
 - 1 -

FreeRange

Digital Design
Foundation Modeling

James Mealy © 2018

v5.00

Free Range Digital Design Foundation Modeling Table of Contents

 - 2 -

Table of Contents

TABLE OF CONTENTS .. ‐ 2 ‐

PRETENTIONS ... ‐ 12 ‐

ACKNOWLEDGEMENTS ... ‐ 13 ‐

ONE PERSON’S VIEWPOINT .. ‐ 14 ‐

TOPIC COVERAGE & PREVIOUS BOOKS ... ‐ 15 ‐

OVERVIEW OF CHAPTER OVERVIEWS .. ‐ 16 ‐

1 FREERANGE DIGITAL DESIGN FOUNDATION MODELING OVERVIEW ... ‐ 19 ‐

1.1 INTRODUCTION ... ‐ 19 ‐

1.2 DIGITAL DESIGN OVERVIEW ... ‐ 19 ‐

1.3 HISTORICAL OVERVIEW OF DIGITAL DESIGN COURSES ... ‐ 20 ‐

1.4 THE APPROACH WE’LL BE TAKING .. ‐ 20 ‐

1.5 THE NEW DIGITAL PARADIGM: DIGITAL DESIGN FOUNDATION MODELING ... ‐ 21 ‐

1.5.1 DDFM Overview .. ‐ 21 ‐

1.5.2 The Three Approaches to Digital Design ... ‐ 23 ‐

1.6 CHAPTER SUMMARY .. ‐ 24 ‐

1.7 CHAPTER EXERCISES ... ‐ 25 ‐

2 THE BATTLE OF ANALOG AND DIGITAL ... ‐ 26 ‐

2.1 INTRODUCTION ... ‐ 26 ‐

2.2 ANALOG THINGS AND DIGITAL THINGS .. ‐ 26 ‐

2.3 CHAPTER SUMMARY .. ‐ 29 ‐

2.4 CHAPTER EXERCISES ... ‐ 30 ‐

3 THE WONDERFUL WORLD OF MODELING .. ‐ 31 ‐

3.1 INTRODUCTION ... ‐ 31 ‐

3.2 THE “MODELING” APPROACH TO ANYTHING .. ‐ 31 ‐

3.3 THE BLACK BOX DIAGRAM IN DIGITAL DESIGN .. ‐ 32 ‐

3.4 MODELING WITH BLACK BOX DIAGRAMS ... ‐ 33 ‐

3.5 BLACK BOX MODELING REDUX ... ‐ 37 ‐

3.6 CHAPTER SUMMARY .. ‐ 39 ‐

3.7 CHAPTER EXERCISES ... ‐ 40 ‐

3.8 DESIGN PROBLEMS .. ‐ 41 ‐

4 NUMBER SYSTEMS BASICS ... ‐ 42 ‐

4.1 INTRODUCTION ... ‐ 42 ‐

Free Range Digital Design Foundation Modeling Table of Contents

 - 3 -

4.2 NUMBER SYSTEM RETROSPECTIVE .. ‐ 42 ‐

4.2.1 Stoneage Unary ... ‐ 43 ‐

4.3 NUMBER SYSTEMS BASICS ... ‐ 44 ‐

4.4 JUXTAPOSITIONAL NOTATION AND NUMBERS ... ‐ 45 ‐

4.5 COMMON DIGITAL RADII .. ‐ 46 ‐

4.5.1 Binary Number System .. ‐ 47 ‐

4.5.2 Hexadecimal Number System ... ‐ 48 ‐

4.6 IMPORTANT ATTRIBUTES OF BINARY NUMBERS ... ‐ 49 ‐

4.6.1 Unique Numbers vs. Number of Bits ... ‐ 49 ‐

4.6.2 Number Range vs. Number of Bits .. ‐ 49 ‐

4.6.3 Number of Bits to Represent a Number .. ‐ 50 ‐

4.7 ENGINEERING NOTATION .. ‐ 51 ‐

4.8 CHAPTER SUMMARY .. ‐ 53 ‐

4.9 CHAPTER EXERCISES ... ‐ 54 ‐

4.10 DESIGN PROBLEMS ... ‐ 56 ‐

5 NUMBER SYSTEMS: CODES AND CONVERSIONS ... ‐ 57 ‐

5.1 INTRODUCTION ... ‐ 57 ‐

5.2 NUMBER SYSTEM CONVERSIONS .. ‐ 57 ‐

5.2.1 Any Radix to Decimal Conversions .. ‐ 57 ‐

5.2.2 Decimal to Any Radix Conversion .. ‐ 58 ‐

5.2.3 Binary ↔ Hex Conversions ... ‐ 61 ‐

5.3 FAST RADIX‐BASED DIVISION & MULTIPLICATION .. ‐ 62 ‐

5.4 OTHER USEFUL CODES ... ‐ 63 ‐

5.4.1 Binary Coded Decimal Numbers (BCD) .. ‐ 63 ‐

5.4.2 One‐Hot Codes .. ‐ 64 ‐

5.4.3 Unit Distance Codes (UDC) .. ‐ 65 ‐

5.5 CHAPTER SUMMARY .. ‐ 67 ‐

5.6 CHAPTER EXERCISES ... ‐ 68 ‐

5.7 CHAPTER DESIGN PROBLEMS ... ‐ 71 ‐

6 BRUTE FORCE DIGITAL DESIGN .. ‐ 72 ‐

6.1 INTRODUCTION ... ‐ 72 ‐

6.2 DIGITAL DESIGN .. ‐ 72 ‐

6.2.1 Step 1: Defining the Problem .. ‐ 73 ‐

6.2.2 Step 2: Describing the Solution ... ‐ 74 ‐

6.2.3 Step 3: Implementing the Solution .. ‐ 77 ‐

Free Range Digital Design Foundation Modeling Table of Contents

 - 4 -

6.3 CHAPTER SUMMARY .. ‐ 80 ‐

6.4 CHAPTER EXERCISES ... ‐ 81 ‐

6.5 DESIGN PROBLEMS .. ‐ 84 ‐

7 TIMING DIAGRAM INTRODUCTION .. ‐ 86 ‐

7.1 INTRODUCTION ... ‐ 86 ‐

7.2 TIMING DIAGRAM OVERVIEW .. ‐ 86 ‐

7.2.1 Timing Diagrams: The Gory Details... ‐ 87 ‐

7.2.2 Timing Diagrams: The Initial Details ... ‐ 88 ‐

7.3 TIMING DIAGRAMS: BUNDLE NOTATION .. ‐ 90 ‐

7.3.1 Bundle Notation in Schematic Diagrams .. ‐ 90 ‐

7.3.2 Bundle Notation in Timing Diagrams .. ‐ 92 ‐

7.4 TIMING DIAGRAM ANNOTATIONS ... ‐ 99 ‐

7.4.1 Timing Diagram Usage ... ‐ 100 ‐

7.4.2 Understanding Timing Diagrams .. ‐ 100 ‐

7.5 CHAPTER SUMMARY .. ‐ 103 ‐

7.6 CHAPTER EXERCISES ... ‐ 104 ‐

7.7 DESIGN PROBLEMS .. ‐ 109 ‐

8 RIPPLE CARRY ADDERS .. ‐ 110 ‐

8.1 INTRODUCTION ... ‐ 110 ‐

8.2 ITERATIVE MODULAR DESIGN OVERVIEW ... ‐ 110 ‐

8.3 THE HALF ADDER (HA) .. ‐ 111 ‐

8.4 THE FULL ADDER (FA) .. ‐ 112 ‐

8.5 RIPPLE CARRY ADDERS (RCA) .. ‐ 114 ‐

8.6 DIGITAL DESIGN FOUNDATION NOTATION: THE RCA ... ‐ 119 ‐

8.7 CHAPTER SUMMARY .. ‐ 121 ‐

8.8 CHAPTER EXERCISES ... ‐ 122 ‐

8.9 DESIGN PROBLEMS .. ‐ 123 ‐

9 BOOLEAN FUNCTIONS AND DEMORGAN’S THEOREM .. ‐ 124 ‐

9.1 INTRODUCTION ... ‐ 124 ‐

9.2 REPRESENTING BOOLEAN FUNCTIONS .. ‐ 124 ‐

9.3 DEMORGAN’S THEOREMS ... ‐ 125 ‐

9.4 MINTERM & MAXTERM REPRESENTATIONS .. ‐ 127 ‐

9.5 COMPACT MINTERM & MAXTERM FUNCTION FORMS .. ‐ 132 ‐

9.6 CHAPTER SUMMARY .. ‐ 139 ‐

9.7 CHAPTER EXERCISES ... ‐ 140 ‐

Free Range Digital Design Foundation Modeling Table of Contents

 - 5 -

9.8 DESIGN PROBLEMS .. ‐ 143 ‐

10 MORE STANDARD LOGIC GATES... ‐ 144 ‐

10.1 INTRODUCTION .. ‐ 144 ‐

10.2 NAND GATES AND NOR GATES ... ‐ 144 ‐

10.3 XOR AND XNOR GATES .. ‐ 146 ‐

10.4 LOGIC GATE ABSTRACTIONS .. ‐ 147 ‐

10.4.1 Gates as Inverters ... ‐ 147 ‐

10.4.2 Gates as Switches ... ‐ 147 ‐

10.4.3 Gates as Buffers ... ‐ 148 ‐

10.5 CHAPTER SUMMARY .. ‐ 154 ‐

10.6 CHAPTER EXERCISES .. ‐ 155 ‐

10.7 DESIGN PROBLEMS ... ‐ 156 ‐

11 CIRCUIT FORMS ... ‐ 157 ‐

11.1 INTRODUCTION .. ‐ 157 ‐

11.2 CIRCUIT FORMS .. ‐ 157 ‐

11.2.1 The Standard Circuit Forms .. ‐ 157 ‐

11.3 MINIMUM COST CONCEPTS .. ‐ 160 ‐

11.4 CHAPTER SUMMARY .. ‐ 161 ‐

11.5 CHAPTER EXERCISES .. ‐ 162 ‐

12 SIGNED BINARY REPRESENTATIONS ... ‐ 165 ‐

12.1 INTRODUCTION .. ‐ 165 ‐

12.2 SIGNED BINARY NUMBER REPRESENTATIONS ... ‐ 165 ‐

12.2.1 Sign Magnitude Notation (SM): ... ‐ 166 ‐

12.2.2 Diminished Radix Complement (DRC) ... ‐ 167 ‐

12.2.3 Radix Complement (RC): ... ‐ 168 ‐

12.3 NUMBER RANGES IN SM, DRC, AND RC NOTATIONS .. ‐ 170 ‐

12.4 EXTENDING DATA WIDTHS ... ‐ 171 ‐

12.4.1 Unsigned Binary ... ‐ 171 ‐

12.4.2 Signed Binary (RC Form) ... ‐ 171 ‐

12.5 CHAPTER SUMMARY .. ‐ 173 ‐

12.6 CHAPTER EXERCISES .. ‐ 174 ‐

12.7 DESIGN PROBLEMS ... ‐ 176 ‐

13 BINARY MATHEMATICS ... ‐ 177 ‐

13.1 INTRODUCTION .. ‐ 177 ‐

13.2 BINARY ADDITION AND SUBTRACTION ... ‐ 177 ‐

Free Range Digital Design Foundation Modeling Table of Contents

 - 6 -

13.2.1 Binary Subtraction .. ‐ 177 ‐

13.2.2 Addition and Subtraction on Unsigned Binary Numbers .. ‐ 178 ‐

13.2.3 Addition and Subtraction on Signed Binary Numbers .. ‐ 179 ‐

13.3 SPECIAL CASES OF VALIDITY FOR RC NUMBERS ... ‐ 181 ‐

13.4 CHAPTER SUMMARY .. ‐ 183 ‐

13.5 CHAPTER EXERCISES .. ‐ 184 ‐

13.6 DESIGN PROBLEMS ... ‐ 187 ‐

14 MIXED LOGIC ... ‐ 188 ‐

14.1 INTRODUCTION .. ‐ 188 ‐

14.2 MIXED LOGIC OVERVIEW ... ‐ 188 ‐

14.3 THE INVERTER AND MIXED LOGIC .. ‐ 190 ‐

14.4 EQUIVALENT SIGNALS FOR DPI NOTATION... ‐ 190 ‐

14.5 MIXED LOGIC‐BASED GATE FORMS .. ‐ 191 ‐

14.6 AND/OR AND NAND/NAND FORMS .. ‐ 194 ‐

14.7 OR/AND & NOR/NOR FORMS... ‐ 195 ‐

14.8 MIXED LOGIC ANALYSIS ... ‐ 196 ‐

14.9 MIXED LOGIC DESIGN .. ‐ 200 ‐

14.10 CHAPTER SUMMARY .. ‐ 205 ‐

14.11 CHAPTER EXERCISES .. ‐ 206 ‐

14.12 DESIGN PROBLEMS ... ‐ 210 ‐

15 MODULAR DESIGN .. ‐ 211 ‐

15.1 INTRODUCTION .. ‐ 211 ‐

15.2 THE BIG DIGITAL DESIGN OVERVIEW .. ‐ 211 ‐

15.3 MODULAR DESIGN OVERVIEW .. ‐ 212 ‐

15.4 CHAPTER SUMMARY .. ‐ 222 ‐

15.5 CHAPTER EXERCISES .. ‐ 223 ‐

15.6 DESIGN PROBLEMS ... ‐ 224 ‐

16 DECODERS ... ‐ 226 ‐

16.1 CHAPTER OVERVIEW ... ‐ 226 ‐

16.2 INTRODUCTION TO DECODERS ... ‐ 226 ‐

16.3 GENERIC DECODERS .. ‐ 227 ‐

16.4 STANDARD DECODERS ... ‐ 228 ‐

16.5 DIGITAL DESIGN FOUNDATION NOTATION: GENERIC DECODER .. ‐ 232 ‐

16.6 DIGITAL DESIGN FOUNDATION NOTATION: STANDARD DECODER ... ‐ 233 ‐

16.7 CHAPTER SUMMARY .. ‐ 235 ‐

Free Range Digital Design Foundation Modeling Table of Contents

 - 7 -

16.8 CHAPTER EXERCISES .. ‐ 236 ‐

16.9 DESIGN PROBLEMS ... ‐ 239 ‐

17 MULTIPLEXORS.. ‐ 241 ‐

17.1 INTRODUCTION .. ‐ 241 ‐

17.2 MAKING DECISIONS IN HARDWARE AND SOFTWARE .. ‐ 241 ‐

17.3 MULTIPLEXORS .. ‐ 242 ‐

17.4 DIGITAL DESIGN FOUNDATION NOTATION: MUX ... ‐ 248 ‐

17.5 CHAPTER SUMMARY .. ‐ 250 ‐

17.6 CHAPTER EXERCISES .. ‐ 251 ‐

17.7 DESIGN PROBLEMS ... ‐ 256 ‐

18 COMPARATORS ... ‐ 261 ‐

18.1 INTRODUCTION .. ‐ 261 ‐

18.2 COMPARATORS .. ‐ 261 ‐

18.3 DIGITAL DESIGN FOUNDATION NOTATION: COMPARATOR .. ‐ 270 ‐

18.4 CHAPTER SUMMARY .. ‐ 271 ‐

18.5 CHAPTER EXERCISES .. ‐ 272 ‐

18.6 DESIGN PROBLEMS ... ‐ 274 ‐

19 PARITY GENERATORS AND CHECKERS .. ‐ 277 ‐

19.1 INTRODUCTION .. ‐ 277 ‐

19.2 PARITY GENERATORS AND PARITY CHECKERS .. ‐ 277 ‐

19.3 EXTRA PARITY DETAILS .. ‐ 284 ‐

19.4 DIGITAL DESIGN FOUNDATION NOTATION: PARITY GENERATOR .. ‐ 285 ‐

19.5 CHAPTER SUMMARY .. ‐ 286 ‐

19.6 CHAPTER EXERCISES .. ‐ 287 ‐

19.7 DESIGN PROBLEMS ... ‐ 289 ‐

20 INTRODUCTION TO SEQUENTIAL CIRCUITS ... ‐ 291 ‐

20.1 INTRODUCTION .. ‐ 291 ‐

20.2 SEQUENTIAL VS. COMBINATORIAL CIRCUIT ... ‐ 291 ‐

20.3 SEQUENTIAL CIRCUITS: LOW‐LEVEL BASICS .. ‐ 292 ‐

20.4 THE NOR LATCH .. ‐ 296 ‐

20.4.1 Latch Terminology .. ‐ 297 ‐

20.5 STATE DIAGRAMS ... ‐ 297 ‐

20.6 PS/NS TABLES ... ‐ 298 ‐

20.7 EXCITATION TABLES ... ‐ 299 ‐

20.8 THE NAND LATCH .. ‐ 300 ‐

Free Range Digital Design Foundation Modeling Table of Contents

 - 8 -

20.9 NOR AND NAND LATCH SUMMARY .. ‐ 300 ‐

20.10 CHAPTER OVERVIEW ... ‐ 302 ‐

20.11 CHAPTER EXERCISES .. ‐ 303 ‐

20.12 DESIGN PROBLEMS ... ‐ 304 ‐

21 FLIP‐FLOPS .. ‐ 305 ‐

21.1 INTRODUCTION .. ‐ 305 ‐

21.2 CLOCK VERNACULAR ... ‐ 305 ‐

21.3 FLIP‐FLOPS .. ‐ 306 ‐

21.4 THE D FLIP‐FLOP .. ‐ 306 ‐

21.5 SYNCHRONOUS AND ASYNCHRONOUS FLIP‐FLOP INPUTS .. ‐ 307 ‐

21.5.1 D Flip‐Flop with Reset ... ‐ 308 ‐

21.5.2 D Flip‐Flop with Set Input ... ‐ 309 ‐

21.6 FLIP‐FLOPS WITH MULTIPLE CONTROL INPUTS .. ‐ 310 ‐

21.7 CHAPTER OVERVIEW ... ‐ 312 ‐

21.8 CHAPTER EXERCISES .. ‐ 313 ‐

21.9 DESIGN PROBLEMS ... ‐ 315 ‐

22 REGISTERS ... ‐ 316 ‐

22.1 INTRODUCTION .. ‐ 316 ‐

22.2 REGISTERS ... ‐ 316 ‐

22.3 SPECIAL REGISTER CIRCUITS: THE ACCUMULATOR ... ‐ 322 ‐

22.4 REGISTERS: THE FINAL COMMENTS .. ‐ 324 ‐

22.5 DIGITAL DESIGN FOUNDATION NOTATION: REGISTERS ... ‐ 325 ‐

22.6 CHAPTER SUMMARY .. ‐ 326 ‐

22.7 CHAPTER EXERCISES .. ‐ 327 ‐

22.8 DESIGN PROBLEMS ... ‐ 329 ‐

23 FINITE STATE MACHINES .. ‐ 330 ‐

23.1 INTRODUCTION .. ‐ 330 ‐

23.2 FSM DESIGN: START WITH WHAT YOU KNOW ... ‐ 330 ‐

23.3 FSM ILLEGAL STATE RECOVERY ... ‐ 349 ‐

23.4 FSM OVERVIEW AND SUMMARY ... ‐ 355 ‐

23.5 HIGH‐LEVEL MODELING OF FINITE STATE MACHINES ... ‐ 356 ‐

23.6 THE FSM: SYMBOLOGY OVERVIEW .. ‐ 357 ‐

23.6.1 The State Bubble .. ‐ 357 ‐

23.6.2 The State Diagram ... ‐ 358 ‐

23.6.3 State Transitions Controlling Conditions .. ‐ 359 ‐

Free Range Digital Design Foundation Modeling Table of Contents

 - 9 -

23.6.4 FSM External Outputs ... ‐ 360 ‐

23.6.5 Non‐Important FSM Outputs .. ‐ 361 ‐

23.6.6 Non‐Important FSM Inputs ... ‐ 361 ‐

23.7 THE FINAL STATE DIAGRAM SUMMARY ... ‐ 362 ‐

23.8 CHAPTER SUMMARY .. ‐ 364 ‐

23.9 CHAPTER EXERCISES .. ‐ 365 ‐

23.10 DESIGN PROBLEMS ... ‐ 366 ‐

24 FSM CLOCKING ISSUES ... ‐ 367 ‐

24.1 CHAPTER OVERVIEW ... ‐ 367 ‐

24.2 CLOCKING WAVEFORMS .. ‐ 367 ‐

24.2.1 The Period .. ‐ 367 ‐

24.2.2 The Frequency .. ‐ 368 ‐

24.2.3 Duty Cycle ... ‐ 369 ‐

24.3 PRACTICAL SYNCHRONOUS CIRCUIT CLOCKING ... ‐ 370 ‐

24.3.1 Setup and Hold Times ... ‐ 370 ‐

24.4 MAXIMUM FSM CLOCK FREQUENCIES ... ‐ 370 ‐

24.5 CHAPTER SUMMARY .. ‐ 373 ‐

24.6 CHAPTER EXERCISES .. ‐ 374 ‐

25 INTRODUCTORY CONTROLLER‐BASED FSM DESIGN .. ‐ 376 ‐

25.1 INTRODUCTION .. ‐ 376 ‐

25.2 FSM HISTORICAL OVERVIEW .. ‐ 376 ‐

25.3 DIGITAL DESIGN OVERVIEW .. ‐ 378 ‐

25.3.1 DDFM Overview ... ‐ 378 ‐

25.3.2 The Three Approaches to Digital Design .. ‐ 380 ‐

25.4 ATTACK OF THE BLINKING LEDS ... ‐ 382 ‐

25.5 FSMS AS SEQUENCE DETECTORS ... ‐ 388 ‐

25.5.1 Sequence Detector Post‐Mortem ... ‐ 391 ‐

25.6 TIMING DIAGRAMS: THE MEALY & MOORE‐TYPE OUTPUTS ... ‐ 392 ‐

25.7 CHAPTER SUMMARY .. ‐ 396 ‐

25.8 CHAPTER EXERCISES .. ‐ 397 ‐

25.10 DESIGN PROBLEMS ... ‐ 400 ‐

26 COUNTERS .. ‐ 406 ‐

26.1 INTRODUCTION .. ‐ 406 ‐

26.2 COUNTERS: A REGISTER WITH FEATURES ... ‐ 406 ‐

26.3 TYPICAL COUNTER FEATURE SET ISSUES .. ‐ 410 ‐

Free Range Digital Design Foundation Modeling Table of Contents

 - 10 -

26.4 SPECIAL COUNTER CIRCUITS: EVENT COUNTERS .. ‐ 422 ‐

26.5 DIGITAL DESIGN FOUNDATION NOTATION: COUNTERS ... ‐ 424 ‐

26.6 CHAPTER SUMMARY .. ‐ 426 ‐

26.7 CHAPTER EXERCISES .. ‐ 427 ‐

26.8 DESIGN PROBLEMS ... ‐ 428 ‐

27 SHIFT REGISTERS ... ‐ 432 ‐

27.1 INTRODUCTION .. ‐ 432 ‐

27.2 SHIFT REGISTERS: ANOTHER SPECIALTY REGISTER ... ‐ 432 ‐

27.3 UNIVERSAL SHIFT REGISTERS ... ‐ 435 ‐

27.4 BARREL SHIFTERS .. ‐ 439 ‐

27.5 OTHER COMMON SHIFTS ... ‐ 440 ‐

27.5.1 Rotates ... ‐ 440 ‐

27.5.2 Arithmetic Shifts ... ‐ 440 ‐

27.6 DIGITAL DESIGN FOUNDATION NOTATION: SHIFT REGISTER .. ‐ 449 ‐

27.7 REGISTER OVERVIEW ... ‐ 450 ‐

27.8 CHAPTER EXERCISES .. ‐ 452 ‐

27.9 DESIGN PROBLEMS ... ‐ 455 ‐

28 STRUCTURED MEMORY: RAM AND ROM ... ‐ 458 ‐

28.1 INTRODUCTION .. ‐ 458 ‐

28.2 MEMORY INTRODUCTION AND OVERVIEW ... ‐ 458 ‐

28.2.1 Basic Memory Operations: READ and WRITE ... ‐ 459 ‐

28.2.2 Basic Memory Types: ROM and RAM ... ‐ 459 ‐

28.3 SOFTWARE ARRAYS VS. HARDWARE STRUCTURED MEMORIES ... ‐ 460 ‐

28.4 MEMORY OPERATION DETAILS: READING AND WRITING .. ‐ 460 ‐

28.5 MEMORY SPECIFICATION AND CAPACITY ... ‐ 461 ‐

28.6 MEMORY INTERFACE DETAILS ... ‐ 462 ‐

28.7 MEMORY PERFORMANCE PARAMETERS .. ‐ 463 ‐

28.8 MEMORY ADDRESS RANGES ... ‐ 465 ‐

28.9 DIGITAL DESIGN FOUNDATION NOTATION: RAM ... ‐ 473 ‐

28.10 CHAPTER SUMMARY .. ‐ 474 ‐

28.11 CHAPTER EXERCISES .. ‐ 475 ‐

28.12 DESIGN PROBLEMS ... ‐ 476 ‐

APPENDIX .. ‐ 478 ‐

MEALY’S LAWS OF DIGITAL DESIGN .. ‐ 479 ‐

REQUIEM FOR THE DIGITAL LOGIC DESIGNER .. ‐ 480 ‐

Free Range Digital Design Foundation Modeling Table of Contents

 - 11 -

RIPPLE CARRY ADDER (RCA) ... ‐ 484 ‐

MULTIPLEXOR (MUX) ... ‐ 485 ‐

COMPARATOR .. ‐ 486 ‐

GENERIC DECODER .. ‐ 487 ‐

STANDARD DECODER ... ‐ 488 ‐

PARITY GENERATOR... ‐ 489 ‐

REGISTERS ... ‐ 490 ‐

COUNTERS ... ‐ 491 ‐

SHIFT REGISTERS ... ‐ 492 ‐

RANDOM ACCESS MEMORY (RAM) ... ‐ 493 ‐

FINITE STATE MACHINE (FSM) .. ‐ 494 ‐

DIGITAL DESIGNER FOUNDATION MODEL CHEATSHEET .. ‐ 495 ‐

DIGITAL DESIGN DICTIONARY ... ‐ 496 ‐

INDEX ... ‐ 525 ‐

 - 12 -

Pretentions

Legal Stuff

FreeRange Digital Design Foundation Modeling

Copyright © 2018 Bryan James Mealy.

Release: xxx

Date: xxx

You can download a free electronic version of this book from one of the following sites:

freerangefactory.org

http://www.ee.calpoly.edu/faculty/bmealy/

The author has taken great care in the preparation of this book, but makes no expressed or implied warranty of
any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or models contained in
this book.

This book is licensed under the Creative Commons Attribution-ShareAlike Un-ported License, which permits
unrestricted use, distribution, adaptation and re-production in any medium, provided the original work is
properly cited. If you build upon this work, you may distribute the resulting work only under the same, similar
or a compatible license. To view a copy of this license, visit:

http://creativecommons.org/licenses/by-sa/3.0/

We are more than happy to consider your contribution in improving, extending or correcting any part of this
book. For any communication or feedback that you might have regarding the content of this book, feel free to
contact the author at the following address:

bmealy@calpoly.edu

Free Range Digital Design Foundation Modeling Acknowledgements

 - 13 -

Acknowledgements

Someday, I’ll write something here.

Hey Dickson… Someday we’ll work together on all the things we’ve
not yet completed. I look forward to that day.

 - 14 -

One Person’s Viewpoint
Rambling Commentary

My inspiration for this project came from two primary sources. First, I feel that publishing companies,
bookstores, book authors, and academic administrators should not hold knowledge ransom. Students seeking
knowledge are sitting ducks in structured learning situations such as colleges and universities. Being that
students are the lowest hanging fruit, they always are the first to have their wallets lightened by various well-
connected entities. Second, every digital design textbook I’ve ever examined were filled with low-level details
and techniques that are forgotten by students about five minutes after the final exam (which implies too much
memorization and not enough understanding). The approach taken in this text is a giant step in the right
direction (more details later). In the end, I hope this book serves as an alternative to shelling out money for
overpriced textbooks full of knowledge that serves little purpose.

This book will have errors. Please accept my sincerest apologies for the errors. I did my best to remove errors,
but writing and proofreading is timing consuming and painfully boring. Unlike several of my colleagues, I
don’t bribe students into proofreading my writing. I do happily accept suggestions and corrections from
students, but I do not hand out rewards.

I generated every digital design problem in this book. Once again, unlike many authors, I did not “assign”
students to generate problems as assignments, and then use those problems in my text. I believe instructors
who force students to create problems as graded assignments are unethical and are taking advantage of their
positions as instructors.

I could spend the remainder of my life tweaking this text, but I need to move onto other things. Feel free to
contact me with corrections and comments. Please feel free to write at this address: bmealy@calpoly.edu

There were two primary negative comments I received when I mentioned I was writing a textbook and was
planning to give the book away at no cost. “If you don’t charge something, people will not value it”. I don’t
understand this statement. The things I value most in my life were given to me.

“You need experts in your field review your text”. As a college teacher, I constantly receive requests from
book companies to “review” one of their texts. They always sweeten the deal with an offer of cash. I know of
no one who is going to dedicate any significant amount of their time to reading a text they care nothing about,
but I know of people who pretend to review books, write down some drivel, and receive their cash. Wow!
Great review! A book is a mechanism to transfer knowledge; it’s not a popularity contest.

Finally, this text is what it is. The quality and coverage is the best I can do given the various constraints I work
under. I made the decision to embark on this project knowing it would likely be a career killer in the context of
Cal Poly San Luis Obispo. Well, no need to wonder anymore; it’s definitely a career killer. I opted to directly
support all students; if I had the chance to make the decision again, I would do no different. My previous books
have found their way all over the world, seemingly helping students learn digital design and associated topics
without lightening their wallets. What more could one ask for?

James Mealy

 - 15 -

Topic Coverage & Previous Books

I previously wrote another digital design textbook: Digital McLogic Design. That book was a multi-year
project that quickly outgrew itself and lost its way. While using that book in my courses, I always felt there
was a better approach to teaching digital design, but I could not quite nail it down. This book represents what I
feel is a significantly better approach to learning digital design. Here is my reasoning:

 This text removes many low-level details associated with digital design in the standard
approach to teaching digital design. I always found these details were the first things students
forgot after leaving the final exam. This book instead concentrates on higher-level design
principles. Not including the low-level details frees up more time to delve into design-oriented
problems rather than learning how to represent a function in a bajillion different ways.

 I ejected 98% of the concept of “function reduction”. This book proudly contains no Karnaugh
Maps, or what I can “high-tech” tic-tac-toe. Karnaugh maps have severe limitations, and, no
one will ever pay you do something by hand that a computer can do a bajillion times better and
faster.

 About 80-90% of the material found in this book is new. I did reuse some of the images, but I
also “cleaned up” all of the text. My previous approach was to be purposely verbose; I try to be
direct and terse in this book.

 I suspect people will argue that the example problems in this text are sort of stupid. I can’t say
I disagree. My thoughts are that people wanting to learn digital design must learn about the
operation of basic devices; they will learn about those devices by using them in the designs
found in this text. When and if they are someday faced with the task of creating a digital circuit
to solve a problem, they will be able to do it because they understand how to use various digital
modules to create circuits that work. Additionally, when the class is over, they hopefully will
recall the basic operations of digital circuits long after they forget how to implement a Boolean
function using a MUX. Lots of fun stuff in digital design, but much it lacks a point.

 I removed HDL from the text. The previous text integrated VHDL and digital design, but no
longer seems like the best solution. In the end, decoupling HDL from digital design allows
students to learn either VHDL or Verilog. I’ve completed a first-pass version of a Verilog
tutorial that I am using in my current digital design course offering. Additionally, there is the
FreeRange VHDL Tutorial available from the freerangefactory.org site. If you want a
hardcopy, Fabrizio (the co-author) printed a batch and has made them available on
Amazon.com.

And really finally, a story… I got a co-op job at National Semiconductor in 1988. Part of my job was to create
a digital circuit that tested various digital modules using a new fabrication process. My group tasked me to
create a simple circuit at a meeting I attended early in the co-op. The truth was that I had no clue what to do or
even where to start. I had already taken two “digital design” courses in college, but I could not for the life of
me design a digital circuit that solved an actual problem. I suspect my boss recognized my dismay, and quickly
jotted down a digital circuit for me (a bunch of modules that talked to each other). He made it look as easy as it
should be. More than anything, I hope people reading this text can walk away knowing how to create digital
circuits to solve problems. Good luck.

 - 16 -

Overview of Chapter Overviews
This textbook presents introductory digital design topics with an emphasis on actual design issues. This
textbook initially provides a basis of digital design, followed by a novel approach to modular digital design,
which we refer to as Digital Design Foundation Modeling. This text exclude many topics typically found in
digital design textbooks in order to focus more on the important aspects of modern digital design.

Chapter 1: This chapter provides an outline of chapter structure in this text as well as an overview of the basic
approach this text takes to teach digital design. This chapter also describes the basic tenets regarding the
underlying theme of this text with the new digital design paradigm of Digital Design Foundation Modeling
(DDFM). DDFM brings simplicity and structured-type design to the field of digital design. The descriptions
this chapter uses to describe DDFM become clearer as the reader progresses the following chapters in this text.

Chapter 2: This chapter provides a description of the “digital things” by example. The examples include
comparisons and descriptions of basic everyday items to give readers an intuitive feel for the descriptions.

Chapter 3: This chapter introduces the basic aspects of modeling, including definitions and examples. This
supports the notion that all the work we do with digital design requires the use of many types of models. A
main emphasis in this chapter is an introduction to hierarchical modeling.

Chapter 4: This chapter provides a basic overview of number systems with an emphasis on their importance in
digital design. The topics in this chapter include the basic vernacular associated with number systems, an
introduction to binary and hexadecimal number systems and their properties important to digital design, and
closes with an overview of engineering notation.

Chapter 5: This chapter provides an overview of number conversions between radii typically associated with
digital design (decimal, binary, and hexadecimal). This chapter also discusses other useful codes including
BCD, one-hot, and unit distance codes.

Chapter 6: This chapter introduces Brute Force Design, this text’s first true notion of digital design. This
chapter presents digital design in the context of an example problem that we use to introduce the important
aspects of modeling digital circuits, Boolean algebra, and basic logic gates.

Chapter 7: This chapter introduces basic aspects of timing diagrams including proper annotation and bundle
notation.

Chapter 8: This chapter introduces the first foundation module: the ripple carry adder. This chapter starts by
introducing basic digital modules including half and full adders.

Chapter 9: This chapter introduces the basic aspects of representing Boolean functions, with an emphasis on
standard SOP and POS forms. This chapter also describes the more common ways to represent functions
including compact minterm and maxterm forms.

Chapter 10: This chapter introduces the remainder of standard gates in digital design, which include NAND,
NOR, XOR, & XNR gates. This chapter also shows how to configure basic logic gates to act as inverters,
buffers, and switches.

Chapter 11: This chapter introduces the more useful circuit forms used in digital design. The eight forms
covered in chapter can be generated from SOP & POS forms; this chapter places the most emphasis on
AND/OR & NAND/NAND and OR/AND & NOR/NOR forms. This chapter also touches upon minimum cost
concepts as they relate to the various circuit forms.

Chapter 12: This chapter introduces signed number using SM, DRC, and RC representations, with the most
emphasis placed on RC representations. This chapter describes the number ranges associated with the various
representations and describes the bit-extending both signed and unsigned number.

Chapter 13: This chapter also covers binary addition and subtraction using RC representations. This chapter
emphasizes the importance of verifying the validity of mathematical operation results.

Free Range Digital Design Foundation Modeling Acknowledgements

 - 17 -

Chapter 14: This chapter introduces the concept of mixed logic and uses those concepts in design and analysis
examples. This chapter uses the concepts of equivalent gates and equivalent signals in the design and analysis
process. This chapter mentions the PLC approach but primarily focuses on DPI.

Chapter 15: This chapter presents a formal description of Modular Design (MD), which is the focus of design
techniques in the remaining chapters. There are a few examples in this chapter, but the text adds more
examples in later chapters after the presenting of various foundation modules.

Chapter 16: This chapter introduces the concept of decoders; there are two types of these foundation modules:
generic decoders and standard decoders. Generic decoders are any device we can describe using a tabular
format while standard decoders are special cases of decoders that function as device enablers. .

Chapter 17: This chapter introduces multiplexors (MUXes), which is another foundation module. MUXes act
as “selector circuits” in digital design.

Chapter 18: This chapter introduces the comparator, which is another foundation module. This chapter derives
simple comparators at a low level, and then abstracts more complete comparators at the block level.

Chapter 19: This chapter introduces the concept of parity, which leads to two foundation modules: the parity
generator and parity checker. This chapter derives a simple parity generator at a low level, and then abstracts
the design to the block level.

Chapter 20: This chapter introduces sequential circuits. This chapter covers the low-level details regarding
basic NOR and NAND latches, and then abstracts these devices to modules. This chapter is the first chapter
that uses PS/NS tables and state diagrams to describe sequential circuits.

Chapter 21: This chapter introduces the D flip-flop, the only flip-flop this text discusses. This chapter also
describes synchronous and asynchronous control inputs to flip-flops. This chapter also provides an introduction
description of state diagrams.

Chapter 22: This chapter introduces registers, which is essentially an extension of the previous chapter. The
register is a digital design foundation module.

Chapter 23: This chapter introduces finite state machines (FSMs) by introducing the various submodules of
FSMs in terms of circuits we previously presented. This chapter presents the concepts of FSM in the context of
low-level counter designs. The chapter also includes description of the standard symbology associated with
state diagrams.

Chapter 24: This chapter introduces some aspects of clocking basic sequential circuits. This chapter includes
an overview of the vernacular associated with periodic clock signals. This chapter introduces setup and hold
time issues in the context of maximum clocking frequencies of sequential circuits.

Chapter 25: This chapter introduces the use of FSM as controller circuits. This chapter uses FSMs to control
simple blinking LEDs and then moves onto using FSMs as sequence detectors.

Chapter 26: This chapter introduces various types of counters, which is a digital design foundation module. A
previous chapter introduced simple low-level counters; this chapter presents counters at a high-level by
describing their basic attributes.

Chapter 27: This chapter introduces the shift registers, which is a digital design foundation module. Shift
registers are essentially simple registers with special features. This chapter also introduces other related
shifting-type operation including barrel shifts, arithmetic shifts, and rotate operations.

Chapter 28: This chapter presents the basic concepts of relatively large memory devices such as RAMs and
ROMs. We include the RAM as a digital design foundation module. This chapter also covers basic structured
memory performance, memory capacity parameters, and memory vernacular.

Appendix: This provides an overview of Digital Design Foundation Modeling Concepts.

Digital Design Dictionary: This is a glossary of popular words and expressions, (and other tidbits) having to
do with digital design and computer design. This glossary also covers aspects of computer design.

Free Range Digital Design Foundation Modeling Acknowledgements

 - 18 -

Index: This is an index for the important words and phrases found throughout the text.

Free Range Digital Design Foundation Modeling Chapter 1

 - 19 -

1 FreeRange Digital Design Foundation Modeling Overview

1.1 Introduction

This text divides topics into small subject modules, which we creatively refer to as chapters. The intention is to
keep the subject matter as short as possible and bundled into relatively small readable portions. No one wants
to read long pages of technical drivel, but people are more likely to read short pages of technical drivel.

Each chapter has many useful features in order to help the reader spend less time fighting the text and more
time understanding the subject matter. Each chapter includes the following features:

 Introduction: Quick motivating prose overview of the main chapter topics

 Chapter Acquired Skills: The skills reader should have after working through the chapter

 The Body of the Chapter: In case you want the whole story (with example problems)

 Chapter Summary: The quick overview of chapter’s main points

 Chapter Exercises: Drill-type problems that support the chapter material

 Design Problems: Problems that involve digital circuit design

Main Chapter Topics

OVERVIEW OF TEACHING MODERN DIGITAL DESIGN: Digital design evolved faster
than digital design courses could keep up with; a quick overview of the issues is helpful.

OVERVIEW OF DIGITAL DESIGN FOUNDATION MODELING: This chapter briefly
describes this text’s unique approach to digital design.

Chapter Acquired Skills

 Be able to provide historical context to digital design

 Be able to describe the basic approach of Digital Design Foundation Modeling.

1.2 Digital Design Overview

Even though we’re only a few pages into the introductory verbage1 of digital design, we’re ready to grasp the
main ideas behind modern digital design and relate them to this text’s approach. If you had to describe digital
design in one short sentence, it would be something such as:

digital design: the act of creating digital circuits to solve problems

The keys to this definition lie with “creating a digital circuit” and the “problem” that is “solved”. These ideas
are worth expanding upon.

1 Definition of verbage: part verbose, part garbage; pronounced ver-baj.

Free Range Digital Design Foundation Modeling Chapter 1

 - 20 -

Solving a Problem: “Solving a problem” could mean many things; this text solves problems using
digital circuits. Figure 1.1 shows a general diagram of a digital circuit that we use as a starting point
for this text. We won’t initially know from the problem description what goes inside the box in the
diagram, but the problem description generally tells us the “inputs” and “outputs” of the circuit as
well as how the circuit should behave.

Creating Digital Circuits: The many approaches to digital design all involve creating a digital circuit
and placing it (figuratively speaking) in the box of Figure 1.1. If your digital circuit manipulates the
inputs in such a way as to always provide the requested functionality on the outputs, then your digital
design works. The digital circuit you design establishes a structured relationship between the circuit’s
inputs and outputs in such a way as to solve the given problem. In a nutshell, digital design is a matter
of “creating” the interior of the Digital Circuit box in Figure 1.1.

Figure 1.1: “Digital Design” in a nutshell: a general model of a digital circuit.

1.3 Historical Overview of Digital Design Courses

It was a different world when I first worked with digital logic (sometime in the mid-1800s); my digital design
world revolved around the knowledge and topics presented in the course text. There was no laboratory
associated with the digital design course. Because of this lack of hands-on experience, combined with the fact
that the test/development equipment too costly for students, I relied on the course text to gather my digital
knowledge. Computers were expensive and not practically available to students. There was no internet and
software for digital designers either did not exist or was too expensive to be practical. Worst of all, all
“designs” that were actually done were “paper designs2”.

1.4 The Approach We’ll Be Taking

Despite advances in digital technology, digital design textbooks remain mired in the dark ages of both
engineering and educational technology. Despite these drawbacks, we see a steady increase in the price of
digital design textbooks accompanied by a decline in their quality. As digital technology progressed, more
resources became available to both digital design instructors and students, which obsolesced the standard
approach to teaching digital design.

Although the goal of transferring knowledge from the text to the reader remains the same, it’s not universally
accepted what topics should appear in a text. Typical digital design texts contain excessive amounts of low-
level detail that you’ll quickly forget. Authors write digital design texts from a standpoint of presenting digital
concepts in a manner that supports the easy generation of exam questions, which makes the text attractive to
lazy instructors. Actual design problems are hard to generate and harder to grade3, and thus rarely find their
way onto exams or into textbooks.

The underlying theme of this textbook is to eject subject matter that does not support the development of viable
digital designers; doing so allows us to spend more time with actual digital design. We acknowledge that

2 A paper design was something you tried hard to convince someone else that it would work if you actually implemented it.
The person you were trying to convince was often your instructor.
3 The issue here is that digital design problems always have multiple solutions, which requires a higher level of expertise
and effort to both genereate and grade properly. In this context, “expertise” requires more time.

Free Range Digital Design Foundation Modeling Chapter 1

 - 21 -

advanced digital designers or instructors who read this text may feel that this text omits some important topics.
However, with the knowledge we present in this text, anyone can easily pick up a standard digital design
textbook and gather in the full details. In addition, because publishers actively generate new versions of
textbooks to prevent instructors from using old textbooks, there are many excellent and low-priced textbooks
available from used book websites4.

1.5 The New Digital Paradigm: Digital Design Foundation Modeling

After many years of teaching digital design using a traditional approach, we formulated a new paradigm for
presenting digital design. We refer to our new approach as Digital Design Foundation Modeling, or DDFM.
This approach builds upon both modular design and hierarchical design, which are the main tenets of modern
digital design. DDFM focuses on presenting digital design topics in the context of actual digital designs, while
removing many of the antiquated topics associated with old-style digital design. The underlying goals of
DDFM are to simplify the presentation of introductory digital design, and to provide a simple circuit model
that describes all levels of digital design.

1.5.1 DDFM Overview

We provide the high-level details about DDFM in this section, but if you’re new to digital design, you
probably won’t be able to grasp the big picture at this time. The focus of DDFM is to present digital design in a
simple and organized manner, which facilitates and expedites learning the subject matter. These are the main
tenets of DDFM:

 The main purpose of digital design is to solve problems using digital circuits

 We can best describe digital circuits in a modular and hierarchical manner

 Digital circuits are a set of digital modules that exchange information under the control of some entity

 We perform digital circuit design in a structured5 manner, meaning that we can model any digital
circuit using a relatively small subset of digital modules, which we refer to as the digital design
foundation modules. Each foundation module performs a relatively small set of simple operations.

 We present the digital design foundation modules at a high-level by modeling the modules in terms of
their data, control, and status signals, which allows us to use the modules in designs, while not
requiring us to initially understand underlying implementation details.

 We classify the digital design foundation modules as either “controlled” or “controller” circuits

 We consider there to be four approaches to controlling a digital circuit:

1) NO CONTROL (no flexibility in circuit behavior)

2) INTERNAL CONTROL (controlling circuits using internal signals)

3) EXTERNAL CONTROL (controlling circuits with devices such as buttons, switches, etc.)

4) CIRCUIT CONTROL (controlling circuits using FSM or computer).

 We categorize digital design approaches into three categories:

1) BRUTE FORCE DESIGN (BFD)

2) ITERATIVE MODULAR DESIGN (IMD)

3) MODULAR DESIGN (MD)

4 Check out your local library, www.ebay.com, or www.addall.com for availability and/or pricing of these books. Many
websites also include reviews of these books in order to help you narrow your selection.
5 This is an analogy to structured computer program design

Free Range Digital Design Foundation Modeling Chapter 1

 - 22 -

Figure 1.2 shows a digital circuit containing various modules. We define a digital circuit as a controlled
interaction between a set of sequential and combinatorial circuits (the two types of digital circuits). Solving
problems using digital circuits requires controlling the flow of data through the circuit in such a way that it
solves the given problem. Figure 1.2 also shows the modularity (the various modules) and the hierarchical
(modules within modules, or boxes within boxes) characteristics of digital circuits.

Figure 1.2: A generic digital circuit containing a set of digital modules.

Figure 1.3(a) shows the standard approach to modeling digital circuits, where we classify all digital circuit
signals as either inputs or outputs. Figure 1.3(b) and Figure 1.3(c) shows how DDFM further classifies inputs
and outputs by first separating digital modules into “controlled circuits” and “controller circuits”. Figure 1.3(b)
shows that we further classify the inputs to controlled circuits as either “data” or “control” and classify the
outputs of controlled circuits as either “data” or “status”. This means the various circuit elements in Figure
1.3(b) are able to 1) pass data from their data inputs to their data outputs under the direction of the “control”
inputs, and, 2) describe characteristics of the data transfers using the status outputs. Similarly, the status
outputs of the controlled circuit form the status inputs of the controller circuit. The controller circuit of Figure
1.3(c) inputs the status signals of controlled circuits and manages the controlled circuits by outputting the
appropriate control signals to control the controlled circuits.

(a) (b) (c)

Figure 1.3: Old digital circuit model (a); models for controlled (b) and controller circuits (c).

The DDFM paradigm allows us to model all digital circuits as a controller that controls a set of modules. We
then consider the solution to any digital design problem as a matter of using a controller to properly control the
dataflow through a set of controllable modules. Figure 1.4 shows an example of many circuit modules
controlled by a controller circuit; the controller circuit is either a finite state machine (FSM) or some type of
computer control, such as a microcontroller. Figure 1.4 includes three different module shapes showing that
controllable modules can either be combinatorial or sequential circuits, as well as off-the-shelf computer
peripherals.

Free Range Digital Design Foundation Modeling Chapter 1

 - 23 -

Figure 1.4: Our unifying digital circuit model.

1.5.2 The Three Approaches to Digital Design

Part of DDFM includes categorizing digital design into three different approaches, which we discuss in more
detail later in the text. With some combination of these three approaches, you can create any digital circuit.

BRUTE FORCE DESIGN (BFD): Our first approach to digital design. Although simple, its
simplicity limits its practicality in non-trivial designs.

ITERATIVE MODULAR DESIGN (IMD): Our second approach to digital design. Although IMD
removes some of the limitations of BFD, it is only applicable to a few of circuits.

MODULAR DESIGN (MD): Our final and most powerful approach to digital design, and is thus
where this text expends most of its efforts.

Free Range Digital Design Foundation Modeling Chapter 1

 - 24 -

1.6 Chapter Summary

 There are two basic types of digital logic circuits combinatorial, which are circuits where outputs are a
function of the circuit’s inputs (these circuits can’t store information). Sequential circuits outputs are a
function of the sequence of the circuit’s inputs (these circuits can store information).

 The two basic tenets of digital logic are 1) Digital logic circuits are inherently hierarchical. We
generally describe digital circuits at a level, which allows us to transfer as information as quickly as
possible. Abstracting digital designs to higher levels aids in understanding and designing circuits. 2)
Digital logic circuits are modular in that they are decomposable into a set of standard digital
modules, which we refer to as digital design foundation modules. We make circuit descriptions an
aggregate compilation of foundation modules to help us understand the circuits.

 Digital Design Foundation Modules is based on the following attributes:

 The main purpose of digital design is to solve problem using digital circuits.

 Digital circuits are a set of digital modules that exchange information under the control of some
entity.

 We can complete any digital circuit design by using a relatively small subset of digital modules we
refer to as the digital design foundation modules.

 We can present the digital design foundation modules at a high-level by primarily describing the
functionality of the circuit in terms of its associated data, control, and status signals.

 We classify the digital design foundation modules as either “controlled” or “controller” circuits.

 There are four approaches to controlling a digital circuit:

1) NO CONTROL (no flexibility in circuit behavior)

2) INTERNAL CONTROL (using internal signals)

3) EXTERNAL CONTROL (using buttons, switches, etc.)

4) CIRCUIT CONTROL (using FSM or computer).

 There are three approaches to designing a digital circuit:

1) BRUTE FORCE DESIGN

2) ITERATIVE MODULAR DESIGN

3) MODULAR DESIGN

Free Range Digital Design Foundation Modeling Chapter 1

 - 25 -

1.7 Chapter Exercises

1) List and briefly describe the basic definition of digital design.

2) Briefly explain why there is no good off-the-shelf textbook for digital design courses.

3) List a few websites where you can purchase inexpensive digital design texts.

4) Briefly describe the main goals of Digital Design Foundation Modeling.

5) Briefly describe the three main types of design.

6) Briefly describe the four ways you can control a digital circuit.

FreeRange Real Digital Design Chapter 2

 - 26 -

2 The Battle of Analog and Digital

2.1 Introduction

The first step in learning anything is to become familiar with the terminology associated with the subject
matter. This chapter starts by defining the notions of “digital” and “design”. We won’t be doing any digital
design in this chapter, but we gain a common foundation for introducing later subject matter.

Main Chapter Topics

ANALOG AND DIGITAL: This chapter provides a description of the inherent differences
between things that are “analog” and “digital”.

Chapter Acquired Skills

 Be able to describe things that are digital or analog in nature.

2.2 Analog Things and Digital Things

Since the term “digital” is quite important in this text, we need to give it solid definition. You can best
understand the concept of “digital” when you see it alongside the definition of the relative opposite of digital,
or “analog”. We can best describe these terms with examples.

Example 1: In doing the sustainability thing, I installed compact fluorescent (CF) lights in place
of my incandescent lights as well as dimmers on incandescent light I did not replace. While the
CF lights use less power, the intensity of their light is not adjustable: the CF light is all the way
on or all the way off. While incandescent lights use more energy, I can save energy by using a
“dimmer” to adjust the light’s output intensity. I am thus hypothetically able to adjust the dimmer
to provide an infinite number of light intensity levels (but only one level at a time). The on/off
nature of the CF bulb is a hallmark of “digital” while the infinite number of intensity levels
associated with the incandescent bulb controlled by a dimmer is the hallmark of “analog”.

Example 2: Many buildings have both wheelchair ramps and stairs leading to their entrances.
The wheelchair ramp represents a continuous path to the building, which means that you can
hypothetically stop at any one of an infinite number of levels along this path to the building. The
stairs, on the other hand, only have a few “discrete” levels you can stop at; the individual stairs
represent these levels. The difference here is discrete levels (for the stairs) vs. continuous levels
(for the ramp). This example differs from the previous example in that instead of having two
discrete levels for the CF bulb (on and off); we now have many discrete levels (one level for each
of the stairs). The discreteness of things such as the steps is the hallmark of digital while the
continuousness of things such as the ramp is the hallmark of analog. What’s bugging me, though,
is how to characterize an escalator…

FreeRange Real Digital Design Chapter 2

 - 27 -

Example 3: Stringed instruments create sound with a vibrating string connected between two
fixed points. On instruments such as guitars (or mandolins, bass guitars, etc.) and violins (or
violas, cellos, fretless bass guitars) you change the pitch of the vibrating string by placing your
fingers at different positions on the fingerboard, which effectively changes the length of the
vibrating string. The difference between these instruments is that guitars have frets on the
fingerboard while violins do not (see Figure 2.1). The frets only allow the string to vibrate at a set
of discrete string lengths (generally 19-22 on a typical guitar)1. The violin, on the other hand, has
no frets, so you can effectively generate an infinite number of pitches from a given string
dependent upon where you place your finger. In other words, the guitar generates a discrete
number of pitches while the violin provides a continuous number of pitches.

Figure 2.1: "Frets" on a bass guitar fingerboard and the “fretless” violin fingerboard on the right.

The basis of all digital logic is the use of circuit elements whose inputs and outputs can only be one of two
values. We typically describe these two values as ON-OFF, TRUE-FALSE, HIGH-LOW, GOOD-BAD,
BLACK-WHITE, TEACHER-ADMINISTATOR, etc. Either a “high voltage” or “low voltage” drives the
actual circuit, but we generally describe circuits using more general terms. We typically represent the inputs
and outputs of digital circuits using 1’s and 0’s, which are placeholders for the high and low voltage values2.

So why do we use digital circuits to solve my problems? We’re still all living in an analog world, but
computers are only capable of operating in the digital realm3. Since a computer is generally a giant digital
circuit, understanding digital design is the unstated first step in successfully designing and/or programming
computers. The starting point for mastering anything inherently digital is learning digital design4.

1 We’re not considering using your fingers to stretch the string (which changes the frequency of the note).
2 The notion of "voltage" may scare off some budding digital designers so we generally discuss digital design at a level of
abstraction that enables us to ignore the reality that “voltage” is the lifeforce of digital circuits.
3 To be clear, computers are made with transitor, which work because of the voltages attached to them. Transitors in digital
circuits are either “all the way on” or “all the way off”, which provides them with their discretness.
4 And protecting yourself from robots.

FreeRange Real Digital Design Chapter 2

 - 28 -

Digital: A description of a something (such as a signal or data) expressed by a finite
number of discrete values (or states). These discrete values include the entire “range”
of possibilities, but do not include any of the “in-between” values.

Analog: A description of something that (such as a signal or data) expressed by a
continuous range of values. The continuousness of analog implies that there are an
infinite number of possible values in the given range.

FreeRange Real Digital Design Chapter 2

 - 29 -

2.3 Chapter Summary

 We divide the world into two camps: analog and digital. Though we live in an analog world, the
computers that run this world are inherently digital. The basic characteristic of analog things is that they
are “continuous” in nature while the basic characteristic of digital things is that they are “discrete” in
nature. Digital things can only take on a pre-determined set of values (thus the discreteness) while analog
things can take on an infinite set of values (thus continuous).

 The notion of digital things in the context of “digital design” generally only requires on two discrete
values. These values are most often associated with ON/OFF, HIGH/LOW, or TRUE/FALSE. Most often
in digital design, we describe these discrete values with ‘1’ and ‘0’.

 The notion of digital in “digital design” stems from the use of transistors. Being that transistors are a basic
electronic element, the discrete values that generates the digital nature of digital design results from high
and low voltages associated with making the transistor operate. Since the voltage levels determine the
physical characteristics of the devices, different digital devices use different voltage levels. Because of all
these different voltage levels, we represent the discrete values of transistors in digital circuits as 1’s or 0’s.

FreeRange Real Digital Design Chapter 2

 - 30 -

2.4 Chapter Exercises

1) The analog world we live in has many people who seem to thrive on the use of digital photography.
Practically everyone it has a digital camera, or has the equivalent on his or her cell phone or computer. A
conversion from analog to digital occurs somewhere in the camera. Where exactly does this analog-to-
digital (ADC) occur? Explain as best you can.

2) Although the dimmer effectively provides what a continuous range of light frequencies between the ON
and OFF limit, how can it possibly still be digital in nature? Explain as best you can.

3) In reference to analog and digital cameras, describe the difference between analog zoom and digital zoom.

4) There are analog computers out there. Briefly describe what an analog computer entails. Feel free to look
this up online.

Free Range Digital Design Foundation Modeling Chapter 3

 - 31 -

3 The Wonderful World of Modeling

3.1 Introduction

The ability to “model” something corresponds to both the ability to understand and implement that thing.
Because of this, modeling is at the heart of all engineering fields. The approach we take to designing anything is
to first find an appropriate model for that thing.

Digital design uses many different types of models to help us understand the characteristics of digital design.
There are many different paths to solving a problem using digital design, but all of these paths follow the same
path: model your solution, and then use that model to help you create a digital circuit that solves your problem.
This chapter introduces the basic aspects of modeling in the context of digital design.

Main Chapter Topics

MODELING AS A DESIGN TOOL: This chapter introduces the concept of modeling as
the most basic tool for understanding just about anything, particularly digital design.

Chapter Acquired Skills

 Be able to describe the basic purpose of models

 Be able to use black box diagrams to create models of anything

 Be able to describe how model relates to modern digital design

3.2 The “Modeling” Approach to Anything

Until now, we’ve been careful not to limit our use the word “model” or “modeling”. The truth is that everything
we do in digital design is a matter of generating the correct model. Below are two good definitions of the word
model. We could not clearly define “model” with one definition, so we use two different but similar definitions.
Note that the two definitions contain a different amount of detail, which is an important characteristic in
modeling.

model (def. 1): a description of something.

model (def. 2): a description of something in terms that highlights the relevant
information while hiding some of less useful information.

We use models to represent or describe things. The above definitions do not state how we use models to describe
something, which implies that there is no one absolutely correct model of something. Anything that presents
information by describing something is by definition a model; some models are more useful than other models
based on the amount of information they provide. Because there is no one “correct” model for anything, there
can be different “valid” models of the same thing where, the different models provide varying amounts of
information. The best model is the one that provides the reader with the most appropriate amount of information
in the clearest manner for the problem at hand, which means the efficacy of models is inherently contextual. For
example, a model providing significant amounts of information is not overly useful to someone expecting a
simple model.

Free Range Digital Design Foundation Modeling Chapter 3

 - 32 -

Models are important in digital design for one basic reason: models transfer information to the entity reading the
model. The entity reading the model could be software, your lab partner, your teacher, or your pet cockroach. If
you created a good model, then your model quickly promotes an understanding of the thing you’re modeling. If
you’ve created a bad model, no one knows what you’re attempting to convey.

The concept of models should be nothing new; there are an endless number of things in the real world that
represent something without really being that thing. Using models is so useful that we tend to forget that we’re
actually using and/or relying on them. The following list provides a few examples that may give you an idea of
what you’re missing.

Example 1: Runway Models – We’ve all seen them: emaciated men and women wearing bizarre
clothing and sporting unique hairstyles strutting down the runway. These people are some
designer’s representation (or model) of actual women and men. These are bad models because
they are an attempt to destroy people’s self-image in order to inspire them to consume more crap. I
refer to this as “crapitalism”.

Example 2: Role Models – These models are the people that society expects us to highly revere.
While we do know some features about these models (probably the good features, which is why
they are role models), we do not have the full description. Unfortunately, we are often
disappointed when a better description of role models appears in the police blotter1.

Example 3: The Weather Report (weather prediction) –The satellite images indicate there is a
storm somewhere and thus that rain arrives a week in advance. Weather forecasters base this
prediction on models of previous weather patterns. There’s nothing to stop the storm from
changing its path, but probabilistically speaking, it will rain.

Example 4: Graphical User Interfaces (GUIs) – Practically every computer-type device uses some
type of GUI, which contain graphical representations of items such as button, switches, sliders,
elevator bars, etc. These items are models of the things they’re mimicking. Pixels on a display
form models of buttons; the device interacts with the model to make something meaningful occur
when something actuates the button model.

Example 5: Video Games – The entire genre is a model of real and/or imaginary life. Everything
you see in the game is a model of something you can relate to in real life, but it’s truly far from
being real life. Guns in real life are much louder and smell funny when you fire them.

3.3 The Black Box Diagram in Digital Design

Digital design uses several different types of models. Recall that there is no one correct model of any given
thing; either the model is useful because it helps you understand something, or it’s not useful because it provides
you with nothing useful. Here’s a short list of models we use in digital design; we fill in the details later.

 The black box diagram: The black box diagram, or BBD, is a box that graphically shows the
inputs and outputs to the digital circuit. Figure 3.1(a) shows an example of a black box model
used in digital design. The word “black” in black box has a figurative meaning in that we don’t
know what’s inside the box.

 The digital circuit element : We model basic digital devices using special symbols; when
digital designers see these symbols, they know how the device operates. Boxes with descriptive
labels sometimes replace these special symbols. Figure 3.1(b) shows an example of a digital
circuit element model and its corresponding BBD.

 The timing diagram: Timing diagrams graphically describe the operational characteristics of a
digital circuit based on the status of signals plotted as a function of time. Figure 3.2 shows an
example of a timing diagram for some unspecified digital circuit.

1 Or even worse, as academic administrators.

Free Range Digital Design Foundation Modeling Chapter 3

 - 33 -

 The written description: We can model the operation of a digital component with a written
description. If there is not an accompanying BBD with the written description, the description
allows you to generate one. Figure 3.3(b) shows a written description of a digital circuit.

 The Hardware Description Language (HDL) : You can use a HDL (Verilog or VHDL) to
describe the operation of digital circuits. Figure 3.3(a) shows a VHDL model of a circuit.

(a) (b)

Figure 3.1: A BBD (a), and a digital circuit element model with its corresponding BBD (b).

Figure 3.2: An example of a timing diagram.

entity dff is
 port (D,S,R : in std_logic;
 CLK : in std_logic;
 Q, nQ : out std_logic);
end dff;

architecture dff of dff is
begin
 process(D,S,R,CLK)
 begin
 if (R = '0') then
 Q <= '0'; nQ <= '1';
 elsif (S = '0') then
 Q <= '1'; nQ <= '0';
 elsif (rising_edge(CLK)) then
 Q <= D;
 nQ <= not D;
 end if;
 end process;
end dff;

The circuit has four inputs and two outputs.
The outputs are always complements of each
other. Two inputs, R and S, are asynchronous
negative logic inputs. When R is asserted
(negative logic), the Q output is ‘0’; when S is
asserted, the output is ‘1’. The R input takes
precedence over the S input. The Q output
follows the D output on the active clock edge
(rising-edge triggered).

(a) (b)

Figure 3.3: Two functionally equivalent models: an example of a VHDL model (a), and a written
description of a digital circuit (b).

3.4 Modeling with Black Box Diagrams

The BBD is useful in designing anything, particularly digital circuits. Unlike modeling techniques such as using
an HDL, black box diagrams do not burden you with constraints such as syntax rules. This being the case, don’t
forget the overall purpose of models: models quickly transfer information to the reader.

Free Range Digital Design Foundation Modeling Chapter 3

 - 34 -

In digital design, we’re most concerned about the inputs to and the outputs from digital circuits. We use a box to
represent a digital circuit; lines going into and out of the box represent the inputs and outputs of the circuit,
respectively. Figure 3.4 shows a few examples of a BBDs. Figure 3.4(a) shows the BBD with inputs and outputs
on the left and right sides, respectively. Figure 3.4(b) shows an equivalent model where we indicate the inputs
and outputs using arrowheads on the signal lines (arrows entering the box are inputs; arrows leaving the box are
outputs). Figure 3.4(c) is another equivalent model that uses “self-commenting” signal names to differentiate the
circuit’s I/O (input and output).

(a) (b) (c)

Figure 3.4: A few examples of basic black box diagrams.

The models in Figure 3.4 are tough to write about because there are no hard rules for BBDs. However, here are a
few strong guidelines you should follow:

 The “flow” of digital models usually goes from left to right2. Thus, inputs are on the left side
of the box while outputs are on the right side of the box.

