 26.1 shows the final 
solution to this example; the following verbage describes some of the more interesting things about the solution. 
In this case, the interesting things are when the output changes and what causes those changes.  

1) The circuit was initially in a reset condition. On this active clock edge, the counter output is 
incremented due to the assertation of the UP signal.  

2) The UP signal is still asserted, but due to the way we modeled the LD signal, it takes precedence over 
the LD signal. Thus, the output loads the value on the D_IN input into the counter.  

3) This is an increment operation due to the assertation of the UP signal.  

4) This is another increment operation due to the assertation of the UP signal.  

5) This is a decrement operation since the UP signal is no longer asserted.  

6) This is another decrement operation since the UP signal remains unasserted.  

7) This is a register clear operation due to the assertion of the RESET signal.  

                                                           
1 This characteristic is for an up counter; the same idea is true for a down counter.  
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Figure 26.1: The solution (with annotations) to this example. 

 

 

 

Example 26.2: Counter Timing Diagram   

Use the BBD on the right to complete the timing 
diagram below. For this disarm, the UP input 
allows the counter to count up when enabled, 
and count down when not asserted. The RCO 
output indicates when the counter is outputting 
its terminal count. The LD input takes 
precedence over the HOLD and UP input. The 
HOLD input takes precedence over the UP 
input.  

 

 

 
 

Solution: Figure 26.2 shows the solution to this example. Here are a few things to note:  

 The LD signal is asserted on the first rising clock edge, which causes the counter to load the 
DATA_IN value into the register.  
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 The HOLD input is asserted on the second clock edge, which prevents the count output from 
changing.  

 The first count operation occurs on the third rising clock edge; because the UP control input is 
asserted, the counter output increments.  

 On the fourth rising clock edge, the counter increments again, but because the counter is at its 
terminal counter (in the up direction), the count output rolls over to “000”.  

 On the seventh rising clock edge, the counter decrements because the UP input is unasserted. 
The counter thus rolls under, and the resultant count is “111”.  

 The RCO status output asserts at two different times for distinctly different reasons. The first 
RCO assertion is because the UP input is asserted and the counter reaches its terminal count 
in the UP direction. The second RCO assertion is because the UP signal unasserted and the 
counter reaches its terminal count in the down direction.  

 The HOLD input is synchronous, which means the FSM ignores the second and third pulses 
on the HOLD signal, as they do not overlap a rising clock edge.  

 

Figure 26.2: The timing diagram solution for this problem.  

 

26.3 Typical Counter Feature Set Issues 

When we use counters in our design, we must specify which features we are using and how the counter inputs 
and outputs represent those features. We can do this because counters are straightforward to design in HDL. Our 
mission is to use what counter features we need in our designs, but them must explicitly state how our counter 
inputs and outputs represent those features. The problem is that a seemingly simple counter input such as “UP” 
is not completely specified if we use it in a schematic. From the way we wrote “UP”, we can assume that when 
asserted, it allows the counter to count. What is not clear is what happens when UP is not asserted. The only 
option is to include disambiguation information somewhere obvious in the schematic.  
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Circuit Comments 

 

This counter contains no data inputs or outputs. It is an up counter because 
the UP signal is permanently connected to the asserted state. There is also 
RCO. If you use this module in your circuit, you must state the width of 
the counter as it is not included in the module.  

 

This counter has a data output but does not contain data inputs. It is an up 
counter, but we don’t need to state the data width as it is given by the 
width of the DATA_OUT signal.  

 

This is an up counter, with a data output width of “n”. We can assume that 
the counter counts up when the UP control input is asserted, but we must 
state what the counter does when the UP signal is not asserted. The !UP 
signal typically causes the counter to hold or count down.  

 

This counter has a data input, which means it needs a control signal that 
allows the counter to load the data. This signal is typically a LD signal 
(“load”). Anytime you have a data input signal, you need a control input 
for that loading. The UP signal means that it counts up when asserted, but 
you must specify what the counter does when UP is unasserted, as well as 
the precedence of the UP and LD inputs.  

 

This counter has a HOLD signal, which means the counter does not 
change the output on the active clock edge. We must specify two items: 1) 
we must specify how the !UP affects the counter, and 2) we must specify 
which input (HOLD or UP) has precedence if they are both asserted.  

 

This counter has three control inputs. In general, we must specify all 
possibilities for the set of three inputs. DOWN means the counter counts 
down and UP means it counts up, but we need to specify what happens if 
both UP & DOWN assert simultaneously. You can assume the HOLD 
input has precedence over the UP & DOWN inputs.  

 

This is a counter that can count both up and down. We must specify what 
happens when both inputs are simultaneously asserted.  

 

This counter has a UP and CLR control input. We generally assume that 
all UP/DOWN/HOLD inputs are synchronous, but it’s common for clear-
type inputs to be asynchronous. Whatever it may be, if we use this module 
in our design, we must specify whether the input is synchronous or not. 
You must specify the precedence of the CLR and UP inputs.  

Table 26.1 Counter features that must be further explained when appearing in circuit.  
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Example 26.3: Design #1: Counter-Based Design 

Design a circuit with the following count sequence is: (6,7,8,9,10,11,12, 13, 14, 15, 
6,7,8,9,10...) This circuit also has an extra LED output that is on when the counter output 
is greater than 11. Provide a top-level and lower-level BBD for your solution, and a state 
diagram if necessary. Also, describe what controls your final solution.  

Solution: This counter counts up except when the counter reaches its terminal count. There are two main design 
issues with this problem: 1) we need the counter to count in the given sequence, and 2) we need the LED output 
to indicate when the count is greater than eight. Figure 26.3(a) shows the top-level BBD for our solution.  

The next step is to create an inventory of modules out final circuit requires. This counter does not start counting 
from zero; once the counter output hits 15, the next number in the sequence is 6. In terms of what we consider a 
typical counter, this means we need to load the counter with a new starting value once the counter hits its 
terminal count of 15. For this issue, what we need to is connect the counter’s RCO status output to the LD 
control input of the counter. If we also connect the value of “0110” to the counter’s data input, the counter loads 
the value of 6 after displaying the value of 15.  

We also need an LED that indicates when the counter output is greater than 11. We can do this by including a 
comparator in our circuit, but we can do it with less hardware including some extra logic. Note that 12 in binary 
is “1100”; this means that when the two MSBs of the counter’s output are set, the count must be greater than 11. 
The LED output is thus an ANDing of the two MSBs of the counter’s output. Figure 26.3(b) show the lower-
level BBD for our solution.  

 

 

(a) (b) 

Figure 26.3: A block diagram for circuit (a), and underlying circuitry (b).  

Figure 26.4 shows an example timing diagram for our solution; be sure to note these items:  

 We include the RCO in this timing diagram to provide a deeper understanding of the problem. 
When the RCO output is asserted on a rising clock edge, the counter loads the value of 6 into 
the counter.  

 The LED signal asserts when the count is greater than 11 and remains asserted until the 
RCO signal causes the counter to load the new starting value. We show the causality 
of these operations with the dot in the CNT signal output, synchronized to the rising 
edge of the clock.  

 The RCO is a signal internal to the circuit; we include it in the timing diagram for 
clarity. The RCO signal asserts when the counter is outputting its terminal count.  
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Figure 26.4: The state diagram associated with this example.  

The RCO controls the LD input of the counter, which is a control input. We hardwire the UP input to always be 
asserted. These are both forms of internal control.  

 

 

 

Example 26.4: Design #2: Counter-Based Design 

Design a circuit with the following binary count sequences: the count sequence is either 
(3→15) or (6→15) based on whether a button is pressed or not, respectively. This counter has 
an extra LED output that indicates when the count is less than 8. Minimize your use of 
hardware in your design. Provide a top-level and lower-level BBD for your solution, and a 
state diagram if necessary. Also, describe what controls your final solution. 

Solution: Both of these counts indicate we’re dealing with an up counter. We need to load either 3 or 6 into the 
counter based on the press of a button. We also need some extra circuitry to indicate when the count is less than 
8. Figure 26.5(a) shows the top-level BBD for our solution. 

The next step is to make an inventory of the modules our solution requires. This problem requires that the 
circuit make a decision based on the button; this means the circuit needs a MUX to decide whether to load one 
of the two starting count values into the circuit. The circuit also requires a LED output that indicates when the 
count is less than 8. We can do this using a comparator, but there is an easier way. For an unsigned 4-bit binary 
count, if the MSB is set, the count is at least 8. This means we can provide the LED output as a complement of 
the MSB of the CNT signal. Figure 26.5(b) shows the lower-level BBD for our solution.  

 

 

(a) (b) 

Figure 26.5: A block diagram for circuit (a), and underlying circuitry (b).  
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Both the MUX and the counter both have control inputs. An external button controls the MUX’s control input 
while the RCO status output of the counter controls the LD control input of the counter. Thus, this circuit 
utilizes both external and internal control.  

 

 

 

Example 26.5: Design #3: Counter-Based Design 

Design a circuit that has the following count sequence: (3→12). This counter has an extra 
LED output that indicates when the count is 8. Minimize your use of hardware in your design. 
Provide a top-level and lower-level BBD for your solution, and a state diagram if necessary. 
Also, describe what controls your final solution. 

Solution: Yet again, this counter is some form of an up counter. Previous problems dealt with starting the count 
at 3; but a problem we need to deal with making 12 the terminal count for the counter. Figure 26.6(a) shows the 
top-level BBD for our solution.  

The next step is to create an inventory of the modules our solution requires. This counter needs the terminal 
count at 12, which is different from the terminal count of 15 (in the up direction) for typical 4-bit counters. We’re 
tempted to use a comparator for is function, but it is easier to simply provide the logic that determines when the 
counter reaches the desired terminal count of 12. Additionally, we need to indicate when the count is 8 using the 
output LED. We once again choose to use logic instead of using a comparator. The circuit uses a NOR gate for 
this function; using an AND gate would require using three inverters rather than the one inverter when we use 
the NOR gate. Figure 26.6(b) shows the final solution for this example.  

 

 

(a) (b) 

Figure 26.6: A block diagram for circuit (a), and underlying circuitry (b).  

Figure 26.7 shows an example timing diagram for our solution. Here are a few things to note:  

 The LED signal asserts when the counter output is eight; all other count values cause 
the LED signal to de-assert.  

 The LD signal is an internal signal, but include it in the timing diagram for clarity. The 
circuit synchronously loads a new starting value into the counter when the counter’s 
count value is 12. The LD asserts when after initially outputting 12 (after a nominal 
propagation delay of the state registers and next-state decoder); the actual loading of 
the starting count values happens on the next clock edge.  
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Figure 26.7: The state diagram associated with this example.  

Finally, the circuit uses internal control; the two MSBs of the count control when LD signal of the 
counter, which dictates when the counter loads the new starting value. Additionally, we hardwire the 
UP signal to always be asserted.  

 

 

 

Example 26.6: Design #4: FSM-Based Specialty Counter  

Design a circuit that drives four LEDs with a binary count. The circuit only counts up. 
The circuit also has an extra LED output that turns on for one [0,15] count, then off for 
the next [0-15] count, etc. Minimize your use of hardware in your design. Provide a 
top-level and lower-level BBD for your solution. Use a FSM to control your circuit and 
provide a state diagram if necessary. Also, describe what controls your final solution. 
Finally, state the frequency of the blinking LED in terms of the system clock.  

 

Solution: The first step in this solution is to generate the to-level BBD, which we show in Figure 26.8(a). The 
next step in this solution is to discern which underlying modules the solution requires.  

The next step in this problem is to make an inventory of the modules the solution requires. This problem 
requires a counter; the problem states that the circuit is counting using a standard 4-bit unsigned binary counting 
sequence: [0,15]. The circuit’s other requirement is to turn on an LED for one traversal of the sequence, then 
turn it off for the next traversal of the counter sequence. This means that the circuit needs to “remember” 
whether the LED is on (so it can turn it off) or if the LED is off (so it can turn it on).  

There are several approaches to doing generating the notion of being able to remember if the LED was on or 
off. The most straightforward approach is to simply use a 5-bit counter; the MSB of the 5-bit counter could then 
server as the X_LED output. However, the problem requests that we use an FSM, so this solution is not valid 
(though interesting and instructive). The FSM for this solution needs to monitor the RCO output of the 4-bit 
counter. When the FSM detects the asserting of the RCO, the FSM transitions from the X_LED on state to the 
X_LED off state (or vice versa). The status input to the FSM is the RCO status output of the counter. We can 
then control the LED output with the control output of the FSM. Figure 26.9 shows the state diagram we use to 
describe the FSM in our solution.  

Figure 26.8(b) shows the lower-level BBD for our solution. Here are a few things to note in the circuit 
solution:  

 The counter is always counting up, so we connect the counter’s UP control input to ‘1’.  

 The dotted line in Figure 26.8(b) represents the CKT box in Figure 26.8(a).  
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 The circuit diagram in Figure 26.8(b) does not connect the control and status signals. Anyone 
reading the diagram understands that the RCO output from the counter module connects to the 
RCO input to the FSM. 

 We omit the clock signal from the lower-level BBD for clarity. Routing clock signals and 
control/status signals quickly makes circuit diagrams unreadable, so we generally do not do it 
unless there is some compelling reason to do so. Note that we do leave in the “triangles” to 
remind ourselves that the associated devices are indeed synchronous and do in fact require 
connection to a clock signal.  

 

 

 

(a) (b) 

Figure 26.8: A block diagram for circuit (a), and underlying circuitry (b).  

 

 

Figure 26.9: The state diagram associated with this example.  

The circuit uses a 4-bit counter. The FSM uses the RCO status output from the counter to control 
transitions between the two states in the FSM. This means that the FSM changes states every 24, or 16 
clock cycles. We calculate the blink frequency from the fact that the LED needs to be on for 16 counts 
and then off for 16 counts, as directed by the FSM. This means the system clock frequency is 32 times 
greater than the blink frequency.  

We tie the counter’s UP control input in this circuit to ‘1’, so that is internal control. The circuit also 
contains an FSM. This circuit has both internal and circuit control.  
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Example 26.7: Design #5: FSM-Based Specialty Counter 

Design a 4-bit binary counter that counts up through two full count sequences, then 
down for two full count sequences, the up again, etc. This circuit has two extra LED 
outputs. One LED toggles each system clock cycle; the other LED toggles each 
completion of the count sequence, no matter if it is the up or down sequence. Minimize 
your use of hardware in your design. Provide a top-level and lower-level BBD for your 
solution, and a state diagram if necessary. Also, describe what controls your final 
solution. 

 

Solution: This example uses an up/down counter with a plain 4-bit binary up counter : [0,15]. In addition, there 
are two LED outputs. We can generate the desired output for one LED by simply connecting it to the system 
clock. The other LED toggles with each traversal of the count sequence in either the up or down direction.  

The control we’re looking for in this circuit is for the LED blinking at the lower frequency and the count 
directions. We can control the blinking LED using states in a state machine: one state for both the on and off 
LED. The other form of control this circuit requires is the count sequence traverses in the up direction for two 
sequences, followed by the down direction for two sequences, which means the circuit requires memory to know 
which state it is in. The most straightforward way to do this is with a FSM.  

The next step is to make an inventory of the modules this circuit requires. From the description in the previous 
paragraph, we seem to only require a standard 4-bit up/down counter and a FSM; if we need other modules, we 
can add them later.  

Figure 26.10 shows the final circuit for this problem. Here are a few comments to solidify your understanding 

 One LED connects directly to the clock input without any other logic. The BBD shows this 
connection, but we once again do not connect the clock to the synchronous to the other 
synchronous modules in the circuit to make the diagram more readable.  

 The other LED is an output of the FSM, thus the FSM controls the blink frequency of that 
LED.  

 

 

(a) (b) 

Figure 26.10: A block diagram for circuit (a), and underlying circuitry (b).  

Figure 26.11 shows the state diagram modeling the FSM that controls this circuit.  

 The RCO output of the counter controls all state transitions.  

 We use Moore-type outputs to control the slower blinking LED and the count direction; every 
state transition toggles the value of the FSM’s Moore output.  

 The FSM controls the counter direction; the top two states make the counter up; the bottom two 
states makes the counter count down.  
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Lastly, we control the circuit using another circuit, namely the FSM. The FSM reads the status output of the 
counter (RCO) and controls the count direction by assigning values to the counter’s UP control input.  

 

Figure 26.11: The state diagram associated with this example.  

The FSM in this circuit controls the counter’s UP input, as well as other operations in the circuit. Because the 
FSM provides all control in this circuit, we consider the solution as having circuit control.  

 

 

 

Example 26.8: Design #6: Counter-Based Design 

Design a circuit that outputs the following sequence: 

 (…14,15,0 0 0 1,2,3,4,5,6,7,8,9,19,11,12,13,14,15,0,0,0,1,2…)  

Minimize your use of hardware in your design. Provide a top-level and lower-level BBD for 
your solution, and a state diagram if necessary. Also, describe what controls your final 
solution. 

Solution: This counter is some form of an up counter, but has a special feature: the counter outputs the value of 
zero for three counts (clock cycles). Figure 26.12(a) show the top-level BBD for our solution.  

The next step is to make an inventory of the modules our solution requires. Here is an example thought 
process:  

 We need something to control the count operation; an FSM is a straightforward choice.  

 The heart of this design includes a counter, which the FSM controls. Specifically, we need a 
counter with an UP input such that the counter counts up when the UP input is asserted and 
holds when the UP input is not asserted. The FSM must control the UP control input of a 
counter.  

 We only require a standard 4-bit up counter and a FSM; if we need other modules, we toss them 
in later without losing and credit 

Figure 26.12(b) shows the lower-level BBD for our solution. We include a note in the lower-level BBD that 
indicates how the counter’s UP control input operates; the circuit would not be 100% if we did not do this.  
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(a) (b) 

Figure 26.12: A block diagram for circuit (a), and underlying circuitry (b).  

Figure 26.13 shows state diagram for modeling the FSM that controls our circuit. Here are some interesting 
things to note:  

 The state diagram indicates the circuit waits for an RCO, and then does not increment the 
count for effectively three clock cycles. Although there are only two states where the UP 
signal is not asserted, it is not until the third clock cycle after RCO asserts that the counter 
once again begins increment.  

 The transition in the “count” state is conditional as the FSM is waiting for an asserted RCO 
signal to transition to the “hold_1” state. Transitions from the other states are unconditional as 
those two states only serve to provide a delay on the count of zero.  

 

Figure 26.13: The state diagram associated with this example.  

The timing diagram in Figure 26.14 shows the critical timing of the circuit. Here are some things to note:  

 When the counter reaches its terminal count, the RCO asserts. When RCO is asserted, the FSM 
transitions to the “hold_1” state.  

 When the FSM enters the “hold_1” state, it de-asserts the UP signal, which is a control signal 
for the counter. The timing diagram shows a small offset to highlight the fact that the UP signal 
de-asserts after the active clock edge, which means the counter does not increment on the next 
clock edge.  

 The FSM de-asserts the UP signal for two states; the UP signal asserts upon entering the 
“count” state, but does not cause the counter to increment until the next active clock edge. It 
seems that there should be three hold states in this FSM, but the timing diagram shows that this 
is not the case.  
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Figure 26.14: The state diagram associated with this example.  

The counter in this circuit requires control; this problem uses an FSM to control the counter. Thus, this 
circuit uses circuit control.  

 

 

 

Example 26.9: Design #7: Counter-Based Design 

Design a circuit that outputs the following sequence: 

 (…14,15,15,15,0,1,2,3,4,5,6,7,8,9,19,11,12,13,14,15,15,15,0,1,2…)  

Minimize your use of hardware in your design. Provide a top-level and lower-level BBD for 
your solution, and a state diagram if necessary. Also, describe what controls your final 
solution. 

Solution: This need requires a special up counter, which is similar to the previous problem, but now the counter 
pauses for three clock cycles on the count of 15. Figure 26.15(a) shows the top-level BBD for this problem.   

The next step is to make an inventory of the modules our solution requires. The heart of this problem is a 
counter; because the counter pauses on one particular count, we know we need to control the counter in a 
special way. The best way to do this is to include a FSM that controls the UP input of a counter. Because 
the count spans from [0,15], we know we need a 4-bit counter. Figure 26.15(b) shows the lower-level 
BBD for the solution.  

 

 

(a) (b) 

Figure 26.15: A block diagram for circuit (a), and underlying circuitry (b).  
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Figure 26.16 shows the state diagram for the solution. Here are some important items to note.  

 We model the UP signal as a Mealy-type output in the “count” state and as a Moore-type output 
in the other two states. The UP output of the FSM is officially a Mealy-type output, but 
modeling it as both types of outputs makes the state diagram more readable.  

 Once the counter reaches 15, the RCO asserts, which causes the FSM to transition to the 
“hold_1” state. The state diagram de-asserts the UP input when the RCO asserts, which holds 
the count at 15. The count holds at 15 until it eventually returns to the “count” state, where the 
counter starts at zero due to the asserted UP signal in the “hold_2” state.  

 The two hold states provide the three count delay when the count reaches 15.  

 

Figure 26.16: The state diagram associated with this example.  

Figure 26.17 shows an example timing diagram for our solution. We include the RCO in this timing diagram to 
provide a deeper understanding of the problem. Here are some important points to note in the timing diagram.  

 The RCO asserts when the CNT output reaches its terminal value of 15.  

 The asserted RCO causes the FSM to transition from the “count” state to the “hold_1” state.  

 The UP signal re-asserts upon entering the “hold_2” state. We place tiny delays in the timing 
diagram to indicate that it’s not until after enter the “hold_2” state that the UP signal asserts. 
This means that the counter does not increment from 15 to zero, until the clock cycle that 
transitions the FSM from the “hold_2” state to the “count” state. This is a particularly important 
mechanism to understand.  

 When the FSM enters the “count” state from the “hold_2” state, the count is now at zero, and 
the RCO de-asserts, which allows the FSM to count starting from zero in the “count” state.  

 

Figure 26.17: An example timing diagram for our solution.  
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The counter in this circuit requires control; this problem uses an FSM to control the counter. Thus, this 
circuit uses circuit control.  

 

26.4 Special Counter Circuits: Event Counters 

When you think of counters, you may have the idea that they are simply circuits that step through a given output 
sequence of values in an automatic manner. However, we can configure counters to act as event counters, where 
the main task is to determine the number of times a certain “event” occurs. The event in question could be things 
like how many times an RCA generates a CO, how many times a circuit sees a certain value, etc. Additionally, 
this form of counting is a special form of accumulation, but instead of accumulating any value, the circuit is 
always accumulating ‘1’.  

In the special case where you require a circuit that always accumulates ‘1’, it’s always best to use a counter 
rather than an accumulator2. Counters are registers, so they naturally cover the register part of the typical 
accumulator. Counters typically increment the count, which is an operation that always adds ‘1 to the current 
count; this operation handles the addition operation, which the RCA associate with a standard accumulator 
handles.  

 

Example 26.10: Design #7: Counter-Based Design 

Design a circuit that counts the number of times the value of 0x47 appears on the circuit’s 
input. Upon the press of a button, the circuit evaluates the circuit’s 8-bit unsigned binary data 
input on 1024 consecutive rising clock edges. The circuit has two outputs: one output shows 
the final count; the other output is an LED that turns on when the circuit completes the 
inspection of the 1024 input data values. Provide a top-level and lower-level BBD for your 
solution, and a state diagram if necessary. Also, describe what controls your final solution. 

Solution: This example “counts” something (a value on the input), which means it’s an ideal situation to use a 
counter as an event counter. The counter then counters the number of times the value of 0x47 appears on the 
circuit’s inputs. Our first mission is to generate a top-level BBD. The problem clearly states that the circuit’s 
inputs are an 8-bit data signal, a button, and a clock signal, but the problem does not clearly state the output.  

The circuit examines 1024 data inputs on consecutive clock edges; the maximum possible count determines the 
data width of the count output. The extreme case is where all data inputs are 0x47, which would result in a count 
of 1024. It would be tempting to think the width of the count output is ten bits due to the fact that 210=1024, but 
this is not correct. The maximum value for ten bits is when all bits are set, which is the number 1023; this 
indicates that using ten bits for the output width is not sufficient. Thus, the bit-width of the output is eleven bits. 
Figure 26.18(a) shows the top-level BBD for our solution.  

The next step is to make an inventory of the modules our solution requires. We know we require one counter to 
count the occurrences of 0x47; but we also need another counter to counts 1024 times, which is the number of 
data inputs we need to examine. We need to make comparisons, so we need a comparator as well. Finally, we 
need a FSM to control the operation of the circuit. Figure 26.18(b) shows the final circuit for our solution. Here 
are some important things to note about our solution.  

 Both counters use the same CLR signal, which is an output of the FSM.  

 We hardwire the comparator’s B input to the value we’re checking for.  

                                                           

2 Recall that an accumulator comprises of an RCA and a register.  
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 The circuit has no need for the DATA output of the 10-bit counter, so we leave it 
unconnected. The circuit completes examining the input data when the RCO associated with 
the 10-bit counter asserts.  

 The diagram indicates that the counter’s CLR control input has precedence of the counter’s 
UP control signal. We officially need to list this to ensure the circuit and corresponding state 
diagram make sense.  

 The 10-bit counter always counts up, we connect the UP control of the 10-bit counter to ‘1’.  

 

 

(a) (b) 

Figure 26.18: A block diagram for circuit (a), and underlying circuitry (b).  

Figure 26.19 shows the state diagram describing the FSM in Figure 26.18(b). Here are some fun things to note 
about the state diagram.  

 The “wait” state waits for a button press. The FSM uses the CLR as a Mealy-type output, so 
when the FSM detects a button press, it asserts the CLR signal. Modeling CLR as a Mealy-
type output is arbitrary, but since it saves a state, we typically do this when we can.  

 The “c_A” state is where the circuit actuates the event counter. In this case, we assign the UP 
control output of the to the comparator’s EQ status output. While it seems tempting to 
connect the EQ directly to the event counter’s UP control input, this would potentially cause 
the event counter to increment while in the “wait” state. There are a few ways to handle this 
issue; having the FSM deal with the issues is always the best solution.   

 The FSM continues in the “count” state until the FSM receives an asserted RCO output from 
the circuit’s event counter.  

 

Figure 26.19: The state diagram associated with this example.  
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This circuit has two forms of control. First, the BTN input is an external control as it starts the search 
process in the circuit. The two counters in the circuit have control inputs that the circuit’s FSM 
provides; thus, the circuit has both external control and circuit control.  

 

26.5 Digital Design Foundation Notation: Counters 

We consider the counter to be a Digital Design Foundation modules. The counter is a controlled circuit. 
Figure 26.20 shows the appropriate digital design foundation notation for the counter. This foundation 
module is more flexible and thus harder to define than other foundation modules. For example, the only 
required signal for a counter is a clock, as we consider the counter a synchronous device; the only 
required information we need to know about counters is the bit-width of their internal storage elements. 
Because counters are straightforward to design and/or model in with an HDL, we typically only include 
(or connect) counter inputs and outputs as we need them.  

 

Figure 26.20: Typical data, control and status signals for a counter.  

Table 26.2 shows all the inputs and outputs that we can typically associate with a counter. Essentially 
Table 26.2 lists a set of features that we can apply to a counter. The two things to note about this list is 
1) that not every counter has every listed feature, and 2) actual counter implementations typically 
combine many of the control features as required into less signals than listed.  



Free Range Digital Design Foundation Modeling Chapter 26 

 

 
- 425 -  

 

 Signal Name Description 

IN
P

U
T

 
D

A
T

A
 

DATA_IN 
A counter is a register, so it can typically load data in to the counter’s storage 
elements. The DATA_IN input is the data that is loaded to the counter.  

O
U

T
P

U
T

 
D

A
T

A
 

DATA_OUT 
A counter is a register, so the DATA_OUT signal is the data currently being 
stored in the counter’s storage elements. The DATA_OUT signal is necessarily a 
given value in the counter’s count sequence.  

C
O

N
T

R
O

L
 

CLK 
Counters are typically synchronous circuits, in that many counter operations are 
synchronized with the active edge of the clock signal.  

LD 
As with registers, this signal controls the latching (loading) of the DATA_IN 
signal to the counters storage elements. This signal is always synchronous.  

CLR 
Latches 0’s into each of the counter’s storage elements. Can be synchronous or 
asynchronous.  

HOLD, EN 
Prevents the output from changing (HOLD) or enables the output to change (EN) 
based on other control signals (sort of the same idea) 

UP 
Directs counter to count “forward” in the sequence; the an asserted up signal 
counts forward while an non-asserted count signal counts backwards 

DOWN Directs the counter to count “backward” in the sequence.  

S
T

A
T

U
S

 

RCO 

This signal indicates when the counter has reached the terminal value in the 
associated count sequence. For counters counting up, the terminal value is the 
max count value (all internal storage elements set); for counters counting down, 
the terminal value is the min counter value (all internal storage elements cleared).   

Table 26.2: The foundation description for a full-featured counter. 
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26.6 Chapter Summary 

 

 A counter is a special type of register; we consider a counter to be a register with added features beyond that 
of a simple register. Counters typically have load and clear inputs as do simple registers, but also have extra 
inputs to control the operation of the counter.  

 The counting and most other operations on a counter are synchronous. Often times the clear control input is 
asychrounous. BBDs must state such information in order to be correct.  

 Extra inputs to counters are hold inputs (prevents counter output from changing state) and up & down inputs 
(allows the counter to increment or decrement, respectively).  

 The exact function of counter outputs are not always evident from schematic diagrams, which means BBDs 
must include appropriate information to disambiguate the such issues in order to achieve correctness.  

 Counters often include status outputs such as RCO (ripple carry out) that indicate when the counter has 
reached its terminal count.  

 Counters output a repeatable sequence of values, which we refer to as the count. Counters come in many 
flavors; this text only uses binary counters. Other counter types include decade counters, Johnson counters, 
twisted ring counters, etc.  

 Counters can act as accumulators when the item being accumulated is a ‘1’. We often refer to counters 
configured in this manner as event counters.  
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26.7 Chapter Exercises 

 

1) The block diagram on the right shows a model of an 8-bit 
counter. Use the following assumptions in order to complete the 
following timing diagram. Assume propagation delays are 
negligent. 

 The LD input enables the DIN loading into the counter 

 The RESET input is an asynchronous and active low 
used to reset the counter 

 The COUNT output shows the current value stored by 
the counter 

 The counter counts up when the UP input is asserted 
(active high) or down otherwise. All count operations 
are synchronous.  

 

 

 
 

2) Show a schematic that uses two standard 8-bit up counters to implement a 16-bit up counter.  

3) In your own words, describe how it is that a counter can replace an accumulator in certain circumstances.  

4) Briefly describe the difference between the RCO when the counter is counting up verse counting down.  
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26.8 Design Problems 

 

For the following problems:  

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution 

 Minimize the number of states in the associated state diagrams 

 Minimize the use of hardware when problem require extra hardware 

 Assume all inputs and outputs are positive logic unless stated otherwise 

 Disregard all setup and hold-time issues 

 For sequence detector problems assume the X input is stable when each clock edge arrives and that X 
can change no more than once per clock period.  

 State all forms of control for your solution.  

 

1) Design a circuit that displays the sum of two 8-bit unsigned binary inputs. The circuit also outputs the 
number of times the two input values generate a carry. The count of the number of carrys is based on what 
values are being summed on the rising clock edge of the circuit; the maximum value of this count is 255 (the 
counter rolls over to 0 automatically). Don’t use an FSM in this design.  

2) Design a circuit that displays the sum of two 8-bit unsigned binary inputs. The circuit also outputs the 
number of times the two input values generate a carry. The count of the number of carrys is based on what 
values are being summed on the rising clock edge of the circuit; the maximum value of this count is 255 (the 
counter rolls over to 0 automatically). To make this circuit start operating, it must detect a button press, 
which also causes a clearing of the counter. Also, once the count value reaches the maximum count, it rolls 
over, but the circuit must wait for another button press before the cycle is repeated.  

3) Design a circuit that outputs either the output of a 4-bit binary counter or zero. If the button input to the 
circuit is pressed (button=’1’), then circuit outputs the binary count; otherwise the circuit outputs zero. The 
binary counter is an up counter and thus always counts up whether the button is pressed or not. Don’t use an 
FSM in your design.  

4) Design a circuit that outputs either the output of a 4-bit binary counter or zero. If the button input to the 
circuit is pressed (button=’1’), then circuit outputs the binary count; otherwise the circuit outputs zero and 
disables the counter as long as the button is not pressed. The binary counter is an up counter and thus always 
counts up. Don’t use an FSM in your design.  

5) Design a circuit that outputs the following sequence: (…1, 0, 3, 0, 5, 0, 7, 0, 1, 0…) on an active (rising) 
clock edge. Minimize the bit-width of the sequence outputs. Don’t use an FSM in your design.  

6) Design a circuit that has eight 8-bit inputs (A,B,C,D,E,F,G,H). Each input is output for one clock cycle and 
the circuit cycles through the eight inputs continuously. If the button is pressed (button = ‘1’), the circuit 
starts over at outputting the eight values starting with the first value (A). The circuit outputs the first value 
(A) as long as the button remains pressed.  Don’t use a FSM in this design.  

7) Design a circuit that outputs the following sequence: (…2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, 0, 14, 0, 0, 0, 2…) an 
active clock edge (rising). Minimize the bit-width of the sequence outputs. Don’t use an FSM in your 
design.  

8) Design a circuit that does the following. If the circuit detects a button press on an active clock edge, the 
circuit increments the 8-bit output, but then holds that count value for three clock cycles before waiting for 
the next button press. While the circuit is holding the count value, the circuit outputs the value 0xF3. 
Consider this counter to be an 8-bit counter and that it only counts up.  
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9) Design a circuit that has four 8-bit inputs (A,B,C,D). Each input is output for one clock cycle and the circuit 
cycles through the four inputs continuously. If the button is pressed (button = ‘1’) for two clock cycles, the 
circuit starts the count sequence over starting with the A input. The circuit keeps traversing the sequence 
while the number of button presses is less than two.  

10) Design a circuit that implements a 4-bit binary count. The counter count up normally counts up, but if a 
button is pressed for two clock cycles, the counter waits three clock cycles before restarting the count at the 
value of 2. The circuit also has three LED outputs; when the circuit is not counting, the LEDs show “110”; 
otherwise the LEDs show “001”.  

11) Design a circuit that has four 8-bit unsigned binary inputs. When a button is pressed, the circuit finds the 
largest of the four input values and continually outputs that value. Use no more than one comparator in your 
design. Use an FSM in this design.  

12) Design a circuit that drives four LEDs with a binary count. The circuit only counts up, and only counts up if 
a button is ON and has been on for at least two clock cycles. Use a standard counter for this problem. The 
circuit also has two extra LED outputs; one LED indicates when the circuit is in the counting mode; the 
other LED output indicates when the button is ON but the count is not counting.  

13) Design a circuit that drives four LEDs with a binary count. This circuit only increments every third clock 
cycle. This circuit also has an extra LED output that blinks with a 66.7% duty cycle.  

14) Design a circuit that drives four LEDs with a binary count. This circuit only increments every third clock 
cycle. This circuit also has an extra LED output that blinks with a 33.3% duty cycle. This circuit also has a 
button input that synchronously clears the counter when pressed; otherwise, the button has no effect.  

15) Design a circuit that drives five LEDs with a special binary count. The count sequence is: (3, 4…29, 30, 31, 
3, 4…). This circuit also has an extra LED output that is ON when the counter output is greater than 15. Do 
this problem both with and then without an FSM.  

16) Design a circuit that drives four LEDs with a binary count. This circuit has a button that controls the 
resetting of the circuit, where the button must be pressed for two clock cycles in order for the a synchronous 
reset to occur but the counter keeps counting while the button is pressed before a reset. The count output 
from this circuit only counts in the up direction. Assume the button will not be pressed for more than once 
per clock cycle.  

17) Design a circuit that drives four LEDs with a binary count. This circuit has a button that controls the 
resetting of the circuit, where the button must be pressed for three clock cycles in order for the reset to 
occur. The count output from this circuit only counts in the up direction. This circuit also has an LED output 
that turns on for one clock cycle to indicate a reset is occurring.  

18) Design a circuit that drives four LEDs with a binary count. This circuit has a button that disables the count 
sequence as follows: if button is pressed for at least three clock cycles, the counter retains the same count or 
two clock cycles or for as long as the button is pressed before it begins counting up again. The count 
sequence only counts up, and keeps counting while the button is pressed for less than three clock cycles. .  

19) Design a circuit that drives four LEDs with a binary up count. This circuit has a button that disables the 
count sequence for eight clock cycles if the button is pressed. The circuit then continues the counting 
sequence for at least one clock cycle before entertaining the notion of a delaying for eight clock cycles if the 
button is once again pressed. Use no more than four states in your design. For the state diagram, show both a 
Mealy and Moore-type FSM. HINT: use two different counters in this design.   

20) Show how you can connect two 8-bit up/down counters to create a 16-bit up/down counter. Don’t use a 
FSM in this problem.  

21) Design a 4-bit binary counter circuit. The counter counts up continuously when either of the circuits’ two 
buttons are pressed, otherwise the counter counts down. Don’t use a FSM in this problem 

22) Design a 4-bit binary counter circuit. The counter counts up continuously when one and only one of the 
circuits two buttons are pressed, otherwise the counter counts down. Don’t use a FSM in this problem 
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23) Design a 3-bit binary counter that counts in the following sequence if a button is pressed: 
(…3,4,5,6,7,3,4…). If the button is not pressed, the circuit counts in the following sequence: 
(…1,2,3,4,5,6,7,1,2,3,4…).Don’t use a FSM in this problem 

24) Design a 4-bit binary counter circuit that counts in one of the two sequences: (0,6,7…,12,13,14,15,0,6…) or 
(0,3,4,5,6,7…,12,13,14,15,0,3,4,5…). The circuit switches back and forth between the two sequences. The 
circuit also has a button that when pressed, makes the circuit’s count output zero but internally keeps track 
of the internal counting . The state diagram does not need to represent the 16 states of the count.  

25) Design a circuit that outputs the following sequence: (…0,1,2,3,4,5,6,0,1…).  

26) Design a circuit that outputs the following sequence: (…6,7,8,9,10,11,12,6,7….).   

27) Design a circuit that outputs one of the two following sequences: (…4,5,6,7,8,9,10,4,5…) or 
(2,3,4,5,6,7,8,9,10,2,3…). The circuit outputs the first sequence if the button is pressed or the second 
sequence otherwise.  

28) Design a circuit that outputs one of the two following sequences: (…4,5,6,7,8,9,4,5…) or 
(5,6,7,8,9,10,11,12,5,6…). The circuit outputs the first sequence if the button is pressed or the second 
sequence otherwise.  

29) Design a circuit that outputs the following two sequences: (…8,9,10,11,12,13,14,15,0,8…) or 
(…10,11,12,13,14,15,0,10…). The circuit outputs one sequence and then pauses on the count of zero for at 
least two clock cycles or until a button is pressed (whichever is shorter) before it starts counting the next 
sequence. The output continuously cycles through the two sequences.  

30) Design a circuit that outputs the following three sequences: (…8,9,10,11,12,13,14,15,0,8…), 
(…10,11,12,13,14,15,0,10…), and (…7,8,9,10,11,12,13,14,15,0,7,8…). The circuit outputs one sequence 
and stops at a zero count until a button is pressed. The output continuously cycles through the three 
sequences. Design a circuit that continually outputs the following two sequences one after the other. This 
circuit has four input switches that form a binary number. The sequences are 
(0,7,8,9,10,11,12,13,14,15,0,7…) and (0,“switch value”,…15,0,”switch value”,…).  

31) Design a circuit that continually outputs the following sequence: (…7,1,2,3,4,5,6,7,6,5,4,3,2,1,2,3 …).  

32) Design a circuit that displays the sum of two 8-bit unsigned binary inputs. The circuit also outputs the 
number of times the two input values generate a carry. The count of the number of carrys is based on what 
values are being summed on the rising clock edge of the circuit; the maximum value of this count is 255 (the 
counter rolls over to 0 automatically). If the summation of the two inputs generates a carry, the sum output 
shows 0xFF; otherwise it displays the sum.  

33) Design a circuit that displays the result of one of the following addition operations: A+B, B+C, A+C, B+B. 
The choice of which result it displays is based on the values of two switches; SW1 & SW0, where “00” 
chooses A+B, “01” chooses B+C, etc. Any operation that generates a carry outputs the value of 0xFF 
instead of the result of the addition and also turns on an LED. The LED remains off when there is no carry 
generated. Consider A, B, C, and the result of the additions to be 8-bit unsigned binary values.  

34) Design a circuit that displays the result of one of the following addition operations on consecutive clock 
cycles: A+B, B+C, A+C, B+B. Any operation that generates a carry outputs the value of 0x00 instead of the 
result of the addition and also turns on an LED. The LED remains off when there is no carry generated. The 
circuit initially displays 0xFF until the a button press that starts this display sequence; the state of the LED 
does not matter in this state. Once the circuit completes the display sequence, the circuit waits for another 
button press before starting the sequence again. Consider A, B, C, and the result of the additions to be 8-bit 
unsigned binary values.  

35) Design a circuit that displays the result of one of the following addition operations on consecutive clock 
cycles: A+B, B+C, A+C, B+B. If any of the operations generate a carry, the circuit does not go onto the next 
operation until the data inputs are such that they do not generate a carry. Any operation that generates a 
carry outputs the value of 0x00 instead of the result of the addition and also turns on an LED. The LED 
remains off when there is no carry generated. The circuit initially displays 0xFF until a button press that 
starts this display sequence; the state of the LED does not matter in this state. Once the circuit completes the 
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display sequence, the circuit waits for another button press before starting the sequence again. Consider A, 
B, C, and the result of the additions to be 8-bit unsigned binary values.  

36) Design a circuit that, at the press of a button, outputs A+B (addition) for eight clock cycles, then outputs 
A+C for eight clock cycles. This circuit also has two other outputs in addition to the sums: one output 
indicates which operation is being output, the other signal indicates when the operation generates a carry. If 
a carry is generated, no need to do anything to the sum output. The circuit outputs zero as it waits for a 
button press, otherwise it always outputs the sum. Assume inputs values are in 10-bit unsigned binary 
format.  

37) Design a circuit that, upon the press of a button, continuously outputs A+B (addition) for as many clock 
cycles are required to generate 16 operations without a carry, then does the same thing for a set of A+C 
calculations. This circuit also has two other outputs in addition to the sums: one output indicates which 
operation is being output, the other signal indicates when the operation generates a carry. If a carry is 
generated, the circuit outputs zero. The circuit should output zero while waiting for a button press. For this 
problem, consider the inputs and sum output to be 16-bit unsigned binary numbers.  

38) Design a circuit that counts the number of time the input A is two greater than the B input on the clock edge, 
where both A & B are 8-bit unsigned binary number. The count automatically rolls over after logging the 
127 occurrence. The output of this circuit is the count total.  

39) Design a circuit that counts how many times B>A on the circuit’s active clock cycle edge. The count goes 
up to 50. When the count reaches 50, the circuit clears the counter and counts the number of times A>B. A 
& B are 10-bit unsigned binary numbers. The circuit outputs the count. The circuit does this continuously.  

40) Design a circuit that counts the number of times A=B, then A<B, then A>B, on an active clock edge. This 
circuit switches modes when the counter reaches 50 and also clears the counter. A & B are 10-bit unsigned 
binary numbers. The circuit’s output are the count value, and a single-bit output for each of the three tests 
(A=B, A<B, A>B).  

41) Design a circuit that counts the number of times the sum of A+B is both valid and negative. This count 
resets when it reaches 50 or 40, depending on whether a button is pressed (pressed==50). Once the circuit 
reaches it the maximum count, it holds that count until a different button is pressed, at which time it clears 
the counter. The circuit does not start counting again until the circuit’s other button is pressed. Consider A & 
B to be 8-bit signed binary values in RC format. The only output of the circuit is the count value.  

42) Design a circuit that shows a count of how many times a given number on the input has repeated itself based 
on the value of the input on the active clock edge. The input number is an 8-bit unsigned number. The 
circuit starts at the press of a button and runs forever without getting tired. The output shows the number of 
repeats from 0-127; this count rolls over automatically after the 127th consecutive value is detected on the 
input on the active clock edge. 

43) Design a circuit that counts how many times it detects the sequences “1001” and “11011” on a single serial 
input. When it detects the former sequence, it increments an 8-bit counter; when it detects the latter 
sequence, it decrements the same 8-bit counter. The most straight-forward approach is to use two FSMs in 
your; be sure to provided state diagrams for any FSM you use in your design. Assume the serial input does 
not change more than once per clock cycle. Allow the counter to underflow or overflow as needed. If both 
sequences are found simultaneously, the counter does not change its output. Both sequence detectors are the 
resetting type.  
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27 Shift Registers 

 

27.1 Introduction 

Registers come in many forms: this chapter deals with one a common form: the shift register. As the name 
implies, shift registers are registers with special functionality. This chapter introduces shift registers along with 
their basic applications.  

Main Chapter Topics 

SHIFT REGISTERS: This chapter describes various flavors of shift registers and their 
basic implementations. This chapter also describes several special aspects of shift 
register including rotates, barrel shifts, and arithmetic shifts. 

 

Chapter Acquired Skills 

 Be able to describe the shift register’s special mathematical operations  

 Be able to use the various vernacular associated with shift registers 

 Be able to describe shift types including barrel shifts, arithmetic shifts, and rotates 

 Be able to describe the various control inputs of shift registers  

 Be able to use shift registers in solutions to digital design problems 

 

27.2 Shift Registers: Another Specialty Register  

A shift register is another type of register. Shift registers, and their various flavors, are useful devices because of 
their ability to quickly perform a small but useful subset of mathematical operations.  

We can decompose a shift register down to its most basic component, which we refer to as a shift register cell. 
This cell is a storage element, which we model as a D flip-flop. Figure 27.1 shows a schematic diagram of a 
generic shift register. Upon further inspection, you should discern the following:  

 We can model the n-bit shift register as a set of “n” specially connected D flip-flops. The D flip-
flops in the shift register share the same clock signal.  

 The difference between simple registers and shift registers is in the way that the individual 
storage elements connect to each other. While simple registers have D flip-flops that receive 
data from the inputs, the shift register’s storage elements receive data from interconnections 
between individual storage elements. Figure 27.1 shows that the output of one flip-flop becomes 
the input to the adjacent flip-flop in the shift register, which allows the device to “shift”.  

 The number of bit storage elements in a shift register defines shift registers. The shift register in 
Figure 27.1 represents a generic model of a shift register including the magic ellipsis in strategic 
locations. Common descriptions of shift registers include “a 4-bit shift register” or “an 8-bit 
shift register”, etc. Figure 27.1 shows a generic “n-bit shift register”.  
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Figure 27.1: A typical n element shift register. 

Figure 27.2(a) shows a schematic diagram of a 4-bit shift register while Figure 27.2 (b) shows a model of the 
underlying circuitry. Figure 27.3 shows an example timing diagram for a 4-bit shift register in Figure 27.2(b). 
Figure 27.3 contains annotations to help with the following description.  

  

(a) (b) 

Figure 27.2: A block diagram for a 4-bit simple register (a) and a model of the underlying 
circuitry of a 4-bit shift register (b). 

 

Figure 27.3: An arbitrary timing diagram associated with the shift register of Figure 27.2(b). 

 This is a 4-bit shift register, meaning that the shift register circuitry contains four storage 
elements. Figure 27.2(a) shows a BBD for a 4-bit shift register.  

 The schematic in Figure 27.2(b) labels each of the internal shift register signals to help describe 
the operation of the basic shift register in Figure 27.3.  
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 The “Qx” notation indicates the bit positions of the storage elements in the shift register. We 
consider Q3 the higher order bit while Q0 (or data_out) is the lowest order bit1. Note that 
data_out and Q0 are the same signal.  

 We consider shift registers to “shift” in either direction; that is, they shift to the left (“shift left”) 
or shift to the right (“shift right”). Figure 27.2(b) shows a right-shifting shift register.   

 The notion of this circuit shifting is primarily a term of convenience and not altogether accurate. 
The “thing” being shifted in Figure 27.2(b) is the “data”. Another way to view this is that the 
circuit inputs 1’s and 0’s from the left side of the circuit and passing them through to the right 
side.  

 Since this is a sequential circuit, the storage elements have a state associated with them. For the 
timing diagram of Figure 27.3, the initial state of each storage element is ‘0’, which is arbitrary.  

 Since the storage elements are D flip-flops, they only change state on the active clock edge.  

 On the clock edge labeled ‘1’, all of the flip-flops transfer the value on their inputs to their 
outputs. On the active clock edge, the left-most flip-flop latches “data_in”; Q3 latches into the 
second to the left-most flip-flop, etc.  

 The “data_in” input can change at various times; it only has an effect on the active clock edge.  

 

If you stand back a few paces, you can see the so-called shifting action of the shift register. The individual 
signals are shifted versions of each other; specifically, Q3 is a shifted version of “data_in”, Q2 is a shifted 
version of Q3, etc. Another way to view this is that the “data_out” signal is a delayed version of the “data_in” 
signal. In this case, Q0 is a delayed version of Q3; the delay is three clock cycles because the pulse appearing on 
Q0 is the same pulse that appeared on Q3 three clock cycles earlier. The right-shift operation (one shift in the 
right direction) is the same thing as a divide-by-two operation with truncation2.  

Another issue that usually surrounds shift registers is the notion of cascadeabilitly. If you’re unfortunate enough 
to use shift registers on discrete ICs, you may need to use a bunch of them to obtain the data width that you need. 
For example, if you need a 64-bit shift register, and all you have to work with are ICs containing 8-bit shift 
registers, you’ll need to cascade3 eight 8-bit shift registers in order to create a 64-bit shift register.  

 

                                                           

1 Keep in mind that we often use shift registers for mathematical operations; numbers generally have weights associated with 
the bit positions (unless you’re a cave-person).  
2 Truncation means the lowest order bit is lost; a similar operation is “round-up” where the value of the lowest order bit is 
“taken into account” and your weeds are killed at the same time.  
3 In this context “cascade” is a fancy way of saying “connect up the part properly”.  
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Example 27.1: A Simple Shift Register Timing Diagram 

Using the block diagram on the right to complete the timing 
diagram provided below. Consider the circuit to be a 4-bit 
right shifting shift register that is active on the rising-edge 
triggered of the clock signal. Consider the line labeled “Q” to 
represent the 4-bit value stored by the shift register. Assume 
the “data_out” signal is the LSB of Q. Assume the initial value 
stored by the shift register is 0x8. Ignore all propagation delay 
issues with this circuit. 

 

 
 

Solution: The problem asks for what is stored in the shift register despite the fact that only one-bit of shift 
registers contents appears as an output (the data_out signal is the output of the LSB). Shift registers typically 
provide all stored data bits as outputs.  

Figure 27.4 shows the solution to this example. Here are a few items to note:  

 This is a right-shifting shift register, which means the data_in signal is the MSB of the shift 
register while the data_out signal is the LSB.  

 The fact that the shift register is dividing the current shift register contents by two (with 
truncation) when the data_in signal is a ‘0’.  

 

Figure 27.4: The solution to this example. 

 

27.3 Universal Shift Registers 

Shift registers that only shift in one direction are not overly; typical shift registers perform other operations such 
as shift left, shift right, parallel load, parallel clear, hold, etc. The term in digital design for shift registers 
containing many features is universal shift register, or USR. There is no one definition for universal shift 
registers; the only thing the term means is that you’re dealing with some sort of shift register that does more than 
shift in one direction. You must consult the datasheet or designer as to what exactly. The following example is a 
USR with arbitrary functionality.  
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Example 27.2: A Simple Universal Shift Register 

Provide a model for an 8-bit universal shift register that supports the following operational 
characteristics, hold, shift right, shift left, and parallel load. For this problem, assume that all 
shift register operations are synchronous (meaning they are synchronized to the rising clock 
edge). The shift register’s output should be only an 8-bit bundle that indicates the current state of 
the shift register.  

Solution: The first step in this problem is to understand all of the features requested by the problem. The 
following list describes these features, in case you were wondering. All of these operations are synchronous.  

 Hold: The shift register’s contents do not change state on active clock edge.  

 Shift Right: A typical shift right operation; there needs to be a single-bit input to become the 
next left-most bit.  

 Shift Left: A typical shift left operation; there needs to be a single-bit input to become the next 
right-most bit4. 

 Parallel Load: Implies that there needs to be an 8-bit bundle input that simultaneously loads all 
shift register elements.  

From these clarifications, we now know two types of information: the number and widths of the inputs and 
outputs required to complete this problem. Specifically, know the following; from this list of happy stuff, we can 
generate the block diagram in Figure 27.5. Here is some other fun stuff.  

 The shift register has four unique operations: hold, shift-right, shift-left, and parallel load. This 
means we somehow need to control which operation occurs. We do this by adding a control 
signal that “selects” the desired operation. This signal is an input to the shift register and allows 
some external device to control the shift register. Since the shift register has four operations, we 
need a two-bit control signal that selects the desired operation.  

 We know all the inputs and outputs to the shift register. The problem states that the outputs 
comprise of only the state of the shift register storage elements. The inputs include a 2-bit 
operation select signal, a 1-bit input for shift-left operations, a 1-bit input for shift-right 
operations, an 8-bit bundle for parallel loads, and a lively clock input.  

 

Figure 27.5: A black box diagram of the universal shift register. 

Figure 27.6 repeats Figure 27.1 for your viewing convenience; this diagram once again shows a generic 
schematic for a simple right-shifting shift register. The way you should think about the hardware-based solution 
to this problem is to imagine that each shift register storage element is now going to decide upon what value 
loaded on the next active clock edge.  

                                                           

4 You could also use the same signal for inputting signals for either shift-left or shift-right operations. The problem did not 
state how to do this so we have arbitrarily decided to have an input for both “sides”. We won’t do this again.  
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Figure 27.6: A typical n element shift register. 

When you hear the word “decision” in digital design-land, you should think “MUX”. If you think about it in this 
manner, it sure seems as if each storage element is now going to have its own MUX to decide which value is 
loaded to the storage element. Each shift register storage element needs to decide which signal loads into the 
element. Figure 27.7 shows the schematic for the single shift register storage element that you’re probably 
imagining.  

 

Figure 27.7: A shift register element with an attached MUX for data selection. 

Figure 27.7 shows a 4:1 MUX with two control signals. The control signal selects between four different signals 
to load into the storage element in order to satisfy the problem. We describe the MUX data signals in Figure 27.7 
with the following. Table 27.1 summarizes the information in the previous list.  

 Qm (0): The input to the D flip-flop is the current output of the current storage element. Qm is 
an internal signal and ensures that the storage element does not change state by “reloading” its 
current value, so the present state of the D flip-flop becomes the next state.  

 P_load (1): The D flip-flop is a bit from the parallel loading bundle input.  

 Qm-1 (2): The input is part of a shift right operation, which indicates the input to this storage 
element is the first storage element to the left of this storage element (check out Figure 27.6 for 
the details on the subscripted numbers).  

 Qm+1 (3): The input is part of a shift left operation, which indicates the input to a storage 
element is the first storage element to the right of this storage element (check out Figure 27.6 for 
clarification).  

S1 S0 D Comment 

0 0 Qm hold 
0 1 P_load parallel load 
1 0 Qm-1 shift right 
1 1 Qm+1 shift left 

Table 27.1: Summary of the SR element functionality. 

We could proceed with at this level, but let’s instead call this example down and bump up to a higher level of 
abstraction on later problems. 
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Example 27.3: Universal Shift Register Timing Diagram 

The block diagram on the right shows a model of a 
universal shift register; use this model to complete the 
timing diagram listed below. Consider the following:  

 SEL = “00”: hold 

 SEL = “01”: parallel load of D_LOAD data 

 SEL = “10”: right shift; DL_IN input on left 

 SEL = “11”: left shift: DR_IN input on right 

 All operations are rising edge triggered  

 Propagation delays are negligent.  

 Initial D_OUT value is 0x45 

 

 
 

Solution: The first step is to establish the initial state of the storage elements. This problem states that the initial 
value of D_OUT value is 0x45; this value is the initial state of the shift register.  

A good approach to problems such as these is to list what actions the SEL signal is selecting throughout the 
timing diagrams. Figure 27.8 shows a partially annotated timing diagram highlighting the operations selected by 
the SEL signal. We synchronize all of these annotations with the rising clock edge.  

 

Figure 27.8: A black box diagram of the universal shift register. 

Figure 27.9 shows the final timing diagram. Most of the changes in the DR_IN, DL_IN, and D_LOAD signals 
have no effect on the final output.  
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Figure 27.9: A black box diagram of the universal shift register. 

 

27.4 Barrel Shifters 

Another operation associated with shift registers is a “barrel shift”. While simple shift registers only performed 
one shift per clock cycle, barrel shifters are capable of performing more than one shift per clock cycle.  

We can consider shifting left and right as forms of multiplying (left shift) or dividing (right shift) by two. Thus, 
barrel shifters are associated with multiplying and dividing by “powers of two” (such as 4, 8, 16, 32, etc.). These 
operations provide super-fast (namely, one clock cycle) multiply and divide operations. Multiplying and dividing 
binary numbers is time consuming relative to other computer operations (such as logic operations); barrel 
shifters provide a fast, but limited alternative.  

We use barrel shifters in arithmetic applications where we do not require 100% accuracy of results primarily due 
to truncation of shift right operations. For example, there is always a big push to have your circuit perform 
“integer-based math” because working with integers is much less “computationally expensive” than retaining the 
full precision of values. Using integer math generally causes a loss in precision, but the increase in speed is 
desirable so long as the loss in precision is tolerable.  

Table 27.2 shows two examples barrel shifting operations. Both of these examples use an 8-bit value; the top 
example is the value before the active clock edge while the bottom value is the value after the active clock edge. 
The examples show both a starting and ending point for the barrel shifting operation described by the particular 
row in the table. The (a) row shows a 2-bit right barrel shift that arbitrarily inputs 0’s on the left side of the 
register. The (b) row shows a 2-bit left barrel shift that arbitrarily inputs 1’s from the right side of the register.  

 Description Example 

(a) 
barrel shift right 2x; stuff in a two 0’s from the 
left side.  

 

(b) 
barrel shift left 2x; stuff in a two 1’s from the 
right side. 

 

Table 27.2: Examples of barrel shifting operations. 

The examples in Table 27.2 are arbitrarily 2-bit barrel shifts. The barrel shifter is “shifting two times” in one 
clock cycle. There is only one shift, which implies there are connections between each shift register element and 
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the element that is two shift register elements away. The barrel shifter thus requires the proper signal routing in 
order to accomplish this shift, so barrel shifters are typically to only a few shift lengths because routing resources 
are expensive in digital-land.  

27.5 Other Common Shifts 

Two more common shifting operations are rotates and arithmetic shifts. These operations are also simple in their 
basic states. Rotate operations can be useful in many applications, though there is not one slam-dunk great 
example I can think of; in theory, these operations fall into the category of “bit tweaking”. Arithmetic shift 
operations are similar to simple shift operations but they work correctly with signed binary numbers.  

27.5.1 Rotates 

Rotate operations include rotate left or a rotate right with the actual shifting occurring on the active clock edge. 
The notion with rotate-type shifts is that no bits from the register are lost by “shifting them out” of the register as 
is the case with simple shift registers. Specifically, for a rotate right operation, the LSB of the register becomes 
the new MSB while all other bits are shifted one position to the right. For a rotate left operation, the MSB of the 
register becomes the new LSB while all other bits in the register are shifted one position to the left. Table 27.3 
show examples of rotate left and right operations on an 8-bit register.  

 Description Example 

(a) rotate right; the LSB is transferred to the MSB; 

 

(b) rotate left; the MSB transfers to the LSB. 

 

Table 27.3: Examples of rotate-type shifts.  

27.5.2 Arithmetic Shifts 

Arithmetic shifts are similar to simple shifts; the key difference is that arithmetic shifts work with signed binary 
number and preserve the “signedness” of the value they operate on. For an arithmetic shift left operation, the 
value of the sign bit does not change because of the shift. Thus, the left shift operation retains the sign of the 
number as well as the ability to perform fast multiplication with the left shift operation. For an arithmetic shift 
right operation, we both retain the sign bit as a sign bit and propagate the sign bit to the right with each shift.  
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 Description     Example 

(a) 

An arithmetic shift right of a positive number in RC 
format; the operation copies the sign bit from sign-bit 
position to the adjacent bit on the right with each shift. 
This is a divide by two on a positive signed number. 

 

(b) 

An arithmetic shift right of a negative number in RC 
format; the operation copies the sign bit from the sign-
bit position to the next bit on the right with each shift 
(the sign bit remains unchanged). This is a divide by 
two on a negative signed number.  

(c) 

An arithmetic shift left on a positive value in RC 
format; the left shift does not alter the sign; all other 
bits shift left and the operation arbitrarily stuffs a ‘0’ 
into the LSB. The bit adjacent to the sign bit shifts left 
into nowhere land. This is a multiply by two on a 
positive signed number.  

(d) 

An arithmetic shift left on a negative value in RC 
format. The left shift does not alter the sign bit; all 
other bits shift left and the operation arbitrarily stuffs 
a ‘0’ into the LSB position. The bit adjacent to the 
sign bit shifts left into nowhere land. This is a 
multiply by two on a negative signed number.  

Table 27.4: Examples of many flavors of arithmetic shifts. 

 

Example 27.4: A Shifting and Rotating Circuit 

Using the following specifications, complete the provided timing diagram. Assume that 
all operations are synchronized with the rising edge of the clock signal. Assume that 
propagation delays are negligent. Assume the DR_IN signal is the bit that is an input on 
the right for shift left operations while shift right operations utilize the sign bit for an 
input. Assume D_OUT represents the 8-bit value stored by the shift register. 

 SEL = “00”: arithmetic shift right 
 SEL = “01”: arithmetic shift left 
 SEL = “10”: rotate right 
 SEL = “11”: rotate left 
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Solution: The first step is to generate the black box diagram. From the problem statement we can see that the 
circuit’s input are a clock signal (CLK), a selection signal (SEL), and a bit input signal (DR_IN). The only 
output of the circuit is the D_OUT signal, which represents the contents of the shift register. Figure 27.10 shows 
the final block diagram for this example problem.  

 

Figure 27.10: A black box diagram of the universal shift register of Example 27.4. 

The next step is to annotate the provided timing diagram to explicitly show (in English) the operations selected 
by the SEL signal. This step is not necessary, but it ensures the mistakes you make are of the intelligent type 
rather than dumbtarted type. Figure 27.11 shows this intermediate helper step.  

 

Figure 27.11: A black box diagram of the universal shift register of Example 27.4. 

Without too much verbage, Figure 27.12 shows the final timing diagram solution to Example 27.4. One thing to 
note about this problem is that the circuit only uses the DR_IN input for arithmetic shift left operations.  

 

Figure 27.12: A black box diagram of the universal shift register of Example 27.4. 
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Example 27.5: Design #1: Pre-Determined Shifting Circuit  

Design a circuit that shifts a 16-bit value left the number of times indicated by the value on the 
circuit’s four switches (a binary value). When this circuit sees an asserted GO signal, the 
operation begins on the circuit’s 16-bit input. Shift operations should input 0’s into the circuit. 
The circuit’s output is also a 16-bit value. The final value remains on the circuit’s output until 
another assertion of the GO signal. Provide two levels of BBDs for your solution as well as a 
state diagram modeling the circuit’s FSM. Also, state the forms of control the circuit uses. 
Minimize your use of hardware in the solution. 

Solution: The problem description does not provide a BBD, so the first step is to generate one from the problem 
description; Figure 27.13(a) shows this first step.  

 

 

(a) (b) 

Figure 27.13: A block diagram for circuit (a), and underlying circuitry (b).  

The next step in the solution is to make an inventory of the modules we need in the solution. Here is the thought 
process:  

 The circuit needs to do some shifting, so we know the circuit requires a shift register. Even 
though we only need to shift in one direction, we use a 16-bit USR in our solution.  

 The circuit needs to shift the number of times on the SW input (considering the SW input as a 
binary number).  

 Since the USR only shifts once per clock cycle, we need some way of keeping track of how 
many times we shift. This functionality calls out for a counter; what we do is load the switch 
value into a counter, then decrement the counter until the counter is zero. We know the counter 
output is zero when the RCO output of the counter asserts.  

 The circuit elements require a FSM to act as a master controller.  

Figure 27.13(b) shows the lower-level BBD for the solution; here are a few of the more important points.  

 We connect the DBIT input to zero; this is arbitrary, as the problem did not mention it. It’s 
generally the safer approach to connect this input to zero as opposed to connecting it to one.  

 We connect the UP input of the counter zero, which makes it always count down (we know this 
because of the annotation included in the BBD). We also include an annotation that states the 
precedence of the UP and LD signals of the counter.  

 The counter’s RCO output asserted when the counter reaches its terminal count in the down 
direction. The RCO is a status signal that is input to the FSM.  
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 The FSM controls the SEL control input of the USR. We include annotations of how the SEL 
input controls the USR operations.  

Figure 27.14 shows the final state diagram for the solution. Here are the highlights of the state diagram.  

 The state diagram has two states; in the “wait” state, the FSM is waiting for an asserted GO 
signal. When the GO signal asserts, the FSM transitions to the shift state. We configured the 
SEL and LD signals to be Mealy-type outputs, which was arbitrary. Using Mealy-type outputs 
allows the state diagram to have two states. If we had used Moore-type outputs for LD and 
SEL, the state diagram would have three states, accounting for the differences in the LD and 
SEL signals.  

 We model the LD output in the “shift” state as a Moore-type output, which may seem confusing 
because LD was a Mealy-type output in the “wait” state. The final word is that LD is a Mealy-
type output; we opted to model it as Moore-type output in the “shift” state to simplify the state 
diagram.  

 We model the SEL signal as a Mealy-type output in the “shift” state, as its value depends upon 
RCO. As long as RCO is not asserted, we want the shift register to shift left and allow the 
counter to decrement. Once RCO asserts, the count is zero, which means we are done shifting. 
At that point, the state diagram directs the FSM to hold its state.  

 

Figure 27.14: The state diagram associated with this example.  

Outputs from the FSM connect to the LD and SEL control inputs in the circuit’s modules. The UP 
control input is hardcoded. This circuit thus uses circuit (the FSM’s outputs) and internal (the UP 
signal) control. The GO signal is a form of external control.  

 

 

 

Example 27.6: Design #2: Even Parity Checker Circuit 

Design a circuit that determines if an 8-bit input value is even parity. When this circuit sees an 
asserted GO signal, the operation begins on the circuit’s 8-bit input. The final parity value 
remains on the circuit’s output until another assertion of the GO signal. Don’t use EXOR-type 
functions or a MUX in this design. Provide two levels of BBDs for your solution as well as a 
state diagram modeling the circuit’s FSM. State the forms of control the circuit uses. Also, 
state how many clock cycles your circuit requires to complete the operation. Minimize the 
amount of hardware you use in your design.  

Solution: The first step is to generate a top-level BBD from the problem specification; Figure 27.15(a) shows the 
result of this step.  

The next step in the solution is to create an inventory of the modules our circuit requires. The list below shows an 
example thought process for the solution.  
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 The problem states not to use XOR functions, which we know is a straightforward way to solve 
this problem. Our other approach to determining parity is to count the number of 1’s in a 
number; if there are an odd number of 1’s, then the number has odd parity; otherwise the 
number has even parity. We use a counting approach in this problem. This means that we need a 
counter. Since we are counting a 8-bit value, the maximum count possible is eight, which means 
this needs to be a 4-bit counter (a 3-bit counter has a maximum value of 7).  

 This circuit also needs to counter to eight, which means our solution requires a second counter.  

 We need a circuit that helps us do the actual count. There are several ways to do this; we choose 
a USR for this problem. The trick here is that we use the LSB output of the USR to control the 
counter’s UP control input.  

 The solution’s final module is an FSM to control circuit operations.  

Counting the set bits in a binary value is a trivial operation for humans. The issue in this problem is that we need 
to configure the hardware to do the counting for us. In other words, we have an algorithm that generates the 
solution; we must implement that algorithm in hardware. Figure 27.15(b) shows the final circuit for this problem; 
here is some other good stuff to chew on:  

 Both counters share the same CLR signal. When this algorithm starts, both counters need to 
start at zero. One counter is counting the number of bits the circuit examines; the other counter 
is counter the number of set bits in the input value.  

 The circuit uses the LSB of the shift register as a part of the UP control to the bit counter. We 
want complete control of the counting operation, which means we want to disable it if we 
choose, so we connect the LSB of the shift register to an AND gates. The other input to the 
AND gates is the CTRL signal, which gives the circuit the ability to disable the counter’s UP 
control input. We do this because the problem states the parity output should be persistent; if we 
had connected the LSB directly to the UP, the counter could remain incrementing after the 
algorithm completes. Put this in your bag of tricks; it’s typical in this flavor of design problems.  

 The LSB of the bit count indicates the parity of the input value. The problem wants to know 
when the parity is even, which it is when the LSB of the bit count is zero. We thus invert the 
LSB and use that as the EVN_PAR output of the circuit.  

 The BBD provides two annotations; one regarding both counter (the CLR comment) and the 
other regarding the right-most counter in the BBD. We don’t annotate the left-most counter as 
the UP input is hardwired to ‘1’, and there is no confusion as to how the counter reacts to 
different asserted UP values.  

 The DBIT input of the shift register is hardwired to ‘0’. This is arbitrary for this problem, but 
it’s a requirement in a later example problem.  
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(a) (b) 

Figure 27.15: A block diagram for circuit (a), and underlying circuitry (b).  

Figure 26.16 shows the state diagram for the problem. There are several approaches to the state diagram; we opt 
for this approach, and provide some meaningful commentary:  

 We model the SEL input in the as a Mealy-type output in the “wait” state and as a Moore-type 
output in the “shift” state. The SEL input is truly a Mealy-type output; it makes the state 
diagram more readable to model it as a Moore-type output in the “shift” state.  

 We opted to use Mealy-type output for both the SEL and CLR signals. We could model these 
two outputs as Moore-type outputs, but that would have required adding an extra state to the 
state diagram.  

 The CTRL output is a pure Moore-type output; it makes no sense to model it as a Mealy-type 
output. In the “wait” state, the CTRL always disables the bit counter’s UP signal; in the “shift” 
state, the CTRL input always allows the LSB of the shift register to increment the counter.  

 The shift register in this problem is holding, loading or shifting, the three different values of the 
SEL signal in the state diagram indicate. As with all shift register problems, the first order of 
business is to load the shift register, which we do when the GO input asserts.  

 The shift register continues shifting until the RCO status signal of the counter asserts. Once the 
RCO signal asserts, the counter shifts one more time. We really don’t care about the shift; we 
only care about the value of the LSB output of the shift register, as that determines whether the 
counter increments or not.  

 

Figure 27.16: The state diagram associated with this example.  

Outputs from the FSM connect to the CLR, CTRL and SEL control inputs in the circuit’s modules. 
We hardcode the UP control input on the left-most counter in the diagram. This circuit thus uses circuit 
(the FSM’s outputs), internal (the UP signal) control, and external control in the form of the GO 
signal. 
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This solution requires a deterministic amount of clock cycles to complete. After the GO signal asserts, 
the first clock cycle transition the FSM to the “shift” state; it stays in the “shift” state for seven clock 
cycles. On the eight clock cycle, the asserted RCO signal causes a transition to the “wait” state. 
Therefore, this algorithm always requires nine clock cycles.  

 

 

 

Example 27.7: Design #3: Even Parity Checker Circuit (Fast Version) 

Design a circuit that shifts determines if the 8-bit input value is even parity. When this circuit 
sees an asserted GO signal, the operation begins on the circuit’s 8-bit input. The final value 
remains on the circuit’s output until another assertion of the GO signal. Don’t use EXOR-type 
functions or MUXes in this design. Design this circuit so that it obtains the answer as quickly 
as possible in the average case. Provide two levels of BBDs for your solution as well as a state 
diagram modeling the circuit’s FSM. State the forms of control the circuit uses. Make a 
comment how many clock cycles your circuit requires to generate the correct output. Minimize 
your use of hardware in the solution. 

Solution: This is the same problem as the previous example, but now we need to increase the average operation 
time for the circuit. The top-level BBD is the same as the previous problem; we repeat it in Figure 27.17(a) for 
your viewing pleasure.   