 Put arrowheads on signals if it’s not obvious what signals are inputs and outputs

 Label all signals unless there is some compelling reason not to

 Place labels on boxes if the reason for the box’s existence is not patently obvious

The models in Figure 3.4 represent the first step in black box modeling. One of the hallmarks of any type of
design is the ability to abstract the design across many levels. For our purpose, a high-level model of something
may not be that useful if we are hoping for a low-level model (and vice versa). These different levels of a model
make up a hierarchy of a particular design; each level offers a different type and/or amount of information.

Figure 3.5 shows an example containing two BBDs; the models in Figure 3.6 use these two models. Figure
3.6(a) shows a BBD that sports a two-level hierarchy. The upper-level is the MY_BIG_BOX model; the lower
level contains four previously defined models (defined in Figure 3.5). The model in Figure 3.6(b) is somewhat
similar to the model in Figure 3.6(a), with some important differences:

 From Figure 3.6(a), we don’t know which signals are inputs and outputs by examining the
model, as this higher-level model does not contain arrowheads on the signals nor do the
signals contain self-commenting names.

 The black box named Z_BOX on the lower level was not previously defined; what’s in this
box is therefore a mystery and we hope someone defines it elsewhere.

 The interior BBD at the lower level is true to what Figure 3.5 shows. You can use this fact to
extrapolate which signals are the inputs and outputs for most of the signals in the higher-level
model. The I/O characteristics of the Z_BOX remains a mystery.

 The two models in Figure 3.6 are almost identical. The model in Figure 3.6(b) contains less
information than the box in Figure 3.6(a) as it does not list the internal connections.

2 This is not always the case, but following this convention where possible makes your BBDs more readable.

Free Range Digital Design Foundation Modeling Chapter 3

 - 35 -

Figure 3.5: Two example high-level BBDs.

(a) (b)

Figure 3.6: Examples of lower-level BBDs with similar features but varying amounts of detail.

Example 3.1: Black-Box Design: Problem Version 1

Provide a black box diagram showing a natural gas-powered storage-type water heater.

Solution: The first thing to notice about the problem is the vagueness in the description. This is not necessarily a
bad thing, particularly if you know nothing about hot water heaters. The problem is expecting you to do
something; but you probably won’t provide your solution to the Maytag Company for immediate fabrication. In
addition, you should definitely become comfortable with the vagueness of the problem statement: bad problem
descriptions are typical in most engineering pursuits3.

The first step in all design problems should be to draw a box and place a somewhat meaningful label on it;
Figure 3.7(a) shows the result of this step. This step isn’t much, but it’s an important starting point, particularly if
you have no idea of what to do. Drawing the top-level BBD is the first step in any engineering problem.

The next step is to extrapolate something about solution from the problem statement. You know the water heater
heats water; therefore, there must be a cold water input as well as a hot water output. Once you include these in
your model, your BBD appears similar to Figure 3.7(b). For the last step, reread the problem description. You
know that the heater is a natural gas heater, so it must have an input for natural gas. Figure 3.7(c) shows the
model with a gas input.

Because the problem statement did not provide us with direction to the level of detail desired for the solution, we
can declare ourselves done. The model in Figure 3.7(c) is somewhat descriptive, especially if you know nothing
about water heaters. The moral is that you started with nothing and ended up with an instructive model.

3 Good descriptions are somewhat contraining. Often descriptions are bad because the person generating the description does
not know what they’re doing and are expecting to pass the blame to people attempting to interpret their description.

Free Range Digital Design Foundation Modeling Chapter 3

 - 36 -

(a) (b) (c)

Figure 3.7: A possible thought process for this example.

Example 3.2: Black-Box Design Problem Version 2

Provide a black box diagram showing a natural gas-powered storage-type water heater and
some of its important subsystems.

Solution: This is the same problem but now you need to know something about hot water heaters. The best
approach is to realize that you probably know or can figure out how a hot water heater works. Also, note that
when this problem asks for subsystems, it’s requesting that your solution be hierarchical in nature.

Step One: Let’s not reinvent the wheel (the hallmark of all design): borrow from the previous example’s
solution wherever possible. Figure 3.8(a) shows the result of this step (though we change the name of the
black box from the previous example).

Step Two: List all the subsystems that a hot water heater would require. There must be a storage tank for
the hot water. There must be a control unit4 to maintain a constant water temperature by turning on the
gas when the water cools and turning it off when it reaches the desired temperature. There is a gas
burner, so there must be a fume exhaust (and we maybe should have included it in the previous example).
Figure 3.8(b) shows the final solution.

Once again, we declare this problem done. We could do more but we opt not to because our solution satisfies the
original problem statement. Our final solution in Figure 3.8(b) shows a two-level hierarchical design; the top-
level is the HWHEATER2 module and the lower level shows the three subsystems, which we model as black
boxes inside the top-level black box.

(a) (b)

Figure 3.8: A possible solution to this example.

4 Generally, a thermostat regulates the water temperature; that is, it keeps the water at some desired temperature without
letting it get too much above or below a specific temperature.

Free Range Digital Design Foundation Modeling Chapter 3

 - 37 -

Example 3.3: Black-Box Design Problem Version 3

Provide a black box diagram showing a natural gas-powered storage-type water heater and
some of its important subsystems. Include enough detail in model to show the basic interaction
between the various subsystems.

Solution: This example is a modification to the previous problem. Whereas in the previous example we had to
know something about the heater’s subsystems, we now must know something about how the subsystems
interact with each other.

The problem doesn’t state how much detail we needed to include, so we’ll add a few details and call the problem
done. The first step in the solution is to borrow from the previous example’s solution. Figure 3.9(a) shows the
result of this step with the top-level BBD now having a new label. The remainder of the solution includes adding
internal connections between subsystems, which we describe below. Figure 3.9(b) shows the final result.

 We extend the external connections to the new subsystems. The cold-water input connects to the
storage tank. The natural gas input connects to the burner. The hot water output connects to the
tank, as that is where the unit stores the water. The fume exhaust connects to the burner, because
the burner creates the fumes.

 The control unit is the brain of the heater; it’s going to turn on the burner when the water gets
too cold. That means the control unit must monitor the temperature of the tank (one connection
goes from the tank to the control unit) and tell the burner to turn on/off (another connection goes
from the control unit to the burner).

(a) (b)

Figure 3.9: A possible solution to this example.

3.5 Black Box Modeling Redux

The previous set of examples highlights the power of black box modeling. Although this example had nothing to
do with digital design, the hierarchical design approach in these examples is the mainstay of modern digital
design. There are two major things to note about this problem:

 These examples only roughly stated the level of detail required by the problem solution. We did
our best without worrying too much about the fact that the U.S. Patent office probably would
not like our BBD. We provided what the problem asked for, and then moved on.

 While doing these examples, we started out with nothing and had little knowledge about hot
water heaters. When we were done, we had an interesting model of a hot water heater, and
we’re probably a bit smarter. The black box modeling technique allowed us to take random bits
of information and reassemble them in a viable model that satisfied the given problem. This is

Free Range Digital Design Foundation Modeling Chapter 3

 - 38 -

the cool thing about black box modeling: it provides you with a method of creating a path to the
problem’s solution when you feel like you have no idea where to go.

Black box modeling is the mainstay of digital design. Accordingly, two of the most basic and important digital
design principles deal directly with black box modeling:

Mealy’s First Law of Digital Design: If in doubt, draw some black box diagrams.

Mealy’s Second Law of Digital Design: If your digital design is running into weird obstacles
that require kludgy solutions, toss out the design and start over from square one.

Mealy’s Third Law of Digital Design: Every digital design problem can have many different
but equivalent solutions; the absolute right solution is eternally elusive.

Mealy’s Fourth Law of Digital Design: The digital design process is circular, not linear. If you
think you’re going to generate the correct solution with the first pass, you’re bound for
disappointment. The digital design process is circuit; always make going backwards a few steps
to fix issues part of the design process. Don’t try to make your design perfect from the get-go,
make it simple to understand so that you can fix issues as they arise.

A result of Mealy’s First law of Digital Design is if you have no idea what you’re doing, you’ll at least look like
a pro. The first step in every solution is to draw a top-level BBD that 1) lists what you do know (such as
inputs/outputs and given signal name, and 2) labels everything (such as the names of the blocks). The purpose of
Mealy’s Second law of Digital Design is to prevent you from becoming stuck on a bad design path. If your
design is not coming relatively easy, toss it out, rethink it, and start again. Digital design should never be overly
complicated. Good digital designers are people who know they are going to make mistakes, but have the
wherewithal to quickly correct their issues.

Free Range Digital Design Foundation Modeling Chapter 3

 - 39 -

3.6 Chapter Summary

 The main tool used in any type of design is “modeling”. In this context, a model represents a description of
something, but not necessarily that thing. Modern digital design uses many types of models including black
box models, HDL models, timing diagrams, written descriptions, etc.

 The main purpose of models is to quickly transfer information to the entity (person or computer) reading the
model. Since there are generally no carved-in-stone rules to modeling, the best models are the ones that
transfer the most information; this means that good models are inherently clear to the reader.

 Models in general promote an overall understanding of the entity being modeled and thus can become
complex. The main mechanism in modeling to handle this complexity is the notion of “hierarchical
modeling” which means that models can simultaneously describe many different levels of the design. The
construct of “boxes within boxes” embodies hierarchical modeling as it relates to black box modeling.

 Black box modeling and hierarchical modeling is not limited to digital design; they can describe just about
anything. In particular, black box models help people reverse engineer just about anything and thus create
knowledge where only darkness previously reigned.

 Digital design is about creating digital circuits to solve problems; problems solutions involve creating a
circuit that establishes a structured relationship between the circuit’s inputs and outputs in such a way as to
solve the given problem.

 Three important digital design laws:

 Mealy’s First Law of Digital Design: If in doubt, draw some black box diagrams.

 Mealy’s Second Law of Digital Design: If your digital design is running into weird
obstacles that require kludgy solutions, toss out the design and start over.

 Mealy’s Third Law of Digital Design: Every digital design problem can have many
different but equivalent solutions; the absolute right solution is eternally elusive.

 Mealy’s Fourth Law of Digital Design: Digital design is circular, not linear. Plan on
going backwards to correct issues in your design as they arise.

Free Range Digital Design Foundation Modeling Chapter 3

 - 40 -

3.7 Chapter Exercises

1) Briefly explain the general purpose for a model.

2) Is there one correct model for anything? Briefly explain your answer.

3) Briefly describe the attributes of the “best” model for anything.

4) List some of the pros and cons of not having stringent rules regarding basic black box modeling techniques.

5) One of the themes of this chapter is the hierarchical design approach. Would it be possible to have too many
levels for a given design? Explain your answer without being too verbose

Free Range Digital Design Foundation Modeling Chapter 3

 - 41 -

3.8 Design Problems

1) Draw a block box model of the following devices (be sure to label your model as completely as possible):

a) the family dog

b) the tree growing in the forest

c) a bottle of beer

d) your best friend

e) a compost pile

2) Draw a block box model of the following devices (be sure to label your model as completely as possible):

a) microwave oven

b) handheld calculator

c) television

d) refrigerator/freezer

3) Draw a two block diagrams, each using a different level of description, for the following devices (be sure to
label your model as completely as possible):

a) internal combustion engine

b) soda-dispensing machine

Free Range Digital Design Foundation Modeling Chapter 4

 - 42 -

4 Number Systems Basics

4.1 Introduction

The previous chapters gave you a small taste for the meaning of the terms “digital” and “model”. This chapter
continues our move towards digital design by discussing some of the underlying details regarding number
systems and their relation to digital design. This chapter introduces number systems.

Main Chapter Topics

NUMBER SYSTEM INTRODUCTION: Since number usage has become second nature, we
probably forgot some of the underlying characteristics that make numbers “work”. This
chapter provides a friendly reminder of common definitions associated with number
systems.

COMMON DIGITAL RADII: We use the binary and hexadecimal number systems in digital
design to support hardware implementations of problem involving mathematics. This
chapter describes these number systems.

SPECIAL ATTRIBUTES OF BINARY NUMBERS: Binary numbers have several properties
that we draw upon continuously in digital design. This chapter describes these attributes.

ENGINEERING NOTATION: Writing numbers in a clear and concise manner is important
in digital design. This chapter describes the motivation behind engineering notation.

Chapter Acquired Skills

 Be able to describe the basic vernacular associated with number systems

 Be able to describe the following number systems:

o Stoneage unary

o Binary

o Decimal

o Hexadecimal

 Be able to describe the important attributes of binary numbers

o Unsigned binary number ranges

o Number of bits required to represent positive decimal number

o Unique numbers representable by a given number of bits

 Be able to represent numbers using engineering notation

4.2 Number System Retrospective

Number systems became an integral part of human life, as humans required more viable approaches for
quantifying their possessions. Human developed of numbers in order to correct a basic limitation of the human
brain: the lack of ability to handle large quantities of “things”.

Free Range Digital Design Foundation Modeling Chapter 4

 - 43 -

My eighth grade algebra teacher1 once told the class a story about some primitive culture. I’ve forgotten why
he told the story, but I never forgot the story itself, as it was the day I found out that I was not much better than
a caveperson2. The teacher told the class about a number system used by a primitive culture, which comprised
of three “numbers”: “one”, “two”, and “many”. What has always impressed me about this story was the fact
that it still nicely describes the way my brain “processes” quantities of things. Although this caveperson
number system seems limited compared to modern number systems, it underscores the limitations of the
modern human brain.

Figure 4.1 demonstrates a basic limitation in the human brain. In Figure 4.1(a), it’s obvious there is only one
dot in the square; your brain both sees and processes this information instantaneously. Your brain probably has
no problem “counting” the number of dots in the square of Figure 4.1(b) either. However, once you arrive at
Figure 4.1(c), your brain can’t instantaneously gather this information: the sheer number of dots in the square
instantly overloads your brain. In essence, your brain sees the number of dots as “many”; thus your brain is no
more sophisticated than that of a caveperson.

(a) (b) (c)

Figure 4.1: An example showing a basic limitation of the human brain.

We modern humans are able to both conceive of and process the dots in the square of Figure 4.1(c). We do this
by representing the quantity of dots with a “number”. We define this number by a mutually agreed upon set of
rules to ensure that everyone who uses that number refers to the same quantity of dots. There is even an agreed
upon set of squiggles that we use to represent the numbers.

4.2.1 Stoneage Unary

Stoneage unary is still a useful and relatively popular number system. When cavepeople realized they needed a
more precisely way to track the quantity of things, they started saving a small stone for each thing they
possessed. For example, if they had 12 cows, they would store 12 small stones in the pockets of their stone-age
loincloths. We call this counting system stoneage unary in that each stone represents a count of one thing. We
still often use stoneage unary today with the notion of tick-marks. For example, cowboys cut one groove in the
handle of their six-shooters for each person they kill. Similarly, academic administrators carve a notch in their
desks for each person they bully, harass, and/or fire.

It is still common to use tick marks to count various things; Figure 4.2 shows an example of such a counting
system. This method of counting made it easy to perceive a total number of things by placing tic marks in
groups of five things. For example, the number represented by the marks is Figure 4.2 is 23, which also
happens to be the average IQ of academic administrators.

Figure 4.2: An example of stoneage unary.

1 It was Mr. Fangman; the year was 1975. That was really his name.
2 Mr. Fangman actually used a gender specific term; we’ll opt for a gender-neutral term to protect the innocent.

Free Range Digital Design Foundation Modeling Chapter 4

 - 44 -

4.3 Number Systems Basics

A quick review of the some of the underlying structure and definitions of number systems is in order. The
concepts presented in this section should be nothing new to you, but you may have forgotten the actual
definitions. Although you’re probably able to tweak around with multi-variable calculus but you probably
forgot what exactly a radix point is. Welcome to higher education.

 Number System: a language system consisting of an ordered set of symbols (digits) with rules
defined for various mathematical operations

 Digit: a symbol in a number system

 Radix: the number of digits in the ordered set of symbols in a number system

 Number: a collection of digits, which can contain both a fractional and integral part

 Radix Point: a symbol that delineates the fractional and integral portions of a number

As an example, consider a decimal number (radix = ten). Since the number is a decimal number, we can use
any one of ten different symbols to represent a decimal number (0, 1, 2, 3, 4, 5, 6, 7, 6, 8, or 9)3. If we were
only limited to ten numbers, the number system would be of little use to us. However, by placing digits side-
by-side and using special rules, we can represent any quantity of things.

Placing digits side-by-side to represent numbers is what we refer to as juxtapositional notation. Using
juxtapositional notation allows a given number system to represent numbers greater than the “radix-1”.
Number systems can use juxtapositional notation for any radix value. Each of the digit positions in
juxtapositional notation can be any of the digits in the ordered set for the given radix. For decimal numbers, the
numbered set is: {0,1,2,3,4,5,6,7,8,9}.

Figure 4.3 lists some other fun facts regarding numbers and juxtapositional notation. Figure 4.3 shows that we
divide numbers into their integral and fractional parts, where the radix point delineates the integral and
fractional portions of the number4. Each digit in both the fractional and integral portions of the number is a
member of the set of numbers associated with the given radix. Figure 4.4 provides an alternative and more
formal definition of a number, which includes some of the typical lingo we use to describe numbers.

NUMBER = (N)R = (Integral Part) . (Fractional Part)

 Radix Point

Figure 4.3: The form of a typical number using juxtapositional notation.

3 Keep in mind that these symbols are arbitrary; if you don’t like them, feel free to create your own.
4 The radix point is that funny dot that you’re not supposed to call a decimal point unless the radix is ten.

Free Range Digital Design Foundation Modeling Chapter 4

 - 45 -

NUMBER = (N)R = (An-1 An-2 … A1 A0 . A-1 A-2 … A–m)R

where:

R radix

A one digit in the number

An-1 the most significant digit (MSD)

A-m the least significant digit)

Figure 4.4: Another form of a typical number.

Example 4-1: Describing Parts of Decimal Number Representations

Describe the integral and fractional portions of the following number: 989.45

Solution: “989” is the integral portion of the number; “45” is the fractional portion of the number; the radix
point divides the integral and fractional portions of the number. Since there is no listed radix, the radix value of
ten is implied and thus the number is a decimal number. We only include a radix if the number has a radix
other than ten.

4.4 Juxtapositional Notation and Numbers

Juxtapositional notation allows a given number system to represent quantities larger than the “radix-1”.
Juxtapositional notation places symbols side-by-side in order to represent quantities larger than the numbers in
the given set by assigning a weight to every digit position in the number. By convention, the numbers are
monotonically increasing (scanning right to left) powers before the radix point, and, and monotonically
decreasing powers of the radix (scanning left to right) after the radix point. The weighting of the digit to the
immediate left of the radix point is the radix raised to the zero power while the weighting of the digit
immediately to the right of the radix point is raised to power of “-1”.

Example 4.2: Weightings in Decimal Numbers

Show the weightings associated with each digit in the following number: 987.45

Solution: Table 4.1 shows the solution to Example 4.2. The radix exponential row uses the radix to
monotonically increasing/decreasing powers to designate the weightings. This convention follows the
juxtapositional number conventions in Figure 4.4.

Free Range Digital Design Foundation Modeling Chapter 4

 - 46 -

Decimal Value
of Digit Weight

100 10 1 0.1 0.01

Radix
Exponential

102 101 100 10-1 10-2

Positional Value
9 x 100
(900)

8 x 10
(80)

7 x 1
(7)

.
4 x 0.1

(0.4)

5 x 0.01

(0.05)

 Radix Point

Table 4.1: The solution to Example 4.2.

4.5 Common Digital Radii

Digital design commonly uses three different radii: 10, 2, and 16. We generally refer to these number systems
as “base 10”, “base 2”, and “base 16”, respectively, where the “base” is the radix value; we refer to these
number systems as decimal, binary, and hexadecimal (hex), respectively. Table 4.2 lists the justification for
using these number systems digital design and include the symbol sets for these three number systems.

Name Radix Justification Symbol Set

Decimal 10
It’s what humans understand and
is thus comfortable to work with

0,1,2,3,4,5,6,7,8,9

Binary 2
It’s what digital hardware
understands and we must be able
to work with the hardware

0,1

Hexadecimal

(hex)
16

It is a substitute for binary as it
helps humans understand long
strings of 1’s and 0’s

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Table 4.2: Justifications for using particular number systems in digital design.

Here are a few important things to note about these number systems:

 We refer to binary digits as bits

 The number of symbols in each number system spans from ‘0’ to the “radix – 1”. The lowest value
symbol is zero and the highest valued symbol is “radix – 1”.

 The hexadecimal system runs out of number symbols after ‘9’, and then arbitrarily switches to the
alpha characters of A→F (case does not matter).

 We often list binary numbers in groups of four and “zero-extend”” (add extra zeros) to the values to
make then four bits when necessary

 We often refer to a grouping of four bits as a “nibble”

 We refer to a grouping of eight bits are a “byte”

Free Range Digital Design Foundation Modeling Chapter 4

 - 47 -

Table 4.3 shows a list of decimal values 0→15, along with their binary and hex equivalents. We list the binary
numbers in groups of four bit as that helps humans quickly identify the numbers. Zero-extending the binary
numbers does not change the value of the number.

(base 10)
Decimal

(base 2)
Binary

(base 16)
Hexadecimal

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Table 4.3: Numbers that every digital designer should memorize.

4.5.1 Binary Number System

The binary number system is basis of all transactions in digital hardware because digital circuit hardware
(namely transistors) only operates in two states5. Therefore, while humans prefer decimal, digital circuits
require binary. Using binary represents a new thang, so you need to invest some time in learning the basics of
binary (and hexadecimal). The best way to start this is to memorize everything in Table 4.3. This is not a big
deal, as you already know decimal, and hexadecimal is straightforward to learn as it only contains six new
characters. You need to quickly translate between decimal↔binary↔hexadecimal; generating a table similar to
Table 4.3 each time you need to do a conversion is a waste of time. To fluent with powers of two, you also
need to memorize the values in Table 4.4.

5 Transistors can operate in more than two states, but transistors in digital circuits only operate in two states.

Free Range Digital Design Foundation Modeling Chapter 4

 - 48 -

(base 2)
Binary

(base 10)
Decimal

(base 16)
Hexadecimal

(base 2)
Binary

(base 10)
Decimal

(base 16)
Hexadecimal

20 1 1 20 – 1 0 0

21 2 2 21 – 1 1 1

22 4 4 22 – 1 3 3

23 8 8 23 – 1 7 7

24 16 10 24 – 1 15 F

25 32 20 25 – 1 31 1F

26 64 40 26 – 1 63 3F

27 128 80 27 – 1 127 7F

28 256 100 28 – 1 255 FF

29 512 200 29 – 1 511 1FF

210 1024 400 210 - 1 1023 3FF

Table 4.4: Important powers of two that you also need to memorize.

Example 4.3: Binary Number Weightings

Show the weightings associated with each digit in the following number: 101.112

Solution: Table 4.5 shows the solution to Example 4.3.

Decimal Value of
Digit Weight

4 2 1 0.5 0.25

Radix
Exponential

22 21 20 2-1 2-2

Positional Value
1 x 4

(4)

0 x 2

(0)

1 x 1
(1)

.
1 x 0.5

(0.5)

1 x 0.25

(0.25)

 Radix Point

Table 4.5: The solution to Example 4.3.

4.5.2 Hexadecimal Number System

The hexadecimal number system contains sixteen digits in its ordered set of symbols. The first ten numbers are
the same as decimal numbers, but we use alpha characters (A→F) to represent the numbers 10→15 because we
run out of the arbitrary squiqqles we use for the ten decimal digits. Table 4.3 shows the hexadecimal numbers
along with the associated decimal and binary numbers (in 4-bit format).

Hexadecimal numbers exist in digital design for one single purpose: they provide a shorthand notation to
represent binary numbers. The general rule in digital design is to never use binary numbers greater than four
bits because they are too hard for your brain to process. One of the accepted exceptions is when the binary
number is all 0’s or all 1’s.

Free Range Digital Design Foundation Modeling Chapter 4

 - 49 -

4.6 Important Attributes of Binary Numbers

In digital design, we find ourselves working with special properties of binary numbers. This section introduces
and describes a few of these properties.

4.6.1 Unique Numbers vs. Number of Bits

Quite often in digital design land, there is an issue of how many unique numbers can you represent by “X
number of bits”. There’s a special relationship in a binary number system that uses monotonically increasing
powers for the bit-position weight values. For example, were you are only considering one bit, you can two
unique numbers: ‘0’ and ‘1’. If you have two bits, you can have four unique numbers: “00”, “01”, “10”, and
“11”. If you have three bits, etc. The equation in Figure 4.5 shows the relationship between the number of bits
and the quantity of unique numbers those bits can represent. The equation in Figure 4.5 essentially describes
the second column in Table 4.4.

Number of unique combination of bits = 2 number of bits

Figure 4.5: The relation between the number of bits and number of unique numbers.

Example 4.4: Binary Number Characteristics

How many unique numbers can you represent with an 8-bit unsigned binary number?

Solution: The solution to this problem utilizes the formula in Figure 4.5. The quantity of unique numbers =
2number of bits = 28 = 256

Example 4.5: Binary Number Characteristics

How many unique numbers can you represent with a 12-bit unsigned binary number?

Solution: The solution to this problem utilizes the formula in Figure 4.5. The quantity of unique numbers =
2number of bits = 212 = 4096.

4.6.2 Number Range vs. Number of Bits

A given number of bits in an unsigned binary number can represent a range of value, which runs from ”all 0’s”
to “all 1’s”. For unsigned binary numbers, we interpret all zeros as the decimal value of zero, which represents
the minimum value for the range; the maximum value is where all bits are a ‘1’. Figure 4.6 shows a formula for
the number range as a function of the number of bits.

number range (unsigned binary) for X Bits = [0,2X – 1]

Figure 4.6: The range for a given number of bits for unsigned binary numbers.

Free Range Digital Design Foundation Modeling Chapter 4

 - 50 -

Example 4.6: Binary Number Characteristics

What is the number range for an 8-bit unsigned binary number?

Solution: The solution to this problem utilizes the formula in Figure 4.6. The quantity of unique numbers =
[0,28 – 1] = [0,256 – 1] = [0,255].

Example 4.7: Binary Number Characteristics

What is the number range for a 12-bit unsigned binary number?

Solution: The solution to this problem utilizes the formula in Figure 4.6. The quantity of unique numbers =
[0,212 – 1] = [0,4096 – 1] = [0,4095].

4.6.3 Number of Bits to Represent a Number

Quite often in digital design, we need to know the minimum number of bits we require to represent a given
decimal number. For example, we have 100 different items that we need to assign a unique set of bits. In
digital design, we most often want to represent that number in a minimum number of bits as well. Figure 4.7
shows the formula; this formula uses a ceiling function.

𝐌𝐢𝐧𝐢𝐦𝐮𝐦 𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐁𝐢𝐭𝐬 𝐑𝐞𝐪𝐮𝐢𝐫𝐞𝐝 𝐭𝐨 𝐑𝐞𝐩𝐫𝐞𝐬𝐞𝐧𝐭 𝐚 𝐃𝐞𝐜𝐢𝐦𝐚𝐥 𝐍𝐮𝐦𝐛𝐞𝐫 𝐗 ⌈𝐥𝐨𝐠𝟐 𝑿⌉

Figure 4.7: The number range for an unsigned binary number based on the number of bits in the
number.

Example 4.8: Binary/Decimal Number Relations

What is the minimum number of bits required to represent 269 items?

Solution: The solution to this problem utilizes the formula in Figure 4.7.

Minimum number of bits = ceiling(log2[269]) = 9 bits.

Free Range Digital Design Foundation Modeling Chapter 4

 - 51 -

Example 4.9: Binary Number Characteristics

Consider a 6-bit binary number; list the maximum value, the minimum value, and the two
numbers in the middle of the number range that these six bits are able to represent.

Solution: The list below provides the requested numbers:

The maximum number: this would be all “1’s”, or “111111” = 63

The minimum number: this would be all “0’s”, or “000000” = 0

We derive the two middle numbers from the fact that there is always an even quantity of numbers available for
a given number of bits. The two numbers in the middle of the range are “011111” and “100000”; these
numbers represent 31 and 32, respectively. These two numbers effectively divide the 6-bit number into the
following two ranges: [0,31] and [32,63]. Note that each range has 32 unique numbers.

4.7 Engineering Notation

In order to reduce their workload and thought-load, we typically use engineering notation to represent
numerical quantities. Problems can arise when attempting to express numbers without using a convention as
Table 4.6 shows, which lists the same number in different but equivalent ways.

0.000034.7 x 102 0.347 x 10-2

0.00034.7 x 101 3.47 x 10-3

0.00347 34.7 x 10-4

0.0347 x 10-1 347 x 10-5

Table 4.6: A few ways to represent 34.7 x 10-4.

The problem is that it’s hard to gather an intuitive feel for numbers if they don’t conform to some standard.
The solution is to use engineering notation to represent numbers in digital design. Engineering notation is a
subset of scientific notation with some extra rules added. The motivation of using engineering notation is to
enhance the intuitive feel of numbers by placing restrictions on their representations.

Engineering notation uses special suffixes to represent the exponential portion of the number. The advantage of
engineering notation is that it allows you to obtain a quick feel for the magnitude of numbers based on its
magnitude and prefix. Figure 4.8 shows the rules for using engineering notation.

 The magnitude portion of the number should be between 1 and 1000. We officially list
this range as [1,1000)6.

 The units portion of the number uses an appropriate prefix and does not use exponential
notation. The valid prefixes are integral multiples of three.

Figure 4.8: The rules for correctly using engineering notation.

Table 4.7 lists the prefixes you need to know. There are many others, but how often do you have the
unsatisfiable urge to use prefixes such as “yocto”7. You should be familiar with most of these prefixes already;
but if not, now is your chance to learn some lingo that impresses your friends.

6 This notation means that the number is greater than or equal to 1 but less than 1000.

Free Range Digital Design Foundation Modeling Chapter 4

 - 52 -

Value Prefix Abbrev Example

109 Giga G GHz
106 Mega M MHz
103 Kilo k kHz
10-3 mili m ms
10-6 micro μ μs
10-9 nano n ns

Table 4.7: Engineering Notation prefixes.

Example 4.10: Converting a Number to Engineering Notation

Represent the value 452300Hz in engineering notation.

Solution: The value 452300 is greater than 1000 (103) but less than 1000000 (106). This means we need to use
the “k” prefix. We then divide the given number by 1000 to obtain the proper magnitude portion of the number
before we attach the k prefix. The final answer is 452.3 kHz.

Example 4.11: Converting Exponential Notation to Engineering Notation

Represent the value 84.3 x 10-8s in engineering notation.

Solution: First, convert the exponential portion of the value to a multiple of three. If we multiple the number
by 100 (102), the exponential portion of the number becomes -6, which is OK. However, to compensate for this
multiplication, we must also divide the magnitude portion of the number by 100. The resulting magnitude
value is then 0.843. However, since this value is less than one, this is not proper engineering notation. Our only
other choice is to adjust the exponential part in the other direction. To do this we divide the exponential portion
of the number by 10 to obtain 10-9 and then multiply the magnitude portion of the number by 10 as
compensation. The result is 843ns.

7 Yep, it sounds more like a personal hygiene problem than a prefix.

Free Range Digital Design Foundation Modeling Chapter 4

 - 53 -

4.8 Chapter Summary

 Engineering notation is a subset of scientific notation and we typically use it to represent numbers when
we need to quickly get a feel for the size of the number. Engineering notation uses a magnitude and
exponential parts to represent numbers. The magnitude part must be in the range [1,1000); the exponential
part must be an integral multiple of three, which we represent with standard metric prefixes.

 The development of numbers resulted from the need to process larger “quantities” of things. Human brains
can’t process large quantities of things; “numbers” allows human brains to comprehend and process larger
quantities of things

 We use hexadecimal numbers to make long strings of binary numbers more readable to humans.

 Numbers represent quantities that are too big for our brain to understand and process. We form numbers
by using a basic set of symbols associated with the particular radix in question. Numbers use
juxtapositional notation to represent quantities larger than the numbers represented by the associated
symbol set. We assign different weightings to digit positions for each position in a number. Numbers have
both integral and fractional portions, which we delineate with a radix point.

 Digital design uses binary numbers because of the fact that a binary number nicely models the high-
voltage vs. low-voltage relationship in the underlying transistor implementation of digital circuits.

 Two important characteristics of unsigned binary numbers are 1) the quantity of numbers you can
represent by a given number of bits, and, 2) the range of unsigned numbers that you can represent by a
given number of bits. These quantities can be represented by closed form formulas:

 Number of Unique Numbers = 2 number of bit locations

 Number Range for Unsigned Binary Numbers = [0-(2 number of bit locations – 1)]

𝐌𝐢𝐧𝐢𝐦𝐮𝐦 𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐁𝐢𝐭𝐬 𝐑𝐞𝐪𝐮𝐢𝐫𝐞𝐝 𝐭𝐨 𝐑𝐞𝐩𝐫𝐞𝐬𝐞𝐧𝐭 𝐚 𝐃𝐞𝐜𝐢𝐦𝐚𝐥 𝐍𝐮𝐦𝐛𝐞𝐫 𝐗 ⌈𝐥𝐨𝐠𝟐 𝑿⌉

Free Range Digital Design Foundation Modeling Chapter 4

 - 54 -

4.9 Chapter Exercises

1) Briefly describe why we use hexadecimal numbers in digital design?

2) Convert the following values to engineering notation.

a) 235500000

b) 45 x 10-4

c) 241.3 x 108

d) -33.8 x 10-4

e) 0.00303 x 10-4

f) 0.146 x 108

g) 0.0000000253 x 104

h) 8.355 x 107

3) Which of the following numbers are have a larger magnitude?

a) 235500000 or 23.55 x 10-6

b) 4.5m or 45 x 10-4

c) 241.3M or 241.3 x 108

d) -33.8 x 10-6 or -33.81 x 10-6

4) If you had 153 items in your backpack, can you think of a way to describe those items other than using
numbers? If you can think of ways, how much do those ways differ from stone-age unary?

5) Represent the following numbers in two different styles of stoneage unary

a) 3

b) 16

c) 10,456,638

6) How many unique numbers can be represented by a 4, 8, and 12-bit binary numbers? For this problem,
assume that standard weightings are used for the binary number.

7) Show the unsigned binary and hexadecimal equivalents of the following decimal numbers. Use four bits to
represent the binary numbers.

a) 7

b) 9

c) 14

d) 2

e) 15

8) Briefly described why binary numbers are associated with digital design.

9) Write closed form formulas that show the middle two decimal numbers of any given number of bits in an
unsigned binary number range.

Free Range Digital Design Foundation Modeling Chapter 4

 - 55 -

10) Consider a 4-bit unsigned binary number that uses the following weighting (listed from left-most to right-
most bits): 5, 3, 2, and 1. (Don’t laugh, people actually do things like this).

a) List the unique numbers that can be represented by this range.

11) How many bits (unsigned binary) does it require to represent the following decimal number?

a) 3

b) 32

c) 129

d) 193

e) 3999

f) 250

12) How many unique numbers can be represented by the following number of bits. Also, list the ranges
considering the bits represent unsigned binary numbers.

a) 6

b) 10

c) 8

d) 9

Free Range Digital Design Foundation Modeling Chapter 4

 - 56 -

4.10 Design Problems

1) Design your own personal number system. This system should have radix of eight. Make sure you define
both the symbols and the weighting of numbers based on digit position. The symbols you use in your
number system must be unique. Provide a few example numbers and at least one example conversion to
decimal.

Free Range Digital Design Foundation Modeling Chapter 5

 - 57 -

5 Number Systems: Codes and Conversions

5.1 Introduction

Digital design uses various codes to represent “things of interest”, such as numbers. There are a bajillion
different codes out there, but digital design primarily uses only a few of those codes. Digital designers need to
both understand those codes and be able to convert between them. This chapter describes some popular codes
and the conversion between these codes.

Main Chapter Topics

CONVERSIONS BETWEEN VARIOUS RADII: This chapter describes basic algorithms to
convert between various number systems.

Chapter Acquired Skills

 Be able to convert a number from any radix to decimal

 Be able to convert a decimal number to any radix

 Be able to convert binary numbers to hexadecimal and hexadecimal to binary

 Be able to convert BCD numbers to decimal and back

 Be able to describe and generate a one-hot code

 Be able to describe and generate a unit-distance code

5.2 Number System Conversions

The reality is that we humans think in decimal but computers and other digital devices operate strictly in
binary. This means we need to be able to translate between the various number systems typically associated
with digital design.

5.2.1 Any Radix to Decimal Conversions

The digit positions in any number using juxtapositional notation have weights associated with them. The
associated number multiplies the weights in order to generate the final number. An earlier chapter had a few
binary to decimal conversions; some more examples follow.

Example 5.1: Hexadecimal-to-decimal conversion

Convert 1CE.A416 (hexadecimal) to decimal.

Solution: Table 5.1 provides the solution to Example 5.1. The solution is similar to a previous example, but
with a different radix.

Free Range Digital Design Foundation Modeling Chapter 5

 - 58 -

Decimal Value
of Digit Weight

256 16 1 0.0625 0.003906

Radix
Exponential

162 161 160 16-1 16-2

Positional Value
1 x 256
(256)

12 x 16
(192)

14 x 1
(14)

 .
10 x 0.0625
 (0.625)

4 x 003906
(0.015625)

 Radix Point

Final answer: 256 + 192 + 14 + 0.0625 + 0.003906 = 462.066409

Table 5.1: The solution to Example 5.1.

5.2.2 Decimal to Any Radix Conversion

You can use many different algorithms to convert numbers from decimal to a number system of any radix; this
section examines the most straightforward algorithm for humans. This approach works for converting decimal
to any base, but we only perform decimal to binary conversions. Note that the best approach to do these
conversions is to use a calculator.

The decimal to binary conversion is the conversion you use most often in digital design. There are two parts to
this approach; one for the integral portion and fractional portions of numbers.

As motivation for converting the integral portion of decimal number to binary, let’s convert a decimal number
to a decimal number (don’t worry, it proves a point). The approach we take is to divide the number multiple
times by the radix value. Example 5.2 provides an overview of this division process.

Example 5.2: Decimal-to-decimal conversion

Convert 487 to decimal.

Solution: Table 5.2 shows the solution to this example. The solution comprises of repeated divisions with the
top row of table being the first division.

487 ÷ 10 = 48 Remainder: 7 LSD = 7
48 ÷ 10 = 4 Remainder: 8
4 ÷ 10 = 0 Remainder: 4 MSD = 4

Table 5.2: Decomposing an integral decimal number into a decimal number.

You can see in Example 5.2 repeated division by the radix value decomposes the original value into its
individual weighted components. The first value that this algorithm generated was the least significant digit
(LSD) which is the remainder after the first division. The final value generated by this algorithm is the most
significant digit (MSD). If you were to reassemble the number with the MSD on the left and the LSD on the
right, you would get the original number back. Wow!

This example proves that the algorithm is valid and it thus works when transferring from decimal to a number
of any radix value. In both examples, we use the terms LSB and MSB, which refers to Least Significant Bit
and Most Significant Bit, respectively. Not surprisingly, the technique we refer to this technique as repeated
radix division (RRD).

Free Range Digital Design Foundation Modeling Chapter 5

 - 59 -

Example 5.3: Decimal-to-Binary Conversion

Convert 12 to binary.

Solution: Table 5.3 shows the solution to this example in a series of steps starting with the top row of the table.

12 ÷ 2 = 6 Remainder: 0 LSB = 0
Final Answer:
1210 =11002

6 ÷ 2 = 3 Remainder: 0
3 ÷ 2 = 1 Remainder: 1
1 ÷ 2 = 0 Remainder: 1 MSB = 1

Table 5.3: The solution to Example 5.3: decomposing a decimal number into a binary number.

Example 5.4: Decimal-to-Binary Conversion (integral)

Convert 147 to binary.

Solution: Table 5.4 shows the solution to this example in a series of eight steps starting with the top row of the
table being the first step.

147 ÷ 2 = 73 Remainder: 1 LSB = 1

Final Answer:
14710 =100100112

73 ÷ 2 = 36 Remainder: 1
36 ÷ 2 = 18 Remainder: 0
18 ÷ 2 = 9 Remainder: 0
9 ÷ 2 = 4 Remainder: 1
4 ÷ 2 = 2 Remainder: 0
2 ÷ 2 = 1 Remainder: 0
1 ÷ 2 = 0 Remainder: 1 MSB = 1

Table 5.4: The solution to Example 5.4

As a motivational example for converting the fractional portion of a number to some other base, let’s first
convert a fractional decimal number to decimal number. The approach we take is to multiply the number
repeatedly by the radix value and examine the result. In each step, we’ll peel off the newly created integral
portion of the number and put it aside. Example 5.5 provides an overview of this algorithm. Note from the
result in Example 5.5 that the first integral result is the MSD of the original number. The final value we obtain
is the LSD of the original number. We refer to this algorithm to as repeated radix multiplication (RRM).

There are two key points about the example in Example 5.7. First, as opposed to the example in Example 5.6,
the example in Example 5.7 does not appear to end. For the sake of sanity in this example, we decided to end
the pain after four iterations of the algorithm. Stopping the algorithm after four iterations is arbitrary (doing
four iterations was boring enough). The other key point is that the answer is no longer a proper equation. In
reality, since our conversion never ended as nicely as in Example 5.6, we must use the approximation symbol
to indicate that the equality was not preserved. Also, note that all of these examples use a subscripted two to
indicate that the converted number is in a binary representation.

Free Range Digital Design Foundation Modeling Chapter 5

 - 60 -

Example 5.5: Decimal-to-decimal conversion (fractional)

Convert 0.243 to decimal.

Solution: Table 5.5 shows the solution in a series of eight steps starting with the top row of the table.

0.243 × 10 = 2.43 remove the 2 MSD = 2
0.43 × 10 = 4.2 remove the 4
0.3× 10 = 3.0 remove the 3 LSD = 3

Table 5.5: Solution to Example 5.5

Example 5.6: Decimal-to-Binary Conversion (fractional)

Convert 0.375 to binary.

Solution: Table 5.6 shows the solution to this example in a few steps starting with the top row of the table
being the first step.

0.375 × 2 = 0.75 remove the 0 MSB = 0
0.375 = 0.0112 0.75 × 2 = 1.50 remove the 1

0.5 × 2 = 1.0 remove the 1 LSB = 1

Table 5.6: Solution to Example 5.6

Example 5.7: Decimal-to-Binary Conversion (fractional)

Convert 0.879 to binary.

Solution: Table 5.7 shows the solution to this example in a few steps starting with the top row of the table
being the first step.

0.879 × 2 = 1.758 remove the 1 MSB = 1

0.879 ≈ 0.11102
0.758 × 2 = 1.516 remove the 1
0.516 × 2 = 1.032 remove the 1
0.032 × 2 = 0.064 remove the 0 LSB = 0 (?)

Table 5.7: Solution to Example 5.7

Free Range Digital Design Foundation Modeling Chapter 5

 - 61 -

5.2.3 Binary ↔ Hex Conversions

The key to converting between binary and hex numbers is to note that a single hex number represents a group
of four binary numbers (and vice versa). This works because both binary and hex numbers are powers of two,
which allows for the individual weightings of the numbers to be powers of two also. The conversions of
Example 5.8 and Example 5.9 highlight the relationship between the group of fours in the context of a binary-
to-hexadecimal conversion and a hexadecimal-to-binary conversion, respectively. In addition, there are a few
special items to note in these examples.

Solution: Figure 5.1 shows the solution to Example 5.8; here is some cool stuff to note:

 We omit the leading zeros in the number as they have no value

 We add zeros to the end of the fractional portion of the number (commonly referred to as bit-
stuffing). A common mistake is to see that final ‘1’ in the fractional portion of the number think
that is equivalent to a binary ‘1’, but the number has the weight associated with the MSB of a 4-
bit binary number. The final bit is associated with a hexadecimal ‘8’ and not ‘1’.

1100110.101012 = 66.A816

Figure 5.1: The solution to Example 5.8.

Example 5.9: Hexadecimal-to-binary conversion

Convert D37.AC16 to binary.

Solution: Figure 5.2 shows the solution to Example 5.9.

D37.AC16 = 110100110111.101011002

Figure 5.2: The solution to Example 5.9.

Example 5.8: Binary-to-hexadecimal conversion

Convert 1100110.101012 to hexadecimal.

Free Range Digital Design Foundation Modeling Chapter 5

 - 62 -

5.3 Fast Radix-Based Division & Multiplication

Division and multiplication are usually complex operations in any radix. When the divisor or multiplicand is
the radix raised to an integral power, these multiplication and division are trivial. We’re all familiar with the
notion of dividing or multiplying decimal numbers by powers of ten, where all we do is move the decimal
point around and added extra zeros where necessary. This ease of operation is no different for other radii,
namely binary and hexadecimal. The best way to show this is with a few examples.

Solution: First, 8 is an integral power of 2 (23=8). This means that we need to move the radix point three digits
to the left, which is the same operation as dividing by 8. The final answer is 1100.1101012.

Solution: First, 32 is an integral power of 2 (25=32). This means that we need to move the radix point five
digits to the right, which is the same operation as multiplying by 32. The final answer is 111011001002.

Solution: First, 256 is an integral power of 16 (162=256). This means that we need to move the radix point two
digits to the left, which is the same operation as dividing by 256. The final answer is: 3A.D7B16.

Solution: Note that 256 is an integral power of 16 (162=256). This means that we need to move the radix point
two digits to the right, which is the same operation as multiplying by 256. The final answer is: CDF8016.

Example 5.10: Binary Division

Divide the following value by 8: 1100110.1012

Example 5.11: Binary Multiplication

Multiply the following value by 32 111011.0012

Example 5.12: Hexadecimal Division

Divide the following value by 256: 3AD7.B16

Example 5.13: Hexadecimal Multiplication

Multiply the following value by 256: CDF.816

Free Range Digital Design Foundation Modeling Chapter 5

 - 63 -

5.4 Other Useful Codes

Using binary patterns to represent numbers is a major field of study in modern engineering.. In that we
currently live in the information age, there are an endless number of binary codes in use.

You’re about to learn several different common ways of representing numbers using binary codes. In this
context, the word “code” refers to the interpretation of a set of bits. Up until this point, if you were to see a
bunch of bits, you would naturally think about juxtapositional notation and the weights of the numbers, which
happen to be powers of two (the radix for binary). As you’ll soon find out, this is only true for unsigned binary
numbers in one particular format; we need other number representations to be fluent in digital-land.

5.4.1 Binary Coded Decimal Numbers (BCD)

Binary coded decimal (BCD) numbers are similar to the group of fours. The goal is to have a unique set of bits
to represent each of the digits in the decimal system. Since there are ten different numbers in the decimal
system, we need at least four bits to uniquely represent each of the decimal digits. We could not represent the
set of decimal numbers with three bits because that only provides eight different unique bit patterns. On the
other hand, there is nothing stopping us from using more than four bits to represent the digits but that would
end up having lots of unassigned codewords. As it is, there are sixteen different bit combinations possible with
four bits, which results in six of the bit combinations not used when representing the set of decimal digits1.

Table 5.8 shows the four-bit code words and the decimal digits they represent. The primary role of BCD
numbers is to represent decimal numbers in devices that display numbers.

Decimal BCD Code

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
- 1010
- 1011
- 1100
- 1101
- 1110
- 1111

Table 5.8: The decimal digits and their associated BCD codes.

Example 5.14: BCD-to-decimal conversion

Convert 011001111000BCD to decimal.

Solution: Figure 5.3 shows the solution to Example 5.14.

1 Although these six combinations are often used to represent “numbers” 10-15 hexadecimal.

Free Range Digital Design Foundation Modeling Chapter 5

 - 64 -

011001111000BCD = 678

Figure 5.3: The solution to Example 5.14.

Example 5.15: Decimal-to-BCD conversion

Convert 396 to BCD.

Solution: Figure 5.4 shows the solution to Example 5.15.

396 = 001110010110BCD

Figure 5.4: The solution to Example 5.15.

5.4.2 One-Hot Codes

The idea of a one-hot code is simple: for a codeword of n-bits in length, only one of the bits is ‘1’ at any given
time; the other bits are zero. Table 5.9 shows examples of 3, 4, 5, and 6-bit one-hot codes; creating one-hot
codes is relatively simple.

Two areas in digital design use one-hot codes. First, they are the outputs of a “standard decoder”, which is a
device we discuss in an upcoming chapter. Second, we typically use one-hot codes in the low-level design of
finite state machines (FSMs). In this text, we do a majority of FSM design at a high level, so we won’t visit the
topic in a significant manner in the remainder of this text. There are also “one-cold” codes; these codes share
the same properties as one-hot codes, except the codeword’s bits are inverted (changed to ‘1’ if ‘0’, or changed
to ‘0’ if ‘1’).

Free Range Digital Design Foundation Modeling Chapter 5

 - 65 -

Table 5.9: Examples of 3, 4, 5, and 6-bit one-hot codes.

3-bit
One-Hot Code

4-bit
One-Hot Code

5-bit
One-Hot Code

6-bit
One-Hot Code

001 0001 00001 000001

010 0010 00010 000010

100 0100 00100 000100

- 1000 01000 001000

- 10000 010000

- 100000

5.4.3 Unit Distance Codes (UDC)

The concept of “distance” in digital-land has a special and relatively simple meaning. When you see the word
distance, it’s usually in the context of “the distance between two code words”. What this implies is that you
were given set of binary code words of equal length; the set of codes also has a specified sequence (such as a
binary count). In this context, each of the code words is different from all of the other code words in the set.
This set of code words now has order, uniqueness, and a constant bit-length, so we can discuss the distance
between two code words in the set. An example of a code set would be the binary numbers associated with the
decimal range [0,15], which could be a represented with a 4-bit binary code.

Table 5.10 shows an example of a 5-bit binary code. Table 5.10 shows that we define the distance between two
code words as the number of bits that you must toggle (invert) to form one code word out of another
contiguous code word in the set.

Table 5.10: A few examples of “distances” between code words.

Code
Word A

Code
Word B

Distance from
Word A to Word B Comment

00000 11111 5 Toggle all bits

01110 00110 1 Toggle second bit from right

00110 00110 0 Toggle no bits

00111 11100 4 Toggle outer two bits

A unit distance code (UDC) is a set of code words where the maximum distance between any two contiguous
code words is one. In other words, to get from one code word to the next code word in the sequence, you only
need to toggle one bit.

There is a science to creating UDCs but we’ll not go into that. Know when you hear the words “unit distance”,
that it’s describing a relationship between two binary numbers. There is also a special form of UDCs that we
refer to as Gray Codes. Often times when people mention Gray and Unit Distance codes, they’re actually
referring the unit distance property and not the special characteristics associated with Gray codes. Table 5.11
lists a few UDC examples.

Free Range Digital Design Foundation Modeling Chapter 5

 - 66 -

2-bit UDC 4-bit UDC 8-bit UDC

00

01

11

10

0001

0011

0111

1111

1110

1100

1000

0000

10000001

11000001

11000011

11100011

11100111

01100111

01100110

00100110

00100100

00000100

00000000

10000000

Table 5.11: Examples of 2, 3, and 8-bit UDC codes.

Free Range Digital Design Foundation Modeling Chapter 5

 - 67 -

5.5 Chapter Summary

 Hexadecimal (base 16) and binary (base 2) are two of the primary number systems commonly used and
associated with digital design. We use hexadecimal to make long strings of 1’s and 0’s more readable.

 We often require conversion between various types of numbers associated with digital design. The
important most common conversions are decimal-to-binary, binary-to-decimal, hexadecimal-to-binary,
and binary-to-hexadecimal. We perform these conversions using special algorithms.

 Binary coded decimal (BCD), unit distance codes (UDCs), and one-hot codes are three codes we
commonly use in digital logic design.

Free Range Digital Design Foundation Modeling Chapter 5

 - 68 -

5.6 Chapter Exercises

1) Explain briefly but fully why the group of four approach works for converting number between
hexadecimal and binary representations.

2) Complete the following number systems conversions:

a) 011110010001BCD to decimal

b) 0001000000110110BCD to decimal

c) 4377 to BCD

d) 70023 to BCD

e) 4AC16 to decimal

f) 782B16 to decimal

g) 101102 to decimal

h) 1011112 to decimal

3) Complete the following mathematical operations

a) 110110112 * 8

b) 10110110 ÷ 16

c) 3AB16 * 8

d) 4A7F ÷ 32

4) What is the minimum radix value of the following number?: 145.801

5) What is the minimum radix value of the following number?: BA.12

6) Which of these two positive numbers is greater? 100110110.11002 or 15B.B16

7) Assemble these numbers into a gray code sequence: 111, 000, 110, 011, 001, 100

8) Can the following set of number be made to form a gray code?

0011, 0110, 1100, 0111, 1111, 1110, 0001

9) What is the maximum distance between any two of the following numbers?

0011, 0110, 1100, 0111, 1111, 1110, 0001.

10) In the table below, cross out one code word from each column to make the code in the column into a unit
distance code. These two columns represent two separate unit distance codes.

0000
0010
0110
1110
1111
1100
1101
1001
0001

00000
10000
10001
11001
11011
10111
10011
10010
00010

Free Range Digital Design Foundation Modeling Chapter 5

 - 69 -

11) In the table below, add one code word to each column to make the code in the column into a unit
distance code. Add the required code words only in the rows indicated with arrows. These two
columns represent two separate unit distance codes – your answer will not necessarily be the same
code word for each code.

0000

0100

0110

0010

0011

1111

1110

1100

1000

0000

0001

0011

0111

0110

1100

1000

12) The table below shows five binary codes. Circle the codes that are unit distance codes.

000

001

011

111

110

100

0000

1000

0100

0010

0001

0000

0001

0011

0010

0110

0100

1100

1000

01000

01001

01011

01111

11111

01111

01110

01100

00100

00000

00000

00100

01100

01110

11111

11110

11100

11000

10000

13) Show the one-hot codes for the following number of bits:

a) 3

b) 6

c) 8

14) Show a 16-bit one-hot code in hexadecimal.

15) Divide the following number by 256: 3 5 F D 116.

16) Divide the following number by 32: 1 0 1 1 0 1 0 0 0 1 0 0 1 1 12.

17) Multiply the following number by 256: A473.116.

Free Range Digital Design Foundation Modeling Chapter 5

 - 70 -

18) Multiply the following number by 2048: B321.A216.

19) Multiply the following number by 64: 110110.102.

20) Multiply the following number by 256: 110.10012.

Free Range Digital Design Foundation Modeling Chapter 5

 - 71 -

5.7 Chapter Design Problems

1) Design a unit distance code that contains six code words. The code should be circular in nature and each
code word should be five bits long

2) Design a unit distance code that you can use to represent a re-design of a BCD code. Your new code
should be a four-bit code and represent all numbers from 0→9.

3) Design a unit distance code that you can used to represent a re-design of a standard binary code. Your new
code should be a four-bit code and represent all numbers from 0→15.

4) Design 8-bit two-hot code. For this code, each code word has only two bits set. Any given bit is only set in
one of the codewords. In what applications would this code be potentially useful?

5) Design an 8-bit two-hot code that contains six different codewords. For this code, each code word has only
two bits set.

Free Range Digital Design Foundation Modeling Chapter 6

 - 72 -

6 Brute Force Digital Design

6.1 Introduction

This chapter is the first chapter covering true “digital design”. This chapter presents a single approach to digital
design, but it is by no means the only approach. This chapter presents a model for solving digital design
problems.

Main Chapter Topics

DIGITAL DESIGN OVERVIEW: This chapter uses a design example to introduce a simple
digital design process: the “iterative”, or “brute force” approach to digital design.

BOOLEAN ALGEBRA: This chapter introduces Boolean algebra including its basic
axioms and associated theorems.

Chapter Acquired Skills

 Be able to describe the purpose of a logic gates and inverters

 Be able to describe truth tables for both AND gates, OR gates, an inverters

 Be able to model solutions to digital design problems by using specifying input/output
relationships in equation form and circuit forms.

6.2 Digital Design

Being the average smart person, you’ve solved many problems during your life. However, have you ever
analyzed your approach to solving problems? The following verbage lists the approach that I generally take to
solving a problem. This approach is generic enough to be applicable to any problem. Here is my basic
algorithm for solving problems.

a) Define the problem: understand the starting point and requirements

b) Describe your solution to the problem: propose a path to the solution

c) Implement your solution to the problem: embodiment of the solution

The following verbage represents an introduction to digital design that we present in the context of an actual
problem. We’re designing a digital circuit; you would take a different approach if you were designing a stick in
the mud. The basic concept of all digital design is simple: you’re creating a circuit that provides the correct
output(s) to a given set of input(s)1. There are many approaches to performing digital design; this section
presents only one of them. You’ll find that you eventually develop your own style and approach to digital
design as you gain more experience. You’ll initially be on a mission to collect tools and experience with digital
design.

1 What you see later in this test is that the “correct” outputs can also be based on a sequence of inputs. For now, we’ll
pretend that the circuit outputs are based solely on the circuit inputs at a given time.

Free Range Digital Design Foundation Modeling Chapter 6

 - 73 -

6.2.1 Step 1: Defining the Problem

The basis of any design problem is a relatively clear statement of the problem. In digital design, you typically
face the notion of designing a digital circuit that processes some set of inputs and generates the desired output.
Example 6.1 provides the problem statement for this painfully long design example.

Example 6.1: The First Design Problem

Problem Statement: Design a digital circuit that has an output that indicates when the 3-bit
binary number on the input is greater than four.

Solution: The first step in defining the problem is to translate what the problem is asking into another form.
The best place to start with all digital design problems is to draw a BBD that shows the circuit’s inputs and
outputs. You can see from the problem statement that the digital circuit has three inputs (the 3-bit binary
number) and one output (indicates a quality of the inputs). A model in this context is a description of a digital
circuit, which we loosely define in Figure 6.1(a).

The diagram of Figure 6.1(a) shows that our final circuit has three inputs and one output. Figure 6.1(b) shows
another model of our final circuit. The main difference between these two models is the fact that the model in
Figure 6.1(b) has given specific names to the inputs and outputs. The circuit models of Figure 6.1(a) and
Figure 6.1(b) shows the same thing but the Figure 6.1(b) provides a greater amount of detail.

The model of Figure 6.1(b) is better because we need to use the signal names to solve this problem. The signal
names applied to the model in Figure 6.1(b) are nothing special: the “B” could mean binary; the numbers
following the B’s are probably associated with the weighting factors of the binary numbers. The “F” is a
typical name given to the outputs of a digital circuit because the output is a function of the inputs.

There is some important information missing from the model of Figure 6.1(b): since the three inputs represent
a binary number, we need to know the weights associated with each bit. The solution needs to state this this
information in order for the model of Figure 6.1(b) solution to have meaning. Let’s consider the B2 input to be
the most significant bit (MSB) and the B0 input to be the least significant bit (LSB). You must always state this
extra information in your digital design solutions. A good model of anything prevents the reader of that model
from assuming anything, so always state any assumptions as part of the model.

(a) (b)

Figure 6.1: Two different models of the proposed digital circuit.

The next step is to establish a relationship between the circuit’s inputs and outputs. The approach we take is to
show an input/output relationship in such a way as that we are essentially solving the given problem. The way
we do this is to list every possible unique combination of the three inputs and assign an output value that
indicates when the inputs satisfy the problem. We refer to the table that displays this input/output relationship
as a truth table. Figure 6.2(a) shows the empty truth table while Figure 6.2(b) shows the truth table with every
possible combination of the three binary inputs; the output indicates when the input combination solves the
problem.

Free Range Digital Design Foundation Modeling Chapter 6

 - 74 -

B2 B1 B0 F

B2 B1 B0 F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

(a) (b)

Figure 6.2: The empty and completed truth table for Example 6.1.

The following describes some of the important things to note about the truth tables in Figure 6.2.

 Figure 6.2(a) shows an empty truth table while Figure 6.2(b) shows a truth table containing
many 1’s and 0’s. Digital circuitry and digital models typically use 1’s and 0’s to model the
voltages that drive the underlying hardware, so this allows us to abstract past the need to deal
with voltages. We model voltages using 1’s and 0’s for the remainder of this text.

 The tables have eight rows. There is always a binary relationship between the number of
inputs to the circuit and the number of rows in the associated truth table. Since there are three
inputs, there are 23 unique combinations of the three inputs. The decimal equivalents to the
listed input values range from zero to seven (0-7), because in binary, the counting begins at 0
(“000”) and ends at 7 (“111”).

 The truth table is set up so that F is a function , which is no different from the concept of
functions in mathematics where there are independent variables and dependent variables. For
this example, B2, B1, and B0 are the independent variables while F is the dependent variable.
The value of F is dependent upon the values of the B2, B1, and B0 inputs. The output F has
only one value for each possible input combination, which preserves the functional
relationship.

 The first three columns of the truth table form every unique combination of the three input
values. The column for the output shows what we want the circuit output to be if a particular
input combination appears on the inputs. For this example, we entered 0’s for the cases where
the inputs bits represent a number less than five. We enter 1’s for the cases where the input
combination is greater than four.

 The truth table includes an extra grid line in the middle row of the truth table in order to
increase the readability of the table. We typically divide truth tables into rows of four.

The problem is now 100% defined using the truth table in Figure 6.2(b). In case you’re thinking that this
problem is somewhat straightforward in the way that we specified the outputs, you’re correct. This particular
style of digital design is an exhaustive approach in that the truth table lists every possible input combination.
We refer to this approach as the iterative approach to digital design, but we refer to it as BFD (brute force
design). Would an iterative approach be possible if the circuit had 24 inputs? No! Therein lays the basic
limitation of the iterative approach.

6.2.2 Step 2: Describing the Solution

Although the truth table has completely defined the solution to this problem, it is somewhat klunky to work
with, especially as the number of inputs increase. What we need to do is develop a “science” of sorts in order
to more efficiently describe the problem’s solution. Lucky for us that someone a long time ago already
developed the “science” we’re looking for. Here’s the shortened version of the story.

Free Range Digital Design Foundation Modeling Chapter 6

 - 75 -

About a bajillion years ago, George Boole developed some methods to deal with a two-valued algebra2.
Although his original intent was to model logical reasoning in a mathematical context, his work currently
forms the basis for all digital design. We refer to this two-valued algebra as Boolean algebra. Boolean algebra
uses a basic set of operators defined over the set of elements in question. The possible elements in this set are
{0,1}, which clearly shows the two-values (a binary thang).

Table 6.1 lists the basic axioms of Boolean algebra. The axioms completely define the basic operators in
Boolean algebra: the dot (•), the cross (+), and the overbar (ˉ). Table 6.2 and Table 6.3 list the Boolean
algebra theorems; we can prove these theorems using the axioms in Table 6.13.

1a 1b
2a 2b
3a 3b
4a 4b

Table 6.1: Boolean algebra Axioms

5a 5b xx 1 Null element

6a 000 xx 6b Identity

7a 7b Idempotent

8a xx
 Double Complement

9a 9b Inverse

Table 6.2: Single variable theorems.

10a 10b Commutative

11a 11b Associative

12a 12b Distributive

13a 13b Absorption

14a

14b

Combining

15a

15b

DeMorgan’s

Table 6.3: Two and three-variable theorems.

The most important result gathered from the basic axioms of Table 6.1 is the definition of the three operators.
Although the axioms completely define these operators, the definition of these operators is clearer when
represented in a truth table. The three operators have names: we refer to the dot operator (•) as the AND
operator as it defines an AND operation (to as logical multiplication). We refer to the cross operator (+) as the
OR operator as it defines an OR operation (logical addition). We refer to the overbar as the NOT operator as it
defines a NOT operation (usually referred to as inversion or complementation). Table 6.4 shows the truth
tables associated with these three operator definitions; we generate these truth tables from the basic axioms.

2 In case you have forgotten what algebra is, it’s a mathematical system used to generalize arithmetic operations by using
letter or symbols to stand for numbers based on rules derived from a minimal set of basic assumptions. The world refers to
these basic assumptions as axioms. An axiom is a statement universally accepted as true. From this set of axioms, theorems
can be proved true or false. A theorem is a proposition that can be proven true from axioms.
3 Proving the theorems using the basic axioms is a typical exercise in most digital design texts. We’ll opt to move onto
more useful things.

000 111
111 000

00110 11001
10 01

00 x
xxx 00

xxx xxx

0 xx 1 xx

xyyx xyyx
)()(zyxzyx)()(zxyzyx

)()()(zxyxzyx)()()(zxyxzyx
xyxx)(xyxx)(

xyxyx)()(xyxyx)()(

yxyx)(yxyx)(

Free Range Digital Design Foundation Modeling Chapter 6

 - 76 -

AND
(logical multiplication)

OR
(logical addition)

NOT
(inversion)

x y
0 0 0
0 1 0
1 0 0
1 1 1

x y
0 0 0
0 1 1
1 0 1
1 1 1

x
0 1
1 0

Table 6.4: Truth tables for the three basic logical operators.

The goal of this section is to produce a scientific method of describing the function associated with the solution
of the original problem. Since that problem appeared about five pages ago, Figure 6.3 provides the truth table
defining the solution to this problem.

B2 B1 B0 F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Figure 6.3: The truth table for the original problem.

We now have several different ways of describing the function that solves the problem at hand. The first
representation is the truth table, which we know as being rather klunky. A second solution is sort of a verbal
and thus non-scientific solution. Figure 6.4 shows the long and drawn out text of this verbal solution. Notice
that Figure 6.4 extensively uses of the words “and” and “or” in the solution. However, since we went to all the
trouble to describe Boolean algebra, Figure 6.5 shows a better (more efficient and scientific) way to describe
the function using Boolean algebra. Note the similarities in the solutions of Figure 6.4 and Figure 6.5.

The output of the circuit is a ‘1’ when:

 (B2=1 and B1=0 and B0=1) or (B2=1 and B1=1 and B0=0) or (B2=1 and B1=1 and B0=1)

Figure 6.4: One approach to describing the solution to Example 6.1.

Figure 6.5: A better approach to describing the solution to Example 6.1.

There are several important things to note about the equation in Figure 6.5.

 This is truly an equation (note the presence of the equal sign). We refer to this equation as a Boolean
equation or sometimes as a Boolean expression. We wrote the expression in functional form where we
list the complete set of independent variables on the left side of the equals sign and we list the
dependent value on the right of equals sign.

 The expression implies some form of precedence of the AND, OR, and NOT operators. The NOT
operator has highest precedence followed by the AND, and then the OR operator. We write these

yxF yxF
xF

B0B1B2 B0B1B2 B0B1B2 B0)B1,F(B2,

Free Range Digital Design Foundation Modeling Chapter 6

 - 77 -

Boolean expressions using parenthesis around the individual terms that are ANDed together4. Figure
6.6 shows an example of the equation of Figure 6.5 with a refreshing use of parentheses.

B0)B1(B2)B0B1(B2 B0)B1(B2 B0)B1,F(B2,

Figure 6.6: An arguably better approach to describing the solution to Example 6.1.

6.2.3 Step 3: Implementing the Solution

Up to this point, you’ve defined your solution (step 1) and described your solution (step 2) which means you’re
now ready to implement your solution. The word implement has many connotations; what we mean in this
context is that we need some way to implement this function in actual hardware5. All you currently know are
the basic functions associated with Boolean algebra: AND, OR, and NOT.

There are entities out there we refer to as “logic gates” that implement the individual logic functions. Just as
there are AND, OR, and NOT functions, there are also physical circuits (AND, OR, and NOT gates) that
implement these functions. A logic gate is a physical device that implements a logic function. Figure 6.7 shows
model for these three basic gates. In other words, the gates represent the associated logic functions but without
providing details as to the function’s implementation on the transistor level.

AND gate OR gate Inverter

Figure 6.7: The basic gate symbols used to model AND, OR, and NOT functions.

AND gates and OR gates must have at least two inputs but don’t have a maximum number of inputs. In the
cases of more than two inputs, the functions remain consistent. Figure 6.8 lists a more generic definition of
AND & OR gates; these definitions completely describe the functionality of these gates when they have more
than two inputs6. AND & OR gates can have as many inputs as they need while still exhibiting the basic AND
& OR functionality. Inverters can only have one input and one output.

 AND gates and OR gates can have only one output.

 Inverters can only have one input and one output.

AND gates: the output is a ‘1’ only when all the inputs are a ‘1’

OR gates: the output is a ‘0’ only when all the inputs are a ‘0’

Figure 6.8: A more generic and intuitive definition for AND & OR functions.

These gates give us the ability to implement the solution in hardware. However, for this problem, we’re not
going to actually implement the circuit. Instead, we’re going to provide yet another model for the circuit that
solves this problem. Figure 6.9 shows a model of the final circuit implementation. Make sure you understand
the relationship between the circuit model of Figure 6.9 and the Boolean equation in Figure 6.5. To test your
understanding of this relationship, you should be able to generate the associated Boolean equation in Figure 6.5
that describes the circuit from the circuit model in Figure 6.9.

4 Use of parenthesis reduces the need to memorize operator precedence. So, if in doubt, use parenthesis.
5 A digital design synonym for implementing a function in hardware is to “realize” the function or “function realization”.
6 You can add more inputs to the gate symbols as required.

Free Range Digital Design Foundation Modeling Chapter 6

 - 78 -

Non-complemented signals in the Boolean equation connect directly to the gates, while signals with overbars
(complemented signals) pass through inverters; the output of the inverter connects to the gates. The equation
contains three terms where the signals are ANDed together. The output of the three associated AND gates form
the three inputs to the OR gate. The output of the OR gate is the circuit’s final output.

Figure 6.9: The circuit model that solves Example 6.1.

You should be able to go back and forth between the various representations of a Boolean function. In this
example, we worked with four different representations of a Boolean function: 1) truth table, 2) written
description, 3) Boolean equation, and 4) a circuit model. There are many more ways to represent a Boolean
function. Each of these representations is a model of a digital circuit. Given any one of these models, you can
1) generate any of the other models, and 2) implement the circuit.

An important issue to realize about this circuit is that is has no control feature. Most of the circuit we study in
digital design have one of four types of control: 1) no control, 2) internal, 3) external, or 4) by a controller
circuit. The circuits we’ve study so far have no control: the outputs simply react to the inputs.

Example 6-2: Generic Design #2

Design a circuit that has four inputs (A, B, C, D) and two outputs (F, EVEN). All inputs and
outputs are single bits. The four inputs represent a binary number where A is the MSB and D
is the LSB. The F output indicates when the 4-bit input value is odd and has two and only two
bits set. The EVEN output indicates when the input value is even. Provide a top-level BBD
and a lower-level circuit diagram for your circuit solution. Also, state what type of control the
circuit uses.

Solution: The first step is to generate a BBD for the solution, which we show in Figure 6.10. The circuit has
four single-bit inputs and two single-bit outputs.

Figure 6.10: The top-level BBD for this example.

The next step is to define the solution using a truth table. This problem has four single-bit inputs, which
requires that the truth table have 24 or 16 rows. This problem has two outputs, which we represent with two
separate columns in the truth table. Table 6.5 shows the final truth table with completed F and EVEN columns.

Free Range Digital Design Foundation Modeling Chapter 6

 - 79 -

A B C D F EVEN

0 0 0 0 0 1
0 0 0 1 0 0
0 0 1 0 0 1
0 0 1 1 1 0
0 1 0 0 0 1
0 1 0 1 1 0
0 1 1 0 0 1
0 1 1 1 0 0
1 0 0 0 0 1
1 0 0 1 1 0
1 0 1 0 0 1
1 0 1 1 0 0
1 1 0 0 0 1
1 1 0 1 0 0
1 1 1 0 0 1
1 1 1 1 0 0

Table 6.5: The truth table for the solution.

Figure 6.11 shows the final equations for the solution. We took a straightforward approach for the F equation;
we list the inputs associated with the given row in the truth table where the F output is a ‘1’. We could have
done the same thing for the EVEN output, but that would have created an equation containing eight sum terms,
which is gruntwork we try to avoid. While it’s comfortable to follow rules when solving digital design
problems, you must always use some horse sense, which is what we did for the EVEN output. We noted that
the EVEN column is an inversion of the D input column; we can easily represent this by writing an equation
that equates an inverted D input to the EVEN output. This is a shortcut, but it represents something you should
always look for when solving problems. Figure 6.12 shows the final circuit model for this example.

𝐸𝑉𝐸𝑁 𝐷

𝐹 �̅�𝐵𝐶𝐷 �̅�𝐵�̅�𝐷 𝐴𝐵�̅�𝐷

Figure 6.11: The final equations for this example.

Figure 6.12: The final circuit model for this example.

Free Range Digital Design Foundation Modeling Chapter 6

 - 80 -

6.3 Chapter Summary

 The need to solve a problem drives the creation of a digital circuit. We can describe the basic process of
digital design in three steps: 1) define the problem, 2) describe the solution, and 3) implement the solution.
We can describe solutions to digital design problems Boolean equations, which have their basis in Boolean
algebra.

 There are many possible ways to represent solutions to digital design problems. We consider these many
solutions to be functionally equivalent in that they all describe the same thing but do so in different ways.
In other words, if the outputs for two given solutions are equivalent based on the same set of inputs (but
the form of the solutions differ), the solutions are functionally equivalent.

 Four axioms define the basic operation of Boolean algebra. Those axioms define the basic logic operators
of AND, OR, and INVERSION.

 There is relatively long list of Boolean algebra theorems associated with Boolean algebra. Some of these
theorems are quite useful in digital logic while we rarely apply others.

 Digital design uses logic gates to implement basic Boolean operators in hardware.

Free Range Digital Design Foundation Modeling Chapter 6

 - 81 -

6.4 Chapter Exercises

1) What entity forms the basis of iterative design? Briefly explain

2) Why is it that you have to learn something as inefficient as iterative design? Briefly explain

3) Why is the term “brute force” associated with iterative design? Briefly explain.

4) Can you, at this early stage in your digital design career, describe a better approach to digital design?

5) Why are truth table-based designs considered severely limited?

6) Generate a Boolean equation that is equivalent to each of the following truth tables.

B2 B1 B0 F
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

A B C F
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

(a) (b)

X Y Z F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

t u v F1 F2
0 0 0 1 0
0 0 1 1 0
0 1 0 0 1
0 1 1 0 1
1 0 0 0 0
1 0 1 1 0
1 1 0 0 1
1 1 1 0 1

(c) (d)

7) Convert the following Boolean expression to truth table form.

a)

b)

c)

CBACBACBACBACBAF),,(

CBACBACBACBACBACBAF),,(

ZYXZYXZYXZYXZYXF),,(

Free Range Digital Design Foundation Modeling Chapter 6

 - 82 -

8) Convert the following Boolean functions to truth table form.

a)

b)

c)

9) Draw a circuit representation for the following Boolean equations:

a)

b)

10) Write a Boolean equation that describes the following circuit:

11) Write a Boolean equation that describes the following circuit:

12) Write a Boolean equation that describes the following circuit:

)()()()()(),,(TSRTSRTSRTSRTSRTSRF

)()()()(),,(CBACBACBACBACBAF

)()()()(),,(ZYXZYXZYXZYXZYXF

ZYXZYXZYXZYXZYXF),,(

)()()()()(),,(TSRTSRTSRTSRTSRTSRF

Free Range Digital Design Foundation Modeling Chapter 6

 - 83 -

13) Write a Boolean equation that describes the following circuit:

14) If a truth table were constructed in order to define the input/output relationship of the circuit
represented by the following schematic diagram, how many rows would the truth table have? Briefly
explain your answer.

Free Range Digital Design Foundation Modeling Chapter 6

 - 84 -

6.5 Design Problems

In addition to solving each of the problems below, state whether the circuit has “no control”, “internal control”,
or “external control”. Model the final circuit using AND gates, OR gates, and inverters.

1) Design a circuit that has three inputs and two outputs. One of the outputs indicates when the 3-bit input
value is less than three; the other output indicates then the input is greater than five. Provide the equations
that describe your circuit in SOP form.

2) Design a circuit that has three inputs and two outputs. One output indicates when the three inputs
(considered a binary number) are even; the other output indicates when the three input bits are odd.

3) Design a circuit whose 3-bit output is two greater than the 3-bit input. The binary count should wrap when
the output value is greater than 1112.

4) Design a digital circuit that controls a switch box according to the following specifications: If either one
(and only one) or two (and only two) of the three input switches are on, the output is on. For this problem,
assume that “on” is represented by a ‘1’.

5) Design a digital circuit according to the following specifications. The circuit output indicates when the 3-
bit binary input is less than or equal to four but not zero. Provide a proper black box diagram, a truth table,
a Boolean equation, and a circuit diagram that model your solution.

6) Design a circuit that translates a 4-bit stoneage unary code to an unsigned binary code.

7) Design a circuit that translates a 4-bit one-hot code to an unsigned binary code. Consider the unsigned
binary number on the output to indicate the bit position of the set bit in the one-hot code, where the right-
most bit in the one-hot code is the “zero” position.

8) Design a digital circuit that controls a switch box according to the following specifications: If either one
(and only one) or two (and only two) of the three input switches are on, the output is on. For this problem,
assume that on is represented by a ‘1’.

9) You’re the owner of a clothing store that has three dressing rooms. Each dressing room has a sensor that
indicates (with a ‘1’) when a dressing room is occupied (a ‘0’ indicates the dressing room is empty).
Provide a block diagram, truth table, and Boolean equations that model the solution to this problem.
Design a circuit that indicates the following:

 When all three dressing rooms are empty
 When only one or only two dressing rooms are occupied
 When two or three dressing rooms are occupied

10) Your four friends are total whack jobs so you’ve decided to design a circuit that will help you decide how
you will spend time with them. Provide a block diagram, truth table, Boolean equation and circuit diagram
that models a solution for this problem. Be sure to state any assumptions you make for this problem.
Design a circuit that specifies when it is safe to go out with your friends according to the following
criteria:

 You’re a total whack job too, so you must go out with at least two friends
 At no time will all four of your friends want to go out together
 Friend A will only go out if Friend B goes out too

Free Range Digital Design Foundation Modeling Chapter 6

 - 85 -

11) Design a circuit that has an output that indicates when the four-bit unsigned binary number on the input is
a prime number. For this problem, an input value of “0000” will never occur (be sure to note this fact
where appropriate). Provide a block diagram, truth table, and a Boolean equation that models a solution
for this problem.

12) Design a circuit with an output that indicates when the 4-bit unsigned binary input is greater than two and
less than twelve (2 < input_val < 12). For this problem, the binary equivalent of 15 will never appear on
the circuit inputs. Provide a block diagram, truth table, and Boolean equation for the final circuit.

13) Design a circuit that has inputs consisting of a single switch and a 3-bit unsigned binary number. If the
switch is off (off = ‘0’), the output indicates when the 3-bit binary input is less than four. If the switch is
off (on = ‘1’), the output indicates when the 3-bit binary input is less than three. The value of “000” will
never appear when the switch is in the off position. Provide a block diagram, truth table, and a Boolean
equation for the final circuit.

14) Design a circuit that has four inputs and one output. The output is used to indicate the following conditions
regarding four people (Person A, B, C, and D) in a room. Provide a block diagram, truth table, and a
Boolean equation that models a solution for this problem.

 When person A is in the room and at least two other people are in the room, and
 When person B is in the room and only one other person is in the room.

Free Range Digital Design Foundation Modeling Chapter 7

 - 86 -

7 Timing Diagram Introduction

7.1 Introduction

The previous chapters provided a foundation of digital design. Half the battle in implementing of any design is
the notion that your design will need modifications in order to ensure the design successfully completes the
task it set out to do. This leaves you with two options, both of which you’ll find yourself taking: 1) make sure
you understand all the parameters before you start the design, and, 2) fully test the design at many stages along
the way and particularly when the design is completed. The main topic of this chapter is to timing diagrams, a
mechanism to facilitate both of these objectives. Timing diagrams are going to help limit the number of
mistakes you make and help you and/or anyone understand your design.

Timing diagrams represent both a design tool and a test tool, which means that you can use timing diagrams to
both specify designs and test designs. Timing diagrams provide a visual representation of what the various
signals in your circuit should be doing (design) or what your circuit is actually doing (test). Whoever who
coined the phrase “a picture is worth a thousand words” was definitely referring to timing diagrams.

Main Chapter Topics

TIMING DIAGRAMS: Digital designers use timing diagrams in order to specify, explain,
and/or model digital circuits. Timing diagrams provide both a design tool as well as a
method to verify the proper operation of circuits. This chapter introduces timing diagrams
and describes their relation to digital circuits.

Chapter Acquired Skills

 Be able to understand the terminology and symbology associated with timing diagrams.

 Be able to use and interpret different timing diagram styles

 Be able to use timing diagram to specify functional relationships in digital circuits

 Be able to analyze timing diagrams to generate Boolean equations describing digital
circuits.

7.2 Timing Diagram Overview

We currently have several methods to model digital circuits including truth tables, circuit diagrams, and written
circuit descriptions. Although these representations are 100% accurate descriptions, they are “timeless” in
nature. This “timelessness” forms somewhat of an artificial representation of a circuit because digital circuits
operate over given periods of time1. As digital circuits become more complex, it becomes harder to imagine
how exactly the circuit operates over a given span of time2.

A digital circuit operates over a given time span. During these time spans, the circuit’s outputs “adapt” to
changes in the circuit inputs. We generally expect the circuit’s inputs to change; when these changes occur, the

1 It takes time for the electrons to move around in the underlying sillycone. Keep in mind that nothing is instantaneous in
actual digital circuits although we typically can model signal changes in circuits as being so.
2 As you’ll find out later, there are two basic types of circuits. The notion of “time” relative to a circuit becomes more
complicated when the circuits outputs are a function of something other than the circuit’s inputs.

Free Range Digital Design Foundation Modeling Chapter 7

 - 87 -

circuit’s outputs must respond such that they continue to match the specifications for a given set of inputs. A
digital circuit’s outputs react dynamically to the circuits inputs.

Timing diagrams detail a digital circuit’s operation over an arbitrary time span. Because of this, timing
diagrams are important in digital design for two main reasons. Firstly, timing diagrams are able to specify
and/or model digital circuit operation3. Secondly, digital designers use timing diagrams to verify that digital
circuits are operating as specified either by using some type of simulator or by examining the waveform output
from the actual circuit. In a written text such as this one, we only deal with the first item. When you’re
designing and implementing circuits, you’ll be living with the second item when you work with simulators.

We typically use special terminology and symbology in timing diagrams; we go over the more important ones
in this chapter. You’ll find out that although there are many ways to represent timing diagrams, the concepts of
timing diagrams and their relation to digital circuits is not overly complicated.

7.2.1 Timing Diagrams: The Gory Details

Figure 7.1 shows five timing diagrams serving as an introduction to the flavor of most timing diagrams you
find out in digital-land. The numbered notes below Figure 7.1 provide an extended description and comments
regarding each of the timing diagrams in Figure 7.1. The horizontal axis is the time axis in each of these timing
diagrams; we only use the term “time” but we don’t include metrics such as “seconds” or “milliseconds”. The
timing diagram shows a “functional” relationship; at any given time, a given signal is either high or low, but
never both at the same time.

1) This timing diagram shows a line that represents the value of digital signal in question. The
signal typically has a name, but we’ve left it out in order to keep this discussion general. Note
that the signal has two values, which is what you would expect from a digital signal. The signal
shows various transitions from high-to-low and low-to-high.

2) This timing diagram explicitly shows the two values of the signals. The vertical axis lists these
two values as ‘H’ and ‘L’, which represent the high and low values of signals, respectively. This
timing diagram also includes horizontal dotted lines, which support the notion that the digital
signal is either high or low4. Timing diagrams often omit these dotted lines; we often include
them in “busy” timing diagrams in order to increase readability.

3) This timing diagram is similar to the timing diagram of (b) but we replace the ‘H’ and ‘L’ with
‘1’ and ‘0’, respectively. This emphasizes the point that the two values of the digital signals are
actually models representing some actual digital hardware. There are many flavors of digital
hardware out there; these flavors can differ in the voltage levels used to drive the hardware. We
opt to ignore voltage concerns by abstracting our digital designs to a higher level such that we
don’t need to deal with voltage levels.

4) This is another common style of modeling digital signals. While the previous timing diagrams
use vertical lines to represent signal transitions, this timing diagram uses slanted lines. The lines
always slant in the direction of advancing time. In reality, the signals in a digital circuit cannot
instantaneously change value, as they seem to do in the previous timing diagrams. In other
words, if you look close enough5, every signal appears slanted.

5) The final timing diagram is nothing new, but we want to do is use this timing diagram to toss
some typical timing diagram lingo at you. At (a) in the timing diagram shows that the given
signal is initially low at the beginning of the timing diagram. At (b), the signal switches from a
low state to a high state, or the signal toggles. At (c), the signal switches from a high state to a

3 More often, digital designers only specify the important parts of the circuit. In this context, “important” could have many
meanings. As we travel deeper into digital design land, these meanings start to surface.
4 This is primarily a mechanism to help the person reading the timing diagram figure out what is going on. This becomes
important in complex designs where you need to list a page full of signals in order to verify your design is working
correctly. After staring at a page full of signals, the “highness” and “lowness” of signals obfuscate due to brain overload.
5 This means if you lower the time scale to smaller and smaller values.

Free Range Digital Design Foundation Modeling Chapter 7

 - 88 -

low state, toggles. Around the time indicated by (d), the signal toggles two times (similar to (b)
and (c)). At (e), the timing diagram ends with the signal in a low state.

(1)

(2)

(3)

(4)

(5)

Figure 7.1: Example timing diagrams.

7.2.2 Timing Diagrams: The Initial Details

We use timing diagrams to model the operation of digital circuits. Figure 7.2 shows an inverter and an
associated timing diagram. The signal names x and F represent the input and output to the inverter,
respectively (the top of Figure 7.2). The upper signal in the timing diagram is labeled x; the timing diagram
shows the x signal as a function of time. The signal activity in x line is arbitrary; the intent of this timing
diagram is to show the changes in the output F as a function of the input x6. Figure 7.2 shows the
complementary relationship between the input and output for the inverter.

Figure 7.2: Example timing diagram for inverter.

Figure 7.3 shows example timing diagrams for AND & OR gates. In Figure 7.3(a), the output is only high
when of both the x and y inputs are high. Likewise, Figure 7.3(b) shows that for an OR gate, the output is only
low when both of the ‘x’ and ‘y’ inputs are low. The timing diagrams in Figure 7.3 completely describe the

6 Keep in mind that timing diagrams show the true functional relationship between the input (the independent variable) and
the output (the dependent variable). For any one given instance of time, the output is necessarily high or low, but never
both.

Free Range Digital Design Foundation Modeling Chapter 7

 - 89 -

operation of AND & OR gates by showing the same information as the truth table but in a different form. Keep
in mind that for both timing diagrams in Figure 7.3, the value of the input variables is arbitrary.

(a) (b)

Figure 7.3: Example timing diagrams for an AND gate (a) and an OR gate (b).

For our final example, let’s generate a timing diagram for the main example problem from the previous
chapters. Figure 7.4 shows the truth table associated with a previous example while Figure 7.5 shows an
example timing diagram. The timing diagram includes the three inputs and one output in the truth table.

Figure 7.5 uses some special notation to indicate that the timing diagram does indeed reflect the characteristics
of the associated truth table. The vertical dotted lines in Figure 7.5 represent particular moments in time. At
each dotted line, the index into the truth table provides an aid in your perusal of the timing diagram. For
example, the (1) label indicates a match between the second row in the truth table where B2=’0’, B1=’0’, and
B0=’1’. Under these input signal conditions, the output is a ‘0’.

index B2 B1 B0 F

(0) 0 0 0 0
(1) 0 0 1 0
(2) 0 1 0 0
(3) 0 1 1 0
(4) 1 0 0 0
(5) 1 0 1 1
(6) 1 1 0 1
(7) 1 1 1 1

Figure 7.4: The truth table for the original design problem.

Free Range Digital Design Foundation Modeling Chapter 7

 - 90 -

Figure 7.5: Timing diagram for main problem specified in this chapter.

Here are a few more comments regarding timing diagram of Figure 7.5.

 The vertical dotted lines in Figure 7.5 do not overlap any input signal transitions. The
“vertical” transitions in the signals indicate a discontinuity7 in the signal.

 The input signals B0, B1, and B2 are arbitrary. In this particular timing diagram, one of the
eight possible input combinations is missing from the timing diagram. Therefore, the timing
diagram in Figure 7.5 does not completely describe a function as it would if it had output for
every possible combination of inputs.

7.3 Timing Diagrams: Bundle Notation

Every digital designer knows that the underlying goal is to transform things from one form, to an equivalent
but simpler form. This is particularly true with timing diagrams because they tend to become unwieldy and
thus unreadable. One way to control this added complication is to exploit the common purpose of some signals
by placing them into a group. The resulting grouping of signals makes designs easier to understand; the
associated timing diagram is also easier to analyze.

In digital design, the term “bus” sometimes refers to a group of signals, but the term bus has multiple
definitions8. The more appropriate term for what we’re describing here is a “bundle”. You need to get used to
the terms “bundle notation” and “bus notation” as digital design uses these terms quite often.

7.3.1 Bundle Notation in Schematic Diagrams

We can simplify block diagrams by “bundling” signals; using slash notation” allows us to do this quite easily;
Figure 7.6 shows a few examples. We use a forward slash indicates a bundled signal and a number to indicate
the number of signals in the bundle. Figure 7.6(a) shows the original diagram while the other components of
Figure 7.6 show some examples.

 Figure 7.6(a) shows the original block diagram indicating a black box with three inputs and one
output. The inputs may be related and can thus be bundled. In each of the subsequent bundles,
some information is lost (the names of the individual signals) in an effort to simplify the
diagram less busy.

7 It’s one of those calculus terms. Please refer to your bulky math book for clarification.
8 The term “bus” often refers to a “protocol”, which is essentially a pre-defined set of rules that describe a mechanism that
digital entities can use to communicate with each other. Additionally, you often see the terms bus and protocol used
interchangeably.

Free Range Digital Design Foundation Modeling Chapter 7

 - 91 -

 Figure 7.6(b) shows one approach to bundling. This diagram attempts to preserve the names of
the underlying signals from Figure 7.6(a). The slash on the “B_210” line indicates that the
B_210 signal is now a bundle and that it contains three signals as the tiny “3” near the slash
mark indicates.

 Figure 7.6(c) shows an approach that attempts to save even less information than Figure 7.6(b)
by using “B” instead of “B_210”. Once again, the diagram presents less information, but there is
less clutter in the resulting circuit model.

 Figure 7.6(d) shows yet another approach to bundling; in this case, the signal name also
indicates how many signals are associated with the bundle. You see this sometimes, but it is not
clear what the “_3” is attempting to indicate. As a result, it is questionable how much the “_3”
helps.

(a) (b)

(c) (d)
Figure 7.6: Various diagrams showing schematic-based bundling using slash notation.

The general idea is to use bundling to make diagrams more readable. However, you need to be careful, as
tossing every signal into a bundle does not always make sense. Figure 7.7 shows an example where bundling
does not make sense. The diagram in Figure 7.7(a) shows a one-bit adder circuit9 while Figure 7.7(b) shows an
attempt to bundle both the inputs and outputs on the device model. The result is a cleaner looking diagram,
but… this is a total failure.

The problem with bundling the signal in Figure 7.7(b) is that both the input and output signals is distinct; thus
placing them into a bundle has made the diagram more confusing. We know this circuit is a 1-bit adder, but
from the Figure 7.7(b) it appears to be some flavor of two bits. The idea behind bundling is to make the
resulting diagrams more readable to humans; the example in Figure 7.7 has failed in this mission. Always
make sure whatever you’re doing makes things easier to read and understand; “looking better” does not
necessarily support “being better” is all about making things more understandable.

(a) (b)

Figure 7.7: A1-bit adder BBD (a), and a bad attempt to simplify (a) by using bundle notation (b).

9 This circuit adds two one-bit values and outputs a sum and a carry-out.

Free Range Digital Design Foundation Modeling Chapter 7

 - 92 -

7.3.2 Bundle Notation in Timing Diagrams

There are many ways to model bundles in timing diagrams; this section shows a few of them. Figure 7.8(a)
shows that same tired block diagram we’ve been using for way too long now. What we’re interested in is a
timing diagram associated with Figure 7.8(b). The block diagram in Figure 7.8(b) represents an equivalent
version of Figure 7.8(a), which we simplify using bundle notation; the bundled signal in Figure 7.8(b) replaces
the three signals in Figure 7.8(a).

The signal B in Figure 7.8(b) represents the three signals B2, B1, and B0 from Figure 7.8(a). Since the names
are now different, you’ve lost the notion that there may be an ordering associated with the signals in Figure
7.8(a). If this is the case, you need to state this somewhere in the timing diagram.

(a) (b)

Figure 7.8: Example block diagrams for use by Figure 7.9.

Figure 7.9 shows two different but equivalent timing diagrams. The timing diagram in Figure 7.9(a) lists the
individual signals while the timing diagram in Figure 7.9(b) uses two forms of bundle notation. There are a few
things of interest to note here; these notes follow the diagram.

Free Range Digital Design Foundation Modeling Chapter 7

 - 93 -

(a)

(b)

Figure 7.9: Equivalent timing diagrams showing individual signals (a) and timing-diagram-based
bundle notation (b).

 In Figure 7.9(b), two parallel horizontal lines indicate that the signal is a bundle. The “X’s” in
these lines indicate that at least one of the subsequent signals in the bundle has change from
either a low to a high or a high to a low.

 In Figure 7.9(b), numbers indicate the value of the signals in the bundle. You’ll see many
different ways of representing these numbers; we opt to use a C programming language-type
notation used to represent hexadecimal numbers to indicate the individual signals in the bundle.
Specifically, the “0x” prefix on a number indicates that you should interpret the number as a
hexadecimal number.

 There are only three signals associated with the bundle while hex notation can specify four bits
per hex number. We assume the missing signal(s) is always the most significant bit or bits; we
also assume these missing bits are zero.

Free Range Digital Design Foundation Modeling Chapter 7

 - 94 -

 The diagram should explicitly state that in the hex number n Figure 7.9(b), the most significant
bit represented is B2 while the least significant bit is B0. If you did not state this, the reader may
make an incorrect assumption regarding your timing diagram.

 Figure 7.9(b) show the B’ and B” signals. These are equivalent signals but we use two different
styles to represent their values. Often times the timing diagram drops the “parallel bar” notation
when all the signals in the bundle are all high (all 1’s) or all low (all 0’s). Ether approach is fine;
the timing diagram in B” is clearer and more consistent (one man’s opinion).

Another common seen notation is associated with the expansion of bundles. Figure 7.10(a) shows a block
diagram that includes a bundle while Figure 7.10(b) shows an associated timing diagram .The timing diagram
in Figure 7.10(b) includes a “bundle expansion” of the B signal. The diagram indirectly states that bundle B
comprises of three signals (B(2), B(1), and B(0), with B(2) being the MSB and B(0) being the LSB10.
Simulators typically use this notation.

(a)

(b)

Figure 7.10: Bundle expansion showing parenthetical indexing on the expanded bundle.

10 This notation assumes that the signal with the highest index is the most significant bit. This notation is quite common and
diagrams rarely state that B(2) is the MSB. If you’re not using this approach in your timing diagrams, you need to clearly
state the approach you’re using in order that you don’t confuse the crap out of someone.

Free Range Digital Design Foundation Modeling Chapter 7

 - 95 -

Example 7.1: Timing Diagram Based on Circuit

Use the following circuit to complete the accompanying timing diagram.

Solution: There are many ways to approach this problem; the approach we take here is definitely the long way.
This solution shows you all aspects of the problem and is not necessarily the best way to solve the problem.
When you gain more experience in digital design, you’ll see other ways to solve the problem.

Step 1) Write out the Boolean equation implemented by the circuit in a form we recognize. While we’re at it,
we may as well expand the equation into standard SOP form, which helps us complete the truth table. We do
this by multiplying each product term by something that ensures each product term includes one instance of the
each independent variable. Multiplying a term by a variable ORed with its complement does not change the
product term because we are multiplying the term by ‘1’ (a Boolean algebra theorem). Figure 7.11 shows the
result of this step.

CBABCACBACBAF

BBCACCBAF

CABAF

)()(

Figure 7.11: Expanding the original equation.

Step 2) Generate a truth table and fill in a ‘1’ for the output associated with each of the product terms. We
include the index values here as it may help us out later. One important point in this problem is that the
problem never stated which of in the inputs the most significant bit. In this problem, not stating this
information does not change the answer. However, since we decided to list the problem using a numeric index,
we must state that input A is the MSB while input C is the LSB. Figure 7.12 shows the result of this step.

Free Range Digital Design Foundation Modeling Chapter 7

 - 96 -

index A B C F

(0) 0 0 0 0
(1) 0 0 1 1
(2) 0 1 0 0
(3) 0 1 1 1
(4) 1 0 0 1
(5) 1 0 1 1
(6) 1 1 0 0
(7) 1 1 1 0

Figure 7.12: Completing the associated truth table.

Step 3) Figure 7.13 shows that you can use the state of the inputs signals to generate numeric indexes on the
original timing diagram. The timing diagram includes vertical dotted lines for every notable span of time on
the timing diagram.

Figure 7.13: Entering the truth table inputs to a timing diagram.

Step 4) Use the numbers you entered on the timing diagram to index into the truth table you generated for this
problem. The outputs associated with each row of the truth table are graphically entered into the timing
diagram with a 1’s and 0’s representing the high and low portions of the signal, respectively. Figure 7.14
shows the timing diagram representing the final solution for this example.

Figure 7.14: The completed timing diagram for Example 4.8.

Free Range Digital Design Foundation Modeling Chapter 7

 - 97 -

Example 7.2: Timing Diagram Modeling a Circuit

If possible, use the timing diagram listed below to generate a Boolean equation that describes
the function modeled by the timing diagram. For this problem, consider A, B, and C to be
inputs; F is an output.

Solution: Once again, there are many ways to do this problem. For this problem, the timing diagram seemingly
models a circuit with three inputs and one output. The first issue we need to deal with is whether this timing
diagram describes a function. For the timing diagram to describe a function, the timing diagram must possess
two characteristics. First, the timing diagram must represent all possible combinations of the three inputs.
Second, for each of those individual combinations, the output must be consistent throughout the timing
diagram in order for the timing diagram to model a function in the true mathematical sense of the word.

Step 1) Find and mark all the input combinations represented in the given timing diagram. Figure 7.15 shows
the result of this step.

Figure 7.15: Inserting useful annotations into the timing diagram.

Step 2) Because both of the conditions listed in the previous step exist, the given timing diagram does indeed
represent a function. From this point, we can transfer the information from the timing diagram to a truth table.
Once again, a “high” signal in the timing diagrams translates to a ‘1’ in the resulting truth table. Figure 7.16
shows the result of this step.

Free Range Digital Design Foundation Modeling Chapter 7

 - 98 -

index A B C F

(0) 0 0 0 1
(1) 0 0 1 1
(2) 0 1 0 0
(3) 0 1 1 0
(4) 1 0 0 0
(5) 1 0 1 0
(6) 1 1 0 0
(7) 1 1 1 1

Figure 7.16: Completing a truth table for the problem.

Step 3) From the previous truth table, we can generate the following Boolean equations. Figure 7.17 shows the
equation that solves this problem.

𝐹 𝐴 𝐵 𝐶 𝐴 𝐵 𝐶 𝐴𝐵𝐶

Figure 7.17: The final equation for Example 7.2.

Post Problem Commentary: This problem could be categorized as an “analysis” problem, or maybe even better
as a “timing analysis” problem. We “analyzed” the original timing diagram in order to arrive at our solution. In
addition, if we could also draw the circuit associated with the final equation.

Example 7.3: Timing Diagram with Bundle Notation

Using the following timing diagram, expand the listed bundle into individual signal. For this
problem, assume that signal labeled B represented a bundle with three individual signals. Use
parenthetical indexing for the signal members of B.

Solution: For this problem, we need to expand the bundle notation and list the individual signals of the bundle
in the timing diagram. We use parenthetical notation as specified by the problem, which dictates that B(2) is
the MSB of the signal “B” and B(0) is the LSB of “B”. Figure 7.18 shows the final solution. Are you ready for
the final solution11?

11 It’s a reference to an Elvis Costello song; no need to panic.

Free Range Digital Design Foundation Modeling Chapter 7

 - 99 -

Figure 7.18: The final solution for Example 7.3.

7.4 Timing Diagram Annotations

Including notes on timing diagram is something you should always do. Digital designers refer to this practice
as “annotating” their timing diagrams. Nothing looks crappier than a page filled with timing diagrams that
include no notes helping the reader extract pertinent information from the timing diagram. The unstated rule
for all timing diagrams is that they should include notes to describe what is important in that specific timing
diagram in order to draw the reader’s eye to those items. Stated differently, either timing diagrams are trying to
show you something, or you use them to show something to other people. There is no correct way to annotate a
timing diagram, but the following list provides some reasonably intelligent guidelines.

 The overall purpose of any diagram, including timing diagrams, is to quickly present
information. Providing annotations facilitates the understanding of the underlying circuit. If
your annotations make the timing diagram clearer, you’ve served your purpose.

 Make sure you draw the reader’s eye to the important part of the timing diagram; you can easily
do this with your annotations.

 Don’t try to express too many ideas in one timing diagram. A better approach is to make
multiple timing diagrams, each with its own succinct point.

 Only include the signals and information in timing diagrams that help you get your point across;
you should strive to omit unused or unimportant signals in timing diagrams.

 The time-span for timing diagram should only include information that helps you solidify your
point. The act of including too large of a time-slice diverts the focus away from what you’re
trying to show.

 All timing diagrams (and all diagrams, for that matter) should include a title that quickly
describes what the timing diagram is trying to show.

We tout timing diagrams as being incredibly useful, but that usefulness has two constraints. First, timing
diagrams are only useful if you understand what you’re looking at. Second, the only way you can understand
what you’re looking at is by having a working knowledge of the underlying circuit. If you don’t meet these two
constraints, timing diagrams look like a bunch of random squiggles.

When you’re looking at a timing diagram, chances are good that it came from one of three sources. Here are
those sources with some brief explanation.

Logic Analyzers: A logic analyzer is a device that shows the output of a circuit over a course of
time. The key here is that the circuit is implemented and you’re testing an actual device. Logic
analyzers output plain timing diagrams associated with the signals they are monitoring. What
you get in the end is a plain timing diagram. While the timing diagram is great in itself, you

Free Range Digital Design Foundation Modeling Chapter 7

 - 100 -

must have an idea of what you’re looking at and understand the circuit that generated the timing
diagram for make the timing diagram useful.

Simulators: Simulators typically outputs timing diagrams. Simulators generate their timing
diagrams based on a model of your circuit, which means you don’t necessarily need to
implement your circuit before simulating your circuit. Additionally, while a logic analyzer
output can only display signals in the timing diagram that you’ve physically connected a test
lead to, the simulator can generally provide an output of any signal in the circuit. Once again,
the timing diagram is great only if you have an idea of what you’re look at and understand the
underlying circuit.

Humans: Yes, humans can generate timing diagrams too. The problem here is that they are
timing consuming to generate, particularly if you plan to make them legible12. Yes, humans
have their issues, but unlike simulators or logic analyzers, humans have the ability to make their
timing diagrams more understandable. Humans increase the understandability and usefulness of
their timing diagrams by annotating them, logic analyzers and simulators don’t have this ability.

There is a common problem with courses that require the generation of timing diagrams. People tend to use a
tool to generate the timing diagram as requested by the assignment, and then simply submit that timing
diagram with the assignment deliverables. In this case, there is no evidence that people know what they
submitted. The solution is to fully annotate any timing diagram you submit; the assignment is meaningless
otherwise.

7.4.1 Timing Diagram Usage

No matter what you find yourself doing in digital design, you’ll be working with timing diagrams. Digital
design uses timing diagrams for three main purposes:

Design Description: If someone wants you to implement a circuit, they may provide you with a
timing diagram that models the desired operation of a circuit. There are other ways to model
circuits, but in some instances, the timing diagram provides the best model13. In this case, the
timing diagram specifies how the circuit should operate.

Design Verification: Once the circuit has been modeled and/or implemented, we can simulate it
or connect it to the logic analyzer. We use the timing diagram output from these devices to
determine if the design is working as we expect it to. The simulator tells you if your design has
a good chance of working if you were to implement it, while the logic analyzer tells you if
design is working after you implement the circuit.

Design Documentation: Once you establish that the circuit actually works, you should use a
timing diagram to document the circuit’s operation. It’s not enough to print out the timing
diagram; you must also provide annotations on the timing diagram to make it meaningful14.
Additionally, if you’re submitting the timing diagram as part of a report, it requires annotations
to make it meaningful.

7.4.2 Understanding Timing Diagrams

Timing diagrams present a ton of information regarding the operation of your circuit. The key to quickly
understanding timing diagrams is to annotate them. This generally means annotation by hand, even if a
simulator or logic analyzer generated that timing diagram. You created the timing diagram for a reason; you
won’t obtain your objective if the person reading your timing diagram does not understand what they’re
looking at, which is a potential issue if that person is your instructor or supervisor.

12 I admit it…this text is lacking in timing diagrams because they take so long to generate.
13 Recall that good models transfer the most information at the fastest rate.
14 It does not matter if you’re the expert on it at the moment; six months from now you’ll have no idea how the circuit
works.

Free Range Digital Design Foundation Modeling Chapter 7

 - 101 -

Even the simplest timing diagram presents a lot of information very quickly. Your mission as the timing
diagram annotator is two-fold: 1) to draw the reader’s eyes to the portion of the timing diagram that contains
the information you feel is important, and, 2) to tell the reader what it is you’re trying to show (what they’re
looking at).

Students always ask me how to annotate timing diagrams. The truth is, I don’t really know; I’m actually
hoping my students give me some ideas, or at least some ideas that are better than the ideas that I currently use.
The key here is to add annotations that make the timing diagram clean. I don’t feel there is only one way to
make timing diagrams clear, and I don’t feel that the approaches I use are the best ways. However, for lack of
any better direction, I present them here.

Generally speaking, timing diagrams are attempting to show you something. You’ll initially spend most of
your time designing your annotations to show one of the following three items:

1) Temporality of Events: This is a fancy way of stating the time required for “something”, which
is generally bounded on both ends. Examples include the duration of a pulse or the duration of a
propagation delay.

2) Causality of Events: Events in timing diagrams typically are value changes for a given signal
or set of signals. The annotations the condition(s) that caused that particular event.

3) Correctness of Operations: Digital circuits typically perform logic and mathematical
operations. In this case, we want to show that a given operation is correct. This is slightly
different from causality of an event in that we show the circuit performed the operation as it
should have.

Figure 7.19 shows an example of a timing diagram that indicates the temporality of events. These
annotations show various time durations associated with events such as the rising and falling edges of
signals. Add whatever notes you feel necessary to tell the reader the significance of events in the timing
diagram.

Figure 7.19: Examples of annotations showing the temporality of events.

Figure 7.20 shows an example timing diagram annotating the causality of events. This diagram is from an
up/down counter (a circuit that counts up or down); the diagram is showing the required control signals to
either allow an up or down count. The event of interest is always what the arrow is pointing at; the other
annotations are the conditions that allowed the event to occur. Here are a few notes to support the circled
values in the diagram.

1) The event of interest is what the arrow is pointing at. The conditions causing this event are the
rising edge of the CLK signal (because the arrow emanates from that edge) and the fact that the
UP signal is low (because we put a heavy dot there). Note the CNT value decrements.

2) The conditions causing this event are the rising edge of the CLK signal (because the arrow
emanates from that edge) and the fact that the UP signal is high (because we put a heavy dot
there). Note the CNT value increments.

Free Range Digital Design Foundation Modeling Chapter 7

 - 102 -

Figure 7.20: Examples of annotations showing the causality of events.

Figure 7.21 shows annotation indicating correctness of operations. This timing diagram is from some type of
adder circuit, which adds the values of A & B. The timing diagram shows the two values being added and the
resulting sum. The timing diagram shows that the values being added generate the correct results. Here are a
few other things of interest to note about the timing diagram.

 The diagram uses two different types of annotating styles. The first style uses arrows that point
to two versions of the equation. The second form uses fewer arrows and equations. You could
argue that the first version is better because it has more information, but it also introduces more
clutter to the timing diagram.

 We did not bother to annotate every line in the diagram. We stopped at some point for a reason
such as to save time as we felt the given annotations did the job for us.

 This timing diagram could have also shown the causality of events, but we opted to omit that
style of annotation.

These styles of annotations are guidelines; they’re not carved in stone. If you feel you have a better approach
to annotating, then you should do it. Remember that you’re trying to transfer information; you know you’ve
done a good job if your annotations quickly and easily transfer that information to the reader of the timing
diagram.

Figure 7.21: Inserting useful annotations into the timing diagram.

Free Range Digital Design Foundation Modeling Chapter 7

 - 103 -

7.5 Chapter Summary

 Timing Diagrams: One common and useful approach to modeling digital circuits is with a timing diagram.
Timing diagrams show the state of signals over a given span of time. Timing diagrams explicitly show the
functional relationship of digital circuits in that for every unique set of inputs, there is only one unique set
of outputs. Timing diagrams use a signal’s value (most often either ‘1’ or ‘0’) as the independent variable
(the vertical axis) and time as the dependent variable (the horizontal axis). Complete timing diagrams can
completely specify a digital circuit’s correct operation.

 Timing Diagrams for Design: We often use timing diagrams to define problems. For example, you may
see problems stated such as “design a circuit that has an input/output relationship modeled by the
following timing diagram. In this way, the timing diagram is part of the circuit specification.

 Timing Diagrams in Analysis: We often use timing diagrams for analysis. There are two aspects to timing
diagrams used in analysis. First, the timing diagram may be the output of a “digital circuit simulator”. In
this way, you’re testing the expected output of a circuit that you have not necessarily implemented.
Secondly, many test devices typically output timing diagrams. The Logic Analyzer is a standard test
device that essentially generates timing diagrams which results from testing an actual implemented circuit.
Either way, the thing you’re trying to figure out is whether your circuit may do (simulation) or actually
does (implementation) the right thing.

 Bundle Notation: This notation consists of associating single signals with a common purpose into one
signal that has multiple sub-signals. Digital design commonly uses this notation designs in order to
simplify the design and/or analysis process. Bundle notation is seen often in both schematics and timing
diagrams. Bundle notation in schematics uses slash notation (a forward slash with a number indicating the
number of signals in the bundle) while bundle notation in timing diagrams uses double bars with some
type of indication of the value of the included signals.

 Timing diagrams generally have three main purposes:

1) Design Description

2) Design Verification

3) Design Documentation

 We generally use timing diagrams to show three types of information

1) Temporality of Events

2) Causality of Events

3) Correctness of Operations

Free Range Digital Design Foundation Modeling Chapter 7

 - 104 -

7.6 Chapter Exercises

1) Using the following Boolean equation to complete the accompanying timing diagram.

CBACBABCF

2) Using the following Boolean equation to complete the accompanying timing diagram.

TRRSTSRSTRF

Free Range Digital Design Foundation Modeling Chapter 7

 - 105 -

3) Does the timing diagram listed below completely define a function? Why or why not? If it does, write both
SOP and POS equations that describes the function and provide a circuit diagram in both SOP and POS
form that you could use to implement the circuit.

4) The following timing diagram may completely model a function.

 If the timing diagram defines a function, draw a circuit diagram for the function in reduced form.

 If the timing diagram does not define a function, explicitly describe why it does not.

5) Consider the previous problem… can you safely state which of the inputs variables is the MSB or LSB?
Be sure to provide a complete explanation.

6) Does the timing diagram listed below completely define a function? Why or why not? If it does, write both
SOP and POS equations that describes the function and provide a circuit diagram in both SOP and POS
form that you could use to implement the circuit.

Free Range Digital Design Foundation Modeling Chapter 7

 - 106 -

7) Consider the previous problem… how does the ordering of the labels of A, B, and C change the outcome
of the problem? Be sure to provide a complete explanation.

8) Does the timing diagram listed below completely define a function? Why or why not? If it does, write both
SOP and POS equations that describes the function and provide a circuit diagram in both SOP and POS
form that you could use to implement the circuit.

9) If the following timing diagram completely specifies a function, write a Boolean expression for that
function.

10) If the following timing diagram completely specifies a function, write a Boolean expression for that
function.

11) Does the following signal completely specify a Boolean function? Briefly explain why or why not.

Free Range Digital Design Foundation Modeling Chapter 7

 - 107 -

12) Complete the following timing diagram for the F output based on the given circuit.

13) For this problem, consider the input variables to be A, B, and C and the outputs to be F1 and F2. The
timing diagram below completely described functions F1 and F2. Write a Boolean expressions that
describe F1 and F2

14) For this problem, consider the input variables to be A, B, and C and the outputs to be F1 and F2. The
timing diagram below completely described functions F1 and F2. Write a Boolean expression that describe
F1 and F2.

Free Range Digital Design Foundation Modeling Chapter 7

 - 108 -

15) For this problem, consider the input variables to be A, B, and C and the outputs to be F1 and F2. The
timing diagram below completely described functions F1 and F2. Write a Boolean expressions that
describe F1 and F2.

16) The following timing diagram may completely model a function.

 If the timing diagram defines a function, draw a circuit diagram for the function in reduced form.

 If the timing diagram does not define a function, explicitly describe why it does not.

17) For those aspiring digital designers on drugs, state whether the timing diagram listed below completely
defines a function. Why or why not? Does anyone really freaking care?

Free Range Digital Design Foundation Modeling Chapter 7

 - 109 -

7.7 Design Problems

1) Design a circuit whose output represents a square of the input. For this problem, describe your design
using SOP or POS equations. In addition, show the output of your circuit in the timing diagram below.

2) Design a digital circuit that will be used by the head of a typical committee in academia. The input labeled
“A-HOLE” is the head of the committee; the other two committee members are labeled “KISS_ASS1” and
“KISS_ASS2”. Being a typical head of a committee, the chair of the committee has commissioned you to
build this circuit in order to better serve him. The committee has a set of switches that they use for “secret”
voting. Your mission is to modify the circuit inputs such that there is always a majority in any way the
head of the committee votes. Provide a truth table and equations for your circuit; also, complete the
following timing diagram in order to prove that you may know what you’re doing.

Free Range Digital Design Foundation Modeling Chapter 8

 - 110 -

8 Ripple Carry Adders

8.1 Introduction

There are three different approaches to performing digital design; up until now, we’ve only worked with one of
these approaches: BFD, or iterative design. In an effort to increase our efficiency as digital designers, we need
other design approaches. This chapter introduces our second design approach: IMD, or “iterative modular
design”. This approach is somewhat limited also, but it’s useful in some situations. Probably the best part about
IMD is that it provides a great vehicle for presenting our first digital design foundation module: the ripple carry
adder (RCA).

Main Chapter Topics

ITERATIVE MODULAR DESIGN (IMD): This chapter introduces the notion of iterative
modular design in the context of a standard digital circuit.

HALF ADDERS: One type of circuit that performs one-bit addition

FULL ADDERS: Another type of circuit that performs one-bit addition

RIPPLE CARRY ADDERS: A standard digital circuit that adds two digital values of
arbitrary length.

Chapter Acquired Skills

 Be able to design a Half Adder (HA) and produce a gate-level model of it

 Be able to design a Full Adder (FA) and produce a gate-level model of it

 Be able to describe the differences between BFD and IMD

 Be able to design a Ripple Carry Adder (RCA) using the iterative modular design
approach

 Be able to design specialty circuits using RCAs

8.2 Iterative Modular Design Overview

The main push behind IMD is the notion that we want to move away from the limits inherent to BFD, meaning
primarily truth tables and their associated Boolean equations. IMD is the first step in decoupling the digital
designer from generating Boolean equations as part of designing digital circuits.

There are two separate aspects to IMD as the name implies. The first aspect is the “modular” part of IMD; this
means we use previously designed modules as part of the design. In this context, a module is a black box
model of something that was previously modeled. The second aspect of IMD is the “iterative” part, which
means that we do some aspect of a design repeatedly. In IMD, the thing that is going to be iterated is the
modular part of IMD, or the modules. IMD involves using pre-designed modules in an iterative manner in
order to create circuits that do not require Boolean equations to model. Lastly, IMD introduces hierarchical
digital design.

Free Range Digital Design Foundation Modeling Chapter 8

 - 111 -

8.3 The Half Adder (HA)

The HA is one of the most basic digital circuits and is the first mathematical circuit we develop in digital
design. We know the HA as a “1-bit adder”, which means it adds two 1-bit values and outputs their sum and a
carry out.

Example 8.1: The Half Adder

Design a circuit that adds two bits. The output of this circuit should show both the
sum of the added bits and whether the addition operation has generated a carry-
out. We refer to this circuit as a half adder, and it is one of the most basic circuits
in digital design and the digital design world refers to it as a Half Adder, or HA.
Also, state what controls the circuit.

Solution: Performing mathematical operations in decimal and binary follows the same rules; the only
difference is that the binary number system only contains two symbols: ‘0’ and ‘1’.

If you add two, single-digit, decimal numbers, your result are either a single digit number (less than ten) or a
two-digit number (greater than nine). We represent the results of this addition that are greater than or equal to
the radix with two digits while we represent the results that are less than the radix with a single digit. In the
case of the two-digit result, one digit represents the result of the addition while the other digit represents the
value that “carried-out” from the single-digit addition. The same is true for binary addition. Table 8.1 shows
the four possible results for binary addition of single bit as well as the SUM and Carry-out results.

One item of particular interest in Table 8.1 is the fact that adding ‘1’ to ‘1’ results in a sum of ‘0’ with a carry-
out of ‘1’. If you consider the Carry-out to be the MSB and the sum to be the LSB, the total result is “10”
which is the binary equivalent of 2 (two) in decimal1.

Operation SUM Carry-out (CO)

0 + 0 0 0

0 + 1 1 0

1 + 0 1 0

1 + 1 0 1

Table 8.1: All possible single-bit addition operations with sum and carry results.

Step 1) Define the Problem: The first step is to draw a high-level BBD of the circuit. From the problem
statement, this circuit contains two inputs and two outputs. Figure 8.1 shows the two inputs (arbitrarily named
OP_A and OB_B)2 and two outputs: SUM and CO. Table 8.2 and Table 8.3 show the empty truth the
completed truth table for this design, respectively. The circuit has two inputs, which means it there are four
(22) rows in the truth table.

1 OK, I saw a student with the following words written on his t-shirt “There are 10 types of people in the world, those who
understand binary and those who do not”. Even my TA has the shirt. If this saying is copywritten, then feel free to sue me.
2 You could choose any signal names for the inputs and outputs, but you should assign self-commenting names. In other
words, OP_A (operand A) is arguably a better label than FINGER_NAIL although both labels are equally valid.

Free Range Digital Design Foundation Modeling Chapter 8

 - 112 -

Figure 8.1: The black-box diagram for this problem.

OP_A OP_B SUM CO

0 0

0 1

1 0

1 1

OP_A OP_B SUM CO

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Table 8.2: The empty truth table. Table 8.3: The completed truth table.

Step 2) Describe the Solution: For this problem, you’ll need to generate two Boolean expressions: one for the
SUM and the other for the CO. We write the final equations by logically summing the product terms
associated with rows in which 1’s appear.

BOPAOPBOPAOPSUM ____
BOPAOPCO __

Equation 8-1: The final equations for Example 8.1.

Step 3) Implement the Solution: The final step is to translate the Boolean expressions of Equation 8-1 into
circuit form. Figure 8.2 shows the final gate-level implementation. This circuit has not control features.

Figure 8.2: The circuit model for the solution.

8.4 The Full Adder (FA)

While adding single bits is interesting, we want to be able to add values larger than one bit. While the HA
outputs both a sum and carry, the HA circuit can’t do anything meaningful with the carry. HAs can never
generate a result greater than one bit (or two bits if you include the carry as part of the sum). The solution is to
redesign the HA so that it provides a provision for the carry from one HA as in input to another HA. The
circuit that handles this is the full adder.

Free Range Digital Design Foundation Modeling Chapter 8

 - 113 -

Example 8.2: The Full Adder (FA)

Design a circuit that adds three bits: two bits are associated with a standard addition operation
while the third bit is a “carry-in” bit. In other words, this circuit completes the following
operation: (a + b + ci) where a & b are the standard additive operands and ci represents the
carry-in bit. The outputs of the circuit are identical to the half adder: SUM and Carry-out.
Also, state what controls the circuit.

Solution: This design is similar to the half adder (HA), but the difference is that the FA contains an extra input,
the carry-in bit. While the HA added two single bits to each other, the FA adds three single bits together. We
know both the HA and FA as 1-bit adders. Figure 8.3 shows the BBD for the full adder.

Figure 8.3: Black box diagram of the full adder.

The next step in the design is to specify the input/output relationship of the design, which means we must
specify the outputs we want for a given set of inputs. This is the BFD design approach, so we start with a truth
table that lists every combination of the input variables. Figure 8.4 shows the result of this step.

a b ci s co
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

a b ci s co
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

(a) (b)

Figure 8.4: The truth tables associated with the FA design specifications.

The next step is to translate the information in the output columns of the truth table of Figure 8.4(b) into
equation form. Equation 8.2 shows the final equations for the two output variables. From these output
equations, you could easily draw the final circuit model. Finally, this circuit has no control features.

cibacibacibacibas cibacibacibacibaco

Equation 8.2: Boolean equations describing sum and carry-out outputs of the FA.

Free Range Digital Design Foundation Modeling Chapter 8

 - 114 -

8.5 Ripple Carry Adders (RCA)

People get PhDs or get the big bucks for designing new circuits that perform some calculations “better” than
other digital circuits. This is important because computers generally spend a significant portion of time
performing mathematical operations. If you can perform math operations more efficiently or with a smaller
circuit, you’ve saved time (so you can do more operations), and/or you’ve saved space (so you can include
other circuitry to do more stuff), and you’ve probably saved power (so you can play games on your phone
longer before the battery dies).

This section examines one type of mathematical circuit: the ripple carry adder (RCA). The RCA is versatile in
that we can also easily configure it do subtraction (a topic for another chapter). The RCA is also a great vehicle
to introduce iterative modular design (IMD).

The RCA is our first Digital Design Foundation module. The RCA is an “n-bit adder”, which is a circuit that
adds two n-bit numbers and provides an n-bit result and a carry-out. We construct the RCA in an iterative
manner using a series 1-bit adders.

Example 8-3: The Ripple Carry Adder

Design a 4-bit Ripple Carry Adder (RCA). Represent each bit of this RCA using either a HA
or FA. Also, state what controls the circuit.

Solution: First, we must specify the inputs and outputs of this design using a black box diagram (BBD). The
inputs include two 4-bit values; the output includes a 4-bit result and a 1-bit “carry” output. We refer to the
carry output as the “carry-out”, or “co”. Figure 8.5 shows a black box diagram for this example.

Figure 8.5: Top-level BBD for the ripple carry adder.

If we had used BFD, we would start with a truth table. The problem with BFD is that circuit has eight inputs;
the associated truth table would require 28, or 256 rows3. We instead solve this problem using IMD, which
leverages the fact that we already designed two different one-bit adders (the HA and the FA). This problem
requires that we design a 4-bit adder, so we assemble the 1-bit adders in such a way as to create a 4-bit adder.
Figure 8.6 shows the final solution for this problem.

Figure 8.6: Lower-level BBD for a 4-bit Ripple Carry Adder.

3 While this would be possible, such work is more suited to an academic administrator rather than a digital designer.

Free Range Digital Design Foundation Modeling Chapter 8

 - 115 -

The circuit in Figure 8.6 has four specially connected 1-bit adders. To ensure the correct answer on the
circuit’s outputs, each 1-bit adder must generate the “correct” values for both the sum and carry-out. While the
a and b inputs are understood to be immediately available, the carry-outs are dependent upon the carry-ins
from the previous bit locations moving from right to left (except for the HA). For example, generating the
correct second-from-right sum bit is dependent upon the carry-out from the HA. We refer to this circuit as a
ripple carry adder is because the carry must “ripple” from the lower-order adders to the higher-order adders
(right-to-left in Figure 8.6). Here are some other useful things to note about this circuit.

 Figure 8.6 uses weightings associated with each bit location as the given numbering implies.
Higher the number “indexes”, have higher weightings. We refer to the “s3” output bit as the
most significant bit (MSB) of the sum while we refer to the s0 output as the least significant bit
(LSB) of the sum. This RCA uses the weightings associated with binary numbers for the
individual bit locations.

 We completed this design without using truth tables or Boolean equations. We completed this
design on a higher level than previous designs, which means the design uses only previously
designed modules (HAs & FAs). The design is modular in that we use previously designed
modules; the design is iterative in that we place the modules in a repetitive manner. We’ve thus
abstract the RCA design to a higher level.

 The notion of the “carry out” (cout) in serves as the “fifth bit” and MSB for the addition. In
essence, though we added two 4-bit unsigned numbers, we obtained a 5-bit result.

 We refer to the RCA as an “n-bit adder” because if we wanted an 8-bit adder, we simply add
four more FAs to the 4-bit RCA design. The act of “adding four more FAs” to the design is
simple, but powerful.

None of the modules in the RCA has control inputs, so this device uses no control.

Free Range Digital Design Foundation Modeling Chapter 8

 - 116 -

Example 8-4: Timing Diagram for an 8-bit RCA

Use the block diagram of the 4-bit RCA below to complete the accompanying timing diagram. For
this problem, assume the Cin input is always ‘0’.

Solution: Convince yourself what is going on in this problem by examining the timing diagram in Figure 8.7:.
When you add two 4-bit binary numbers, you essentially end up with a 5-bit binary number with the carry-out
being the most significant bit (MSB). The possible range for a 4-bit binary number is 0x0 to 0xF (equating to 0
to 15 in decimal). Figure 8.7: shows the solution.

Figure 8.7: The solution to Example 8-4.

Example 8.5: A Component-based 8-Bit RCA

Design an 8-bit RCA using two 4-bit RCA circuits. State any assumptions and make any
changes you may need to the 4-bit RCAs. Also, state what controls the circuit.

Free Range Digital Design Foundation Modeling Chapter 8

 - 117 -

Solution: The first step in this solution is to draw the BBD; Figure 8.8 shows the BBD for this problem. We
add a carry-in input (Cin) to the BBD, which is arbitrary, but we include it so that we can cascade this circuit if
we need to. If we choose not to cascade this circuit, we connect the carry-in input to ‘0’, which prevents the
Cin input from affecting the SUM output.

Figure 8.8: The high-level black box diagram for this problem.

Although you may not have noticed it in the previous example, the “thing” that allowed you to increase the
width of your 1-bit adder was the fact that the FA was a 1-bit adder that added three different bits together to
generate a 1-bit result. The key to RCA success was taking the carry-out from a bit location of lower
significance and including it in the addition operation of the next bit location of higher significance. However,
since the lowest-order bit, or, the LSB, only required a one-bit adder with two inputs because there would be
no carry-in into that bit location. Using a HA in the lowest order bit location saved some hardware (a few
gates), but it left the circuit with the inability to be “cascaded” with other RCAs. This cascading of RCAs
allows us to effortlessly build RCA of greater widths. The solution to this example would be to substitute a FA
for the HA of Figure 8.6; Figure 8.9 shows the result of this step, which is a 4-bit RCA with a carry-in (Cin)
input.

Figure 8.9: Black box diagram for the 4-bit RCA we use in the solution.

The next step in this solution is to draw a lower-level BBD that shows the all the modules we need for the
solution. The problem states that we need two 4-bit RCAs; this means we must divide the circuit’s 8-bit inputs
and output between the two RCAs. Figure 8.10 shows the result of this step.

Figure 8.10: The internal modules for this solution.

The final part of the solution is to connect the internal modules of Figure 8.10. Figure 8.11: shows the result of
this step. This circuit has no control features. There are a few things to notice in Figure 8.11:.

 There is no notion of HAs and FAs because it is a relatively high-level model

 It is a common assumption in digital-land to include a “carry-in” in RCAs. In this case, we are
assuming that the lowest-order bit uses an FA instead of a HA.

Free Range Digital Design Foundation Modeling Chapter 8

 - 118 -

 Parenthetical notation shows that the total number of input bits for the two operands; we
subsequently divide these between the two individual 4-bit RCAs. You always need to provide
notation to indicate the routing of the associated signals. We use the same style of routing for
the “sum” output.

 The “Cin” input to the lower-order RCA is “tied to ground”. A requirement of circuit diagrams
is that we must account for every input in the schematic diagram by connecting them to a
signal, or assigning it a known and constant.

 This circuit works as an 8-bit adder in this cascade formation because the “carry-out” from the
lower-order RCA connects to the “carry-in” of the higher-order RCA. This is common in
digital-land also as many digital ICs allow you to connect many of the same ICs together to
increase the overall width (or length in some cases) of signals. We refer to the act of
connecting things together in this manner as cascading.

Figure 8.11: The final solution for this example.

The RCA has no control input, so this circuit has no control ability; the outputs always respond to the inputs in
the same way.

Example 8-6: Signal Changing Circuit

Design a circuit that increases the value on an 8-bit unsigned binary input signal by 30. The output of
this circuit is always valid. Also, state what controls the circuit.

Solution: The first step in this solution is to draw a BBD, means we must figure out the width of both the data
inputs and data. The problem states the output data width should always be correct, which means that when we
add the value to the number, the sum output is always correct. Thus, the width of the output data must be one
bit greater than the width of the input data, which makes the output data width nine bits. Figure 8.12 shows the
associated BBD.

Free Range Digital Design Foundation Modeling Chapter 8

 - 119 -

Figure 8.12: Black box diagram for this problem.