The next step in the solution is to generate an inventory of modules our solution requires. We make a guess here 
that the modules are the same, and then set out to figure out a way to make the algorithm run faster in the average 
case. The issue with the previous problem is that, no matter what, the algorithm always requires the same amount 
of time to complete because the left-most counter always must reach its terminal count before the algorithm 
terminates. The problem is that sometimes the circuit is sometimes examining only zero bits, which do not affect 
the final parity count. The solution to this issue is that we can constantly check the USR’s output, because we can 
terminate the algorithm early if the remainder of the bits in the USR are zero. That is that the solution in Figure 
27.17(b) does; here are some extra notes in addition.  

 We no longer use the RCO from the bit counter as an indicator of when to terminate the 
algorithm; we now examine all the bits currently stored in the USR. When all the bits are zero, 
we terminate the algorithm. We can achieve this functionality using an 8-input NOR gate. We 
use a shorthand notation in Figure 27.17(b); this saves us drawing an eight-input NOR gate. The 
output of the NOR gates is the ZER signal, which is the new terminal count output.  

 For this problem, we must connect the USR’s DBIT input to ‘0’; out new approach to this 
problem would not work otherwise.  
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(a) (b) 

Figure 27.17: A block diagram for circuit (a), and underlying circuitry (b).  

Figure 27.18 shows the state diagram for our solution. This state diagram is identical to the previous solution 
except for the fact that ZER replaces the RCO signal.   

 

Figure 27.18: The state diagram associated with this example.  

Outputs from the FSM connect to the CLR, CTRL and SEL control inputs in the circuit’s modules. 
We hardcode the UP control input on the left-most counter in the diagram. This circuit thus uses circuit 
(the FSM’s outputs) and internal (the UP signal) control. The GO signal is a form of external control 

The number of clock cycles required to generate a solution depends upon the input data in this 
problem. It many take as few as two clock cycles (if the input value is zero) or as many as nine clock 
cycles (if the MSB of the input values is set). We consider this a better solution because the algorithm 
runs in fewer clock cycles in the average case.  
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27.6 Digital Design Foundation Notation: Shift Register 

We consider the shift register a Digital Design Foundation module. The shift register is a controlled circuit. We 
consider all shift register operations synchronous, except for the CLR input, which is sometimes asynchronous. 
Because shift registers are straightforward to model in with an HDL, we typically only include (or connect) 
inputs and outputs as we need them. The width of the SEL input sufficient to support the shift register’s 
operations. Figure 27.19 shows the foundation module for a shift register.  

 

Figure 27.19: Typical data, control and status signals for a universal shift register.  

 

 Signal Name Description 

IN
P

U
T

 
D

A
T

A
 DATA_IN 

A counter is a register, so it can typically loaded data in to the counter’s storage 
elements. The DATA_IN input is the data that is loaded to the counter.  

DBIT 
The bit that becomes the left-most bit for a right shift operation or the right-most 
bit for a left-shift operation  

O
U

T
P

U
T

 
D

A
T

A
 

DATA_OUT 
The DATA_OUT signal is the data currently being stored in the counter’s storage 
elements.  

C
O

N
T

R
O

L
 

CLK 
Registers are synchronous circuits; most operations are synchronized with the 
active edge of the clock signal.   

CLR 
Latches 0’s into the register’s storage elements; can be synchronous or 
asynchronous.  

DBIT 
The bit that shifts into the register on shift operations, which is the new left-most 
bit or the new right-most bit for shift right and shift left operations, respectively.   

SEL 
These bits select the operation the shift register performs. These operations could 
include: shift left, shift right, hold, load, rotate left and/or right, barrel shifts, etc. 
The width of this input depends on the number of possible operations.  

S
T

A
T

U
S

 

n/a - 

 

Table 27.5: The foundation description for a universal shift register. 

 

 



Free Range Digital Design Foundation Modeling Chapter 27 

 

 
- 450 -  

 

27.7 Register Overview  

The registers we’ve worked with include several common sequential circuits such as shift registers and counters. 
The main difference between the many types of register is their feature set. Table 27.6 shows a possible 
breakdown of the register types and their relation to each other. Many of the features in Table 27.6 can be either 
synchronous or asynchronous.  

Register Type Sub-Types Features 

plain register - Synchronous load of input data 

shift register 
universal shift 
registers, barrel 
shifters 

Synchronous load, preset, clear, load enable, shift 
left/right, arithmetic shift left/right, hold, rotate left/right, 
barrel shift, cascadeability 

counters 
up/down counters, 
decade counters 

parallel load, preset, clear, load enable, increment, 
decrement, cascadeability 

Table 27.6: The feature progression of the device referred to as a register. 
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Chapter Summary 

 

 Shift Registers: Shift registers are in many ways similar to simple registers; their primary different is with 
the inputs to the individual shift register storage elements. Shift registers are designed such that the data 
output from one shift register element becomes the data input to a contiguous element. IN this way, data is 
said to be “shifted through” the shift register. In general, there is one “shift” per clock cycle. Shift register 
operations are often used to implement fast but limited mathematical operations with single left shift being a 
divide-by-two and a single right shift being a multiply by two.  

 Universal Shift Register: A type of shift register that performs more operations than a simple shift register. 
These operations can typically include both a shift left and a shift right, a parallel load, a preset and/or clear. 
Somewhere in here could also be arithmetic shift operations and various forms of rotate operations.  

 Barrel Shifters: A type of shift register that performs multiple shifts on a single clock edge. In reality, barrel 
shifters are wired such that they can shift multiple bit locations in one clock cycle, and probably do not 
perform multiple shifts. Barrel shifters are useful for mathematical operations including multiplication and 
division by powers of two.  

 Rotates: These are similar to shift operations except the register retains all bits from the operation. For rotate 
right, all bits shift to the right and the LSB becomes the new MSB. For rotate lefts, all bits shift to the left 
and the MSB becomes the new LSB.  

 Arithmetic Shifts: This type of shift retains the sign bit of the register. For right shifts, the sign bit 
propagates to the right; for left arithmetic shifts, the sign bit does not change and the register loses the bit 
adjacent to the sign bit.  
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27.8 Chapter Exercises 

 

1) Use the block diagram on the right to complete the timing diagram 
below. Consider the circuit to be a 4-bit shift register (shifts from right-
to-left) that is active on the rising-edge triggered of the clock signal. 
Consider the line labeled “Q” to represent the 4-bit value stored by the 
shift register and the “data_out” output to represent the value of the 
highest order bit stored by the shift register. Assume the initial value 
stored by the shift register is 0xC. Ignore all propagation delay issues 
with this circuit 

 

 
 

 

2) The block diagram on the right shows a model of a universal 
shift register; use this model to complete the timing diagram 
listed below. Consider the following:  

SEL = “00”: hold 

SEL = “01”: parallel load of D_LOAD data 

SEL = “10”: right shift; DL_IN input on left 

SEL = “11”: left shift: DR_IN input on right 

 The rising edge of the CLK signal synchronizes all 
shift register operations  

 Propagation delays are negligent.  

 Initial D_OUT value is 0xAB 
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3) Complete the following timing diagram. The SEL inputs are the control inputs to an 8-bit 
universal shift register. Assume that all operations are synchronized with the rising edge of 
the clock signal. Assume that propagation delays are negligent. Be sure to state any other 
assumptions you need to make in order to complete this problem. Assume the 0x39 is the 
initial value stored by the shift register. Assume “D_OUT” is an 8-bit output representing 
the value stored by the shift register.  

SEL = “00”: rotate right 

SEL = “01”: rotate left 

SEL = “10”: divide by 8 (bit stuff 0’s) 

SEL = “11”: multiply by 8 (bit stuff 0’s) 

 

 

 
 

 

4) Use the schematic diagram to complete the Q output. The Q output is a 4-bit bundle; the starting state 
of Q is listed in the timing diagram as a hex value (4-bits).. Assume that propagation delays are 
negligent. 
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5) Use the schematic diagram to complete the Q output. The Q output is a 4-bit bundle; the starting state 
of Q is listed in the timing diagram as a hex value (4-bits). 
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27.9 Design Problems 

 

For the following problems:  

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution 

 Minimize the number of states in the associated state diagrams 

 Minimize the use of hardware when problem require extra hardware 

 Assume all inputs and outputs are positive logic unless stated otherwise 

 Disregard all setup and hold-time issues 

 For sequence detector problems assume the X input is stable when each clock edge arrives and that X 
can change no more than once per clock period.  

 State all forms of control for your solution.  

 

1) Design a circuit that upon the pressing of a button, outputs the value on the inputs multiplied by eight. The 
input is an 8-bit unsigned binary value; the output data width is as small as it can possibly be and still 
represent the largest possible result from this operation.  

2) Design a circuit that upon a button press, divides an 8-bit unsigned binary input values by two for as many 
times as required to make the result of the input value less than 17. The result of this operation is also an 8-
bit unsigned binary number.  

3) Design a circuit that outputs a value 2.5 times greater than the input value upon the pressing of a button. 
Assume the input is an 8-bit unsigned binary value and the width of the output is minimized but the answer 
is valid. Don’t worry about round-up for this problem.  

4) Design a circuit that outputs a value 5.5 times greater than the input value upon the pressing of a button. 
Assume the input is an 8-bit unsigned binary value and the width of the output is minimized but the answer 
is valid. 

5) Design a circuit that outputs a value 4.75 times greater than the input value upon the pressing of a button. 
Assume the input is an 8-bit unsigned binary value and the width of the output is minimized but the answer 
is valid. For this problem, the answer should be available in four clock cycles or less.  

6) Design a circuit that upon a button press, calculates the parity of a 16-bit value. This circuit has an LED that 
indicates the number of bits in the input that are set and also a single LED that indicates parity (off for even 
and on for odd).  

7) Design a circuit that upon the pressing of a button, divides an 8-bit signed binary input in RC format by two. 
For this problem, the circuit needs to make sure the answer is valid in every case. It is OK to truncate your 
division operation. The result is also an 8-bit value.  

8) Design a circuit that divides an unsigned 8-bit signed binary input by four upon the pressing of a button. For 
this problem, apply a standard round-up to the result. The result is also an 8-bit value. Show a BBD of your 
solution; minimize the amount of hardware in your solution. 

9) Design a circuit that can either divide or multiply a 32-bit unsigned binary input by the value of a 4-bit 
output upon the pressing of a button. The output is also a 32-bit unsigned value. The value that the input 
value is multiplied by is a two to the power of the 4-bit input; it multiplies if an input signal OP is set, or 
divides if OP is cleared. Assume that the OP signal does not change after a button press. Don’t worry about 
this problem overflowing or underflowing; truncation for the divide is OK.  
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10) Design a circuit that can either divide or multiply a 32-bit unsigned binary input by the value of a 4-bit 
output upon the pressing of a button. The output is also a 32-bit unsigned value. The value that the input 
value is multiplied by is a two to the power of the 4-bit input; it multiplies in a single-bit input one, or 
divides otherwise. Don’t worry about this problem overflowing or underflowing; truncation of the divide is 
OK. This circuit also has two outputs that indicate when the calculation is complete and if the answer is 
correct. Assume that the OP signal does not change after a button press.. For this problem, division always 
output a valid number, but multiplication does not.  

11) You can use a FSM to model a shift register. For this problem, provide a state diagram that could be used to 
model a 2-bit shift register. Consider the Q output to be a 2-bit bus that indicates the result of the 
synchronous shifting action. Consider the DIN input as the bit being shifted into the shift register (shifts left 
to right). Consider the RESET input to be an asynchronous input that takes precedence over all other inputs. 
When the HOLD input is asserted, the Q output does not change.  

 

 

12) You can use a FSM to model a shift register. For this problem, provide a state diagram that could be used to 
model a 3-bit shift register. Consider the Q output to be a 3-bit bus that indicates the result of the 
synchronous shifting action. Consider the DIN input as the bit being shifted into the shift register (shifts left 
to right). Consider the RESET input to be an asynchronous input that takes precedence over all other inputs.  

 

 

13) You can use a FSM to model a shift register. For this problem, provide a state diagram that models a 2-bit 
shifting left shift register. In addition to DIN (data in) and a CLK (clock) input, this shift register has two 
asynchronous reset inputs, RST0 & RST1, which place the shift register in “00” & “01” states respectively. 
The shift register also has a HOLD input that when asserted, keeps the same shift register output in the 
FSM, but effectively puts the FSM in a hang state. Exiting any hang state is thus done using one of the two 
asynchronous reset inputs.  

14) You can use a FSM to model a shift register. For this problem, provide a state diagram that models a 2-bit 
shifting left shift register. In addition to DIN (data in) and a CLK (clock) input, this shift register has two 
asynchronous reset inputs, RST0 & RST1, which place the shift register in “00” & “01” states respectively. 
The shift register also has a HOLD input that when asserted, causes the FSM to not change state for one 
clock cycle. After that one clock cycle, the HOLD input is ignored for one clock cycle.  

15) Provide a state diagram that models the operation of a 3-bit shift register that shifts right on each clock edge. 
Also, this FSM controls an LED that blinks so long as the shift register value is “111”; the blink rate is equal 
to half the clock frequency. Assume all set-up and hold-times are met and that circuit delays are negligible.  
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16) Provide a state diagram that models the operation of a 2-bit shift register that shifts either right or left. Be 
sure to state any assumptions you make for this problem. Minimize the number of states in your design. 

 The D_in input represents the value that is shifted into the 
shift register for both shift directions  

 The Reset signal is an asynchronous input that places the 
input into the “00” state 

 The Y output is the value of the shift register  

 If the R input is a ‘1’, the FSM shiftS right; otherwise the 
shift register left.  

 

 

17) Provide a state diagram that models the operation of a 2-bit shift register that shifts either right or left. Be 
sure to state any assumptions you make for this problem. Minimize the number of states in your design. 

  If the L input is a ‘1’, the FSM shifts left; otherwise the 
shift register shifts right  

 The D input represents the value that is shifted into the 
shift register for both shift directions  

 The Reset signal is an asynchronous input that places 
the input into the “11” state 

 The Q output is the value of the shift register  
 

 

18) Provide a state diagram that models the operation of a 2-bit left shifting shift register. For this design, the 
shift register should not have the same output for more than three clock cycles. In order to avoid this 
condition, the “00” state transitions to “11”, and the “11” state transitions to “00” in such a way as to avoid 
this condition. Be sure to state any assumptions you make for this problem. Minimize the number of states in 
your design. Don’t use a counter in this design.  

  The D input represents the value that is shifted into the 
shift register 

 The Reset signal is an asynchronous input that places 
the input into the “11” state 

 The Q output is the value of the shift register  
 

 

19) Design a circuit that inputs a 10-bit unsigned value (A) and five times that value (5A) after a “GO” signal is 
asserted. 
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28 Structured Memory: RAM and ROM 

 

28.1 Introduction  

The previous chapters dealt with basic memory elements in digital design, but on a relatively small scale (flip-
flops and registers). While those types of memory are important, you typically find other types of memory in 
digital systems. We classify flip-flops and registers as “incidental” memory; this chapter introduces the notion of 
“structured1” memory, which has significantly more storage capacity than incidental memory. You must learn a 
new set of skills and vernacular when you deal with structured memory; this chapter discusses some of the more 
basic aspects of memory. 

Main Chapter Topics 

OPERATIONAL OVERVIEW OF MEMORY: This chapter provides an overview of the 
basic operational and performance characteristics of memory as well as common 
terminology associated with memory.  

MEMORY TYPES: This chapter introduces the two accepted main types of memory, 
RAM and ROM, by describing their differences and similarities.  

MEMORY INTERFACE METRICS: This chapter describes the basic interface issues 
involved in structured memory device.  

 

Chapter Acquired Skills 

 Be able to describe the difference between incidental and structured memory 

 Be able to name and describe the basic memory types 

 Be able to describe basic performance parameters of structured memory 

 Be able to use basic structured memory devices to solve digital design problems 

 

28.2 Memory Introduction and Overview 

There are many different types of memory out there; most of them are beyond the scope of a basic digital design 
course. If you ever need to work with a new memory device, you’ll be ready because you’re familiar with the 
basic operation of structured memory.  

Before we start, we need to make one clarification. Often time when we discuss the notion of memory, we 
sometime use the terms “data” and “information” interchangeably. In most cases, this is no big deal, but you 
need to understand there is a distinct difference. In the context of digital design, data is nothing more than a 
bunch of 1’s and 0’s, while information relates to the interpretation of the 1’s & 0’s. We often refer to data as 
having information content; there is actually a unit used to measure the information content of data2. It is up to 
the user to interpret data as having certain information content or not. For example, consider a memory unit; if 

                                                           

1 I’ve adopted this term from the notion of “regular structures”, which roughly refers to larger semiconductor devices that 
have a large and repeated structure that is dedicated to a single purpose. In this case, the purpose is memory.  
2 Somewhat unfortunately, we use the term “bit” to measure the information content of data. This metric is a function of 
probability and is not related to the “binary digit” definition of bit that we use in this text.  



Free Range Digital Design Foundation Modeling Chapter 28 
 

 
- 459 -  

 

the stored data represents instructions to a computer, then you could consider the data to be information. On the 
other hand, if you have a memory that you have never written to, the memory is still full of 1’s and 0’s, but the 
data has no meaning.  

28.2.1 Basic Memory Operations: READ and WRITE 

The two operations associated with memory are reading and writing. The notion of a “memory read” or “reading 
from a memory” refers to the action of retrieving data currently stored in memory. Retrieving data specifically 
means that you’re copying the data from memory to another place, but not changing the data in memory. The 
notion of a “memory write” or “writing to a memory” refers to the action of placing new data in memory, which 
means you are changing the data stored in memory. Reading and writing memory are the copying of data from 
memory (reading) and the transfer of data into memory (writing), respectively.  

28.2.2 Basic Memory Types: ROM and RAM 

There are many different flavors of memory in digital-land; each of these memory types has their own acronym 
describing them. Despite this relatively high number of memory types, we classify all of them as either RAM or 
ROM, , which are acronyms for random access memory and read only memory, respectively. These terms are 
rather misleading, particularly in regards to the attributes of modern memory. In an effort to classify memories as 
either RAM or ROM, these two acronyms have rather loose definitions. Here is the information embedded in 
those acronyms.  

 The notion of a “read only memory”, or ROM, implies that you’ll only be reading from a 
memory, and never writing to it. Because the memory is a “read only” memory, you can only 
retrieve data from that memory; you cannot “easily”3 alter the data in that memory.  

 The notion of a ROM brings up the issue of whom or what put the data into the ROM. This 
starts delving down into the various sub-types of ROM; we don’t want to go there because we 
want to keep this discussion general. Writing to a ROM is a “special” operation performed by 
“something”. All we’re interested in is that there is data in the ROM.  

 The term random access refers to the fact that it requires the same amount of time to access 
(either reading or writing) each “chunk” of memory stored in the device. While this notion 
seems rather simple, not all memory devices fall into the category of “random access”. The two 
most obvious notions of non-random access memories are “hard drives” and “tape drives”. The 
time required to access data in your hard drive is different depending on the physical location of 
the data on the disk and the current location of the read/write heads. Recall that the hard drive is 
a mechanical storage device that requires motors to move a physical device (the read/write 
head) radially across the spinning media to access the data. If the heads are close to the data, it 
require less time to access the data than if the heads must move a long way to access the data.  

 Although the term ROM refers to read only memory, ROMs are also random access devices. 
Thus, you can access any of the chunks of data stored on a ROM in an equal amount of time.  

 All memories have the notion of being either volatile or non-volatile. If a particular memory is 
volatile, the data stored in that memory is lost when you remove power from that circuit. 
Conversely, the data in non-volatile memory is not lost when you remove power. It is generally 
accepted that RAMs are volatile and ROMs are non-volatile.  

Despite all these misleading terms and acronyms associated with structured memory, RAM and ROM do have 
accepted definitions. Table 28.1 lists these accepted differences and similarities.  

                                                           

3 Meaning that many types of ROM can be written to; we’ll not discuss those cases.  
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Memory Type Random Access Operations Volatility 

RAM yes read & write volatile 

ROM yes read non-volatile 

Table 28.1: Accepted attributes of RAM and ROM. 

28.3 Software Arrays vs. Hardware Structured Memories 

The notion of structured memory is not as new as it seems, as there is a direct analogy to the use of arrays in 
programming languages. Recall that an array in computer programming is a data structure that allows you to 
store values and later access those store values.  

Accessing values in an array: This operation is analogous to a read of a memory. In computer 
programming, when you access a value in an array, your program must provide an index that 
indicates which value in the array you want to access. The array “returns” the requested value 
without changing that value in the array. In hardware, the circuit must provide value (the 
address) that indicates which address in the memory you want to read from. The memory then 
outputs that value; the read operation does not change the value.  

Changing values in an array: This operation is analogous to a write of memory. In computer 
programming, when you place a new value into an array, your program must provide an index 
that indicates which value in the array you want to change. The array then replaces that value 
with the new value. In hardware, they circuit must provide a value (the address) that indicates 
which value in the memory you want to write to and the new data. The memory then changes 
the value at that address to the new value.  

28.4 Memory Operation Details: Reading and Writing 

Figure 28.1 shows a high-level diagram of a generic memory device. We can classify the various signals 
associated with interfacing with a memory device into three categories: address lines, data lines, and control 
lines4. The following is a general overview of these lines. In general, the widths of these bundles are associated 
with the specific capacity attributes of the memory; we deal with those issues soon.  

Data Lines: The data lines are a set of signals that route the bits you’re writing or reading into 
or out of the memory device. The arrow associated with the data lines has an arrowhead on each 
end, which signifies that data on those particular lines can travel either into the memory (for 
read operations) or out of the memory (for write operations)5. The data lines can be either serial 
or parallel; the bundle notation in Figure 28.1 means the data lines are parallel. Figure 28.1 
happens to show only one set of data lines; memories often separate input and output data lines.  

Address Lines: The address lines are a set of signals that provide the memory with a “location” 
within the memory to write to or read from. The address lines are the method that the memory 
uses to differentiate between chunks of memory on the interior of the device.  

Control Lines: The control lines are a set of signals that determine and direct the various 
operations associated with the memory. The best example of the responsibility of the control 
lines are with RAM devices that are both readable and writeable; the control lines allow the user 

                                                           
4 In this context, the notion of “lines” refers to a bundle of wires or signals. You often hear the term “lines” associated with 
standard bundles such as “data”, “address”, and “control” lines.  
5 But not both directions at the same time.  
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to control which operation occurs. The underlying notion of control lines is that simple 
memories have few control lines; more complex memories have more control lines6.  

We soon delve further into the details of memory interfacing; for now, you can consider the general interfacing 
operation of a memory read as: 1) give the memory an address, 2) tweak the control lines, and 3) wait for the 
data. For memory writes, you generally 1) give the memory an address, 2) give the memory the data, 3) tweak 
the control lines, and 4) wait for the data to write to memory.  

 

Figure 28.1: A general diagram of a memory integrated circuit. 

28.5 Memory Specification and Capacity 

When working with memory and memory systems, the two most important pieces of information are the 
capacity and the speed of the memory. The memory capacity refers to how much data the memory can store 
while the memory speed refers to how fast you can access (read or write) that data.  

People in digital-land describe memory capacity in many different ways. As is typical in any human oriented 
pursuit, people attempt to make their “thing” sound better than it really is; the same idea applies to memory 
capacity specifications. While these statements are not lies, they are misleading. You, the digital designer must 
see through the smoke and hand waving and understand the characteristics of the memory you’re working with.  

We know that memory stores bits, and these bits are stored at certain addresses within the memory, but 
memories are rarely bit-addressable. In other words, specific memory devices only allow you to access larger 
chunks of data. If you need to read or write a single bit, you must start with the minimum chunk of addressable 
data specified by the device. Making memory bit-addressable would create an inefficient device, so memories 
generally compromise by providing data only in chunks.  

Memories usually store data in groups of bits, which we refer to as a word. The official definition of a word is 
the smallest addressable unit (or chunk of bits) in a memory. This term is important because we typically 
described memories and memory systems in terms of words rather than bits. Referring to memory in terms of 
words is the honest approach.  

Figure 28.2 shows a diagram of a generic memory including some typical memory characteristics. The metrics in 
the diagram are typical of most memory devices. Here is an overview of the most important aspects of Figure 
28.2 while Table 28.2 summarizes all the gory details.  

 The by “2m x S” notation is how we state the capacity of a memory. The underlying notion is 
that we are modeling the memory as a two-dimensional grid, as the “x” in “2m x S” indicates.  

 Everything having to do with memories relates to binary. The term “m” refers to the width of 
the address bus or number of address lines, which is the number of memory chunks that a 
memory can access is two raised to the number of address lines. The true capacity of a memory 
(the amount of data it can store) relates to the number of address lines. 

 The term “S” is the width of the data bus or data lines, or the word width for the memory. 
Datasheets often state this metric in bits, but should state it in word capacity.  

                                                           
6 In an effort to increase memory capacity while keeping physical size small, interfacing some modern memories have 
become rather complicated and thus have a relatively large number of control signals.  
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 The total word storage capacity for the memory is how many words the memory can store. For 
this particular memory, the word storage capacity is thus 2m.  

 The total bit storage capacity for the memory is a product of the number of words and the 
number of storage locations in the memory. Thus the bit storage capacity is given by 2m x S.  

 We don’t include a bundle width indication on the control lines in order to keep the discussion 
general. The notion of 2m x S is common; the control lines for memory modules tend to vary 
greatly across different devices.  

 

Figure 28.2: A diagram of memory indicating notions of storage capacity. 

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑖𝑛 𝑏𝑖𝑡𝑠  2  ∙  𝑆 

Equation 28.1: Closed form formula for memory storage capacity in bits.  

Symbol Definition 

m Bit-width of address bus 

S Bit-width of data bus (word size) 

2m Memory capacity in words 

2m  x S Memory capacity in bits 

Table 28.2: Summary of memory definitions and properties. 

28.6 Memory Interface Details 

This section examines the control lines and their relation to the data and address lines for basic read and write 
operations on a generic memory. Recall that a memory write transfers a word to be stored in memory while a 
memory read prompts a memory to output the contents of memory. The reading and writing of memory is 
controlled by the “control lines” of the memory device. Every memory has its own method of reading and 
writing; specifically, each memory has its own protocol for tweaking the control lines in such a way as to obtain 
the desired function from the memory device.  

Memory Writes: For a memory write operation, you provide the memory with data that 
overwrites data currently stored in the memory. The information on the address lines provides the 
location of where the word is stored. The bits on the data lines provide the data that we transfer 
and store on the memory device. The write operation overwrites the data currently stored at the 
address indicated by the address lines.  

Memory Reads: For a memory read operation, you prompt the memory device to output the data 
currently stored at a specific location in memory. The information on the address lines provides 
the location in memory of where you want to read from. Thus, the address lines provide the 
memory location of the word that transfers out of the memory; the transfer occurs by placing the 
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data at the specified address onto the data lines. Read operations don’t alter values stored in the 
memory device. 

 

Steps for Memory Writes Steps for Memory Reads 

Apply the information representing the 
memory location of where you desire to store 
the given word to the address lines. 

Apply the information representing the actual 
data bits to be written to the data lines. 

Tweak the control lines to make the write 
operation occur. 

Wait for data to write  

Apply the information representing the 
memory location of where you desire to 
retrieve the given word to the address lines. 

Tweak the control lines to make the read 
operation occur. 

Wait for valid data to be output 

Table 28.3: Summary of generic steps required for memory reads and writes. 

28.7 Memory Performance Parameters 

When we speak about memory devices, we’re talking about actual physical electronic devices. This means that 
read and write operations require finite amounts of time to happen. Most of the associated performance 
parameters are outside the scope of this discussion, but some are basic enough for an overview here.  

Figure 28.3 shows a BBD for a simple RAM. This RAM has two control inputs: CLK and WE, where WE is a 
common acronym for write enable. The BBD for this RAM does not completely describe how the device 
operates; you need more information, as we use this device in several examples. Here is what we need to know 
about the device in Figure 28.3:  

 The RAM in has an asychrounous read. This means that the RAM outputs the requested data as 
soon as it is physically capable after it receives a new address value; the read operation is not 
dependent upon the clock signal. The WE enable remains unasserted for read operations.  

 The RAM in has a synchronous write. This means that write operations are synchronized with 
the active edge of the clock, which we assume is the rising edge in this example. The device 
initiates the write operation when it detects an asserted WE signal at the same time as a rising 
clock edge. The write operation requires a finite amount of time to complete.  

 

Figure 28.3: A typical control sequence for a memory read operation. 

Figure 28.4 and Figure 28.5 show generic timing diagrams associated with typical read and write operations, 
respectively. For this device, the number of address and data lines does not matter for this discussion 
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Figure 28.4 shows a timing sequence for a memory read operation. Because the reads are synchronous, we don’t 
need to show the CLK input. The one control input of interest is the WE, which remains unasserted for the read 
operation. Once a valid address appears on the ADDR input, the RAM outputs the data at that storage address 
after a finite amount of time, which we refer to as the read access time.  

 

Figure 28.4: A typical control sequence for a memory read operation. 

Figure 28.5 shows a timing sequence for a memory write operation. Because this RAM has synchronous writes, 
we include a CLK signal in the timing diagram. The writing of new data to the RAM is initiated by two control 
signals: CLK and WE. For a write to initiate, the WE control input must be asserted when a rising edge appears 
on the CLK input. The physical writing of data to the RAM occurs a finite amount of time later, which we refer 
to as the write cycle time.  

 

Figure 28.5: A typical control sequence for a memory write operation. 

We use three main parameters to describe memory performance, which states how fast you can read from 
memory (read access time), how fast you can write to memory (write cycle time), and roughly how much data 
you can pass back and forth to and from the memory (bandwidth). Figure 28.4 and Figure 28.5 show graphic 
examples of the read access and write cycle times, respectively. The list below provides a more detailed 
description of these three performance parameters.  

Memory Read Access Time: The minimum time required to access a word from memory. This 
is the amount of time measured from the application of a valid address to the address lines to the 
appearance of the valid data on the data lines.  
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Memory Write Cycle Time: The minimum time required to write a word to memory. This is 
the time measured from the application of a valid address lines to the completion of the internal 
operations required to successfully store the data in memory. 

Memory Bandwidth: The maximum data transfer rate for a memory device. Since both read 
and write operations require finite amounts of time, it’s worthwhile knowing the amount of data 
that we can physically transfer to and from memory in a given amount of time.  

As with just about everything in digital-land, the faster something can operate, the more highly regarded that 
devices. This is maybe even more so true with structured memory devices as they are typically a major 
component in many digital systems, particularly computer systems. Moreover, in many digital systems, more 
than one device in the system must access memory. Often times more than one device must simultaneously 
access memory; this situation creates what we refer to as a bottleneck. This condition is undesirable in the one or 
more devices must wait to access memory7. The notion of “waiting” in digital-land means your device is 
probably doing nothing, thus probably lowering the overall throughput of your system. Roughly speaking, the 
faster your memory operates, the less chance of a bottleneck; or the less problematic that bottleneck is if you had 
a slower memory.  

Any time you work with a new memory device, you’ll find yourself concerned with the above parameters. 
Probably one of the most informative items regarding working with memory devices is the associated timing 
diagram, which you can find in the associated datasheet. There is almost a special language used to specify all 
the timing parameter associated with memory devices, once you start working with memories, you’ll quickly get 
the hang of things.  

28.8 Memory Address Ranges 

Anytime you work with memories, you run into similar sets of numbers having to do with ranges and maximum 
values. Table 28.4 shows a set of values that you inherently become intimately familiar with once you spend 
some time working with memory. The values in Table 28.4 are systematic; familiarizing yourself with these 
values is not a big deal.  

Table 28.4 shows the relation between the number of address bits of a given memory and the associated address 
range. The first column in Table 28.4 shows the number of address bits associated with a given memory while 
the other three columns show the zero-based address ranges possible from those given address bits. The decimal 
representations quickly become barely perceptible. We don’t even bother writing out the binary equivalents, as 
we would quickly inundate your brain with 1’s and 0’s.  

There are a few other important things to realize about Table 28.4. The “Address Range” column provides the 
associated address range in an 8-digit hexadecimal format. Note the maximum address in any range is associated 
with all the address bits being at a ‘1’ value. This subsequently provides the “1→3→7→F” format associated 
with the first non-zero digit reading from left to right. Also note for both the third and fourth columns of Table 
28.4 that the number ranges double as you proceed downwards in the table. This is a by-product of the 
underlying binary nature of memories.  

                                                           
7 There is a notion of “multi-port” memories. These memories typically allow some type of parallel operation such that two 
devices can simultaneously read from two different memory locations. These types of memories become expensive and 
certainly exercise the inherent trade-offs in digital systems designs.  
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# of Address 
Bits 

Decimal 
Range 

Address Range 
(hexadecimal) 

Abbreviated 
Range 

1 0-1 0-00000001 - 
2 0-3 0-00000003 - 
3 0-7 0-00000007 - 
4 0-15 0-0000000F - 
5 0-31 0-0000001F - 
6 0-63 0-0000003F - 
7 0-127 0-0000007F - 
8 0-255 0-000000FF - 
9 0-511 0-000001FF - 

10 0-1023 0-000003FF 0-1k 
11 0-2047 0-000007FF 0-2k 
12 0-4095 0-00000FFF 0-4k 
13 0-8191 0-00001FFF 0-8k 
14 0-16383 0-00003FFF 0-16k 
15 0-32767 0-00007FFF 0-32k 
16 0-65535 0-0000FFFF 0-64k 
17 0-131071 0-0001FFFF 0-128k 
18 0-262143 0-0003FFFF 0-256k 
19 0-524287 0-0007FFFF 0-512k 
20 0-1048575 0-000FFFFF 0-1M 
24 0-16777215 0-00FFFFFF 0-16M 
32 0-4294967295 0-FFFFFFFF 0-4G 

Table 28.4: Number of bits and associated number ranges. 

 

 

 

Example 28.1: Design #1: RAM Summation 

Design a circuit that sums the values in a 16x8 RAM. Assume some external device previously 
placed the data into the RAM. The summation begins when a GO signal asserts. The final sum 
remains on the circuit’s output until another assertion of the GO signal. Assume the circuit 
contains numbers in unsigned binary format. Provide two levels of BBDs for your solution as 
well as a state diagram modeling the circuit’s FSM. State the forms of control the circuit uses. 
Also, state how many clock cycles your circuit requires to complete the operation. Minimize 
the amount of hardware you use in your design. 

Solution: The first step in your solution is drawing the top-level BBD. The problem statement generally states 
the exact characteristics of outputs in problems such as these (though sometime not overly explicit), but this 
problem requires some extra thought and calculation. We need to show the width of the output, which represents 
a summation of the 16 values in the RAM. The width of the data in the RAM is 8-bits, and we know they are 
unsigned values. This means the largest value of the sum is 16 x (28-1). We could break out the calculator, but 
it’s better to note that we’re working with powers of two, so the maximum summation is 24 x 28, or 212. 
Therefore, the width of the summation is 12 bits. Figure 28.7 shows the top-level BBD for this problem. 
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Figure 28.6: The top-level BBD for this example.  

The next step in the solution is to create an inventory of the modules our solution requires. The following is an 
outline of our thought process.  

 We know this problem has a RAM because the problem description says so.  

 Any RAM we work with in this text uses the output of a counter to provide an address input to 
the RAM. Many different circuits or modules can provide the address inputs, but the simplest 
approach for this text is to use a counter output provide the address.  

 The circuit also is summing all the values in the RAM. Because the RAM can only output one 
value at a time, we need a circuit that keeps a running total of the RAM’s stored values. This 
calls out for an accumulator, which is a combination of an RCA and a register. The 
accumulator’s register provides a persistent output.  

 Something must control this circuit, and this control is non-trivial, which calls out for a FSM.  

 

Figure 28.7: The lower-level BBD for this example.  

Figure 28.7 shows the final circuit for this problem; meaningful commentary follows the diagram. 

 The counter always counts up when it’s not loading.  

 We need to zero-extend the RAM data to make it 12 bits, which makes the RAM output 
compatible with the output of the accumulator’s register, and the other input to the RCA. We 
use the square symbol with a “+” in the center to do this (which is arbitrary).  

 We had to include an annotation stating that the counter’s CLR input has precedence over the 
UP control input.  

 

Figure 28.8 shows the state diagram for this example; here are a few items of interest to note about the state 
diagram.  