The next two steps in this problem are to establish the lower-level modules and connect them in such a
way as to solve the problem. Figure 8.13 shows the final solution to this problem; here is the thought
process that leads to that solution.

 The circuit increases the input value by 30, so there must be an RCA in the circuit.

 Because RCAs have two inputs to account for, we discern that one input must be the external
input value while the other input must be “hardcoded” to a value of 30.

 The width of the output is one bit greater than the width of the input. The RCA’s carry-out
becomes the MSB. This fact is not obvious, so we clearly note it in Figure 8.13.

Figure 8.13: The final solution for this problem.

The next thing we must do is establish what controls the circuit’s operation. The RCA in this circuit has not
control inputs, so this circuit has no control features.

8.6 Digital Design Foundation Notation: The RCA

We consider the RCA to be a Digital Design Foundation module. The RCA is a controlled circuit;
Figure 8.14 shows the RCA in appropriate digital design foundation notation. As you would expect
from an adder-type circuit, the RCA adds the two input operands (A & B) and the carry to generate
the SUM output. Note the RCA has no control inputs, which means the device always performs the
same operation on the three data inputs. The RCA’s CO output provides status for the RCA’s addition
operation. Table 8.4 provides a description of all the inputs and outputs to the RCA.

Free Range Digital Design Foundation Modeling Chapter 8

 - 120 -

Figure 8.14: Data, control and status signals for a RCA.

 Signal Name Description

IN
P

U
T

D

A
T

A

A
One of two multi-bit addends (or operands). The data width of the two addends is
equivalent.

B One of two multi-bit operands. The data width of the two addends is equivalent.

Cin A “carry in” input.

O
U

T
P

U
T

D

A
T

A

SUM The result of summing the three inputs: two addends and the Cin input.

C
O

N
T

R
O

L

n/a -

S
T

A
T

U
S

Co
A “carry-out” signal; this signal shows when the summation operation has
generated a carry. The carry is effectively the “n+1” bit of an n-bit RCA.

Table 8.4: The foundation matrix for a RCA.

Free Range Digital Design Foundation Modeling Chapter 8

 - 121 -

8.7 Chapter Summary

 Iterative Modular Design (IMD) is a more powerful design method than brute force design (BFD) because
it bypasses the constraints presented by the truth tables and the entire BFD approach. There are several
standard digital circuits that we design using IMD, the RCA is one of them.

 The half-adder (HA) is a single-bit adder with two inputs (addends) and a result (sum) and carry output.

 The full-adder (FA) is a single-bit adder with three inputs (two addends and a carry-in) and a result (sum)
and carry output.

 The ripple carry adder (RCA) is an arithmetic circuit comprised of FA, and sometimes a HA for the LSB.
We define RCAs as “n-bit” adders, where n is both the width of the two non-carry-in operands and the
width of the sum output.

 We can easily “cascade” two n-bit RCAs to form a RCAs of width 2n. This modification requires that the
higher-order RCA have a carry-in input.

 The notion of what controls a circuit is always of importance to the digital designer; the options are 1) no
control, 2) internal control, 3) external control, or 4) circuit controlled. A given circuit can have more than
one form of these controls.

Free Range Digital Design Foundation Modeling Chapter 8

 - 122 -

8.8 Chapter Exercises

1) Briefly describe why we should always connect all unused input signals to either power or ground in all
digital designs. In other words, why do we not what to “leave inputs hanging” or “leave inputs floating”.

2) If you were to design a 10-bit RCA using the BFD approach, briefly explain how many rows with the
associated truth table have?

3) There are adders out there that fall into the category of “look ahead carry” adders. Briefly explain why
these would output a result faster than a RCA.

4) In your own words, briefly explain how the RCA got its name.

5) Complete the timing diagram below considering the given schematic symbol.

Free Range Digital Design Foundation Modeling Chapter 8

 - 123 -

8.9 Design Problems

For the following problems:

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution

 Minimize the use of hardware in your solution

 State the types of control your circuit uses (“no control”, “internal control”, and/or “external control”).

1) Design a circuit that always increases the value of a 4-bit signal by two. The output of this circuit is
always a valid summation.

2) Design a circuit that always increases the value of an 8-bit signal by seven. This circuit has an output
VALID that indicates when the 8-bit output sum value is valid.

3) Design a circuit that always increases the value of an 8-bit signal by six. The width of the output data
should always reflect the result of the addition.

4) Design a 10-bit RCA using only two 4-bit RCAs, an HA, and a FA.

5) Design a circuit that adds four 8-bit values and always returns the proper summation on the circuit’s
output. The circuit’s output should not have a carry-out-type signal.

6) Design a circuit that always doubles the value of the carry in before summing it with the circuits two 10-
bit input values. The output summation of this circuit is always valid.

7) Design a circuit that multiplies a single 8-bit input by three. The resulting output is always correct.

8) Design a circuit that multiplies a single 10-bit input by five. The resulting output is always correct.

9) Use an RCA to design a circuit that blinks a single LED output at the highest rate possible using that RCA.

10) Use an RCA to design a circuit that blinks a single LED output at the 1/16th the highest rate possible using
that RCA.

11) Design a circuit that adds two 5-bit digital values. If an external button is being pressed, the circuit outputs
the correct result of the summation; otherwise, the circuit outputs all zeros. Assume the pressed button
outputs a logical ‘1’ and the unpressed button outputs a logical ‘0’. Assume the circuit output is 6-bits
wide.

12) Design a circuit that adds two 4-bit digital values. If an external button is being pressed, the circuit outputs
the correct result of the summation; otherwise, the circuit outputs all ones. Assume the pressed button
outputs a logical ‘1’ and the unpressed button outputs a logical ‘0’. Assume the circuit's output is 5-bits
wide.

13) Design a circuit that adds five 10-bit unsigned binary numbers, A, B, C, D, and E. No matter what, the
final sum should always be output, but this sum output is only a 10-bit number also. The catch is that this
circuit has a “VALID” output that indicates when the 10-bit output is a valid represents the actual sum of
the five input values. You can only use 10-bit RCAs for this circuit.

14) Use two HAs and a minimal amount of additional logic to create a FA.

Free Range Digital Design Foundation Modeling Chapter 9

 - 124 -

9 Boolean Functions and DeMorgan’s Theorem

9.1 Introduction

Digital design depends on the use of various model types to represent digital circuits. Digital designers need to
be adept at modeling circuits in a way most appropriate for a given situation. Using the various digital
theorems allows us to represent circuits in different but functionally equivalent ways. One more use of
DeMorgan’s theorem is to help us transform Boolean equations into functionally equivalent forms.

Main Chapter Topics

DEMORGAN’S THEOREMS: Probably the most widely used theorem in digital design,
DeMorgan’s theorems can transform equations into functionally equivalent forms.

REPRESENTING BOOLEAN FUNCTIONS: There are many ways to represent Boolean
functions; this chapter describes some of the more common approaches.

Chapter Acquired Skills

 Be able to represent functions using standard SOP form

 Be able to represent functions using standard POS form

 Be able to describe standard sum and standard product terms

 Be able to form minterm and maxterm expansions from reduced Boolean equations

 Be able to represent functions using SOP and POS forms

 Be able to represent functions using compact minterm and compact maxterm forms.

 Be able to transfer back and forth from any one function form to any other function
form.

9.2 Representing Boolean Functions

A Boolean function, or “function”, is an equation that describes an input/output relationship of a module in
terms of digital logic. There are many different ways of modeling this input/output relationship; you’ve seen
three main approaches: truth tables, Boolean functions, and circuit models.

There are a few important things to notice about input/out relationships. First, these three representations are
functionally equivalent; so they say the same thing but say it in three different ways. Secondly, you’ll see that
some function representations are more appropriate than others.

Example 9.1: The First BFD Problem Revisited

Design a digital circuit where the output of the circuit indicates when the 3-bit binary number on the
input is greater than four.

Free Range Digital Design Foundation Modeling Chapter 9

 - 125 -

Solution: The solution to Example 9.1 included a black box diagram (Figure 9.1(a)), a truth table (Figure 9.1
(b)), a Boolean expression (Figure 9.2), and the final circuit diagram (Figure 9.3).

B2 B1 B0 F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

(a) (b)

Figure 9.1: The black box model and completed truth table for Example 9.1.

B0)B1(B2)B0B1(B2 B0)B1(B2 B0)B1,F(B2,

Figure 9.2: A Boolean expression describing the solution to Example 9.1.

Figure 9.3: The circuit model that solves Example 9.1.

9.3 DeMorgan’s Theorems

The list of theorems provided in a previous chapter is relatively long. Modern digital design rarely directly uses
all of these theorems, but they use some of them quite often; DeMorgan’s is one of those theorems. We can
generate different representations of a Boolean equations from an application (or multiple applications) of
DeMorgan’s theorem. Figure 9.4 shows once again the Boolean equation that describes a solution to our first
design problem. We refer to the form of this equation as the sum of products (SOP) form. This name makes
sense in that there are three terms in the equation that are logically multiplied together; the equation then
logically adds the product terms.

Figure 9.4: The solution to the previous example listed again here.

Another widely used Boolean equation form is the product of sums (POS) form. You can obtain the POS form
from the truth table in a way that is similar to the SOP form. In the SOP form, you wrote the Boolean equation
based on the rows of the truth table that contained a ‘1’. You found which rows contained a ‘1’ in the output
and you included the product term for that row in the final Boolean equation.

B0)B1(B2)B0B1(B2 B0)B1(B2 B0)B1,F(B2,

Free Range Digital Design Foundation Modeling Chapter 9

 - 126 -

Inverting the F output officially describes the same function (the right-most column in Figure 9.5). Note the
right-most column in Figure 9.5 is the same as the F column except we invert the associated values, so the two
right-most columns of Figure 9.5 have a complementary relationship. Generating an equivalent POS form for
the truth table in Figure 9.5 is similar to the approach for generating the SOP form. The only difference is that
we need to apply DeMorgan’s theorems multiple times to translate the equation to POS form.

B2 B1 B0 F !F

0 0 0 0 1
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

Figure 9.5: The truth table for the original problem with a complemented output added.

DeMorgan’s theorem is one of the more commonly applied logic theorems in digital design. DeMorgan’s
theorem is also useful in other fields such as discrete mathematics, computer programming, and other various
flavors of engineering. Table 9.1 shows DeMorgan’s theorems in both two variable and generalized forms. The
final form in Table 9.1 emphasizes the fact the “variables” in the original listing of DeMorgan’s theorem are
not necessarily Boolean variables. The symbols in the first two equations can be either simple Boolean
variables or Boolean expressions. In either case, the overbar applies to the entire expression that it covers.

Table 9.1: DeMorgan's theorem in two-variable and generalized forms.

Let’s generate an equation for F in POS form. The key here is to notice that for the SOP form, you were
interested in the rows of the truth table that had a ‘1’ for the output. The approach is to list the product terms
with a ‘1’ on the output of the complemented output1. This first step is similar to generating SOP form but
you’re actually generating an equation in SOP form for the complement of the output2. Table 9.2 shows the set
of equations generated by seeking a POS expression for the given function. An explanation of each row in
Table 9.2 follows the table.

1 Looking for 1’s in the inverted output column is the same as looking for 0’s in the non-inverted output column.
2 Keep in mind that a complement of the output is not the desired output relative to the original problem. In other words,
the complement of the output does not represent a solution for the given problem.

YXYX YXYX

nn XXXXXX 2121 XnXXXnXX 2121

Free Range Digital Design Foundation Modeling Chapter 9

 - 127 -

(a)

(b)

(c)

(d)

(e)

Table 9.2: Generating a POS form from multiple applications of DeMorgan's theorem.

a) This equation is SOP form, which we generate by listing the product terms for the 0’s of the F column
or the 1’s of the !F column. This is a valid SOP form for the complemented output, but we’re looking
for a POS form for the uncomplemented output.

b) We complement both sides of the equation in Table 9.2(a), which preserves the equality.

c) Since the double complement of a variable equals that variable, the double-complemented F on left
side of the equals sign becomes uncomplemented. Our ultimate goal is to generate an equation for F
in POS form so we still need to massage this equation. The expression on the right side of the equals
sign shows the results after the first application of DeMorgan’s theorem. The product terms are now
complemented and are ANDed together, thus the giant overbar is now distributed to the individual
product terms and the OR operators were changed to AND operators.

d) Each of the product terms receives an individual application of DeMorgan’s theorem. The overbar is
distributed to the individual components of the product terms and we switch the logic operators from
AND to OR.

e) A Boolean algebra axiom allows us to remove the double complements from the variables. The result
of this step provides the desired POS form.

In summary, you now have an approach for generating both an SOP and POS form of equations describing a
digital relationship. These are common forms so note that the SOP form is generally associated with the 1’s of
the circuit while the POS form is generally associated with the 0’s of the circuit3. The SOP and POS forms are
functionally equivalent, which means they describe the same input/output relationship, but in different ways.

9.4 Minterm & Maxterm Representations

Without you knowing it, we previously exposed you to minterm representations and maxterm representations
of functions. For this section, let’s return to the design from a previous chapter. Figure 9.6 shows the equation
we were previously working with. From the truth table of Figure 9.6, you generated the Boolean function in
Equation 9.1 to describe the truth table. We eventually went on to describe Equation 9.1 as sum-of-products
form (SOP) but that is not the whole story. As it turns out, we’re actually listing this equation in what we refer
to as “standard SOP form”. You know that the equation is in SOP form because you can see that there is a
summation of many product terms. So what makes it a standard SOP form?

3 This may seem a little “follow the rules” oriented, but it will make more sense later as we delve deeper into other digital
design topics.

)B0B1(B2 B1)B2B2()B0B1B2(B0)B1B2()B0B1B2(F

)B0B1(B2 B1)B2B2()B0B1B2(B0)B1B2()B0B1B2(FF

)B0B1(B2 B0)B1B2()B0B1B2(B0)B1B2()B0B1B2(F

)B0B1B2()B0B1B2()B0B1B2()B0B1B2()B0B1B2(F

B0)B1B2()B0B1(B2B0)B1(B2)B0B1(B2B0)B1(B2 F

Free Range Digital Design Foundation Modeling Chapter 9

 - 128 -

B2 B1 B0 F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Figure 9.6: The generic function from a previous chapter.

Equation 9.1

Equation 9.1 is a standard SOP form because each of the product terms contains one instance of each of the
function’s independent variables in either complemented or uncomplemented form. We consider the product
terms in Equation 9.1 something special in that they are standard product terms4. When we’re describing a
function using standard product terms, we list the product term associated with the row in the truth table that
contains an output of ‘1’. Each row in the truth table has a unique product term associated with it; Table 9.3
shows the product terms for three-variable (A, B, C) function.

Table 9.3 shows that we also label the product terms as “minterms”s which is simply another name for a
standard product term. Digital design also refers to an equation in standard SOP form as a minterm expansion
of the function. Equation 9.2 shows the standard SOP form of the function from the previous example (we
switched from B2, B1, and B0 to A, B, and C to make them easier to write).

Equation 9.2

There is also a standard product of sums (POS) form, which contains a logical multiplication of standard sum
terms. We refer to a standard sum term as a maxterm. The main difference between minterms and maxterms is
that maxterms describe the locations of the 0’s in the function’s output5. Alternatively, equivalently, maxterms
describe the 1’s in the output of the complemented function. Equation 9.3 shows the standard POS form of the
function; we sometimes refer to this form as a maxterm expansion.

Equation 9.3

4 Later in this set of notes you’ll see that listing all the terms as standard product terms not generally done.
5 More specifically, maxterms describe the location of the 0’s in the rows containing 0’s for the uncomplemented output.

B0B1B2 B0B1B2 B0B1B2 F

CBA CBA CBA F

C)BA()CB(A)B(A)CB(AC)B(A F C

Free Range Digital Design Foundation Modeling Chapter 9

 - 129 -

A B C minterm maxterm F index

0 0 0 0 0

0 0 1 0 1

0 1 0 0 2

0 1 1 0 3

1 0 0 0 4

1 0 1 1 5

1 1 0 1 6

1 1 1 1 7

Table 9.3: A listing minterms and maxterms for the each combination of circuit inputs.

There is a special relationship between the minterms and maxterms. For a given row in the truth table, the
minterms and maxterms are complements of each other; Figure 9.7 shows this property. To generate a minterm
from a maxterm (or vice versa), you first complement it and then tweak it using DeMorgan’s theorem. Figure
9.8 shows an example of this relationship for the fourth row in Table 9.3. In Figure 9.8(a), we complement the
equation for the given minterm and then DeMorganized to generate the associated maxterm.

𝑀𝑎𝑥𝑡𝑒𝑟𝑚 𝑀𝚤𝑛𝑡𝑒𝑟𝑚

𝑀𝑖𝑛𝑡𝑒𝑟𝑚 𝑀𝑎𝑥𝑡𝑒𝑟𝑚

Figure 9.7: The secret relationship between minterms and maxterms.

(a) (b)

Figure 9.8: The complimentary relationship between minterms and maxterms.

CBA CBA

CBA CBA
CBA CBA
CBA CBA
CBA CBA
CBA CBA
CBA CBA
CBA CBA

CBAF

CBAF

CBAFCBAF

CBAFCBAF

)0,0,1(),,(

)0,0,1(),,(

CBAF

CBAF

CBAFCBAF

CBAFCBAF

)0,0,1(),,(

)0,0,1(),,(

Free Range Digital Design Foundation Modeling Chapter 9

 - 130 -

Example 9.2: Circuit Form to Equation Transformation

Change the following circuit implementation from a SOP (AND/OR) to a POS (OR/AND)
form.

Solution: There are many ways to represent functional relationships in digital-land; you’ve seen several
equation forms (SOP & POS), truth tables, and timing diagrams. There are functionally equivalent ways to
represent any given function, so you should be able to go from any one form to any other form. This problem is
a case of going from a circuit model in SOP form to a circuit model in POS form. There are many ways to
solve this problem; we take the most straightforward approach. Here are the steps to solve this problem:

1) Write out the equation implemented by the circuit

2) Expand the equation into standard SOP form

3) Use the SOP equation to generate a truth table

4) Write an equation for the complemented output

5) Complement the equation and DeMorganize6 the result until the equation is in POS form

6) Use the derived POS equation to re-implement the circuit

1) Write the equation implemented by the circuit. The circuit is in SOP form; from the circuit, you can see
that there are two product terms (two AND gates) that are logically added together (one OR gate). Figure
9.9 shows the initial equation.

CABACBAF),,(

Figure 9.9: The initial equation from this example.

2) Although this equation is officially in SOP form, we need to transform it into standard SOP form in order
to transfer the equation to a truth table. The problem right now is that both of the product terms are
missing an independent variable, which we add back by logically multiply the equation by ‘1’. Thinking
back to the original Boolean algebra theorems, you’ll find that: (x + !x = 1). Note the first product term is
missing the C variable. We add it by multiplying the first product term by (C+!C = 1) which does not alter
the value of the product term. Figure 9.10 shows the derivation of the product terms; Figure 9.11 shows
the final expanded equation.

6 To “DeMorganize” means to apply DeMorgan’s theorem. This term was coined by the infamous Professor Freeman
Freitag sometime in the mid-1980s.

Free Range Digital Design Foundation Modeling Chapter 9

 - 131 -

CBACBABA

CCBABA

)(

CBACBACA

BCABCACA

BBCACA

)(

Figure 9.10: Expanding the product terms from the original equation.

CBACBACBACBACBAF),,(

Figure 9.11: The final expanded equation.

3) Now that the terms look familiar, we enter them into a truth table. Figure 9.12 shows that we place a ‘1’ in
the F column for the corresponding product terms in the equation derived in the previous step.

A B C F

0 0 0 0
0 0 1 1∙ (!A∙!B∙C)
0 1 0 0
0 1 1 1∙ (!A∙B∙C)
1 0 0 1 ∙ (A∙!B∙!C)
1 0 1 1∙ (A∙!B∙C)
1 1 0 0
1 1 1 0

Figure 9.12: The truth table showing the implicated product terms.

4) The next step is to write an equation for the complemented output. Figure 9.13 shows that we do this by
adding a complemented F column to the previous truth table. Using the table in Figure 9.13, we can write
an SOP equation for the complemented output; this result equation appears Figure 9.14.

A B C F !F
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 1 0
1 0 1 1 0
1 1 0 0 1
1 1 1 0 1

Figure 9.13: The truth table expanded to show the complemented output.

CBACBACBACBACBAF),,(

Figure 9.14: The final expanded equation.

Free Range Digital Design Foundation Modeling Chapter 9

 - 132 -

5) The final equation is an expression for !F (another way of saying a complemented F). We want an
expression for F (as opposed to !F), so we complement both sides of the equation and DeMorganize the
result a bunch of times. Figure 9.15 shows these steps.

CBACBACBACBACBAF),,(

CBACBACBACBACBAF),,(

)()()()(CBACBACBACBAF

)()()()(CBACBACBACBAF

)()()()(CBACBACBACBAF

Figure 9.15: The final solution this example.

6) Finally, the last step is to draw a circuit model for the final equation of the previous step; Figure 9.16
shows the result of this step. This example turned out to be a long problem as it shows many of the useful
and versatile properties associated with Boolean algebra. N note in the diagram below that the AND gate
has some extended wings to handle the larger number of inputs.

Figure 9.16: The final solution to this example.

9.5 Compact Minterm & Maxterm Function Forms

Representing functions in standard SOP or POS forms is klunky, so we use compact minterm forms or
compact maxterm forms instead. The compact minterm and maxterm forms list the decimal index (see the
right-most column of Table 9.3) associated with the rows where either the 1’s or 0’s of the circuit reside in a
given truth table.

Compact forms traditionally use Greek symbols in their representations: we use the summation symbol for
listing minterms (since it is a “summing” of product terms) and the capital Pi symbol for listing maxterms7.
Figure 9.17 shows the compact minterm and compact maxterm forms for the example we’re working with.
These compact forms always need listing as a function of the independent variables. If you did not include all

7 If you consult the right source, you’ll find that the Pi symbol is associated with multiplication.

Free Range Digital Design Foundation Modeling Chapter 9

 - 133 -

of the independent variables, you would not be able to expand the list into standard sum or standard product
terms.

(a) (b)

Figure 9.17: Compact minterm and maxterm forms for the current example.

You now know the following ways to represent functions: truth tables, standard SOP, standard POS, compact
minterm, compact maxterm, and circuit forms. The forms relate to each other in that they essentially provide
multiple ways of representing the same thing, so all of these different forms are functionally equivalent. This
means that you should be able to change from any one of the forms to any other one of the forms. However,
while switching from one form of a function to another is painfully exciting, it is not represent digital design,
as most digital design textbooks lead you to believe.

Example 9.3: Circuit to Equations Transformation Again

Change the following circuit implementation from a POS (OR/AND) to a SOP (AND/OR)
form.

Solution: The solution to this problem is similar to the solution of a previous example; the steps are the same
but you need to apply them in a strange reverse order.

First, write the equation implemented by the circuit. The circuit is in POS form; the circuit has two sum terms
(two OR gates) that are logically multiplied together (one AND gate). Figure 9.18 shows the resulting
equation.

)()(),,(CABACBAF

Figure 9.18: The initial equation derived from the problem description.

We need to put the above equation into SOP form so we can easily enter it into the truth table. If we
complement both sides of the equation and then DeMorganize it, we get an expression for !F in SOP form.

)7,6,5(),,(CBAF)4,3,2,1,0(),,(CBAF

Free Range Digital Design Foundation Modeling Chapter 9

 - 134 -

)()(CABAF

)()(CABAF

)()(CABAF

CABAF

Figure 9.19: DeMorganizing the original equation.

From here, we need to expand each of the product terms to include each of the independent variables. Figure
9.20 shows that we use the same technique as in the previous problem.

CABAF

)()(BBCACCBAF

CBACBACBACBAF

Figure 9.20: Expanding the derived equation.

The equation in Figure 9.20 tells us where the 0’s live in the truth table. If we know where the 0’s live, we also
know where the 1’s live (that’s what we need to give us an equation for this function in SOP form). Figure 9.21
shows the results of this description. Figure 9.22 shows that we can now write an equation for F.

A B C F !F
0 0 0 0 1
0 0 1 0 1
0 1 0 1 0
0 1 1 1 0
1 0 0 1 0
1 0 1 0 1
1 1 0 1 0
1 1 1 0 1

Figure 9.21: Including the complemented output in the truth table.

CBACBACBACBAF

Figure 9.22: Writing the equation for F.

Figure 9.23 shows the final step in this problem, which is drawing a model for the final circuit implementation.

Free Range Digital Design Foundation Modeling Chapter 9

 - 135 -

Figure 9.23: The final circuit solution for Example 9.3.

Example 9.4: Half Adder in Standard POS Form

Provide a circuit diagram for a half-adder (HA) implemented in POS form.

Solution: For this solution, we assume you still remember the half adder.

Step 1) Define the Problem: Draw a black box diagram of the final circuit; Figure 9.24 shows this result. Table
9.4 and Table 9.5 show the original truth table and the truth table including the complemented outputs,
respectively. In Table 9.5, we use an “!” (the exclamation mark) prefix to variables to indicate a complement of
the variable. Nerdy people know this symbol as the bang character.

Figure 9.24: The black-box diagram for the example problem.

OP_A OP_B SUM CO

0 0

0 1

1 0

1 1

Table 9.4: The original truth table.

Free Range Digital Design Foundation Modeling Chapter 9

 - 136 -

OP_A OP_B SUM !SUM CO !CO

0 0 0 1 0 1

0 1 1 0 0 1

1 0 1 0 0 1

1 1 0 1 1 0

Table 9.5: The truth table including complemented outputs.

Step 2) Describe the Solution: For this problem, you’ll need to generate two Boolean expressions: one for the
SUM and the other for the CO.

)__()__(BOPAOPBOPAOPSUM

)__()__()__(BOPAOPBOPAOPBOPAOPCO

Equation 9.4: The starting equations for Example 9.4.

)__()__(BOPAOPBOPAOPSUM

)__()__(BOPAOPBOPAOPSUM

)__()__(BOPAOPBOPAOPSUM

)__()__(BOPAOPBOPAOPSUM

Equation 9.5: The SUM path from SOP to POS for Example 9.4.

)__()__()__(BOPAOPBOPAOPBOPAOPCO

)__()__()__(BOPAOPBOPAOPBOPAOPCO

)__()__()__(BOPAOPBOPAOPBOPAOPCO

)__()__()__(BOPAOPBOPAOPBOPAOPCO

Equation 9.6: The CO path from SOP to POS for Example 9.4.

Step 3) Implement the Solution: The final step involves translating the Boolean expressions in Equation 9.5
and Equation 9.6 into circuit form. Figure 9.25 shows the final gate-level implementation.

Free Range Digital Design Foundation Modeling Chapter 9

 - 137 -

Figure 9.25: The circuit representation of the final solution for Example 9.4.

Equation 9.7 lists both the SOP and POS forms for the CO output while Equation 9.8 lists the SOP and POS
forms for the SUM output. The SOP and POS forms for a given output are functionally equivalent. Finally,
Figure 9.26 shows a comparison of the final circuit implementations for both the SOP and POS versions of the
half adder.

BOPAOPCO __

is functionally equivalent to:

)__()__()__(BOPAOPBOPAOPBOPAOPCO

Equation 9.7: The CO path from SOP to POS for Example 9.4.

BOPAOPBOPAOPSUM ____

is functionally equivalent to:

)__()__(BOPAOPBOPAOPSUM

Equation 9.8: The CO path from SOP to POS for Example 9.4.

Figure 9.26 provides some interesting and important information as it relates to functional equivalency. There
are now two functionally equivalent ways to model a HA using Boolean equations. Because the circuit in
Figure 9.26(a) uses less hardware than the circuit in Figure 9.26(b), you can conclude that Figure 9.26(a) is the
better approach. The difference in two gates does not seem like enough in the context of this example, but it’s
more meaningful if you circuit required thousands (or millions) of HAs. This is a brief introduction to
minimum cost concept, a topic we cover in a later chapter.

Free Range Digital Design Foundation Modeling Chapter 9

 - 138 -

(a) (b)

Figure 9.26: A comparison of the SOP (a) and POS (b) circuit diagrams for the half adder.

Free Range Digital Design Foundation Modeling Chapter 9

 - 139 -

9.6 Chapter Summary

 DeMorgan’s Theorem: One of the basic theorems in digital design typically used to translate from one
form to other functionally equivalent forms. We can simplify Boolean expressions using DeMorgan’s
theorem also. There are two different forms of DeMorgan’s theorem; both bring ultimate bliss to the user.

 SOP and POS Representations: Two of the most common ways to represent Boolean functions are using
sum-of-products (SOP) and product-of-sum (POS) forms. We typically use DeMorgan’s theorem to
generate a POS equation from a truth table. The SOP form has by multiple product terms that we logically
sum together while the POS form has sum terms that we logically multiply together.

 We can represent Boolean functions in many different forms including standard and reduced SOP,
standard and reduces POS, and compact minterm and maxterm forms.

 We can represent a function with a truth table in two ways; either we present the positive version output (a
representation of a non-complemented output variable) or the negative version (a representation of the
complemented output variable). These two outputs are complements, or inversions, of each other.

Free Range Digital Design Foundation Modeling Chapter 9

 - 140 -

9.7 Chapter Exercises

For all of the following problems, SOP and POS refer to standard SOP and standard POS.

1) Briefly explain why it is proper to list all the independent variables in the compact minterm and maxterm
forms.

2) Being that SOP and POS forms are functionally equivalent, describe a few reasons why you would want to
use one form over the other.

3) Generate a Boolean equation that is equivalent to each of the following truth tables in POS form.

B2 B1 B0 F
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

A B C F
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

(a) (b)

X Y Z F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

t u v F1 F2
0 0 0 1 0
0 0 1 1 0
0 1 0 0 1
0 1 1 0 1
1 0 0 0 0
1 0 1 1 0
1 1 0 0 1
1 1 1 0 1

(c) (d)

4) Convert the following functions to POS form

a)

b)

c)

CBACBACBACBACBAF),,(

CBACBACBACBACBACBAF),,(

ZYXZYXZYXZYXZYXF),,(

Free Range Digital Design Foundation Modeling Chapter 9

 - 141 -

5) Convert the following functions to SOP form.

a)

b)

c)

6) For the following circuit diagram, change the form from SOP to POS form.

(a) (b)

7) For the following circuit, change the circuit to a have an output for F in SOP form.

8) Represent the following equation in compact minterm and maxterm forms.

9) Convert the following Boolean functions to both compact minterm and maxterm forms.

a)

b)

c)

)()()()()(),,(TSRTSRTSRTSRTSRTSRF

)()()()(),,(CBACBACBACBACBAF

)()()()(),,(ZYXZYXZYXZYXZYXF

)()()()()(),,(TSRTSRTSRTSRTSRTSRF

)()()()()(),,(TSRTSRTSRTSRTSRTSRF

)()()()(),,(CBACBACBACBACBAF

)()()()(),,(ZYXZYXZYXZYXZYXF

Free Range Digital Design Foundation Modeling Chapter 9

 - 142 -

10) Write a reduced Boolean equation in SOP and POS forms for each of the following functions.

 (3,4,5,6) C)B,F3(A,
 (2,4,6,7) C)B,F4(A,

 ,9,12,13)(0,2,4,6,8 D)C,B,F5(A,
 0,13,15)(0,2,5,8,1 D)C,B,F6(A,

 13,14,15)(4,5,6,12, D)C,B,F7(A,
 ,11,13,15)(2,3,6,7,9 D)C,B,F8(A,

Free Range Digital Design Foundation Modeling Chapter 9

 - 143 -

9.8 Design Problems

For the following problems:

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution

 Minimize the use of hardware in your solution

 State the types of control your circuit uses (“no control”, “internal control”, and/or “external control”).

1) Design a circuit that has four inputs and three outputs. The four inputs are considered two 2-bit inputs.
One output consider the two inputs to be binary numbers and indicates when the two input number are not
equivalent. The other output considers the two inputs to be stone-age binary inputs and indicates when the
two binary inputs are equivalent. The third output indicates when the previously described outputs are both
in an “on”. For this problem, implement the first two outputs using POS forms; implement the third output
in any way you deem appropriate, but minimize your use of gates in the implementation.

2) Design a circuit that has four inputs and four outputs. Each input is from a switch that is associated with
one of four doors to a room; the outputs control a locking device on each door. There are four different
sets of people who need to get into the room but you need to control exactly who gets into the room.
Consider the each door to be named A, B, C, or D. Design a circuit that allows the following control (don’t
worry about how people are going to get out of the room). Provide a model of your circuit using POS
form.

 If someone wants in door A, that person always gets in and is always the only person that gets in
unless door C wants in also, in which case both door A and C opens.

 If someone wants in door B, that person can only get in if someone at door D wants in also. In this
case, both door B and D opens.

 The person at door C can never be in the room alone but can be in the room with anyone else.

Free Range Digital Design Foundation Modeling Chapter 10

 - 144 -

10 More Standard Logic Gates

10.1 Introduction

This chapter continues up the digital design learning curve by introducing four new logic gates. Though you’ve
been using AND & OR gates (and inverters) in your designs, these are not the most common gates in digital
design.

Main Chapter Topics

STANDARD LOGIC GATES: This chapter introduces four new gates: the exclusive OR
(XOR) and exclusive NOR (XNOR) gates, and the NAND and NOR gates.

LOGIC GATE ABSTRACTIONS: The chapter introduces the notion that we can configure
various logic gates as inverters, switches, or buffers.

Chapter Acquired Skills

 Be able to describe the notion of functionally complete as it applies to logic gates

 Be able to use NAND, NOR, XOR, and XNOR gates in digital circuits

 Be able to configure standard logic gates as inverters, switches, and buffers

10.2 NAND Gates and NOR Gates

We form the NAND and NOR gates by complementing the output of AND & OR gates, respectively1. The
names NAND and NOR are a shortened version of NOT-AND (for NAND) and NOT-OR (for NOR). Figure
10.1 shows that we can model the NAND & and NOR gates by adding an inverter on the output of the AND &
OR gates. Figure 10.2 shows the two new gate symbols for the NAND and NOR gates. Figure 10.3 shows the
truth tables associated with the NAND and NOR functions. The truth tables in Figure 10.3, show that the
outputs of the NAND and NOR gates are in fact complemented versions of AND & OR gates, respectively.

(a) (b)

Figure 10.1: Functional equivalent models for the NAND (a) and NOR (b) logic gates.

1 You can think of these NAND/NOR gates with inverters on the outputs but there is a better way to model them. Don’t
worry about the better way for now.

Free Range Digital Design Foundation Modeling Chapter 10

 - 145 -

(a) (b)

Figure 10.2: The NAND (a) and NOR (b) logic gates.

A B
0 0 1
0 1 1
1 0 1
1 1 0

A B
0 0 1
0 1 0
1 0 0
1 1 0

(a) (b)

Figure 10.3: Truth tables for the NAND (a) and NOR (b) logic functions.

One of the advantages that NAND and NOR gates have over AND & OR gates is that they are functionally
complete. This means that a NAND gate (or a series of NAND gates) can implement any Boolean function2. In
other words, we can use a NAND gate to generate an AND function, an OR function, or a complement
function (INVERTER). Note from the truth table for the NAND gate in Figure 10.3(a) that there are two ways
to create an inverter from a NAND gate:

1) The first and fourth rows of the NAND gate’s truth table indicate that if the two inputs to the
NAND gate are equivalent, the output is an inversion of the input. We implement this in
hardware by connecting the same signal to both inputs3 of ta two-input NAND gate; Figure
10.4(a) shows this result.

2) The third and fourth rows of the NAND gate’s truth table indicate that if one of the inputs to
the NAND gate is fixed to a logic ‘1’, the output of the NAND gate exhibits an inversion
function based on the other input. We implement this in hardware by connecting one NAND
gate input to the high voltage; Figure 10.4(b) shows this result.

(a) (b)

Figure 10.4: Making an inverter from a NAND gate.

There are also two ways to force a NOR gate to act as an inverter; Figure 10.1 shows these two approaches.
We state these without proof; a few chapter exercises deal with this concept.

2 The same is true of a NOR gate; we opt not to provide the detailse.
3 Or all of the inputs if there gates has more than two inputs.

BAF BAF

Free Range Digital Design Foundation Modeling Chapter 10

 - 146 -

(a) (b)

Figure 10.5: Making an inverter from a NOR gate.

10.3 XOR and XNOR Gates

The final type of logic gates are the exclusive OR gate (or the XOR gate) and the exclusive NOR gate (or
XNOR gate). Figure 10.6 shows the schematic symbol for these two gates. Note the similarity between these
gates and the OR and NOR gate symbols. In addition, we often refer to an exclusive NOR gate as an
“equivalence gate”.

(a) (b)

Figure 10.6: The exclusive OR (XOR) and exclusive NOR (XNOR) gates.

Figure 10.7 shows the truth tables that define the XOR and XNOR functions. The XOR and XNOR functions
are complements of each other as is true with the OR and NOR gates, etc. Figure 10.8 shows the official
Boolean equations describing the XOR and XNOR functions. In these equations, the XOR function has its own
special operator symbol: the circled cross. There is also a special operator for XNOR gates, which Figure
10.8(b) does not show4: the circled dot.

The equations in Figure 10.8 are both important and useful; you’ll use these equations often. You may want to
stare at them for a while; I know I sure do5. The truth table in Figure 10.7(b) for the XNOR function shows
why we refer to it as an equivalence gate: the gate output is a logical ‘1’ when the two gate inputs are
equivalent. One thing to note about XOR & XNOR gates: while AND, OR, NAND, and NOR gates can have
two or more inputs, XOR and XNOR gates can only have two inputs.

A B

0 0 0
0 1 1
1 0 1
1 1 0

A B
0 0 1
0 1 0
1 0 0
1 1 1

(a) (b)

Figure 10.7: Truth tables for exclusive OR (XOR) (a) and exclusive NOR (XNOR) functions (b).

4 The equation editor I used when writing this does not contain the required symbol.
5 Not really.

BAF BAF

Free Range Digital Design Foundation Modeling Chapter 10

 - 147 -

(a) (b)

Figure 10.8: The official equations describing the XOR (a) and XNOR functions (b).

10.4 Logic Gate Abstractions

The fact that we can configure NAND and NOR gates as inverters is useful in digital design. You know the
logic behind these gates, but applying basic intuition to these gates allows you to use them in other ways. Once
you develop an intuitive feel for basic logic gates, you can use them in many digital designs in clever ways.

Basic gates have three useful functions beyond modeling them as logic elements. These three functions include
1) using gates as inverters, 2) using gates as switches, 3) using gates as buffers. The following verbage more
fully describes these functions while Figure 10.9 provides the visual details. For each of these gates, we only
consider the case of 2-input gates, keeping in mind that gates of more than two inputs does not apply to XOR-
type gates. We omit all mention of the XNOR gate as it is a special case of the XOR gate.

The key to making gates into one of these three functions is connecting an input (or inputs) to the power (logic
‘1’), ground (logic ‘0’), of shorting the inputs to the gate. Often times we reference ground as “GND”; we draw
with a down-pointed arrow in a circuit diagram. We refer to connecting an input to logic ‘1’ as “tying the input
high” or “tied high” and we refer to connecting an input to logic ‘0’ as “tying the input low” or “tied low”.

10.4.1 Gates as Inverters

When we connect one input to power or ground (logical ‘1’ or ‘0’, respectively), a given gate acts as an
inverter. Table 10.1 lists the connections required to create inverter functions from various gates6. We
previously discussed using NAND and NOR gates as inverters.

Gate Type Gate Connected as Inverter

NAND 1) connect one input to ‘1’ or

2) have both inputs share the same signal

NOR 1) connect one input to ‘0’

2) have both inputs share the same signal

XOR connect one input to ‘1’

Table 10.1: Gate connections for inverter functionality.

10.4.2 Gates as Switches

The notion of a switch means something we can turn on and turn off. When we “turn off” a gate, we say we are
killing the gate, which means we prevent the output from changing. This is a useful function in many digital
design applications because one input has the ability to disable the gate by forcing the output to a certain value.

6 Recall that this list does not include AND and OR gates as they are not functionally complete.

BABABAF ABBABAF

Free Range Digital Design Foundation Modeling Chapter 10

 - 148 -

Gate Type Gate Connected as Switch

AND & NAND connect one input to ‘1’; ‘0’ kills the gate

OR & NOR connect one input to ‘0’, ‘1’ kills the gate

Table 10.2: Gate connections for switch functionality.

10.4.3 Gates as Buffers

The word buffer is common term electronics. For digital electronics, a buffer function is essentially one that
does not change the logic level of an input given signal. This is generally useful because often times you want
to pass a signal along in a circuit unchanged. We often use buffering action is conjunction with either a switch
or inverter functionality7.

Gate Type Gate Connected as Buffer

AND connect one input to ‘1’

OR connect one input to ‘0’

XOR connect one input to ‘0’

Table 10.3: Gate connections for buffer functionality.

7 For example, for a given input, the value is either high or low and the resulting gate function is a buffer and an inverter, or
a buffer and a switch (depending on which gates you’re working with).

Free Range Digital Design Foundation Modeling Chapter 10

 - 149 -

Gate Configuration Timing Example Comments

Grounding one input of an AND gate
makes the output always ‘0’, which
“kills” the gate: DEAD

Tying one input of an AND gate
high allows the other input to pass
unchanged to the output: BUFFER

The NAND gate is dead when you
ground one input: DEAD

Tying one input of a NAND gate
high inverts the other input:
INVERTER

Tying one input of an OR gate low
prevents the input from effecting the
output: BUFFER

Tying an OR gate input to‘1’ kills
the gate by forcing the output to
always be ‘1’: DEAD

Tying one input of a NOR gate to ‘0’
outputs an inversion of the other
signal: INVERTER.

Tying a NOR gate input to ‘1’ kills
the gate; the output is always low:
DEAD

Tying one input to ‘0’ passes the
other input to the output: BUFFER

Tying one input to ‘1’ outputs an
inversion of the other input:
INVERTER

Figure 10.9: Everything you didn’t want to know about the secret lives of logic gates.

Example 10.1: Half Adder using New Gate Types

Implement a half adder (HA) using a minimal amount of gates; use any type of gate you’re
familiar with in order to minimize the final gate count.

Free Range Digital Design Foundation Modeling Chapter 10

 - 150 -

Solution: This problem drops a giant hint that you should use a new gate in the solution. Figure 10.10 should
help you recall that the HA has two inputs and two outputs. We all remember how a HA works but Figure
10.11 provides the truth table while Equation 10.1 shows the final un-reduced equations.

Figure 10.10: The top-level BBD for a Half Adder (HA).

OP_A OP_B SUM CO

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Figure 10.11: Truth table for the HA.

BOPAOPBOPAOPSUM ____
BOPAOPCO __

Equation 10.1: The final equations for a HA.

From inspection of Equation 10.1, the SUM output is an XOR function and the CO is an AND function. You
need to inspect equations quite often in digital design as no one delivers items such as XOR functions on
flaming pies8. Figure 10.12(a) shows the resulting circuit. Figure 10.12(b) shows the final circuit from the first
time we did this problem. The result is two devices for the XOR enabled HA compared to six devices for the
original version. The world is saved.

(a) (b)

Figure 10.12: The HA using the newer gates (a) and older gates (a).

8 For you pop music fans out there, this is a historical reference.

Free Range Digital Design Foundation Modeling Chapter 10

 - 151 -

Example 10.2: Extracting XOR Functions from Boolean Equation

Show that the following equations contain XOR functions.

CABCBACBACBACBA C)B,F(A,

Solution: There is no easy way to do this problem; you need to stare at it for a while and then see what XOR-
type functions you can factor out. Factoring using Boolean algebra is something none of us wants to do, but
sometime we must do it. Here we go.

The starting point we’re looking for is a something that we can factor. This problem happens to be set up
nicely in that the natural ordering of the terms makes the problem easier. Without too much description,

𝑭 𝑨, 𝑩, 𝑪 𝑨𝑩𝑪 𝑨𝑩𝑪 𝑨𝑩𝑪 𝑨𝑩𝑪 𝑨𝑩𝑪

𝑭 𝑨, 𝑩, 𝑪 𝑨𝑩𝑪 𝑪 𝑨𝑩 𝑨𝑩 𝑨 𝑩𝑪 𝑩𝑪

𝑭 𝑨, 𝑩, 𝑪 𝑨𝑩𝑪 𝑪 𝑨 𝒙𝒐𝒓 𝑩 𝑨 𝑩 𝒙𝒐𝒓 𝑪

Figure 10.13 shows the final solution. Including the XOR function significantly reduced the amount of logic in
the final Boolean equation. My apologies for failing to find a proper XOR operator in the text editing software.

𝑭 𝑨, 𝑩, 𝑪 𝑨𝑩𝑪 𝑨𝑩𝑪 𝑨𝑩𝑪 𝑨𝑩𝑪 𝑨𝑩𝑪

𝑭 𝑨, 𝑩, 𝑪 𝑨𝑩𝑪 𝑪 𝑨𝑩 𝑨𝑩 𝑨 𝑩𝑪 𝑩𝑪

𝑭 𝑨, 𝑩, 𝑪 𝑨𝑩𝑪 𝑪 𝑨 𝒙𝒐𝒓 𝑩 𝑨 𝑩 𝒙𝒐𝒓 𝑪

Figure 10.13: The factoring of the equation to extract an XOR function.

Example 10.3: A RCA with Extra Functionality

Design a circuit that adds two 4-bit digital values. If the addition operation generates a carry-out, the 4-
bit sum output is all zeros; otherwise, the 4-bit output shows the sum of the two 4-bit input values. Also,
state what controls the circuit.

Solution: The first step in this solution is to draw a BBD; Figure 10.15 shows the BBD for this problem.

Free Range Digital Design Foundation Modeling Chapter 10

 - 152 -

Figure 10.14: Black box diagram for this problem.

The next step is to discern if this circuit requires control and what that control needs to be. The problem
implicitly states that this circuit requires control because the circuit output can be one of two values: all zeros
or the summation of the circuit inputs. What is going to make this decision? Once again, the answer is in the
problem statement. If the result of the addition generates a carry-out, we design the circuit to output to be all
zeros; otherwise, the circuit outputs the summation. This means that an internal signal provides the control for
this problem; that signal must be the carry-out signal. We use an RCA in this problem, as the RCA adds two
numbers and provides a carry-out.

We know this circuit includes an RCA. However, to obtain the proper output of the circuit, there must be some
other circuitry involved. We don’t know what exactly that entails right now, but we know enough to draw a
BBD at a lower level that the top-level BBD. Figure 10.15 shows the result of our thought process thus far.
Figure 10.15 shows that we plopped down a BBD and labeled it CKT; we did this as a placeholder, as we still
don’t know what’s in the CKT box.

Figure 10.15: A lower-level black box diagram for this problem.

Now we need to think about the requirements of the black box labeled “CKT”. What this module must to do is
pass the SUM output along if there is no carry or make all the SUM bits a logical ‘0’ if there is a carry. What
this operation describes is to pass the SUM signals along if the carry-out is ‘0’; otherwise clear all of the sum
bits. This operation describes the classic switch action, under control of the carry-out. There is a gate that
implements such an operation: the AND gate.

Figure 10.16 shows the final solution for this problem using AND gates. We needed to first invert the carry-out
signal in order for it to have the correct effect on the associated AND gates. The method we use to connect the
AND gates ensures that their output is ‘0’ when the carry-out signal is a ‘1’ is to invert the carry-out before
inputting it to the AND gates. We indicate the expansion of the SUM bundle by using parenthetical notation on
the signal contained in the bundle.

Free Range Digital Design Foundation Modeling Chapter 10

 - 153 -

Figure 10.16: Schematic diagram for the box labeled CKT.

This problem is significant for one important reason: it’s the first problem that we’ve worked with that has
some type of a “control” feature. The problem uses the Cout from the RCA as a control input to the CKT block
so that the state of the Cout output from the RCA controls what the final output of the circuit. We refer to this
control as “internal control”, which is one of four approaches to controlling a digital circuit.

Free Range Digital Design Foundation Modeling Chapter 10

 - 154 -

10.5 Chapter Summary

 NAND and NOR are formed from complimenting the outputs of the AND & OR gates, respectively.
NAND and NOR gates are generally used more often that AND & OR gates in digital design.

 Exclusive OR (XOR) and exclusive NOR (XNOR) are two additional standard gates used in digital logic.
These functions are somewhat useful for some basic digital circuits such as the Full Adder (FA).

 NAND and NOR gates are considered to be functionally complete which means that a NAND gate can be
used to generate an AND function, an OR function, or an inversion function. AND & OR gates, however,
are not functionally complete.

 We can connect basic logic gates to work as inverters, switches, and buffers. These connections represent
an extended functionality of basic gates and are quite useful in digital design.

Free Range Digital Design Foundation Modeling Chapter 10

 - 155 -

10.6 Chapter Exercises

1) Briefly describe why XOR and XNOR gates can only have two inputs.

2) Briefly describe why AND & OR gates are not considered functionally complete

3) Briefly describe whether you feel XOR gates are considered functionally complete?

4) Explicitly describe how to make a NOR gate into an inverter. Explicitly show the inverter functionality in
the NOR gate truth table.

5) Explicitly describe how to make a NAND gate into an inverter. Explicitly show the inverter functionality
in the NAND gate truth table.

6) Draw a diagram of a 4-input NAND gate that has been configured as an inverter. Don’t combine inputs for
this problem.

7) Draw a diagram of a 4-input NOR gate that has been configured as an inverter. Don’t combine inputs for
this problem.

8) What extended functionality can be obtained from a XNOR gate by connecting one input to either ‘1’ or
‘0’? Briefly explain.

9) What extended functionality can be obtained from a XOR gate by connecting one input to either ‘1’ or
‘0’? Briefly explain.

10) Write a reduced Boolean equation in SOP form for each of the following functions. Make sure you pull
out the XOR functions where humanly possible.

a) 𝐹 𝐴, 𝐵, 𝐶 �̅�𝐵�̅� �̅�𝐵𝐶 𝐴𝐵�̅� 𝐴𝐵𝐶 �̅�𝐵�̅�

b) 𝐹 𝐴, 𝐵, 𝐶 𝐴𝐵𝐶 �̅�𝐵𝐶 𝐴𝐵𝐶

c) 𝐹 𝐴, 𝐵, 𝐶 �̅�𝐵�̅� �̅�𝐵𝐶 𝐴𝐵�̅� 𝐴𝐵𝐶

11) Why are there 3-input AND gates but no 3-input XOR gates? Briefly describe why.

Free Range Digital Design Foundation Modeling Chapter 10

 - 156 -

10.7 Design Problems

For the following problems:

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution

 Minimize the use of hardware in your solution

 State the types of control your circuit uses (“no control”, “internal control”, and/or “external control”).

1) Design a circuit that controls the locking mechanism of a room that contains three doors: door A, door B,
and door C. Each door allows only one person into the room when the controller you’re designing unlocks
the lock on that door. For this circuit, the door remains locked under the following conditions:

 When one person wants into each door

 When no people want in any door

 When one person wants in Door B but no one wants in any other door

 When two people want in but no one wants in at Door B.

For this problem, provide an equation and a final circuit diagram for your solution. Be sure to extract any
exclusive OR-type functions that may be present in your equations.

2) Design a circuit that controls the watering controller for your three precious plants. Assume each of your
girls contain a sensor that indicates to the controller when each individual plant requires water. You’ve
consulted the horticulturist and they told you that the water should only turn on when two and only two
plants require watering; the water should be off at all other time. For this problem, provide an equation and
a final circuit diagram for your solution. Be sure to extract any exclusive OR-type functions that may be
present in your equations.

Free Range Digital Design Foundation Modeling Chapter 11

 - 157 -

11 Circuit Forms

11.1 Introduction

There are many functionally equivalent ways to represent Boolean expressions.. The underlying notion of
being able to represent a function in various forms is that one form may have an advantage over other forms. If
you can find a functionally equivalent form that you can implement faster, requires less power, is cheaper,
etc.1, then you’re most likely going to use that form.

Main Chapter Topics

CIRCUIT FORMS: Previous chapters presented various functionally equivalent
representations of circuit. This chapter presents the theory behind generating several
new forms and outlines when such forms are most useful. The new circuit forms
presented in this chapter are some of the most widely used representations of
circuits.

MINIMUM COST CONCEPTS: Being that there are many different ways to represent
functions, the question arises when you should use one representation over another.
This chapter outlines minimum concepts as they apply to function representations.

Chapter Acquired Skills

 Be able to generate the eight standard circuit forms from a given Boolean equation

 Be able to find a minimum cost circuit from the set of eight standard circuit forms

11.2 Circuit Forms

The term “circuit forms” is a common term in digital logic design. This term generally refers to the fact that
you can implement any given digital logic function using physically different but functionally equivalent
circuits. In digital systems, the term functionally equivalent refers to the fact that the input/output relationship
of the circuit is preserved but the implementation details are different.

There are many reasons why you would want to use one circuit form over another; we usually base the more
desired form on the notion of “efficiency” of the implemented circuit. The definition of efficiency is a digital
circuit is not absolutely definable; we typically base the definition of efficiency on circuit characteristics such
as fewer gates, fewer inputs, fewer IC etc. than another. This section discusses forms that we can generate with
successive applications of DeMorgan’s theorem. This approach is somewhat standard and generates the most
commonly seen circuit forms. In reality, there are only about four common circuit forms.

11.2.1 The Standard Circuit Forms

We use the term “standard circuit forms” to refer to eight circuit forms that we can easily derive using
DeMorgan’s theorem. If you examine other digital design textbooks, you’ll find that they list bunches of

1 And also many other reasons not listed here; hopefully you’re getting the idea.

Free Range Digital Design Foundation Modeling Chapter 11

 - 158 -

strange circuit forms; we opt to stick to the “standard” eight types, which you generate from successive
applications of DeMorgan’s theorem.

Equations 1(a) and 2(a) of Table 11.1 show the compact minterm and compact maxterm forms of an arbitrary
function, respectively. A reduced version of these equations appears in 1(b) and 2(b). The resulting equations
serve as the starting point to generate other forms. The following steps describe how to generate the set of eight
standard forms from the two compact forms. Table 11.2 provides a written description of this procedure.

1(a) 2(a)

 AND/OR Form OR/AND Form

1(b) 2(b)

 2(c)

 2(d)

 2(e)

 NAND/NAND Form NOR/NOR Form

1(c) 2(f)

1(d) 2(g)

 OR/NAND Form AND/NOR Form

1(e) 2(h)

 NOR/OR Form NAND/AND Form

1(f) 2(i)

Table 11.1: The generation of standard circuit forms by using DeMorgan's theorem.

 15,14,13,11,10,9,5,4,1F 12,8,7,6,3,2,0F

CBADCCAF F AC AC D A B D

 F AC AC D A B D

 F AC AC D A B D

 F A C A C D A B D

CBADCCAF F A C A C D A B D

 CBADCCAF F A C A C D A B D

 CBADCCAF F AC AC D A B D

 CBADCCAF F AC AC D A B D

Free Range Digital Design Foundation Modeling Chapter 11

 - 159 -

AND/OR Form OR/AND Form

The form in 1(b) is the AND/OR form, which we
refer to as the Sum of Products (SOP) form. We
obtain this form by writing a product term for
every ‘1’ in the truth table modeling the given
circuit. The final function represents a logical
summing of the associated product terms.

We obtain the form in 2(b) writing a product
term for every ‘0’ in the truth table, which gives
us an expression for the complement of the
function (!F). The expression is in AND/OR
form, but we massage it into a different form by
writing an expression for F rather than !F in 2(b)
by complementing both sides of the expressions,
in equation in 2(c). Dropping the double
complement on the left side of equality generates
the equation in 2(d). An application of
DeMorgan’s theorem generates the expression
on the right side of the equality. The equation in
2(e) shows the final OR/AND form which is the
Product of Sums (POS) form.

NAND/NAND Form NOR/NOR Form

We obtain the NAND/NAND form in 1(c) from
the AND/OR form by double-complementing
both sides of the equation in 1(b). The double
complement on the left side of the equation 1(c)
drops out. One of the overbars on the right side
of equation 1(c) DeMorganizes the expression.
The equation in 1(d) shows the NAND/NAND
form of the expression, which refers to each of
the individual product terms have overbars (a
NAND function). These individual terms are
ANDed together and complemented which
effectively changes it from an AND function to
an NAND function.

We obtain the form in 2(f) from the OR/AND
form by double complementing both sides of the
equation in 2(e). The double complement on the
left side of the equation 2(f) drops out. On the
right side of equation 2(f), we use one of the
complements to DeMorganize the expression.
The equation in 2(g) shows the NOR/NOR form
of the expression. We refer to this as NOR/NOR
form because each of the individual sum terms
have overbars (a NOR function). These NOR
functions are ORed together and complemented
which changes it to a NOR function.

OR/NAND Form AND/NOR Form

We obtain the OR/NAND form in 1(e) by
DeMorganizing the individual terms in 1(d) to
change them from product terms to sum terms.
The expression retains the overbar over the
entire term.

We obtain the AND/NOR form in 2(h) by
DeMorganizing the individual terms in 2(g) to
change them from sum terms to product terms.
The expression retains the overbar over the
entire term.

NOR/OR Form NAND/AND Form

We obtain the NOR/OR form in 1(f) by
DeMorganizing the entire OR/NAND form of
1(e), which distributes the overbar on the right
side of the equals sign to the individual terms in
the equation.

We obtain the NAND/AND form in 2(i) by
DeMorganizing the AND/NOR form in 2(h),
which distributes the overbar on the right side of
the equals sign to the individual terms in the
equation.

Table 11.2: Written description of the circuit forms and derivations in Table 11.1.

Free Range Digital Design Foundation Modeling Chapter 11

 - 160 -

11.3 Minimum Cost Concepts

The best approach to implement circuits is implementing them at a minimum cost. This is an open-ended
concept because minimum cost approach requires a proper definition of the word “minimum”. There are about
a bajillion definitions of the word “minimum” in terms of implementing a circuit. For digital design courses,
this definition usually refers to the number of devices (gates and inverters) in the implemented circuit.
“Minimum” can also mean the number of integrated circuits (ICs) you use in your circuit2, or the number of
transistors you use in the ICs in the circuit, etc. The fact you’re your company may already have a bajillion ICs
on hand that you can use further obscures the definition of minimum cost, as it would be cheaper to use them
for your circuit. It’s all strange and somewhat obscure stuff. The final word on minimum cost is this: if
someone tells you to apply minimum cost concepts to your design, make sure they provide you with a
definition of “minimum”.

Up to this point, you’ve learned to implemented functions with many different forms. When the concept of
minimum cost arises, you generally examine both POS and SOP forms. But wait, it gets worse. Now that you
know a bunch of other forms (such as NAND/NAND and NOR/NOR), you generally need to check all those
forms also3. Unless given other specific directions, the form that uses the least amount of gates is generally the
minimum cost solution.

Example 11.1: Minimum Cost Issues

Which of the eight standard forms would result in a minimum cost implementation in term of
a) device count (gates and inverters), and, b) gate count for the following function. Assume
you can use gates with any number of inputs.

Solution: Lucky for us, this function is the same function that we used to describe the original eight forms.
That means we previously did most of the work of the grunt work associated with this problem. Going back
and examining Table 11.1, you’ll be able to generate the information in Table 11.3; it has all the info we need
if we know where to look.

From Table 11.3, the two best forms for the a) part of this example are OR/AND and NOR/NOR forms
because they require six devices while other forms require more. For part b), all of the forms require the same
number of gates; no particular form has any obvious advantage.

Form a) Number of Gates & Inverters b) Number of Gates only

AND/OR (SOP) 7 4
OR/AND (POS) 6 4
NAND/NAND (SOP) 7 4
NOR/NOR (POS) 6 4
OR/NAND 7 4
AND/NOR 8 4
NOR/OR 8 4
NAND/AND 8 4

Table 11.3: The whole enchilada for Example 11.1.

2 There are many ICs out there containing different flavors of standard gates such as AND, OR, NAND gates, etc.
3 Though this seems somewhat excessive, it’s not as strange as it seems. When you’re building one circuit, saving a gate
here and there is not going to make a lot of difference. However, if your circuit is going to go into production, and they’re
planning to build a million units of your circuit, the savings of one cent in a million circuits equates to as much money as
the typical college president makes in a day.

 15,14,13,11,10,9,5,4,1F

Free Range Digital Design Foundation Modeling Chapter 11

 - 161 -

11.4 Chapter Summary

 Circuit forms are used to implement logic functions using functionally equivalent expressions. Although
there are an effectively infinite number of ways to represent a function, there are only a few standard
ways. These standard ways are referred to as circuit forms and can be derived from repeated applications
of DeMorgan’s theorem. The most popular forms are SOP-type forms (AND/OR, NAND/NAND) and
POS-type forms (OR/AND, NOR/NOR).

 Minimum cost concept pertains to the many functionally equivalent forms of circuits. When many circuit
forms are possible, the circuit with the minimum cost is often the one that is implemented. Many factors
can determine the minimum cost of a given function. If you are required to implement a minimum cost
solution for a given function, the term “minimum cost” must first be explicitly defined.

Free Range Digital Design Foundation Modeling Chapter 11

 - 162 -

11.5 Chapter Exercises

1) Write the eight standard forms associated for the following function:

a) 𝐹 𝐴, 𝐵, 𝐶 ∑ 0,1,4,6

b) Draw the circuit for the NAND/NAND & NOR/NOR forms using inverters where necessary.

2) Show all four AND/OR related forms of the following equation: 𝐹 𝐴, 𝐵, 𝐶, 𝐷 𝐴𝐵𝐶 𝐵𝐷 �̅�𝐵𝐷

3) Show all four OR/AND related forms for the following equation:

𝐹 𝐴, 𝐵, 𝐶, 𝐷 𝐵 𝐶 𝐷 �̅� �̅� 𝐴 𝐵 𝐷

4) Show all four AND/OR related forms for the following equation:

𝐹 𝐴, 𝐵, 𝐶, 𝐷 𝐴 𝐵 �̅� �̅� 𝐵 𝐶 𝐷

5) Show all four AND/OR related forms for the following equation:

𝐹 𝐴, 𝐵, 𝐶, 𝐷 𝐵𝐷 𝐴𝐷 𝐵𝐶𝐷

6) Draw a circuit for the following equations using only NAND gates and inverters.

a) 𝐹 𝑋, 𝑌, 𝑍 𝑋𝑌 𝑋𝑌𝑍 𝑌𝑍

b) 𝐹 𝐴, 𝐵, 𝐶 𝐵�̅� 𝐴𝐵𝐶 �̅�𝐶

c) 𝐹 𝐴, 𝐵, 𝐶 𝐴𝐵�̅� 𝐴𝐵𝐶 �̅�𝐵𝐶

7) Draw a circuit for the following equations using only NOR gates and inverters:

a) 𝐹 𝐴, 𝐵, 𝐶 𝐴 𝐵 �̅� 𝐶 𝐴 𝐵 �̅�

b) 𝐹 𝑋, 𝑌, 𝑍 𝑋 𝑌 �̅� 𝑋 �̅� 𝑌 �̅�

c) 𝐹 𝐴, 𝐵, 𝐶 �̅� 𝐴 𝐵 𝐴 𝐵 �̅�

8) Show the four standard AND/OR-type Boolean equation forms for the following circuits.

(a) (b)

Free Range Digital Design Foundation Modeling Chapter 11

 - 163 -

9) Show the four standard OR/AND Boolean equation forms for the following circuits.

(a) (b)

Free Range Digital Design Foundation Modeling Chapter 11

 - 164 -

11.6 Design Problems

For the following problems:

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution

 Minimize the use of hardware in your solution

 State the types of control your circuit uses (“no control”, “internal control”, and/or “external control”).

1) Design a circuit that indicates special conditions on a 4-bit input. Consider the 4-bit input to be a binary
number. This circuit has two outputs. One output indicates when the input is an even multiple of four and
greater than zero. The other output indicates when the input is greater than 2 and less than 11. Design this
circuit any way you deem appropriate.

a) Use nothing other than NOR gates and inverters in your final circuit

b) Use nothing other than NAND gates and inverters in your final circuit.

Free Range Digital Design Foundation Modeling Chapter 12

 - 165 -

12 Signed Binary Representations

12.1 Introduction

The binary numbers we’ve worked with up until now have all been unsigned representations. This chapter
presents three methods for representing signed binary numbers, which then allows us to start designing
complex circuits that implement meaningful mathematical operations.

Main Chapter Topics

BINARY NUMBER REPRESENTATIONS: This chapter presents common representations
of signed binary number including sign magnitude, radix complement, and diminished
radix complement.

Why This Chapter is Important

 Be able to change the sign of numbers in SM, DRC, and RC format.

 Be able to convert form numbers in one representation to numbers in other
representations.

 Be able to describe the number ranges for a given number of bits for signed and
unsigned binary numbers in SM, DRC, and RC formats

12.2 Signed Binary Number Representations

Computers can only represent numbers with ones and zeros, which means we must also represent negative
numbers using ones and zeros as well. There is no problem when you’re simply writing numbers on a piece of
paper because all you do is drop a “-“ in front of the number and everyone agrees the number is negative.
Computers don’t have an easy and efficient way to use a “-“ sign to represent negative number. This section
describes how to represent signed numbers using only the binary values.

There are a few standard ways to represent signed binary numbers. In particular, there are three representations
of interest: sign magnitude (SM), diminished radix complement (DRC), and radix complement (RC). The most
widely used is RC notation, but we’ll be working with all three and classify the work we do with the less used
notations as a wicked academic exercise.

The easiest and most efficient approach to represent sign numbers is to use a single bit, such as a ‘1’, to
indicate that a particular number is negative. The key to this method is to agree upon a standard location for
this bit, which is the left-most bit position of the number. The left-most-bit in every signed number
representation in this text is the sign bit. If the sign bit is a ‘1’, then we interpret the number as negative; if the
sign bit is a ‘0’, the number is positive. Figure 12.1 provides a visual representation of the bit positions of the
sign and magnitude bits.

Figure 12.1: Some generic nine-bit number that we interpret as being a signed value.

Free Range Digital Design Foundation Modeling Chapter 12

 - 166 -

12.2.1 Sign Magnitude Notation (SM):

In SM notation, the sign bit indicates the sign of the number, while the other bits represent the magnitude of
the number. Table 12.1 lists everything you need to know about tweaking SM numbers.

Operation Procedure

Multiply number by -1 toggle (change state) the sign bit

Convert positive SM to
decimal equivalent

apply binary-to-decimal conversion on magnitude bits

Convert negative SM to
decimal equivalent

1) note that the number is negative
2) do binary to decimal conversion on magnitude bits
3) add in minus sign (from step 1)

Table 12.1: Standard operations on binary numbers represented in SM.

Example 12.1: Changing the Sign of Numbers in SM Form

Change the sign of the following binary numbers represented in SM:

a) 011000012

b) 1100112

Solution: Changing the sign involves toggling the sign bit and doing nothing to the magnitude bits. You don’t
need to know the decimal equivalents of these binary numbers in order to complete this problem.

a) 111000012

b) 0100112

Example 12.2: Converting Numbers in SM Form to Decimal

Convert the following binary numbers represented in SM to their decimal equivalents:

a) 011000012

b) 1100112

Solution: a) This number is an 8-bit positive number. The number converts directly to decimal since the sign
bit is zero and thus adds nothing to the final decimal number. The answer is 97.

b) This number is a negative 6-bit binary number. We convert the number to decimal by first noting that the
number is negative and then performing a binary-to-decimal conversion on the magnitude bits. The magnitude
bits are 100112, which represent 19 in decimal. Adding the negative sign complete the solution: -19.

Free Range Digital Design Foundation Modeling Chapter 12

 - 167 -

12.2.2 Diminished Radix Complement (DRC)

We can best explain the DRC representation by the operations required to change the sign of the number,
which only requires that we toggle all the bits in the binary number (which we refer to as a 1’s complement). In
DRC notation, the sign bit indicates the sign of the number and the other bits represent the magnitude of the
number (but positive and negative numbers represent their magnitudes differently). Table 12.2 lists everything
you need to know about tweaking DRC numbers.

Operation Procedure

Multiply number by -1 toggle all the bits (1’s complement)

Convert positive DRC to
decimal equivalent

do binary to decimal conversion on magnitude bits

Convert negative DRC to
decimal equivalent

1) note that the number is negative
2) toggle all the bits (1’s complement)
3) do binary to decimal conversion on magnitude bits
4) add in minus sign (from step 1)

Table 12.2: Standard operations on binary numbers represented in DRC.

Example 12.3: Changing the Sign of Numbers in DRC Format

Change the sign of the following binary numbers represented in DRC:

a) 011100012

b) 10011012

Solution: Changing the sign involves toggling all the bits. This problem is doable without knowing the decimal
equivalents of the binary numbers.

a) 100011102

b) 01100102

Example 12.4: Converting Numbers in DRC Format to Decimal

Convert the following binary numbers represented in DRC to their decimal equivalents:

a) 011100012

b) 1100112

Solution: a) This number is an 8-bit positive number. We can convert to decimal directly using standard
binary-to-decimal conversion techniques since the sign bit is zero and adds nothing to the final decimal
number. The answer is 113.

b) This number is a negative 6-bit binary number. Convert it to decimal by 1) noting that the number is
negative, 2) toggling all the bits, 3) doing a decimal-to-binary conversion on the resulting number, and 4)
adding the negative sign.

1) Yep, its negative

Free Range Digital Design Foundation Modeling Chapter 12

 - 168 -

2) 1100112 0011002

3) 0011002 represents 12 in decimal

4) Adding the negative sign completes the solution: -12

12.2.3 Radix Complement (RC):

We can best explain RC representations by the operations required to toggle the sign of the number. In RC
notation, the sign bit indicates the sign of the number, but it has a unique way of also being part of the
magnitude for negative numbers. We once again interpret the magnitude bits differently for positive and
negative numbers. For positive numbers, we interpret the magnitude bits directly as a simple binary number. If
the number is negative, we consider the magnitude bits to be in a two’s complement representation. Table 12.3
lists everything you may want to know about tweaking RC numbers.

Operation Procedure

Multiply number by -1 take the two’s complement of the number

Convert positive RC to
decimal equivalent

do binary to decimal conversion on magnitude bits

Convert negative RC to
decimal equivalent

1) note that the number is negative
2) take the two’s complement of the number
3) do binary to decimal conversion on magnitude bits
4) add in minus sign (from step 1)

Table 12.3: Standard operations on binary numbers represented in RC.

Finding the two’s complement of a number can be done by hand in two different ways. We define the two’s
complement as “one greater than the 1’s complement”. This means that to find the 2’s complement of a binary
number, you toggle all the bits (the 1’s complement) and then add 1 to the result. Though this works fine, it can
sometimes lead to errors since you’ll possibly need to deal with a carry bit across the span of the number.

The easiest way to find the 2’s complement of a number is to apply the following algorithm: starting from the
right-most bit in the binary number, examine each bit from right to left. When you encounter a ‘1’, toggle
every bit after the first ‘1’ bit that is found (but don’t toggle the first ‘1’ bit). Figure 12.2 shows just about
every case you’ll ever hope to run across. In Figure 12.2, NC stands for “no change” while TOG stands for
“toggle”.

Free Range Digital Design Foundation Modeling Chapter 12

 - 169 -

(a) (b)

(c) (d)

Figure 12.2: Four examples showing the 2's complement conversion algorithm.

Example 12.5: Changing the Sign of Numbers in RC Format

Change the sign of the following binary numbers represented in RC:

a) 001101012,

b) 10011012.

Solution: Changing the sign involves taking the two’s complement of the numbers. You don’t need to know
the decimal equivalents of these numbers in order to complete this example.

a) 110010112

b) 01100112

Example 12.6: Converting Numbers in RC Format to Decimal

Convert the following binary numbers represented in RC to their decimal equivalents:

a) 001101012

b) 10011012

Solution: a) This number is an 8-bit positive number. We can convert to decimal directly using standard binary
to decimal conversion techniques since the sign bit is zero and adds nothing to the final decimal number. The
answer is 53.

Free Range Digital Design Foundation Modeling Chapter 12

 - 170 -

b) This number is a negative 7-bit binary number. Conversion to decimal is done by 1) noting that the number
is negative, 2) taking the two’s complement, and 3) doing a decimal to binary conversion on the resulting
number, and 4) tacking on a negative sign to the result.

1) Yep, by golly, its negative

2) 10011012 01100112

3) 01100112 represents 51 in decimal

4) Adding the negative sign completes the solution: -51

12.3 Number Ranges in SM, DRC, and RC Notations

Representing sign numbers in binary requires that we use an extra bit (the sign bit) to represent the sign. It
seems that if we use one less bit to represent the magnitude of the number, we can only represent one-half as
many numbers by the same amount of bits1. This is not the case. The reality is that, generally speaking, the
ranges of numbers that are representable with an unsigned binary number shift downwards when representing
signed numbers. The resulting range is still the same but it no longer starts at zero (as it does for an unsigned
binary number); the range of a signed binary number is now roughly centered about zero. Figure 12.3 shows
what the last few sentences are attempting to convey.

Unsigned Binary Number Range Signed Binary Number Ranges

 SM and DRC

 RC

Figure 12.3: Number ranges for signed and unsigned binary numbers (n=8).

The key to understanding Figure 12.3 is that the letter n represents the number of bits in the binary number.
The smaller numbers in parenthesis in Figure 12.3 shows the number ranges when n=8. Note in Figure 12.3
that with SM and DRC representations, we can only represent 2n-1 out of the 2n possible values for a given
value of n. However, with RC, we can represent all 2n possible values. This is a major reason why computers
commonly use RC for signed binary number representations, as having two values representing zero is
challenging for the hardware performing mathematical operations on those numbers.

Twos complement math is an area in digital design that just about everyone is weak in. People generally get by
because they rely on some other entity to mask their lack of understanding of the concepts. Don’t be one of
these people.

1 If this does not make sense, think about it for a minute. If there is one bit dedicated to the sign bit, doesn’t that mean that
there is one less bit to have a “weighting” in the number?

Free Range Digital Design Foundation Modeling Chapter 12

 - 171 -

12.4 Extending Data Widths

You’ll often times find that your design must change data width of a number without changing the value of the
number. The most common of these changes is when you need to extend the width of the data without
changing the numeric value of that data. You’ve probably done this many time using decimal numbers, where
you add as many 0’s to the front of the number (the digits with the largest weights).

12.4.1 Unsigned Binary

Extending the bit-width with unsigned binary numbers is the most straightforward as it is similar to decimal
numbers. It is straightforward because we don’t need to deal with the sign bit. For unsigned binary number we
simply add as many zeros as we need to the number to attain the desired width. The numbers we add become
the most significant digits of the number, meaning we add the zeros to the left side of the existing bits. We
refer to this form of bit stuffing as “zero-extending”, or “zero-stuffing”, or simply “bit stuffing”. Table 12.4
provides a few examples of extending the bit-width of unsigned number from four to eight bits.

Decimal
Unsigned Binary

(4-bit) (8-bit)

9 1001 00001001

3 0011 00000011

15 1111 00001111

1 0001 00000001

Table 12.4: Examples of extending bit-widths of unsigned binary numbers.

12.4.2 Signed Binary (RC Form)

Extending the bit-width of signed numbers is slightly more involved than the same action with unsigned
number. We only consider signed numbers in radix complement format (RC) for this discussion.

The main issue when dealing with signed numbers is working with the sign bit. It seems natural that zero-
extending the any value can’t possibly change that value, but it can when dealing with signed numbers. For
example, if we zero-extend a negative number, the sign bit of the smaller bit-width is no longer the left-most
bit; the new sign bit is ‘0’, which makes the number positive, which is clearly not what we want. The solution
when working with signed number is to “sign-extend” the number. Sign extension means that all the extra bits
we add to the number need to be the same value as the sign bit. In short, we bit-stuff the number with 1’s if the
smaller width number is negative; otherwise we bit-stuff it with 0’s. Table 12.5 provides a few examples of
extending the bit-width of signed binary numbers (RC format) from four to eight bits, which we refer to as sign
extension.

Free Range Digital Design Foundation Modeling Chapter 12

 - 172 -

Decimal

Signed Binary (RC)

4-bits 8-bits

-7 1001 11111001

3 0011 00000011

-1 1111 11111111

-8 1000 11111000

1 0001 00000001

Table 12.5: Examples of extending bit-widths of signed binary
numbers (RC format).

Free Range Digital Design Foundation Modeling Chapter 12

 - 173 -

12.5 Chapter Summary

 Signed binary numbers typically use a sign-bit to indicate the sign (negative or positive) of a given
number. Signed binary numbers commonly use one of three representations: sign magnitude (SM),
Diminished Radix Complement (DRC), or Radix Complement (RC).

 Each of the methods used to represent binary numbers have their own ranges of values that those methods
can represent. Although the different number formats can represent roughly the same quantity of unique
number, signed numbers are typically centered about zero, while unsigned numbers start at zero.

 Extending the bit-widths of unsigned and signed binary numbers is different. Typically, unsigned numbers
can be bit-stuffed with zeros without changing the value of the number (zero-extended). Signed numbers
must take into account the sign bit. Specifically, signed number in RC format are signed extended when
the number requires an increase in bit-width.

Free Range Digital Design Foundation Modeling Chapter 12

 - 174 -

12.6 Chapter Exercises

1) Complete the following table:

bits unsigned binary range signed binary range (RC)

4

6

8

10

11

12

14

15

16

2) Which of the following two signed binary (SB) numbers have a greater magnitude? Assume the numbers
are given in radix complement (RC) form.

a) 1110 1110 0000 0010

b) 1000 1101 0111 0111

c) 1110 1110 0001 0011

3) Which of the following three SB numbers has the largest magnitude?

a) 1110 0001(SM), 1001 1101 (DRC), 1001 1100 (RC)

b) 1001 1110 (SM), 1000 1101(DRC), 1001 1111(RC)

5) The three numbers below are listed in hex but they represent 8-bit signed binary numbers in the given
formats. Which of the three numbers is the most negative?

a) B4(SM), CC(DRC), D1(RC)

b) F3(SM), EC(DRC), DD(RC)

6) Write the decimal equivalents of the following numbers for SM, DRC, and RC formats

a) BC16

b) 4A16

c) D216

7) Extend the bit-widths of the following unsigned binary values from 8 to 12-bits. Write the answers as
binary values.

a) A716

b) 4A16

Free Range Digital Design Foundation Modeling Chapter 12

 - 175 -

c) C416

8) Extend the bit-widths of the following unsigned binary values from 8 to 16-bits. Write the answers in
hexadecimal format.

a) AF16

b) 4A16

c) C416

9) Extend the bit-widths of the following signed binary values (RC format) from 8 to 12-bits. Write the
answers as binary values.

a) A716

b) 4A16

c) C416

d) 0216

10) Extend the bit-widths of the following signed binary values (RC format) from 8 to 16-bits. Write the
answers in hexadecimal format.

a) 0xDE

b) 0x3F

c) 0xC4

d) 0x99

Free Range Digital Design Foundation Modeling Chapter 12

 - 176 -

12.7 Design Problems

For the following problems:

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution

 Minimize the use of hardware in your solution

 State the types of control your circuit uses (“no control”, “internal control”, and/or “external control”).

1) Design a circuit the changes the sign of an 8-bit signed binary number in sign magnitude form.

2) Design a circuit the changes the sign of an 8-bit signed binary number in diminished radix complement
form.

3) Design a circuit that changes the sign of an 8-bit signed binary number in radix complement form.

4) Design a circuit that inputs an 8-bit signed binary number in RC format. If the input is positive, the circuit
outputs the input number; otherwise, the circuit outputs all zeros.

5) Design a circuit that inputs an 8-bit signed binary number in RC format. If the input is positive, the outputs
a negative version of the input; otherwise the circuit outputs all zeros.

Free Range Digital Design Foundation Modeling Chapter 13

 - 177 -

13 Binary Mathematics

13.1 Introduction

Now that you’ve seen various number systems and various manipulations of numbers in various radii, we can
now start of doing basic math with binary numbers. This introduction provides the background you can use for
designing circuits that performs math operations.

Main Chapter Topics

BINARY ARITHMETIC: This chapter presents the basics of binary arithmetic using
signed and unsigned binary numbers. The emphasis is on fixed number lengths and
detection of result validity after mathematical operations.

Chapter Acquired Skills

 Be able to perform addition and subtraction with signed binary numbers in RC
format.

 Be able to determine the validity of results when performing addition and subtraction
on numbers in RC format.

13.2 Binary Addition and Subtraction

The topic of binary arithmetic and computers is a deep subject that many people spend their entire lives
studying. If you design a computer that performs efficient mathematical operations, you’ll have a good
computer. The problem is that there are a bunch of trade-offs along the way; you’ll run into some of these
topics later in your digital/computer education but they’re beyond the scope of this discussion. We limit this
discussion to the addition and subtraction of signed and unsigned binary numbers.

Recall that digital circuits comprise of a fixed set of hardware. What this means is that we generally perform
arithmetic operations with fixed sized circuits (fixed data widths). For example, a 12-bit RCA will have trouble
adding two numbers of 14 bytes each.

The ramification of a fixed hardware size is that your mathematical operations must stay within these limits in
order for the result to be valid. If you stay within these limits, your result is valid; if you exceed these limits,
you’re result is invalid. The crux of this discussion is that you need to know when you’ve exceeded these limits
so you can know whether your answer is valid or not. There are two main ways to exceed these limits: 1) go
over the stated number range for the size of the data you’re using, or 2) go under the stated range of data you’re
using.

13.2.1 Binary Subtraction

One of the many recurring themes in digital design is that you always want to design your circuits to do what
they need to while as little hardware as possible. Mathematical operations in computers do not come free: the
underlying hardware performs the operations. Hardware, or digital circuitry, requires up space, consumes
power, and makes your design more complex as you use more of it.

Design factors such as power consumption and circuit real estate play out directly in this discussion in the
context of binary subtraction. Although we could design a circuit that performs subtraction, the better approach

Free Range Digital Design Foundation Modeling Chapter 13

 - 178 -

is using a circuit we already designed to perform subtraction. The approach we take is to use our RCA to apply
indirect subtraction by addition. Equation 13.1: shows the basic formula for this approach.

N1 - N2 = N1 + (-N2)

Equation 13.1: Indirect subtraction by addition.

Changing the sign of a number is straightforward when dealing with RC numbers: you take the two’s
complement. In order to subtract one binary number from another you must first take the two’s complement of
that number being subtracted and add it to the other number (as Equation 13.1 says). After this addition
operation, you need to examine some signals in order to determine if the result is valid or not, as the result may
exceed the given number determined by the hardware.

Consider adding two numbers A and B with a result C: A + B = C. We refer to variable A as the augend, B as
the addend, and C as the sum. Consider subtracting one number B from another number A with a result C. In
case, we refer to A as the minuend, B as the subtrahend, and C as the difference. This knowledge could be
valuable if you were to find yourself on Jeopardy but it does not get a lot of mileage outside of this discussion.

13.2.2 Addition and Subtraction on Unsigned Binary Numbers

The results of your mathematical operation can either underflow or overflow the given number range when
working with unsigned binary numbers. Underflow would be the result of subtracting a binary number from a
smaller binary number (the result would be negative which would violate the unsignedness of the number).
Overflow would result when the addition of two numbers exceeds the top-end of the given range1. Table 13.1
and Table 13.2 list everything you need to know about the overflow and underflow of binary numbers.

Overflow in Unsigned Binary Addition

Description The sum of two binary numbers exceeds the range associated with the data width

Indicator The carry-out from the MSB addition is ‘1’.

Example 13.1

1001 + 0011 = ?
 1001
+ 0011
0 1100

The carry from the MSB is 0, which
indicates there was no carry. The
sum (the four-bit result) is a valid.

Example 13.2

1011 + 0111 = ?
 1011
+ 0111
1 0010

The carry out of the MSB is 1, which
indicates there was a carry.
Therefore, the sum (the four-bit
result) is not valid.

Table 13.1: The low-down on unsigned overflow.

1 An issue here is that we often use “overflow” to describe both underflow and overflow. The notion here is that you can
exceed, or “overflow”, the given range in either direction.

Free Range Digital Design Foundation Modeling Chapter 13

 - 179 -

Underflow in Unsigned Binary Subtraction

Description
The difference of between two binary numbers is below the range associated with
the data width

Indicator The carry-out from the MSB addition is ‘0’.

Example 13.3

1001 - 0011 = ?

add the negation of 0011
(two’s complement)

 1001
+ 1101
1 0110

The carry from the MSB is ‘1’,
which indicates there was a
carry. There was no underflow
and the difference (the four-bit
result) is a valid.

Example 13.4

0111 - 1100 = ?

add the negation of 1100
(two’s complement)

 0111
+ 0100
0 1011

The carry out of the MSB is ‘0’,
which indicates there was no
carry. An underflow has occurred
and the difference (the four-bit
result) is not valid.

Table 13.2: The low-down on unsigned underflow.

13.2.3 Addition and Subtraction on Signed Binary Numbers

The results of your mathematical operations on signed binary numbers can either underflow and overflow the
given number range. The approach to dealing with operations on signed binary number is more intuitive than
dealing with unsigned binary numbers. The list below describes the two main concepts.

 Overflow can never occur if you’re adding a positive number to a negative number; the result from
the operation A - B is always valid if both A and B are positive numbers or both negative numbers.
Therefore, if the two numbers have different sign bits before the addition2, the answer is always valid.

 Overflow and underflow only occurs when you add to numbers that have equivalent sign bits but the
result has a sign bit of a different value. Overflow and underflow can only happen in two scenarios:

o Overflow: Adding a positive number to a positive number. However, due to the indirect
subtraction by addition, this can include subtracting a negative number from a positive
number.

o Underflow: Subtracting a positive number from a negative number. Also due to indirect
subtraction by addition, this can include adding a negative number to a negative number.

2 Keeping in mind that either we can add two numbers of different signs, or, we’ll have to change the sign of one of the
numbers when doing subtraction (indirect subtraction by addition).

Free Range Digital Design Foundation Modeling Chapter 13

 - 180 -

Overflow in Signed Binary Addition and Subtraction

Description
The result of an operation between two binary numbers is beyond the range
associated with the bit width.

Indicator
Two numbers of the same sign are added and the result is a number of a different
sign (this is the direct addition of two numbers or the addition associated with
the indirect subtraction by addition method). We never consider the carry-out.

Example 13.5

0011 + 0010 = ?

 0011
+ 0010
0 0101

The sign of addend and augend
are positive and the sign of result
is positive. The result is valid.

Example 13.6

0100 + 1110 = ?

 0100
+ 1110
1 0010

The sign of addend and augend
are different so there can be no
overflow or underflow. The
result is valid.

Example 13.7

0110 + 0101 = ?

 0110
+ 0101
0 1011

The sign of the addend and
augend are the same but are
different from the sign of the
result. The result is not valid.

Example 13.8

0100 - 1110 = ?

add the negation of 1110

 0100
+ 0010
0 0110

The sign of addend and augend
are positive and the sign of result
is positive. The result is valid.

Example 13.9

0100 - 0011 = ?

add the negation of 0011

 0100
+ 1101
1 0001

The sign of addend and augend
are different so there can be no
overflow or underflow. The
result is valid.

Example 13.10

0100 - 1100 = ?

add the negation of 1100

 0100
+ 0100
0 1000

The sign of the addend and
augend are the same but are
different from the sign of the
result. The result is not valid

Table 13.3: The low-down on overflow in signed binary numbers.

Free Range Digital Design Foundation Modeling Chapter 13

 - 181 -

Underflow in Signed Binary Addition and Subtraction

Description
The result of an operation between two binary numbers is below the range
associated with the bit width.

Indicator
Two numbers of the same sign are added and the result is a number of a different
sign (this is the direct addition of two numbers or the addition associated with
the indirect subtraction by addition method). We never consider the carry-out.

Example 13.11

1111 + 0010 = ?

 1111
+ 0010
1 0001

The sign of addend and augend
are different so there can be no
overflow or underflow. The
result is valid.

Example 13.12

1110 + 1111 = ?

 1110
+ 1111
1 1101

The sign of the addend and
augend are the same and match
the sign of the result. The result
is valid.

Example 13.13

1100 + 1001 = ?

 1100
+ 1001
1 0101

The sign of the addend and
augend are the same but are
different from the sign of the
result. The result is not valid.

Example 13.14

1110 - 1111 = ?

add negation of 1111

 1110
+ 0001
0 1111

The sign of addend and augend
are different so there can be no
overflow or underflow. The
result is valid.

Example 13.15

1100 - 0011 = ?

add negation of 0011

 1100
+ 1101
1 1001

The sign of the addend and
augend are the same and match
the sign of the result. The result
is valid.

Example 13.16

1001 - 0110 = ?

add negation of 1101

 1001
+ 1010
1 0011

The sign of the addend and
augend are the same but are
different from the sign of the
result. The result is not valid.

Table 13.4: The low-down on underflow in signed binary numbers.

13.3 Special Cases of Validity for RC Numbers

The validity check presented in the previous section unfortunately fails in one case, which is a known issue
when working with addition and subtraction using numbers in RC format. The RCA we use in this text has two
inputs: A & B. The RCA only adds number so it always adds the values of A & B. When we work with
numbers in RC format, one or both of these two inputs can be negative.

The case that causes trouble is with when the B input is a negative number of the largest magnitude associated
with the bit-width of B, and B is being subtracted from A. In this case, the validity check this chapter presented
does not provide the correct answer. There are ways to modify the validity check to work in all cases, but we
choose not to in this text in order to keep the conversation relatively simple. So as a result, this text never

Free Range Digital Design Foundation Modeling Chapter 13

 - 182 -

considers this case when checking validity of operations on RC numbers. In the end, creating the circuitry that
makes the validity correct in all cases becomes a nice little design problem.

Free Range Digital Design Foundation Modeling Chapter 13

 - 183 -

13.4 Chapter Summary

 We generally do all of our mathematical operations using radix complement (RC) notations of numbers.
While you can do math operations with other number representations, RC format has some definite
advantages.

 Binary addition and subtraction has special meaning in the context of signed binary number
representations. One of the key concerns when performing binary arithmetic operations is whether the
result is valid or not. The validity of the result is based on the range of values that a given set of bits can
represent.

 We often perform binary subtraction by using addition. We refer to this technique as the indirect
subtraction by addition method. The accepted advantage of this approach is that the hardware used for
addition can also be used for subtraction (after adding hardware that implements changing the sign of the
hardware).

Free Range Digital Design Foundation Modeling Chapter 13

 - 184 -

13.5 Chapter Exercises

1) Briefly explain why adding two numbers of a different sign will always result in a valid number in terms
of fixed hardware widths.

2) Briefly explain why “underflow” is sometimes classified as “overflow”.

3) Briefly explain the difference between the concept of overflow/underflow and the concept of carry-out.

4) Briefly explain what is meant by the notion of “fixed hardware widths”.

5) Complete the following mathematical operations on the unsigned binary numbers. Indicate which results
are valid based on the given number range.

a) 001100 + 000011

b) 001110 + 000111

c) 100101 + 101010

d) 001000 + 111100

e) 000100 + 101111

6) Complete the following mathematical operations on the unsigned binary numbers. Indicate which results
are valid based on the given number range.

a) 001100 + 000011

b) 001110 + 000111

c) 100101 + 101010

d) 001000 + 111100

e) 000100 + 101111

7) Complete the following mathematical operations on the unsigned binary numbers. Indicate which results
are valid based on the given number range.

a) 001100 - 000111

b) 100101 - 001000

c) 111010 - 111100

d) 010001 - 011011

e) 010010 – 000110

8) Complete the following mathematical operations on the unsigned binary numbers. Indicate which results
are valid based on the given number range.

a) 01001010 + 00010000

b) 11110000 + 00010001

c) 11100100 + 00100101

d) 01000000 + 01110000

e) 01001000 + 01111111

Free Range Digital Design Foundation Modeling Chapter 13

 - 185 -

9) Complete the following mathematical operations on the unsigned binary numbers. Indicate which results
are valid based on the given number range.

a) 01000001 - 00111100

b) 11000000 - 01001110

c) 00100101 - 10001110

d) 10000001 - 11000010

e) 11010011 – 11111100

10) Complete the following mathematical operations on the signed binary numbers (RC representation).
Indicate which results are valid based on the given number range.

a) 00011 + 00111

b) 01110 + 00011

c) 01001 + 00100

d) 01010 + 00111

e) 01011 + 01001

f) 00011 - 00111

g) 01110 - 00011

h) 01001 - 00100

i) 00110 - 10100

j) 00111 - 11100

k) 01010 - 11000

l) 01010 - 11110

m) 01110 – 11001

10) Complete the following mathematical operations on the signed binary numbers (RC representation).
Indicate which results are valid based on the given number range.

a) 10111 + 01000

b) 11001 + 01111

c) 11101 + 00100

d) 11010 - 01010

e) 11101 - 00100

f) 11010 - 01110

g) 10100 - 01110

h) 11111 - 01001

i) 10111 - 10111

j) 11101 - 11010

k) 11000 – 11110

11) Describe two different algorithms for finding the 2’s complement of a signed binary number.

Free Range Digital Design Foundation Modeling Chapter 13

 - 186 -

12) Consider the case where a Ripple Carry Adder is used to perform addition or subtraction on two n-bit
signed binary numbers in radix complement form. Does the value of the carry-out affect the validity of the
n-bit sum output of the RCA? Explain fully but briefly.

Free Range Digital Design Foundation Modeling Chapter 13

 - 187 -

13.6 Design Problems

For the following problems:

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution

 Minimize the use of hardware in your solution

 State the types of control your circuit uses (“no control”, “internal control”, and/or “external control”).

1) Design a circuit that always does the following operation: A – B. Consider both inputs and the output to be
10-bit binary numbers in RC format. For this problem, assume the result will always be valid.

2) Repeat the previous problem but include an output named: VALID. The VALID output is a ‘1’ when the
10-bit result of the subtraction operation is correct (valid); if the result is not correct, the VALID output
should be a ‘0’. Keep in mind that depending on the values of the two inputs, the result could exceed the
range of the 10-bit output, in which case the value on the output is not correct. In other words, there is
always a number on the output; we’re designing an extra output (the VALID signal) to indicate when the
number on the result is correct or not.

Free Range Digital Design Foundation Modeling Chapter 14

 - 188 -

14 Mixed Logic

14.1 Introduction

Good digital designers understand mixed logic. While you can go a long way by pretending you understand
mixed logic, you’ll be bummed out when you realize that you don’t really understand it. It’s highly unlikely
that any digital system you work with only uses one type of logic, so you need to be able to design and/or
interface digital circuits in a mixed logic environment.

The thing that stands out most about mixed logic is a comment my digital design instructor made: “nobody
really understands mixed logic”1. What I’ve come to realize is that the reason that “nobody understands” this
stuff is two-fold. First, I’ve never seen a textbook that explains the topic in a manner that I could understand.
Secondly, it’s a topic that that you can avoid understanding by learning a few tricks to deal with the topic when
you need to. It’s better to truly understand the topic.

Main Chapter Topics

MIXED LOGIC: This chapter provides an in-depth summary of mixed logic digital
design. This introduction includes a description of the underlying theory, which we later
apply in both circuit design and circuit analysis problems.

Why This Chapter is Important

 Be able to describe the importance of being able to work in mixed logic systems.

 Be able to generate all alternative forms of AND, OR, NAND, and NOR gates

 Be able to analyze mixed logic circuits and generate Boolean equations describing
those circuit

 Be able to design mixed logic circuits from given Boolean equations

14.2 Mixed Logic Overview

The underlying theme of all digital logic is the basic interpretation of signals. A signal in a digital circuit is
either at a high or low voltage level2. We’ve been modeling these high and low voltage levels thus far with a
‘1’ or a ‘0’. A given signal is generally the output of one device in the circuit as well as the input to another
device in the circuit.

Digital circuits are extraordinarily dumb: the gates in digital circuits have outputs that react to the inputs.
Here’s the whole story in a few sentences: the way we’ve been modeling our circuits so far is that a ‘1’
represents the action state or active state of things while ‘0’ represents the non-action state or inactive state. In
other words, when the circuit’s inputs represent a combination that we were interested in, we assign a ‘1’ to the
output; the ‘1’ or the high state generally means something affirmative or positive occurred in the circuit. We
refer to this as positive logic.

1 Spoken by Dr. Marty Kaliski sometime in the late 1980’s.
2 We stay general here by not mentioning the exact voltage levels; we don't need to say anything other than high and low
voltage. The notion here is that some external entity has pre-decided what the voltage levels are.

Free Range Digital Design Foundation Modeling Chapter 14

 - 189 -

The notion of mixed logic is that fact that sometimes ‘1’ does not represent the active state; sometimes the ‘0’
state is the active state and ‘1’ represents the inactive state. While you have a choice of designing your circuits
with negative and/or positive logic, sometimes your design needs to interface with another circuit that is
interpreting the 1’s in 0’s differently than your circuit. Thus, you’re facing not just coming up with a digital
design, you’re facing coming up with a mixed logic design.

The following bullets represent most of the terminology associated with mixed logic. The definitions below are
somewhat brief, but they start making sense when we use them in the various explanations in this chapter.

 Positive Logic: positive logic is when the ‘1’ state of a signal represents the active state.

 Negative Logic: negative logic is when the ‘0’ state of signal represents the active state.

 Mixed Logic: a term referring to the use of both negative and positive logic in a digital circuit
or system.

 Assertation Levels: assertation levels are an indirect reference to the form of logic used in a
circuit. These definitions lead to a common digital vernacular in referring to a signal as being
“asserted” or “not asserted” (defined below).

 Asserted High: A way to refer to a positive logic signal

 Asserted Low: A way to referring to a negative logic signal

 Logic Levels: same thing as assertation levels

 Asserted Signal: a signal that is currently in its active state (independent of the logic levels). A
positive logic signal is asserted when it’s in a high state; a negative logic signal is asserted when
it is in a low state.

 Not-Asserted Signal: a signal that is currently in its non-active state (independent of logic
levels). A positive logic signal is not-asserted when it’s low; a negative logic signal not asserted
when it’s high.

You first need to convince yourself that the circuits you’ve been working with thus far have all been positive
logic circuits. Figure 14.1(a) shows a circuit that you’re used to working with. What you may not realize is that
by the way the circuit appears in Figure 14.1(a), the inputs and the output of the circuit are all positive logic. A
‘1’ appearing on the circuit inputs and/or the circuit output indicates an active state. When a ‘1’ appears on the
output of the circuit, the circuit is indicating some positive condition (‘0’ indicates a negative condition).

How exactly do we represent negative and positive logic in a circuit? There are two ways: the Positive Logic
Convention (PLC) and Direct Polarity Indicators (DPI). For this discussion, we only use DPI since it is easier
to work with while learning mixed logic. Once you understand the DPI convention, using either DPI or PLC
(or both) won’t be a problem.

Up until now, you’ve only dealt with PLC. The PLC uses overbars on signals to indicate that they are negative
logic (not having overbars represents positive logic). For example, the circuit in Figure 14.1(a) contains three
input variables and one output variable. Since none of these variables has overbars on them, we interpret them
as being positive logic. While it is tempting to interpret the overbars on the signal names as the state of the
signal, the overbar (or lack thereof) refers to logic levels and says nothing regarding whether the signal is high
or low. Recall that signals are variables: the can take on a value of ‘1’ or ‘0’.

Figure 14.1(b) shows an example of a similar circuit that uses mixed logic. Two of the circuit’s inputs contain
overbars, which indicate that signal A is a positive logic while signals B and C are negative logic. All signals
in both of these figures are Boolean variables, which means they can be either 1’s or 0’s.

The confusing aspect of mixed logic design lies in the fact that the logic gates only react to voltage levels and
know nothing of the logic levels intended by the circuit designers. Although the two circuits in Figure 14.1
look similar, the point is that they perform different logic functions. What exact logic functions they perform is
what we figure out in the remainder of chapter.

Free Range Digital Design Foundation Modeling Chapter 14

 - 190 -

(a) (b)

Figure 14.1: Some similar looking but very different circuits.

14.3 The Inverter and Mixed Logic

We think of inverters as devices that change 1’s to 0’s and 0’s to 1’s. While this is a valid interpretation of an
inverter, we need to model them differently in order to gives us a foundation for understanding mixed logic.
Figure 14.2 shows our new approach to modeling an inverter.

Figure 14.2(a) shows an inverter as you’re used to seeing it. The thing that is new about this diagram is that we
provide the PLC and DPI indicators above and below the signals, respectively. We use this notation to indicate
that we’re no longer thinking of the inverter as a device that toggles a signal value; we now view it as a device
that changes the logic level of a signal. In other words, if the input to an inverter is a positive logic signal, the
output of the inverter is a negative logic signal (and vice versa).

With the PLC convention (the notation above the signal lines), the A without the overbar indicates the signal is
positive logic. On the output of the inverter, the A has an overbar, which indicates it is a negative logic signal.
We can also express the same model using DPI notation, which we list under the signal in Figure 14.2(a). With
the DPI notation, we indicate the A signal with a directly polarity indicator of H (indicating positive logic) on
the input of the inverter. Once the signal passes through the inverter, the direct polarity indicator changes to L
(indicating negative logic).

(a) (b)

Figure 14.2: A different approach to modeling an inverter.

14.4 Equivalent Signals for DPI Notation

We need some tools to work with the mixed logic circuits. Our first tool is to rewrite a negative logic signal as
a positive logic signal without officially “changing” the signal. Figure 14.3 shows the equivalent signals we
use. The equations in Figure 14.3 show there is more than one way to represent negative and positive logic
using the DPI convention. You can indicate a positive logic signal as an equivalent negative logic signal
(Figure 14.3(a)) and you can write a negative logic signal as an equivalent positive logic signal (Figure
14.3(b)). These equations represent equivalent forms of the signals.

(a) (b)

Figure 14.3: Equivalent signals relating to inversion.

Now we apply the equivalent signals approach in a simple circuit. Figure 14.4(a) shows a two-input AND gate
with an inverter in front of one of the inputs; we re-analyze it using mixed logic concepts. We attach a DPI
convention to the inputs and outputs of this device; both inputs and the single output are positive logic signals.

)()(LAHA)()(HALA

Free Range Digital Design Foundation Modeling Chapter 14

 - 191 -

The inverter changes the logic level of the B signal before it enters the AND gate. In the end, as you’re used to
thinking about it, we implement the (A∙!B) logic expression.

Recall that an AND gate’s output is a ‘1’ when both inputs are ‘1’. The question that arises is this: what is the
relation between the product term (A∙!B) and the notion of having both inputs being a ‘1’ in order for the
output to be a ‘1’? What we need to do in this product term is have the output be a ‘1’ when both inputs are in
their active state.

The way it’s drawn indicates that the AND gate expects to receive two positive logic inputs. The two inputs are
both positive logic but the B signal goes through an inverter before it reaches the input of the AND gate. This
means that that the B input is now a negative logic input when it is input to the AND gate; this presents an
issue as the AND gate expects positive logic inputs in order to perform the AND function. .

The solution is to rewrite the logic level of the B signal using equivalent signals. Once we change the logic
level of B from the original positive logic to negative logic, ‘0’ is then be the active level of the signal; or to
use our new terminology, the signal is active low. We need to rewrite the signal representation after it exits the
inverter to make it “look” like positive logic. Figure 14.4(b) shows the logic levels of the signal after it passes
through the inverter written in using an equivalent form from Figure 14.3. Once we have the newly labeled
signal in place, we can write the equation for the circuit by inspecting the circuit. In official terms, the output
of the gate is asserted when the both the A and B inputs are asserted.

(a) (b)

Figure 14.4: A mixed logic approach to analyzing familiar functions.

Figure 14.5 shows that there are two ways of writing the equation for the final circuit. Figure 14.5(a) shows the
equations in DPI form while Figure 14.5(b) shows the equation in PLC form.

𝐹 𝐻 𝐴 𝐻 ∙ 𝐵 𝐻 𝐹 𝐴 ∙ 𝐵

(a) (b)

Figure 14.5: Two resulting forms of our analyzed mixed-logic circuit.

14.5 Mixed Logic-Based Gate Forms

Let’s re-examine the logic gates we’ve dealt with up to this point. Using a strange mixture of mixed logic
concepts and Boolean algebra, we generate alternative forms of these gates and then use these alternative forms
in mixed logic problems.

The simplest approach to understanding mixed logic is to examine basic logic gates. Until now we
implemented our gate-level designs using primarily AND, NAND, OR, NOR gates and inverters. Remember
those bubbles on the outputs of the NAND and NOR gates (and inverters too)? They’re somewhat important,
and if you understand their actual purpose, you’ll be on your way to understanding mixed logic. The simplest
digital device is the inverter, which is why we started the discussion there. The following figures describe
mixed logic concepts at the gate level.

Free Range Digital Design Foundation Modeling Chapter 14

 - 192 -

This AND provides an AND function with a positive logic output,
which you know because you see that familiar AND gate shape. The
AND gate performs an AND function on the two positive logic
inputs. Since there are no bubbles on the back of the gate, this AND
gate expects positive logic inputs. This is the AND form of an AND
gate.

Figure 14.6: A mixed logic view of an AND gate.

This gate is an AND gate, because you can use DeMorgan’s theorem
to generate a different equation describing the gate. You derive the
new gate form by double complementing the AND function equation
and then DeMorganizing the resulting equation. The distinctive
symbol results from the two equations on the left. The key to
understanding this gate is to examine both the bubbles and the gate
form. If you feed this gate two negative logic inputs, it performs an
OR function on those inputs and generates a negative logic output.
We use bubbles to indicate the negative logic inputs (as indicated by
the (L) polarity indicators) and negative logic output of the final
equation. You can thus use an AND gate to perform an OR function.
We refer to this gate as the OR form of an AND gate.

Figure 14.7: A different mixed logic view of an AND gate

The OR gate provides a high output when either of the gates two
inputs is high. If you provide the gate with positive logic inputs, it
performs an OR function and generates a positive logic output. The
equations on the left show this characteristic. Since there are no
bubbles on the back of the gate, this OR gate expects positive logic
inputs. Since there is no bubble on the gate output, this gate delivers
a positive logic output. This gate is the OR form of an OR gate.

Figure 14.8: A mixed logic view of an OR gate.

The gate on the left is an OR gate. We derive this new gate form from
double complementing the equation describing the OR function and
DeMorganizing the resulting equation. We derive this distinctive
symbol from the bottom two equations. This gates looks like an AND
gate; if you feed this gate two negative logic inputs, it performs an
AND function on those inputs and generates a negative logic output.
We use bubbles on the resulting gate to indicate the negative logic
inputs (as indicated by the (L) polarity indicators) and negative logic
output of the final equation. You can thus use an OR gate to perform
an AND function. This gate is the AND form of an OR gate.

Figure 14.9: A different mixed logic view of OR gate.

BAF

)()()(HBHAHF

BAF

BAF

BAF

)()()(LBLALF

BAF

)()()(HBHAHF

BAF

BAF

BAF

)()()(LBLALF

Free Range Digital Design Foundation Modeling Chapter 14

 - 193 -

You know the NAND gate as a AND gate with an inverted output. In
a mixed logic sense, this gate performs an AND function on the
positive logic inputs and provides a negative logic output. We
consider the inputs to be positive logic due to the absence of bubbles
on the inputs; the output is a negative logic output since there is a
bubble on the output. One way to view this circuit is that the output
of ‘0’ is now the active state rather than the ‘1’ output, which is the
active state from a normal AND gate. This is the AND form of a
NAND gate.

Figure 14.10: A mixed logic view of an NAND gate.

This gate is a NAND gate. If we apply DeMorgan’s theorem to the
gate we arrive at a new equation describing the gate. The final two
equations on the left describe this gate in the context of mixed logic:
this gate performs an OR function on its two negative logic inputs
and returns a positive logic output. Seeing the distinctive OR
symbols implies that this gate performs an OR function; this gate
only performs an OR function if the two input values are in negative
logic format. The bubbles indicate the negative logic input format;
the absence of a bubble on the output indicates positive logic. The
polarity indicators in the final equation on the left show the logic
level of this gate’s inputs and output. This is the OR form of a
NAND gate.

Figure 14.11: Yet another mixed logic view of an NAND gate.

This gate is a NOR gate; you’re used to thinking of this gate as an
OR gate with an inverted output. In a mixed logic context, this gate
actually performs an OR function on its two positive logic inputs and
outputs a negative logic result. The absence of bubbles on the inputs
indicate that the inputs are positive logic; the gate’s output is a
positive logic output due to the presence of the bubble on the output.
This is the OR form of a NOR gate.

Figure 14.12: A mixed logic view of a NOR gate.

This gate is a NOR gate; we can apply DeMorgan’s theorem to the
equation describing the NOR gate and arrive at a new equation. The
final two equations on the left describe the operation of this gate
using mixed logic. This gate performs an AND operation (note the
AND symbol) if we provide two negative logic signals as inputs; the
resulting output of the AND operation is positive logic. Since there
are bubbles on the inputs, this gate only performs the AND operation
if the two inputs are negative logic. Since the output contains no
bubble, the output of the gate is a positive logic signal. This is the
AND form of the NOR gate.

Figure 14.13: A mixed logic view of a NOR gate.

Figure 14.14 shows a summary of all the standard gates forms. At this point, you may be wondering why there
are some many forms of gates out there. The short answer is that in some situations, we need flexibility in

BAF

)()()(HBHALF

BAF

BAF

)()()(LBLAHF

BAF

)()()(HBHALF

BAF

BAF

)()()(LBLAHF

Free Range Digital Design Foundation Modeling Chapter 14

 - 194 -

implementing logic functions. We always need to choose the gate that most appropriately represents the logic
function we are performing, which is trickier in a mixed logic environment. In reality, there are still only AND,
OR and inversion functions out there; we need to draw our circuits such that they express whether we are
performing an AND function or an OR function. The relatively large set of gates guarantees that we’ll be able
to accurately display the actual logic functions we’re performing in a mixed logic environment. If you don’t
use the proper gate in your design, you may have a working circuit but no one can understand your circuit.

Standard Gate Forms

AND functions OR functions

AND form of AND gate OR form of OR gate

AND form of OR gate OR form of AND gate

AND form of NAND gate OR form of NOR gate

AND form of NOR gate OR form of NAND gate

Figure 14.14: The giant summary of the strange new gate forms.

14.6 AND/OR and NAND/NAND Forms

The AND/OR, NAND/NAND, OR/AND, and NOR/NOR forms are the most common forms. The relationship
between these forms is nicer than you may be initially thinking after plodding through the algebraic
manipulation in Table 11.1. Let’s examine the AND/OR form and it’s relation to the NAND/NAND form.

Figure 14.15 shows the common AND/OR form circuit implementation. In this implementation, overbars on
the input signals replace the inverters in an effort to save me time drawing the circuit. The form in Figure 14.15
matches the equation in equation 1(b). Figure 14.16(a) shows the subsequent NAND/NAND circuit
implementation as it appears in Equation 1(d). While the circuit implementation is correct in that it only uses
NAND gates, it is misleading because it no longer resembles the AND/OR form it originated from.

Free Range Digital Design Foundation Modeling Chapter 14

 - 195 -

Figure 14.15: The beloved AND/OR form.

There are two forms of NAND gates as Figure 14.16(b) indicates. Since the right-most NAND gate of Figure
14.16(a) is actually implementing an OR function, you should use some type of OR-looking gate. Since this is
a NAND/NAND form, the solution is to remove the right-most AND form of a NAND gate and replace it with
an OR form3 of a NAND gate as Figure 14.16(b) shows.

Another thing that is disconcerting about the circuit of Figure 14.16(a) is that the bubbles “don’t match”4. This
is an indicator that something may be wrong. Although the implementation in Figure 14.16(a) is truly correct,
someone not familiar with the circuit may have doubts. In summary, you should not the similarities between
the circuit of Figure 14.15 and Figure 14.16(b). Generally speaking, when you are asked to provide the circuit
diagram for a function in NAND/NAND form, the best choice is to draw the circuit of Figure 14.15 and add
the bubbles in the appropriate location to make the circuit appear like that of Figure 14.16(b). I like calling this
the no-brainer approach to circuit forms5. Moreover, these are two of the most popular circuit forms, with the
NAND/NAND form being the most popular form.

(a) (b)

Figure 14.16: The confusing (a) and clear (b) approach to NAND/NAND representations.

14.7 OR/AND & NOR/NOR Forms

A similar type of argument can be made for the OR/AND & NOR/NOR circuit forms. Figure 14.17 shows the
circuit implementation of the OR/AND form in Equation 2(b). We omit the inverters and replace them with
complemented input signals (don’t try this at home). If we implement this circuit in the NOR/NOR form of
2(f), you would end up with the circuit in Figure 14.18(a).

While the circuit in Figure 14.18(a) is technically correct, digital designers generally avoid this form because it
is misleading, especially those digital designers who understand basic mixed logic principles6. A better
NOR/NOR implementation appears in Figure 14.18(b). In this implementation, the right-most NOR gate is

3 Don’t worry about this wording for now.
4 The “bubbles” are polarity indicators. This is a deep and often confusing subject (mixed logic) that we’ll address in a later
chapter. For now, just go with it and do your best to “match bubbles”.
5 In this case, the “no-brainer” thing is temporary; we’ll fill in the details later. Not having brains is not necessarily a bad
thing as academic administrators wear brainlessness like a badge of honor.
6 Mixed logic is an important concept that is covered in a later chapter.

Free Range Digital Design Foundation Modeling Chapter 14

 - 196 -

implemented using the AND7 version of the NOR gate. The comforting thing here is that the NOR/NOR form
implementation of Figure 14.18(b) is strikingly similar to that of Figure 14.17. Once again, if you implement a
function in NOR/NOR form, the circuit in Figure 14.18(b) is the best approach.

Figure 14.17: The good’ole OR/AND form.

(a) (b)

Figure 14.18: The confusing (a) and totally clear (b) approach to NOR/NOR representations.

14.8 Mixed Logic Analysis

Yes, this is somewhat strange. The best way to learn about mixed logic is to use it in some actual examples.
This section contains a few simple examples that show you the power of mixed logic analysis.

Example 14.1: Mixed Logic Analysis

Write equations describing the following circuit for the cases when the output is:

a) positive logic

b) negative logic

Solution: The first thing you should note is that the both inputs in this circuit are positive logic. The second
thing you should notice is that there is no indication of the output logic level. We left out the output logic level
so that we can analyze the circuit using both negative and positive logic outputs8.

7 Once again, don’t worry about this wording for now; this is another reference to mixed logic.
8 Not listing the output logic level is a horrendously bad thing.

Free Range Digital Design Foundation Modeling Chapter 14

 - 197 -

(a) (b)

Figure 14.19: Mixed logic analysis where (a) & (b) show the positive and negative logic
interpretations of the output, respectively.

(a) Figure 14.19(a) shows the case where the output is positive logic; the direct polarity indicator shows the
logic level of the output. Note here that the polarity indicator on the output of the gates matches what the
gate states it is providing: since there is no bubble on the gate, we consider the output logic level as
positive logic. This gate is an AND gate and performs an AND function on the two inputs are both
positive logic (note the absence of bubbles on the gate inputs).

The first thing we need to do is to write the inputs such that they indicate a positive logic signal as this is
what the AND gate is expecting. The A input is in correct form already because it is a positive logic
signal. The B signal, however, passes through an inverter before entering the AND gate. Although the
inverter changes the logic level from positive to negative, the AND gate is still expecting a positive logic
input. In other words, if you were to input a B(L) signal to the AND gate, it would not look correct would
lead to mass confusion and hysteria. The solution is to use an equivalent signal representation for the B(L)
signal, which allows us to list the signal as positive logic because this is what the gate expects. Once we
write both inputs in positive logic form, we can write the resulting equation (shown under the circuit in
Figure 14.19(a)). Note in this equation that the polarity indicators on both sides of the equation match. If
the polarity indicators did not match, the equation would make no sense.

(b) Let’s analyze this circuit as having a negative logic output as in Figure 14.19(b). In other words, we want
to know what logic function the circuit executes if we interpret the output as negative logic. The first step
is to redraw the gate such that there is a bubble on the output. Simply adding a bubble to the output would
effectively change the gates, which is not what we want. We need to replace the original AND gate with
an equivalent gate that has a bubble on the output.

Figure 14.19(c) shows that the equivalent gate form for an AND gate is the OR form of an AND. Once we
replace the gate and the bubble appears on the output, we rewrite the output of the gate to show that it is
negative logic. The inputs to the new gate form need some modification also. The new gate form performs
an OR function when both of the two gate inputs are provided in negative logic. This requires that we
rewrite the input logic levels in forms that reflect the negative logic levels. The B input is positive logic
and the inverter changes it to negative logic; this input requires no modifications. The A input is also
positive logic but must be in negative logic as the bubbled input to the gate indicates. Since there is no
inverter on this input, the approach we take is to rewrite the signal with an equivalent signal name; Figure
14.19(b) shows the result. The equivalent signal names contain a polarity indicator that indicates the gate
receives a negative logic signal as the gate expects. Figure 14.19(b) shows the resulting equation below the
circuit diagram.

))(()(HBAHF))(()(LBALF

Free Range Digital Design Foundation Modeling Chapter 14

 - 198 -

Example 14.2: Mixed Logic Analysis

Write equations describing the following circuit for the cases when the output is:

a) negative logic

b) positive logic

Solution: This example differs from the previous example in that the inputs are in a true mixed logic form: the
A and B inputs are in negative and positive logic forms, respectively.

(a) (b)

Figure 14.20: An example of mixed logic analysis.

a) The circuit in Figure 14.20(a) has two inputs, one is positive and the other is negative logic. The circuit in
Figure 14.20(a) assumes the output is asserted low, which is the implication from the original drawing of
the gate (because of the bubbled output). The gate provides an OR function with an asserted low output
under the conditions that the two inputs are positive logic. Since the A input is negative logic, we must re-
write it in positive logic form in order for us to know what logic function the gate is performing; Figure
14.20(a) shows that we do this by using an equivalent signal for the A input. The B input is in positive
logic but the inverter changes its logic level. Once again, we rewrite the negative logic signal for B in
positive logic form using equivalent signals. Once the two inputs are both in positive logic forms, we
satisfy the gate inputs and we can then write the equation for the circuit.

b) We first need to represent that condition with a gate that has no bubble on the output; we do this by using
an equivalent gate form for the NOR gate. In this case, we show the equivalent gate in Figure 14.20(b),
which is the AND form of a NOR gate. This gate performs an AND function with a positive logic output if
the two inputs are negative. The A input requires no modification because it is already in negative logic.
The B input is originally in positive logic format but the inverter changes the logic level to negative logic.
Once the inputs to the circuit are in negative logic form, we can write the equation performed by the gate.

The two previous examples provided us with a choice of how to interpret the output of the circuit. The analysis
of the circuit entailed using equivalent gates and equivalent signals in order to discern the logic function
performed by the gate. Here are a few key things to note about this form of analysis.

 The output logic level always matched the gate output level. If there is a bubble on the output of
the gate, the gate is providing a negative logic signal. If there is not bubble on the gate output,
the gate is providing a positive logic signal.

 We only used the polarity indicators in the final equation for the output; we did not carry around
the polarity indicators for the internal signals. The assumption we make is that we matched all
the interior logic levels so there is no need to include them in the final equation.

))(()(LBALF))(()(HBAHF

Free Range Digital Design Foundation Modeling Chapter 14

 - 199 -

 In the final equation, the polarity indicators of the inputs and outputs match. If they did not
match, the equation would not make sense; it would be evil confusion.

 Although we only had one circuit, we seemed to have generated two equations from it. This is
true because we base the two final equations for these circuits on our interpretation of the
circuit’s output. In other words, depending on how we interpret the logic level of the circuit
output, we are able to consider the function as implementing two different functions. The reality
is that the two equations have sort of a complementary relationship (think DeMorgan’s
theorem).

Example 14.3: Mixed Logic Analysis

Write equations describing the following circuit for the cases when the output is:

a) negative logic

b) positive logic

Solution: This solution to this example is similar to the previous examples, so we omit the bloviated
explanation. Once again, we matched all the logic levels in the circuit (input and output assertation levels
match the presence (or lack thereof) of bubbles and the assertation levels of the final equation match.

(a) (b)

Figure 14.21: The total mixed logic analysis approach.

For the circuit in Figure 14.21(a), we need the output to be negative logic; the NAND gate provides a negative
logic output as evident from the bubble on the output. The NAND gate has positive logic inputs; the circuit is
thus properly configured because the two OR gates provide positive logic output. The final step in this part of
the solution is to use equivalent signals to re-write the gate inputs to all be in positive logic at the OR gate
inputs. Only B is in proper form; we use equivalent signals on the other three input signals. We complete the
problem by reading the circuit and writing the final equation.

For the circuit in Figure 14.21(b), we need to provide a gate that with no bubble on the output so that we can
write the output in positive logic form. We can’t simply remove the bubble, be we can use an equivalent gate
with no bubble on the output. We do this by changing from the AND form of the NAND gate to the OR form

))](()[()(LDCBALF))(()(HCDBAHF

Free Range Digital Design Foundation Modeling Chapter 14

 - 200 -

of the NAND gates. When we make this change, the inputs to the NAND gate are now negative logic, which
does not match the outputs of the OR gates. What we now must do is substitute the OR form of the OR gate
with the equivalent AND forms of the OR gate, which provides negative logic outputs. The final step in this
part of the solution is to use equivalent signals to re-write the gate inputs to all be in negative logic at the OR
gate inputs. We complete the problem by reading the circuit and writing the final equation.

14.9 Mixed Logic Design

Up to now, we have been analyzing mixed logic circuits. Let’s switch to the opposite approach and design
some circuits based on mixed logic. The following examples provide such a design problem.

Example 14.4: Mixed Logic Design

Design a circuit that implements the following function:

For this problem consider the A and B inputs and the output as asserted low; all other
inputs are positive logic. Implement this function using any type of gates.

Solution: The first thing to do with this solution is to list the parameters in DPI form. We represent the
negative logic signals by A(L), B(L); we represent the F output as F(L). We represent the two positive logic
signals by C(H) and D(H). The best approach to problems such as these is to start at the output and work
backwards. The following verbage shows this systematic approach.

Step 1: Draw and label the output. Since we know
the output is asserted low, draw a bubble, and label
it to support the original problem description.

Step 2: Draw a gate such that it satisfies the logic
function. The required logic function is an OR
function so we draw a gate that looks like an OR
gate. The example does not specify a gate type, so
we use a NOR gate, which provides an OR
function with a negative logic output.

Step 3: The equation includes two product terms,
which we implement with an AND form of an
AND; this gate is sufficient because the input to
the OR gate is expecting positive logic inputs (note
the absence of bubbles on the input). The AND
gates provide positive logic outputs. The bubbles
(or lack thereof in this case) match.

Step 4: We’re ready to assign some logic for the
inputs to the AND gates. Write the logic that the
AND gates expect based on the problem’s
equation. The AND gates expect positive logic
inputs, so list all the inputs in positive logic form.

DBDCADCBAF),,,(

Free Range Digital Design Foundation Modeling Chapter 14

 - 201 -

Step 5: We now include the input signals with the
logic levels stated by the problem. The dotted lines
mean nothing in particular; we draw them to refer
to what each AND gate requires relative to the
original equation and the logic levels of the inputs
from the outside world.

Step 6: In the previous step, some of the input
signals are not at the correct level required by the
AND gates. For these cases, we need an inverter in
order to switch the logic levels. Our approach was
to switch some signal directly using inverter, and
rewrite others using equivalent signal forms.

One of the key elements in the previous problem is that we had the luxury of using any type of gate we could
in the implementation. Let’s redo the previous problem, but this time restrict our gate usage to NOR gates and
inverters. As you’ll see in the section on circuit forms, we usually must implement functions using only one
type of gate.

Example 14.5: Mixed Logic Design

Design a circuit that implement the following function:

For this problem consider the A and B inputs and the output as asserted; all other inputs are
positive logic. Implement this function using only NOR gates and inverters.

Solution: We take a few short cuts in this problem since we already choose a NOR gate for the output stage of
this circuit in the previous problem.

Step 4: We jump in at Step 4 because the first
three steps are the same as the previous problem.
We now need to choose NOR gates for the input
gates rather than the AND gates. We need to
choose a NOR gate that performs an AND
function, so we choose the AND form of an NOR
gate. This gate performs an AND function if the
inputs are in a negative logic format. The diagram
shows the signal requirements as they relate to the
problem. We list each of the polarity indicators on
the input signals as L as required dictated by the
bubbles on the gate inputs.

Step 5:. We need to make sure that we align the
provided signals and their logic levels to the
function we’re implementing. We list the input
requirements of the signal we’re implementing on
the inputs of the NOR gates.

DBDCADCBAF),,,(

Free Range Digital Design Foundation Modeling Chapter 14

 - 202 -

Step 6: The last step is matching the logic levels
of the provided signals to those of the require
function. We once again do this by a combination
of inverters and equivalent signals.

Free Range Digital Design Foundation Modeling Chapter 14

 - 203 -

Example 14.6: Mixed Logic Design

The previous two examples implemented the same equation using two different, but
functionally equivalent circuits. Comment as to which circuit is “better”.

Solution: This is somewhat of a trick problem, because the problem does not define the notion of “better”.
The truth is that “better” can mean about anything. The circuit of previous example uses four devices (three
gates and one inverter). The circuit in the example before that uses seven devices (three gates and four
inverters). From the standpoint of device count, the circuit implemented with four devices is clearly better.
Therefore, from the standpoint of minimum device count, one circuit is “better”.

Example 14.7: Generic Switch Controller

Design a circuit that controls an unspecified output according to the following description.
If the MASTER_OVERRIDE switch is asserted, the output is always asserted. Otherwise,
if the LOCAL_OVERRIDE switch is asserted, the output is also asserted. If both the
override switches are not asserted, the output is only asserted when SW1 and SW2 are both
asserted. For this problem, consider the output to be active low. The two override switches
are active low also; SW1 and SW2 are active high. Specify the solution using POS form.

Solution: This problem is similar to other switch problems you’ve done but with the twist added of working
with both negative and positive logic. Since there are not too many inputs, you can take the truth table
approach to designing this problem. Figure 14.22 shows the empty truth table.

MO LO S1 S2 F

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Figure 14.22: Truth table for Example 14.7.

Free Range Digital Design Foundation Modeling Chapter 14

 - 204 -

The problem with this problem is that we need to deal with mixed logic. Although there are many approaches
to dealing with mixed logic, the approach we take here is somewhat more straightforward than other
approaches. Since we’re more used to dealing with positive logic, let’s convert the negative logic signals to
positive logic before we assign the output values. We also convert the negative logic output to positive logic.
Once we specify the output, we complement it before we generate the subsequent logic. We don’t need to do
anything with the inputs at that point since the inputs still reflect the ordering (but not the numbering) used in a
truth table.

!MO !LO S1 S2 !F

1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1

!MO !LO S1 S2 F

1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0

(a) (b)

Figure 14.23: The modified truth tables with negative (a) and positive (b) logic outputs.

The final logic we’re looking for is in Figure 14.23(b). Once you toss the column for F into a truth table, you’ll
arrive at the POS equation in Figure 14.24.

𝐹 𝑀𝑂 ∙ 𝐿𝑂 𝑆1 𝑆2

Figure 14.24: The final equation for this problem.

Free Range Digital Design Foundation Modeling Chapter 14

 - 205 -

14.10 Chapter Summary

 The concept of mixed logic is based upon the “action” state of a digital signal. In all cases, either the ‘1’ or
‘0’ state is considered to be the action state if a digital signal. If a ‘1’ is considered the action state, the
design is considered to be positive logic while if the ‘0’ is the action state, then the design is considered to
be negative logic. A mixed logic system is a digital system that uses both negative a positive logic in the
design.

 Most gate-level circuits deal with mixed-logic concepts at some level. Although mixed logic concepts are
often initially confusing the digital designers, having a basic understanding of the mixed logic is generally
enough for survival in digital design land.

 Logic levels in digital circuits are represented by either the Positive Logic Convention (PLC) or Direct
Polarity Indicators (DPI). Logic levels in a circuit are often referred to as assertation levels.

Free Range Digital Design Foundation Modeling Chapter 14

 - 206 -

14.11 Chapter Exercises

1) Write an equation for F(H) that describes the following circuit. Put your answer in DPI form.

2) Write an equation for F(W,X,Y,Z) in NAND/NAND form.

3) Write an equation for F(L) that describes the following circuit using DPI.

4) Without altering the function implemented by the circuit below, redraw the circuit using only OR gates
and inverters. Minimize device count where possible.

Free Range Digital Design Foundation Modeling Chapter 14

 - 207 -

5) Without altering the function implemented by the circuit below, redesign this circuit using only NAND
gates and inverters. Minimize device count where possible.

6) Using only NAND gates and inverters, design a circuit that implements:

Consider the inputs and outputs to be: A(L), B(L), C(L), D(H), F(H).

7) Using only NOR gates and inverters, design a circuit that implements:

Consider the inputs and outputs to be: A(L), B(H), C(L), D(H), F(L).

8) Design a circuit that implements the following function:

Consider the inputs to be: A(H), B(L), C(L), D(L); use only standard gates and inverters in your solution.

9) Design a circuit that implements the following function. Use only standard gates and inverters in your
solution.

Consider the inputs to be: A(L), B(L), C(H), D(L);

10) Design a circuit that implements the following equation using any type of gate and inverters. Minimize the
device count in your implementation. Consider the inputs and outputs to be: A(H), B(L), C(H), D(H),
E(L), F(L).