 We drew the state diagram using two states, which requires treating CLR as a Mealy-type 
output. This approach was arbitrary, but it saved drawing an extra state.  

 In the “wait” state, the register’s LD input is disabled; we enable it while the circuit is summing.  
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 We always disable the RAM’s WE input as this problem requires no writing to the RAM. 

 The FSM remains in the “sum” state until the counter asserts RCO.  

 

Figure 28.8: The state diagram associated with this example.  

The FSM controls both the LD and CLR inputs, while the UP input of the counter is hardwired to 
always count up. The GO signal is a form of external control. This circuit thus has external, circuit, 
and internal controls.  

The counter has 16 unique count values that it steps through after receiving a GO signal. The first 
clock cycle causes the FSM to transition from the “wait” state to the “sum” state. The summing 
operation for this circuit thus requires 17 clock cycles.  

 

 

 

Example 28.2: Design #2: Minimum Value & Address Displayer 

Design a circuit that finds the smallest value in a 16x8 RAM. Assume some external device 
previously placed the data into the RAM. The summation begins when a GO signal asserts. 
The circuit’s output shows the minimum value as well as the address where that value resides 
in RAM. Both the value and the address remain on the circuit’s output until another assertion 
of the GO signal. Assume the circuit contains numbers in unsigned binary format and that 
every value in the RAM is unique. Provide two levels of BBDs for your solution as well as a 
state diagram modeling the circuit’s FSM. State the forms of control the circuit uses. Also, 
state how many clock cycles your circuit requires to complete the operation. Minimize the 
amount of hardware you use in your design. 

Solution: This is another problem that requires iterating through all the values in a RAM. In this case, the circuit 
outputs the minimum value in RAM as well as the address of that minimum value. Figure 28.9 shows the top-
level BBD for this solution.  

 

Figure 28.9: The top-level BBD for this example.  

The next step in the solution is to create an inventory of the modules our solution requires. Here is the general 
thought process.  
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 The problem description states that the circuit contains a RAM; we then know that the circuit 
then uses a counter to generate an address for the RAM. There are 16 values in the RAM, so the 
width of the counter’s output is 4-bits.  

 The circuit needs to store two values: the smallest value in the circuit and the location in RAM 
of the smallest value. These values both need to be persistent after the algorithm completes, so 
we know that the circuit requires two register. The register storing the smallest value is eight 
bits while the register storing the address of that value is four bits.  

 This circuit needs to do continual comparisons to find the smallest value, so we also require an 
8-bit comparator.  

 In an effort to make this circuit generic, we first pre-load the 8-bit register with the minimum 
possible unsigned 8-bit value. The first step in the algorithm is then to load “all 1’s” into the 
register that holds the minimum value, which we do in order to reduce the complexity of the 
overall circuit. This is somewhat of a trick, but it is something you see often. 

 We use a MUX to select what value appears on the minimum value register’s DATA input. We 
first need to load the register with the maximum 8-bit value; after that, we need to be able to 
load the register with the current RAM value when the comparison result dictates.  

 We need to state that CLR has precedence over the UP input for the counter, and that the CLR 
input has precedence over the LD inputs for the two registers.  

 

Figure 28.10: The lower-level BBD for this example.  

Figure 28.11 shows the state diagram for this example. Although it looks quite busy, it’s actually very structured, 
as the following items indicate.  

 We model the LD1 and CLR as Mealy-type outputs in the “wait” state, which is arbitrary. We 
did this in order to save a state in the state diagram.  

 When the GO signal asserts, the FSM clears the address register and counter, and loads the 
minimum value register with the largest possible 8-bit unsigned binary value.  

 This circuit does not write to RAM, so we always disable the WE signal.  

 The “search” state appears busy, but it’s actually structured. Two things are happening. First, 
when the LT signal is not asserted, we don’t load any new values to either register (LD1 & LD2 
are not asserted). When the LT signal is asserted, we load the current address (the output of the 
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counter) to the address register, and load the current RAM data output to the minimum value 
register. One of these two operations always happens no matter whether the RCO signal is 
asserted or not. When the RCO signal is asserted, that means the counter’s output is at its 
maximum value and we must terminate the algorithm by transitioning back to the “wait” state.  

 There are four arrows leaving the “search” state; each of these arrows has the four different 
possible combinations of the RCO & LT inputs. 

 

Figure 28.11: The state diagram associated with this example.  

The FSM controls both the LD and CLR inputs for both registers, while we hardware the UP input of 
the counter to always count up. The GO signal is a form of external control. This circuit thus has 
external, circuit, and internal controls.  

The counter has 16 unique count values that it steps through after receiving a GO signal. The first 
clock cycle causes the FSM to transition from the “wait” state to the “search” state. This circuit thus 
requires 17 clock cycles to locate the minimum value for the circuit.  

 

 

 

Example 28.3: Design #3: Value Event Counter 

Design a circuit that finds the number of times the value 0x47 appears in a 16x8 RAM. 
Assume some external device previously placed the data into the RAM. The search for the 
given value begins when a GO signal asserts. The circuit’s output persistently shows the 
resultant count value until another assertion of the GO signal. Assume the circuit contains 
numbers in unsigned binary format. Provide two levels of BBDs for your solution as well as a 
state diagram modeling the circuit’s FSM. State the forms of control the circuit uses. Also, 
state how many clock cycles your circuit requires to complete the operation. Minimize the 
amount of hardware you use in your design. 

Solution: This is another problem where we need to carefully choose the width of the output value. This problem 
asks that we count the number of value in the RAM that are equivalent to 0x47. The greatest count is when all 
the values in the RAM are 0x47, which is a count of 16. We thus require an output data width of five bits. Figure 
28.12 shows the top-level BBD for this problem.  



Free Range Digital Design Foundation Modeling Chapter 28 
 

 
- 471 -  

 

 

Figure 28.12: The top-level BBD for this example.  

The next step in the solution is to create an inventory of the modules our solution requires; here is our module 
inventory thought process.  

 We know the circuit requires a RAM, so we know the circuit then uses a counter to generate an 
address for the RAM. There are 16 values in the RAM, so the counter’s output is 4-bits wide.  

 We are looking for the value of 0x47, which means we need to compare the data at each RAM 
location with that value. Our circuit thus requires a comparator.  

 We must determine the number of times the 0x47 appears in the RAM, so the first thought may 
be that our circuit requires an accumulator. We could use an accumulator, but we can satisfy our 
circuit’s needs with an event counter, which is a counter that increments when it detects a 
certain event. The event we are detecting is the presence of 0x47 in the RAM.  

 We need a FSM to control our circuit.  

 

Figure 28.13 shows the lower-level BBD for our solution. Here are a few interesting items in that BBD:  

 The comparator hardwires one the “event” value to one of its inputs.  

 We don’t need to provide a note for the event counter regarding the precedence of the LD and 
CLR inputs; the FSM handles that aspect of the circuit.  

 The CLR signal on the two counters are physically the same signal.  

 The DATA input to the RAM is hardwired to zero; when we find the value of 0x47 at a 
particular address, the circuit writes 0x00 to that address location.  

 

Figure 28.13: The lower-level BBD for this example.  

Figure 28.14 shows state diagram for our solution. The state diagram looks rather busy, but once again, it is 
nicely structured. If you see and understand that structure, the state diagram seems relatively simple. Here the 
full story:  

 We model the LD and CLR as Mealy-type outputs in the “wait” state, which is arbitrary. We 
did this in order to save a state in the state diagram.  
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 This WE input is always disabled in the “wait” state. The state of the WE signal in the “scan” 
state depends on the EQ input, where it writes a new value to RAM when the EQ is asserted, or 
does not change the RAM contents otherwise. We thus model the WE input as a Mealy-type 
output in the “scan” state and as a Moore-type output in the “wait” state.  

 The “scan” state has four arrows leaving the state, where each arrow represents one combination 
of the two inputs (RCO & EQ).  

 When the RCO is not asserted, the circuit either increments the count and clears that 
corresponding address in RAM, or it does nothing; it then transitions back to the scan state. 
When RCO is asserted, it performs the exact two actions, but the FSM then transitions to the 
“wait” state.  

 

Figure 28.14: The state diagram associated with this example.  

The FSM controls the LD, CLR, and WE inputs for the counters and RAM. The GO signal is a form 
of external control. Thus, this circuit has both circuit an external control.  

The counter has 16 unique count values that it steps through after receiving a GO signal. The first 
clock cycle causes the FSM to transition from the “wait” state to the “search” state. This circuit thus 
requires 17 clock cycles to locate the minimum value for the circuit.  
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28.9 Digital Design Foundation Notation: RAM  

We consider the RAM to be a Digital Design Foundation module. The RAM is a controlled circuit. Figure 28.15 
shows the digital design foundation notation for the counter. This foundation module is both data inputs and data 
outputs, both of which are the same width. We use a simple device for the foundation model and consider read 
operations to be asynchronous and write operation to be synchronous. The WE signal controls whether the 
device is reading or writing, where WE is asserted for write operations and unasserted for read operations. We 
consider ROMs to be a subset of RAMs; ROMs are not able to write. Table 28.5 shows the foundation 
description for the RAM.  

 

Figure 28.15: Typical data, control and status signals for RAM. .  

 

 Signal Name Description 

IN
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T

 
D
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T
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DATA_IN Data to be synchronously written to RAM. 

O
U

T
P

U
T

 
D

A
T

A
 

DATA_OUT Data stored in the RAM at the address given by the ADDR input.  

C
O

N
T

R
O

L
 

CLK The CLK signal synchronizes the writing of data to the RAM 

ADDR 
The RAM stores the value of IN_DATA at the address associated with the value 
of ADDR on the active clock edge (synchronously) when the WE signal is 
asserted. 

WE 
When asserted, allows the loading of DATA_IN to the RAM location specified 
by ADDR, which is a write operation. When unasserted, the RAM outputs the 
data stored at the location specified by the WE input.  

S
T

A
T

U
S

 

n/a - 

Table 28.5: The foundation description for a RAM. 
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28.10 Chapter Summary 

 

 Memory is a form of a sequential circuit, but we further divide memory into two categories: “incidental 
memory” and “structured memory”. Incidental memory refers to items such as flip-flops and registers 
(relatively small) while structured memory refers to larger capacity regular structures.  

 There are many type of memory in digital-land, but we can roughly classify them all as either ROM or RAM. 
ROM is “read only” memory while RAM is “random access” memory. Both of these memories have the 
random access attribute in that all of the data on the devices is accessible in the same amount of time. ROMs 
are considered non-volatile while RAMs are not. RAMs can be both written to and read from while ROM can 
only be generally read from.  

 The notion of reading from a memory, or a memory READ, consists of making the data within the memory at 
a given address available to entities external to the memory. Memory reads generally do not alter the data 
stored in the memory. The notion of writing to a memory, or a memory WRITE, consists of overwriting data 
contained in the memory at a given address with data provided by some entity external to the memory.  

 Interfacing with memory generally requires tweaking one the three types of I/O associated with memory. The 
three types of memory I/O are address lines, data lines, and control lines. The address lines provide an index 
into the memory and allow access to a particular chunk of data stored in memory. The data lines provide a 
path for data to flow into (write) or out of (read) memory. The control lines provide a structured approach to 
read from and/or writing to the memory device.  

 Memories are generally rated by the capacity (how many bits they can store) and the speed (how fast you can 
read and/or write the memory). The term “word” is used to refer to the smallest chunk of memory available at 
a given address in the memory. Memory capacity can be stated in bits or words; any other approach is suspect 
as it can be misleading 

 Memories typically store two raised to an integral power number of words. The integral power in this case is 
the number of address lines on the memory. The number of address lines is sometimes referred to as the 
width of the address bus.  

 Memory speed is rated by how fast you can read from it and/or write to it. The term “read access time” refers 
to how fast you can read from a memory. The term “write cycle timing” refers to how fast you can write data 
to a memory. The term “memory bandwidth” refers to the maximum amount of data going to and coming 
from a particular memory in a given amount of time.  
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28.11 Chapter Exercises 

 

1) In your own words, briefly describe what is meant by the term “random access” in the context of computer 
memories. 

2) In your own words, briefly describe what is meant by the term “random access” in the context of computer 
memories. 

3) In your own words, briefly describe what is meant by the term “random access” in the context of computer 
memories. 

4) In your own words, explain how read and write access times affect the bandwidth of a given memory.  

5) Describe a circuit situation where having a large memory bandwidth would be important.  

6) Faster memories are typically more expensive than slower memories. Speculate on why you feel this would 
be the case.  
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28.12 Design Problems 

 

For the following problems:  

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution 

 Minimize the number of states in the associated state diagrams 

 Minimize the use of hardware when problem require extra hardware 

 Assume all inputs and outputs are positive logic unless stated otherwise 

 Explicitly state whether state diagrams have Mealy or Moore outputs where appropriate 

 Disregard all setup and hold-time issues 

 For sequence detector problems assume the X input is stable when each clock edge arrives and that X 
can change no more than once per clock period.  

 State all forms of control for your solution.  

 

1) Design a circuit that upon the pressing of a button, determines how many values in a 16 RAM are negative, 
and displays that value until another button press. The RAM contains 8-bit signed numbers in RC format.  

2) Design a circuit that upon the pressing of a button, finds the maximum value in a 16x8 RAM, and displays 
that value until another maximum value is found after another button press. The RAM contains 8-bit 
unsigned numbers.  

3) Design a circuit that upon the pressing of a button, finds the minimum value in a 16x8 RAM, and displays 
that value until another minimum value is found after another button press. The RAM contains 8-bit 
unsigned numbers.  

4) Design a circuit that upon the pressing of a button, determines how many values in a 16x8 RAM are evenly 
divisible by eight, and displays that value a button press restarts the process. The RAM contains 8-bit 
unsigned numbers.  

5) Design a circuit that upon the pressing of a button, determines how many values in a 16x8 RAM have a 
value of 15 or less, and displays that value until a button press restarts the process. The RAM contains 8-bit 
unsigned numbers. Don’t use a comparator in this problem.  

6) Design a circuit that upon the pressing of a button, sums all the values in a 16x8 RAM and displays that 
value until a button press restarts the process. The RAM contains 8-bit unsigned numbers.  

7) Design a circuit that upon the pressing of a button, determines if the value in a 16x8 RAM are in ascending 
order. If they are in ascending order, the circuit turns on an LED; otherwise it leaves the LED unlit. The 
circuit does this each time a button is pressed. The RAM contains 8-bit unsigned numbers.  

8) Design a circuit that upon the pressing of a button, determines how many bits are set in a in a 16x8 RAM 
and displays that number on the output. The circuit does this each time a button is pressed.  

9) Design a circuit that reads all the values in a 16x8 RAM. If the value is less than 26, the circuit changes that 
value to 0x00. The circuit does this each time the button is pressed.  

10) Design a circuit that upon the pressing of a button, determines how many values value in a 16x8 RAM are 
even parity and how many values are odd parity. The circuit does this each time a button is pressed.  

11) Provide a hardware diagram and state diagram that controls the hardware to complete the following 
task. Upon receiving a “GO” signal, the circuit counts the number of values in each even address 
location in a 16x8 RAM that are evenly divisible by 8 and stores that count in a register. 
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12) Provide a hardware diagram and state diagram that controls the hardware to complete the following task: 
Upon receiving a “GO” signal, the circuit finds the minimum value in a 16x8 RAM. Upon completion, the 
circuit continually outputs both the minimum value and the RAM address of that value until another GO 
signal is detected. The RAM contains unsigned 8-bit values. 

13) Provide the hardware diagram and state diagram that controls the hardware to complete the following task. 
Upon receiving a “GO” signal, the circuit counts how many values in each even address location in a 16x8 
RAM are evenly divisible by 8. Consider address “0000” to be an even address location.  

14) Provide a hardware diagram and state diagram that controls the hardware to complete the following task. 
Upon receiving a “GO” signal, the circuit stores the largest value in a 16x8 RAM into an 8-bit register. 

15) Provide a hardware diagram and state diagram that controls the hardware to complete the following task. 
Upon receiving a “GO” signal, the circuit sums the values in each memory location of a 16x8 RAM if they 
are less than 63 and stores the result in a register. The final result should not be changed until another GO 
signal is detected. The RAM contains unsigned 8-bit values. 

16) Provide a hardware diagram and state diagram that controls the hardware to complete the following task. 
Upon receiving a “GO” signal, the circuit counts number of values in each memory location of a 64x8 RAM 
that are less than 32 and stores that count in a register. The final result should not be changed until another 
GO signal is detected. The RAM contains unsigned 8-bit values. 

17) Provide a hardware diagram and state diagram that controls the hardware to complete the following task: 
Upon receiving a “GO” signal, the circuit sums the values in two 8x8 RAMs and outputs that sum until it 
receives another GO signal. Design your circuit for either minimum operating time or minimum hardware; 
state which approach you are taking. The RAM contains unsigned 8-bit values. 

18) Provide a hardware diagram and state diagram that controls the hardware to complete the following task: 
Upon receiving a “GO” signal, the circuit finds the maximum value in a 16x8 RAM, and then clears that 
value in RAM. Upon completion of this operation, the circuit waits for another GO signal. The RAM 
contains unsigned 8-bit values. 
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Mealy’s Laws of Digital Design 

 
Mealy’s First Law of Digital Design: If in doubt, draw some black box diagrams.  

Justification: You always know enough to draw the top-level BBD interface. When you start drawing black 
boxes and listing what you know, you generate ideas on how to solve the problem.  

 
Mealy’s Second Law of Digital Design: If your digital design is running into weird obstacles that require 
kludgy solutions, toss out the design and start over from square one. 

Justification: There is never one correct circuit to solve a digital design problem, which means there are 
many paths to take when working on a digital design problem. You’re inevitably going to take the wrong 
path, so be ready to realize as much, and switch to a different path.  

 
Mealy’s Third Law of Digital Design: Every digital design problem can have many different but equivalent 
solutions; the absolute right solution is eternally elusive.  

Justification: Digital circuitry is inherently flexible, which allows you to solve digital design problems in 
different ways. The digital design must be familiar enough with digital circuitry to be able to create their 
designs to satisfy the design criteria and to then verify their designs work as expected.  

 
Mealy’s Fourth Law of Digital Design: The digital design process is circular, not linear. If you think you’re 
going to generate the correct solution with the first pass, you’re bound for disappointment. The digital design 
process is circular; always make going backwards a few steps to fix issues part of the design process. Don’t try 
to make your design perfect from the get-go, make it simple to understand so that you can fix issues as they 
arise. 

Justification: Based on Mealy’s Second and Third Laws, you always need to be willing to go temporarily 
backwards on your designs. Design, go back and make necessarily refinement, design some more, repeat.  

 
Mealy’s Fifth Law of Digital Design: Model circuits using many smaller sub-modules as opposed to fewer 
larger sub-modules; as this approach supports testing and increases the chances module reuse.  

Justification: Large designs are harder to understand and test, particularly if you’re first passing off your 
models to an HDL synthesizer. Make your designs reliant upon a strong foundation of basic digital modules 
is always the best approach.  

 
Mealy’s Sixth Law of Digital Design: Don’t rely on the HDL synthesizer; create your HDL models by having a 
remote vision of what underlying hardware should look like in terms of standard digital modules. 

Justification: Although HDLs give you the ability to model digital circuits, they are not magic. The HDL 
synthesizer’s task is to convert pages of text into circuits; the more the options you give to the synthesizer, 
the less probable the synthesizer will successfully generate a circuit that works as you intended.  

 
Mealy’s Seventh Law of Digital Design: Always first consider modeling a digital circuit or part of a digital 
circuit using some type of decoder. Decoders in digital design are anything we can describe in a tabular format, 
so they are essentially look-up tables (LUTs). 

Justification: The basis of all digital design is defining circuits in a tabular format, whenever possible. 
Although this approach represents low-level design, HDL tools have strong support for table-based models.  
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Requiem for the Digital Logic Designer 
Digital design is the process where you create a digital circuit to solve a given problem. There are many 
approaches you can use to solve given problems, designing a digital logic circuit is one of them. What makes 
digital design so useful is that the design can generally interface with other digital circuits such as computer-type 
circuits. The two basic tenets of digital logic are:  

Digital logic circuits are hierarchical: We can describe a digital circuit at various levels; the level at which we 
describe digital logic is generally the one that allows us to transfer as much useful information as possible. 
Abstracting digital designs to higher levels aids in understanding and designing circuits.  

Digital logic circuits are decomposable into a few basic digital circuits: Although there are many ways to describe 
digital circuits, we strive to make the descriptions an aggregate compilation of standard digital circuits in able to 
help us understand the circuits.   

A given digital design solves problems by having the outputs react to the inputs in a manner such that it solves the 
given problem. There are two basic types of digital logic circuits:  

Combinatorial Circuits: circuit outputs are a function of the circuit’s inputs.  

Sequential Circuits: circuit outputs are a function of the sequence of the circuit’s inputs.  

The main ramification of sequential circuits is that they can “remember” the previous “state” of the circuit. 
Sequential circuits can store (remember) bits; we refer to the bits the circuit is remembering as the “state” of the 
circuit. Combinatorial circuits, by definition, do not have state.  

Figure 28.16shows a digital logic circuit containing both sequential and combinatorial modules. We can thus 
model digital circuits as a controlled interaction between a set of sequential and combinatorial circuits. Solving 
problems using digital circuits requires controlling the flow of data through the circuit in such a way that it 
provides a solution to the given problem.  

 

Figure 28.16: A basic logic circuit.  

 

Figure 28.17(a) shows the basic model of a digital logic circuit; we characterize the signals that the outside world 
sees as either inputs or outputs. Because we need to control the flow of data through the digital circuit, we must 
more specifically define the inputs and outputs of a basic digital circuit module. Figure 28.17(b) shows that we 
further classify the inputs as either “data” or “control” and classify the outputs as either “data” or “status”. This 
means the various circuit elements in Figure 28.17(b) are able to 1) pass data from their inputs to their outputs 
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under the direction of the “control” inputs and, 2) output characteristics of the data transfers using the status 
outputs.  

  

(a) (b) 

Figure 28.17: Models for a basic logic circuit (a), and a more refined basic digital logic circuit (b).  

Something must control the flow of data through the generic digital circuit. We therefore must have some other 
entity that interprets the status signal outputs of the circuit modules and issues control signals to those circuit 
modules. For the purpose of this discussion, we consider this circuit to be a finite state machine (FSM). The 
important thing to remember is that something controls the circuit, whether it is an FSM, a computer, or a herd of 
confused academic administrators.  

Figure 28.18 shows a generic model of an FSM. The FSM interprets the status signal outputs from various digital 
modules and then outputs the appropriate control signals that are the various digital modules use as control inputs. 
Other interesting characteristics to note include:  

FSMs generally do not have data inputs and data outputs. You can design FSMs with data inputs and outputs, but 
they tend to be klunky and non-generic. Non-generic FSMs require modifications if the data widths within the 
controlled circuit change.  

The FSM is a sequential circuit because it has the ability to store bits. The FSM only stores bits to represent the 
“state” of the FSM, which it does in its “state variables”.   

The underlying model of the FSM includes three primary elements: 1) the next state decoder, 2) the output 
decoder, and, 3) the state variables. The next state decoder is a combinatorial circuit that decides the next state 
based on the given state and status inputs. The output decoder is a combinatorial circuit that generates control 
outputs based on either state only (Moore machine) or state and status inputs (Mealy machine). Figure 28.19 
shows models for the Moore and Mealy-type FSMs.  
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Figure 28.18: A black box model of a FSM.  

 

 

Figure 28.19: The FSM model showing the two types of outputs (Mealy and Moore). 

 

Figure 28.20 shows a modified version of Figure 28.17 that includes an FSM as a control element. Figure 28.21 
shows that we can further this abstraction. Figure 28.21 shows that the circuit control elements can either be 
hardware (FSMs) or software (microcontrollers). Additionally, Figure 28.21 shows that the modules that we can 
control in a digital circuit include “computer peripherals” as well as the low-level digital modules Figure 28.17. 
Figure 28.21 represents computer peripherals using circles.  

 

Figure 28.20: A basic logic circuit controlled by FSM 
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Figure 28.21: A basic logic circuit with peripherals and various control circuits.  
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Ripple Carry Adder (RCA) 

The RCA is a combinatorial module that performs addition. We often model the RCA as a series of Full Adders 
(FAs) connected in series such that the Co from one module connects to the Cin of the next higher bit location. 
The RCA can also perform subtraction by changing the sign of one addend before performing the addition.  

 RCA: Device Summary 
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DATA IN: A, B, Cin. A & B are the addends; Cin is the carry in.  

CONTROL: none 

DATA OUT: SUM. Summation of: A+B+Cin.   

STATUS: Co. The Carry out; indicates if addition operation generated a carry out   
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 Circuits use RCAs when they require addition or subtraction operations 

 An RCA is a primary component of an accumulators (an register is the other component) 

 The RCA’s carry out (CO) is effectively the (n+1)th bit of a n-bit RCA 

 The CO indicates “validity” of the SUM output when using unsigned binary numbers 

Figure 28.22: The RCA Foundation Module overview. 
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Multiplexor (MUX) 

The MUX is a combinatorial circuit that selects which of many (more than one) data inputs appear on the circuit’s 
single data output. The SEL signal determines which signals transfers to the output, which requires that it have a 
width of at least: ⌈ 𝑙𝑜𝑔 number of data inputs ⌉. The width of the data inputs and outputs are equivalent. The 
most generic forms of MUXes include 2:1, 4:1, 8:1, 16:1, etc.  

 MUX: Device Summary 
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DATA IN: A, B, C, etc; (MUXes have two or more data inputs) 

CONTROL: SEL. selects which data input appears on the DATA OUT. The width of the SEL 
signal is such that 2SEL ≥ the number of data inputs.  

DATA OUT: A single output, which is one of the inputs (selected by the SEL signal)  

STATUS: none   
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 Circuits use MUXes when they need to make decisions. The general hardware approach to 
decision making is to generate valid values of all MUX inputs and then select one of the values 
as an output to the MUX.  

 The width of the data inputs and data outputs generally match 

 MUXes can have almost any number of inputs (greater than one); the constraint is: 

2(width of SEL) ≥ the number of data inputs 

Figure 28.23: The MUX Foundation Module overview. 
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Comparator 

The comparator is a combinatorial circuit that generates an equality-type relationship between the two inputs. The 
comparator has outputs of EQ (equal), LT (less than), and GT (greater than) which are characteristics of the 
relationship between the two input. The comparator’s two input values are typically bundled values of equal width.   

 Comparator: Device Summary 
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DATA IN: A, B. the two bundled values to be compared. 

CONTROL: none  

DATA OUT:: none  

STATUS: EQ (A=B), LT (A<B), GT (A>B) 

U
sa

ge
  Circuits use comparators when they need to establish equality relationships between two number 

 The data width of the two inputs is generally the same 

 When appearing in circuits, comparators don’t need to include every status output  

Figure 28.24: The Comparator Foundation Module overview. 

 

  



Free Range Digital Design Foundation Modeling  DDFM Cheatsheet 

 

 - 487 -  

 

Generic Decoder 

The generic decoder is a combinatorial circuit that establishes a functional relationship between the module’s data 
inputs and data outputs. The generic decoder is a digital circuit implementation of a look-up-table (LUT). The 
generic decoder’s inputs and outputs are hard to classify because inputs can include data and/or control and 
outputs can contain at and/or status. We thus describe this circuit using the DATA IN input for all the inputs 
(whether they be data or control) and the DATA OUT for all outputs (whether they be data or status). Both DATA  
IN & DATA OUT can be bundles or single bits, which allows us to classify basic logic gates as generic decoders.  

 Generic Decoder: Device Summary 
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DATA IN: DATA; the function’s independent variables 

CONTROL: none  

DATA OUT: DATA; the function’s dependent variables 

STATUS: none 
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 Circuits use generic decoders:  1) as true LUTs where we havepre-calculated values (DATA 
OUT) indexed by DATA IN, or 2) as a replacement for logic functionality 

 Generic decoder DATA IN & DATA OUT data widths must be at least one bit 

 You must include a adequate description of a generic decoder if you use it in a circuit 

Figure 28.25: The Generic Decoder Foundation Module overview. 
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Standard Decoder 

The standard decoder is a combinatorial and is a subset of generic decoders. The standard decoder has a special 
relationship between the SEL inputs and the outputs. The number of single-bit outputs = 2   . The output 
bits have either a one-hot (only one output bit is set) or one-cold (only one output bit is cleared) form. We often 
describe standard decoders using the notation: 1:2, 2:4, 3:8, 4:16, etc.  

 Standard Decoder: Device Summary 
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DATA IN: none. 

CONTROL: SEL; selects the form of the output 

DATA OUT: none 

STATUS: Sx; the set of outputs in one-hot or one-cold form 
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 Circuits use standard decoders when they need to select only one of several outputs to actuate 

 Standard decoders are a subset of generic decoders 

Figure 28.26: The Standard Decoder Foundation Module overview. 
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Parity Generator 

The parity generator is a combinatorial circuit that establishes a given parity for the aggregate combination of the 
DATA inputs and PAR output. In other words, the parity generator assigns the parity bit such that the DATA & 
PAR bits are either odd or even parity. Parity “checkers” circuits are similar to parity generators, where the PAR 
output indicates the DATA bits are either odd or even parity.   

 Parity Generator: Device Summary 
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DATA IN: data used for establishing parity 

CONTROL: none  

DATA OUT: none  

STATUS: PAR bit provides information regarding the parity of the DATA IN bits, which the 
circuit can then use to establish a given parity 

U
sa

ge
 

 Circuits use parity generators when they need to: 1) establish the parity of the DATA IN bits, 
or 2) when they need to include a bit with DATA IN to ensure the aggregate set of bits 
(DATA IN & PAR) is of a given parity  

 The notion of parity is also associated with a serial stream of bit; in this case, the circuit must 
have some mechanism to store the DATA IN bit stream 

Figure 28.27: The Parity Generator Foundation Module overview. 
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Registers 

The register is a sequential circuit that to stores bits of data. Registers generally store multiple bits of data; we refer 
to a 1-bit register as a flip-flop. The register’s load control input (LD) enables the register to load the input data to 
the register; the register synchronizes this loading with the active edge (rising or falling) edge of the CLK signal. 
Any data loaded to the register appears on the register’s OUT_DATA output after a given propagation delay. 
Registers also have inputs such as CLR, which clears each of the bit storage elements in the register. Signals such 
as CLR are often asynchronous, which means the given action occurs immediately upon asserting the CLR signal.  

 Register: Device Summary 
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 DATA IN: data to be synchronously loaded into the register.  

CONTROL: CLK, LD, CLR; The CLK signal synchronizes the loading of data into the register, 
which happens when both an active clock edge occurs when the LD input is asserted. The CLR 
input clears each bit storage element in the register (can be either synchronous or asynchronous).  

DATA OUT: the data previously loaded to the register.  

STATUS: none 
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 Circuits use registers when they need to store values 

 Register loading is always synchronous, while clear-type inputs can be either asynchronous of 
synchronous depending upon design requirements 

 A register is a primary component of an accumulators (an RCA is the other component) 

Figure 28.28: The Register Foundation Module overview. 
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Counters 

The counter is a sequential circuit and is essentially a special type of register, which means it retains all the control 
inputs associated with a register. The register’s load control input (LD) enables the register to load the input data 
to the register; the register synchronizes this loading with the active edge (rising or falling) edge of the CLK 
signal. The counter as the ability to count up (adds ‘1’ to stored value) or count down (subtracts ‘1 from stored 
value). As with the LD signal, changes to the stored register value are synchronized with the active clock edge. 
Counter typically have inputs such as CLR, which serves to clear each of the bit storage elements in the register. 
Counter also have inputs such as CLR, which clears each of the bit storage elements in the register. Counters 
generally automatically “roll over” when they reach their terminal values, which means that the count transitions 
from its maximum value to zero when counting up and from zero to its maximum value when counting down.  

 Counter: Device Summary 
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DATA IN: parallel data for synchronous loading.  

CONTROL: CLK, LD, CLR, UP, DOWN, HOLD. The CLK signal synchronizes the loading 
of data into the register and the changing of the count, which can either be up or down as 
controlled by the UP, DOWN, & HOLD signals. The LD signal controls the synchronous 
loading of new data into the register. The CLR input clears each bit storage element in the 
register either synchronously or asynchronously.  

DATA OUT: OUT_DATA; the data previously stored in the circuit and possibly modified as 
loaded to the register. The OUT_DATA signal is the “count” value of the counter.  

STATUS: RCO; establishes when the counter outputs are at the counter’s terminal value, where 
the terminal value depends on the count direction.  
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 Circuits use counters primarily in two ways: 1) to keep track of how many times something 
has happened (event counter), or 2) to ensure a circuit does some action a given number of 
times 

 There is flexibility in the UP, DOWN, & HOLD functionality as the circuit design requires 

 The RCO signal is count direction dependent 

 Not all counter implemenations require the entires set of inputs & outputs 

 The DATA IN & DATA OUT data width are equivalent 

Figure 28.29: The Counter Foundation Module overview. 
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Shift Registers 

The shift register is a sequential circuit that is a special type of register. The register’s SEL input choose operations 
such as loading of the DATA_IN value to the register, holding, and various flavors of left and right shifts. Most 
operations are typically synchronous, though the CLR input is often asynchronous. The DBIT signal serves as the 
new input bit for shift operations, namely the new MSB for right shift or the new LSB for left shifts. We refer to 
shift registers that do more than one operation as universal shift regsiters (USRs).  

 Shift Register: Device Summary 
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DATA IN: DATA_IN is the multibit signal to be loaded into the shift regsiter; DBIT is the single 
bit of that becomes the new left-most or right-most bit of the stored value for right or left shifts, 
respectively 

CONTROL: CLK, CLR, SEL. The SEL input selects the functionality of the shift register. 
Typical shift registers include hold, load, shift-left, and shift-right functionality. The CLK signal 
synchronizes the loading of data into the register, as well as both left and right shifts. The CLR 
input clears each bit storage element in the register either synchronously or asynchronously.  

DATA OUT: OUT_DATA; the data stored in the shift register.   

STATUS: none 
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 Circuits use shift registers when they require 1) fast division by two (right shift) or fast 
multiplication by two (left shift), or 2) when they requires special shift-type bit manipulation  

 DATA_IN & DATA_OUT bit widths always match 

 A shift register is a special type of register 

Figure 28.30: The Shift Register Foundation Module overview. 
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Random Access Memory (RAM) 

The RAM is a sequential circuit that allows for the storage of large amounts of data relative to registers. RAM 
contains three types of input/output signals: address, data (input and output), and control. The IN_DATA signal is 
the data that will be written to the RAM; the OUT_DATA is the data that is read from RAM. All data reads and 
write occur at the RAM location specified by the address inputs. The value of the control signals allow the data 
reads or writes. While memory modules often have many control signals, we only consider a CLK and a WE 
(write enable) signal in order to simplify this description. Reading data from the RAM is an asynchronously 
operation; writing to the RAM is a synchronous operation. Read Only Memories (ROMs) have most of the same 
features of a RAM except for the WE signal. Additionally, reading from ROMs can either be synchronous or 
asynchronous.  

 RAM: Device Summary 
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DATA IN: data to be synchronously written to RAM.  

CONTROL: CLK, WE, ADDR; The CLK signal synchronizes the writing of data to the RAM; the 
RAM stores the value of IN_DATA at the address associated with the value of ADDR on the active 
clock edge (synchronously) when the WE signal is asserted. Data read from RAM is asynchronous; 
data appearing on OUT_DATA is the data associated with the ADDR input.   

DATA OUT: OUT_DATA; the data currently stored in the shift register.   

STATUS: none 
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  Circuits use RAMs when they requires a significant amount of easily accessed data storage 

 DATA_IN & DATA_OUT always have the same data widths 

 In any given clock cycle RAMs either write or read, but not both 

Figure 28.31: The RAM Foundation Module overview. 
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Finite State Machine (FSM) 

The FSM is a sequential circuit that controls other digital circuits. The FSM reacts to status inputs and issues 
appropriate control outputs. The FSM’s control inputs are “status” outputs form other digital modules, while the 
FSM’s status outputs become “control” inputs to other digital modules. The FSM uses the value of the status 
inputs to transition through the various states of the FSM on the active edge of the CLK signal. The control outputs 
can either Moore (outputs a function of state only) or Mealy-type (outputs are a function of both state and status 
inputs).  

Diagram  Input/Output 

 

Data In: none  

Inputs: CLK, status; The CLK signal synchronizes state transitions of 
the FSM; status inputs are the status outputs of modules external to the 
FSM. Status input values determine the FSM’s state transitions.  

Outputs: control; circuit elements external to the FSM use the control 
outputs to facilitate data handling; control outputs can be either Mealy 
or Moore-type. Mealy-type outputs are a function of present state and 
external inputs, while Moore-type outputs on a function of present state 
only.  

Status Out: none  

 

 

Figure 28.32: The Finite State Machine. 
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Digital Designer Foundation Model Cheatsheet 

  Circuit Diagram Data IN Control IN Data OUT Status OUT 
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Digital Design Dictionary 
 

-A- 

ABEL: An early hardware description language (HDL); 
it’s still used today but it’s tough to find someone who 
would admit to using it. 

Absolute Time: A term used to describe one of two 
methods used to represent time in simulations. Absolute 
time refers to the notion that all references to time are 
based on an “absolute” number, such as the beginning of 
the simulation. Simulations can also use relative time (see 
“relative time”). 

Academic Administrators: A term referring to alien D-
bags representing the largest obstacle to actual learning in 
academia.  

Academic Exercise: Any amount of work that looks good 
and keeps you busy but actually has no meaningful 
purpose in life in general.  

Academic Purposes: Any process or endeavor that 
requires time but has no real lasting meaning or lasting 
effect. 

Academic-Types: That special type of person who is 
intent on being successful in academia at any cost and 
without regards to anyone or anything they damage in the 
process. The hallmark of an academic-type student is that 
they gets good grades but typically don’t know squat. The 
hallmark of an academic-type teacher is the one who 
generally places little or no effort into teaching; they 
primarily forcus their efforts advancing their careers 
(which in modern academia has nothing to do with 
providing quality teaching). The hallmark of an academic 
administrator are the ones who do nothing while placing 
amazing amounts of efforts into justifying their overpaid 
academic existence. 

Academonic: The rallying cry for those who dare to 
expose the endemic corruption in academia.  

Action State: The voltage level of a signal associated with 
notion that some action should take place when the signal 
is at this level; same as “active state”. 

Active Edge: A term that refers to either a “0→1” 
transition (rising edge) or a 1→0” transition (falling edge) 
of a signal that synchronizes changes in a circuit’s state. 

Active State: The voltage level of a signal associated with 
notion that some action should take place when the signal 
is at this level; same as “action state”. 

ADC: An acronym representing analog-to-digital 
conversion; (see “Analog-to-Digital Conversion”).  

Addend: A number added to another number to form a 
sum. 

Adder: A generic term referencing a device that adds 
numbers. There are many forms of adders in digital 

design, each with their own set of characteristics. 

Address Lines: A set of signals associated with an 
address. Most often, address lines are associated with 
memory devices, with the address lines being one of the 
three types of signals associated with memory (data and 
control lines are the other two). In this case, the address 
lines provide an index into the memory to read from or 
write to that particular memory location. 

Adjacency Theorem: One of the basic theorems 
associated with Boolean algebra. This theorem facilitates 
the use of Karnaugh Maps to reduce Boolean functions. 
We sometimes refer to this theorem as the Combining 
Theorem. 

Administrator: A person who purposely creates problems 
and/or purposely prevents others from solving existing 
problems. And if you manage to solve known problems 
despite the efforts of administrators, they attempt to claim 
credit for your efforts. 

Algebra: A mathematical system used to generalize 
arithmetic operations by using letter or symbols to stand 
for numbers based on rules derived from a minimal set of 
basic assumptions. 

Algorithm: A step-by-step procedure for solving 
problems including the notion that you can solve the 
problem in finite number of steps. 

ALU: An acronym referring to the arithmetic logic unit; 
(see “arithmetic logic unit”). 

Analog vs. Digital: The term digital refers to items that 
are discrete in nature while the term analog refers to items 
that are continuous in nature. The world we live in is 
primarily analog, but computers are primarily digital. 
Digital design allows the successful interaction between 
computers the analog world. 

Analog: A description of something that (such as a signal 
or data) that we express by a continuous range of values. 
The continuousness of analog implies that there are an 
infinite number of possible values in the given range. 

Analog-to-Digital Conversion: A term that describes the 
translation of a signal represented by a single voltage level 
(analog) to a signal represented by a given number of bits 
(digital). The term ADC is a shorthand representation of 
analog-to-digital conversion. 

AND Plane: A structured array of logic that allows for the 
combination of Boolean variables and/or function outputs 
in such a way as to form product terms of Boolean 
functions. 

AND/NOR Form: One of the basic eight logic forms 
based but not commonly used in digital design. We derive 
this form from OR/AND form (POS form) by excessive 
use of DeMorgan’s theorem. 
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AND/OR Form: One of the basic eight logic forms and 
one of the most popular four ways to describe a circuit 
using either Boolean equation or the circuit model of the 
associated Boolean equation. We also refer to this form as  
sum of product form or SOP form. 

Annotations: This word relates to “notes”. Any time 
you’re describing something, you should include as many 
annotations as possible. Good designers always include 
annotations with timing diagrams, block diagrams, state 
diagrams, and circuit schematics. 

Architecture (VHDL): The part of a VHDL model that 
describes the operational characteristics of a circuit. The 
architecture pairs with the VHDL entity to model a digital 
circuit. 

Architecture: A term that refers to the structure of a 
device; in particular, the modules contained in that device 
and how those modules are connected. In the context of 
digital hardware, the architecture of circuit describes the 
individual modules of a circuit and the connection 
between the modules. 

Arithmetic Logic Unit (ALU): The ALU is generally a 
datapath submodule, which in turn is a submodule of 
CPU. The ALU performs all standard bit operations such 
as arithmetic and logical operations (and shifts and any 
other way you can think of to tweak bits). The ALU 
typically generates status of various operations (zero, 
negative, overflow, carry, pointlessness, parity, etc.) 
which are individual bits stored outside of the ALU. 

Arithmetic Shift: A shift register operation on signed 
binary numbers that protects the sign of the shifted 
number. Arithmetic shifts include both left and right 
shifts. 

Arithmetic Unit: A term describing one of the main sub-
modules of an arithmetic logic unit (ALU). The arithmetic 
unit generally handles operations that can be classified as 
“arithmetic” in nature such as addition, subtraction, 
multiplication, etc. 

Assemblers: A software program that translates assembly 
language programs into machine code.  

Assembly Language Program Parts: There are three 
types of information found in assembly language 
programs: 1) comments, 2) assembler directives, and, 3) 
assembly language instructions. 

Assembly Language: A computer language that uses 
mnemonics to represent the instructions available to the 
programmer (the instruction set) for a given computer 
architecture. The mnemonics give hints as to what the 
instruction does in terms of the underlying hardware. 
Assemblers translate assembly language programs into 
machine code by use of a software program referred to as 
an assembler. Assembly language is non-portable because 
a given computer has a finite set of assembly instructions 
specific to that computer.  

Assertation Levels: A term that references the notion that 
signal can be either negative or positive logic.  

Asserted High: A term that refers to the notion that a 
given signal is a positive logic.  

Asserted Low: A term that refers to the notion that a 
given signal is a negative logic.  

Asserted: The notion that the current state of a signal is 
associated with the action state. Whether a signal is 
asserted or not is independent of the logic level (negative 
or positive) associated with that signal.  

Assignment Operator: A symbol that represents the 
transfer of information from one expression to another. 
The characters “<=” represent the assignment operation in 
VHDL while “=” is used as the assignment operator in C.  

Asynchronous Input: An input to a sequential circuit that 
affects the circuit any time the signal is asserted as 
opposed to being synchronized to some other signal in the 
circuit such as a clock signal. 

Asynchronous: An operation that is asychrounous occurs 
independent of any clock signal in a given circuit.  

Augend: A number that adds to another number.  

Automatic Verification: A term that refers to the notion 
of a HDL testbench’s ability to discern whether a 
particular HDL model is working properly. The testbench 
designer can construct the testbench such that the 
testbench directly states whether the model is working or 
not; this is opposed to “manual verification” which is the 
other approach to HDL model verification; (see “manual 
verification”).  

Axiom: A statement that is universally accepted as true. 

-B- 

Background Task: A term describing the program code 
associated with an interrupt service routine.  

Barrel Shift: A shift operation that shifts more than one 
bit location in one clock cycle. Barrel shifts come in both 
left and right-shifting flavors.  

Base: A synonym for the radix of a given number system. 

BBD: An acronym used for black box diagram (see “black 
box diagram”). 

BCD: An acronym used for binary coded decimal; (see 
“binary coded decimal”). 

Behavioral Style: A term that refers to using behavioral 
models in HDL. 

BFD: An acronym that referring to “brute force design”; 
this is essentially a pejorative synonym for the “iterative 
design”. 

Bi-Directional Register: A term that typically describes 
registers that use the same set of signals for both inputs 
and outputs. These registers necessarily have extra signals 
the register uses to control the bi-directionality of the 
signals to prevent the condition of the signals being 
simultaneously used as both inputs and outputs. 
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Bi-Directional Signals: A term that refers to the notion 
that data can flow through a line in two directions (though 
not at the same time) rather than only one direction. Bi-
directions signals are associated with tri-state outputs 
because a given device cannot generally simultaneously 
drive a signal and read from that signal.  

Bi-Directional: A term commonly associated with signals 
in digital circuits that can support data flowing in two 
different directions, but not two different directions 
simultaneously. 

Binary Coded Decimal: Or BCD, is a number system 
that uses four bits to represent each digit in a decimal 
number. Four bits can provide up to 16 different values, 
which include digits (0-9) and sometimes alpha characters 
(A-F).  

Binary Counter: A counter that counts in a binary 
sequence. 

Binary Encoding: A term that refers to one of many 
different methods used to encode the state variables in a 
finite state machine (FSM). Using binary encoding 
minimizes the width of the state registers compared to 
other coding methods (such as one-hot encoding).  

Binary Relationship: A relationship between two entities 
where at least one of the entities utilizes a binary 
exponential relationship (or a “powers of two” 
relationship). 

Binary: A number system that uses two symbols to 
represent values. These symbols are typically ‘0’ and ‘1’ 
for digital design and computer applications.  

Bit Addressable: A term that refers to the notion that 
each bit in a memory has a unique address. More often, 
bits are only available for reading or writing as part of a 
larger chunk of data such as a word. 

Bit Mask: A term that describes a value that “selects” 
certain bit locations of a word while disregarding other bit 
locations. The disregarded bits are generally cleared by the 
bit-masking operation. Microcontrollers require bit 
masking because most operations in microcontrollers 
implement operations on the the words only.  

Bit Stuffing: A phrase used to describe the notion of 
adding extra bits to a number to increase its width without 
changing the value of the number. The stuffed bits could 
be either 1’s or 0’s depending on the signedness of the 
number.  

Bit-Banging: The process of using bit-masking in word-
based microcontrollers to use the outputs to control and/or 
communicate with external peripherals.  

Bits: A shorthand name for binary digits. 

Bit-Stream: A term that refers to a contiguous set of bits 
on a single signal over a given time period. We often refer 
to bit-streams as serial lines; (see “serial lines”). 

Black Box Diagram: A term that refers to a schematic 
based model that promiarly uses black boxes to represent 

the modules. 

Block Diagram: A modeling approach that uses boxes to 
quickly transfer high-level knowledge regarding a given 
system to a human reader of the diagram. Block diagrams 
are typically hierarchical in nature.  

Block-Style Comments: A commenting style where 
multiple lines of code can be commented by using a 
comment start delimiter and a comment end delimiter such 
as “/*”    and  “*/” in the C programming language and 
Verilog HDL. VHDL does not support block commenting. 

Bloviation: A technique used to enhance one’s particular 
image of self-importance by wasting the time of others 
who are polite enough not to say anything. Academic 
administrators find this approach useful because people 
the control are generally to scared to do anything other 
than feign interest in the speaker. 

Board-level Digital Design: A term referring to digital 
designs comprised primarily of discrete ICs populated on 
a printed circuit board and interfaced in such a way as to 
achieve a meaningful result. 

Boole, George: A 19th century mathematician who 
developed a two-valued algebra in order to mathematically 
model logical reasoning. The result of his work is Boolean 
Algebra and forms the basis of digital design. 

Boolean Algebra: An algebra developed by George Boole 
in order to mathematically model logical reasoning. 
Boolean algebra forms the basis of modern digital design. 

Boolean Equation: An equation that is uses Boolean 
algebra; we also refer to these as Boolean expressions. 

Boolean Expression: A term that refers to a Boolean 
equation. 

Boolean Variable: A symbolic value that represents one 
of two values; in digital design, these values are typically 
‘1’ or ‘0’. 

Boring: A term that describes of anything you’re not 
seeing the point of. 

Borrow: A term referring to the notion that if a larger 
number is subtracted from a smaller number, the operation 
needs to access the next highest bit outside of the upper bit 
range associated with the subtraction. The borrow 
analogous to the “carry-out” bit associated with an 
addition operation. Often times, arithmetic modules use a 
signal bit to represent both the carry and borrow with the 
actual meaning of the bit being dependent on the operation 
that generated it. 

Bottleneck: A term referring to the notion that many 
devices are attempting access a single device. If the single 
device is not able to service all of the accessing devices 
simultaneously, the accessing devices remain idle until the 
single device is no longer busy. Bottlenecks in system 
lowers the overall throughput of a system by requiring 
devices that need services to remain idle. 

Bottom-Up Design: A hierarchical design approach that 
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starts at the lowest level of abstraction and works 
upwards. In this approach, the designer basically initially 
develops low-level modules that are later used by higher 
levels of abstraction in the design. 

Buffer: A device that accepts a signal as an input and 
outputs the exact same signal without a change in logic 
levels. Circuits typically use buffers to increase a signals 
ability to drive more circuit inputs.  

Bummer: A brief description of the feeling you get when 
you find out that your precious circuit is not behaving as 
you expected it to. 

Bundle Notation: The act of showing or describing 
bundles in circuit models such as schematic diagrams and 
timing diagrams.  

Bundle: A term that refers to a set of signals that we 
arbitrarily group together in a circuit and/or timing 
diagram; these signals generally share a common purpose.  

Bus Contention: A term that describes the situation 
where more than one device is simultaneously driving a 
given signal or set of signals (such as a bus) on the same 
lines. Bus contention is a by-product of resource sharing 
in digital circuit. We avoid bus contention by using 
devices with tri-state outputs, which can effectively be 
“turned off” by unasserting the device’s enable input. 

Bus: A term that refers to a set of electrical signals that are 
grouped together because they share a common purpose. 
The term also refers to a standard data transmission 
protocol, which is why we generally refer to a group of 
signals as a bundle. 

By Inspection: A term that refers to the notion that we 
can solve some problems in our heads, thus removing the 
need for expending extra time explicitly writing down 
solutions. 

Byte Addressble: A term referring to the notion that each 
8-bit chunk of data in a memory has a unique address, and 
is thus not bit-addressable.   

-C- 

CAD: An acronym for “computer aided design”; (see 
“computer aided design”).  

Carry-Out: A bit indicating whether a “carry” has been 
generated by a digital device. Carry-out bits are generally 
associated with digital devices implementing arithmetic 
operations; carry-out bits are typically used to indicate the 
validity of mathematical operations and to allow the 
“daisy-chaining” or “cascading” of individual digital 
devices.  

Cascade: A term referring a configuration of multiple 
digital devices; devices in a cascade configuration are 
placed in a series-type configuration. This term is often 
referred to as a “daisy chain”. 

Cascadeable: A characteristic of register, particularly 
counters and shift registers, that allows the effective bit-
width of the device to be effortlessly extended by adding 

more modules to the design.  

Case Sensitive: A term that refers to the notion that the 
syntax of a specific programming language or hardware 
description language differentiates between upper and 
lower case of alpha characters. The C programming 
language is case sensitive while VHDL is not case 
sensitive (about 99.9% of the time).  

Case Statement: A statement that supports selection 
construct associated with multiple conditional statements. 
The case statement in VHDL is one of three main 
sequential statements that can appear in the body of 
process statements.  

Cave: A dark place where I spent most of my time writing 
this text. 

Central Processing Unit (CPU): The CPU is generally 
considered the part of the computer that executes the 
instructions. Typical submodules of the CPU include the 
control unit, datapath, program counter, instruction 
memory, register files, accumulators, ALUs, secondary 
memory, roach motels, etc.  

Characteristic Table: A set of data presented in a tabular 
format that describes the operation of a digital circuit. The 
term characteristic table is most often associated with the 
description of sequential circuits since they include the 
notion of “state”; (see “state”). 

Chip Enable: A signal used in digital design to “turn on” 
or “turn off” a circuit. When a device is not enabled, the 
device has a predetermined output, which must be stated. 
When the device is enabled, the device works as a normal 
device. The acronyms “CS” or “CE” are typically used to 
represent device chip enables. 

Chip Select: A term used to describe whether a specific 
input is “turned on” or “turned off”. See “chip enable” for 
a more complete description.   

Circuit Forms: A term that refers to the notion that 
digital circuits can be represented in many different ways 
associated both Boolean equation-type descriptions and 
subsequent circuit-type descriptions. The notion of “circuit 
forms” is based on the notion of functional equivalence. 

CISC: This acronym officially stands for “Complex 
Instruction Set Architecture” and is generally used to 
describe computer architectures. CISC computers 
generally have the following characteristics:  

 They contain relatively few general purpose 
registers  

 The instruction word formats are of different 
lengths  

 Instructions require a different number of clock 
cycles to complete execution  

 Some instructions in the instruction set are 
complex (meaning they can generate a 
significant amount of processing internal to the 
architecture) 

 System clock rates are generally slower than 
their RISC counter-parts.  
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Classical FSM Approach: An approach to implementing 
finite state machines (FSMs) that uses maximum reduction 
techniques with every aspect of an FSM implementation. 
The classical FSM approach can be tedious and is 
constrained by the basic limitations of Karnaugh maps. 
The “New FSM Techniques” can be applied to mitigate 
some of the constraints of this approach at the cost of “less 
reduced” Boolean expressions; (see “New FSM 
Techniques”). 

Clear Condition: A state of a storage element where the 
current value is ‘0’. This is also referred to as a “reset 
condition”; (see “reset condition”).  

Clear State: The state of a storage element or a signal 
where the current value is ‘0’. This is also referred to as a 
“reset state”; (see “reset state”). 

Clear: When used as a noun, this term refers to the notion 
that a signal or storage element has been set to ‘0’. This 
term is typically used in conjunction with sequential 
circuits; this term is synonymous with “reset”; (see 
“reset”). 

Clear: When used as a verb, this term refers to making the 
value of a signal or storage element a ‘0’. For example, 
“we use the signal to clear the register”. This term is 
synonymous with “reset”; (see “reset”).   

Clock Edge: A term that generally refers to an “active” 
edge (either the rising or falling edge) of a synchronous 
circuit. Changes in many circuit outputs are typically 
synchronized to an edge of a clock signal.  

Clock Input: A signal that is generally used to 
synchronize digital circuits. Clock signals are typically 
periodic.  

Clocking Waveform: A term used to describe an attribute 
of a waveform in that clocking waveforms are generally 
understood to be periodic in nature; (see “clocking 
waveforms”).   

CMOS: An acronym standing for: Complementary Metal 
Oxide Semiconductor. Most modern digital integrated 
circuits are created from transistors made with CMOS 
technology. 

Code Word: A phrase used to refer to a single set of 
digits that are designated as belonging to a given set of 
other sets of digits that form a given code.  

Code-Word: A term sometimes used to describe the 
obtainable count values in a counter.  

Coding Style: A term that refers to the notion that the 
syntax rules of a language allow you to write viable code 
that can have about any form. There are accepted forms of 
coding style for every language; following these coding 
styles will make your code more readable and 
understandable to human readers of your code not unlike 
yourself.  

Combinatorial Logic: Digital logic that does not have 
memory, or the ability to store the values of bits.  

Combinatorial Process: One half of a two-process 
approach to modeling finite state machines (FSMs) using 
VHDL; the other half of the FSM model is the 
“synchronous process”; (see “synchronous process”). The 
combinatorial process is responsible for modeling both the 
“next state decoder” and the “output decoder” in the 
standard FSM model; both of these decoders are generally 
implemented using combinatorial circuits.  

Combinatorial vs. Sequential Circuits: The outputs of a 
combinatorial circuit are a function of the current inputs 
while the outputs of a sequential circuit are a function of 
the combination of past inputs. Stated differently, 
combinatorial circuits do not have the ability to 
“remember” bits while sequential circuits are able to store 
values and are this considered to have memory.  

Combining Theorem: One of the basic theorems 
associated with Boolean algebra. This theorem facilitates 
the use of Karnaugh Maps to reduce Boolean functions. 
This theorem is sometimes referred to as the “Adjacency 
Theorem”. 

Comments: A term that refers to text appearing in code 
that is ignored by the compiler or synthesizer. Comments 
in VHDL are designated by two consecutive dashes; all 
text after these dashes is ignored by the entity interpreting 
your code. Comments are generally used to explain 
portions of code that are not patently obvious to provide 
history-type information regarding the particular file.   

Compact Maxterm Form: A form that describes a 
Boolean function by listing the truth table entries that have 
outputs of ‘0’ in terms of the decimal index into the 
associated with that particular row of the truth table. This 
form uses the capital PI summation signal. 

Compact Minterm Form: A form that describes a 
Boolean function by listing the truth table entries that have 
outputs of ‘1’ in terms of the decimal index into the 
associated with that particular row of the truth table. This 
form uses the capital Greek summation signal.  

Comparator: A digital device that compares two signals 
and determines whether they are equal or not; the two 
signals can be either single signals or bundles. 
Comparators are typically referred to as “n-bit 
comparators which indicates the width of the input 
signals; outputs of comparators typically include 
information about the two inputs such as equality, less-
than, and/or greater-than. Comparators are one the 
standard digital circuits used in digital design. 

Compiler: A computer program that translates higher-
level language code into machine code. Compilers 
generally also produce assembly language code listings 
which are specific to the target computer.  

Complementary Outputs: A term used to describe two 
outputs of a circuit that always represented inverted 
versions of each other. The various flavors of flip-flops 
typically have complementary outputs.  

Computationally Expensive: A term that describes the 
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notion of there being a “cost” associated with computer 
operations. All operations performed by digital circuits 
require a given amount of time to complete, but not all 
operations are equivalent. For example, it is more 
computationally expensive to generate the square root of a 
number than it is to decrement a number; this is due to the 
fact that the square root operation will require more steps 
to complete than a decrement based on the application of 
an underlying algorithm used to implement the two 
operations.  

Computer Aided Design (CAD): The act of using a 
computer to automate or simplify the design process. Or, a 
design that is in some part completed by use of a computer 
and associated software. 

Computer I/O: One of the three main subsections of a 
computer that allows the computer to interact with the 
outside world.  

Computer: Any electronic device that reads instructions 
from memory and carries out those instructions on data. A 
given circuit can officially be labeled a compute if it has 
the three main components of a computer: memory, CPU, 
and I/O.  

Concurrency: The notion of two or more things occurring 
at the same time. Concurrency is one of the underlying 
factors in VHDL in that many of the statements in VHDL 
are interpreted as being concurrent in that they can 
describe multiple hardware entities that work in parallel, 
and thus supporting the concept of parallelism.  

Concurrent Signal Assignment:  A term that refers to 
four types of statements in VHDL that in interpreted as 
occurring at the same time. The four types of concurrent 
signal assignments, or CSA, are signal assignment, 
selective signal assignment, conditional signal assignment, 
and process statements. 

Configurability: The ability of a device to select one of 
several pre-set options as to internal and/or external 
operations of the device.  

Conspicuous Consumption: A term coined by Thorstien 
Veblem that describes the pecuniary motivations of 
modern society.  

Context Restoration: A term describing what a CPU 
does upon completion of servicing an interrupt. In this 
case, context restoration refers to the notion that the CPU 
must return to the state it was in (flags, registers, etc.) 
before the CPU executed the interrupt service routine.  

Context Saving: A term that describes what a CPU must 
do when an interrupt is acted upon. The general notion is 
that interrupts are asynchronous and can occur while the 
CPU is executing some important piece of code. In this 
case, the CPU will save the current state of the CPU 
(flags, registers, etc.) before processing executing the 
interrupt service routine.  

Control Lines: A set of signals associated with 
controlling a device. Most often the notion of control lines 
is associated with memory devices, with the control lines 

being one of the three types of signals associated with 
memory (address lines and data lines are the other two). In 
this case, the control lines provide mechanism to read and 
write from the memory. 

Control Signals: These are signals represented as outputs 
from a controlling device and as inputs to a device being 
controlled. Finite state machines (FSMs) are typically 
used as controllers and contain both control outputs and 
status inputs.  

Control Tasks: A set of functionality that performs a 
specific set of duties and can be described independently 
of other sets of functionality; these sets of functionality are 
designed to perform the duties of controlling specific 
entities. In terms of digital design, control tasks are 
typically implemented with microcontrollers or finite state 
machines (FSMs).  

Control Unit: A term describing one of the sub-modules 
of a central processing unit (CPU). The control unit is 
generally responsible for controlling the sequencing of 
processing associated with the datapath in order to obtain 
the desired result.  

Controller: A circuit that is used to control another 
circuit. Controller circuits generally have both status 
inputs (status signals) that allow the controller to know the 
state of the circuit it controls and control outputs (control 
signals) which are used to directly control some external 
circuitry. Finite state machines (FSMs) are typically used 
as controller circuits.  

Count Enable: A signal used to allow a counter to count 
when asserted or disable counting when not asserted.  

Counter Design: The notion of designing a sequential 
circuit that represents a counter. Finite state machines 
(FSMs) are often used to design simple counters; more 
complex counters can typically be easily modeled in 
VHDL.  

Counter Overflow: The notion of a counter being 
incremented beyond its ability to represent values; unless 
otherwise stated, overflow is generally characterized as 
the counter transitioning from its largest representable 
value to its smallest value. 

Counter Underflow: The notion of a counter being 
decrement beyond its ability to represent values; unless 
otherwise stated, underflow is generally characterized as 
the counter transitioning from its smallest representable 
value to its largest representable value.  

-D- 

D Flip-flop: A shorthand notation for a “data flip-flop”; 
(see “data flip-flop”). 

Daisy Chain: A term referring a configuration of multiple 
digital devices; devices in a daisy chain configuration are 
placed in a series-type configuration. This term is often 
referred to as a “cascading”. 

Data Flip-flop: A flip-flop that changes the output state 
when the “data” input to the flip-flop is at a different value 
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than the output of the flip-flop and an active edge occurs 
on the clocking input the circuit. The “next state” of a D 
flip-flop is a function of the D input only. 

Data Inputs: These are the signals on a MUX that can 
appear on the MUX’s outputs. The MUX will choose 
between one of the data inputs to be the output of the 
MUX. 

Data Lines: A set of signal associated with some data. 
Most often the notion of data lines is associated with 
memory devices, with the data lines being one of the three 
types of signals associated with memory (address and 
control lines are the other two). In this case, the data lines 
provide a path for the data associate with the memory. 
Flavors of data lines include input data line, output data 
lines, and bi-directional data lines. 

Data Selection Inputs: The signal on a  MUX that are 
used to determine which of the MUX’s data inputs will 
appear on the MUX output.   

Data: The notion of data is an undefined set of bits (‘1’s 
and ‘0’s). Once a definition is given to these bits, the data 
officially becomes information. Once the data is classified 
as information, the data typically takes on other names 
such as “address”, “control”, “state”, “op code”, etc. 

Datapath: A term describing one of the main submodules 
of a central processing unit (CPU). The datapath handles 
the crunching of numbers including mathematical and 
logic-type operations. The main component in the 
datapath is the arithmetic logic unit (ALU). 

Datapath: The hardware module that is generally 
considered to do the number crunching associated with 
instructions. Submodules of the datapath generally include 
the ALU, register file, accumulator, various selection 
logic, etc.   

Debugger: A tool used to remove errors from hardware of 
firmware designs. Debuggers are generally associated with 
software and firmware development, but they are 
appropriately can be used to debug circuit designs as they 
often need help also.  

Debugging: The act of removing errors from designs 
including hardware, firmware, and software.  

Decade Counter: A counter that counts in a binary coded 
decimal (BCD) sequence.   

Decimal: A number system that uses ten symbols to 
represent quantities. These symbols are typically ‘0’, ‘1’, 
‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, and ‘9’.  

Decoder: A combinatorial (or non-sequential) digital 
device that establishes a functional relationship between 
the device input(s) and output(s). There are two general 
types of decoders: generic decoders and standard decoder. 
Standard decoders are a subset of generic decoders.  

Decrement: An operation typically associated with 
counters where ‘1’ is subtracted from the current value 
being stored by the counter. 

DeMorgan’s Theorem: One of the basic theorems in 
digital design; this theorem is used to simplify circuits, 
generate other function forms, and design advanced 
bowling balls.  

DeMorganize: A verb that refers to the act of applying 
DeMorgan’s theorem. 

Digital Self-Flagellation: A medical term describing the 
condition associated with performing excessive amounts 
of digital design. 

Digital: A description of a something (such as a signal or 
data) that is expressed by a finite number of discrete 
values (or states). These discrete values include the entire 
“range” of possibilities, but does not include any of the 
“in-between” values. 

Diminished Radix Compliment: A term that refers to a 
standard but not common method of represented signed 
binary numbers where the left-most bit in the set of 
number is considered the sign bit and the other bits are 
considered the magnitude bits. This term is often listed as 
DRC.  

Dinosaurs: A aptly descriptive term for old professionals, 
particularly people who claim to be teachers.  

Diode: A two-terminal semiconductor device formed from 
placing an n-type material on a p-type material, thus 
forming a “PN junction” which has many delightful 
characteristics. 

Direct Polarity Indicators: The use of parenthetical 
values (H) or (L) to indicated the logic level associated 
with a given signal. 

Display Multiplexing: An approach typically used by 
LED-based 7-segment displays that allows the driving 
device to control many digits without dedicating a signal 
to each LED in each segment. The general approach is to 
connect each type of segments with one signal and give 
each individual display an on/off control. Using this 
configuration, display multiplexing only actuates one 
display at a time, but does so at a rate that makes it appear 
as if all displays are on at the same time. Multiplexing 
works for humans because of the notion of retinal 
persistence.  

Distance: A term used to characterize the difference 
between two binary numbers; the distance between two 
binary numbers is defined as the minimum number of bits 
of one number that must be toggled in order to equal the 
second number. 

DMUX: A special type of decoder; this term is sometimes 
used in digital design-land but does not have a solid 
definition. DMUXes, whatever they are, can be considered 
a special type of decoder 

Don’t Care Transition: A term that refers to a state-to-
state transition in a finite state machine (FSM) that occurs 
independently of any conditions in a given FSM. These 
transitions are often referred to as unconditional 
transitions.  
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Don’t Cares: A slang but common term used to describe 
input combinations associated with Boolean functions as 
not having specified outputs. This term is derived from the 
fact that the given input variable combination will never 
occur so the output does not matter (thus, you “don’t 
care”).  

Down Counter: A counter that counts only in the “down” 
direction (count value becomes less). 

DPI: An acronym used for “direct polarity indicator”; (see 
direct polarity indicator).  

DRC: An acronym referring to diminished radix 
compliment; (see “diminished radix compliment”).  

Driving the Bus: A term associated with digital circuits 
that share routing resources. In these circuits, only one 
device at any given time can output its information to the 
shared resource. The actual device outputting this 
information is referred to as the device that is “driving the 
bus”.  

Dumbtarted: A term applied to technical people who go 
through life with blinders on; these people typically go 
into management (or administration in an academic 
setting) due to their complete lack of technical 
competence and ongoing reluctance and/or inability to 
learn new and useful things.  

DUT: An acronym referring to “device under test”; (see 
“device under test”).  

Duty Cycle: A term used to describe the percentage of a 
period that a given signal is in a “high” state. This term 
always refers to a periodic signal.  

Dynamic hazard: A type of hazard associated with the 
condition where the output is expected to change value 
(non-static).  

Dynamic logic hazard: A type of hazard based on the 
changing of one input variable (the “logic” part) where the 
output is expected to change value (the “dynamic” part).  

-E- 

Elementary Operation: A basic operation performed by a 
sequential circuit. Elementary operations are most often 
spoken of in terms of registers. Typical operations 
performed by registers include loading (generally a 
parallel load), setting (sets all bits in register), clearing 
(clears all bits in register), shifting/rotating (specifically 
for shift registers), and incrementing/decrementing 
(generally for counters).  

Enable Signal: A signal that controls the general 
operation of a circuit in a manner such the circuit outputs 
are active when the enable signal is asserted and inactive 
when the enable signal is not asserted.  

Engineer: A person who solves problems and strongly 
shuns worthless administrative tasks. 

Engineering Notation: An approach to representing 
numbers that uses both numerical and exponential parts. 
The numerical part of the number typically contains both 

an integral and fractional part. The exponential part of the 
number is represented as ten raised to powers that are even 
divisible by three. Often times the exponential portion of 
the notation is replaced with suffixes that indicate the 
particular value of three.  

Enumeration Type: A feature in higher-level computer 
and hardware description languages and allow users to 
define their own types in the models they generate. 
Enumeration types generally allow you to specify how the 
types are represented internally, but you must explicitly 
state this desired representation or one will be assigned for 
you.  

Equivalence Gate: Another name for an XNOR gate; see 
“XNOR gate” for a full definition. 

Error Condition: A condition in a cirucit that is not 
correct. This may be an ongoing condition such as a bug 
or a temporary condition such as a glitch. The condition 
may also be permanent or intermittant.  

Error Correction: A reference to the ability to correct 
one or more errors. Digital circuits can be designed to 
detect errors, and, if errors are detected, they can correct 
errors. Error correction circuits generally include “extra” 
bits along with the “standard” bits (and associated 
circuitry) in order to detect errors and subsequently correct 
errors.  

Error Detection: A reference to the ability to detect one 
or more errors. Digital circuits can be designed to detect 
errors; “parity generators” and “parity checkers” are two 
common digital circuits used to detect error(s) in a set of 
bits. Error detection circuits generally include “extra” bits 
along with the “standard” bits (and associated circuitry) in 
order to detect errors. 

Even Parity: A condition that describes a characteristics 
regarding a set of bits; in particular, whether a set of bits 
has an even number (or zero) number of bits of value ‘1’.  

Excitation Table: A set of data in a tabular format that 
describes the operational characteristics of a digital 
storage element. In particular, excitation tables describe 
the input conditions required to attain a given state 
change.  

EXNOR Gate: A less common name for an XNOR gate; 
see “XNOR gate” for a full definition.  

Expression: A set of items such as variables and constants 
that are combined via operators according to a known set 
of rules and used to generate another value by the process 
of evaluation of the expression.  

-F- 

Factory Programmed: A term referring to a device that 
contains connections that are made (or not made) on the 
silicon level; mask programmability is often referred to as 
“factory programmed” as it is generally done at the 
associated fab (IC fabrication facility). 

Falling Edge: A “10” transition of a given signal that is 
typically used to synchronize some other action in a 
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circuit. . 

Falling-Edge Triggered: A term used to describe the 
notion that changes in a circuit are synchronized to a 
“falling edge” of some signal in the circuit. This term is 
often abbreviated as “FET”.  

Fast Division: A term describing a circuit that performs a 
division operation in a relatively fast manner. Shift 
registers are widely known for the ability to perform fast 
division (right shifting) at the cost of including a 
truncation in the operations.  

Fast Multiplication: A term describing a circuit that 
performs a relatively fast multiplication operation. Shift 
registers can typically perform fast multiplication 
operations (left shifting) at the cost of a loss of precision 
on the lower order bits due to the fact that 0’s are stuff in 
the lower order bits. Fast multiplication in shift registers 
are limited to multiplying by powers of two. 

FET: An acronym referring to “falling-edge triggered”; 
(see “falling-edge triggered”).  

Field Programmable Gate Array: A logic device that 
can be programmed to implement many aspects of a 
digital circuit. Usually referred to as FPGAs, these devices 
can be quite large and complex on a low level. Modern 
FPGAs have complex architectures and include standard 
internal devices such as memory, CPUs, specialized 
arithmetic circuits, etc. as well as a buttload of routing 
resources.  