11) Design a circuit that implements the following function; use only NAND gates in your solution. Consider
the inputs to be: A(L), B(H), C(H), D(L). Show a gate-level schematic of your solution

F A, B, C, D H A ∙ B B ∙ C ∙ D H

CD)(H)BAB(F(H)

CD)(L)BBA(F(L)

BC)(L) DBA(F(L)

)](H)C A)(D B A([F(H)

E)](L)DC)(BA[(F(L)

Free Range Digital Design Foundation Modeling Chapter 14

 - 208 -

12) Design a circuit that implements the following function. Consider the inputs to be: A(L), B(H), C(H),
D(L). Show a gate-level schematic of your solution; Use only NOR gates in your solution.

F A, B, C, D H A B B C D H

13) Provide a circuit diagram that implements the following mixed logic Boolean equation. Consider the logic
levels of the input to be A(L), B(L), C(H). Use any type of gates you want but minimize the number of
gates you use.

)()()()(LCBBALF

14) Write a Boolean equation in DPI form that describes the following circuit. As the diagram indicates, make
sure your answer is written in positive logic form.

(a) (b)

15) Write a Boolean equation that describes the following circuit. The equation you generate should use
proper and complete direct polarity indication. In other words, write the other side of the following
equation: F(H) = ?? Do not attempt to reduce the final circuit equation; make sure your final equation is in
proper form.

(a) (b)

Free Range Digital Design Foundation Modeling Chapter 14

 - 209 -

16) Write a Boolean equation that describes the following circuit. The equation you generate should use
proper and complete direct polarity indication. In other words, write the other side of the following
equation: F(H) = ?? Do not attempt to reduce the final circuit equation; make sure your final equation is in
proper form.

(a) (b)

17) Write a Boolean equation that describes the following circuit. The equation you generation should use
proper direct polarity indication. In other words, write the other side of the following equation: F(L) = ??
Do not reduce the final circuit equation.

(a) (b)

18) Change the following circuit from AND/OR form to NAND/NAND form.

(a) (b)

Free Range Digital Design Foundation Modeling Chapter 14

 - 210 -

14.12 Design Problems

For the following problems:

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution

 Minimize the use of hardware in your solution

 State the types of control your circuit uses (“no control”, “internal control”, and/or “external control”).

1) A logic network is to be designed to implement a seat belt alarm that is required on all new cars. A set of
senor switches is available to supply the inputs to the network. One switch will be turned on if the gear
shift is engaged (not in neutral). A switch is placed under each front seat and each will turn of if someone
sits in the corresponding sear. Finally, a switch is attached to each front seat which will turn on if and only
if the seat below is fastened. An alarm buzzer is to sound (LED display light) when the ignition is turned
on and the gear shift is engaged, provided that either of the front seats is occupied and the corresponding
seat belt is not fastened.

Alarm (sound) - A(H)

Ignition (on) – I(L)

Gearshift (engages) – G(L)

Left Front Seat (occupied) – LFS(H)

Right Front Seat (occupied) – RFS(H)

Left Seat Belt (fastened) – SBL(H)

Right Seat Belt (fastened) – SBR(H)

2) There are four parking slots in the Acme Inc. executive parking area. Each slot is equipped with a special
sensor whose output is active low when a car is occupying the slot. Otherwise, the sensor’s output is at a
high voltage. You are to design and draw schematics for a decoding system that generates a low output
voltage if and only if there are two (or more) adjacent vacant slots.

Free Range Digital Design Foundation Modeling Chapter 15

 - 211 -

15 Modular Design

15.1 Introduction

Up until now, we’ve used either brute force design (BFD) or iterative modular design (IMD) to design our
digital circuits. This chapter outlines our final approach to digital design: Modular Design, or MD. MD is the
most powerful approach to digital design, though you won’t see a lot of that power in this since we still need to
introduce more digital design foundation modules.

Main Chapter Topics

MODULAR DESIGN: This chapter presents the basics of Modular Design (MD)
starting with an overview and ending with design examples that we can best solve
using the MD approach.

Why This Chapter is Important

 Be able to describe the differences between BFD, IMD, and MD approaches to
digital design.

15.2 The Big Digital Design Overview

Because of your increased your knowledge and abilities, you’re ready for a more powerful design approach.
However, before we do this, it seems worthy to put the new design approach into a context of what we already
know.

There are three approaches to digital design; any possible digital design you do fit into one of these
approaches. The following list highlights the three design approaches and includes some modest explanation as
well. Table 15.1 compares and contrasts these three approaches.

BRUTE FORCE DESIGN (BFD): This was the first design approach we worked with; it involves
assigning a single output to every possible input combination via a truth table. The tabular format
(truth tables) limits this approach to designs with a four or less inputs.

ITERATIVE MODULAR DESIGN (IMD): This was the second approach to design we worked with.
Most appropriately, IMD would be included as a subset of modular design, but we’re opting to
call it a design approach all its own. This design approach allowed us to bypass the truth table
approach of BFD and enabled us to create mildly complex circuits such as the RCA.

MODULAR DESIGN (MD): We applied this approach in a few problems, though you did probably
not realize it. This approach involved drawing bunches of black boxes to model our designs. We
also drew boxes within boxes within boxes, which we labeled as hierarchical design. It turns out
that hierarchical design is a form of modular design.

Free Range Digital Design Foundation Modeling Chapter 15

 - 212 -

Design Approach Pros Cons

Brute Force Design Straight forward Limited by number of inputs

Iterative Modular Design Straight forward Not applicable to all designs

Modular Design Massively powerful Requires a working brain1

Table 15.1: Matrix explaining why Modular Design can save the world.

15.3 Modular Design Overview

Modern digital design primarily uses Modular Design. You perform modular design by plopping down black
boxes and connecting them up in intelligent ways such that they solve problems. Modular design involves
keeping a bag full of standard digital modules (which we refer to as the digital design foundation modules) and
assembling those modules in such a way as to solve digital design problems. The half-adder, the full-adder, and
the ripple carry adder (RCA) are first modules we worked with; the RCA was our first digital design
foundation module.

The overall approach of MD is to abstract circuits to a higher level in order to increase your efficiency in the
digital design process. The potential problem with designing at high levels is that the designer can make too
many assumptions in the design process and not properly convey these assumptions to other entities. Because
MD is model based, you must make sure that the entity reading your design2 can fully comprehend what you’re
attempting to convey. Here are some guidelines you must follow when doing the MD thang:

Be Clear and Concise: A messy BBD hinders efficient information transfer. Use a ruler if you’re
modeling by hand, but there is no big need to use a drawing program if your BBD is neat.

State All Assumptions: Any unstated assumption you make could quickly confound your design
if the reader does not know and/or understand you’re assumptions

Label Everything: Make labels help prevent readers from making assumptions about the circuit.

Provide a definition for all black boxes: Every box you use in your model should either be
clearly defined somewhere or be a digital design foundation module. If you call out a foundation
module in your design, everyone knows what it is and there is no need to define it at a lower level.
Be aware that you must use these modules exactly as we originally defined them, or people can’t
be sure of what you’re modeling. Table 15.2 shows a visual representation of this point.

1 Thus, you will not find viable digital designers in an academic administrative setting.
2 It could be a person or a computer (such as the HDL synthesizer).

Free Range Digital Design Foundation Modeling Chapter 15

 - 213 -

Model Comment

This model sort of looks like a 3-input OR gate, but having two
outputs makes it non-standard. Being non-standard, the circuit's
output characteristics are a mystery. This is an invalid model.

This is a true digital box. Since we know what an RCA is, and
the inputs and outputs of the box labeled RCA match what we
know about RCAs, we know exactly how it works. This is a
valid model and there is no need to define it anywhere else in
your model. This RCA does not show a carry-in input, but it’s
still an RCA.

This is also a true digital box. If you replace the HA in a RCA
with a FA, you have the extra carry-in input as is listed in this
model. Having this input is very handy in various digital design
applications. This is a valid model.

This circuit has the RCA label, but since we know RCAs to
have multiple inputs (bundles) for the addend and augend,
we’re left scratching our heads. You could assume it’s a RCA
but you could be wrong. The SUM output has the same issue.
This is an invalid model.

This has all the correct inputs for an RCA, but since it has the
ADDER label, we can’t assume we know exactly what this box
is doing. This is an invalid model. You could make this model
valid by providing an ADDER definition in your design.

Table 15.2: Some good and bad example of standard digital black boxes.

Not that rules are good things, but they can help when first embarking on the MD approach to digital design.
There is one excellent quality regarding MD: the problems have a strange way of doing themselves based
primarily on the problem description. We outline this approach in Figure 15.1 and apply this approach in the
design examples that follow. The final comment: you need to be creative and clever with your solutions, as you
will inevitably run into situations that you have not seen in a previous example.

Free Range Digital Design Foundation Modeling Chapter 15

 - 214 -

 Read the problem: Yes, a great start.

 Draw a high-level black box diagram that shows the design’s interface (I/O): This is not
always an easy step based on the problem statement as sometimes the important information
buries itself deep in the problem description. Completing this step is that it inevitably helps you
understand the overall problem.

 Make an inventory of the modules your solution requires: This can be a straightforward step
because the problem typically provides major clues. For example, if a problem says something
like “add” or “sum”, you know your design requires an RCA.

 Connect the Lower-level Design Entities: The previous step leaves you with a bunch of black
boxes in your design; this step entails connecting those black boxes in an intelligent manner.

 Provide Adequate Models for Any Non-Standard Black Boxes used in the Design: Use as
many standard digital design boxes as possible in your design. However, don’t hesitate to create
new boxes with “special” functionality that helps you solve the problem at hand. You must,
however, you completely describe any non-standard module you use in your design.

 Check your final diagram for the following:

o Make sure the highest-level black box has an appropriate label

o Make sure all module inputs connect to something

o Make sure all signals include appropriate labels

o Make sure to label all bundle widths

o Make sure all lower-level design entities include labels

o Make sure all labels in diagram are self-commenting in nature

Most importantly: DON’T GET STUCK! Digital design is an inherently iterative process. Also,
recall Mealy’s Fourth law of digital design that states the design process is circular, not linear. Do
your best to complete all the bullets listed above in the order, but realize the main goal is to solve the
problem. If you leave something out of your design, simply add it when you realize it’s missing.
Lastly, realize that the listed bullets are one person’s view of digital design. If you want to become a
good digital designer, YOU MUST DEVELOP YOUR OWN STYLE! The only constraint is that
you solve the problem in a reasonably efficient way and in a reasonable amount of time.

Figure 15.1: The desired approach to solving modular design problems.

The notion of modularity in digital design is so important, we coin yet another one of Mealy’s laws:

Mealy’s Fifth Law of Digital Design: Model circuits using many smaller sub-modules as
opposed to fewer larger sub-modules; as this approach supports testing and increases the
chances module reuse.

Free Range Digital Design Foundation Modeling Chapter 15

 - 215 -

Example 15.1: RC Sign Changer

Design a circuit that changes the sign of an 8-bit signed binary number in radix complement form.
Provide your solution in the form of a black box model. Minimize your use of hardware in your final
model. If you use something other than foundation modules in your solution, provide an adequate
description. State what controls the circuit in your solution.

Solution: The first step is to draw the high-level BBD; Figure 15.2 shows a nicely labeled model for this
problem.

Figure 15.2: Black box diagram for the RC Sign Changer.

The next step is to gather in what you know about changing the sign of binary numbers in RC format. The
standard method we know is the visual algorithm method of starting at the right-most bit in the number and
looking for the first ‘1’ etc. Although this worked great on paper, it does not work for digital hardware. We
need to use the other approach to changing the sign which, was taking the 1’s complement and then adding ‘1’.
Taking the 1’s complement of the input requires an inverter for each individual bit input to the circuit.

The next step in this problem is to make of initial inventory of the modules the final circuit requires. Taking the
2’s complement requires that we add three values, which means this circuit needs an RCA. It seems for now
that’s all the circuit needs, but if we later find that the circuit requires other modules, we add them. The making
an inventory step in digital design is always going to be an iterative step; we give the BBD our best shot, but
we know can always add more modules learn more about the problem during our progression towards the
solution (digital design is circular, not linear). Figure 15.3 shows the lower-level BBD for this example. We list
a few more interesting things about this circuit below:

Figure 15.3: Black box diagram for RC Sign Changer.

 The box in Figure 15.3 is consistent with the box in Figure 15.2: the inputs and outputs match in
both bundle size and name.

 The bundle notation in Figure 15.3 appears on both the inside of the RC_SGN box as well as the
outside; either listing is fine.

 It appears that the 8-bit bundle uses a single inverter. This is a common shorthand notation for
indicating the inversion of every signal in the bundle. We could have drawn eight inverters but it
would have cluttered our diagram.

 The Cin signal has a funny thing connected to it; the funny thing indicates that the Cin input to
the RCA is connected to ‘1’. You see this notation often; sometimes you also see a “Vcc” or a
“Vdd” which indicates the signal is connected to the higher voltage in the circuit, which we
consider to be a ‘1’.

Free Range Digital Design Foundation Modeling Chapter 15

 - 216 -

 There is a funny shape connected to the B signal, which indicates that the B input of the RCA is
connected to “ground” or a logical ‘0’. This notation indicates that each of the eight individual
signals in the bundle connects to ground.

 The Cout signal of the RCA is unconnected; which is no big deal, as your design does not use
it. Although you always need to connect your inputs to something, you don't need to connect the
outputs if the circuit does not use them.

 The RCA as drawn in this problem uses a FA for the LSB. This means that the total equation for
the RCA is: SUM = A + B + Cin. The way we connected the circuit in this problem is that the B
value is always zero, the A signal is always inverted, and Cin is always ‘1’. The final
implemented equation is therefore: SUM = !A + 1.

This circuit has no control because the RCA has no control inputs; the output reacts to the input
independent of the input values.

As a final note, there are two ways to configure the RCA in this problem. The goal for this problem was
to output (!A + 1); the solution does this by grounding one of the bundled inputs to the RCA and using
the Cin to provide the ‘1’. Another equivalent approach would be to ground the Cin input and then
connect a one to the B input of the RCA. The “one” on the B input would be “00000001”, as that RCA
input expects 8-bit data.

Example 15-2: Special RC Addition Circuit

Design a circuit that adds ‘2’ to an 8-bit signed binary number in radix complement form. This circuit
has an output signal VALID that is ‘1’ when the addition operation is valid. Minimize your use of
hardware in your final model. If you use something other than a standard digital circuit, make sure you
adequately provide an adequate description. State whether the circuit has “no control”, “internal
control”, or “external control”.

Solution: The solution starts with drawing a BBD of your solution, as we nicely show in Figure 15.4.

Figure 15.4: Black box model for the solution.

The next step is to make an inventory of the modules that go inside the top-level BBD. We do this by first
looking back at the problem description for clues. The first clue is that you’ll be adding a number to another
number, which means that you’re going to need an RCA. The next thing we need is some type of circuitry
indication when the solution is valid or not. We refer to this “control” circuitry. OK… let’s put it down; check
out Figure 15.5.

Free Range Digital Design Foundation Modeling Chapter 15

 - 217 -

Figure 15.5: The next step in the solution.

Here are some interesting to note about Figure 15.5 that helps you move toward the solution. Figure 15.6
shows the result of listing all of these items.

 The RCA adds two things: the IN_VAL and the number “00000010” (which is 2 represented as
an 8-bit in signed binary number). Therefore, we can connect IN_VAL to one of the RCA
operands and “hardwire” a binary “2” to the other operand. We indicate this in the diagram by
listing “00000010” near the bundle in question.

 The output of this circuit is the result of the addition so we can connect the output of the RCA
to the OUT_VAL signal.

 The CTRL circuit indicates if the operation was valid or not. Although the inputs to the CTRL
box are still unknown, we know the output is the VALID signal.

 The big question is how are we going know if the addition operation is valid or not? The
answer lies in the fact that since we’re adding two signed binary numbers in RC form, the
answer is only invalid if the two input operands have the same sign but generate a result of a
different sign. Therefore, the CTRL box needs three inputs: the sign bits of the two RCA
operands and the sign-bit of the SUM operand.

 We don’t need the Cout signal for our approach to this solution so we can leave it unconnected
since it’s an output.

The next step in the solution is to design the interior of the CTRL box; one way to do with is with a truth table.
The result of the binary addition is only going to invalid when the sign bits of the operands are the same and
the sign bit of the result is different. Figure 15.7 shows the resulting truth table. Because the sign-bit of the A
input is always ‘0’, we list the table entries of A=1 as don’t cares (dashes).

Figure 15.6: The next step in the solution.

Free Range Digital Design Foundation Modeling Chapter 15

 - 218 -

A B S VALID

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 -
1 0 1 -
1 1 0 -
1 1 1 -

Figure 15.7: The truth table modeling the CTRL box.

The equation describing the truth table of Figure 15.7 is VALID = B + !S. We did not need the A sign-bit input
after all. In the end, the fact that the sign bit of the A input to the RCA does not affect the problem makes sense
if you think about it for a few minutes.

Figure 15.8 and Figure 15.9 show the final solution. There are two parts to the solution; each of these parts
represents a different level of the design. Figure 15.8 represents the higher-level portion of the solution while
Figure 15.9 represents the lower level of the solution Additionally, this circuit has no type of control; the
output react to the input in the same manner independent of the input values.

Figure 15.8: The final solution to this example.

Figure 15.9: The other part of the final solution to this example.

This is a true hierarchical design. It did not need to be a hierarchical design; we could have placed the OR gate
of Figure 15.9 into the black box diagram of Figure 15.8. However, this approach is clearer. We didn’t have an
idea of the final solution when we started the problem; we instead just started working towards a solution
starting with what little we knew about the problem. This is an important concept because you may not have a
good idea about the solution, but you’ll have a direction to go in. As you go in that direction, you’ll pick up
clues to the solution, or maybe toss your approach and start over. This is a circular approach to design, which is
much better than attempting to force a linear approach, as many technical people often do.

Free Range Digital Design Foundation Modeling Chapter 15

 - 219 -

Example 15-3: 8-Bit Adder/Subtractor

Design a circuit that acts as both an adder and subtractor. This circuit has a control input SUB and two
eight-bit signed binary inputs A and B (RC format). When the SUB input is high, the 8-bit signed
binary output (RC format) indicates the result of B subtracted from input A. Otherwise, the output of
the circuit indicates of addition of the A and B. For this problem, assume that the result is always valid.
Use any support logic you may require but minimize the amount of hardware used in this circuit. Use
the modular design approach and provide a top-level and lower-level BBD for your solution. State
whether the circuit has “no control”, “internal control”, or “external control”.

Solution: The first step is drawing a BBD of the circuit; Figure 15.10 shows this step.

Figure 15.10: Black-box diagram of the Adder/Subtractor circuit.

Our approach is to recall that we can perform subtraction in binary by first multiplying one operand by -1 and
then adding the result to the other operand. This means performing a two’s complement on one operand when
using numbers in RC format, which is the indirect subtraction by addition approach. We obtain the two’s
complement by taking a 1’s complement and adding 1. Equation 15.1 shows the RCA’s operation; the task in
this problem is to change the sign of the B input when the circuit must perform subtraction.

SUM = A + B + Cin

Equation 15.1: What the RCA is adding.

The SUB input to the circuit has two functions: 1) to select the complemented or non-complemented operand
to one of the RCA’s inputs, and 2) to select a ‘1’ for the Cin input on the RCA_FA. The final circuit is thus
going to look something like the circuit in Figure 15.11. Another way to view this circuit is that the value of
the SUB signal is always included in the addition operation of the RCA_FA. If the SUB = ‘0’, thus indicating
an addition operation, it has no effect on the result.

Figure 15.11: The final circuit.

The final step in this problem is defining the B_LOGIC block in Figure 15.11. There is a well-known approach
to this problem, which is to notice that signal B sometimes requires inversion before it connects to RCA_FA

Free Range Digital Design Foundation Modeling Chapter 15

 - 220 -

and sometimes it does not. When SUB is a ‘1’, the ADD_SUB module performs an A – B operation which
means we want to invert B and add ‘1’ to the RCA_FA module via the Cin input. This circuit uses the SUB
input as a control input as it decides what value is output on the result signal.

For the B_LOGIC, we need to invert individual signals in B before they are sent to the RCA_FA when SUB is
a ‘1’. The most straightforward way to do this is to use known properties of the XOR gate; specifically, when
one input to an XOR gate is ‘1’, the output of gate is an inversion of the other input. Similarly, when one input
to a XOR gate is a ‘0’, the other input effectively passes through the XOR gate output. Therefore, the XOR
gate here is ether an inverter or buffer.

Figure 15.12 shows the final circuit for the B_LOGIC block with a few interesting features worth noting. First,
we decompose signal B into its parts on the diagram with the assumption that B(7) is the MSB while B(0) is
the LSB. We reassemble the output from its parts back into a bundle.

SUB value RCA_FA operation Operation

‘0’ 0 BASUB A + B

‘1’ 1 BASUB A - B

Table 15.3: Tabular view of RCA_FA operation.

Figure 15.12: The schematic for the B_LOGIC block.

This is a well-known solution to this problem. Figure 15.13 shows a better approach to the final solution of this
problem; this solution is better because it was easier to draw. Figure 15.13 uses a special shorthand notation;
although XOR gates only have two inputs, Figure 15.13 seems to indicate that the XOR gate can accept a
bundle input. In actuality, the special XOR gate in Figure 15.13 is the same circuit as the B_LOGIC block in
Figure 15.12.

Free Range Digital Design Foundation Modeling Chapter 15

 - 221 -

Figure 15.13: An alternate and popular approach to the final circuit.

Example 15.4: Timing Diagrams

Based on the solution to Example 15-3, complete the following timing diagram.

Solution: The problem states the value on B is either subtracted from or added to A based on the value of
signal B. Figure 15.14 shows the final solution to this problem keeping in mind that when SUB is a ‘0’, the
RESULT signal represents an addition of signal A & B.

Figure 15.14: The solution to Example 15.4.

Free Range Digital Design Foundation Modeling Chapter 15

 - 222 -

15.4 Chapter Summary

 There are three basic approaches to digital design 1) Brute Force Design (BFD), 2) Iterative Modular
Design (IMD), and 3) Modular Design (MD). By far, Modular Design is the most powerful, particularly
since hierarchical design is a form of MD.

 The general rules for creating hierarchical BBDs are:

o Be Clear and Concise:.

o Label All Assumptions:

o Label Everything:

o Provide a definition for all black boxes:

 All black box diagrams should be a simple as possible. If you need to create some special notation for your
solution, be sure to describe it fully.

 MD is an inherently iterative design process; don’t expect to complete a working design in one pass.

 An overview of the approach to MD-type problems can be stated as:

o Read the Problem

o Draw a High-level Black-box Interface Diagram

o Create an inventory of the Lower-level Design Entities

o Connect the Lower-level Design Entities

o Provide Adequate Models for Any Non-Standard Modules

o Check Your Final Diagram for All Important Details

Free Range Digital Design Foundation Modeling Chapter 15

 - 223 -

15.5 Chapter Exercises

1) Briefly explain what exactly the notion of a modules “interface” refers to.

2) Why do we consider IMD to be a subset of MD? Briefly but fully explain.

3) List several advantages to using a self-commenting style in your black box diagrams.

4) Describe why MD is more powerful than BFD.

5) Explain why you don’t need to provide models for underlying foundation modules but you do need to
provide models for all other modules you use in your designs.

6) Briefly describe why the best approach is to use as many foundation modules as possible in your designs
as opposed to defining new modules.

7) Briefly describe why “brute force design” or “iterative design” was a limited and inefficient design
approach?

Free Range Digital Design Foundation Modeling Chapter 15

 - 224 -

15.6 Design Problems

For the following problems:

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution

 Minimize the use of hardware in your solution

 State the types of control your circuit uses (“no control”, “internal control”, and/or “external control”).

1) Design a circuit that subtracts ‘3’ from an 8-bit signed binary number. Assume the number is in radix
complement form and that the output is an 8-bit value in RC format. . This circuit has an output signal
VALID that is ‘1’ when the subtraction operation is valid.

2) Design a circuit that multiplies an 8-bit signed binary number by two. Assume the number is in radix
complement form and that the output is an 8-bit value in RC format. This circuit has an output signal
VALID that is ‘1’ when the operation is valid.

3) Design a circuit that multiplies an 8-bit signed binary number by three. Assume the number is in radix
complement form and that the output is an 8-bit value. This circuit has an output signal VALID that is ‘1’
when the operation is valid.

4) Design a circuit that can add four 10-bit values and generates a 10-bit output. If any of the four inputs
values is greater than 255, then the output is always 0; otherwise the output reflects the summation of the
four values. Assume that the inputs and output s are in unsigned binary format.

5) Design a circuit that can add four 8-bit values and generates an 8-bit output. This circuit also has a VALID
output that indicates when the value on the 8-bit output is correct.

6) Design a circuit that can add four 8-bit values and generates a 9-bit output. This circuit also has a VALID
output that indicates when the value on the 9-bit output is correct. Assume that the inputs and outputs are
in unsigned binary format.

7) Design a circuit that has two 8-bit signed binary (RC format) inputs. The circuit has four outputs, which
includes the value of A+B and a signal to indicate if the value is correct or not, and the value of A-B and a
signal to indicate whether the output is valid or not. Assume the results of the sum & subtraction are both
8-bit values in RC format.

8) Design a circuit that performs the following operation: C – A – B (the values of A & B are subtracted
from C). Assume that A, B & C are 10-bit signed values in RC form. This circuit has two outputs: RES,
which is a 10-bit result (also in RC form) and VALID, which indicates if the 10-bit RES output is value
is valid based on the math operations performed by the circuit. Feel free to use the 2sCOMP and
VALID_CKT box provided below. Include a block box diagram for both the top-level circuit as well as
the underlying circuitry.

9) Design a circuit that adds four unsigned 10-bit numbers (A, B, C, D). The result should have the minimum
number of bits while generating the correct result (including number of bits) of the addition operations.
Use no more than three 10-bit RCAs in your design.

Free Range Digital Design Foundation Modeling Chapter 15

 - 225 -

10) Design a circuit that adds five 10-bit unsigned binary numbers, A,B,C,D, and E. No matter what, the final
sum should always be output, but this sum output is only a 10-bit number also. The catch is that this circuit
has a “VALID” output indicates when the 10-bit output is a valid represents the actual sum of the five
input values. You can only use 10-bit RCAs for this circuit.

Free Range Digital Design Foundation Modeling Chapter 16

 - 226 -

16 Decoders

16.1 Chapter Overview

Decoders provide one of the most straightforward ways of modeling certain types of digital circuits. Up until
now, we’ve primarily been dealing with logic functions in the form of Boolean equations. This is a good
beginning approach, but using Boolean equations as a basis for digital design limits the complexity of the
circuit. Digital design rarely has much to do with Boolean functions as it represents a low-level and thus
inefficient approach to digital design. We’re ready to generate our designs at a higher level because that is the
most efficient approach.

Main Chapter Topics

DECODERS: The chapter introduces the decoder, which is a standard digital circuit.
We divide decoders into one of two types: standard and generic decoders. Because
of their inherent genericity, decoders are quite versatile in digital design.

Chapter Acquired Skills

 Be able to describe the differences between generic and standard decoders

 Be able to use generic and standard decoders in digital designs

 Be able to describe the underlying hardware of a simple standard decoder

16.2 Introduction to Decoders

We use the word generic decoder, or just decoder, to refer to the standard digital device where the values of
the decoder’s input always produce the same values on the decoder’s output. This is a generic definition of a
decoder, thus we refer to most decoders as “generic” if we can model them in tabular format (a truth table).
The basis of all things digital are basic gates, which we defined using tables; we can thus consider basic logic
gates as decoders because of their tabular definitions.

In addition to the generic decoder, there is a standard decoder. The terms “generic” and “standard” decoders
are terms that you won’t find in other digital design texts; I created these names to simplify the digital design
paradigm. The standard decoder is a special type of a generic decoder and has a special relationship between
the inputs and outputs. Figure 16.1 shows that, a standard decoder is a subset of a generic decoder. Standard
decoders have specific uses while generic decoder usage is open-ended.

Figure 16.1: Venn diagram showing the hierarchy of decoders.

Free Range Digital Design Foundation Modeling Chapter 16

 - 227 -

Modeling digital circuits using tables is powerful because we can easily translate the tables to a hardware
description language (HDL). You may have a notion of the “power of tables” from your programming career
in that using “look-up-tables” or “LUTs”; the same usefulness of LUTs applies to hardware modeling. The
approach in modern digital design is to allow the development tools to do the work for you. Thus, modeling
circuits using decoders (LUTs) hands a significant portion of the circuit implementation effort to the tools. If
you need to implement some “logic” using an HDL, the best approach is to model the function in tabular
format, then allow the tools to do the rest.

Our new working definition of a generic decoder is this: any digital device that establishes a functional
relationship between the device input(s) and output(s). We use generic decoders to model LUTs. This is
important, so we need to coin yet another one of Mealy’s new laws. You should always be on the lookout for
opportunities to use decoders rather than trying to generate some fancy logic.

Mealy’s Seventh Law of Digital Design: Always first consider modeling a digital circuit or
part of a digital circuit using some type of a look-up table (LUT).

16.3 Generic Decoders

Generic decoders are so general, it’s tough to say much useful about them. If you can describe a circuit in
tabular format, you’ve officially modeled a decoder. Figure 16.2 shows a black box diagram of a generic
decoder. There can be any non-zero number of inputs and outputs; the number of inputs and outputs don’t need
to match.

Figure 16.2: A black box diagram of a generic decoder.

You can define two general types of tables: 1) complete tables, and, 2) incomplete tables. Both tables are
equally straightforward to model using an HDL. We define a complete table as a table that has a row for every
unique combination of the circuit’s inputs; a non-complete table is any table that is not a complete table. We
make this distinction so you realize that you don’t need to completely specify every possible input combination
for generic decoders. Additionally, HDLs have solid support for modeling incomplete tables.

Figure 16.3 shows completely and incompletely specified tables. The table in Figure 16.3(a) has three inputs;
because there are eight rows in Figure 16.3(a), we consider this table completely specified. The table in Figure
16.3(b) has three inputs, but only five of those three inputs combinations have outputs. Not declaring outputs
indicates that for the missing input combinations, the designer for some reason does not care about the outputs.
Another approach to non-complete tables is to list the missing inputs and state the outputs as don’t cares, which
we do in Figure 16.3(c).

Free Range Digital Design Foundation Modeling Chapter 16

 - 228 -

A B C VAL

0 0 0 011
0 0 1 110
0 1 0 010
0 1 1 011
1 0 0 111
1 0 1 100
1 1 0 000
1 1 1 111

X Y Z VAL

0 0 0 011
0 0 1 110
1 0 1 100
1 1 0 000
1 1 1 111

X Y Z VAL

0 0 0 011
0 0 1 110
0 1 0 - - -
0 1 1 - - -
1 0 0 - - -
1 0 1 100
1 1 0 000
1 1 1 111

(a) (b) (c)

Figure 16.3: A completely specified table (a), and an incompletely specified table (b) & (c).

16.4 Standard Decoders

Before we study the internals of a standard decoder, we first need to review some characteristics of a few basic
gates: the basic AND & OR logic gates. You can effectively kill the output of a AND & OR gates by
connecting an input to ‘0’ and ‘1’, respectively. Figure 16.4 shows a gate-level depiction of the gate-killing
functionality. The circuit in Figure 16.4(a) uses an inverted arrowhead to indicate a connection with ground
(‘0’). Figure 16.4 (b) shows the slanted T symbol to indicate a connection to the circuit’s high voltage (‘1’).

(a) (b)

Figure 16.4: Killing the AND (a) and OR (b) gates.

While generic decoders have an unspecified number of inputs and outputs, standard decoders have a
“standard” relationship between the number of inputs and outputs, as well as the form of the outputs. When
you hear the word “decoder”, it does not refer to a specific type of input/output relationship for the circuit. As a
result, we choose to model decoders are either generic or “standard” decoders. When you hear decoder, you
don’t know much about the circuit; if you hear “standard decoder”, you know something about the circuit.

The standard decoder fixes the relationship between the number and form of circuit inputs and outputs. Figure
16.5(a) shows a gate-level model of a 2:4 standard decoder. Due to the configurations of the inputs S1 and S0
in Figure 16.5(a), only one of the AND gates is non-dead at a given time. Thus at any given instance in, only
one of the outputs F0, F1, F2 or F3 is a ‘1’, while the three others are ‘0’. The condition that makes this a
standard decoder is the relationship between the number and form of the inputs and outputs. The bulleted items
below highlights these main attributes:

 Standard decoders always have a binary-type relationship between the number of inputs and
outputs. For example, standard decoders come in flavors such as 1:2, 2:4, 3:8, 4:16, etc. This
progression has an n:2n relationship. The first digit refers to the number of inputs to the circuit
(control variables) while the second variable refers to the number of circuit data outputs. The
“n” input variables can reference 2n unique output combinations.

 Although the schematic diagram of circuit of Figure 16.5(b) is adequate to describe a standard
decoder, the schematic diagram of Figure 16.5(c) is more common. The small numbers
associated the circuit inputs and outputs in Figure 16.5(b) indicate a weighting on those inputs
and outputs. You must attach these numbers unless you use the bundle notation in Figure
16.5(c).

Free Range Digital Design Foundation Modeling Chapter 16

 - 229 -

 Only one output of the standard decoder is active at a given time because we configure the
control variables such that only one of the internal AND gates is non-dead. All of the outputs
except one are high at a given time while the other output is low. The 2:4 decoder has four
possible output combinations: “0001”, “0010”, “0100”, “1000”, which is a one-hot code.

(a) (b) (c)

Figure 16.5: A standard 2:4 decoder in schematic and circuit forms.

Figure 16.6 shows the circuit and the associated schematic diagram for a NAND gate-based standard decoder.
The final result of the NAND-based decoder is the opposite of the AND-based decoder in that only one of the
outputs is ‘0’ at a given time while the other outputs are in a ‘1’ state. The bubbles on the output of the Figure
16.6(b) are roughly the same bubbles on the NAND gates. This version of the 2:4 decoder has four possible
output combinations: “1110”, “1101”, “1011”, “0111”. We refer to this as a “one-cold” code; an ingenious
name.

(a) (b)

Figure 16.6: A standard 2:4 decoder with inverted outputs.

Free Range Digital Design Foundation Modeling Chapter 16

 - 230 -

Example 16.1: Timing Diagram for a Standard Decoder

Use the following black box model for a standard 2:4 decoder to complete the following
timing diagram.

Solution: Since the problem states that this is a standard decoder, the S input must be the selector inputs while
the F are the outputs. The selection input bundle is two bits wide, which enables it to select one of four
different possible outputs. The problem description uses bundle notation in order to simplify the problem.

There are only two selector bits, but the solution uses hex notation; the unused bits are all zero. For example,
the hex value of “0x3” represents “0011”, but the first two bits do not affect the output selection; this problem
uses only the two lower bits of the hex notation.

Figure 16.7 shows the final solution to this example; the solution opts to use hex notation. The solution has a
nice binary relationship between the selector inputs and the outputs. Figure 16.8 shows an alternate solution to
this example, which clearly shows that only one output is a ‘1’ at any given time.

Figure 16.7: The solution to this example.

Figure 16.8: An alternate solution to for this example.

Free Range Digital Design Foundation Modeling Chapter 16

 - 231 -

Example 16.2: Timing Diagram for a Standard Decoder

Use the following black box model for a standard 2:4 decoder to complete the following
timing diagram.

Solution: We start this problem by knowing what the output values are. We need to determine the values of the
selector input S that generates the given output values. Since this is a standard 2:4 decoder, there can only be
four output values. This solution also uses bundle notation. Fun stuff.

Figure 16.9: The solution to this problem.

Example 16.3: Standard Decoder with Enable Input

Design a standard 2:4 decoder that has an EN input (enable). When the EN input is ‘1’, the
decoder outputs are all ‘0’. When the EN input is ‘0’, the decoder outputs follow the
accepted definition of a standard decoder.

Solution: Standard decoders often include more than the standard control inputs. One of the typical controls on
the decoder’s inputs is an enable signal. Once standard decoders add more input control signals, the underlying
circuitry becomes more complicated and not worth drawing. We provide a table that describes the behavior of
such a circuit. Figure 16.10(a) and Figure 16.10(b) show a schematic symbol and a table describing the
operation of a standard decoder with an enable input, respectively.

Free Range Digital Design Foundation Modeling Chapter 16

 - 232 -

EN S F
0 - - 0 0 0 0
1 0 0 0 0 0 1
1 0 1 0 0 1 0
1 1 0 0 1 0 0
1 1 1 1 0 0 0

(a) (b)

Figure 16.10: A 2:4 decoder with an enable (a) and its behavior described in tablature format (b).

Figure 16.11 shows a timing diagram that describes the behavior of the circuit described in this example.
There are two main features worth noting in this timing diagram.

 The F bundle output is only all ‘0’s when the enable input (EN) is ‘0’.

 Any time the EN input is ‘1’, one and only one of the F bundle output signals are ‘1’ while the
remainder of the signals are ‘0’. This characteristic provides a quick but excellent method to
verify proper operation of the decoder.

Figure 16.11: An example timing diagram for this example.

16.5 Digital Design Foundation Notation: Generic Decoder

We consider the generic decoder to be one of our Digital Design Foundation circuits. We consider the
generic decoder to be a controlled circuit; Figure 16.12 shows the generic decoder in appropriate
foundation notation. The generic decoder models a table, so the DATA_IN inputs act as the
independent variables and the DATA_OUT signals are the dependent variables. We consider the
generic decoder does not have either control inputs or status outputs. Table 16.1 provides a description
of all the inputs and outputs to the generic decoder.

Free Range Digital Design Foundation Modeling Chapter 16

 - 233 -

Figure 16.12: Data signals for a generic decoder.

 Signal Name Description

IN
P

U
T

D

A
T

A

DATA The independent variable of the look-up-table

O
U

T
P

U
T

D

A
T

A

DATA The dependent variable of the look-up-table

C
O

N
T

R
O

L

n/a -

S
T

A
T

U
S

n/a -

Table 16.1: The foundation matrix for a generic decoder.

16.6 Digital Design Foundation Notation: Standard Decoder

We consider the generic decoder to be one of our Digital Design Foundation circuits. We consider the
standard decoder to be a controlled circuit; Figure 16.12 shows the standard decoder in appropriate
foundation notation. The standard decoder has no data inputs; the only inputs are the SEL inputs,
which decide the exact format of the DATA_OUT signals. By definition, the DATA_OUT signals
form a one-hot code. Table 16.2 provides a description of all the inputs and outputs to the standard
decoder.

Figure 16.13: Control and status signals for a 2:4 standard decoder.

Free Range Digital Design Foundation Modeling Chapter 16

 - 234 -

 Signal Name Description

IN
P

U
T

D

A
T

A

n/a -
O

U
T

P
U

T

D
A

T
A

n/a -

C
O

N
T

R
O

L

SEL The inputs that select the desired form of the output.

S
T

A
T

U
S

S(3:0) The output signals chosen by the SEL input.

Table 16.2: The foundation matrix for a standard decoder.

Free Range Digital Design Foundation Modeling Chapter 16

 - 235 -

16.7 Chapter Summary

 The official definition of a decoder: combinatorial (or non-sequential) digital device that establishes a
functional relationship between the device input(s) and output(s). This definition defines a generic
decoder, which is not to be confused with the standard decoder. We typically refer to any circuit we can
model using a table (such as a truth table) a decoder.

 Standard decoders are a special type of decoder. The inputs and outputs of the standard decoder exhibit an
n:2n relationship. In particular, if a standard decoder has n inputs, it necessarily has 2n outputs. We often
use standard decoders in conjunction with hardware designed to access memory.

 Mealy’s Seventh Law of Digital Design: Always first consider modeling a digital circuit using some type
of a look-up table (LUT).

Free Range Digital Design Foundation Modeling Chapter 16

 - 236 -

16.8 Chapter Exercises

1) Implement the following functions using a generic decoder.

(a) (b)

2) Use the following black box model for a standard 2:4 decoder to complete the following timing diagram.

3) Use the following black box model for a standard 2:4 decoder to complete the following timing diagram

.

Free Range Digital Design Foundation Modeling Chapter 16

 - 237 -

4) Use the following black box model for a standard 2:4 decoder to complete the following timing diagram.

5) Based on the standard 2:4 Decoder below, complete the following timing diagram by entering the values
for signals s1 and s2 that would generate the listed output waveforms. Assume that propagation delays are
negligible. Be sure to annotate you solution to this problem.

6) Briefly describe the differences between a generic and standard decoder.

Free Range Digital Design Foundation Modeling Chapter 16

 - 238 -

7) Use the schematic diagram to complete the F2 and F1 outputs of the provided timing diagram. Consider
the decoder to be a standard 2:4 decoder. Assume that propagation delays are too small to worry about.

Free Range Digital Design Foundation Modeling Chapter 16

 - 239 -

16.9 Design Problems

For the following problems:

 Use some type of decoder in your design; you can use other foundation modules when appropriate,
but minimize your use of simple logic gates in favor of decoders.

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution

 Minimize the use of hardware in your solution

 State the types of control your circuit uses (“no control”, “internal control”, and/or “external control”).

1) Design a 2’s complement validity checking circuit for an RCA module. The single output of the circuit
indicates when the result of the addition is valid.

2) Design a BCD-to-7 segment decoder. The circuit converts a number in BCD format to a form that can be
used to indicate that number on a 7-segment display.

3) Design a BCD-to-7 segment decoder. The circuit converts a number in BCD format to a form that can be
used to indicate that number on a 7-segment display and look like proper decimal digits when read in a
mirror.

4) Design a circuit that has three inputs and two outputs. One of the outputs indicates when the 3-bit input
value is less than three; the other output indicates then the input is greater than five.

5) Design a circuit that has four inputs and two outputs. One output indicates when the four inputs
(considered a binary number) are even and less than 8; the other output indicates when the four input bits
are odd and greater than 10.

6) Design a circuit whose 3-bit output is two greater than the 3-bit input. The binary count should wrap when
the output value is greater than 1112.

7) Design a circuit that has four inputs and three outputs. The four inputs are considered two 2-bit inputs.
One output consider the two inputs to be binary numbers and indicates when the two input number are not
equivalent. The other output considers the two inputs to be stone-age binary inputs and indicates when the
two binary inputs are equivalent. The third output indicates when the previously described outputs are both
in an “on”.

8) Design a circuit that has an output that indicates when the four-bit binary number on the input is a prime
number. For this problem:

 assume an input value of “0000” never occurs (be sure to note this fact where appropriate)

 assume the decimal value of 1 is a prime number

9) Design a circuit whose unsigned binary output represent the square of the circuit’s 4-bit unsigned binary
input.

10) Design a circuit whose outputs represent the square root of the circuit’s 4-bit input. Round the output
either up or down when necessary.

11) A given circuit has four inputs. Two of the inputs are considered the fractional portion of a binary number
while the other two inputs are considered the integral portion of the binary number. The outputs of this
circuit should represent a 2-bit binary number associated with the 4-bit input but with rounding up and
down. In other words, if the input is greater or equal to 0.5, the output should represent the input rounded
up. Otherwise, the output should represent the input rounded down to the nearest integer.

12) Design a circuit whose unsigned binary output represent the square of the circuit’s 4-bit signed binary
input (RC format).

Free Range Digital Design Foundation Modeling Chapter 16

 - 240 -

13) Design a circuit that converts a three-digit decimal number to an 8-bit unsigned binary number. This
circuit has three BCD inputs, which means four bits for the 100’s, 10’s, and 1’s digit. The 8-bit output will
always be sufficient to encode the three digital input value.

14) Design a circuit in with the following specifications: if the RND input is asserted, the 24-bit input is
rounded down to the nearest multiple of 8; otherwise the input is passed through unchanged to the output.

15) Design a circuit that adds two unsigned 10-bit numbers (which generates an 11-bit result including the
carryout) and is then “scaled” by removing the three least significant bits to form an 8-bit result.
Regarding the three least significant bits removed, an input to this circuit decides whether the 8-bit output
is the result of a rounding up or truncation operation (for example 31.5 rounds up to 32 and truncates to
31). HINT: 0.12 = 0.510.

Free Range Digital Design Foundation Modeling Chapter 17

 - 241 -

17 Multiplexors

17.1 Introduction

Our approach to digital design has been somewhat limited because we are missing one of the most basic
modules in digital design: the multiplexor. This chapter introduces the multiplexor at a low level, then quickly
abstracts to the module-level in order to retain the simplicity of the device’s operation.

Main Chapter Topics

DIGITAL DESIGN FOUNDATION MODULE: THE MULTIPLEXOR: This chapter
introduces the notion of a multiplexor from both a low-level and user-level
standpoint. The low-level multiplexor hardware is instructive but is multiplexors
quickly become complex as they increase in complexity.

Chapter Acquired Skills

 Be able to describe the basic operation of a multiplexor

 Be able to use multiplexors in digital designs

 Be able to describe the underlying hardware of a simple multiplexor

17.2 Making Decisions in Hardware and Software

Because computer programs generally “react” to various things, there are programming constructs that handle
these reactions. The general notion in programming is that there is one processor and this processor does one
thing at a time1. Computer programs make decisions based on the current conditions in a program: the program
either executes one set of instructions or “decides” to execute another set of instructions. A “conditional
statement” is the mechanism the program uses to choose one path of execution over another.

Hardware design is similar to software design. Your hardware must be able to react to certain conditions in the
circuit and choose one “result” over another “result” based on those conditions. A multiplexor allows the
hardware to choose one thing over another thing in digital circuits. There is a huge difference between
decisions making in software vs. decision making in hardware. The notion in software design is that the
computer program chooses one path of execution over another path; it would be inefficient to “execute” both
paths and then choose the result of interest.

The problem arises in hardware when you choose between two “results“. In hardware, the circuitry generates
all options in parallel (or concurrently). The multiplexor inputs all the options, and then allows a signal to
choose which of the inputs appears on the output of the multiplexor. If you need to choose between two
different results, the hardware generates both results and then chooses the desired result based on some signal
(condition) in the circuit. Therefore, when you’re designing “choosing” operations in hardware, you must
generate every possible "desired result" and then choose the result you need.

1 Generally speaking, a processor executes one instruction at a time; it executes one instruction and then moves on to the
next instruction.

Free Range Digital Design Foundation Modeling Chapter 17

 - 242 -

17.3 Multiplexors

The multiplexor is another Digital Design Foundation module. When you hear the word multiplexor, or MUX
as most people refer to it2, you need to think “selector circuit”. A MUX is a generally a circuit with many
inputs and one output; the single output of the device represents a direct transfer of one of the inputs to the
output under direction of the MUX’s control input.

The first step in developing the MUX is the selection circuitry in Figure 17.1(a), which you should recognize
as a standard decoder. Two variables S1 and S0 serve as selection variables, so only one of the Px outputs is a
‘1’ at any given time . In Figure 17.1(a), three of the AND gates are dead, which officially creates a one-hot
code on the Px outputs.

Figure 17.1(b) shows the final portion of the MUX circuitry. Knowing that three of the AND gates are dead,
the only way that the circuit output F can be a ‘1’ is if the Dx input on the un-dead AND gate is a ‘1’. If the D
input on the non-dead gate is a ‘0’, all of the AND gates are dead and the F output is a ‘0’. If however, the D
input on the non-dead gate is a ‘1’, then the non-dead AND gate output is a ‘1’, the OR gate has an input of ‘1’,
so the OR gate output F is ‘1’. The circuit in Figure 17.1(b) effectively transfers the value of one D input to the
output F. The MUX thus selects one of the D inputs to appear on the F output. The D input that appears on the
F output depends upon which AND gate is un-dead, which depends on the values of the S1 and S0 data
selection inputs.

(a) (b)

Figure 17.1: The MUX input circuitry (a) and the complete MUX (b).

We refer to the MUX in Figure 17.1(b) as a 4:1 MUX because the device chooses between one of four inputs
to appear on the single output. MUXes generally have a binary relationship between the number of selection
variables and the number of data inputs; common flavors of MUXes include 2:1, 4:1, 8:1, 16:1 etc. This is the
most basic form of a MUX. In reality, MUXes come in many different flavors and quickly become complex
enough that you’ll avoid modeling them on the gate-level.

2 And for the record, the correct pronunciation is “mucks” and not “mooks”.

Free Range Digital Design Foundation Modeling Chapter 17

 - 243 -

Example 17.1: 4:1 MUX Timing Diagram

Use the following block diagram to complete the provided timing diagram. For this problem,
consider the block diagram to represent a 4:1 MUX containing no surprises.

Solution: Since this is a 4:1 MUX, the output matches one of the four data inputs depending upon which input
the selector inputs select. The SEL input is in bundle notation while we expand the D input bundled to make
the problem clearer. Figure 17.2 shows the solution to this example.

Figure 17.2: The solution to Example 17.1.

Free Range Digital Design Foundation Modeling Chapter 17

 - 244 -

Example 17-2: 4:1 Bundle-Based MUX Timing Diagram

Using the following diagram of a 4:1 MUX, complete the provided timing diagram.

Solution: First, the schematic uses a new and distinctive shape for the MUX. Circuit diagrams always use this
shape to represent MUXes as the shape transfers information to the person reading the diagram. When you see
this shape in a schematic, you’ll immediately know the purpose of the device: choosing which input appears on
the output.

It is important that the MUX’s data inputs also contain indexing numbers. The numbers associated with the
data inputs range from [0,3], which by design corresponds to the numbers that you can represent by the two
control inputs. If the data inputs are not numbered, you’ll not know which input appears on the output. Figure
17.3 shows the solution to this example. Using vertical dotted lines helps you generate the solution.

Free Range Digital Design Foundation Modeling Chapter 17

 - 245 -

Figure 17.3: The solution to this example.

Example 17.3: Selection Circuit #1

Design a circuit that has three 8-bit unsigned binary inputs A, B, and C. The circuit outputs A + B if
the circuit’s button inputs is asserted (BTN=’1’); otherwise, the circuit outputs A + C. The circuit’s
output is also an 8-bit unsigned binary value. Don’t worry about the validity of the sum outputs.
Provide the top two levels of BBDs for this problem. Use no more than one RCA in your design, but
in general, minimize your use of hardware for this design. Also, state what is controlling this circuit.

Solution: The first step is drawing a block diagram of the final circuit as we show in Figure 17.4.

Figure 17.4: Top-level BBD for the solution.

The next step is to make an inventory of modules this circuit requires to solve the problem. The problem states
not to use more than one RCA, so you know there is an RCA. This means that we must configure the RCA to
do both of the addition operations. The problem states that we need to add A to either B or C dependent upon a
button press; this means there is a “selection” happening in the circuit. Anytime a circuit is “selecting”
something, the circuit requires a MUX . Examining the two summing operations shows that we’re always
adding A; the item we need to select is the value we’re adding, which is either B or C. This means the inputs to
the MUX are B & C, the output of the MUX becomes the second input to the RCA, and the circuit’s BTN
input connects to the MUX control. Figure 17.5 show the lower-level BBD for this problem.

Free Range Digital Design Foundation Modeling Chapter 17

 - 246 -

Figure 17.5: The final circuit solution for this example.

The circuit in Figure 17.5 has external control. The MUX contains a control input, which connects to a signal
external to the circuit.

We could have done this problem using two RCAs. In this case, each RCA would be responsible for the one of
the two addition operations; the MUX would then choose between the desired sums for the circuit’s outputs.
This solution would be less desirable than our solution because the circuit requires two RCAs, whereas our
solution requires one RCA.

Example 17.4: Selection Circuit #2

Design a circuit that has three 8-bit unsigned binary inputs A, B, and C. The circuit outputs A + B if
that addition operation does not generate a carry; otherwise the circuit outputs A+ C. The circuit’s
output is also an 8-bit unsigned binary value. Don’t worry about the validity of the sum outputs.
Provide the top two levels of BBDs for this problem. Minimize your use of hardware for this design.
Also, state what is controlling this circuit.

Solution: The first step is drawing a block diagram of the final circuit as we show in Figure 17.6.

Figure 17.6: Top-level BBD for the solution.

The next step is to make an inventory of modules this circuit requires to solve the problem. The problem states
that we need to output the result of one of two additions. Unlike the previous example, this problem does not
constrain us to using only one RCA, which is fortunate because we could not solve the problem otherwise. The
condition that needs to select the output is dependent upon one of the addition operations, which means the Co
from that particular RCA chooses either the A + B or A +C results. Because something in this circuit is being
“chosen”, our circuit also requires a MUX. The MUX in this problem chooses the outputs of one of two RCAs
to appear on the circuit’s output. Figure 17.7 shows the final lower-level BBD for this problem.

The MUX in this circuit has a control input, which connects to the Co output of the one of the circuit’s RCAs.
Because of this internal connection, this circuit has internal control.

Free Range Digital Design Foundation Modeling Chapter 17

 - 247 -

Figure 17.7: The final circuit solution for this example.

Example 17.5: Selection Circuit #3

Design a circuit that has three 8-bit unsigned binary inputs A, B, and C. The circuit outputs A + B if the
circuit’s button inputs is asserted (BTN=’1’); otherwise, the circuit outputs A + C. The circuit’s output
is also an 8-bit unsigned binary value. If the summation generates a carry-out, then the circuit outputs
zero. Provide the top two levels of BBDs for this problem. Minimize your use of hardware for this
design. Also, state what is controlling this circuit.

Solution: The first step is drawing a block diagram of the final circuit as we show in Figure 17.8.

Figure 17.8: Top-level BBD for this problem.

The next step is to make an inventory of modules this circuit requires to solve the problem. This problem is a
combination of the previous two problem, as we’re both choosing the addition operation and we’re choosing
between the result of the chosen operation or zero to appear on the circuit output based on whether the circuit
generated a carry-out or not. This means we only need one RCA; we use a MUX to choose the addition
operation, which the BTN input controls. We also require a second MUX to choose between the result of the
addition operation or zero, which depends upon whether the chosen addition operation generated a carry or not.
Figure 17.9 shows the lower-level BBD for our solution.

This circuit has two MUXes; an external input controls one MUX while an internal input controls the other
MUX. This circuit thus has both external and internal control.

Free Range Digital Design Foundation Modeling Chapter 17

 - 248 -

Figure 17.9: The final circuit solution for this example.

17.4 Digital Design Foundation Notation: MUX

We consider the MUX to be one of our Digital Design Foundation circuits. The MUX is a controlled
circuit; Figure 17.10 shows the MUX in appropriate foundation notation. The SEL signal is a control
input and decides which DATA_IN signal becomes the DATA_OUT signal. The MUX thus has a
control input but has no status outputs. Table 17.1 provides a description of the MUX’s inputs and
outputs.

Figure 17.10: Data and control signals for a 4:1 MUX.

Free Range Digital Design Foundation Modeling Chapter 17

 - 249 -

 Signal Name Description

IN
P

U
T

D

A
T

A

A, B, C, D
Data inputs to the MUX; MUXes can have any number of data inputs. One of
these data inputs becomes the single data output.

O
U

T
P

U
T

D

A
T

A

F A single output, which is one of the inputs as selected by the SEL signal.

C
O

N
T

R
O

L

SEL
Selects which data input appears on F. The width of the SEL signal is such that
2SEL ≥ to the number of data inputs.

S
T

A
T

U
S

n/a -

Table 17.1: The foundation matrix for a MUX.

Free Range Digital Design Foundation Modeling Chapter 17

 - 250 -

17.5 Chapter Summary

 The multiplexor, or MUX, is a standard digital circuit used to “select” a value. In general, the output of the
MUX is one of the data inputs as chosen by the selector inputs. Simple MUX designs are possible using
gate-level implementations.

 The MUX has a distinctive shape when it appears in circuit diagram; this shape is always used in circuit
diagrams in order to let the reader know a “selection” operation is taking place.

 Digital design generally uses MUXes as selection devices. Contrary to computer programming, digital
design typically uses hardware to generate all possible results for a given problem and then “selects” the
correct result (via a MUX) based on the value of the signal connected to the MUX’s data selection inputs.

Free Range Digital Design Foundation Modeling Chapter 17

 - 251 -

17.6 Chapter Exercises

1) Briefly describe the special relationship between a MUX and a standard decoder.

2) Use the following block diagram to complete the provided timing diagram. For this problem, consider the
block diagram to represent a basic 4:1 MUX.

3) The following timing diagram completely defines a function F(A,B,C) that has been implemented on an
8:1 MUX. The control variables are A, B, and C (A is the most significant bit and C is the least significant
bit) and the output is F. Write an expression for this function in reduced NAND/NAND form. Assume
propagation delays are negligible.

Free Range Digital Design Foundation Modeling Chapter 17

 - 252 -

4) Use the following block diagram to complete the provided timing diagram. For this problem, consider the
block diagram to represent a basic 4:1 MUX.

5) Use the listed circuit to complete signal F in the following timing diagram.

Free Range Digital Design Foundation Modeling Chapter 17

 - 253 -

6) Using the following diagram of a 4:1 MUX, complete the provided timing diagram.

Free Range Digital Design Foundation Modeling Chapter 17

 - 254 -

7) Use the following circuit diagram to complete the empty rows on the accompanying timing diagram. Use
bus notation for all bundles (Co is the only non-bundle signal; 0x indicates hexadecimal).

Free Range Digital Design Foundation Modeling Chapter 17

 - 255 -

8) Use the following circuit diagram to complete the empty rows on the accompanying timing diagram. Use
bus notation for all bundles. Assume the inputs and outputs are unsigned binary.

9) Briefly describe the special relationship between a MUX and a standard decoder.

Free Range Digital Design Foundation Modeling Chapter 17

 - 256 -

17.7 Design Problems

For the following problems:

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution

 Minimize the use of hardware in your solution

 Use only digital design foundation modules in your solution

 State the types of control your circuit uses (“no control”, “internal control”, and/or “external control”).

1) Design a circuit that translates an 8-bit number in signed magnitude form to an 8-bit number in diminished
radix complement form.

2) Design a circuit that translates an 8-bit number in diminished radix complement form to an 8-bit number
in signed magnitude form.

3) Design a circuit that translates an 8-bit binary number in radix complement form to an 8-bit number in
diminished radix complement form. For this problem, assume the RC number will always be less than
zero.

4) Design a special 4-bit RCA with the following specifications. This circuit has an input named INV_OUT;
when this input is in the ‘1’ state, the output of the RCA is inverted from what it would normally be.

5) Design a circuit that adds two 8-bit values. If the summation generates a carry-out, the output then
displays all zeros; otherwise, the output displays the 8-bit summation result.

6) Design a circuit that calculates the absolute value of a 10-bit signed binary number in RC form.

7) Design a circuit that provides the absolute value for an 8-bit signed binary number. Assume the number is
in sign magnitude form.

8) Design a circuit that provides the absolute value for an 8-bit signed binary number. Assume the number is
in diminished radix complement form.

9) Design a circuit that performs the following operation: if a button is pressed, the circuit outputs the results
of A+B; otherwise the circuit outputs the value of A-B. Consider the values of A & B to be 8-bit signed
binary values in RC form. This problem does not check the validity of the result. For this problem, assume
the pressed button generates a ‘1’.

10) Design a circuit the checks the validity of a the result of an addition operation on two 10-bit signed binary
numbers in RC form.

11) Design a circuit that can add two numbers according to the following specifications. If the sum of A & B
generates a carry, the circuit outputs A; otherwise the circuit outputs the sum of A & B. Assume A, B, &
the sum are unsigned 8-bit values.

12) Design a circuit that outputs the sum of A & B if both A & B are both less than 128; otherwise the circuit
outputs B. Assume A, B, & the sum are unsigned 8-bit values. No need to deal with carry generation.

13) Design a circuit that outputs the sum of A & B if and only if one of the operands is negative; otherwise the
circuit outputs A-B. Assume A, B, and the result are all signed 8-bit binary numbers in RC (2’s
complement) format. If the result is not valid, the circuit output zero and turns on an LED.

14) Design a circuit that outputs the result of the following operation if the operation does not generate a carry:
A+B+C (addition); otherwise, the circuit should output C. The circuit has an extra output that indicates
which result is being output. For this problem, assume A, B, C, & the result are al 12-bit unsigned binary
numbers.

Free Range Digital Design Foundation Modeling Chapter 17

 - 257 -

15) Design a circuit that adds three 10-bit unsigned binary numbers and outputs the correct result under all
circumstances.

16) Design a circuit on a block diagram level that performs one of several mathematical operations. Your
design should use the standard circuits you’ve learned about thus far in digital design. Minimize the use of
hardware in your design; use no more than one adder. Be sure to label everything! The circuit operates as
follows:

Depending on the value of the two select inputs, the single output should reflect the result of one of the
following operations. It does not matter which select values select which operation but make sure the
combinations associated with the select inputs can generate each of the following operations:

RES = A + A; SEL = “00”

RES = A + C; SEL = “01”

RES = A + B; SEL = “10”

RES = B + C; SEL = “11”

For this problem:

 Assume inputs A, B, C and the output are all 12-bit unsigned binary values

 Assume there are no issues or problems with carry out values

17) Repeat the previous problem but use only one RCA in your design

18) Design a circuit on a block diagram level with an output that represents either a mathematical operation or
another input. The circuit operates as follows:

if input SEL equals ‘1’, then the circuit outputs the result of the operations A + B + C

if input SEL equals ‘0’, then the circuit outputs the value of D directly.

For this problem:

 Assume inputs A, B, C, D, and the output are all 12-bit values

 Assume there are no issues or problems with carry out values

19) Design the following digital circuit: if the two 8-bit binary numbers (RC) are both positive, they are added
and the result of the addition becomes the 8-bit output of the circuit. Otherwise, the circuit’s 8-bit output is
set to 0. The circuit also has a VALID output that indicates when the result of the addition is valid or not.

20) Design a circuit that performs as follows: If both A and B inputs are both positive or both negative, the
circuit outputs a -1 (in signed binary radix complement form); otherwise the circuit outputs the sum of A +
B. Consider both the inputs and outputs to be 8-bit signed binary numbers in radix complement form. For
this problem, disregard any issues having to do with a carry-out.

21) Design a circuit that has one 8-bit input, A, and two 8-bit outputs. Both the inputs and outputs are signed
binary numbers in radix complement form. The circuit’s two outputs, POS_A and NEG_A, represent the
negative and positive version of the input value, respectively.

22) Design a circuit that has two 8-bit signed binary inputs and one 8-bit signed binary output. If both inputs
are negative, and the sum of A + B generates a carry-out, then the sum of A + B is output; otherwise, the
value of B is output. The circuit also has a VALID output that indicates when the result of the addition is
valid or not.

Free Range Digital Design Foundation Modeling Chapter 17

 - 258 -

23) Design a circuit that performs as follows: If the sum of the circuit’s two 10-bit unsigned binary inputs (A,
B) generates a carry-out, and both of the two 10-bit inputs are odd, the then the circuit outputs the A input;
otherwise, the circuit outputs B input.

24) Design a circuit that adds the magnitude of the three 4-bit signed binary numbers (RC form). The circuit’s
output should be in unsigned binary form with a sufficient amount of bits to accurately represent the
required summation. For this problem, assume that -8 will never be included an input value.

25) Design a circuit that performs as follows: The circuit contains a single button input (BTN) and a single 4-
bit binary input. The circuit contains one single-bit output. When the button is pressed (input value is a
‘1’), the circuit treats the 4-bit input as an unsigned binary number; the output indicates when the 4-bit
input is greater than 7. When the button is not pressed, the circuit treats the 4-bit input as a signed binary
number in RC form and the circuit output indicates when this number is negative and odd.

26) Design a circuit that adds two unsigned 10-bit numbers (which generates an 11-bit result including the
carryout) and is then “scaled” by removing the three least significant bits to form an 8-bit result.
Regarding the three least significant bits removed, an input to this circuit decides whether the 8-bit output
is the result of a rounding up or truncation operation (for example 31.5 rounds up to 32 and truncates to
31).

27) Design a circuit that adds four unsigned 10-bit numbers (A, B, C, D). The result should have the minimum
number of bits while generating the correct result (including number of bits) of the addition operations.
Use no more than three 10-bit RCAs in your design. If all the inputs values are not even multiples of 8,
then the circuit outputs all zeros.

28) Design a circuit that adds two signed 12-bit numbers A & B. If this operation generates no carry and no
overflow, then the circuit outputs the result of the operation (A + B). If only a carry is generated without
an overflow, the circuit outputs !A; if only an overflow is generated with no carry generated, the circuit
outputs !B; if the operation generates both an overflow and carry, the circuit outputs 0x000 (hex). The
circuit has an output NO_ERR that indicates when no overflow and no carry is generated. Use the
overflow generator model listed below (be sure to connect it properly; you don’t need to describe it at a
low level). The notion of overflow is the same as the answer being valid, meaning that if there is an
overflow, the result is not value. If there is no overflow, the answer is valid.