Finite State Machine (FSM): An abstract machine that 
defines a finite set of states, actions performed in those 
states, and a set of rules defining how the machine 
transitions from state to state. FSM are generally classified 
as either Mealy or Moore machines. FSMs are one of two 
major hardware devices that are typically used to control 
other hardware entities. In these cases, FSM inputs are 
considered status inputs while FSM outputs are considered 
control outputs.  

Firmware: Firmware is a computer program that is 
written to run on a specific piece of hardware and is thus 
often associated with embedded systems. Firmware does 
not refer to the language-level in which the program is 
written thus can be written in machine code, assembly 
code, or a higher-level language. 

First Five Things for a New CPU: When you first 
examine a new CPU, the five things you should initially 
examine are 1) the programmer’s model, 2) the instruction 
set, 3) the interrupt architecture, 4) the memory model, 
and 5) the I/O architecture.  

Flat Design: A term used to describe VHDL models that 
do not use a structural modeling approach. Flat designs are 
inherently non-hierarchical in nature. 

Flicker: An issue associated with display multiplexing 
where the multiplexing rate is slow enough for humans to 
note that displays are not “always on”.  

Flip-Flop: A classic sequential circuit that is functionally 

a synchronous 1-bit storage element. Changes in flip-flop 
state are synchronized to an edge input to the circuit 
(generally a clock signal). Flip-flops are also considered 
synchronous latches and 1-bit registers. The main types of 
flip-flops are D (data), T (toggle), and JK (who the heck 
knows) flip-flops. 

Flowchart: A diagram that uses a few distinctive symbols 
to model the program flow associated with an algorithm. 
Computer programmers use flowcharts as an aid to 
program design and/or documentation support. Flowcharts 
can and should be hierarchical in nature when appropriate. 
The hardware analogy to a flowchart is the black-box 
diagram.  

Forbidden State: A condition in a sequential circuit that 
is generally not allowed to happen to ensure an arbitrary 
characteristic of that circuit. 

Foreground Task: A term used to describe the program 
code associated with the main loop in a program. The 
foreground task is generally all the code that is not 
initialization code or interrupt service routine code.  

FPGA: An acronym for “field programmable gate array”; 
(see field programmable gate array). 

Fractional Portion: A phrase referring to the digits on 
right side of the radix point. 

Fragile: A label attached to code that is unmaintainable. 
Fragile code breaks if you attempt to modify it, hence the 
name fragile. The roots of fragile code are a complete lack 
of planning of the code as well as modifications made by 
people who don’t know what the f**k their doing. 

Frequency: The number of times a signal changes state in 
a given time period. If that time period is one second. 

FSM Analysis: The act of using a given sequential circuit 
to generate an associated state diagram.  

FSM Design: The act of generating a sequential circuit 
that can be used to solve a given problem. FSMs can be 
designed from a word descriptions, timing diagrams, or 
state diagrams.  

Fun Stuff: A synonym widely used for anything having to 
do with digital design.  

Function Forms: A common term used to describe the 
notion that Boolean expressions or functions can appear 
completely different but provide equivalent outputs for a 
given set of inputs. 

Function Forms: A reference to the fact that a given 
Boolean function can be represented in many different 
ways; each of these ways are considered functionally 
equivalent. There are many standard function forms out 
there, two of which are SOP and POS forms. 

Function hazard: A hazard that is present due to the 
simultaneous changing of two or more input variables for 
a given circuit.  

Function Realization: The notion of “realization” in 
digital design essentially means that you did something. A 
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function realization would typically be a Boolean 
equation-based solution to a given problem.  

Function: In digital design, a function is an equation that 
describes an input/output relationship of a module in terms 
of digital logic. 

Functionally Complete: The notion a given logic gate 
can perform each the three main logic functions: AND, 
OR, and inversion. NAND and NOR gates are 
functionally complete while AND, OR, XOR, and XNOR 
are not.  

Functionally Equivalent: The condition that exists when 
various function representations describe the same 
input/output relationship. This can be thought of as 
different ways of saying the same thing.  

Functionally Equivalent: Two Boolean equation forms 
that provide the same output for a given set of inputs 
despite the fact that the equations are different.  

Fuse Blowing: A term that refers to the act of removing 
the connection between two signals. The term “blowing a 
fuse” means that a previously made connection has been 
purposely removed. The notion of having fuses is one of 
the mechanisms that give a hardware device the 
characteristic of programmability.  

Fuse: A term used to describe a temporary connection 
made between two signals. Fuses can be “blown” or left 
alone (connection broken or left untouched).  
 

-G- 

G: An abbreviation used for the metric prefix “Giga”; this 
prefix is used in engineering notation.   

Gate Array: A generic term used to refer to devices that 
can be customized for a particular application. This term is 
generally synonymously used with the term complex 
programmable logic device.  

Generic Decoder: One of two types of decoders; generic 
decoders are generally used to replace the notion of 
“Boolean functions” by implementing Look-up Tables 
(LUTs). The term “decoder” is often used in place of the 
term “generic decoder”.  

Ghosting: An issue associated with display multiplexing 
where an LED is on when it should be off resulting in 
dimly lit LED showing incorrect information. 

Giga: A standard metric prefix meaning 10-9; the prefix is 
abbreviated as “G”.  

Glitch: An temporary unwanted error condition in a 
circuit. Glitches are typically characterized as low glithces 
(1-0-1) or high glitches (0-1-0).  

Glue Logic: Relatively simple logic present in modular 
designs that is used connect major sub-modules to other 
modules.  

Gray Code: A type of binary code that is a subset of unit 
distance codes.  

Ground: A term refer to the reference voltage in 
electronics. In digital electronics, this signal is generally 
considered a logical ‘0’.  

Ground: A term used to indicate the logic ‘0’ in a digital 
circuit. In a real circuit, ground is one of the two voltages 
used to power a circuit. This term is often referred to as 
“GND” and indicated with a down-pointing arrow in a 
circuit diagram.  

Group of Fours: A phrase used in conjunction with 
translating binary numbers to a hexadecimal or BCD 
representation; typically four bits at a time are converted, 
thus group of “four”.  

Group of Threes: A phrase used in conjunction with 
translating binary numbers to an octal representation; 
typically three bits at a time are converted, thus group of 
“three”.  

-H- 

Half Adder (HA): A one-bit adder that has outputs for 
sum and carry-out; the input only include the two bits 
being added.  

Hand Waving: A term used to describe literal and 
figurative gestures to call people’s attention to something 
of hand-waver’s choosing. Generally speaking, hand-
waving serves to draw people’s attention away from 
problems that were caused by the hand-waver or issues 
that need attention to other areas that people would not 
have a strong reaction to. Hand-waving is the approach 
academic administrators use to dupe the world into 
thinking they are actually doing something useful. 

Hang States: A state in a state diagram that, once entered, 
can never be exited. Hang states are generally undesirable 
conditions associated with finite state machine (FSM) 
design. Hang states are often associated with self-loops 
from the given hang state.  

Hard Drive: A mechanical storage device capable of 
store large amount of information. Information in hard 
drives is stored magnetically on a spinning disc made of a 
ferromagnetic material; this information is accessed by the 
classic “read/write heads”. Hard drives are not “random 
access” devices. Hard drives are well known to crash 
when you need them most. Hard drives are also well 
known to make great mirrors after you disassemble the 
hard drive container.  

Hard-Core Microcontroller: Any “microcontroller” (see 
“microcontroller”) that is not a “soft-core microcontroller” 
(see “soft-core microcontroller”). Hard-core 
microcontrollers exist on pre-fabricated integrated circuits 
as opposed to being synthesizable on programmable logic 
devices as is the case with soft-core microcontrollers.  

Hardware: A term referring to technical entities that are 
not software or firmware. In the context of digital design, 
hardware generally refers to digital circuitry in the form of 
devices synthesized on programmable logic devices 
(PLDs) or discrete integrated circuits (ICs) on a printed 
circuit board (PCB).  
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Hazard: A condition present in a circuit that may under 
some conditions cause an unwanted condition, or error 
condition, in that circuit.  

Hertz: A measure of frequency defined to be the number 
of time a signal changes state in a time span of one 
second. This term is abbreviated as “Hz”.  

Hex: A shorthand notation for hexadecimal; also a 
synonym for numbers with a radix of 16.  

Hexadecimal: A term used to describe numbers with a 
radix of 16. 

Hierarchical Design: An approach to digital design that 
utilizes various levels of abstraction in order to promote 
efficient design and understandable designs. 

Hierarchical Design: Designs that are described at 
multiple levels. The notion of VHDL structural modeling 
is a mechanism that supports hierarchical design.  

High-Impedance: A term that indicates the value of a 
signal is not being “driven” by some entity in the circuit. 
When a signal is not being “driven”, there is not current 
flowing in the physical implementation of that signal. No 
current flowing indicates a “broken circuit”. If a device is 
in a high-impedance state, the device is figuratively not in 
the circuit.  

High-Z: Yet another term to express the notion of high-
impedance.  

Hi-Z: Another term to express the notion of high-
impedance.  

Hold Condition: A condition in a sequential circuit where 
the output does not change state when given the proper 
opportunity; same as “hold state”.   

Hold State: A condition in a sequential circuit where the 
output does not change state when given the proper 
opportunity; same as “hold condition”.  

Hold Time: An attribute of physical sequential circuits 
defined as the amount of time circuit’s control signals 
must remain stable after the active clock edge of the 
circuit.  

Hold-1 Transition: A feature of a state-change in the 
context of a single bit where the present state is a ‘1’ and 
the next state is also a ‘1’.  

Horse-Sense: A problem solving approach emanating 
from the notion that you never stop applying intuition to 
your solutions even though many solutions can be done by 
rote. Horse-sense can be figuratively described as taking a 
few steps back and examining your approach before you 
declare your righteousness.  

Hybrid FSM: A finite state machine (FSM) that contains 
both Mealy and Moore-type outputs.  

Hz: An abbreviation typically used for “Hertz”; (see 
“Hertz”).  

-I- 

IEEE Code of Ethics: A set of guidelines that electrical 
engineering teachers are required to foist upon their 
students in order to have their programs accredited by 
ABET. This is a case of “do as I say; don’t do what I do” 
as most electrical engineering instructors think that “fair” 
is nothing more than a four-letter word starting with “f”.  

Identifier: A set of symbols used by a language to form a 
name that is assigned to differentiate between items such 
as variables, functions, entities, architectures, and bowling 
balls.  

If Statement: A type of sequential statement in VHDL, 
also known as a conditional statement. “if” statements can 
appear in the body process statements are and typically 
used in behavioral descriptions of digital circuits.  

Illegal State Recovery: The notion associated with finite 
state machine (FSM) design in that if the FSM finds itself 
in a state that it is not intended to be in, the FSM has a 
built-in method to exit that state and return the FSM to an 
expected state. Illegal state recovery design generally 
requires more hardware but will avert the death of an FSM 
by avoiding hang states.  

IMD: An acronym referring to “iterative modular design”; 
(see “iterative modular design”).  

Inactive State: A term used to indicate that the current 
voltage level of a signal, or state, is not associated with the 
active state of that signal.  

Incidental Memory: A term used to describe relatively 
small pieces of memory in circuits such as flip-flops and 
registers. This term is used to differentiate small memory 
items from “structured memory” items such as ROMs and 
RAMs.  

Inclusive OR Gate: The actual name for a simple OR 
gate. This name is related to the fact that there is another 
gates referred to as an “exclusive OR” gate (XOR).  

Incompletely Specified Functions: Boolean functions 
that do not have an output specified for every possible 
input combination. The main aspect of this type of 
function is that there are “don’t cares” associated with the 
outputs of those particular input combinations. 

Increment: An operation typically associated with 
counters where ‘1’ is added to the current value of 
counter. 

Indentation: A set of white spaced used to differentiate 
related sub-areas of computer programming or hardware 
design code. Proper use of indentation increases the 
readability and understandability of text-based code; 
general rules for indentation are found in style-files 
associated with the language. 

Independent PS/NS Style: One of many approaches to 
modeling finite state machines (FSMs) using VHDL.    

Independent Variable: A variable representing a value 
that can change and thus affect the dependent variable. In 
digital design, the independent variable is typically the 
input while the dependent variable is typically the output.  
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Indirect Mapping (VHDL): A technique used by VHDL 
structural models that links the inputs and outputs of 
instantiated modules to the corresponding inputs and 
outputs of the next highest level in the hierarchy via a list 
of signal names. The connections are implicit and based 
upon the order the signal appear in the associated entities. 
The alternative approach to direct mapping is indirect 
mapping; (see “indirect mapping”).   

Indirect Subtraction by Addition: An algorithm that 
performs subtraction by first changing the sign of the 
augend and adding it to the addend. The advantage of this 
approach is that changing the sign of a binary number is 
not complicated and the hardware associated with the 
addition operation (an adder) can also be used to perform 
subtraction. 

Information Content: Information is associated with a set 
of bits that has some sort of definable meaning. The notion 
of information content is loosely associated with generic 
information regarding bit. In the context of “information 
theory”, information content is measured by the notion of 
“bits”, which is based on probability and is thus not 
related to the familiar digital notion of 1’s and 0’s. 

Information Theory: The study of information content of 
data. One of the key aspects of information theory is to 
quantify the information content of a data. The metric 
used for this quantization is the “bit”, which is not the 
same as a “binary digit”. Information theory defines a bit 
based on the probabilities of a data appear in a file, bit-
stream, etc.  

Information: A set of bits (‘1’s and ‘0’s) that have been 
given some type of meaning. In other words, once you 
have more details about some bits, these bits can be then 
considered information.  

Initial State: Problems dealing with sequential circuits 
must be provided with the values being stored by the 
memory elements in the circuits; the initial values are 
referred to as the “initial state” of the circuit.  

Instance (VHDL): A term that refers to an instantiated 
design unit appearing in the statement region of a VHDL 
architecture.  

Integer-Based Math: A form of mathematics performed 
on digital devices that is considered faster than 
alternatives such as using floating point math. The speed 
of integer math comes at the cost of lower precision in the 
results, which is acceptable for many applications.  

Integral Portion: A phrase referring to the digits on the 
left side of the radix point.  

Integrated Circuit (IC): A piece of semiconductor that 
include a complete circuit that generally is able to 
complete some given task. Most ICs are generally packed 
full of items such as transistor, resistor, capacitors, and 
inductors. 

Interface (specification): A term used to describe VHDL 
entities because they list the inputs and outputs of a given 
digital circuit.  

Intermediate Signals (VHDL): A term given to signals 
that are required by a design but do not appear on the list 
of signals included in the VHDL entity. Intermediate 
signals are also referred to as “internal signals”.   

Internal Signals (VHDL): A term given to signals that 
are required by a design but do not appear on the list of 
signals included in the VHDL entity. Internal signals are 
also referred to as “intermediate signals”.   

Iterative Design: A digital design approach that is based 
on exhaustively listing all possible inputs and listing a 
unique output for each of the input combinations. Iterative 
design is typically based on the use of a truth table.   

Iterative Modular Design (IMD): One of the three 
approaches to performing digital design. The IMD 
approach uses multiple instances (the iterative part) of pre-
defined circuits (the modular part) in digital designs, thus 
creating hierarchical design. The IMD approach can be 
used to design some digital circuits and is considered a 
more powerful approach than “brute force design” in that 
truth tables and K-maps are typically not part of the IMD 
process.  

Interrupt: xxxxOne of the three approaches to 
performing digitps are typically not part of the IMD 
process.  

Interrupt Masking: xxxxOne of the three approaches to 
performing digitps are typically not part of the IMD 
process.  

-J- 

JK Flip-flop: A flip-flop that may change the output state 
according to when the “JK” inputs to the flip-flop. The JK 
flip-flop has the ability to hold state, toggle, set, and clear 
on the active edge of the flip-flop’s clock input. The “next 
state” of a JK flip-flop is a function of both the JK inputs 
and the present state of the flip-flop.  

Juxtapositional Notation: Placing numbers side by side 
and giving the numbers different weights ; using this 
notation allows for the representation of more numbers 
than are present in the set of numbers representing the 
number system.  

-K- 

k: An abbreviation used for the metric prefix “Kilo”; this 
prefix is used in engineering notation. 

Karnaugh Map Compression: The act of making 
Karnaugh maps smaller by translating one or more of the 
independent variables into map entered variables (MEVs). 

Karnaugh Map: A tool that allows for visual application 
of the adjacency theory to reduced Boolean functions. 
Karnaugh Maps employ a special number system onto a 
grid of cells; each cell represents a row in the truth table 
associated with the given function.  

Kilo: A standard metric prefix meaning 10-3; the prefix is 
abbreviated as “k”.  
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Kludgy: (pronounced “clue-gee)”A term used to describe 
something that works but is far from being an optimal 
approach. Electronic circuitry and computer programs 
often include this term for things that officially to 
officially work but no one really knows why based on the 
overall low quality of the design. 

K-Map: The shorthand name for “Karnaugh Maps” (see 
“Karnaugh Map”).  

-L- 

Large Scale Integration: A type of integrated circuit that 
contains a more transistors than a medium scale integrated 
(MSI) IC. This term often described with the acronym 
“LSI”.  

Large Scale Integration: A type of integrated circuit that 
contains a more transistors than a medium scale integrated 
(MSI) IC. This term often described with the acronym 
“LSI”.  

Latch Generation: A term that refers to the notion of 
storage being automatically generated by the VHDL 
synthesizer. The generation of latches is generally not an 
intended operation as latches are not overly useful and 
require extra hardware resources to implement. One of the 
general rules in using a hardware description language 
such as VHDL is to avoid the unintended generation of 
latches.  

Latch: As a noun, this term describes a sequential circuit 
that has the ability to store one bit of data. Latches are 
considered “level sensitive” devices in that they generally 
always react immediately to circuit inputs. 

Latch: As a verb, this term mean to the act of a sequential 
circuit storing data. For example: “the data is latched into 
the register”.  

Leading Zeros: Zeros (‘0’s) placed in front of (taking up 
the left-most positions) a given number. Because of the 
location of these 0’s, the do not affect the magnitude of 
the number being represented.  

Leading Zero Blanking: Digit-based displays, such as 7-
segment displays can display multiple digital. This term 
refers to the notion that the left-most digits of a given 
number are not actuated if the values are zero.  

Learning by Rote: A learning approach typically used by 
students in order for them to deal with the lack of teaching 
skills of instructors. 

Least Significant Digit: A phrase referring to the digit 
position with the lowest weighting in a juxtapositional 
notarized number system.  

Legend: A special type of annotation associated with type 
of visual representation of something. In particular, all 
timing diagrams, circuit diagrams, and particularly state 
diagrams should contain legends in order to increase the 
readability of the diagrams.  

Legends In Their Own Minds: A characteristic typically 
associated with every academic administrator on the 

planet.  

Level of Abstraction: The act of considering something 
as a general quality or characteristic, apart from concrete 
realities, specific objects, or actual instances. Particular to 
digital design is the notion of using black boxes that 
perform some function but it is not generally known the 
details of how those functions are implemented at a lower 
level. 

Level Sensitive: A term that refers to the notion that a 
digital device react to input signals anytime they may 
change. On the contrary, some circuits are considered 
edge-sensitive.  

Libraries: A storage area for previously designed 
modules and/or syntactical term definitions required for 
use in the typical design practice.   

Lingo: Special vernacular used in the description of 
something that only people who typically spend 
considerable time working with that something actually 
understand. Lingo is often strongly associated with 
technical slang.  

Local Variables: A type of variable typically found in 
computer programming languages; local variables are 
located on the stack and do not have permanent storage.  

Lock-Step Process: A set of entities that wait on signal 
from each other in order to properly sequence their overall 
operations.  

Logic Analyzer: A device that tests a given digital circuit 
implementation by displaying the state of the digital inputs 
and outputs at various time interval. Logic analyzers 
generally have one of two types of displays: timing 
diagrams and state listing. The timing diagrams are happy 
timing diagrams; the state listing shows the circuits inputs 
and outputs at given time intervals or when changes in 
signals occur.  

Logic Gate (or just “Gate”): A physical hardware entity 
that implements a logic function.  

Logic hazard: A hazard that is present due to the 
changing of a single input variable for a given circuit. 

Logic Unit: A term describing one of the main sub-
modules of an arithmetic logic unit (ALU). The logic unit 
generally handles operations that can be considered 
“logic” such as ANDing and ORing, etc. Logic units are 
typically assigned to handle shifting and rotation 
operations also.  

Look-Up Table: Also known as LUTs, a structure 
commonly used in engineering and software applications. 
In algorithmic programming languages, this term is used 
to describe the approach of pre-calculating and storing 
values and referencing the results as needed. In VHDL, 
LUTs are used to implement many of the standard digital 
modules.  

LSD: An acronym used for least significant digit; (see 
least significant digit).  
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LSI: An acronym for “large scale integration”; (see “large 
scale integration”).  

-M- 

M: An abbreviation used for the metric prefix “Mega”; 
this prefix is used in engineering notation.   

m: An abbreviation used for the metric prefix “mili”; this 
prefix is used in engineering notation. 

Macrocells: A sub-block of a PLD that can be both 
programmable and/or configurable. This term is basically 
used to describe the architecture of PLDs.  

Magnitude Bits: The portion of a set of bits that refers to 
the magnitude portion of the number being represented by 
the set of bits. Signed binary number representation 
always have both magnitude bits and a sign bit. 

Manual Verification: A term that refers to the notion of a 
VHDL testbench’s that does not “automatically” verify the 
proper operation of a VHDL model. Manual verification 
requires that the user examine the simulation results in 
order to determine whether the circuit is working or not.  

Map Entered Variable: A variable that appears in a 
Karnaugh map or truth table where typically only 1’s and 
0’s are entered. 

Mask Programmable: A term referring to a device that 
contains connections that are made (or not made) on the 
silicon level; mask programmability is often referred to as 
“factory programmed” as it is generally done at the 
associated fab (IC fabrication facility).  

Maximum Clock Frequency: A term that refers to the 
highest clock frequency a sequential circuit can be clocked 
and still operate properly. The maximum clock frequency 
of a circuit is based on physical attributes of the devices in 
the circuit such as setup and hold times. 

Maxterm Expansion: Another term referring to Standard 
POS form (see “Standard POS form”). 

Maxterm: A sum term associated with a given function 
that includes one instance of every independent variable in 
the function. Maxterms are associated with conditions that 
produce a logic ‘0’ on the function’s output. A minterm is 
synonymous with a Standard Sum Term. 

MCU: An acronym referring to a “microcontroller”; (see 
“microcontroller”).  

Mealy vs. Moore FSM Models: There are two classes of 
finite state machine model which are referred to as Mealy 
and Moore “machines”, or “models”. The external outputs 
of a Moore machine are a function of state only and output 
changes are thus considered to be synchronized to state 
changes in the FSM. The external outputs of a Mealy 
machine are a function of both FSM state and the internal 
inputs. Changes in external outputs of a Mealy machine 
are not necessarily synchronized to the changes in FSM 
state since they are also a function of external inputs.  

Mealy’s First Law of Digital Design: If in doubt, draw 

some black box diagrams.  

Mealy’s Second Law of Digital Design: If your digital 
design is running into weird obstacles that require kludgy 
solutions, toss out the design and start over from square 
one. 

Mealy’s Third Law of Digital Design: Every digital 
design problem can have many different but equivalent 
solutions; the absolute right solution is eternally elusive.  

Mealy’s Fourth Law of Digital Design: The digital 
design process is circular, not linear. If you think you’re 
going to generate the correct solution with the first pass, 
you’re bound for disappointment. The digital design 
process is circular; always make going backwards a few 
steps to fix issues part of the design process. Don’t try to 
make your design perfect from the get-go, make it simple 
to understand so that you can fix issues as they arise. 

Mealy’s Fifth Law of Digital Design: Model circuits 
using many smaller sub-modules as opposed to fewer 
larger sub-modules; as this approach supports testing and 
increases the chances module reuse.  

Mealy’s Sixth Law of Digital Design: Don’t rely on the 
HDL synthesizer; create your HDL models by having a 
remote vision of what underlying hardware should look 
like in terms of standard digital modules. 

Mealy’s Seventh Law of Digital Design: Always first 
consider modeling a digital circuit or part of a digital 
circuit using some type of decoder. Decoders in digital 
design are anything we can describe in a tabular format, so 
they are essentially look-up tables (LUTs). 

Mealy-Type FSM: A class of finite state machine (FSM) 
that is characterized by having outputs that are a function 
of both the present state of the FSM and the external 
inputs to the FSM. Mealy-type FSMs are typically 
modeled as having a “next state decoder”, “state variable 
storage”, and an “output decoder”.  

Mealy-type Outputs: An external output to a finite state 
machine (FSM) that exhibits Mealy-type qualities; Mealy-
type qualities refer to the notion that the external output is 
a function of both the current state of the FSM and the 
values of the external inputs to the FSM.  

Medium Scale Integration: A term that roughly refers to 
the number of transistors on an integrated circuit. The 
exact number of transistors associated with medium scale 
integration is not quantifiable; medium scale integration is 
generally known as the next step beyond small-scale 
integration; usually referred to as MSI.  

Mega: A standard metric prefix meaning 10-6; the prefix is 
abbreviated as “M”.  

Memory Bandwidth: Memory bandwidth refers to the 
amount of data that can be transferred to and from 
memory. The speed of memory reads and writes are 
constrained by physical attributes of the device as well as 
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the system in which the device operates in which thusly 
allow for a maximum amount of information to be 
transferred to and from the device.  

Memory Capacity: A term describing how much data can 
be stored in a sequential circuit. This term is most often 
used in conjunction with structured memories, in which 
case capacity is usually measured in terms of bits, bytes, or 
words.  

Memory Capacity: The amount of storage a given 
memory contains. Memory capacity is stated in various 
forms such as total number of bits, total number of bytes, 
or total number of words.  

Memory Configurations: This term refers to the notion 
that multiple memories can be configured in ways to 
obtain different memory capacities (number of accessible 
storage elements) and different storage characteristics (the 
width or word-length) of each storage element.  

Memory Element: A digital device that is capable of 
storing an arbitrary number of bits. Memory elements are 
typically associated with state variable storage in finite 
state machines (FSMs). Memory elements are often 
referred to as “storage elements”.  

Memory Inducing: A term used in the context of using 
VHDL to model memory elements in digital circuits.   

Memory Levels: A term that encompasses the various 
types of memory in a given system. Generally speaking, 
the lower-level memories are faster but more expensive 
than higher-level memories. Computer system deal with a 
trade-off between program execution speed and expense.  

Memory Model: A term that describes the general way a 
given CPU utilizes the memory resources it has at its 
disposal.  

Memory Performance Measures: Because systems rely 
heavily on memory, items such as read access times, write 
cycle times, and memory bandwidth are used to measure 
the specific performance of memory devices within the 
system.  

Memory Reading: An operation that accesses the 
contents of memory without changing those contents.  

Memory Speed: A term that refers to how fast a 
structured memory operates. Depending on the specific 
type of memory, this term is generally associated with how 
you can read data from a memory and/or write data to a 
memory. 

Memory Writing: An operation that changes the contents 
of memory.  

Memory: A term referring to the ability of a digital circuit 
to store bits. Sequential circuits are digital circuits defined 
as having memory. Memory in digital circuits can be 
categorized as either “incidental memory” (flip-flops and 
registers) or  “structured memory” (ROMs and RAM).  

Metastability: Digital circuits can become metastable 
when a set-up and/or hold time is not met. Metastability is 

a loose definition and means the circuit’s output is neither 
high nor low and may remain in that state there for an 
unstated amount of time.  

Metastable: A term referring to an unwanted condition in 
a sequential circuit resulting from not meeting the setup 
and/or hold times of that circuit. This term is sometimes 
referenced as “metastability”.  

MEVs: An acronym used to refer to map entered 
variables; see “map entered variables”. 

micro: A standard metric prefix meaning 106; the prefix is 
abbreviated as “μ”.   

Microcontroller: A digital device that is a complete 
computer on a single integrated circuit. Being complete 
computers (by definition of a computer), microcontrollers 
contain an arithmetic logic unit (ALU), a finite amount of 
memory (for both data and instructions) and input/output 
capabilities (in order to interface with the outside world). 
Microcontrollers are programmable at various levels 
including higher-level languages and assembly languages. 
Microcontrollers typically control other digital and/or 
analog devices.  

Microoperations: A microoperation is an elementary 
operation performed on data stored in a register. 
Microoperations can also include interactions with other 
registers such as storing the result of microoperations 
associated with other circuit elements. Microoperations 
are commonly used in higher-level descriptions of digital 
circuitry such as computers.  

mili: A standard metric prefix meaning 103; the prefix is 
abbreviated as “m”.   

Minimum period: A term that refers to the smallest 
period of a clock signal associated with a sequential circuit 
can be clocked and still operate properly. The minimum 
period of a circuit is based on physical attributes of the 
devices in the circuit such as setup times. 

Minterm Expansion: Another term referring to Standard 
SOP form (see “Standard SOP Form”).  

Minterm: A product term associated with a given function 
that includes one instance of every independent variable in 
the function. Minterms are associated with conditions that 
produce a logic ‘1’ on the function’s output. A minterm is 
synonymous with a Standard Product Term.  

Minuend: A number from which another number is 
subtracted.   

Mixed Logic Design: A digital design that contains 
signals in both negative and positive logic representations.  

Mixed Logic: A term referring to the notion that a given 
circuit or system uses both positive and negative logic.  

Mnemonic: A set of letters that represents a given 
operation. Generally speaking, mnemonics loosely 
describe, in an abbreviated manner, the operation they 
represent.  

Model: A model is a representation of something. A more 
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(definitive) descriptive description of a model is a 
description of something in terms that highlights the 
relevant information in that thing while hiding the less 
useful information. The purpose of a model is to quickly 
transfer important information to the entity reading the 
model (whether human, or computer, or member of the EE 
Faculty). Generally speaking, the quality of any model is 
determined by its ability to transfer information to the 
user.  

Models in Digital Design: a model is a representation or a 
description of something using a certain level of detail. 
The main purpose of the model in digital design is to 
transfer information to the entity using the model. There 
are four main types of models used in digital design: black 
box model, timing diagrams, written descriptions of digital 
circuits, and VHDL models. 

Modern Digital Design: Modern digital design is truly 
design oriented as opposed to historical approaches which 
were not designed oriented due to the unavailability of 
implementation tools. Modern digital design is driven by 
Hardware Description Languages such as VHDL and 
Verilog. The availability of HDLs and the relative low cost 
of PLD-based hardware allow digital designs to be 
implemented and tested significantly more quickly than 
historical design techniques.   

Modular Design: A design technique that primarily 
utilizes pre-defined black boxes (or modules) as the basis 
of the design. This design approach in one of the three 
approaches to digital design and is considered the most 
powerful and efficient approach. Modular designs are 
generally hierarchical in nature.  

Mono-Stable Multivibrator: A device that has one stable 
state; the stable state can either be the ‘0’ or ‘1’ state. The 
device’s output is only in the non-stable state momentarily 
before transitioning to the stable state. This term is a fancy 
name for a device commonly referred to as a “one-shot” 

Moore-Type FSM: A class of finite state machine (FSM) 
that is characterized by having outputs that are a function 
of the present state of the FSM only. Moore-type FSMs 
are typically modeled as having a “next state decoder”, 
“state variable storage”, and an “output decoder”.  

Moore-type Outputs: An external output to a finite state 
machine (FSM) that exhibits Moore-type qualities; Moore-
type qualities refer to the notion that the external output is 
exclusively a function of the current state of the FSM.  

Most Significant Digit: A phrase referring to the digit 
position with the highest weighting in a juxtapositional 
notarized number system. 

MSD: An acronym used for most significant digit; (see 
“most significant digit”).  

MSI: An acronym for “medium scale integration”; (see 
“medium scale integration”).  

Multiplexor: A standard digital device used to select 
between a set of two or more signals. Multiplexors 
generally have data input, data selection inputs, and data 

outputs. Most often multiplexors have a binary-type 
relationship between data selection inputs and data inputs; 
the characteristic is sometimes used to provide a standard 
name to the multiplexor such as “2:1”, or “4:1”, or “8:1” 
MUX, etc.  

MUX: A shorthand term that refers to a “multiplexor”; 
(see “multiplexor”). 
 

-N- 

n: An abbreviation used for the metric prefix “nano”; this 
prefix is used in engineering notation.  

NAND Gate: One of the standard logic gates; a NAND 
gate performs an AND function with a complimented 
output. A different way to model a NAND gate is an AND 
gate with an active low output. NAND gates can have two 
or more inputs.  

NAND Latch: A sequential circuit comprised on two 
NAND gates connected such that they have the ability to 
store one bit (the circuit contains feedback). NAND 
latches are considered the negative logic version of NOR 
latches.  

NAND/AND Form: One of the basic eight logic forms 
but not commonly used in digital design. This form is 
derived from OR/AND form (POS form) by excessive use 
of DeMorgan’s theorem. 

NAND/NAND Form: One of the basic eight logic forms 
and one of the most popular four ways to describe a circuit 
using either Boolean equation or the circuit model of the 
associated Boolean equation. This form is directly related 
to the AND/OR form but is comprised of exclusively 
NAND functions (for the Boolean equation) or NAND 
gates (for the circuit representation).  

nano: A standard metric prefix meaning 109; the prefix is 
abbreviated as “n”.   

Narcissistic Personality Disorder (NPD):  A disorder 
inflicting most faculty members in academia. All faculty 
members must have this disorder if they plan on climbing 
up any academic ladder.  

Native VHDL Type: A “type” that is provided by the 
particular distribution of VHDL. VHDL has many native 
types but also allows you to create your own types by also 
including the notion of “enumeration types”; (see 
“enumeration types”).  

N-bit Adder: A term used to describe the number of bits 
in the operands and/or result of a circuit that performs 
addition.  

N-bit Counter: A counter that uses “n” bits (n is an 
integer) to represent each value in its sequence of values. 

N-bit Register: A register that can store “n” bits (n is an 
integer). 

Negative Logic: A term used to indicate that a given 
circuit considers the notion of ‘0’ to be the active level for 
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the signals in that circuit.  

Negative Logic: A term used to indicate that the ‘0’ state 
of a signal represented the active state of that signal.  

New FSM Techniques: A set of techniques applied to 
finite state machine (FSM) implementation the removes 
the need for using Karnaugh map and thus allows for the 
implementation of more complex FSMs. One important 
characteristic of new FSM techniques is that the resulting 
equations are not necessarily in reduced form as they are 
with “classical FSM techniques”; (see “classical FSM 
techniques”).  

Next State Decoder: A combinatorial digital circuit that is 
typically used in the modeling of finite state machines 
(FSMs). The primary function of the next state decoder is 
to provide excitation logic to the storage elements 
(generally flip-flops) associated with the FSM.  

Next State Forming Logic: This is less common term that 
refers to the “next state decoder” typically associated with 
a finite state machine (FSM); (see “next state decoder”).  

Next State Logic: A term referring to the combinatorial 
circuitry that makes up the “next state decoder”; (see “next 
state decoder”).  

Next State: The notion that a given sequential circuit has 
the ability to change the value of the bits it is currently 
storing at a later time. This term is generally combined 
with “present state” to describe the operation of sequential 
circuits.  

Noise: A term referring to an undesired transition (either 
“01” or “10”) in the value of a signal. In digital 
design, a standard form of noise is a “glitch”; (see 
“glitch”).  

Non-essential prime implicants: A type of prime 
implicant that is not necessary to include when generating 
the minimum covering in a Karnaugh map function 
reduction.  

Non-Resetting Sequence Detector: A “sequence 
detector” (see “sequence detector”) that can use parts of 
previously detected sequences in its current search for the 
next sequence.  

Non-Volatile: A term that refers to a sequential circuit’s 
ability to retain its state (the values stored in memory) 
when power is removed from the associated circuit. Non-
volatile circuits retain their state while volatile circuits lose 
their state information when power is removed from the 
associated circuit.  

Noob: A slang description of a very special person.  

NOR Gate: One of the standard logic gates; a NOR gate 
performs an OR function with a complimented output. A 
different way to model a NOR gate is an OR gate with an 
active low output. NOR gates can have two or more 
inputs.  

NOR Latch: A sequential circuit comprised on two NOR 
gates connected such that they have the ability to store one 

bit (the circuit contains feedback). NOR latches are 
considered the positive logic version of NAND latches.   