29) Design a circuit that adds two signed 12-bit numbers A & B in radix complement form.

 if (A + B) generates no carry and no overflow, then the circuit outputs (A + B)

 if (A + B) generates a carry without an overflow, the circuit outputs !A

 if (A + B) generates an overflow without a carry, the circuit outputs !B

 if (A + B) generates both an overflow and a carry, the circuit outputs (A – B)

30) Use as many 2:1 MUXes as you need to effectively create a 4:1 MUX. For this problem, consider all
MUX inputs to be one-bit wide signals.

31) Use as many 2:1 MUXes as you need to effectively create an 8:1 MUX. For this problem, consider all
MUX inputs to be one-bit wide signals.

32) Design a circuit that outputs the sum of A + C when a button is pressed, otherwise outputs the sum of A +
B. Consider A, B, C, and the SUM to be 10-bit unsigned binary outputs. Assume the addition does not
generate a carry. Consider a pressed button to output a ‘1’.

33) Design a circuit that adds two 8-bit unsigned binary values. If the addition operation generates a carry, the
circuit outputs zero and turns on an LED; otherwise the circuit outputs the sum of the two values and turns
the LED off. Assume the addition does not generate a carry.

Free Range Digital Design Foundation Modeling Chapter 17

 - 259 -

34) Design a circuit that performs as follows: The two-bit SEL input selects which one of four operations
appears on the output as indicated to the right. The circuit also has an output Z that indicates when the
output is zero. Consider the inputs and the non-Z output to be 10-bit signed binary values (RC format).
Also, include a VALID output that indicates when the output is valid. Use only one RCA in your design.

SEL Operation
“00” 2A
“01” 2B
“10” A+B
“11” -1

35) Design a circuit that adds two signed 12-bit numbers A & B in radix complement form.

 if (A + B) generates no carry and no overflow, then the circuit outputs (A + B)

 if (A + B) generates a carry without an overflow, the circuit outputs A

 if (A + B) generates an overflow without a carry, the circuit outputs B
 if (A + B) generates both an overflow and a carry, the circuit outputs (A – B)

The also circuit has an output NO_ERR that indicates when no overflow and no carry is generated. Feel free to
use the overflow generator (OFLOW) and/or 2’s complement (2sComp) models listed below in your design.

36) Design a circuit that inputs two 6-bit unsigned values and outputs one 6-bit unsigned value. If both inputs
are even and one input is ≥ 32 while the other input is < 32, output the sum of the two inputs; otherwise
output zero. Don’t worry about any carry-out issues.

37) Design a circuit that performs as follows: The circuit has two 10-bit unsigned binary inputs (A,B). If the
value of A + 2 (addition) is greater than or equal to B + 5 (addition), the circuit outputs the unchanged A
value; otherwise, the circuit outputs the unchanged B value. For this problem, assume the result of the
addition operations are always valid.

38) Design a circuit (provide a block diagram) that performs the following operations. If the BTN is asserted,
the circuit outputs 2A + 2B; otherwise, the circuit outputs 2A – 2B. Assume that A & B are 10-bit signed
values in RC form. This circuit has two outputs: RES, which is a 10-bit result (also in RC form) and
VALID, which indicates if the 10-bit RES output is value is valid based on the math operation performed
by the circuit. Feel free to use the provided 2sCOMP (does a 2’s compliment) and VALID_CKT (checks
for validity) boxes below (no need to define them).

39) Design a circuit that performs as follows: The circuit contains three 5-bit binary inputs and one 5-bit
binary output; both inputs and output are in RC form. The circuit outputs the input value that has the
largest magnitude of the three inputs.

Free Range Digital Design Foundation Modeling Chapter 17

 - 260 -

40) Design a circuit that has two 8-bit unsigned binary inputs A & B, and one 8-bit unsigned binary output. If
both inputs are represent even numbers, are not equal, and the sum of A + B does not generate a carry-out,
then the sum of A + B is output; otherwise, the value of B is output. For this problem, disregard the carry-
out on the final sum output of the circuit. Use o

41) Design the following digital circuit; consider all inputs to be 12-bit unsigned binary numbers. If the A and
B inputs are equal, and the C and D inputs are equal, the 12-bit output of the circuit is the sum of A and B.
Otherwise, the 12-bit circuit output is the sum of C and D. Include a VALID output the indicates if the
output value is valid.

42) Design a circuit that performs as follows: If both A and B inputs are both positive or both negative, the
circuit outputs a -1 (in signed binary radix complement form); otherwise the circuit outputs the sum of A +
B. Consider both the inputs and outputs to be 8-bit signed binary numbers in radix compliment form.
Include a VALID output that indicates if the output value is valid.

43) Design a circuit that has one 8-bit input and three 8-bit outputs. Both the inputs and outputs are signed
binary numbers in radix complement form. The circuit’s three outputs represent two less than, two greater
than, and four greater than the circuit’s input, respectively. For this problem, assume the input value is
always between 2010 and 12010. Use only foundation modules in your design.

44) Design the following circuit. The circuit has three 8-bit unsigned binary inputs A, B, & C. If the result of
A + B generates a carry-out and the A & B are not equivalent, the circuit outputs C; otherwise the circuit
outputs the sum of A + B. This circuit also has an output GT that indicates when the output is greater than
E416. Use only standard digital modules in your design. Assume the sum will always be valid.

45) Design a circuit that has one 8-bit input A, a single bit input BTN3, and one 8-bit output F. Both 8-bit
input and output are signed binary numbers in radix complement form. If the value of A is equal to zero,
the circuit outputs zero. Otherwise the circuit outputs A if BTN3 is pressed or –A if BTN3 is not pressed.
Assume that a button press generates a ‘1’ value for the input.

46) Design a circuit that performs as follows: The circuit contains a single button input (BTN) and a single 4-
bit binary input. The circuit contains one single-bit output. When the button is pressed (input value is a
‘1’), the circuit treats the 4-bit inputs as an unsigned binary number; the output indicates when the 4-bit
input is greater than eight. When the button is not pressed, the circuit treats the 4-bit input as a signed
binary number in RC form and the circuit output indicates when this number is odd (as in odd vs. even, not
normal vs. strange).

47) Design a circuit that performs as follows: If the sum of the circuit’s two 10-bit unsigned binary inputs (A,
B) generates a carry-out, and both of the two 10-bit inputs are odd, the then the circuit outputs the A input;
otherwise, the circuit outputs B input.

48) Design a circuit that adds the magnitude of the three 4-bit signed binary numbers (RC form). The circuit’s
output should be in unsigned binary form with a sufficient amount of bits to accurately represent the
required summation. For this problem, assume that -8 will never be included an input value.

49) Design the following digital circuit: if the two 8-bit binary numbers (RC) are both positive, they are added
and the result of the addition becomes the 8-bit output of the circuit. Otherwise, the circuit’s 8-bit output is
set to 0. Assume the result of the addition will always be valid.

Free Range Digital Design Foundation Modeling Chapter 18

 - 261 -

18 Comparators

18.1 Introduction

The comparator is a simple but versatile circuit. The comparator is one of our digital design foundation
circuits, and is the second circuit that we design using the iterative modular design (IMD). Basic comparators
are simple and instructive to design on the gate level, but their design quickly becomes complicated as we add
more features.

Main Chapter Topics

COMPARATORS: This chapter introduces the comparator circuit, one of the digital
design foundation circuits.

Chapter Acquired Skills

 Be able to describe gate-level implementations of simple comparators

 Be able to use comparators in digital design solutions

18.2 Comparators

The comparator is a common device in digital-land and we consider it one the digital design foundation
circuits. Modeling complex comparators is relatively effortless using an HDL, which is why we only spend
time discussing the design of basic comparators. The derivation of a gate-level implementation of a basic
comparator provides you with some useful practice dealing with XOR-type functions and function reduction
using factoring. Basic comparator design also provides us with another application of IMD.

Example 18.1: 2-Bit Comparator

Design a circuit that compares the values of two unsigned 2-bit binary inputs and indicates
when the input values are equal.

Solution: We refer to this circuit as a “2-bit comparator”; we initially use the BFD approach for this design. A
2-bit comparator compares two 2-bit binary numbers; the single output indicates when the two 2-bit inputs are
equivalent. Step one is drawing the BBD; Figure 18.1(a) shows the BBD using bundles notation while Figure
18.1(b) shows an equivalent version we use in our solution.

Free Range Digital Design Foundation Modeling Chapter 18

 - 262 -

(a) (b)

Figure 18.1: Two different forms of a 2-bit comparator.

Next, we generate a truth table and entering the desired output values. Figure 18.2 shows that we arbitrarily list
the A inputs as the two left-most columns in the truth table. The A1 and B1 inputs have a higher weighting
than the A0 and B0 inputs1. Figure 18.2 shows the completed the truth table and indicates when the two inputs
are equal with a ‘1’ in the EQ column.

A1 A0 B1 B0 EQ

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

Figure 18.2: The truth table for the 2-bit comparator.

The next step is to use the truth table to generate a set of equations representing the EQ output and use Boolean
algebra to reduce the equation. Figure 18.3 shows this derivation, which is important to understand, as you’ll
occasionally need to perform similar algebraic manipulations in digital design. Note the relationship between
the final equation of Figure 18.3 and the circuit implemented in Figure 18.4.

1 The reality is that we can place the inputs in different columns the truth table; as long as you’re consistent with the
number values, all choices lead to the same answer.

Free Range Digital Design Foundation Modeling Chapter 18

 - 263 -

(a))0101()0101()0101()0101(BBAABBAABBAABBAAF

(b))0000)(11()0000)(11(BABABABABABAF

(c))00()11()00()11(BABABABAF

(d))1111()00(BABABAF

(e))11()00(BABAF

Figure 18.3: The ugly details of the final equation derivation for the 2-bit comparator.

Figure 18.4: The final circuit for the 2-bit comparator as equation (e) in this example.

Although the circuit in Figure 18.4 seems to be nothing special, the circuit implicitly indicates a possibility to
apply the IMD. First, apply some horse-sense to understanding this circuit. What the circuit is saying is that
each of the bits of the same weighting must be equal in order for the two numbers to be equal. In terms of the
hardware, the AND gate is only satisfied when each of its inputs are a ‘1’. Each of the AND gate’s inputs are
an output of the individual XNOR functions. Recalling that an XNOR gate is also an “equivalence gate”, so
each bit position must be equivalent in order for the final number to be equivalent.

Example 18.2: A 4-Bit Comparator

Design a circuit that compares the values of two 4-bit inputs and indicates when the input
values are equal. Show the resulting circuit diagram.

Solution: For this problem, the circuit has two 4-bit inputs for a total of eight inputs. If we were to take the
same approach as the previous example, we would require a truth table having eight independent variables or
256 rows (28). Would this be possible? Yes. Would anyone really do it? No. The key here is to realize that
making a 4-bit comparator is a matter of adding two XNOR gates to a 2-bit comparator; this approach is a
classic application of the iterative-modular design (IMD) approach; Figure 18.5 shows the final circuit diagram
for a 4-bit comparator.

Free Range Digital Design Foundation Modeling Chapter 18

 - 264 -

Figure 18.5: The final circuit for a 4-bit comparator.

In order to simplify the previous problem, we described a comparator with only one status output that indicates
when the two inputs were equal. Comparators typically have other status outputs as well. Figure 18.6 shows a
BBD for a generic comparator having three status outputs. In addition to EQ, there is now an LT (less than)
and GT (greater than) output to provide more information regarding the relationship between the circuit’s two
data inputs. LT is asserted when A<B, and GT is asserted when A>B; this relationship is important, but
arbitrary. We could generate Boolean equations for LT and GT, but doing so is not instructive, and it’s
straightforward to design comparators using an HDL.

Figure 18.6: Block diagram for a generic comparator.

Example 18.3: Timing Diagrams and the 4-Bit Comparator

Use the following black box diagram to complete the accompanying timing diagram.

Solution: A timing diagram shows the solution to this problem without a significant amount of verbal
description. Check out Figure 18.7 for all the gory details.

Free Range Digital Design Foundation Modeling Chapter 18

 - 265 -

Figure 18.7: The solution to this example.

Example 18.4: SM Magnitude Comparator

Design a circuit that compares the magnitude of two 8-bit binary numbers in signed magnitude form.
The circuit’s one indicates when the two inputs have equivalent magnitudes. Minimize your use of
hardware. Provide two levels of BBDs for your solution. Also, state what controls this circuit.

Solution: The first step is to draw the top-level BBD for the circuit. The circuit has two 8-bit inputs for the two
binary numbers and one output. Figure 18.8 shows the final BBD.

Figure 18.8: A block box diagram that supports the description of this problem.

The next step is to make an initial inventory of the circuit’s internal modules. The circuit needs to compare two
numbers, so we need to include a comparator. The circuit needs to massage the input value so that the
comparator is comparing magnitudes, but we deal with that in another step.

Since binary numbers in SM form use all but the sign-bit to represent the magnitude, we only need to compare
the magnitude portion of the number, which we do by feeding only the magnitude bits of the two input values
to a comparator; the comparator then only needs be a 7-bit comparator. Figure 18.9 shows the final solution to
this problem. The internals of this circuit is a comparator. The comparator is a device that has no control
inputs, so the final circuit is not controlled.

Free Range Digital Design Foundation Modeling Chapter 18

 - 266 -

Figure 18.9: The final solution for this example.

Note in Figure 18.9 that we “made up” our own terminology for this problem. We put a connection dot on the
bundle in an effort to indicate that we are modifying the bundle. Next, we changed the effective width of the
bundle and indicated in an arbitrary, but clear manner that we are only inputting the seven lower-order bits (the
magnitude bits) of the 8-bit bundle to the comparator. Whenever you do something “different”, you need to
document it.

Example 18.5: Sorting Circuit

Design a circuit that has two 8-bit inputs A and B, and two 8-bit outputs GT and LT.
If the A input is greater than or equal to the B input, the A input appears on the GT
output and the B input appears on the LT output. Otherwise, the B input appears on
the GT output and the A input appears on the LT output. Provide the top two levels of
BBDs for your solution. Minimize your use of hardware in your solutions. Also, state
what controls this circuit.

Solution:2. Let’s start this solution with a top-level BBD; the BBD in Figure 18.10 satisfies the problem’s
requirements.

Figure 18.10: Block diagram for Example 18.5.

The next step is to create an inventory of the underlying modules our circuit requires. Note that this problem
performs a sort on the input values; the key to this classic sorting circuit problem is noticing that there is
something similar to a comparator present in the problem as well as some selection logic. For this problem, we
use the version of a comparator that includes the LT and GT status outputs.

The second key to this problem is that there is some “selection” happening in order to “select” the inputs to
feed to the correct outputs. This implies that the design requires a MUX. Since the circuit we’re trying to
design has two outputs, and both of the outputs need the ability to display either of the numbers, we need two
2:1 MUXes for our solution.

2 Sorting is a common problem in computer programming, and always makes for a good hardware design problem (it’s
faster in hardware, anyway). If you want to excite a computer scientist, say the word “sort” to them.

Free Range Digital Design Foundation Modeling Chapter 18

 - 267 -

The problem did not state there was external control of the sorting, such as a button, so we know the internal
circuitry must provide the control inputs to the MUXes in the circuit. We are interested in the condition where
the A input is greater than or equal to the B input. What we could do for the final circuit is control the data
selection function of the two MUXes with an ANDing of the comparator’s GT and EQ signals. However, a
more clever way to do this would be to use the LT signal on the comparator to directly control the two
MUXes.

We need two MUXes, and they always need to choose different outputs. We could do this by connecting the
circuit’s inputs identically to the MUXes and complementing the MUX control signal from one of the MUXes.
A better solution is to skip the inverter and connect the data inputs to the MUXes such that the same value
from the comparator serves as a control for both MUXes. Figure 18.11 shows a diagram of the final circuit.
Any problem using a MUX must also include the number associated with the MUX’s data inputs.

This circuit can have different outputs, so “something” is controlling the circuits. This circuit uses internal
control because the LT output of the comparator connects to the select inputs of the MUXes, which are the
control inputs.

Figure 18.11: The diagram of the final circuit.

Example 18.6: Three-Value 10-Bit Comparator

Design a circuit that compares three 10-bit values. If all three 10-bit values are equivalent, the EQ3
output of the circuit is a ‘1’, otherwise the circuit output is a ‘0’. Use only standard comparators in this
design. Use any support logic you may require but minimize the amount of hardware you use in your
solution. Provide two levels of BBD for your solution. Minimize your use of hardware. Also, state what
is controlling this circuit.

Solution: The main constraint in this problem is that it requires the use of standard comparators in the solution.
It’s an old math thang to say, “if A = B and B = C then A = C”. Your mission is then to translate that
intuitiveness to digital hardware. Start with drawing a black box diagram as in Figure 18.12.

Free Range Digital Design Foundation Modeling Chapter 18

 - 268 -

Figure 18.12: Black box diagram for the solution.

Since a standard comparator only compares two numbers, you’ll need two comparators to determine if all three
inputs are equivalent. From this point in this problem, the problem directly states the required extra logic in the
quoted statement in the previous paragraph: the “and” indicates that this solution requires an AND gate. Figure
18.13 shows the final block diagram for this problem. Finally, none of the circuit elements in this circuit have
control inputs, thus this circuit has no control features.

Figure 18.13: The final circuit for this solution.

Example 18.7: Special Arithmetic Circuit

Design a circuit that has three 8-bit inputs A, B, and C. The single output of the circuit indicates
whether the sum of A and B is equal to the sum of B and C. For this problem, assume that the addition
of the two input values never generate a carry out. Provide two levels of BBD for your solution.
Minimize your use of hardware for this design. Also, state what is controlling this circuit.

Solution: The first step is drawing a block diagram of the final circuit as we show in Figure 18.14.

Figure 18.14: Block diagram of the final circuit.

The next step is making an inventory of the modules this circuit requires. From the problem statement, you can
see that the final circuit to requires two RCAs in order to perform the two required addition operations (A + B
& B + C). The second clue given in the problem statement is that some things need comparing. In this case,
you’ll need to check whether the results of the two addition operations are equivalent. For this problem, you’ll

Free Range Digital Design Foundation Modeling Chapter 18

 - 269 -

need two RCAs and one comparator. The problem statement itself provides many of these clues. Figure 18.15
shows the final circuit. None of the circuit elements has control inputs, so this circuit has no control.

Figure 18.15: The final circuit solution for this example.

Example 18.8: Arithmetic Circuit Timing Diagram

Based on the solution to the previous example, complete the following timing diagram.

Solution: The problem states that the EQ output is a ‘1’ whenever A = C. Figure 18.16 shows the final
solution to this example. Signal B does not affect the answer. Also, the carry-outs from the RCAs do not affect
the outputs, as they do not change the value of the RCA sum outputs.

Figure 18.16: The solution to this example.

Free Range Digital Design Foundation Modeling Chapter 18

 - 270 -

18.3 Digital Design Foundation Notation: Comparator

We consider the comparator to be one of our Digital Design Foundation circuits. The comparator is a
controlled circuit. Figure 18.17 shows the appropriate digital design foundation notation for the comparator.
Comparators always have two inputs, but we can choose between which comparator outputs we want to
include in our design (so our comparator module has at least one, but not greater than three outputs). The LT
output indicates when the A input is less than B (A<B), while the GT input indicates when A>B. The EQ
output indicates that A = B.

Figure 18.17: Typical data, and status signals for a comparator.

 Signal Name Description

IN
P

U
T

D

A
T

A

A, B Two values to be compared; these values have equivalent data widths.

O
U

T
P

U
T

D

A
T

A

n/a -

C
O

N
T

R
O

L

n/a -

S
T

A
T

U
S

EQ, LT, GT
Signals that indicate a relation between the two inputs A & B. EQ is asserted
when A=B, LT is asserted when A<B, GT is asserted when A>B.

Table 18.1: The foundation matrix for a comparator.

Free Range Digital Design Foundation Modeling Chapter 18

 - 271 -

18.4 Chapter Summary

 Comparator: arithmetic circuit used to determine equality of two digital signals of equivalent data widths

 Typical comparator outputs are LT (less than), GT, (greater than), and EQ (equal), which provide
information about the mathematical relations between the two inputs.

 We can design basic comparators (comparators with only EQ status outputs) using the IMD approach.
When our designs require more complex comparators, we switch to modeling them with an HDL.

Free Range Digital Design Foundation Modeling Chapter 18

 - 272 -

18.5 Chapter Exercises

1) Complete the timing diagram below considering the given schematic symbol.

2) Use the following circuit to complete the unlisted signals in the timing diagram. For this problem,
assume there are no propagation delays.

Free Range Digital Design Foundation Modeling Chapter 18

 - 273 -

3) Describe the difference, if any, in comparing RC of unsigned binary numbers.

Free Range Digital Design Foundation Modeling Chapter 18

 - 274 -

18.6 Design Problems

For the following problems:

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution

 Minimize the use of hardware in your solution

 State the types of control your circuit uses (“no control”, “internal control”, and/or “external control”)

 Fully describe any non-foundation modules you use in your design.

1) Design an 8-bit comparator using only standard logic gates. The output of this comparator has only one
output that indicates whether the two input values are equal or not.

2) Design a 2-bit comparator in that compares two inputs, A & B; the output should indicate when A = B, A
< B, and A > B. You’ll need to use the IMD approach with this design. For this problem, use a BFD
approach, but implement whatever circuit modules you feel necessary using a decoder.

3) Modify a high-level BBD of a 10-bit comparator such that the outputs are A=B, A≤B, A≥B.

4) Design a circuit that has one 8-bit input A, a single bit input BTN3, and one 8-bit output F. Both 8-bit
input and output are signed binary numbers in radix complement form. If the value of A is equal to zero,
the circuit outputs zero. Otherwise the circuit outputs A if BTN3 is pressed or –A if BTN3 is not pressed.
Assume that a button press generates a ‘1’ value for the input.

5) Design a circuit that outputs one 8-bit value. If the sum of the circuit’s two 8-bit inputs, A & B, generate a
carry out and are equal, the value of 2A is output; otherwise, the sum of 2B is output. Consider the output
value to be an 8-bit number also; don’t worry about carry-outs on the output operations.

6) Design a circuit that compares the sums of magnitudes of four 16-bit input values in RC format: A, B, C,
& D. The circuit has two outputs: one output indicates when the four magnitudes are equivalent. The other
output indicates when the sum of magnitudes of A+B equals the sum of magnitudes C+D are equivalent
(when a button is pressed), or when the sum of magnitude A+C equals B+D (when button is not pressed).
For this problem, assume a button press is associated with a ‘1’.

7) Design a circuit that performs as follows: The circuit has six 10-bit binary inputs (A,B,C,D,E,F).
Comparisons are made between (A,B), (C,D), and (E,F) pairs. If two and only two of these number pairs
are equal, then the circuit’s one output is ‘1’; otherwise the circuit’s output is a ‘0’.

8) Design a circuit that does the following. If the circuit’s two 2-bit values (A & B) are not equivalent, then
the 8-bit value AA will show up on the circuit’s output; otherwise, the 8-bit value BB will show up on the
output. Consider AA and BB to be inputs to the circuit.

9) Design a circuit that outputs one 8-bit value. If the circuit’s two 8-bit inputs, A & B are equivalent, then
the sum of A & B are output; otherwise, the value of A + A is output. Use no more than one RCA in your
design.

10) Design a circuit that has two 8-bit inputs A and B, and one output. The output value is a ‘1’ when the A
input value is one greater than, equal to, or one less than the B input value; otherwise, the output is a ‘0’.
Consider both inputs to be signed binary numbers in radix complement form. For this problem, assume
both input values are always between 20 and 120. Assume inputs and outputs are in RC format.

11) Design a circuit that compares the magnitude of two 12-bit signed binary numbers in diminished radix
form. Assume the outputs of this circuit are the same as the outputs of a standard comparator.

12) Design a circuit that compares three 8-bit values. This circuit has one output that indicates when the three
values are equal. Consider the inputs to be in unsigned binary format.

Free Range Digital Design Foundation Modeling Chapter 18

 - 275 -

13) Design a circuit that acts as a special comparator to two 8-bit unsigned binary values. If a button is
pressed, the circuit outputs normal standard comparator outputs. If the button is not pressed, the circuit
output GT=’1’ when B>A and LT=’1’ when A>B (EQ always indicates equality)

14) Design an 8-bit magnitude comparator. This circuit compares the magnitude of two 8-bit signed binary
values in RC format. The circuit outputs a single signal to indicate whether the two signals are equivalent
or not

15) Design a circuit that output A if A≥B; otherwise the circuit output s zero. Consider the A&B inputs to be
10-bit unsigned binary values.

16) Design a circuit that does the following: if a button is pressed, the circuit output A when A>B; otherwise
the circuit outputs zero. If the button is not pressed, the circuit outputs B when A<B or 0xFF otherwise.
Consider A, B, and the outputs to be 8-bit unsigned binary numbers.

17) Design the following digital circuit; consider all inputs to be 12-bit unsigned binary numbers. If the A and
B inputs are equal, and the C and D inputs are equal, the 12-bit output of the circuit is the sum of A and B.
Otherwise, the 12-bit circuit output is the sum of C and D. Don’t worry about overflow in this design.

18) Design a circuit that has two 8-bit unsigned binary inputs (A & B) and one 8-bit unsigned binary output. If
both inputs are represent even numbers, are not equal, and the sum of A + B does not generate a carry-out,
then the sum of A + B is output; otherwise, the value of B is output. For this problem, disregard the carry-
out on the final sum output of the circuit.

19) Design a circuit that does the following. If the sum of the A input added to the B input is less than or equal
to the C input, then the circuit outputs the value of A + C; otherwise, the circuit outputs the value of B +
C. Assume all input and output values are 8-bits. Assume the values are all unsigned binary; don’t worry
about carry-out issues for this problem.

20) Design a circuit that outputs one 8-bit value. If the sum of the circuit’s two 8-bit inputs, A & B, generates
a carry out and the two inputs are not equal, the value of 2A is output; otherwise, the sum of 2B is output.
Consider the output value to be an 8-bit number also. Don’t worry about carry-out issues of 2A & 2B.

21) Design a circuit that has one 8-bit input and three 8-bit outputs. Both the inputs and outputs are signed
binary numbers in radix complement form. The circuit’s three outputs represent two less than, two greater
than, and four greater than the circuit’s input, respectively. For this problem, assume the input value is
always between 2010 and 12010.

22) Design a circuit that performs as follows: If the circuit’s two 10-bit signed binary inputs (A,B) are
equivalent, the circuit changes the sign of each number before they are output; otherwise, the circuit
outputs the two inputs without changing them. For this problem, you can use a box labeled (2_COMP)
which inputs a 10-bit number and outputs the 10-bit 2-s complement representation of that number.

23) Design a circuit that performs as follows: The circuit has two 10-bit unsigned binary inputs (A,B). If the
value of A + 2 (addition) is greater than or equal to B + 5 (addition), the circuit outputs the unchanged A
value; otherwise, the circuit outputs the unchanged B value. Make this problem work for all possible
values.

24) Design a circuit that performs as follows: The circuit contains three 5-bit binary inputs and one 5-bit
binary output; both inputs and output are in RC form. The circuit outputs the input value that has the
largest magnitude of the three inputs.

25) Design the following circuit. The circuit has three 8-bit unsigned binary inputs A, B, & C. If the result of
A + B generates a carry-out and the A & B are not equivalent, the circuit outputs C; otherwise the circuit
generously outputs the sum of A + B. This circuit also has an output GT that indicates when the output is
greater than E416.

26) Design a circuit that does the following. If the circuit’s two 2-bit values (A & B) are not equivalent, then
the 8-bit value AA will show up on the circuit’s output; otherwise, the 8-bit value BB will show up on the
output. Consider AA and BB to be inputs to the circuit.

Free Range Digital Design Foundation Modeling Chapter 18

 - 276 -

27) Design a circuit that performs as follows: If the circuit’s two 10-bit signed binary inputs (A,B) are
equivalent, the circuit changes the sign of each number before they are output; otherwise, the circuit
outputs the two inputs without changing them. For this problem, you can use a box labeled (2_COMP)
which inputs a 10-bit number and outputs the 10-bit 2-s complement representation of that number.

28) Design a circuit that performs as follows: The circuit has six 10-bit unsigned binary inputs (A,B,C,D,E,F).
Comparisons are made between (A,B), (C,D), and (E,F) pairs. If two and only two of these number pairs
are equal, then the circuit’s one output is ‘1’; otherwise the circuit’s output is a ‘0’.

29) Design a circuit that performs as follows: The circuit has three 4-bit unsigned binary inputs (A,B,C). If the
value of A + 2 (addition) equals B and the value of A + 3 (addition) equals C, and neither A+2 or A+3 is
greater than 15, the circuit outputs B; otherwise, the circuit outputs C.

30) Design a circuit that adds two signed 12-bit numbers A & B. If this operation generates no carry and no
overflow, then the circuit outputs the result of the operation (A + B). If only a carry is generated without
an overflow, the circuit outputs !A; if only an overflow is generated with no carry generated, the circuit
outputs !B; if the operation generates both an overflow and carry, the circuit outputs 0x000 (hex). The
circuit has an output NO_ERR that indicates when no overflow and no carry is generated. Use the
overflow generator model listed below (be sure to connect it properly); you don’t need to describe it at a
low level.

31) Design a circuit that has two 8-bit inputs A and B, and one output. The output value is a ‘1’ when the A
input value is one greater than, equal to, or one less than the B input value; otherwise, the output is a ‘0’.
Consider both inputs to be signed binary numbers in radix complement form. For this problem, assume
both input values are always between 2010 and 12010.

32) Design a circuit that outputs one 8-bit value. If the circuits two 8-bit inputs, A & B are equivalent, then the
sum of A & B are output; otherwise, the value of A + A is output.

Free Range Digital Design Foundation Modeling Chapter 19

 - 277 -

19 Parity Generators and Checkers

19.1 Introduction

The parity generator and parity checker are two common digital circuits. We consider the parity generator a
digital design foundation module, and is another circuit that we design using IMD. Basic parity generators are
simple and instructive to design on the gate level and are yet another circuit known for having XOR functions
in their design.

Main Chapter Topics

PARITY GENERATORS: This chapter introduces the notion of parity and the design of
parity generators and parity checking circuits.

Chapter Acquired Skills

 Be able to describe the concept of parity

 Be able to describe the most common use of parity in a real-world applications

 Be able to describe a parity generator at the gate level

 Be able to use parity generators and parity checkers in digital circuits

19.2 Parity Generators and Parity Checkers

Parity generators and parity checkers are two standard digital circuits that we often use in digital
communications. We can apply the concept of parity to a set of bits, which can either exist at one moment in
time in a parallel configuration or the bits can exist over several set times in a serial configuration. Figure
19.1(a) and Figure 19.1(b) show an example of both parallel and serial configurations, respectively. In Figure
19.1 (a), the values of the bits in question exist at one instance in time. Figure 19.1(b) shows that we can also
apply parity to a single signal over a given time span. The parity concept applies to the set of bits in that are the
values of the SIG signal at five different instances in time.

(a) (b)

Figure 19.1: An example of parallel signals and serial signals.

Once we assemble the bits in question are gathered, parity refers to the result of a modulo-2 addition of the
bits. Although modulo-2 addition sounds intimidating, the concept is straightforward. Modulo-2 addition refers

Free Range Digital Design Foundation Modeling Chapter 19

 - 278 -

to a bit-oriented addition operation: the result of this addition is either ‘0’ or ‘1’; modulo-2 addition has no
concept of a carry, so we discard any carry resulting from the addition. Thus to perform a modulo-2 addition
on a set of bits, you add all the set bits and your result is either ‘0’ or ‘1’. If the sum of the set of bits is ‘0’, the
result of the addition is even (even parity). If the sum of bits is not even, then the sum must be odd (odd
parity). The XOR gate inherently performs modulo-2 addition on its two inputs1. The concept of odd and even
parity has nothing to do with odd and even numbers.

Parity is particularly useful in digital communications; Figure 19.2 shows a simple example of a
communication system that uses parity. This example shows four bits that require transferring in parallel across
some of medium. The medium is immaterial; the important things is the four data bits that need transferring:
three data bits and a parity bit. The Data Generator box generates the data that requires transferring.

The Parity Generator box is a circuit that imposes either an odd or an even parity to the three data lines. The
system then includes the parity bit with the data bits that the circuit sends in the communication channel. The
Parity Generator assigns its output (the parity bit) to make sure that the set of data and parity bits (A, B, C, &
D) are either odd or even parity, depending on how you design the circuit. Once these bits transfer across the
medium (once they are received), the parity needs to be the same as it was prior to transferring the bits. If the
bits were sent with even parity and arrive with odd parity (or vice versa), an error occurred during
transmission. If the bits were originally sent with odd parity and arrive with odd parity, there is a good chance
that there was not an error during transmission2.

The circuit in Figure 19.2 provides 1-bit error detection for the data bits sent across the mediums. The circuitry
on the receiving end expects either odd or even parity (as designed into the circuitry); if the parity of a received
message is different from the parity of the sent message, the circuit indicates an error on the PR output of the
Parity Checker3.

Figure 19.2: An example of parity generation and checking.

The circuitry for parity generators and parity checkers is straightforward. The approach we take is to design a
small circuit using BFD, then we can use IMD to create a larger circuit.

Example 19.1: 3-Bit Even Parity Generator

Use BFD to design a circuit that generates a parity bit that indicates when three bits are even parity.
Consider the data bits to be A, B, & C. Consider the parity bit to be D.

1 We consider the condition when zero or no bits that are ‘1’ to be even (even parity).
2 As you would probably guess, if two bits change, the parity would still be correct but two of the bits would be incorrect
and thus your entire message was garbage. The probability that two bits are erroneous is significantly less than the
probability that one bit was in error, which is why parity is an effective error detecting measure.
3 Implicit in the description is the fact that the parity generator and parity checker must agree on either odd or even parity
before this “system” is set up.

Free Range Digital Design Foundation Modeling Chapter 19

 - 279 -

Solution: We need to design a Parity Generator such that the circuit generates even parity based on the data
bits A, B, and C. We thus need to assign D to ensure that the set of bits A, B, C, and D have even parity.
Figure 19.3 shows the BBD for our circuit.

Figure 19.3: The truth table for a 3-bit even parity generator.

We start with a truth table and examine bits A, B, and C; if these bits have odd parity, the parity bit is set to
‘1’. In this way, if the modulo-2 sum of the data bits (A,B,C) is ‘1’, then the parity bit is set to ‘1’ which makes
the parity of all four bits ‘0’ (even parity). In other words, parity from bits (A, B, C = ‘1’) + ‘1’ (from the
parity bit D) is ‘0’. With a final modulo-2 addition of ‘0’, the parity of bits A, B, C, and D is even.

The truth table in Figure 19.4 shows the parity concept in tabular form; we assigned the D column to ensure
that the four bits in each row have even parity. Table 19.1 shows that we can factor the equation generated
from Figure 19.4 to simplify the equations, which allows us to extract XOR equations. Figure 19.5 shows the
circuit associated with the final equation of Table 19.1.

A B C D
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Figure 19.4: The truth table for a 3-bit even parity generator.

(a) ABCCBACBACBAD

(b))()(BCCBACBCBAD

(c))()(CBACBAD

(d))(CBAD

Table 19.1: Derivation of the even parity generating circuit.

Free Range Digital Design Foundation Modeling Chapter 19

 - 280 -

Figure 19.5: The final circuit for a 3-bit even parity generator.

On the receiving side of the circuit, we need to design a circuit that checks the incoming bits to ensure that they
are even parity as was sent by the sending end of the circuit. This circuit essentially needs to generate the
modulo-2 sum of the four received bits, which we can easily do using a truth table. Figure 19.6 shows the
required truth table. In this truth table, the PR column indicates an error if the parity of the received bits is odd.
Since the bits were sent with even parity, the arrival of bits having an odd parity indicates that an error
occurred in transmission. If you were to grind out the equations for this truth table, Figure 19.7(a) lists the final
equation, while Figure 19.6(b) shows the resulting circuit.

As a final note in this saga of parity generation and checking, you should notice a similarity between the final
equation of Table 19.1(d) and equations in Figure 19.7(a). The only difference between a 3-bit even parity
generator and a 4-bit even parity generator is the addition of one more XOR term. This similarity allows you to
apply IMD to create parity generators and checkers for any number of bits.

A B C D PR

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

Figure 19.6: The truth table for the 4-bit even parity checker.

Free Range Digital Design Foundation Modeling Chapter 19

 - 281 -

)()(DCBAPR

DCBAPR

(a) (b)

Figure 19.7: The equations (a) and circuit (b) for the 4-bit even parity generator.

Example 19.2: 4-Bit Even Parity Generator

Design a circuit that generates a parity bit that indicates when four bits are even parity.

Solution: This problem is describing an even parity generator; there are two ways to view the parity bit that
this circuit generates. One way to view the parity bit is that it indicates with a ‘1’ when the four input bits are
odd parity. Another way to view the parity bit is that we assign the parity bit such that the five bits (the four
input bits and the parity bit) always exhibit even parity.

Figure 19.8 shows the top-level BBD for this problem. There are four input bits; the output labeled “PR” is the
parity bit.

Figure 19.8: The block diagram for this example.

We could use the BFD approach to solving this problem, but we would rather use the IMD approach to save us
time. Recall when we first described parity, we designed a 3-bit even parity generator. Figure 19.9(a) shows
the final solution to that problem once again. In order to extend this circuit to be a 4-bit even parity generator,
we add another XOR gate as we show in Figure 19.9(b). For this problem, the communications channel would
now be sending five signals: A, B, C, D, & PR. The receiving end of the channel examines these five signals in
order to verify that the received signal exhibits even parity.

(a) (b)

Figure 19.9: The circuit solution for a 3-bit even parity generator (a) and the solution to this
example for a 4-bit even parity generator.

Free Range Digital Design Foundation Modeling Chapter 19

 - 282 -

Example 19.3: Timing Diagrams and an 4-Bit Odd Parity Generator

Use the black box diagram to complete the accompanying timing diagram. Consider the black box to
generate odd parity based on the four input bits.

Solution: For this problem, the ODD_PAR signal generates a ‘1’ when the sum of “1’s” on the IN_SIG signal
is even; otherwise, ODD_PAR generates a ‘0’. Figure 19.10 shows the final timing diagram.

Figure 19.10: The solution to this example.

Example 19.4: Parity Design Problem #1

Design a circuit that inputs one 8-bit value. If the input value is even and has odd parity, the circuit
outputs the input value; otherwise, the circuit outputs the 2’s complement of the input value. Consider
the input value to be in RC format. Feel free to use BBDs for the 2’s complement and parity circuit
without providing descriptions of the underlying implementations, but be sure to label them
accordingly. Minimize your use of hardware. Provide the top-two levels of BBD for your solution.
State what controls the circuit.

Solution: We start this problem by creating a BBD for the solution based on the problem description. Figure
19.11 shows the top-level BBD for this problem. The fun stuff is on the inside of the box.

Free Range Digital Design Foundation Modeling Chapter 19

 - 283 -

Figure 19.11: The block diagram for this example.

The next step is to make an inventory of the modules we need to solve this problem. Note that the circuit
outputs one of two values; this means the solution includes a MUX. The circuit chooses between either the A
input or the 2’s complement of the A inputs, which means the circuit requires a module to perform a 2’s
complement. The control input to the MUX is a combination of the LSB and an indicator of the parity of the A
input. We need an odd parity checker circuit to indicate when the A input is has odd parity. We also need to
examine the LSB of the A input to determine if the value is even. Because the A input is even when the LSB of
A is ‘0’, we invert that value and then AND it with the output of the parity checker to form the control input to
the MUX. Figure 19.12 shows the final circuit diagram for our solution.

Figure 19.12: The final lower-level BBD for our solution.

Example 19.5: Parity Design Problem #2

Design a circuit that inputs two 8-bit values (A & B), both in RC format. If the parity of the two values
is different, the circuit outputs A + B; otherwise the circuit outputs A –B. The result output is an 8-bit
value in RC format. The circuit also contains a VALID output that indicates when the result of the
given operation is valid. For this design, you can use “2’s comp” and “valid” modules without
providing descriptions of the underlying implementations, but be sure to label them accordingly.
Minimize your use of hardware. Provide the top-two levels of BBD for your solution. State what
controls the circuit.

Solution: We start this problem by creating a BBD for the solution based on the problem description. Figure
19.13 shows the top-level BBD for this problem. The fun stuff is on the inside of the box.

Free Range Digital Design Foundation Modeling Chapter 19

 - 284 -

Figure 19.13: The block diagram for this example.

The next step is to make an inventory of the modules the final circuit requires in order to solve the given
problem. This circuit has a relatively large number of modules; we list them below.

 The circuit indicates a sum or difference of the inputs, so we need an RCA.

 The circuit performs a subtraction, so we need a 2’s complement module.

 The circuit chooses between adding or subtracting the B input, so we need at least one MUX.

 The circuit needs to determine the parity of both inputs, so we need two even parity checker
modules.

 The circuit adds or subtracts based on the parity of the two inputs, which results in some extra
logic. In this case, we need an XOR gate.

 The final circuit output is either the result of the mathematical operation or zero, based on the
validity of the chosen operation. This means we need a second MUX, which we control with the
output of the validity circuit.

Figure 19.14 shows the final lower-level BBD for this problem. We include annotations with the BBD to
indicate information regarding the inputs to the “valid” module. If we omit this note, the circuit would not be
complete.

Figure 19.14: The final lower-level BBD for our solution.

19.3 Extra Parity Details

As a final note, you’re correct in thinking that the idea of parity generation and parity checking is somewhat
confusing. The basic concepts are straightforward; the problem is with the associated vernacular. Here is a
basic overview of the confusing vernacular.

 If you’re generating odd parity, your parity generator uses a ‘1’ to indicate when the input bits have
even parity. Including the ‘1’ makes the even parity of the signals into odd parity.

Free Range Digital Design Foundation Modeling Chapter 19

 - 285 -

 If you’re generating even parity, your parity generator uses a ‘1’ to indicate when the input bits have
odd parity. Including the ‘1’ makes the odd parity of the signals into even parity.

19.4 Digital Design Foundation Notation: Parity Generator

We consider the parity generator to be a Digital Design Foundation circuits. The parity generator is a
controlled circuit. Figure 19.15 shows the appropriate digital design foundation notation for the parity
generator. We only list the data input as a bundle, which implies the parallel version of data rather
than serial data. The single status output is the PAR signal, which indicates the parity of the input
data. When you use this diagram in your design, the status signal’s name should also indicate either
odd or even parity.

Figure 19.15: Typical data, control and status signals parity generator.

 Signal Name Description

IN
P

U
T

D

A
T

A

DATA The value that the device generates a parity bit for the given “m” input bits.

O
U

T
P

U
T

D

A
T

A

n/a -

C
O

N
T

R
O

L

n/a -

S
T

A
T

U
S

PAR The bit that creates the appropriate parity for the DATA & PAR aggregate value.

Table 19.2: The foundation matrix for a parity generator.

Free Range Digital Design Foundation Modeling Chapter 19

 - 286 -

19.5 Chapter Summary

 The notion of parity describes a characteristic of a set of signal or a sequence of signals. Parity is defined
as the modulo-2 addition of the ‘1’ bits of the signals in question. Parity can be either even or odd. Parity
generators are used to generate a parity bit that ensures a group of signals exhibit even parity or odd parity.

 Parity checkers are essentially the same circuit as parity generators: we implement both circuits on the
gate-level using exclusive-OR type gates.

 Odd and even parity has no relation to the numerical attributes of “odd” and “even”.

Free Range Digital Design Foundation Modeling Chapter 19

 - 287 -

19.6 Chapter Exercises

1) Complete the timing diagram below considering the given schematic symbol. Consider the circuit to
generate even parity for the eight input bits.

2) Use the following circuit to complete the listed timing diagram.

Free Range Digital Design Foundation Modeling Chapter 19

 - 288 -

3) Use the following circuit to complete the listed timing diagram

4) Can a given unsigned binary number be even but have odd parity? Briefly explain.

5) Does the notion of parity apply equally to unsigned and signed binary numbers? Briefly explain.

6) Consider the case where two n-bit unsigned binary numbers are added together using a Ripple Carry
Adder (RCA). If the two numbers being added together both have odd parity, will the result necessarily
have even parity? For this question, consider the addition will never generate a carry-out. Explain fully but
briefly.

Free Range Digital Design Foundation Modeling Chapter 19

 - 289 -

19.7 Design Problems

For the following problems:

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution

 Minimize the use of hardware in your solution

 State the types of control your circuit uses (“no control”, “internal control”, and/or “external control”).

1) Design a 3-bit odd parity generator using BFD. Specifically, this circuit uses the single-bit output to make
the combination of the input plus the output even parity. Assume the 3-bit inputs are in a parallel
configuration. Use Boolean algebra to reduce the resulting equations.

2) Using the design from the previous problem, design an 8-bit even parity generator using IMD. Assume the
8-bit input is in a parallel configuration.

3) Design a 3-bit odd parity generator using BFD. Specifically, this circuit uses the single-bit output to make
the combination of the input plus output odd parity. Assume the 3-bit inputs are in a parallel configuration.
Use Boolean algebra to reduce the resulting equations.

4) Using the design from the previous problem, design an 8-bit odd parity generator using IMD. Assume the
8-bit input is in a parallel configuration.

5) Design a 4-bit even parity checker. This circuit indicates when the parallel 4-bit input is even parity. Use
Boolean algebra to reduce the resulting equations.

6) Using the design from the previous problem, design an 8-bit even parity checker using IMD. Assume the
8-bit input is in a parallel configuration.

7) Design a circuit that has one 8-bit input. If a button is pressed, the circuit’s single output makes the 8-bit
input value plus the output even parity; otherwise, the circuit’s single output makes the 8-bit input odd
parity. You can use BBDs for the parity generators.

8) Design a circuit that has one 12-bit input A in RC format. If a button is pressed, the circuit outputs –A. If
the button is not pressed, the circuit outputs !A if the A input has odd parity or A if the input has even
parity. Assume the 12-bit output is also in RC format. You can use BBDs for the parity generators.

9) Design a circuit that has two 10-bit binary inputs and one 10-bit output, all in RC format. If A-B is both
valid and has even parity, the circuit outputs the result of A-B. If the result is odd parity and valid, the
circuit outputs A. If the result is not valid, the circuit outputs B if the button is pressed or zero if the button
is not pressed. You can use BBDs for the parity generators.

10) Design a circuit that has two 8-bit signed binary inputs (RC format) A & B. If the two inputs have the
same parity, the circuit outputs A+B if a button is pressed or A-B if the button is not pressed. If the two
inputs are of different parity, the circuit outs A if the button is pressed or B if the button is not pressed.
Use no more than one RCA in your design. The circuit also has a VALID output to indicate if the result of
the mathematical operations is valid. Assume the output is also an 8-bit value in RC format. You can use
BBDs for the parity generators.

11) Design a circuit that inputs two 10-bit values, A & B, in RC format. If both values are positive and both
values exhibit odd parity, the circuit output A-B. If both values are of different sign and both values
exhibit even parity, the circuit outputs A+B. If the above two conditions are not met, the circuit outputs
zero. Assume the 10-bit output is in RC format and is always valid. You can use BBDs for the parity
generators.

Free Range Digital Design Foundation Modeling Chapter 19

 - 290 -

12) Design a circuit that has one 17-bit input A in RC format. When the input is odd parity but not all 1’s, the
circuit outputs A. If the circuit is even parity and not all 0’s, the circuit outputs –A. If neither of the above
two conditions are met, the circuit output !A. Assume the 17-bit output is also in RC format. You can use
BBDs for the parity generators.

13) Design a circuit that has one 16-bit input in RC format. If the bottom byte if the input is evenly divisible
by 8 and has odd parity, one of the circuit’s 8-bit outputs has the lower 8-bits of the input; otherwise it
outputs zero. If the upper byte of the input positive and evenly divisible by 4, the circuit’s other 8-bit
output has the 8-bits of the inputs, otherwise it show zero. You can use BBDs for the parity generators.

Free Range Digital Design Foundation Modeling Chapter 20

- 291 -

20 Introduction to Sequential Circuits

20.1 Introduction

There are two major classes of digital circuits; we’ve dealt with only one type of circuit: combinatorial, or
combinational circuits. The other major type of digital circuits is sequential1 circuits; most digital circuits use a
combination of both circuit types. This chapter introduces the basic concepts behind sequential circuits.

Main Chapter Topics

SEQUENTIAL CIRCUITS: There are two types of digital circuits: combinatorial and
sequential. Previous chapters dealt only with combinatorial circuits. We generally
characterize sequential circuits as having the ability to store information. This
chapter describes basic latches, which are of basic digital storage elements.

STATE REPRESENTATIONS: We characterize circuits with memory by the “state” of
the circuit. We define the state of the circuit by the values stored in the circuit’s
storage elements.

SEQUENTIAL CIRCUIT REPRESENTATION: We can represent basic digital storage
elements in various ways. This chapter outlines the analysis and representations
methods of basic sequential circuits.

Chapter Acquired Skills

 Be able to describe the main qualities of combinatorial and sequential circuits.

 Be able to describe the concept of “state” in the context of digital circuits

 Be able to describe what generates memory in a digital circuit

 Be able to describe the basic operation of NOR & NAND latches

 Be able to use state diagrams to discern the operation of NOR & NAND latches

 Be able to use PS/NS tables to describe the operation of NOR & NAND latches

20.2 Sequential vs. Combinatorial Circuit

Let’s look back at one of the first figures we used in this text. We claimed that Figure 20.1 provided a high-level
model of all the circuits that we would use in digital design. Up until now, this definition has been 100% correct:
the outputs of all the circuits were direct functions of the circuit inputs. A more accurate description of the
circuits we’ve worked with up until now is that a change in the circuit’s input always causes the same reaction
(change or no change) in the circuit’s output.

1 The term sequential used in the context of digital circuit should not be confused with sequential statements in the VHDL
language: they are completely different concepts.

Free Range Digital Design Foundation Modeling Chapter 20

- 292 -

Figure 20.1: Digital Design in a nutshell

The input/output relationship in a sequential circuit is different from that of combinatorial circuits. The name
sequential hints to the major attribute of a sequential circuit in terms of the input/output relationship: the
sequence of inputs determines the outputs of a sequential circuit. Relative to a combinatorial circuit, this
definition means that at one point in time, an input change may cause a certain change in circuit outputs, but at
another point in time, the same input change may cause a different change in the circuit outputs. Thus, the output
of a sequential circuit is based on the history of inputs and not the inputs themselves. This description implies
that sequential circuits have an attribute responsible for its output behavior; we refer to this attribute as memory.

If you only remember one thing from digital design, the difference between combinatorial and sequential circuits
should be that thing2. Table 20.1 shows the true differences between sequential and combinatorial circuits.

Sequential Circuits Combinatorial Circuit

Definition: The circuit’s outputs are a function
of the sequence of the circuit’s inputs

Definition: The circuit outputs are a
function of the circuit inputs

Characteristics: The circuit has at least one
single-bit memory element

Characteristics: The circuit does not have
memory

Table 20.1: The main attributes of sequential and combinatorial circuits.

In digital design, the notion of “state” has a specific definition. We haven’t needed to use the term “state” yet
because our circuits up to this point did not have a “state” (they were all combinatorial). We can now refer to the
state of a sequential circuit. We define the “state” of a digital circuit as the value(s) that the circuit is currently
storing in its memory element(s). The notion of state is important because it’s virtually impossible to describe
sequential circuits without mentioning the state of the circuit.

20.3 Sequential Circuits: Low-Level Basics

Let’s start examining sequential circuits by analyzing the seemingly simple circuit in Figure 20.2. While this
circuit does not appear different from other circuits we’ve been dealing with, the circuit contains one distinct
difference: there is a connection from the circuit’s output to the circuit’s input, which we refer to as feedback. In
other words, the Q output “feeds back” and becomes a circuit input. This feedback is what ultimately gives
circuits the ability to store data.

Figure 20.2: A seemingly simple circuit.

2 This is a common interview question and one that is easily asked by a Human Resource person (or someone else who knows
nothing about technology or probably anything else for that matter) conducting the interview.

Free Range Digital Design Foundation Modeling Chapter 20

- 293 -

Analyzing the circuit in Figure 20.2 will show it has some interesting properties. In order to analyze this circuit,
we’ll consider the circuit elements as non-ideal devices. In order to simplify the analysis, let’s combine the
delays associated with the two NOR gates into one delay; we model the propagation delays with the box labeled
td in Figure 20.3. The circuit model of Figure 20.3 provides a time delay between two of the circuit’s signals,
which we arbitrarily refer to as: Q+ and Q. Even though Q+ and Q are essentially the same signal, modeling them
as different signals simplifies the analysis.

The signal names of Q+ and Q are special signal names with special symbology. The output that interests us is
Q, as it’s the true output of the circuit. In order to analyze this circuit, we need to consider the values of Q as
well as the S and R inputs. However, since we also need to consider how the value of Q changes, we need some
way to represent the new value of Q; we use the “Q+” symbology to represent the new value of Q, after the S, R,
and Q outputs act to alter the circuit output.

Figure 20.3: The seemingly simple circuit modeled in such a way as to facilitate analysis.

Figure 20.3 shows a circuit that has three inputs, Q, S, and R, and one output, Q+. Since there are only three
inputs, we can analyze this circuit using a truth table. Figure 20.4 shows the empty truth table we use in this
analysis. To fill in the Q+ column of this truth table, we treat Q, S, and R as independent variables and use them
to generate the final value of Q+. We’ll do a couple of rows and you can do the others at your leisure, if you have
any. Figure 20.4(b) shows the completed truth table for the circuit of Figure 20.3. Here are details in analyzing
three rows of the table:

 Truth Table Row #0: Since both Q and S are ‘0’, the output of the first NOR gate is ‘1’.
Anytime there is a ‘1’ input to a NOR gate, the output is ‘0’. Therefore, don’t need to consider
the value of the R input; the output for this row: Q+ is ‘0’.

 Truth Table Row #2: Since the S input is a ‘1’, the output of the first NOR gate must be a ‘0’
and we don’t need to consider the Q input value. The R input is also has a ‘0’ value; since the
second NOR gate’s inputs are both ‘0’, the Q+ output is therefore a ‘1’.

 Truth Table Row #6: Since one of the inputs to the first NOR gate is a ‘1’, the output of the first
NOR gate must be ‘0’. The R input value is also ‘0’, which causes the output of the second
NOR gate a ‘1’. For this row, the Q+ output value is a ‘1’.

Q S R Q+
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Q S R Q+
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

(a) (b)

Figure 20.4: The empty (a) and completed truth table (b) for the seemingly simple circuit.

Figure 20.5(a) shows a truth table of Figure 20.4(b) after we translate the truth table into a more usable form. In
this new truth table, we re-arrange the independent variables in order to clearly show the relationship between

Free Range Digital Design Foundation Modeling Chapter 20

- 294 -

the Q and Q+. The values of Q and Q+ in Figure 20.5 represent the output of the circuit but at different times.
More specifically, the value of Q represents the current state (or output) of the circuit while the value of Q+
represents the state of the circuit after a time delay. In sequential circuit terms, the value of Q represents the
current or present state of the circuit while the value of Q+ represents the new state of the circuit after a time
delay, or the next state. The state changes in the circuit define the circuit.

The following verbage describes the rows of the truth table in Figure 20.5(a). Comparing and contrasting this
analysis to the timing diagram in Figure 20.6 helps you understand the circuit’s important attributes.

(a) (b)

Figure 20.5: Useful form of the truth table of Figure 20.4 in normal (a) and compressed form (b).

Free Range Digital Design Foundation Modeling Chapter 20

- 295 -

Row Comment

(a)

This is the do-nothing state3, though we refer to this state as the hold condition. A hold
condition is evident from examining the Q and Q+ columns of the two (a) rows of Figure
20.5(a). The output does not change from the present state (Q) to the next state (Q+), so the
present state is being “held”. The next state is dependent on the present state since it’s the next
state that is being “held”; the output can be held in either the ‘1’ or ‘0’ state. The state change
(Q → Q+) associated with these input conditions are 0 → 0 & 1 → 14.

(b)

This is the clear state, or reset state. In this state, the next state (Q+) is always ‘0’ independent
of the present state (Q), so if the S and R inputs are equal to ‘0’ and ‘1’, respectively, the next
state of the circuit is a ‘0’. The word “clear” is important in digital design; as a noun, it refers to
the ‘0’ condition of a circuit output. Therefore, if the circuit output is cleared, the circuit output
is currently in a ‘0’ state. As a verb, clear refers to the placing the circuit output into the ‘0’
state. Clearing a sequential circuit refers to the act of making the circuit output a zero. The state
changes (Q → Q+) associated with the SR = “01” inputs are 0 → 0 & 1 → 0.

(c)

This state is the set state. In this state, the next state (Q+) is always ‘1’ and is independent of the
present state (Q) of the circuit. If the S and R inputs are equal to ‘1’ and ‘0’, respectively, the
next state of the circuit is a ‘1’. The word “set” is another important word in digital design. As a
noun, the word set refers to the ‘1’ condition of a circuit output. If a circuit output is set, the
output is currently a ‘1’. As a verb, “set” refers to the action of placing the circuit output into
the ‘1’ state. Setting the circuit refers to the act of making the output a ‘1’. The state change (Q
→ Q+) associated with the inputs conditions are 0 → 1 & 1 → 1.

(d)

This is the forbidden state. We soon mention the reason we refer to this state as forbidden. To
stay out of the forbidden state, you need to make sure your S and R circuit inputs do not
simultaneously have the values of ‘1’. Nothing dangerous happens if this condition occurs in
your circuit but the digital gods will be annoyed.

Table 20.2: Detailed explanation of the main points in Figure 20.5.

The truth table of Figure 20.5(a) becomes clearer by compressing it. Figure 20.5(b) shows the compressed truth
table for the circuit of Figure 20.3. The output in the Q+ column of Figure 20.5(b) is (a)Q, (b)0, (c)1, and (d)0.
The Q in the (a) row refers to the fact that the next state (Q+) is the same as the present state (Q). The ‘0’ and ‘1’
in the (b) and (c) rows refer to the fact that the next state will always be ‘0’ and ‘1’, respectively. It does not
matter what’s going on in the (d) state since you should not be there.

The true ramifications of Figure 20.5 are not obvious. Recall that we’re describing a sequential circuit, which has
the ability to remember a single bit. Instead of speaking of what the circuit is remembering, we refer to the
“state” of the circuit. Figure 20.6 shows a timing diagram that tells the whole story; Table 20.3 provides an
analysis of that timing diagram.

3 Unfortunately, academic administrators spend most of their lives in this state.
4 Generally speaking, we refer to the state changes of 0 → 0, and 1 → 1 as state changes even though the output does not
really change.

Free Range Digital Design Foundation Modeling Chapter 20

- 296 -

Figure 20.6: A timing diagram showing the three conditions and two states of the given circuit.

time
slot Comment

(a)
This is a hold condition, which means that the present-state (Q) does not change as long as both
the S and R inputs are both ‘0’. The timing diagram provides an arbitrary initial value for Q.

(b)
The S input sets at the beginning of the (b) time slots. The values of S and R are now ‘1’ and ‘0’,
respectively. The SR = “10” represents the set condition for the circuit and causes the output Q
to transition from ‘0’ to ‘1’. The output state remains set while SR = “10”.

(c)
The S input clears at the beginning of the (c) time slot. The SR inputs now equals “00”, which is
the hold condition, so the output at the start of the (b) time slots remains set. The fact that the ‘1’
remains on the output after the SR inputs are both cleared represents the circuit’s memory.

(d)
The R input sets at the beginning of the (d) time slot. The SR is now “01”, which is a clear
condition, so the output Q transitions from ‘1’ to ‘0’. The output of the device is “cleared” by
this action and remains cleared as long as the SR = ”01” remains on the circuit inputs.

(e)
At the beginning of the (e) time slots, the R input clears. Since the both the S and R inputs are
once again ‘0’, a hold condition is present on the circuit inputs. This hold condition causes no
change from the present circuit outputs; the circuit is thus remembering a ‘0’.

Table 20.3: Detailed description of the timing diagram in Figure 20.6.

The timing diagram in Figure 20.6 only provides the Q output. Recall that when we first model the original
circuit, there was both a Q and a Q+ value. The concept of Q and Q+ enables us to model the present and next
state of the circuit, respectively, but it wouldn’t provide any useful information to include both a Q and Q+ in a
timing diagram because the Q value inherently contains both of these values. For any given time in Figure 20.6,
the present state is the state of Q at those times. The next state is the state of the circuit after the present state (a
concept that is hard to describe in terms of a timing diagram).

20.4 The NOR Latch

Figure 20.2 shows a classic circuit in digital design, but Figure 20.7(a) shows the more common depiction of this
circuit. While the diagram of Figure 20.2 only shows the Q output, the circuit in Figure 20.7(a) has both a Q

Free Range Digital Design Foundation Modeling Chapter 20

- 297 -

output and !Q output. One common name for this circuit is the cross-coupled NOR cell. We also refer to this
circuit as a NOR latch, or simply latch.

Once you draw the circuit in Figure 20.7(a) a few times, you’ll instead abstract it to a higher-level and draw it as
the BBD in Figure 20.7(b). The lower output of the diagram in Figure 20.7(b) contains a bubble on one of the Q
outputs to indicate that it is active low. The Q output of the NOR cell is available in both positive logic and
negative logic forms. How convenient.

(a) (b)

Figure 20.7: The cross-coupled NOR cell (a) and its black box representation (b).

20.4.1 Latch Terminology

The term “latch” is a common term in digital design. The term latch is similar to “set” and “clear” in that it has
two different definitions depending on whether you’re using the word as a verb or a noun. As a noun, a “latch”
represents a one-bit level-sensitive storage element. As a verb, the notion of “to latch something” means to store
a given digital value into a storage element. For the verb version of “latch”, the storage element is not limited to
a single-bit storage element.

20.5 State Diagrams

We can enhance our understanding of sequential circuits using a state diagrams. While tabular representations of
sequential circuits are interesting, they can be hard to interpret, especially as circuits become more complex.
Truth tables do not present information efficiently; humans are more adept at viewing images such as state
diagrams.

State diagrams are often the most useful way to describe the operation of sequential circuits. State diagrams are
relatively simple, but they require learning a new terminology and symbology. We use state diagrams
extensively, so we first examine one in the context of the simplest sequential circuit: the NOR latch. We present
state diagrams in more detail in later chapter.

Figure 20.8 shows two versions of the state diagram associated with the NOR latch. An explanation follows but
first we must issue this disclaimer. Unlike syntactical languages such as C or Java, there are no set rules for
drawing state diagrams. Here is the one rule you should follow: good state diagrams transfer the most
information in the shortest amount of time to the entity examining the state diagram. There are many ways to
draw state diagrams. If you use strange techniques to draw your state diagrams, be sure to adequately explain
them5.

5 In other words, be sure to annotate your state diagrams.

Free Range Digital Design Foundation Modeling Chapter 20

- 298 -

(a) (b)

Figure 20.8: Two state diagrams representing the NOR latch.

The state diagrams in Figure 20.8 completely describes the operation of the NOR latch. This means that the
information in Figure 20.8 is the same information in Figure 20.5, but with a different presentation. State
diagrams have some important features. Here they are:

 Each circle in state diagram refers to a different state in the circuit; we refer to these circles as state
bubbles. The NOR cell stores one bit of information, there are two states in the associated state
diagram: the Q=0 and the Q=1 state.

 The singly directed arrows, or just arrows in the state diagram represent the state transitions. There are
four possible state transitions in the NOR cell: 1) 0→0, 2) 0→1, 3) 1→0, 4) 1→1. We represent the
0→0 and 1→1 transitions by self-loops in the diagram (arrows ending in the same state they started
from). We represent the other transitions by arrows emanating from one state bubble and ending in
another state.

 Each state transition (arrow) includes a list of conditions that allows that state transition to occur. We
can represent these conditions in a variety of forms; the forms in the circuit of Figure 20.8(a) happen to
be a logic-type form where the “+” symbol represents a logical OR.

 We include the forbidden states of the circuit inputs in Figure 20.8(a), but we cross them out. We
include it the state diagram for completeness.

 Figure 20.8(a) shows there are eight product terms, which correspond to the eight rows of the truth table
in Table 20.4(b).

 The state diagram of Figure 20.8(b) is functionally equivalent to the state diagram of Figure 20.8(a) but
we reduced some Boolean equations and didn’t include the forbidden states.

20.6 PS/NS Tables

The present state/next state table (PS/NS table) is another important sequential design element. This table is
essentially nothing more than a truth table that lists both the present and next states of the circuit. The PS/NS
table is a common tool in describing relatively simple digital circuits such as the NOR latch.

We already worked with a PS/NS table in the design of the NOR latch; the table of Figure 20.4(b) is a basic
PS/NS table, which represents a more formal presentation of the table in Table 20.4(b). We often refer to the
PS/NS table to as a characteristic table since they completely define the set of characteristics of a given device.