NOR/NOR Form: One of the basic eight logic forms and 
one of the most popular four ways to describe a circuit 
using either Boolean equation or the circuit model of the 
associated Boolean equation. This form is directly related 
to the OR/AND form but is comprised of exclusively NOR 
functions (for the Boolean equation) or NOR gates (for the 
circuit representation). 

NOR/OR Form: One of the basic eight logic forms but 
not commonly used in digital design. This form is derived 
from AND/OR form (SOP form) by excessive use of 
DeMorgan’s theorem.  

Not Asserted: The notion that the current state of a signal 
(or voltage level) is associated with the non-action state. 
Whether a signal is asserted or not is independent of the 
logic level (negative or positive) associated with that 
signal.  

N-type: A semiconductor that has been doped with 
material containing extra electrons. 

Number System: a language system consisting of an 
ordered set of symbols (called digits) with rules defined 
for various mathematical operations. 

Number: a collection of digits; a number can contain both 
a fractional and integral part. 

-O- 

Object Oriented: A design approach that partitions 
system entities into objects. For digital design, these 
objects are considered black boxes or modules.  

Object-Level Design: Designs that utilized previously 
designed objects. In digital design, these objects are 
generally previously designed black boxes.  

Octal: A term used to describe numbers with a radix of 8.  

Odd Parity: A condition that describes a characteristics 
regarding a set of bits; in particular, whether a set of bits 
has an odd number of bits at a value of ‘1’.  

Ohm’s Law: This law forms the basis of all electronic 
circuits and is commonly listed as “V-IR”, where V is the 
voltage (Volts), I is current (Amperes), and R is the 
resistance (Ohms). The equation states that the voltage is 
directly proportional to both the current and resistance.  
 

Old Dude: A person that is characterized by being 
impatient, arrogant, and condescending to those who may 
know less they do (but usually don’t); many dinosaurs in 
academia fall into this category. This term has nothing to 
do with age as anyone can adopt this set of counter-
productive attitudes.  

One’s Compliment: An operation that can be performed 
on a binary number; taking a 1’s compliment of a binary 
number entails toggling the value of each bit in the 
number. 



Free Range Digital Design Foundation Modeling  Digital Design Dictionary 

 

 - 513 -  

 

One-Cold Encoding: A term that refers to one of many 
different methods used to encode the state variables 
associated with the various states in a finite state machine 
(FSM). In particular, one-cold encoding uses one storage 
element for each state in the associated FSM. The codes 
applied to states have ensures that only one storage 
element is a ‘0’ in any given state; while all other storage 
elements are ‘1’.  

One-Hot Encoded: One of many methods typically used 
to encode the state variables associated with a finite state 
machine (FSM). The one-hot encoding method uses one 1-
bit storage element for each state in the given FSM; at any 
one time (thus in any given state), only one of the state 
variables are at a ‘1’ values while all the other state 
variables are at a ‘0’ values.   

One-Hot Encoding: A term that refers to one of many 
different methods used to encode the state variables 
associated with the various states in a finite state machine 
(FSM). In particular, one-hot encoding uses one storage 
element for each state in the associated FSM. The codes 
applied to states have ensures that only one storage 
element is a ‘1’ in any given state; while all other storage 
elements are ‘0’.  

One-Shot: The common name for a mono-stable 
multivibrator. One-shots are used to synthesize fixed-
length signals in response to signal events such as clock 
edges.  

On-The-Fly: A term that refers to one method of 
accessing test vectors in a VHDL testbench. This term 
basically refers to the notion that the test vectors for a 
given testbench are hard-coded as part of that test bench. 
Other testbench options for accessing test vectors are 
reading from hard-coded arrays or reading from external 
files.  

Op-code: A term that is short-hand for “operational code”. 
Op-codes are the bits of an instruction that are used by the 
control unit to decode which instruction is being executed.  

Open-Circuit: A circuit condition that describes a lack of 
connection between two signals.  

Operator Precedence: A set of pre-defined rules that 
establish the execution order of operators associated with 
program or model code.  

OR Plane: A structured array of logic that allows for the 
combination of Boolean variables and/or function outputs 
in such a way as to form sum terms used to implement 
other Boolean functions. 

OR/AND Form: One of the basic eight logic forms and 
one of the most popular four ways to describe a circuit 
using either Boolean equation or the circuit model of the 
associated Boolean equation. This form is often referred to 
as “product of sum” form or POS form.  

OR/NAND Form: One of the basic eight logic forms but 
not commonly used in digital design. This form is derived 
from AND/OR form (SOP form) by excessive use of 
DeMorgan’s theorem.  

Output Decoder: A combinatorial digital circuit that is 
typically used in the modeling of finite state machines 
(FSMs). The primary function of the output decoder is to 
massage the state variables (Mealy and Moore-type FSMs) 
and external inputs (Mealy-type FSMs only) into the 
correct output forms to control whatever the FSM needs to 
control. 

Output Enable: A signal name that is commonly 
associated with a signal that allows a device to output a 
signal or set of signals. When the output is not enabled, the 
device’s outputs typically go into a the high-impedance 
states. The acronym “OE” is most often used to represent 
the output enable. 

Overflow: A condition that indicates the result of a 
mathematical operation has exceeded the top end of the 
range of numbers associated with the bit-width of the 
operands. Overflow is often considered to include 
underflow; (see “underflow”).  

-P- 

PAL: An acronym for “programmable array logic”; (see 
programmable array logic). 

Paper Design: A design that is done only on paper with 
no intention of every actually implementing the design. 
Such designs are proven to work with only violent hand-
waving arguments. Such designers generally end up as 
administrators as their hand waving arguments are backed 
up by their innate intimidation tactics. 

Parallel Inputs: A term referring to an input that 
simultaneously acts on a set of entities. In particular, a 
parallel input to the state variables of a finite state machine 
(FSM) act on all the individual storage elements in a 
simultaneous manner.  

Parallel Load: A characteristic of a register indicating 
that all the storage elements in the device can 
simultaneously latch external values. 

Parallel: A condition that describes a set of multiple items 
considered all at the same time.  

Parallelism: The notion of doing two or more things at the 
simultaneously, particularly in the state of engineering, 
computer science, and bowling.  

Parenthetical Bundle Indexing: Because bundles contain 
more than one signal, the name of the bundle needs to be 
modified in order to reference the individual signals in the 
bundle. There many ways to do this but this notation is the 
most common. This notation assumes that indexes from 
zero to one less that the number of signals in the bundle 
will be used with the index with the highest number being 
the most significant bit in the signal.   

Parity Bit: A bit included and/or associated with a set of 
bits that indicates whether those bits exhibit the condition 
of “even parity” or “odd parity”. The parity bit can also be 
viewed as being able to give a set of bits either even or 
odd parity by including the parity bit with the set of bits 
being considered.  
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Parity Checker: A digital circuit that is used to verify that 
a circuit has either “odd” or “even” parity. The parity 
checker is one the standard digital circuits used in digital 
design.  

Parity Generator: A digital circuit that generates a bit 
that is associated with a set of bits that describes the parity 
of those bits (either “odd” or “even” parity). The parity 
generator is one the standard digital circuits used in digital 
design.  

Parity: A word used to describe a condition associated 
with a set of bits. The given set of bits can be in a parallel 
configuration (parity considered at one point in time over 
more than one signal) or a serial configuration (parity 
considered over a span of time for one signal). The notion 
of parity provides information regarding the number of 
bits at a value of ‘1’ in a given set of bits.  

Period: The amount of time a given signal requires before 
it repeats itself.  

Periodic Waveform: A term used to describe an attribute 
of a waveform. Periodic waveforms are generally used as 
clocking signals for sequential circuits and often 
referenced as “clocking waveforms”; (see “clocking 
waveforms”).  

Periodic: A term used to describe an attribute of a signal. 
A periodic signal is defined as having a set period, which 
represents the amount of time before the signal repeats 
itself.  

Pig: A term that completely describes academic 
administrators.  

Pin Count: A term referring the number of external pins 
on the integrated circuit. This term usually refers to the 
number of pins used for input/output requirements of the 
device. The main issues here are that the cost of a specific 
device increases as the pin count increases.  

PLA: An acronym for “programmable logic array”; (see 
programmable logic array).  

PLC: An acronym representing the “positive logic 
convention”; (see positive logic convention).  

PLD: An acronym for “programmable logic device”; (see 
programmable logic device).   

Polling: Processors use polling to interface with external 
devices where the process constantly evaluates the status 
of the external device in order to determine if the device is 
in need of services from the processor. Polling is 
considered to be used in “programmed I/O” and is one of 
three major types of computer related I/O. Polling is 
generally associated with inefficient embedded system 
design in that the system is considered to have low overall 
throughput when executing a polling loop 

Pop: An operation associated with stacks where an item is 
removed from a stack; the stack pointer is appropriately 
adjusted.  

Positive Logic Convention: An approach to representing 

mixed logic that uses overbars on signals to indicate 
negative logic and no overbars to represent positive logic.  

Positive Logic: A term used to indicate that the ‘1’ state 
of a signal represents the active state of that signal. 

Present State: The notion that a given sequential circuit is 
currently storing a given value but that value can change to 
a new value. This term is generally combined with “next 
state” to describe the operation of sequential circuits.   

Prime implicants: A grouping in a Karnough map that 
cannot be completely convered by any other single 
grouping.  

Princeton Architecture: A computer architecture where 
data and instructions share the same memory space. This 
architecture is also known as a Von Neuman architecture.  

Process Body: A part of a VHDL process statement that 
include the declarative region of and the statement region 
of a process statement.   

Process Statement: A type of concurrent statement in 
VHDL used in behavioral modeling.   

Product of Sums (POS) Form: A function form that is 
characterized by sum terms that are logically multiplied 
together. 

Product Term: A set of Boolean variables that are 
ANDed or logically multiplied together. 

Product Term: An expression in a Boolean equation that 
can be characterized as a logical multiplication of 
variables. 

Program Counter (PC): The program counter is a simple 
counter generally found in a computer’s control unit and 
whose output is generally used as an address that points to 
the next instruction in program memory to be executed by 
the program. The PC is typically expected to do standard 
counter microoperations such as parallel load and 
increment.  

Program Flow Control Instructions: Instructions that 
cause or potentially cause the CPU to execute an 
instruction other than the instruction following the current 
instruction. Examples of program flow control instructions 
are conditional/unconditional branches, and subroutine 
calls/returns.  

Program Flow Control: For computer programs to do 
useful things, they must appropriately respond accordingly 
to important “events”. This response at a low level 
includes executing different portions of the given 
computer program. Computer instructions that facilitate 
any computer operation other than simple incremental 
execution of instructions from the program memory are 
generally referred to as program flow control instructions. 
Program flow control is generally handled by clever 
manipulations of the program counter.  

Programmable Array Logic: A type of programmable 
logic device characterized by having a programmable 
AND plane and a non-programmable OR plane.  
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Programmable Logic Array: A type programmable logic 
device characterized by having both programmable AND 
plane as well as a programmable OR plane.  

Programmable Logic Device (PLD):  Any integrated 
circuit used to create circuits in which the functionality of 
the internal circuit is not defined until the device is 
programmed (in this context, the term “program” does not 
typically refer to a computer programming language). One 
common type of PLD is the FPGA.  

Programmable Logic Device: An integrated circuit that 
can be configured to implement various logic functions 
and/or digital systems. Generally referred to as a PLD, a 
programmable logic device covers the entire class of 
programmable logic devices including FPGAs, PLAs, 
PALs, and CPLDs.  

Programmed I/O: One of two main forms of computer 
I/O. Programmed I/O is characterized by dedicated 
instructions in the instruction set for performing data input 
and output. Programmed I/O synchronous in nature as it is 
associated with an executed instruction.  

Programming Language Levels: Computer programs 
can be written on one of three general levels (listed from 
low to high): machine code level, assembly code level, or 
higher-level. Higher-level languages include C, C++, C#, 
Java, Wanker, etc. 

Programming Model: The programming model, or 
programmer’s model, describes the hardware resources 
available on a programmable computer-type device that 
the programmer is able to control via the program control. 
Program control is provided by the operations described 
by the device’s instruction set and can either categorized 
as software or firmware.  

Prop delays: A shorthand version of “propagation delay”; 
see “propagation delay”.  

Propagation delay: The time delay associated with the 
propagation of a signal through an electronic circuit. 
Propagation delays are generally associated with phyical 
aspects of the ciruit and are inherent in all electronic 
devices to one degree or another.  

Proto-Board: A device used for prototyping electronic 
circuits; the proto-board is comprised of many tiny holes 
in which the stripped end of a wire was pushed into in 
order to make an electrical connection. The integrity of 
proto-boards diminishes over time as the actual 
connections as based on the elastic properties of some very 
tiny pieces of metal.  

Protocol: A pre-defined set of rules that describe a 
mechanism that digital entities can use to communicate 
with each other. Any entity that complies with the protocol 
can communicate with any other entity also in compliance 
with the protocol.  

PS/NS Table: A set of data in tabular format that 
describes the operational characteristics of a sequential 
circuit. The acronyms PS & NS are short-hand notation for 
“present state” and “next state”, respectively. The 

information in PS/NS tables can be visually represented 
using “state diagrams”; (see “state diagrams”).  

P-type: A semiconductor that has been doped with 
material containing extra holes (or lack of electrons). 

Push: An operation associated with stacks where data is 
placed onto a stack; the stack pointer is appropriately 
adjusted.  

-Q- 

Q: The letter typically used to refer to the “state” of a 
single bit storage element. In terms of finite state machines 
(FSMs), this term refers to the present state.  

Q+: The term typically used to refer to the “next state” of a 
single bit storage element used in a finite state machine 
(FSM). 

-R- 

Radix Compliment: A term referring to a standard and 
most common method of representing signed binary 
numbers. The left-most bit in a number in radix 
complement form is the sign bit; if the sign bit is a ‘1’, 
then the number is a negative number. 

Radix Point: a symbol used to delineate the fractional and 
integral portions of a number. 

Radix: the number of digits in the ordered set of symbols 
used in a number system. 

RAM: The acronym officially stands for Random Access 
Memory; a solid definition for RAM is fleeting due to 
advances in technology. RAMs are most often 
characterized as volatile, random access storage devices.  

Random Access: A memory device is considered random 
access if it can access any of its contents in a constant 
amount of time. Devices such as flash drives are 
considered random access while devices such as tape 
drives and hard drives are not random access.  

Rapid Prototyping: The ability to quickly generate a 
working model of a device that exhibits the functionality 
of the expected final device.  

RC: An acronym referring to radix compliment; (see 
“radix compliment”).  

RCA: An acronym referring to a ripple carry adder; see 
“ripple carry adder” for details.  

RCO: An acronym referring to “ripple carry out”; (see 
“ripple carry out”).  

Read Access Time: The amount of time required for 
memory output data to become available after an address 
and the correct control signals have been provided to the 
device.  

Redundant State: A state in a finite state machine (FSM) 
that is not essential to the overall operation of the FSM. 
While technically correct, we typically omit redundant 
states in FSMs because they represent basic inefficiencies 
in FSM specification.  
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Register File: An abstract device that is used to model a 
given number of general purpose registers that are directly 
accessible by the given computers instruction set. Register 
files are typically modeled as multiport RAMs that can 
read and/or write multiple registers, roughly speaking, in a 
simultaneous manner.  

Register Transfer Language (RTL): A syntactically 
loose approach to specifying a digital circuit that can be 
modeled as the synchronous transfer of data between 
sequential circuits such as registers. A RTL statement 
generally describes a microoperation (or set of micro-
operations) generally associated with a digital circuit. The 
two parts of an RTL statement are 1) the register transfer 
specification, and 2) the specific conditions that are 
necessary for that transfer to occur. Generally speaking, 
only signals necessary for the stated transfer to occur are 
listed in the RTL statement while non-listed signals are 
assumed to be “properly handled” elsewhere. Unless 
explicitly stated, each RTL statement is assumed to occur 
in one clock cycle though the clock signal is rarely listed 
as part of the RTL statement. RTL is also known as 
register transfer notation (RTN).  

Register: A register is a digital circuit that can store two 
or more bits of data (one bit of storage would be 
considered a flip-flop). Types of registers include simple 
registers, shift registers, and counters. When the term 
“register” is used, it typically refers to “simple registers” 
and not counters and shift registers. Registers are typically 
have both synchronous and asynchronous actions, but 
typically data storage is synchronous to an active signal 
edge.  

Register: An n-bit wide sequential circuit that is primarily 
known for its ability to store bits. Registers are generally 
modeled as “n” D flip-flops which share a common clock. 
Register generally have synchronous parallel load inputs 
and sometimes other features (elementary operations) such 
as asynchronous or synchronous presets and clears. 
Specialized registers include shift registers and counters.  

Regular Structures: A term that refers to large digital 
circuits that can be modeled and/or synthesized as a large 
circuit comprising of many smaller repeated circuit 
elements. This term is most often used in conjunction with 
circuits such as PLDs (FPGAs, PLAs, PALs, CPLDs, etc.) 
and structured memory (ROMs, RAMs, etc.). 

Relational Operators: A set of operators used in VHDL 
conditional statement to determine the relation between 
two expressions.   

Relative Time: A term referring to the notion that any 
reference to time in a VHDL testbench is based on a 
previous time reference, as opposed to always the same 
reference as is one in “absolute time”. Relative time 
references have the characteristic that they “accumulate” 
through a testbench.  

Repeated Radix Division: An algorithm used to convert 
the integral portion of a number from decimal to any other 
radix.  

Repeated Radix Multiplication: An algorithm used to 
convert the fractional portion of a number from decimal to 
any other radix.  

Reset Condition: A state of a storage element where the 
current value is ‘0’. This is also referred to as a “clear 
condition”; (see “clear condition”).  

Reset Pulse: A signal that is used to reset a sequential 
circuit. This signal is typically short in duration (thus the 
term “pulse”) and can either be a ‘1’ pulse or a ‘0’ pulse.  

Reset State: The state of a storage element or a signal 
where the current value is ‘0’. This is also referred to as a 
“clear state”; (see “clear state”).  

Reset: When used as a verb, this term refers to making the 
value of a signal or storage element a ‘0’. This term is 
synonymous with “clear”; (see “clear”).  

Resetting Sequence Detector: A “sequence detector” (see 
“sequence detector”) that can‘t use parts of previously 
detected sequences in its current search for the next 
sequence. In other words, when the sequence detector 
finds the correct sequence, the sequence detector must 
start looking for the first bit in the desired sequence.  

RET: An acronym referring to “rising-edge triggered”; 
(see “rising-edge triggered”). 

Retinal Persistence: The notion associated with the 
human visual system that does not allow humans to 
perceive an off-state of an LED at the exact time the LED 
is turned off. The notion of retinal persistence is what 
allows display multiplexing to work for humans.  

Ripple Carry Adder (RCA): A digital device that is used 
to add two digital values. The RCA is comprised of a 
series of one-bit adder elements that are connected in a 
series configuration such that the carry from lower-order 
bits propagates, or “ripples” in the direction of higher-
order bits.  

Ripple Carry Out: A signal typically found on counters 
that indicates when the counter has reached its maximum 
count value. This value is often used in some devices to 
indicate underflow. This signal often aids in cascading 
multiple counter devices.  

RISC vs. CISC: The age-old computer argument of which 
is better that has never been solved. Generally speaking, 
RICS architectures require more instructions to complete a 
given operation than a CISC architecture would for that 
same operation, but those instructions are executed “more 
quickly” than a CISC architecture.  

RISC: This acronym officially stands for “Reduced 
Instruction Set Architecture” and is generally used to 
describe computer architectures. In actuality, the term has 
little or nothing to do with the size of the instruction set. 
RISC architectures generally have the following 
characteristics:    

 They contain a large register   
 The instructions word formats all contain the same 

number of bits (no extended opcodes)  
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 The instructione execute in the same number of 
clock cycles 

 The instructions generally are not complicated 
(they don’t require great amounts of processing) 

 They have higher system clock frequencies than 
non-RISC architectures  

Rising Edge: A “0→1” transition of a given signal that is 
typically used to synchronize some other action in a 
circuit.  

Rising-Edge Triggered: A term used to describe the 
notion that changes in a circuit are synchronized to a 
“rising edge” of some signal in the circuit. This term is 
often abbreviated as “RET”.   

ROM: The acronym officially stands for Read Only 
Memory; a solid definition for ROM is fleeting due to 
advances in technology. ROMs are most often 
characterized as non-volatile, random access storage 
devices.  

Rotates: A specialized shift-type operation often 
associated with shift registers characterized by shifting all 
bits in the register in one direction (either left or right) and 
replacing the MSB by the LSB (rotate right) or the LSB by 
the MSB (rotate left).  

Routing: The act of physically connecting two entities. 
This term is often used in the context of printed circuit 
board development and PLD architectural/implementation 
issues.  

RRD: An acronym used for repeated radix multiplication; 
(see “repeated radix division”).  

RRM: An acronym used for repeated radix multiplication; 
(see repeated radix multiplication).  

Rubylith: Some red plastic stuff that was used to fabricate 
integrated circuits in the early days of IC design and 
manufacturing.  

-S- 

Scalar: A term used to signify that a given item cannot be 
sub-divided into sub-items.  

Secret Sauce: A term that describes the notion that there 
is something not being told to you or provided for you. In 
free software distributions, often times the vendor removes 
the secret sauce from the free version of the software and 
only provides it for those who have the wherewithal to 
shell out the big bucks.  

Selective Signal assignment: A type of concurrent 
statement used in VHDL; selective signal assignment 
statements are analogous to the case statement in VHDL 
behavioral modeling.  

Self-Commenting: The use of identifiers (see “identifier”) 
that given the human reader an idea as to the purpose or 
functionality of a particular items such signals, entities, 
architectures, variables, etc.  

Self-Correcting: A term that refers to the notion that a 

finite state machine (FSM) has the ability to return to a 
desired state in the event that it finds itself in an undesired 
or unused state. The notion of self-correction must be 
intentionally designed into the FSM by the associated 
digital designer.  

Self-Loop: A condition in a finite state machine (FSM) 
indicating a state transition from a particular state returns 
to that state in one state transition. This condition can also 
be viewed with the notion that the FSM never actually 
exited that given state.  

Self-Serving: The defining characteristic of all academic 
administrators and most engineering faculty.  

Semiconductor: A substance that has an electrical 
conductivity based on external factors. This term is also 
used to described specific devices made from 
semiconductors such as transistors, diodes, etc. 

Sensitivity List: A part of a VHDL process statement that 
shows which signals will case the process statement to be 
evaluated.   

Sequence Detectors: A device that can determine when a 
specified binary sequence appears on a given digital 
signal. Sequence detectors are often implemented using 
finite state machines (FSMs); such FSM can either be 
“resetting” or “non-resetting” in nature.  

Sequential Logic: Digital logic that has memory, or the 
ability to store the values of bits. It is generally understood 
that the ability to store bits comes from the notion of the 
circuit or an element in the circuit having feedback from 
an output of the circuit to an input.  

Sequential Statement: A type of statement that can 
appear in a VHDL process statement. Sequential 
statements are evaluated in the order they appear in the 
process statement though the process statement itself is a 
concurrent statement.   

Serial Lines: A term that refers to a signal that sends or 
receives a contiguous set of bits over a given time period. 
We typically refer to “bit-streams” that are received over 
serial lines; (see “bit-streams”).  

Serial: A condition that describes a set of multiple items 
considered one at a time.  

Set Condition: A state of storage element where the 
current value is ‘1’.   

Set: When used as a verb, this term refers to making the 
value of a signal or a storage element a ‘1’. For example, 
“the signal sets the flip-flop”.   

Set or Clear Method: One of the “new FSM techniques” 
associated with JK flip-flops where expression are written 
for each state transition that “sets” (0→1) for the J 
excitation inputs and or “clears” (0→1) for the K 
excitation inputs (see “new FSM techniques”, “special J 
reduction” and “special K reduction”). 

Set or Hold-1 Method: A part of the “new FSM 
techniques” associated with D flip-flops where expression 
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are written for each state transition that “sets” (0→1) or 
“holds-1” (1→1); (see “new FSM techniques”).  

Set Pulse: A signal that is used to set a sequential circuit. 
This signal is typically short in duration (thus the term 
“pulse”) and can either be a ‘1’ pulse or a ‘0’ pulse. 

Set State: The state of a storage element or a signal where 
the current value is ‘1’.  

Set Transition: A feature of a state-change in the context 
of a single bit where the present state is a ‘0’ and the next 
state is also a ‘1’. 

Set-Clear Method: A part of the “new FSM techniques” 
associated with T flip-flops where expression are written 
for each state transition that “sets” (0→1) or “clears” 
(0→1); (see “new FSM techniques”).   

Set-up & Hold Times: Digital devices that are edge 
sensitive (circuit changes state on a rising or falling clock 
edge) must hold inputs stable (the inputs must not change 
state) for a certain amount of time before the active clock 
edge arrives; this time is referred to as the set-up time. 
Digital devices must also hold the inputs stable for a 
certain amount of time after the active clock edge which is 
referred to as the hold time. Failing to meet set-up and/or 
hold times leads to the circuit going metastable. 

Setup Time: An attribute of physical sequential circuits 
defined as the amount of time a circuit’s control signals 
must remain stable before the active clock edge of the 
circuit.  

Shadow Registers: A term used to describe storage 
elements for the C and Z flags as part of the RAT MCU 
context storage mechanism.  

Shift Register Cell: A single bit-storage element that 
forms the building block of a shift register.  

Shift Register: A sequential circuit that is comprised of 
individual bit storage elements connected in such a way as 
to facilitate a “shift” operation between elements. The shift 
operation generally indicates that each storage element in 
the register simultaneously transfers its value to a 
contiguous storage element. Shift operations are generally 
synchronized to a system clock.  

Shift Register: A special flavor of register designed to 
perform contiguous bit-level transfers (or serial transfers) 
of data between the bit storage elements of the register. 
Shift registers generally shift all the storage elements to a 
contiguous storage element once per clock cycle.  

Short: A short-hand notion referring to a short circuit; 
(see short circuit).  

Short-Circuit: A circuit condition that describes a 
connection between two points.  

Sign Bit: A bit in a set of bits representing a binary 
number that is used to signify a sign bit. The sign bit 
location of the binary number it traditionally the left-most 
bit in the set of bits.  

Sign Extension: Refers to the act of increasing the bit-

width of a signed number without changing the value of 
the number. Extending the bit-width is different for signed 
and unsigned numbers.  

Sign Magnitude: A term that refers to a standard but not 
common method of representing signed binary numbers 
where the left-most bit in the set of numbers is considered 
the sign bit and the other bits are considered the magnitude 
bits. This term is often referred to as “SM”.   

Signals (VHDL): A term that refers to a declaration of 
internal connections of a VHDL architecture.  

Signed Binary Numbers: a set of bits (1’s and 0’s) that 
are used to represent a numbers that are either negative, 
zero, or positive.  

Signedness: A term that refers to the notion that a set of 
bits is a representation of a signed number.  

Silicon: The main semiconductor material used in the 
creation integrated circuits; silicon is the 14th element in 
the table of elements and is quite plentiful on planet earth. 

Simple Register: A device that can store two or more bits 
of data. A “simple” register is a register that is not a 
counter or shift register (or various versions of these). 
Additional features of a simple register include parallel 
loading and other parallel actions such as clearing and 
setting.  

Simulation: The act of verifying your circuit is working 
without actually implementing the circuit.  

Simulator: A device that tests a given circuit by providing 
a mechanism to list and/or change circuit inputs and views 
the resulting changes in circuit outputs. A simulator is a 
common design and debugging tool.  

Slanted T Symbol: A circuit symbol referring to a 
connection to the value of a ‘1’ in a circuit. Most often, the 
value of ‘1’ is the voltage value used to provide power to 
the circuit.  

Slash Notation: A graphical representation used in 
schematics to indicate the number of individual signals 
contained in a bundle.  

SM: An acronym referring to signed magnitude; (see 
“signed magnitude”). 

Small Scale Integration: A type of integrated circuit that 
comprises of up to approximately a hundred transistors; 
usually referred to as SSI.  

Soft-Core Microcontroller: A “microcontroller” (see 
“microcontroller”) is modeled using a hardware 
description language (HDL) and is synthesizable on a 
programmable logic controller (PLD). 

Software: In the specific case, software is a computer 
program that is written in a generic way so that it can run 
on a more than one type computer. Software does not refer 
to the language-level in which the program is written and 
thus can be written in machine code, assembly code, or a 
higher-level language. In the less specific case, the term 
software is often means any code written to run on a 
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computer.  

Sorting: A typical hardware and/or software operation 
that arranges a set of values based on some pre-determined 
criteria such as magnitude.  

Spaghetti code: Programming code that does not follow 
standard structured programming concepts. Spaghetti code 
is by definition fragile; it is hard to understand, maintain, 
modify, and reuse.  

Speed-Wrap: An antiquated approach to prototyping 
electronic circuits. In particular, a wire with a plastic 
coating was pushed between two posts that had sharp 
edges. The sharp edges would cut through the plastic and 
make a connection with the wire.  

Spiritually Enriching: A term that refers to the act of 
performing any of the various aspects of digital design.  

SR Latch: A one-bit storage element with that has a S 
(set) and a R (reset) input that are used to either set of 
clear the output of the latch, respectively.  

SR: An acronym representing “shift register”; (see “shift 
register”). 

SSI: An acronym for “small scale integration”; (see small 
scale integration).  

Stack pointer: A term that refers to an entity that contains 
information that describes the “top of the stack”.  

Stack: An abstract data type that implement a last-in/first-
out (LIFO) queue (or list of things). Stacks can be 
implemented in hardware or software with hardware 
implementation of stacks employing the use of a stack 
pointer to increase efficiency of the device. Stacks are 
typically used in computer architectures to keep track of 
hierarchically-nested processes such as subroutines and 
interrupts.  

Standard Decoder: A special type of decoder that 
contains a n:2n relationship between the number of inputs 
and outputs. The standard decoder is a subset of decoders 
in general.   

Standard Decoder: A standard decoder is a hardware 
device that implements a one-hot or one-cold output based 
on a given set of inputs. There is typically a binary 
relationship between the number of select inputs and the 
number of outputs and come in such flavors as 1:2, 2:4, 
3:8, etc.  

Standard Product of Sums Form (Standard POS 
Form): A description of a Boolean function that includes 
an explicit listing of the standard product terms that imply 
a non-active state (0’s) on the function’s output. Standard 
POS form is also referred to as a maxterm expansion. 

Standard Product Term: A product term that includes 
one instance of each independent variable; also known as a 
minterm.  

Standard Sum of Products Form (Standard SOP 
Form): A description of a Boolean function that includes 
an explicit listing of the standard product terms that imply 

an active state (1’s) on the function’s output. Standard 
SOP is also referred to as a minterm expansion.  

Standard Sum Term: A sum term that includes one 
instance of each independent variable; also known as a 
“maxterm”; (see “maxterm”).   

Standard: A set of rules or guidelines that everyone 
agrees to follow or be faced with the notion of choosing a 
slow death or becoming an academic administrator.   

Start-up code: The code that is inserted automatically by 
the assembler as a result of declaring data in the program 
that requires initialization. The start-up code is typically 
comprised of instructions that initialize data memory.  

State Bubble: A visual representation of the values that 
can be stored by a sequential circuit. State bubbles can 
represent either the stored bits or some symbolic reference 
to the stored bits.  

State Diagram Symbology: A term referring to the 
various standard set of symbols used to represent various 
aspects of state diagrams and the finite state machine 
(FSM) they represent. Representing state diagrams is not a 
science; it’s more of an art form.  

State Diagram: A visual representation of a PS/NS table 
used to describe the given values that a sequential circuit 
can store (or the “state”) and the conditions required to for 
the circuit to transition from one state to another state.  

State Registers: A sequential circuit used in the modeling 
and implementation of finite state machines (FSMs). The 
state registers are typically comprised of single-bit storage 
elements that are used to store the values associated with 
the “present state” of a given FSM.  

State Transition Inputs: A term that describes the inputs 
to the “synchronous process”; (see “synchronous process”) 
that control the functioning of the state variables 
associated with a given FSM model. These inputs typically 
include parallel load, clears, and pre-sets.  

State Transition: The characteristic associated with a 
sequential circuit where the values stored by that circuit 
change.  

State Variable Transition Table: A set of information in 
tabular format that lists every state-to-state transition 
associated with a state diagram. For each transition, the 
conditions that govern that transition and the state changes 
for the associated state variables are also listed. This table 
is used in conjunction with the “new FSM techniques”; 
(see “new FSM techniques”).   

Statement Region (VHDL): The region of a VHDL 
architecture that support the various forms of VHDL 
statements including concurrent signal assignment 
statements and component instantiations.   

Static logic hazards: A hazard that is present due to the 
changing of a single input variable for a given circuit 
where the given output is not expect to change (thus 
remain “static”).  
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Status Signals: These are signals represented as outputs 
from a device being control and provide status information 
to a controller device. Finite state machines (FSMs) are 
typically used as controllers and contain both control 
outputs and status inputs. 

Stimulus Driver: A term referring to one major portion of 
a VHDL testbench; the other portion of the testbench is the 
“device under test”. The stimulus driver’s main function is 
to provide inputs to the device under test. The stimulus 
driver can use the state of the DUT’s output to generate 
conditional stimulus to the DUT. The stimulus driver can 
be modeled for either manual or automatic verification of 
the DUT.  

Stimulus: A term referring to the application of test 
vectors to a device under test. The stimulus is generally in 
the form of exercising the digital inputs to the device 
under test.   

Stone-Age Unary: A number system that uses one 
physical entity for each thing being counted.  

Storage Capacity: A term typically associated with 
memory devices that refer to how much data can be store 
within a particular memory or memory system. Storage 
capacity can be stated in many ways; the two most popular 
ways are the number of bits the memory can store or the 
number of words the memory can store. 

Storage Element: A digital device that is capable of 
storing an arbitrary number of bits. Storage elements are 
typically associated with state variable representation in 
finite state machines (FSMs). Storage elements are often 
referred to as “memory elements”. 

Structural Style: A term referring to the use of structural 
modeling in VHDL.  

Structured Code: Code that can be decomposed into 
three basic structure: 1) sequence, 2) if-then-else, and, 3) 
iterative. Structured code is easily understood, maintained, 
modified, and reused.  

Structured Digital Design: The notion that modern 
digital design is similar to typical computer program 
design. Specifically, any well-designed digital circuits can 
be decomposed into one of only a few standard and 
relatively simple digital circuits. This concept closely 
relates to object-level digital design. 

Structured Memory: A term referring to the notion of 
digital devices with regular structure that can store 
relatively large amounts of information, such as ROMs 
and RAMs. Smaller memory devices in digital circuits 
include “incidental memory items such as flip-flops and 
registers.  

Structured Programming: A term that refers to the 
notion that any properly written program can be 
decomposed into a set of four or five simple programming 
constructs. The notion here is that poorly written code 
cannot be composed into these constructs (aka spaghetti 
code).  

Sub-Minterms: A subset of a standard minterm. Sub-
minterms are generally used in the derivation and 
description of mapped entered variables (MEVs). 

Subroutine: A set of instructions that a computer 
explicitly transfers to and returns from. In terms of 
program flow, the program transfers program execution to 
a set of instructions referred to as the subroutine. When 
the instructions in the subroutine have completed 
executing, control is returned to the instruction after the 
instruction, which caused the program to initially transfer 
to the subroutine.  

Subtractor: A device that subtracts one number from 
another number. In digital design, there are many forms of 
subtractors, each with their own particular set of 
characteristics. 

Subtrahend: A number that is subtracted from another 
number.  

Sum of Products (SOP) Form: A function form that is 
characterized by product terms that logically summed 
together. 

Sum Term: A set of Boolean variables that are ORed or 
logically summed together.  

Sum Term: An expression in a Boolean equation that is 
characterized as a logical summation of variables.  

SVTT: An abbreviation for “state variable transition 
table”; (see “state variable transition table”).  

Switch Bounce: A condition associated with all 
mechanical switches were upon actuation, the switch 
contacts make and break connections several times before 
the “settling” to the connected state. Switch bounce can 
last up to 20ms, depending on what source you consult. 

Switching time: A term that is used to quantify the 
amount of time required for a signal to switch from high-
to-low or low-to-high.  

Symbology: A set of visual symbols used to describe the 
overall functioning of a device. Often times there is a 
specific set of “symbology” associated with a given 
classification of the thing being described; at other times, 
special symbols can be created by the user and described 
via a “legend” (see “legend”) associated with the 
description.  

Synchronous Circuit: A circuit that has some 
functionality that is synchronized to some event in the 
circuit, typically an active edge of a clock signal.  

Synchronous Input: An input to a sequential circuit that 
only has an effect on the circuit based on an active edge of 
some other signal in the circuit.  

Synchronous Process: One-half of a two-process 
approach to modeling finite state machines (FSMs) using 
VHDL; the other half of the FSM model is the 
“combinatorial process”; (see “combinatorial process”). 
The synchronous process is responsible for modeling the 
state registers and any logic that control the state registers 
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such as parallel load, clears, and presents. The 
synchronous process implements the “state register” block 
associated with the standard FSM model. 

Synthesize: A term typically used in digital design 
indicating the notion of using a model of something in one 
form and converting that model to another form. The two 
most common usages of this term on in hardware design 
languages where the act of synthesizing a VHDL model 
creates a new type of model that can eventually be 
converted into actual hardware. The other common usage 
of this term is to use some entity (such as a 
microcontroller for FSM) to recreate signals shown on a 
timing diagram.  

System Clock: A clock signal for a given circuit that is 
typically used for all parts of the circuit. System clock 
signals are typically used to synchronize the various parts 
of a circuit by using a single signal in which all parts of 
the circuit can act upon.  

-T- 

T Flip-flop: A shorthand notation for a “toggle flip-flop”; 
(see “toggle flip-flop”).  

Tab Character: A type of white-space that includes any 
number of single spaces. Tab characters should never 
appear in the text of any type of code.  

Tape Drive: A non-random access devices used to store 
digital data. Data in tape drives is stored on a magnetic 
media attached to some type of tape that is stored on some 
type of spool. Tape drives store large amounts of 
information but access to that information is slow relative 
to other mass storage devices such as hard-drives or flash 
drives.  

Tedious Grunt Work: A special form of “grunt work” 
that has a higher grunt factor than most of other “grunt 
work”; (see “grunt work”).  

Tedium: A frustrating state of affairs resulting from 
“doing” but not “learning”.  

Terms of Convenience: A phrase referring to an 
irreverent set of words that are typically not used together 
in the same context. This text has way too many “terms of 
convenience”.  

Test Vectors: A term referring to the set of data that is 
applied to a device under test. For a given VHDL 
testbench, test vectors can be stored in using one of three 
approaches: 1) “on the fly”, 2) in hard-coded arrays, 
and/or 3) stored in external files.  

Testbench: The term given to VHDL models whose 
primary purpose is to verify the correct operation of other 
VHDL models. The two main parts of a testbench are the 
“stimulus driver” and the “device under test’ (DUT). 
Generally speaking, the stimulus driver provides input to 
the DUT.  

Theorem: A proposition that can be proved true from a 
given set of axioms. 

Three-State Device: An electronic device that has the 
ability to be in a third state that is commonly referred to as 
the “high-impedance” state. The term “three-state” is 
synonymous with the term “tri-state”.  

Throughput: A term that describes the amount of useful 
information that is processed by a circuit. Typical 
throughput metics include intructions per second (IPS), 
floating point operations per second (FPS), etc.  

Throughput: The throughput of a system is the total 
amount of useful information processed or communicated 
during a specified time period. Note that this definition is 
general. Systems with high throughput are generally 
desired over systems with low throughput with the 
exception of administrative systems on university 
campuses.  

Tied High: A term used to indicate an input to a gate is 
connected to a logical ‘1’. In a real circuit, this term 
generally refers to connecting an input to the high voltage 
used to power your digital circuit. 

Tied Low: A term used to indicate an input to a gate is 
connected to a logical ‘0’. In a real circuit, this term 
generally refers to connecting an input to the low or 
ground voltage used to power your digital circuit. 

Tied-To: A commonly used, but slang notation indicating 
an electrical connection for a given device. Two of the 
more common uses of this term include “tied to ground” (a 
signal is connected to ground, or ‘0’) and “tied to power” 
(a signal connected to power, or ‘1’).   

Time Slots: A term that refers to finite periods of time. 
Time slots are often used to describe the amount of time 
associated with a given state in a finite state machine 
(FSM).  

Timelessness: The feeling you get when you read this 
text. No matter how hard you try, you can’t make that 
feeling go away.  

Timing Analysis: The act of analyzing a given timing 
diagram in order to do fun things like gather information 
of verify whether the circuit is actually operating correctly.  

Timing diagram annotation: A special notation used to 
indicate or highlight certain properties or conditions in a 
given timing diagram. The underlying purpose of timing 
diagram notation is to convey certain information to the 
reader; the quality of the timing diagram notation is judged 
by how efficiently that information can be conveyed.  

Timing Diagrams: A graphical representation of the 
operational characteristics of a circuit based on the notion 
of observing circuit operation over a given span of time. 
The horizontal axis is typically used to represent time in 
timing diagrams while the vertical access is used to list 
signals and show the state of those signals. Timing 
diagrams have two primary uses: they serve as design aids 
and they serve to verify the proper operational of circuits.  

Tiny Electronic Gadgets: A term referring to entities that 
enhance the “conspicuous consumption” tendencies of 
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normally intelligent people by increasing a person’s 
personal need to “keep up with the Jones’s”.  

Toggle Flip-flop: A flip-flop that changes the output state 
when the “toggle” input to the flip-flop is asserted and an 
active edge occurs on the clocking input the circuit. The 
“next state” of a T flip-flop is a function of both the T 
input and the present state of the T flip-flop.  

Toggle: A term that refers to changing the value of a bit; 
the act of toggling a bit changes the bit value from either 
‘1’ to ‘0’ or ‘0’ to ‘1’ depending on the initial value of the 
bit.  

Top-Down Design: A hierarchical design approach that 
starts at the highest level of abstraction and works 
downwards. In this approach, the designer fills in the 
lower levels of abstraction as the design progresses. 

Top-of-stack: A term that generally refers to the more 
recent item placed onto a stack.  

Tri-State Device: An electronic device that has the ability 
to be in a third state that is commonly referred to as the 
“high-impedance” state. The term “tri-state” is 
synonymous with the term “three-state”.  

Tri-State Register: A register that has the ability to be 
place its outputs into a high-impedance state.  

Tri-State: A term that refers to a devices ability to 
effectively remove itself from a circuit. Thus a tri-state 
device in a digital circuit can either be high, low, or high-
impedance. The notion of tri-stating is used to share 
routing resources in a circuit; the only possible drawback 
of tri-stating is that only one device can drive the resource 
at a given time, otherwise the condition of contention will 
occur, which is ungood.  

Truncation: A term used to describe the removal of one 
or more digits from a value. The digits removed are 
contiguous and are generally either the most significant or 
least significant digits in the given number.  

Truth Table: A matrix that shows all possible input 
combinations and the associated output values.  

Two’s Compliment: As a noun this term refers to an 
alternate and more popular method of describing radix 
compliment (RC) form; (see “radix compliment”). As a 
verb, this term refers to the notion of changing the sign of 
a signed binary number in RC form.  

Two-Valued Algebra: An algebra based on only two 
variables. This term commonly refers to Boolean algebra.  

-U- 

UDC: An acronym used for unit distance code; (see “unit 
distance code”).  

Unasserted: A term used to indicate that the current 
voltage level of a signal is not associated with the active 
state of that signal.  

Unconditional transition: A term that refers to a state-to-
state transition in a finite state machine (FSM) that occurs 

independently of any conditions in a given circuit. These 
transitions are often referred to as “don’t care transitions”. 

Un-Dead: A term used to describe a circuit element that is 
enabled (or not disabled). Similarly, a dead circuit has an 
output that is pre-determined and does not change so long 
as the circuit remains dead.  

Underflow: A condition that indicates the result of a 
mathematical operation has exceeded the bottom end of 
the rang of numbers associated with the bit-width of the 
operands. Underflow is often characterized as a special 
case of overflow; (see “overflow”).  

Unit Distance Code: A binary code where the differences 
between to binary numbers in the sequence differ by a unit 
distance (a distance of one).  

Universal Shift Register: A shift register that can perform 
more operations than simple shifting. These other 
operations can include rotation, barrel shifting, parallel 
loading, resetting, etc.  

Universal Shift Register: A special flavor of shift register 
that performs actions other than simple one-directional 
shifts including some or all of the following operations: 
shift left, shift right, barrel shifts, arithmetic shift, and 
rotates.  

Unsigned Binary Number: a set of bits (1’s and 0’s) that 
are used to represent a numbers greater or equal to zero. 
Unsigned binary numbers can be used to represent zero 
and positive numbers.  

Unused State: A condition generally associated with finite 
state machine (FSM) design. This condition is present 
because of the binary relationship associated with some 
methods used to encode state variables which leave some 
combinations of the associated storage elements 
intentionally unused. The FSM could thus unintentionally 
find itself in these unused states and potentially cause 
undesired operation of the FSM. 

Up Counter: A counter that counts only in the “up” 
direction (count value becomes greater). 

Up/Down Counter: A counter that can counter either up 
(count value increases) or down (count value decreases) 
according to a selection input on the device.  

User-Level: A term used to describe the number of bits in 
the operands and/or result of a circuit that performs 
addition.  

USR: An acronym representing “universal shift register”; 
(see “universal shift register”).  

-V- 

Variable Assignment Operator: The VHDL operator 
used to assigned values to variables: “:=”.  

Variable: A VHDL type used to store intermediate results. 
Variables can only be declared in the declarative regions 
of process and are only visible in those processes in which 
they are declared. The results of variable assignments are 
ready for immediate use in the process and are not 
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“scheduled” for assignment once the process completes as 
is the case the with signals.  
 

Vcc: A term referring to the power connection in 
electronics. In digital eletronics, this signal is generally 
considered a logical ‘1’. Sometimes the term “Vdd” is 
used in place of “Vcc”, but not often.  

Vdd: A term referring to the power connection in 
electronics. In digital eletronics, this signal is generally 
considered a logical ‘1’. Usually the term “Vcc” is used in 
place of “Vdd”. 

Vector: A term used to signify that a given item that can 
be decomposed into two or more sub-items.  

Verilog: A modern hardware description language (HDL) 
that is used quite widely in North America but less so in 
other areas of the world. Verilog syntax has a strong 
resemblance to C programming syntax.  

Very Large Scale Integration: A type of integrated 
circuit that contains a buttload of transistors (certainly 
more transistors then large scale integration (LSI) ICs). 
This term often described with the acronym “VLSI”.  

VHDL (Very High Speed Circuit Hardware 
Description Language): VHDL is one of several 
modeling systems referred to as “hardware description 
languages”, or HDLs. VHDL is typically used to model 
digital circuits; the resultant models can be used to 
simulate circuits, or synthesize circuit implementations on 
PLDs or silicone.  

VLSI: An acronym for “very large scale integration”; (see 
“very large scale integration”).  

Volatile/Non-Volatile: A device is considered volatile if 
its contents are lost when power is removed from the 
device while non-volatile devices retain their memory 
when power is removed and subsequently returned. The 
term volatile is most often associated with memory 
devices and PLDs such as FPGAs.  

Volatile: A term associated with sequential circuits 
(circuits having memory). The accepted definition of a 
volatile circuit is that the circuit loses the data it is storing 
when power is removed from the circuit.  

Von Neuman Architecture: A computer architecture 
where data and instructions share the same memory space. 
The term Von Neuman machine is often used to mean 
Von Neuman architecture. Von Neuman architecture is 
sometimes referred to as a “Princeton” architecture.  

-W- 

Wait Statement: A “wait” statement is a VHDL 
sequential statement that is used to suspend execution of 
process statements. Only process statements that do not 
include process sensitivity lists can use wait statements. 
There are four forms of wait statements in VHDL; most of 
these forms are particularly useful in modeling VHDL 
testbenches.  

Wanker: Any person who pretends to be something 
they’re not; this includes talking big while knowing small. 
All academic personnel seem to have a hopeless case of 
wankerism as well as a healthy case of apathy towards 
their condition.  

Wankerism: A term describing the collective mindset of 
wankers. Academic administrators always strive to take 
wankeristic tendencies to new heights.   

Waveform: A term referring to a visual representation of 
a signal over a given amount of time.  

Weightings: This is roughly the same term as “weights”; 
(see weights). 

Weights: This refers to the values assigned to various 
digit locations when juxtapositional notation is used. The 
weights are typically powers of the radix for a given 
number system but can be just about anything as weight 
assignments are arbitrary.  

White Space: A term describing the areas of text that have 
no printed characters in them; white space generally  
includes space characters, tab characters, and blank lines.  

Width: A term that describes the number of signal in a 
bundle or the number of bits associated with digital 
devices that operate in parallel such as “comparators” and 
“ripple carry adders”. 

Wire-Wrap: A method used for prototyping electronic 
circuits that entail stripping the plastic coating off of a 
wire and wrapping it around a metal post that was 
electrically connected to an electronic device. 

Word: A term used to describe the smallest addressable 
unit (or chunk of bits) in a memory or memory system. 

Wrapper: A term used to describe an addition to an item 
that abstracts, simplifies, and/or extends the usage of that 
item. Wrappers in VHDL generally includes an interface 
that is used to customize the usage of an established model 

Write Cycle Timing: The amount of time required for 
data to be written to memory after a valid address, valid 
input data, and the appropriate control signals have been 
provided to the device.  

Write Enable: A name that is commonly associated with 
a signal that allows a sequential device to store new 
output’s to the device’s memory elements. output a signal 
or set of signals. The acronym “WE” is most often used to 
represent the output enable.  

-X- 

X:  The symbol typically used to represent input variables 
in finite state machines. 

XNOR Gate: A shorthand name for an exclusive NOR 
gate, one of the standard logic gates; an XNOR gate  
performs an XOR function with a complimented output. 
XNOR gates can also be considered to perform an XOR 
function with an active low output. XNOR gates are also 
known as “equivalence gates” as the gate output indicates 
when the gate’s two inputs are equivalent. XNOR gates by 
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definition always have two inputs.  

XOR Gate: A shorthand name for an exclusive OR gate, 
one of the standard logic gates; an XOR gate performs an 
XOR function which is typically defined using a truth 
table or a Boolean equation. XOR gates indicate when the 
gate’s two inputs are not equivalent. XOR gates by 
definition always have two inputs. 

-Y- 

Y: The letter often used as a label in finite state machine 
lingo to refer to external inputs.  

-Z- 

Z: A letter that is used for two main purposes in digital 
circuits. This letter is used to refer to the notion of the 
“high-impedance” condition of a circuit’s output. This 
letter is also used as a label in finite state machine (FSM) 
lingo to refer to external outputs.  

Z: The symbol typically used to represent high 
impedance. This symbol is also used to represent output 
variables state machines. 

μ: An abbreviation used for the metric prefix “micro”; this 
prefix is used in engineering notation. 
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1 

1’s complement, ‐ 166 ‐ 
1980’s, ‐ 186 ‐ 

A 

Absorption, ‐ 75 ‐ 
abstract, ‐ 35 ‐ 
academic exercise, ‐ 164 ‐ 
accumulator, ‐ 320 ‐ 
action state, ‐ 186 ‐ 
active edge, ‐ 304 ‐ 
active low, ‐ 306 ‐ 
active state, ‐ 186 ‐ 
addend, ‐ 177 ‐ 
algorithm, ‐ 72 ‐ 
analog, ‐ 27 ‐ 
AND operator, ‐ 75 ‐ 
AND/NOR, ‐ 159 ‐ 
AND/OR Form, ‐ 159 ‐ 
annotations, ‐ 99 ‐ 
arithmetic shift, ‐ 438 ‐ 
arithmetic shifts, ‐ 438 ‐ 
arrow, ‐ 356 ‐ 
arrows, ‐ 296 ‐ 
Assertation levels, ‐ 187 ‐ 
Asserted high, ‐ 187 ‐ 
Asserted low, ‐ 187 ‐ 
Asserted signal, ‐ 187 ‐ 
Associative, ‐ 75 ‐ 
asynchronous, ‐ 305 ‐ 
augend, ‐ 177 ‐ 
axioms, ‐ 75 ‐ 

B 

bajillion, ‐ 160 ‐ 
barrel shift, ‐ 437 ‐ 
base, ‐ 47 ‐ 
BCD. See binary coded decimal 
BFD. See brute force design 
binary coded decimal, ‐ 64 ‐ 
binary codes, ‐ 64 ‐ 
Binary Counter, ‐ 405 ‐ 
bit stuffing, ‐ 170 ‐ 
bit‐addressable, ‐ 459 ‐ 
bits, ‐ 47 ‐ 
bit‐stuffing, ‐ 62 ‐ 

black box diagram, ‐ 33 ‐ 
black box modeling, ‐ 35 ‐ 
Boole, ‐ 75 ‐ 
Boolean algebra, ‐ 75 ‐ 
Boolean algebra Axioms, ‐ 75 ‐ 
Boolean equation, ‐ 76 ‐ 
Boolean expression, ‐ 76 ‐ 
bottleneck, ‐ 463 ‐ 
boxes within boxes, ‐ 40 ‐ 
brute force design, ‐ 74 ‐ 
bubbles, ‐ 193 ‐ 
buffer, ‐ 148 ‐ 
buffering action, ‐ 148 ‐ 
Bummer, ‐ 348 ‐ 
bundle, ‐ 90 ‐ 
bundle expansion, ‐ 94 ‐ 
bus, ‐ 90 ‐ 
byte, ‐ 47 ‐ 

C 

calculus, ‐ 45 ‐ 
carry bit, ‐ 167 ‐ 
carry‐in, ‐ 113 ‐ 
cascade, ‐ 432 ‐ 
cascadeabilitly, ‐ 432 ‐ 
Cascadeable, ‐ 405 ‐ 
cascading, ‐ 118 ‐ 
caveperson, ‐ 44 ‐ 
CF. See compact fluorescent 
characteristic tables, ‐ 296 ‐ 
circled cross, ‐ 146 ‐ 
circled dot, ‐ 146 ‐ 
circuit forms, ‐ 157 ‐ 
clear, ‐ 293 ‐ 
clear state, ‐ 293 ‐ 
clearing, ‐ 293 ‐ 
clock edge, ‐ 304 ‐ 
clock input, ‐ 304 ‐ 
code‐word, ‐ 404 ‐ 
combinational, ‐ 289 ‐ 
combinatorial, ‐ 289 ‐ 
Combining, ‐ 75 ‐ 
Commutative, ‐ 75 ‐ 
compact fluorescent, ‐ 27 ‐ 
compact maxterm form, ‐ 132 ‐ 
compact minterm form, ‐ 132 ‐ 
comparator, ‐ 259 ‐ 
complementation, ‐ 75 ‐ 
computationally expensive, ‐ 437 ‐ 
computer peripherals., ‐ 23 ‐, ‐ 378 ‐ 
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conditional statement, ‐ 239 ‐ 
continuous, ‐ 27 ‐, ‐ 28 ‐ 
continuousness, ‐ 27 ‐, ‐ 29 ‐ 
control signals, ‐ 358 ‐ 
control tasks, ‐ 375 ‐ 
Count Enable, ‐ 405 ‐ 
Counter Overflow, ‐ 405 ‐ 
Counter Underflow, ‐ 405 ‐ 
CPLDs, ‐ 375 ‐ 
crapitalism, ‐ 33 ‐ 
cross, ‐ 75 ‐ 
cross coupled NOR cell, ‐ 295 ‐ 
cycles per second, ‐ 366 ‐ 

D 

D flip‐flop, ‐ 304 ‐ 
data, ‐ 456 ‐ 
data flip‐flop. See D flip‐flop 
Decade Counter, ‐ 405 ‐ 
decimal, ‐ 45 ‐ 
decimal number, ‐ 45 ‐ 
decoder, ‐ 224 ‐, ‐ 500 ‐ 
Decrement, ‐ 405 ‐ 
DeMorgan’s theorem, ‐ 158 ‐ 
DeMorganize, ‐ 130 ‐, ‐ 159 ‐ 
dependent variable, ‐ 74 ‐ 
difference, ‐ 177 ‐ 
Digit, ‐ 45 ‐ 
digit position, ‐ 46 ‐ 
digital, ‐ 27 ‐ 
digital circuit element model, ‐ 33 ‐ 
diminished radix complement, ‐ 164 ‐ 
dimmer, ‐ 27 ‐ 
Direct Polarity Indicators, ‐ 187 ‐ 
discontinuity, ‐ 90 ‐ 
discrete, ‐ 27 ‐, ‐ 28 ‐ 
discreteness, ‐ 27 ‐ 
distance, ‐ 66 ‐ 
Distributive, ‐ 75 ‐ 
don’t care, ‐ 359 ‐ 
do‐nothing, ‐ 293 ‐ 
dot, ‐ 75 ‐ 
dot operator, ‐ 75 ‐ 
Double Complement, ‐ 75 ‐ 
Down Counter, ‐ 405 ‐ 
down‐pointed arrow, ‐ 147 ‐ 
DPI. See direct polarity indicator 
DRC. See diminished radix complement 
drugs, ‐ 108 ‐ 
duty cycle, ‐ 367 ‐ 

E 

edge‐sensitive, ‐ 304 ‐ 
edge‐triggered, ‐ 304 ‐ 

engineering notation, ‐ 52 ‐ 
equivalence gate, ‐ 146 ‐, ‐ 261 ‐ 
equivalent forms, ‐ 188 ‐ 
error detection, ‐ 276 ‐ 
event counters, ‐ 420 ‐ 
excitation table, ‐ 297 ‐ 
exclusive NOR gate, ‐ 146 ‐ 
exclusive OR, ‐ 146 ‐ 
Exponential notation, ‐ 52 ‐ 

F 

FA. See full adder 
falling‐edge‐triggered, ‐ 304 ‐ 
fast multiplication, ‐ 438 ‐ 
feature set, ‐ 448 ‐ 
feedback, ‐ 290 ‐ 
FET, ‐ 304 ‐, See falling‐edge triggered 
finite state machine, ‐ 23 ‐, ‐ 378 ‐ 
Finite State Machine, ‐ 353 ‐ 
floor function, ‐ 51 ‐ 
follow rules, ‐ 389 ‐ 
forbidden state, ‐ 293 ‐ 
forward slash, ‐ 358 ‐ 
FPGAs, ‐ 375 ‐ 
fractional, ‐ 45 ‐ 
fractional portion, ‐ 59 ‐ 
frequency, ‐ 366 ‐ 
frets, ‐ 28 ‐ 
full adder, ‐ 113 ‐ 
function, ‐ 74 ‐ 
function realization, ‐ 77 ‐ 
functional relationship, ‐ 74 ‐ 
functionally complete, ‐ 145 ‐ 
functionally equivalent, ‐ 124 ‐, ‐ 133 ‐ 

G 

gate killing, ‐ 226 ‐ 
generic decoder, ‐ 224 ‐ 
GND, ‐ 147 ‐ 
gory details, ‐ 262 ‐ 
Graphical User Interfaces, ‐ 33 ‐ 
Gray Codes, ‐ 66 ‐ 
ground, ‐ 147 ‐, ‐ 214 ‐ 
group of fours, ‐ 62 ‐ 
GUIs, ‐ 33 ‐ 

H 

HA. See half adder 
HAL, ‐ 375 ‐ 
Half Adder, ‐ 111 ‐ 
hang states, ‐ 348 ‐ 
hard drives, ‐ 457 ‐ 
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Hardware Description Language, ‐ 34 ‐ 
HDL model, ‐ 34 ‐ 
Hertz, ‐ 366 ‐ 
hierarchical, ‐ 37 ‐ 
hierarchical design, ‐ 38 ‐, ‐ 209 ‐ 
hierarchy, ‐ 35 ‐ 
high‐level model, ‐ 35 ‐ 
hold, ‐ 293 ‐ 
hold condition, ‐ 293 ‐, ‐ 294 ‐ 
hold time, ‐ 368 ‐ 
horse‐sense, ‐ 261 ‐ 
human brain, ‐ 43 ‐ 
humans, ‐ 58 ‐ 
hung, ‐ 348 ‐ 
Hz, ‐ 366 ‐ 

I 

I/O, ‐ 35 ‐ 
ICs, ‐ 375 ‐ 
Idempotent, ‐ 75 ‐ 
Identity, ‐ 75 ‐ 
illegal state recovery, ‐ 347 ‐ 
IMD, ‐ 110 ‐ 
inactive state, ‐ 186 ‐ 
incidental memory, ‐ 456 ‐ 
Increment, ‐ 405 ‐ 
independent variables, ‐ 74 ‐ 
indirect subtraction by addition, ‐ 177 ‐ 
information, ‐ 456 ‐ 
information content, ‐ 456 ‐ 
initial state, ‐ 305 ‐ 
inputs, ‐ 35 ‐ 
integer‐based math, ‐ 437 ‐ 
integral, ‐ 45 ‐ 
integral portion, ‐ 59 ‐ 
Integrated circuits, ‐ 375 ‐ 
inversion, ‐ 75 ‐ 
iterative, ‐ 110 ‐ 
iterative modular design, ‐ 110 ‐ 

J 

juxtapositional notation, ‐ 45 ‐ 

K 

kludgy, ‐ 39 ‐ 

L 

latch, ‐ 295 ‐ 
least significant bit, ‐ 73 ‐, ‐ 115 ‐ 
least significant digit, ‐ 59 ‐ 

level‐sensitive, ‐ 304 ‐ 
lingo, ‐ 375 ‐ 
logic gate, ‐ 77 ‐ 
logic gates, ‐ 77 ‐ 
Logic levels, ‐ 187 ‐ 
logical addition, ‐ 75 ‐ 
logical multiplication, ‐ 75 ‐ 
logical reasoning, ‐ 75 ‐ 
loincloths, ‐ 44 ‐ 
low‐level model, ‐ 35 ‐ 
LSB. See least significant bit 
LSD, ‐ 59 ‐, See least significant digit 

M 

magnitude bits, ‐ 164 ‐ 
magnitude portion, ‐ 52 ‐ 
maximum clock frequency, ‐ 369 ‐ 
maxterm, ‐ 128 ‐ 
maxterm expansion, ‐ 128 ‐ 
maxterm representations, ‐ 127 ‐ 
MCUs, ‐ 375 ‐ 
memory elements, ‐ 355 ‐ 
metastable, ‐ 368 ‐ 
microcontroller, ‐ 23 ‐, ‐ 378 ‐ 
Microcontrollers, ‐ 375 ‐ 
minimum cost, ‐ 160 ‐ 
minimum cost solution, ‐ 160 ‐ 
minimum period, ‐ 369 ‐ 
minterm, ‐ 128 ‐ 
minterm expansion, ‐ 128 ‐ 
minterm representations, ‐ 127 ‐ 
minterms, ‐ 128 ‐ 
minuend, ‐ 177 ‐ 
mixed logic, ‐ 193 ‐ 
Mixed logic, ‐ 187 ‐ 
mixed logic design, ‐ 187 ‐ 
model, ‐ 32 ‐ 
Modular Design, ‐ 209 ‐ 
modulo‐2 addition, ‐ 275 ‐ 
most significant bit, ‐ 73 ‐, ‐ 115 ‐ 
MSB. See most significant bit 
multiplexor, ‐ 240 ‐ 
MUX. See multiplexor 

N 

NAND, ‐ 144 ‐ 
NAND gate, ‐ 144 ‐ 
NAND latch, ‐ 298 ‐ 
NAND/AND, ‐ 159 ‐ 
NAND/NAND, ‐ 159 ‐ 
n‐bit adder, ‐ 114 ‐ 
n‐bit Counter, ‐ 405 ‐ 
n‐bit register, ‐ 315 ‐ 
negative logic, ‐ 295 ‐ 
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Negative logic, ‐ 187 ‐ 
next state, ‐ 292 ‐, ‐ 355 ‐ 
Next State, ‐ 356 ‐ 
next state decoder, ‐ 355 ‐ 
Next State Decoder, ‐ 354 ‐ 
next state forming logic, ‐ 355 ‐ 
next state logic, ‐ 355 ‐ 
nibble, ‐ 47 ‐ 
no‐brainer approach, ‐ 193 ‐ 
noise, ‐ 348 ‐ 
non‐action, ‐ 186 ‐ 
non‐resetting, ‐ 387 ‐ 
non‐volatile, ‐ 457 ‐ 
NOR, ‐ 144 ‐ 
NOR gate, ‐ 144 ‐ 
NOR latch, ‐ 295 ‐ 
NOR/NOR, ‐ 159 ‐ 
NOR/OR, ‐ 159 ‐ 
NOT operator, ‐ 75 ‐ 
Not‐asserted signal, ‐ 187 ‐ 
Null element, ‐ 75 ‐ 
Number, ‐ 45 ‐ 
Number System, ‐ 45 ‐ 

O 

off‐the‐shelf, ‐ 23 ‐, ‐ 378 ‐ 
one‐cold, ‐ 65 ‐ 
one‐hot code, ‐ 240 ‐ 
operators, ‐ 75 ‐ 
OR operator, ‐ 75 ‐ 
OR/AND, ‐ 159 ‐ 
OR/NAND, ‐ 159 ‐ 
Output decoder, ‐ 354 ‐ 
Output Decoder, ‐ 355 ‐ 
outputs, ‐ 35 ‐ 
overbar, ‐ 75 ‐ 
overflow, ‐ 178 ‐ 

P 

paper designs, ‐ 21 ‐ 
parallel, ‐ 275 ‐ 
Parallel Load, ‐ 405 ‐ 
parity checkers, ‐ 275 ‐ 
parity generators, ‐ 275 ‐ 
period, ‐ 366 ‐ 
periodic, ‐ 365 ‐ 
pin count, ‐ 375 ‐ 
pins, ‐ 375 ‐ 
PLC. See positive logic convention 
PLDs. See Programmable Logic Device 
POS. See product of sums 
positive logic, ‐ 295 ‐ 
Positive logic, ‐ 187 ‐ 
Positive Logic Convention, ‐ 187 ‐ 

power, ‐ 147 ‐ 
prefix, ‐ 52 ‐ 
present state, ‐ 292 ‐ 
Present State, ‐ 356 ‐ 
present state/next state, ‐ 296 ‐ 
product of sums, ‐ 125 ‐ 
Programmable Logic Devices, ‐ 375 ‐ 
propagation delay, ‐ 369 ‐ 
PS/NS. See present state/next state 
PS/NS table, ‐ 296 ‐ 

R 

Radix, ‐ 45 ‐ 
radix complement, ‐ 164 ‐ 
Radix Point, ‐ 45 ‐ 
RAM, ‐ 457 ‐ 
random access memory, ‐ 457 ‐ 
RC, ‐ 164 ‐, See radix complement 
RCA, ‐ 114 ‐ 
read only memory, ‐ 457 ‐ 
realize, ‐ 77 ‐ 
register, ‐ 355 ‐ 
repeated radix division, ‐ 59 ‐ 
repeated radix multiplication, ‐ 60 ‐ 
reset condition, ‐ 298 ‐ 
reset state, ‐ 293 ‐ 
resetting, ‐ 387 ‐ 
RET, ‐ 304 ‐, See rising‐edge triggered 
ripple carry adder, ‐ 114 ‐, ‐ 115 ‐ 
Ripple Carry Out, ‐ 405 ‐ 
rising‐edge‐triggered, ‐ 304 ‐ 
Role Models, ‐ 33 ‐ 
ROM, ‐ 457 ‐ 
rotates, ‐ 438 ‐ 
RRD. See repeated radix division 
RRM. See repeated radix multiplication 
Runway Models, ‐ 33 ‐ 

S 

self‐commenting, ‐ 35 ‐ 
self‐correcting, ‐ 349 ‐ 
self‐loop, ‐ 356 ‐ 
self‐looping hang state, ‐ 348 ‐ 
self‐loops, ‐ 296 ‐ 
sequence, ‐ 290 ‐ 
sequence detectors, ‐ 386 ‐ 
sequential, ‐ 289 ‐, ‐ 290 ‐ 
serial, ‐ 275 ‐ 
set, ‐ 293 ‐ 
set condition, ‐ 294 ‐, ‐ 298 ‐ 
set state, ‐ 293 ‐ 
setting, ‐ 293 ‐ 
setup time, ‐ 368 ‐ 
shift register, ‐ 430 ‐ 
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shift register cell, ‐ 430 ‐ 
sign bit, ‐ 164 ‐, ‐ 169 ‐ 
sign extension, ‐ 170 ‐ 
Sign extension, ‐ 170 ‐ 
sign magnitude, ‐ 164 ‐ 
signedness, ‐ 438 ‐ 
sign‐extend, ‐ 170 ‐ 
simulator, ‐ 87 ‐ 
Single variable theorems, ‐ 75 ‐ 
slanted lines, ‐ 87 ‐ 
slanted T symbol, ‐ 226 ‐ 
slash notation, ‐ 90 ‐ 
SM. See sign magnitude 
soft‐core MCU, ‐ 375 ‐ 
SOP. See sum of products 
SOP form, ‐ 125 ‐ 
sorting, ‐ 264 ‐ 
spiritually enriching, ‐ 386 ‐ 
SR latch, ‐ 298 ‐ 
standard decoder, ‐ 224 ‐ 
standard product terms, ‐ 128 ‐ 
standard SOP form, ‐ 127 ‐, ‐ 128 ‐ 
state, ‐ 290 ‐, ‐ 353 ‐ 
state bubble, ‐ 358 ‐ 
state bubbles, ‐ 296 ‐ 
state diagram, ‐ 295 ‐, ‐ 354 ‐, ‐ 390 ‐ 
state diagram symbology, ‐ 375 ‐ 
state registers, ‐ 330 ‐, ‐ 355 ‐ 
State Registers, ‐ 354 ‐ 
state transition, ‐ 356 ‐ 
state transition arrow, ‐ 356 ‐ 
state transitions, ‐ 296 ‐ 
state variables, ‐ 355 ‐ 
status signals, ‐ 355 ‐ 
stoneage unary, ‐ 44 ‐ 
structured memory, ‐ 456 ‐ 
subtractor, ‐ 217 ‐ 
subtrahend, ‐ 177 ‐ 
sum, ‐ 177 ‐ 
sum of products, ‐ 125 ‐ 
symbology, ‐ 360 ‐, ‐ 375 ‐ 
synchronous circuit, ‐ 305 ‐ 
system clock, ‐ 355 ‐ 
system software, ‐ 375 ‐ 

T 

tape drives, ‐ 457 ‐ 
technical drivel, ‐ 20 ‐ 
tied high, ‐ 147 ‐ 
tied low, ‐ 147 ‐ 
tied to ground, ‐ 118 ‐ 
time axis, ‐ 87 ‐ 
time slots, ‐ 355 ‐ 

timelessness, ‐ 86 ‐ 
timing diagram, ‐ 33 ‐, ‐ 390 ‐ 
timing diagrams, ‐ 87 ‐ 
tiny electronic things, ‐ 374 ‐ 
toggle, ‐ 66 ‐ 
transition, ‐ 356 ‐ 
truth table, ‐ 73 ‐ 
two’s complement, ‐ 167 ‐ 
two‐valued algebra, ‐ 75 ‐ 
tying the input low, ‐ 147 ‐ 

U 

UDC. See unit distance code 
un‐dead, ‐ 240 ‐ 
underflow, ‐ 178 ‐ 
unit distance code, ‐ 66 ‐ 
units, ‐ 52 ‐ 
universal shift register, ‐ 433 ‐ 
universal shift regsiter, ‐ 490 ‐ 
unsignedness, ‐ 177 ‐ 
Up Counter, ‐ 405 ‐ 
Up/Down Counter, ‐ 405 ‐ 

V 

Vcc, ‐ 213 ‐ 
Vdd, ‐ 213 ‐ 
verbage, ‐ 20 ‐ 
Video Games, ‐ 33 ‐ 
violin, ‐ 28 ‐ 
volatile, ‐ 457 ‐ 

W 

wankerism, ‐ 521 ‐ 
weight, ‐ 46 ‐ 
word, ‐ 459 ‐ 
written description, ‐ 34 ‐ 

X 

XNOR, ‐ 146 ‐ 
XOR, ‐ 146 ‐ 

Z 

zero‐extend, ‐ 47 ‐ 
zero‐extending, ‐ 170 ‐ 
zero‐stuffing, ‐ 170 ‐ 
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