Free Range Digital Design Foundation Modeling Chapter 20

- 299 -

PS/NS Table NOR Latch

 (PS) (NS)

S R Q Q+ Comment
0 0 0 0 hold

condition 0 0 1 1
0 1 0 0 reset

condition 0 1 1 0
1 0 0 1 set

condition 1 0 1 1
1 1 0 x

forbidden
1 1 1 x

Table 20.4: The PS/NS table for the NOR latch.

20.7 Excitation Tables

Excitation tables are useful for describing the operation of some sequential devices. Excitation table are
straightforward in that they represent a rearranging of the columns in a compressed PS/NS table for a given
device. The excitation table provides is a list of input conditions that cause a given state transition. We list the
state transitions as the change from the present state (Q) to the next state (Q+); we the list the input conditions
that allow those state transitions to occur. Figure 20.9(a) shows a compressed PS/NS table for a NOR latch while
Figure 20.9(b) shows the associated excitation table. Table 20.5 provides a detailed description of the excitation
table.

S R Q+

0 0 Q
0 1 0
1 0 1
1 1 X

state
transitions

input
conditions

Q Q+ S R Comment

0 0 0 - (a)
0 1 1 0 (b)
1 0 0 1 (c)
1 1 - 0 (d)

(a) (b)

Figure 20.9: A compressed PS/NS table (a) and an excitation table (b) for a NOR latch.

Free Range Digital Design Foundation Modeling Chapter 20

- 300 -

row

state change
Q → Q+

Comment

(a) 0 → 0

Two SR input conditions cause this state transition: either a hold condition
(SR = “00”) or a clear condition (SR = “01”). Thus, this state transition
occurs when the S input is ‘0’; the R input does not matter because the state
change occurs when R is either a ‘1’ or a ‘0’.

(b) 0 → 1
Only one SR input combination that causes this transition: SR = “10”. This is
the “set condition” of the NOR latch. This state transition occurs when the
SR inputs are in the “01” state.

(c) 1 → 0
Only one SR input combination causes this transition: SR = “01”. This is the
clear condition of the NOR latch. We sometimes refer to the clear condition
as a “reset condition”.

(d) 1 → 1

Two SR input conditions cause this state transition: either a hold condition
(SR = “00”) or a set condition (SR = “10”). This state transition occurs when
the R input is ‘0’; the S input does not matter because the state change occurs
when the S input is either a ‘1’ or a ‘0’.

Table 20.5: An explanation of the NOR cell excitation table of Figure 20.9(b).

20.8 The NAND Latch

Since we’ve gone through the design and description steps for the NOR latch at a detailed level, we won’t to go
through the same steps for a similar bit-storage circuit known as the NAND latch. There are many similarities in
the derivation of the NOR and NAND latch, so we leave the derivation of the NAND latch as an exercise.

Figure 20.10(a) shows a diagram of the NAND latch. There is one major difference between the NOR and
NAND latches: the inputs to the NOR latch are active high while the inputs to the NOR latch are active low.
Figure 20.10(b) uses bubbles to show that the inputs to the NAND latch are active low.

(a) (b)

Figure 20.10: A circuit diagram of a NAND latch (a), and the associated schematic diagram (b).

20.9 NOR and NAND Latch Summary

Table 20.6 provides the big summary of the various representations of NOR and NAND latches. We refer to
both the NOR or NAND latches as a “SR latches” based on the fact that they can “set” and “reset”. The
ramifications of the SR latch is that if someone mentions “SR latch”, you’ll know that you’re dealing with a 1-bit
storage element but you will not know whether it is a NOR or NAND latch.

Free Range Digital Design Foundation Modeling Chapter 20

- 301 -

Item NOR Cell NAND Cell

Circuit Form

PS/NS Table

S R Q Q+ Comment

0 0 0 0
hold

0 0 1 1
0 1 0 0

reset
0 1 1 0
1 0 0 1

set
1 0 1 1
1 1 0 x

forbidden
1 1 1 x

S R Q Q+ Comment

0 0 0 x
forbidden

0 0 1 x
0 1 0 1

set
0 1 1 1
1 0 0 0

reset
1 0 1 0
1 1 0 0

hold
1 1 1 1

Compressed
PS/NS Table

S R Q+

0 0 Q
0 1 0
1 0 1
1 1 x

S R Q+

0 0 x
0 1 1
1 0 0
1 1 Q

Excitation
Table

Q Q+ S R

0 0 0 -
0 1 1 0
1 0 0 1
1 1 - 0

Q Q+ S R

0 0 1 -
0 1 0 1
1 0 1 0
1 1 - 1

Block Diagram

State Diagram

Table 20.6: The Big Summary of NOR and NAND latches.

Free Range Digital Design Foundation Modeling Chapter 20

- 302 -

20.10 Chapter Overview

 The two main types of digital circuits include combinatorial circuits and sequential circuits. Sequential
circuits have the ability to store bits of information while combinatorial circuits do not. Sequential circuits
obtain their memory storage ability circuits by feeding output signals back to the circuit’s inputs, a condition
we refer to as feedback.

 Latches are the most basic storage elements in digital logic. The two main types of latches are the NOR
latch and the NAND latch. Although we construct these latches with different logic gates, the only
difference between these two latches at a higher-level is the logic levels of the S and R inputs.

 Since sequential circuits can store information, we consider them as having a state. The data a sequential
circuit stores determines the state of the circuit. We use the concept of present state and next state to
describe changes in the values stored by the circuit at the present time.

 We typically describe sequential circuits by PS/NS tables, characteristic equations, excitation tables, and
state diagrams. Probably the most useful of these representations is the state diagram. Transitioning from
any of these representations to any other of these representations is a straightforward process.

 We consider a latch as an level-sensitive device since the outputs can change any time the inputs change.
When we add special control inputs to latches, name a clock input, and changes in the state of the circuit can
only happen when certain conditions are present on the circuit inputs..

Free Range Digital Design Foundation Modeling Chapter 20

- 303 -

20.11 Chapter Exercises

1) Briefly describe what is meant by the term “state” in a digital circuit.

2) Briefly describe what specific condition gives a digital circuit the ability to have state.

3) Briefly describe why the “forbidden” state is considered forbidden.

4) Briefly explain what is the worst thing that could possible occur if your circuit finds itself in the forbidden
state.

5) Briefly define the word “set” as both a verb and a noun.

6) Briefly define the word “clear” as both a verb and a noun.

7) Derive the tables of Figure 20.5 for a NAND latch.

8) Provide an accepted synonym for the word “clear” as it relates to digital design.

9) Briefly describe why is it hard to describe the concept of “next state” in a timing diagram.

10) Briefly describe the main attribute of a good state diagram.

11) Briefly the physical circuit characteristic that created the notion of “memory” in a circuit.

12) Briefly describe why it makes no sense to describe the “state” of a combinatorial circuit.

Free Range Digital Design Foundation Modeling Chapter 20

- 304 -

20.12 Design Problems

For the following problems:

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution

 Minimize the use of hardware in your solution

 State the types of control your circuit uses (“no control”, “internal control”, and/or “external control”).

1) Design a circuit that contains a NOR latch and only allows the outputs to change when the button is pressed.
The circuit’s inputs and outputs should be the same as a NOR latch except for the addition of the button
input. Assume a button press equals a logical ‘1’.

2) Design a circuit that contains a NAND latch and only allows the outputs to change when the button is
pressed. The circuit’s inputs and outputs should be the same as a NAND latch except for the addition of the
button input. Assume a button press equals a logical ‘1’.

3) Design a circuit that adds two 8-bit inputs in RC format. The circuit outputs A+B or A-B. The outputs A+B
when BTN1 is pressed and keeps outputting that value until BTN2 is pressed. When BTN2 is pressed, it
outputs A-B and keeps outputting that value until BTN1 is pressed again, at which time it outputs A+B
again. Assume BTN1 and BTN2 will never be pressed simultaneously. Assume the result of the
mathematical operations will always be valid.

Free Range Digital Design Foundation Modeling Chapter 21

- 305 -

21 Flip-Flops

21.1 Introduction

The previous chapter’s introduction to sequential circuits entailed the simple latch. This chapter presents the
notion of a one-type of flip-flop1, which is nothing more than a latch with added control features. The notion of
flip-flops is somewhat “dated” as modern digital design no longer uses all flavors of flip-flops.

Main Chapter Topics

The Flip-Flops: This chapter describes the basic operation of a D flip-flop, which is
nothing more than an edge-sensitive latch.

Chapter Acquired Skills

 Be able to describe the basic terminology associated with clocked digital circuits

 Be able to describe the basic operation of a D flip-flop

 Be able to describe the difference between synchronous and asynchronous flip-flop
inputs

 Be able to describe the associated features of D flip-flops as they apply to timing
diagrams

21.2 Clock Vernacular

In order to understand this chapter, we first must toss out some definitions regarding “clock” signals. We fill in
more details in a later chapter.

 Unless stated otherwise, clocks are periodic signals, which means that the output waveform of
the signal repeats itself after a finite amount of time.

 We refer to the time it requires for periodic signals to repeat themselves as the period.

 A periodic signal by nature some amount of time high and some amount of time low. We refer
to the transition from low-to-high as the “rising edge” of the signal, and refer to the transition
from high-to-low as the “falling edge” of the signal.

 We refer to the ratio of the time the signal is high to the time the period of the signal as the
duty cycle. The duty cycle is unit-less value.

1 There are three standard types of flip-flops out there; this text only deals with one type: the D flip-flop.

Free Range Digital Design Foundation Modeling Chapter 21

- 306 -

Figure 21.1: Everything you wanted to know about periodic signals but were afraid to ask.

21.3 Flip-Flops

A flip-flop is essentially an edge-sensitive latch, which means that the flip-flop’s outputs can only change
simultaneously to an active edge of a particular input signal. The primary difference between flip-flops and
latches is that fact that latches are level-sensitive (state can change anytime inputs change) while flip-flops are
edge sensitive (state changes are synchronized with an active edge of a control signal).

Most sequential devices have an input that we refer to as a clock; a flip-flop bases its edge-sensitivity on that
clock edge. Additionally, we refer to flip-flops as synchronous circuits, which means that the changes to the state
of the circuit are synchronized with an active clock edge. The active clock edge can be either the rising or falling
edge of the clock. We refer to devices whose state changes on the rising clock edge as “rising-edge-triggered”
devices (RET) and devices whose state changes on the falling clock edge as “falling-edge-triggered” devices
(FET)2.

21.4 The D Flip-Flop

The most common flip-flop is the D flip-flop. The D stands for data, so the D flip-flop is a data flip-flop. The
characteristic of a D flip-flop is that the output of the flip-flop follows the D input. Figure 21.2(a) shows a
schematic symbol for a simple D flip-flop. The new feature to notice about the D flip-flop symbol is the
triangular shape on the CLK input, which means that the device is edge-triggered. Since there is no bubble
attached to this triangle, the device is a rising-edge-triggered (RET) D flip-flop. Had there been a bubble on the
CLK input, we would consider this device a falling-edge-triggered (FET) device. The standard D flip-flop
outputs both the positive and negative logic versions of the flip-flop’s state (Q & !Q).

Figure 21.2(b) shows the characteristic table of the D flip-flop, which shows that the next state (Q+) of the flip-
flop follows the D input to the flip-flop. By inspection of the characteristic table, you can generate the
characteristic equation in Figure 21.2(b). Figure 21.2(c) shows the excitation table for the D flip-flop. From this
table, you can see what the value of the D input needs to be in order to force the listed state change (Q → Q+) to
occur.

Figure 21.2(d) shows the state diagram that models the D flip-flop. This state diagram looks very similar to the
state diagram for the latch presented earlier; however, there is one significant: because the D flip-flip is a
synchronous device, the state of the flip-flop can only change on clock edges. This means that the singly directed
arrows in Figure 21.2(d) are implicitly associated with the clock edge. Unless stated otherwise, from now on,
state-to-state transitions in state diagrams are synchronized with the active clock edge.

2 Most digital logic texts include the derivation of the actual circuitry that creates the “edge sensitivity”. The circuitry that
creates edge triggering is somewhat complicated, so we omit it in favor of keeping things abstracted to higher levels.

Free Range Digital Design Foundation Modeling Chapter 21

- 307 -

D Q Q+

0 0 0
0 1 0
1 0 1
1 1 1

Q+ = D

Q Q+ D

0 0 0
0 1 1
1 0 0
1 1 1

(a) (b) (c) (d)

Figure 21.2: The schematic symbol (a), characteristic table and characteristic equation (b), and
excitation table (c), and the state diagram for the D flip-flop.

The timing diagram in Figure 21.3 demonstrates the operation of the RET D flip-flop in Figure 21.2(a); here’s a
list of the items to note in the timing diagram:

 Outputs can only change on the rising-edge of the clock signal. Figure 21.3 uses vertical dotted
lines to show the rising edges of the clock across the signals.

 The initial state of the flip-flop is ‘0’. Since the D flip-flop is a sequential circuit, the timing
diagram must provide the initial value of the output.

 At the first rising edge, the D input is a ‘1’, which transfers to the output and becomes the
official “state” of the flip-flop. At the second rising edge, the D input is high again so no state
change occurs.

 During the interval between the first and second rising edges, the D input changes twice. The
circuit ignores these changes because the output can only change on the rising-edge of the clock.

 At the third rising edge, the D input is in a low state, which causes the output of the flip-flop to
change from high to low.

 At the fourth rising clock edge, the output is low again and the flip-flop remains in a low state.

 At the fifth clock edge, the D input is high, which in-turn causes the state of the flip-flop to
change from low to high.

Figure 21.3: An example timing diagram for the D flip-flop.

21.5 Synchronous and Asynchronous Flip-Flop Inputs

The flip-flops we’ve described up to this point were synchronous circuits. In the context of flip-flops,
“synchronous” refers to the fact that the changes in the state of the flip-flop are synchronized to the active clock
edge. Many flip-flops have the ability to change state either synchronously (synchronized to the clock input) or
“asynchronously”. Asynchronous inputs cause state changes that are not synchronized with the clock edge.

Free Range Digital Design Foundation Modeling Chapter 21

- 308 -

There are two different things you can do to a flip-flop’s output, namely set it or clear it. Not surprisingly, there
are usually two different asynchronous control inputs to a flip-flop: the set and reset input. These inputs are
usually active low, which means when the asynchronous input signal is low, the flip-flop can change state. Flip-
flop diagrams use a bubble to indicate the logic level of the inputs. Flip-flops use an S and R inputs to represent
signals that asynchronously set and clear the state of the flip-flop, respectively.

21.5.1 D Flip-Flop with Reset

A D flip-flop with an asynchronous input is relatively simple, so we model it with a state diagram in Figure
21.4(b). The schematic in Figure 21.4(a) shows most of what we need to know about the D flip-flop, but it does
not show whether the R input is asynchronous or not; someone or something needs to state this fact. Here are a
few other things to note.

 The flip-flop has complementary outputs, which the diagram in Figure 21.5(a) indicates with
two Q outputs; the Q with the bubble is the active low version of Q.

 We generally assumed the R input to be a “reset” control input

 The R input has a bubble, which indicates that the input is active low

 While the R input is active low, someone needs to tell you whether it is synchronous or
asynchronous. For this example, we assume the R input is asynchronous.

The state diagram in Figure 21.5(b) is nearly identical to the state diagram in Figure 21.2(d), but with one major
difference: how we represent the R input. Here is a complete description of that difference.

 We represent asynchronous inputs with a new type of arrow. We represent synchronous state
transitions with “state-to-state” arrows (starts in a state and ends in a state), while we represent
asynchronous transitions with “coming-out-of-nowhere-to-state” arrows (starts nowhere, and
ends in a state).

 We represent the fact that the R input is active low in the schematic by using a bubble on the
input and by placing an overbar on the signal in the state diagram.

(a) (b)

Figure 21.4: Timing diagram associated D Flip-flop with asynchronous active low reset.

Figure 21.5 shows a timing diagram we use to model the operation of the flip-flop. For this timing diagram,
assume the R input as precedence of the D input. Here are things to note about the timing diagram.

 Because the R input is low at the start of the timing diagram, the output of the flip-flop is in the
reset state.

 On the first rising clock edge (1) , the D flip-flop acts as you expect. In this case, the model
ignores the R input because it is a ‘1’ (its non-active state); the model then evaluates the other
inputs. Because the D input is ‘1’ on this clock edge, ‘1’ becomes the new state of the flip-flop.

 On the second clock edge, the flip-flop does not change state. The D input is at ‘1’ on this clock
edge, the flip-flop output does not change because the flip-flop is currently in the Q=1 state.

Free Range Digital Design Foundation Modeling Chapter 21

- 309 -

 Between the second and third clock edges, the R input asserts (goes low); so the flip-flop
immediately resets3, as the causality arrows indicate. The R input returns to its non-active state
(the ‘1’ state) soon afterwards. Returning the R input to the non-active state has no effect on the
state of the flip-flop, meaning that the flip-flop stays reset.

 The pulses on D between the third and fourth clock edges have no effect because they did not
occur on an active clock edge.

 On the fifth clock edge, the flip-flop sets as the causality arrows indicate. Soon after that clock
edge, the flip-flop resets are a result of the R input becoming active (R=’0’).

Figure 21.5: Timing diagram associated D Flip-flop with asynchronous active low reset.

21.5.2 D Flip-Flop with Set Input

D flip-flops often have a control input that allows the flip-flop to be set. The D flip-flop in Figure 21.6(a) has an
S input as a control signal that sets the flip-flop. We also need to state that the S input is synchronous. Figure
21.6(a) shows that the S input is active low and that the device is rising-edge-triggered.

The state diagram in Figure 21.6(b) is different from the state diagram in Figure 21.4(b) because the set input is
synchronous. Because it’s synchronous, the S control input is now associated with the state-to-state-type
transition arrows rather than the coming-out-of-nowhere arrows. There are a few new issues to describe in the
state diagram of Figure 21.6(b); these issues involve the presence of logic and the S control input in the state
diagram. There are now two conditions associated with the state transitions: the D and the S inputs.

 The logic shows that we can attain the 1 → 1 transition in two different ways: when the D
input is asserted (D=’1’) or when the S input is asserted (S=’0’).

 The logic shows that we can attain the 0 → 0 transition when the D input is not asserted
(D=’0’) at the same time as when the S input is not asserted (S=’1’).

 The logic shows that we can attain the 0 → 1 transition in two different ways: when the D
input is asserted (D=’1’) or when the S input is not asserted (S=’0’).

 The logic shows that we can attain the 1 → 0 transition when the D input is not asserted
(D=’0’) at the same time as when the S input is not asserted (S=’1’).

3 There is actually an associated propagation delay associated with this state transition but we’re still modeling these flip-
flops using an ideal model.

Free Range Digital Design Foundation Modeling Chapter 21

- 310 -

(a) (b)

Figure 21.6: Timing diagram associated D Flip-flop with asynchronous active low set.

Figure 21.7 shows a timing diagram associated with Figure 21.6. Here are a few things to note:

 The problem provides the starting state of Q, which the problem description did not state.

 The flip-flop ignores the S pulse between the first and second rising clock edge because the S
input in this example is synchronous. The same is true of the S pulse between the third and fourth
clock edges.

 The flip-flop output sets on the fifth clock edge because the S input was in its active state at the
arrival of the active clock edge.

Figure 21.7: Timing diagram associated with this example.

21.6 Flip-flops with Multiple Control Inputs

Flip-flops can also have multiple control inputs, such as the flip-flop in Figure 21.8(a). This flip-flop has active-
low asynchronous set and reset inputs. Figure 21.8(b) shows the state diagram modeling the flip-flop’s operation.
Here are a few things to note about the state diagram.

 Both the S and R inputs are asynchronous and active low; the complemented signal names
indication they are active low while the “arrow from nowhere” indicate the asynchronicity of
the inputs.

 Problems such as this must state what happens when both the S and R inputs assert
simultaneously; the state diagram does not make sense unless we provide this information. For
this problem, we declare that the S and R inputs won't be simultaneously asserted.

We base the timing diagram in Figure 21.9 on the schematic diagram of Figure 21.8(a). Here are a few items of
interest in the timing diagram.

 The output of the D flip-flop goes to the ‘1’ state with the initial low pulse on the S input.

 The first and second clock edges transfer the D inputs of ‘0’ and ‘1’ to the output of the device.

Free Range Digital Design Foundation Modeling Chapter 21

- 311 -

 The first low pulse of the R signal represents a reset, which makes the state of the device a ‘0’
independent of the active edge of the clock. When R returns to the ‘1’ state, the output of the
device remains in the ‘0’ state.

 The second low pulse on R does not affect the state of the flip-flop since the flip-flop is current
in a ‘0’ state.

 The final low pulse on the S signal sets the output of the flip-flop.

(a) (b)

Figure 21.8: Timing diagram associated D Flip-flop with asynchronous active low clear.

Figure 21.9: Example timing diagram for a RET D flip-flop with active low asynchronous preset
and clear for this example.

Free Range Digital Design Foundation Modeling Chapter 21

- 312 -

21.7 Chapter Overview

 While a latch is considered a level-sensitive device since the outputs can change any time the inputs change.
When special control inputs are added to latches, name a clock input, and changes in the state of the circuit
can only happen on a clock edge, the circuit is considered a flip-flop. There are three main types of flip-
flops: the D, T, and JK flip-flops; this text does not consider T and JK flip-flops.

 Flip-flops are generally considered synchronous circuits in that the state of the flip-flop is synchronized to
the active clock edge. Flip-flops can also contain inputs whose effects are not synchronized to the clock
edge; we refer to these inputs to as asynchronous inputs.

 We use state diagrams to represent the operation of D flip-flops, which provide a visual description
describing the operation of the device.

 State diagrams don’t include clock signals, as we understand most transitions to be associated with the
device’s active clock edge. We represent asynchronous transitions with singly directed arrows emanating
from nowhere and ending up in a state in the state diagram.

Free Range Digital Design Foundation Modeling Chapter 21

- 313 -

21.8 Chapter Exercises

For the following problems, assume all inputs and outputs are positive logic, unless stated otherwise.

1) Briefly describe the difference between a flip-flop and a latch.

2) Briefly describe the difference between synchronous and asynchronous inputs on a D flip-flop.

3) Briefly describe the what the “D” in D “flip-flop” stands for.

4) Provide the Q output (sometimes labeled as OUTPUT) signal using the associated flip-flops listed below.
Consider all S and R inputs to be asynchronous. The asynchronous inputs take precedence over the
synchronous inputs. Assume that propagation delays are negligent.

(a)

(b)

(c)

Free Range Digital Design Foundation Modeling Chapter 21

- 314 -

(d)

(e)

(f)

5) Provide a state diagram and a PS/NS table that describes the following circuit.

6) Briefly describe the karmic potential of a D flip-flop.

7) Briefly describe the distinct relationship between D flip-flops and popsicles.

Free Range Digital Design Foundation Modeling Chapter 21

- 315 -

21.9 Design Problems

1) Using only one extra device, use a D flip-flop to blink an LED at half the D flip-flops clock frequency.

2) Design a circuit with two LED outputs. Both outputs blink at half the input clock frequency, but the two
LEDs are never simultaneously on.

3) Use a D flip-flop to blink an LED at half a D flip-flop’s clock frequency. This circuit also had a button that
holds (prevents the outputs from changing) the circuit’s outputs. Assume a pressed button outputs a ‘1’.

4) Design a circuit with two LED outputs. Both outputs blink at half the input clock frequency, but the two
LEDs are never simultaneously on. This circuit also has a positive logic control input that turns off both
LEDs when asserted. Assume a pressed button outputs a ‘1’.

5) Design a circuit with two LED outputs. Both outputs blink at half the input clock frequency, but the two
LEDs are never simultaneously on. This circuit also has a negative logic control input that toggles both
LEDs when asserted.

6) Design a circuit that shows the previous three values present on the VAL input on the rising edge of the
circuit’s clock input.

7) Design a circuit that shows when the previous three values present on the VAL1 and VAL2 inputs on the
rising edge of the circuit’s clock input are equivalent.

8) Design a circuit that has two data inputs: VAL1 & VAL2. The circuit also has a control input show chooses
whether to display the previous three values on the VAL1 input, or the previous three values on the VAL2
input. The control signal is positive logic; a value of ‘0’ on this signal directs the circuit to display the VAL1
associated sequence.

Free Range Digital Design Foundation Modeling Chapter 22

- 316 -

22 Registers

22.1 Introduction

Registers could be the most widely used circuit in digital design. The concept of registers is straightforward,
particularly since you have already been working with a 1-bit register (the D flip-flop). This chapter describes
multi-bit registers; we work with other common types of registers in later chapters.

Main Chapter Topics

SIMPLE REGISTERS AND REGISTERS “WITH FEATURES”: This chapter defines and
describes basic multi-bit registers and their common features.

Chapter Acquired Skills

 Be able to describe the construction and function of a register in terms D flip-flops

 Be able to describe the basic synchronous nature of flip-flops.

 Be able use basic register control features such as load and clear

 Be able to describe the basic operation of registers in timing diagrams

 Be able to use simple registers in solutions of digital design problems

22.2 Registers

Registers are multi-bit storage elements modeled as a parallel configuration of D flip-flops that share a common
clock signal. When we refer to “registers”, we refer to simple registers; we refer to other common register types
by their names: counters and shift registers (topics for later chapters).

Figure 22.1 shows four D flip-flops assembled to act as a simple multi-bit register. In particular, Figure 22.1(a)
shows the block diagram for a 4-bit register and Figure 22.1(b) shows the underlying circuit. Here are a few
things to note about Figure 22.1:

 The block diagram in Figure 22.1(a) shows that this register is rising-edge triggered. This
means that all changes in the state of the register are synchronized with the rising clock edge.

 Figure 22.1(b) shows that each flip-flop in the register shares a common clock signal, which
allows all flip-flops to simultaneously latch their data.

 We label the four input signals, Dx & Qx, respectively, with numbers. We often consider the
left-most bit the MSB and the right-most bit the LSB.

Free Range Digital Design Foundation Modeling Chapter 22

- 317 -

(a) (b)

Figure 22.1: A block diagram for a 4-bit register (a), and the associated lower-level model (b).

Figure 22.2(a) shows the block diagram for a generic n-bit register; Figure 22.2(b) shows the underlying details.
We typically model the LSB with an index of ‘0’, and the MSB with an index of “n-1”.

(a) (b)

Figure 22.2: A block diagram of an n-bit register (a), and the underlying circuitry, (b).

Example 22.1: A Simple Register

Using the block diagram on the right to complete the
timing diagram provided below. Ignore all
propagation delay issues.

Solution: From the problem description, we know the block diagram represents an 8-bit register that is active on
the rising clock edge. We only need to examine only the portions of the timing diagram aligned to the rising edge
of the clock, which is when the register’s input data latches into the register, thus allows the data to appear on the
output. Figure 22.3 shows the solution for this example; here are a few items worth noting.

 The solution adds dotted vertical lines on the rising clock edges

 The problem did not provide an initial value (state) of the register, which is why the first
value on the Q line contains question marks.

Free Range Digital Design Foundation Modeling Chapter 22

- 318 -

Figure 22.3: The solution for this example.

In real digital circuits, you rarely see registers as simple as the register in the previous example as they lack the
“control” to make them useful. Useful registers that are more useful contain a signal that controls when the
register latches the data, so that the register is not loading data on every active clock edge. Control signals for
such registers are associated with the word “load” (and the acronym LD); the vernacular is registers “load” the
input data into the register. Figure 22.4 shows an example of a register with a LD control. In order for this
register to latch the input data into the register, it requires both an active clock edge and an asserted LD signal.

Figure 22.4: A register with a load control (LD).

Example 22.2: A Register with Load Control

Using the block diagram on the right to complete
the timing diagram provided below. Ignore all
propagation delay issues.

Solution: We need to examine the times where the both the rising edge of the CLK signal occurs and where the
LD signal is asserted. Figure 22.5 shows the solution for this example; some interesting things to note surely
follow as well. Here are a few more items of interest in Figure 22.5

 The LD signal is “level sensitive”, so the register can only load the input data when the LD
input is asserted at the same time there is an active clock edge.

Free Range Digital Design Foundation Modeling Chapter 22

- 319 -

 The first rising clock edge latches the data on the D input to the register because of the LD input
being asserted.

 On the second rising clock edge, the state of register does not change because the LD input is
not asserted.

 At the time marked with the circled “1”, the LD signal asserts and then de-asserts, which has no
effect on the register because there was no rising clock edge when the LD signal was asserted.

Figure 22.5: The solution for Example 22.2.

Registers can have other control inputs as well. Figure 22.6 shows a register that has both a load and a clear
input. The CLR input, like the LD input, is a control signal. We can generally assume the register’s LD signal
be synchronous, while signals such as CLR are usually asynchronous. The CLR input, as Figure 22.6 shows, is
active low as the bubble on the input indicates. We don’t know from looking at Figure 22.6 whether the CLR
signal is asynchronous or not; circuits you work with need to provide that information.

Figure 22.6: A register with a load control and clear input (CLR).

Free Range Digital Design Foundation Modeling Chapter 22

- 320 -

Example 22.3: A Register with Synchronous and Asynchronous Control

Using the block diagram on the right to complete the timing
diagram below. The LD input is a synchronous parallel load
input while the CLR signal is an asynchronous active low
signal that clears the register when asserted. Ignore all
propagation delays.

Solution: Although this solution is straightforward, it provides a few new tidbits of information regarding the
operation of registers.

 The asserted CLR signal at the beginning of the timing diagram makes the register’s state
known; the register is initially storing zero, or “cleared”.

 Though you can’t tell from the first instance of the asserted CLR, the second instance shows
that the CLR signal is asynchronous. We know this because the clearing of the output register
occurs when the CLR signal asserts.

Figure 22.7: The final solution to Example 22.3.

Free Range Digital Design Foundation Modeling Chapter 22

- 321 -

Example 22.4: Three-Value Serial Equivalency Detector

Design a circuit that detects when three consecutive values are equivalent. The circuit
examines the circuit’s 8-bit input value on each rising clock edge. If three consecutive
values are equivalent, the circuit’s EQ output is a ‘1; otherwise the EQ output is ‘0’.
Also, state what controls the circuit’s operation.

Solution: The first step in this example is to discern the inputs and outputs from the problem description and
draw a top-level BBD. Figure 22.8 shows this first step in our solution.

Figure 22.8: The top-level BBD for this example.

The next step is to create an inventory of modules the solution requires. We need to compare three 8-bit values,
yet the circuit only receives one value per rising clock edge. This means that we need to store two previous
values and compare them to the current value, which requires two registers. We also need to compare two
different pairs of values, so the circuit requires two comparators. The circuit’s EQ output is asserted when both
comparators indicate their input values are equal, which requires an AND gate.

The key to making this circuit work is ensuring the two registers are always holding the two previous data input
values. We accomplish this by connecting the data input of the first register to the incoming data; we then
connect the output of this register to the input of the second register. One comparator the compares the incoming
data with the previous data, while the other comparator compares the data latched on the previous clock edge to
the data latched two clock cycles previously.

The next step in this solution is to assemble the modules we previously identified and connect them to make the
circuit satisfy the problem description. Figure 22.9 shows the final BBD for this problem.

Figure 22.9: The lower-level BBD for this example.

The two registers are the only devices in this circuit containing control inputs. The circuit hardwires
these control inputs to ‘1’, which provides internal control for the circuit. Additionally, Figure 22.10
shows an example timing diagram for this solution.

Free Range Digital Design Foundation Modeling Chapter 22

- 322 -

Figure 22.10: An example timing diagram for this problem.

22.3 Special Register Circuits: The Accumulator

The accumulator is a useful and common circuit in digital design. We present accumulators in this chapter
because it is a relatively simple combination of a register and an RCA.

The accumulator does what its name implies: it accumulates. In digital design is that we can only add two
numbers at a time, but often we need to add more than two numbers. In this case, we still can only add two
numbers at time, but we add the successive values to a “running total”. The resulting circuit is relatively simple:
we need a device to store the running total (a register) and a device to do the adding (an RCA). Since we have
flexibility in the features we add to the register, when we design an accumulator, we need to make sure of the
following items:

 We need to ensure we can clear the register, as anytime we’re accumulating something, we
typically start accumulating with a register value of zero.

 We need to ensure the width of the register is wide enough to hold the maximum possible
value based on the width of the values we’re adding and the maximum quantity of values we
need to add. For the sake of simplicity, the width of the accompanying RCA generally has the
same data widths as the register, which requires bit-stuffing of the input RCA’s data-widths.

Figure 22.11 shows a diagram of a generic accumulator. Note that some other entity needs to issues control
signals to the counter (CLR, LD, & CLK). For this example, we’re not connecting these signals, but we do in
later examples that use finite state machines (FSMs). Here are some important details.

 The register is a synchronous circuit; we indicate this with the triangle on the register module;
we don’t route the clock line in order to keep the diagram readable.

 The register has a CLR control input so that we can clear the value stored in the circuit before
we commence accumulating

 The circuit also has a LD control input, which some other entity provides

 We list the output data width as “n” bits and the input data width as “m” bits. The notion here
is that we’ll be adding a bunch of numbers of width “m”. In doing this we need to do two
things:

1. Ensure the output data width “n” is wide enough to handle the maximum possible value
of the accumulation

2. Bit-stuff the “m” width input data to match the “n” width of the output. We do this
because we expect both inputs of the RCA to have the same data width. Figure 22.11

Free Range Digital Design Foundation Modeling Chapter 22

- 323 -

indicates this bit-stuffing with the square containing the “+”. For this diagram, we are
stuffing (n-m) bits to the DATA input.

Figure 22.11: Generic circuit for an n-bit accumulator.

Example 22.5: Data Width Expansion: #1

A given circuit must accumulate eight unsigned 10-bit values. What is the minimum width of
the accumulator output such that the accumulator can accurately represent the sum of the eight
input values? Show your calculations for this problem.

Solution: We need to add eight 10-bit values, so we need to consider how many bits we need to represent that
number. The maximum value associated with a 10-bit unsigned value is 210-1, but in order to simplify this
problem, we consider the maximum value to be 210. We can have eight 10-bit values, so here is the final
calculation:

8 (number of inputs) * 210 (max value on any one input)= 23 * 210 = 213

Thus, in order to accurately represent the sum of the eight values, the accumulator’s register requires 13 bits.

The previous problem was set up nicely in that the number of values we accumulated was an exponential factor
of two. This won’t always be the case. For those of you who are searching for a formula of how to calculate the
width of the output based on the number of inputs, we can provide one.

Number bits required to represent a given unsigned binary value: ⌈𝐥𝐨𝐠𝟐 𝒎𝒂𝒙 𝒗𝒂𝒍𝒖𝒆 ⌉

Figure 22.12: The number of bits required to represent a decimal value.

Example 22.6: Data Width Expansion: #2

A given circuit must accumulate 12 unsigned 16-bit values. What is the minimum width of the
accumulator output such that the accumulator can accurately represent the sum of the 12 input
values? Show your calculations for this problem.

Solution: Instead of reasoning this one out, we use the formula in Figure 22.12. Here is the calculation:

Width of accumulator output = ⌈𝐥𝐨𝐠𝟐 𝟏𝟐 ∗ 𝟐𝟏𝟔 𝟏 ⌉ 𝟐𝟎

Free Range Digital Design Foundation Modeling Chapter 22

- 324 -

Example 22.7: Data Width Expansion: 3

A given accumulator has a 16-bit output. What is the maximum number of unsigned 6-bit
inputs values this circuit can accurately represent? Show your calculations for this problem.

Solution: This is a similar problem but we take a different approach to the solution and use basic algebraic
manipulation (and other magic) to arrive at the solution. We solve the following equation for VALUE.

𝟏𝟔 ⌈𝐥𝐨𝐠𝟐 𝑽𝑨𝑳𝑼𝑬 ∗ 𝟐𝟔 𝟏 ⌉ ; remove the ceiling function

𝟏𝟔 𝐥𝐨𝐠𝟐 𝑽𝑨𝑳𝑼𝑬 ∗ 𝟐𝟔

𝟐𝟏𝟔 𝑽𝑨𝑳𝑼𝑬 ∗ 𝟐𝟔

𝑽𝑨𝑳𝑼𝑬
𝟐𝟏𝟔

𝟐𝟔 𝟐𝟏𝟎 𝟏𝟎𝟐𝟒

22.4 Registers: The Final Comments

The use of registers is quite common in digital design; this chapter presented only a basic register. Other popular
flavors of registers include shift registers and counter, which are the main topics in upcoming chapters. The
Venn diagram in Figure 22.13 shows how the various flavors of registers relate to each other.

Figure 22.13: Venn diagram for the register family.

Free Range Digital Design Foundation Modeling Chapter 22

- 325 -

22.5 Digital Design Foundation Notation: Registers

The register is a controlled circuit and is one of our Digital Design Foundation modules. Figure 22.14
shows the appropriate digital design foundation notation for the register with a basic set of control
features. Registers typically have both data inputs and data outputs. The typical set of controls for a
register includes synchronous load signals (LD) and an asynchronous clear input. Table 22.1 show a
complete description of the registers input and output signals.

Figure 22.14: Typical data and control signals for a register.

 Signal Name Description

IN
P

U
T

D

A
T

A

DATA_IN The data that can be latched into the register’s storage elements..

O
U

T
P

U
T

D

A
T

A

DATA_OUT
The DATA_OUT signal is the data currently being stored in the counter’s
storage elements.

C
O

N
T

R
O

L

CLK
Registers are synchronous circuits, in that the loading of data to the register
happens on the clock edge.

LD
Allows the latching (loading) of the DATA_IN signal to the counters storage
elements. This signal is always synchronous.

CLR
Latches 0’s into each of the register’s storage elements; can be synchronous or
asynchronous.

S
T

A
T

U
S

n/a -

Table 22.1: The foundation description for a simple register.

Free Range Digital Design Foundation Modeling Chapter 22

- 326 -

22.6 Chapter Summary

 A register is a sequential circuit that we can model as a parallel combination of single-bit storage elements.
We model these storage elements as a specific number of D flip-flops that share a common clock signal and
possibly other control signals typically associated with D flip-flops (such as clear signals). We typically the
register to “latch” (and thus remember) an n-bit wide set of data on the active clock edge of the device.

 When we refer to the state of the register, we are referring to the data currently stored in the register’s
underlying memory elements.

 We consider register inputs such as CLR (clear), CLK, and LD (load) to be control signals, in that they
control the operation of the register.

 A common use for registers is in accumulators. An accumulator is a combination of a register and an RCA
configured in such a way as to add a list of numbers. Digital circuits can only add two values at a time, so
we use an accumulator to add lists of number, which it effectively does by keeping a running total of the
numbers being summed. The key to obtaining the correct answer with an accumulator is to make sure you
clear the underlying register before the summing operations commence.

Free Range Digital Design Foundation Modeling Chapter 22

- 327 -

22.7 Chapter Exercises

1) Using the block diagram on the right to complete the
timing diagram provided below. Consider the register to
be rising-edge triggered and ignore all propagation delay
issues.

2) Using the block diagram on the right to complete the
timing diagram provided below. The LD input must be
asserted in order for the register to load the input signal.
Consider the register to be rising-edge triggered and
ignore all propagation delay issues.

3) Using the block diagram on the right to complete the timing
diagram provided below. The LD input must be asserted in order
for the register to load the input signal. The CLR input is an
asynchronous input that clears the register when asserted and has a
higher precedence than the LD input. Consider the register to be
rising-edge triggered and ignore all propagation delay issues.

Free Range Digital Design Foundation Modeling Chapter 22

- 328 -

4) Using the block diagram on the right, provide a schematic
diagram detailing how you would use this device to create a
32-bit register with all the same features listed on the 16-bit
device.

5) Briefly explain why a register is a major component of an accumulator.

6) We often refer to accumulators that only have RCAs (and no registers) as a “random number generator”.
Briefly explain why this is the case.

7) The registers associated with accumulators always have the ability to either clear the memory in the register,
or load the register with zero. Briefly explain why the registers in accumulators require clear control signals.

8) A given circuit must accumulate four unsigned 20-bit values. What is the minimum width of the
accumulator output such that the accumulator can accurately represent the sum of the given number of input
values? Show your calculations for this problem.

9) A given circuit must accumulate 16 unsigned 18-bit values. What is the minimum width of the accumulator
output such that the accumulator can accurately represent the sum of the given number of input values?
Show your calculations for this problem.

10) A given circuit must accumulate 13 unsigned 11-bit values. What is the minimum width of the accumulator
output such that the accumulator can accurately represent the sum of the given number of input values?
Show your calculations for this problem.

11) A given circuit must accumulate 17 unsigned 7-bit values. What is the minimum width of the accumulator
output such that the accumulator can accurately represent the sum of the given number of input values?
Show your calculations for this problem.

12) A given accumulator has a 13-bit output. What is the maximum number of unsigned 5-bit unsigned binary
input values this circuit can accurately represent? Show your calculations for this problem.

13) A given accumulator has a 20-bit output. What is the maximum number of unsigned 8-bit unsigned binary
input values this circuit can accurately represent? Show your calculations for this problem.

14) A given accumulator has a 39-bit output. What is the maximum number of unsigned 16-bit unsigned binary
input values this circuit can accurately represent? Show your calculations for this problem.

Free Range Digital Design Foundation Modeling Chapter 22

- 329 -

22.8 Design Problems

For the following problems:

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution

 Minimize the use of hardware when problem require extra hardware

 Assume all inputs and outputs are positive logic unless stated otherwise

 State all forms of control for your solution.

1) Design a circuit that stores an 8-bit value when the circuit’s three single-bit inputs (A, B, and C) are
asserted. The circuit has an 8-bit output that shows the current value that is stored in the circuit. The loading
of input data is synchronized with a rising clock edge. Assume the clock is periodic.

2) Design a circuit that stores one of two 8-bit inputs X & Y. The circuit loads the value when one and only
one of the A & B inputs (single-bit) are asserted. The circuit loads the X value under those conditions if the
SEL input is asserted; otherwise, it loads the Y input. Assume the SEL input is positive logic. The loading of
input data is synchronized with a rising clock edge. Assume the clock is periodic.

3) Design a circuit that stores an 8-bit input when only one of three single-bit signal A, B, & C is asserted.
Assume the three inputs are negative logic. The circuit also clears asynchronously when two single-bit
inputs T & U are both asserted. Assume the T input is positive logic while the U input is negative logic. The
loading of input data is synchronized with a rising clock edge. Assume the clock is periodic.

Free Range Digital Design Foundation Modeling Chapter 23

- 330 -

23 Finite State Machines

23.1 Introduction

If you look-up the definition of a finite state machine (FSM) on Wikipedia, you’ll find a description that is based
in abstract mathematics. While this is all good and fine, I’ve never understood those types of definitions when
dealing with digital devices. All the digital devices I know about are simple, intuitive, and straightforward to
understand. A FSM is a relatively simple, but incredibly useful circuit.

This chapter presents FSMs using low-level circuity and in an intuitive manner so that you can build a strong
understanding of their operation. The primary use of FSMs in digital design is as a digital circuit that controls
another digital circuit; it’s a controller circuit. We present FSMs as true controller circuits in a later chapter. An
FSM is a combination of other circuits that we already looked at: registers and decoders.

Main Chapter Topics

FSM CONSTRUCTION: We describe the basic digital modules that form a FSMs

FSM OPERATION: We describe how the basic construction of FSMs determines the
characteristics of how they operate.

FSM MODELING USING STATE DIAGRAMS: We can describe the operation of FSM
using state diagrams. This description includes representing state transitions, input
representations, and both Moore and Mealy-type outputs.

FSM ILLEGAL STATE RECOVERY: This chapter describes the notion of hang states
and provides techniques on how to avoid this unwanted behavior in FSM.

Chapter Acquired Skills

 Describe the basic subsystems of a FSM

 Describe the attributes of Moore and Mealy outputs on an FSM

 Design FSM-based counters at a low level using the basic subsystems of a FSMs

 Design FSMs with built-in illegal state recovery

 Describe the four basic parts of a state diagram

23.2 FSM Design: Start with What You Know

There are many different approaches to understanding FSMs; the approach we take is to develop simple FSMs
from what we already know and then build up our knowledge using more feature-laden examples. This chapter
provides everything you need to know about FSMs using simple examples that leverage hardware and topics we
previously discussed. This approach gives you a solid foundation for understanding FSMs, and helps you realize
that FSMs are relatively simple devices. FSMs are most interesting when we use them as controller circuits, but
this chapter develops non-controller FSMs; we move to controller-type FSMs in a later chapter.

Free Range Digital Design Foundation Modeling Chapter 23

- 331 -

Example 23.1: FSM Design #1: 2-Bit Up Counter

Using the diagram on the right, design a FSM that implements a
2-bit binary counter. The counter’s increments are synchronized
with the rising-edge of the CLK input. This counter counts
endlessly using this sequence in binary: …0,1,2,3,0,1,…
Provide a circuit diagram and a state diagram.

Solution: A counter is a device that counts in a repeating sequence. There are many types of counters; this
problem deals with a 2-bit binary up counter. The counter is binary because all digital circuits are inherently
binary. The counter is a 2-bit counter because that is the minimum number of bits we need to represent the given
sequence in binary. We refer to this as an “up counter” because the sequence is always counting up by one,
which is another way of saying the counter always increments on each rising edge of the clock.

A counter is a simple register with some added external circuitry that makes it into a counter. This circuit
requires memory elements because the output is dependent on the past inputs. There is only one input, the CLK
signal, but the outputs change every clock cycle (synchronized with every rising-edge) as the counter steps
through the count sequence.

Since this is a FSM, we can model it using a state diagram. Figure 23.1 shows a state diagram that describes the
FSM we’re creating to solve this problem. This state diagram completely describes the functionality of the given
FSM; here is a list of the important features of the state diagram:

 The state diagram has four states: one state for each unique value in the given count sequence

 We could represent the count with two or more bits, but it makes the most sense to represent the
counter with using two bits; we can arrange two bits in four unique combinations.

 Each state bubble includes both a descriptive label (the top part of the bubble) and a value for
the output (the body of the bubble). The labels are descriptive, which makes the state diagram
self-commenting, which in turn makes the diagram more understandable to humans.

 The state diagram has singly directed arrows indicating state transitions. The “-“ character
associated with each arrow indicates the given state transition is unconditional. In state
diagrams, all state transitions must explicitly list the conditions under which the transfer occurs,
or list a “-“ if the transition is unconditional.

 Although the circuit has a CLK input, there is no mention of the CLK signal in the state
diagram. This implies the state transitions in the diagram are synchronized to the active clock
edge of the circuit.

Figure 23.1: The state diagram to support our solution.

The circuit for this problem requires two rising-edge triggered (RET) D flip-flops. These D flip-flops are
memory elements, which we use to represent the “state” of the circuit, which means the D flip-flops hold the 2-
bit binary count that the problem is asking for.

We need to make the D flip-flops sequence through the 2-bit binary count. That means, for example, when the
state of the circuit (thus the output) is “10”, we want the next state to be “11”. We accomplish this by placing

Free Range Digital Design Foundation Modeling Chapter 23

- 332 -

some circuitry in front of the D flip-flop inputs. Since we don’t exactly know what this circuitry is, we hedge our
bets and use a decoder. Figure 23.2(a) shows the circuit we’ve described up to this point.

We now need to define the transitions we need to happen in order to make the count sequence appear on the
circuit’s outputs. The best way to do this is to define the circuit transitions in tabular format; we need to show the
present state of the circuit and the circuit’s desired next state. The accepted vernacular for this is to create what
we refer to as a PS/NS table, where PS and NS stand for present state and next state, respectively. The present
state of the circuit is the value currently on the outputs of the circuit (which is the same value as stored in the
circuit); the next state of the circuit are the values on the D inputs to the circuit’s two D flip-flops. Figure 23.2(a)
uses the term Y0 & Y1 for the present state (PS) of the circuit and Y0+ & Y1+ for the next state (NS) of the
circuit.

We now need to define the PS/NS table. Once we describe the required transitions from present state to next
state (PS→NS) in tabular format, we have ourselves a generic decoder that we can use to complete the circuit.
Figure 23.2(b) shows the PS/NS table we’re looking for, as this table lists the present states of interest and their
corresponding next states. Note that this PS/NS table does not include any mention of the CLK signal because
we assume all state transitions in the table are synchronized to the rising-edge of the CLK signal.

PS
Y1 Y0

NS
Y1+ Y0+

0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

(a) (b)

Figure 23.2: A block diagram for our solution (a), and the associated PS/NS table (b).

Figure 23.3 shows a timing diagram for this circuit; this diagram lists the outputs in both an aggregate form
(CNT) as well as its constituent parts (Y1 & Y2). The CNT output arbitrarily shows the output count in decimal
format. Note in this diagram that the rising-edge of the clock synchronizes changes in the CNT output because
of using RET D flip-flops for the storage elements, which we refer to as state registers. Wildly interesting.

Figure 23.3: A timing diagram showing an example of the circuit’s operation.

Free Range Digital Design Foundation Modeling Chapter 23

- 333 -

Example 23.2: FSM Design #2: 2-Bit Up Counter with Asynchronous Reset

Using the diagram on the right, design a FSM that implements a
2-bit binary counter. The counter’s increments are synchronized
with the rising-edge of the CLK input. This counter counts
endlessly using this sequence: …0,1,2,3,0,1,… The counter has
an active-low asynchronous RST input that resets (makes the
count zero) the counter when asserted. Assume the RST input
takes precedence over the normal count operations. Provide
both a circuit diagram and state diagram for your solution.

Solution: This problem is similar to the previous problem, but now has an added reset feature. The RST signal is
an active-low signal that causes the FSM to immediately transition to the “00” state when the RST signal is
asserted. The state transition associated with the asserted RST signal is asynchronous, which means the state
transition happens whenever the signal is asserted and is not synchronized with the active clock edge.

Figure 23.4 shows that we do not model the RST-based transition as a state-to-state transition; we model it as a
“nowhere-to-state” transition. Also note in Figure 23.4 that the signal RST signal includes an overbar to
indicated that the signal is an active low.

Figure 23.4: The state diagram to support our solution.

Our next concern is to draw a lower-level BBD for our solution. We opt to replace the simple D flip-flops in the
previous example with D flip-flops that include asynchronous active-low clear inputs. Figure 23.5(a) shows our
new solution. This solution is similar to the previous problem’s solution, the only difference being that we
include a RST input that connects to the CLR inputs of each D flip-flop. From Figure 23.5(a), we know that the
D flip-flop’s CLR inputs are active low (as indicated with the bubble on the input), but for a complete solution,
we must somewhere state that the D flip-flop’s CLR inputs are asynchronous.

Figure 23.5(b) shows the PS/NS table for the solution. Note that the table does not include the RST input or the
CLK input. We assume state-to-state transitions are synchronized with the CLK edge, so we omit it from the
PS/NS table. We omit the RST signal from the PS/NS table for two reasons. First, because asynchronicity is
hard to indicate in PS/NS tables because the other signals in the table are synchronous. Second, because we
already directly handled the RST input via the CLR control input to the D flip-flops on the underlying hardware
(see Figure 23.5(a)).

Free Range Digital Design Foundation Modeling Chapter 23

- 334 -

PS
Y1 Y0

NS
Y1+ Y0+

0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

(a) (b)

Figure 23.5: A block diagram for our solution (a), and the associated PS/NS table (b).

Figure 23.6 shows a timing diagram for this circuit; we arbitrarily list the CNT output in decimal. Here are a few
important things to note about Figure 23.6.

 We list the RST signal with an overbar, which indicates it’s an active-low signal.

 RST signal is initially asserted when puts the FSM into the ZER state. We do this in so
that we don’t need to provide an initial state of the circuit.

 The CNT value represents the current content of the state registers (D flip-flops); we
arbitrarily list the count in decimal.

 The second and third time the RST signal is asserted causes an immediate transition the
ZER state (see Figure 23.4), which in turn causes the CNT to be “00”.

 The third assertion of the RST signal overlaps an active clock edge. Asynchronous inputs
have precedence over synchronous inputs in sequential circuits. You can design D flip-
flops either way, or read the spec sheet if you’re using an off-the-shelf flip-flop.

Figure 23.6: A timing diagram showing an example of the circuit’s operation.

Free Range Digital Design Foundation Modeling Chapter 23

- 335 -

Example 23.3: FSM Design #3: 2-Bit Up Counter with Synchronous Reset

Using the diagram on the right, design a FSM that implements a
synchronous 2-bit binary up counter. The counter has an active-
low synchronous RST input that resets the counter when
asserted. The RST input takes precedence over the counter’s
basic count operation. Consider the rising edge to be the CLK
signal’s active clock edge. Use D flip-flops with only D and
CLK inputs for your FSM’s storage elements. Provide both a
circuit diagram and state diagram for your solution.

Solution: This problem is similar to the previous problem, but the synchronous reset signal changes how we
approach the problem. Because the reset signal is synchronous, it only takes effect on the circuit’s active clock
edge. Additionally, the problem needed to state whether the count operation or the reset operation has
precedence when the RST signal is asserted on the CLK’s active edge. Finally, the problem states that we must
use only plain D flip-flops for the state registers, which means we can’t rely on a D flip-flop’s CLR input to
complete this problem. The first place to start with this problem is the by drawing a state diagram, which we
show in Figure 23.7. Here are some important features from the state diagram.

 Most of the signal transitions are no longer unconditional; the state-to-state transitions only
occur when the RST signal is unasserted, which is when RST=’1’.

 The ZER state is the only state that contains a self-loop; in all other cases, either the FSM
returns to the ZER state or transitions to the next state in the count sequence.

 The transition from the THR state to the ZER state is unconditional because the FSM always
transition from the THR state to the ZER state on the next clock edge.

 Each state has two condition arrows leaving the state: one transition for each value of the
RST signal. The "don’t care" effectively implements the Boolean equation: (RST +!RST),
which says the expression is always true, thus the transition happens unconditionally.

Figure 23.7: The state diagram to support our solution.

Figure 23.8(a) shows the underlying circuit schematic for the solution. The RST signal is now an input to the
decoder. We must explicitly state that the RST signal takes precedence over the circuit’s active clock edge.
Figure 23.8(b) shows that the PS/NS table for this solution is also significantly different from the previous
solution. Because the RST is synchronous, we can represent the signal in the table. Here are some other notable
items regarding the PS/NS table:

 We’re using an exclamation mark (“bang” notation) to indicate that RST is negative logic.

 When the RST signal is low (active), the next state is always the “00” state; the first four rows
of the table show this characteristic.

Free Range Digital Design Foundation Modeling Chapter 23

- 336 -

 The bottom four rows of the PS/NS table show the normal binary count sequence where the
count increments on each active clock edge.

 The fact that transitions indicated in the fourth and eighth rows of the table are always from the
“11” state to “00” state essential make that transition unconditional, which means the transition
does not depend on the RST signal. We indicate this condition what the “-“ associated with the
THR to ZER transition in the state diagram.

PS
!RST Y1 Y0

NS
Y1+ Y0+

0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 0 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0

(a) (b)

Figure 23.8: A block diagram for our solution (a), and the associated PS/NS table (b).

Figure 23.9 shows an example timing diagram associated with the FSM. Here is the fun stuff to note in the
timing diagram.

 The CNT arbitrarily starts at “2”; representing the CNT in decimal is also arbitrary.

 The RST signal is asserted at the start of the timing diagram. Because the signal is
synchronous, it does not take effect until the first active clock edge.

 The third time the RST signal is asserted is between active clock edges, and thus has no
effect on the state of the FSM.

Figure 23.9: A timing diagram showing an example of the circuit’s operation.

Free Range Digital Design Foundation Modeling Chapter 23

- 337 -

Example 23.4: FSM Design #4: 2-Bit Up Counter with Counter Enable

Using the diagram on the right, design a FSM that implements
a synchronous (RET) 2-bit binary up counter. This counter
counts up when the CE (count enable) input is a ‘1’ and holds
the previous count when the CE signal is ‘0’. Provide both a
circuit diagram and state diagram for your solution.

Solution: The best place to start is defining the state diagram. This is a standard 2-bit binary up counter with the
added feature of a control input that allows the counter to progress through its count sequence (CE). The
problem description states that the counter is synchronous, which means changes in the count output are
synchronized with the active clock edge. The black box diagram from the problem description indicates that the
device is rising-edge triggered. Figure 23.10 shows the state diagram for our solution. Here are a few important
things to note about the state diagram.

 The state diagram indicates that the CE input controls whether the FSM transitions to different
state or stays in the current state. The CE with an overbar indicates the CE signal is not
asserted, and thus the counter output does not change. The FSM accomplishes the “no change”
in the counter output by not changing state, as the state diagram indicates with the “self-loop”.

 Three items determine the state transitions: 1) the CE input, 2) the current state, and 3) the CLK
signal.

 The FSM has one control input: CE. That means we must account for two arrows leaving each
state: one for both the CE asserted and CE not asserted. If we did not list both options, the state
diagram would not be completely specified and thus be incorrect.

Figure 23.10: The state diagram to support our solution.

The next step is to layout the underlying hardware. Figure 23.11(a) shows a set of hardware that does the job for
us. Here are a few things to note about this hardware.

 We essentially abstracted the hardware to a higher level by replacing the two flip-flops from a
previous example with a “state reg” model. This module is officially the state registers for the
FSM, and is responsible for holding the state of the FSM. This module is a simple a 2-bit
register that does not contain a LD input.

 The next state decoder (NS DCDR) explicitly shows that the next state of the FSM is a function
of the CE input and the current state. The decoders two output bits (CNT+) provide the data
inputs to the 2-bit state registers. The CE input controls whether the FSM does a self-loop (CE
= ‘0’) or transitions to the next state (CE = ‘1’). The current state determines which state the
FSM transitions to when CE is asserted.

At this point, we described everything there is to know about this FSM. But wait, there’s more. Figure 23.11(b)
shows the associated PS/NS table for the FSM. The most important thing to note from Figure 23.11(b) is that the

Free Range Digital Design Foundation Modeling Chapter 23

- 338 -

present state (PS) is the output of the state registers, while the next state (NS) is the output of the next state
decoder (NS DCDR).

PS
CE CNT

NS
CNT+

0 0 0 0 0
0 0 1 0 1
0 1 0 1 0
0 1 1 1 1
1 0 0 0 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0

(a) (b)

Figure 23.11: A block diagram for our solution (a), and the associated PS/NS table (b).

Figure 23.12 shows an example timing diagram for the FSM. Things to note about this timing diagram include
the following fun information.

 We need to provide a starting state, which is the “2” on the left side of the CNT signal. Unlike a
previous example that had a reset input, this FSM has no way to force the FSM to a given state.

 When the CE input is not asserted (CE = ‘0’), the output transitions back to the current state.
We opt to leave the signal changing symbology on the first clock edge, but the signal does not
change (it remains at ‘2’). This symbology saves time when drawing the CNT signal.

 When the CE signal is asserted between the third and fourth rising clock edge, the circuit
ignores the CE signal. The only time the FSM considers the CE signal is on the active edge of
the CLK signal.

Figure 23.12: The solution for this example.

Example 23.5: FSM Design #5: 2-Bit Up/Down Counter

Using the diagram on the right, design a FSM that
implements a 2-bit synchronous binary up/down counter.
This counter counts up when the UP input is an asserted, and
down when the UP input is not asserted (both on the rising
clock edge). Assume the UP input is positive logic. Provide
both a circuit diagram and state diagram for your solution.

Free Range Digital Design Foundation Modeling Chapter 23

- 339 -

Solution: This is yet another version of the 2-bit counter. This counter can count up or down based on the UP
input. Because the UP input controls the count direction of the counter, we consider it a control input the
module. Although the problem uses the one control signal (UP) to control the direction of the count, we could
have used two signals for the same effect, specifically, we could have both “UP” and “DOWN” inputs to the
circuit. Figure 23.13 shows the state diagram describing a solution this problem. Here are the important things to
note from the state diagram.

 We consider the counter to be “circular” because it automatically rolls over and under.
The counter rolls over from 3→0 when counting up and from 0→3 when counting down.

 The FSM has one control input: UP, which means that we must account for two arrows
leaving each state: one for both the UP asserted and not asserted cases. Each state bubble
has two transition arrows exiting it.

Figure 23.13: The state diagram to support our solution.

Figure 23.14(a) shows the underlying block diagram for the solution. In this diagram, that we use the output of
the state registers as the desired count output (CNT). Figure 23.14(b) shows the PS/NS table. The PS/NS table
lists the operation of the FSM in tabular format. All the information in Figure 23.14(b) is the same information
found in the associated state diagram, but in a different format.

PS
UP CNT

NS
CNT+

0 0 0 1 1
0 0 1 0 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0

(a) (b)

Figure 23.14: A block diagram for our solution (a), and the supporting PS/NS table.

Figure 23.15 shows an example timing diagram for the FSM of this example. A few worthy things to note about
this diagram include the following:

 We arbitrarily started the CNT signal at ‘2’. This represents the state of the circuit; we
had to provide this information explicitly as the circuit has no other control inputs to put
the FSM into a known state.

 All state changes (changes in the CNT signal) are synchronized to the rising edge of the
CLK signal.

Free Range Digital Design Foundation Modeling Chapter 23

- 340 -

Figure 23.15: The solution for Example 4.8.

Example 23.6: FSM Design #6: 2-Bit Up/Down Counter with Count Enable

Using the diagram on the right, design a FSM that implements
a synchronous 2-bit binary up/down counter. This counter
counts up when the UP input is a ‘1’, and counts down when
the UP input is ‘0’. The counter also has a CE input (control
enable), which allows the counter to “count” when asserted.
Assume the CE input is positive logic. Provide both a circuit
diagram and state diagram for your solution.

Solution: From examining the BBD for the problem, we see that changes in the circuit’s output are synchronized
with the rising edge of the clock. This problem also differs from previous problems in that there are now two
control inputs (CE and UP), which means there are four conditions that determine the next state of the FSM:
CE, UP, and the 2-bit value for the present state of the FSM (which is also the CNT signal for this problem).
Figure 23.16 shows the state diagram associated with this solution. Some other things to note include the
following.

 When the CE is not asserted the FSM does not change state. We indicate this condition is
indicated with !CE (the complemented, or unasserted CE signal) associated with the self-
loop.

 Because there are two signals associated with the state transitions (not including the PS),
there should be four arrows leaving each state. The state diagram only shows three arrows
leaving each state, which is because we opted to not include the UP signal in the self-loops.
We can do this because if CE is not asserted, the UP input does not matter (it’s a “don’t
care”); omitting it from the state diagram does not alter the function of the state diagram
and make the diagram more readable. In this FSM, !CE is equivalent to: !CE∙UP
+ !CE∙!UP, which factors to: !CE.

 The conditions associated with each state-to-state transition are now more than a signal;
they are now a logic expression. The dot means AND, so both conditions need to be true in
order for the transition to occur. For example, to transition from state ONE to state TWO,
both the CE and UP signal must be asserted. Similarly, to transition from state THR to state
TWO, both CE signal needs to be asserted and the UP signal needs to be unasserted.

Free Range Digital Design Foundation Modeling Chapter 23

- 341 -

Figure 23.16: The state diagram to support our solution.

Figure 23.17(a) shows the schematic associated with this solution while Figure 23.17(b) shows the associated
PS/NS table. The PS/NS table has four inputs: CE, UP, and the 2-bit CNT signal (the present state). The next
state is dependent upon each of these four signals, which is why the PS/NS table is a 4-input table. The PS/NS
table has four inputs and thus 16 rows. The NS column of the PS/NS table shows the inputs to the state registers,
which become the next state on the next rising clock edge.

PS
CE UP CNT

NS
CNT+

0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 1 1
0 1 0 0 0 0
0 1 0 1 0 1
0 1 1 0 1 0
0 1 1 1 1 1
1 0 0 0 1 1
1 0 0 1 0 0
1 0 1 0 0 1
1 0 1 1 1 0
1 1 0 0 0 1
1 1 0 1 1 0
1 1 1 0 1 1
1 1 1 1 0 0

(a) (b)

Figure 23.17: A block diagram for our solution (a), and the associated PS/NS table.

Figure 23.18 show and example timing diagram for the circuit. All state transitions only occur on the active
clock edges when CE is asserted.

Free Range Digital Design Foundation Modeling Chapter 23

- 342 -

Figure 23.18: The solution for Example 4.8.

Example 23.7: FSM Design #7: 3-Bit Stoneage Unary Up Counter

Using the diagram on the right, design a FSM that implements a
synchronous 3-bit stoneage unary up counter. The counter also
has a control enable (CE) input that allows the counter to count.
Assume CE is a positive logic signal. Do not use more than two
bits of storage in your FSM design. Provide both a circuit
diagram and state diagram for your solution.

Solution: This problem seems similar to previous examples, but the problem constrains the memory usage to
two bits. In the context of FSMs, the memory is associated with the state registers. In addition, it’s still a
synchronous binary up counter, but the count is now something special: the infamous stoneage unary count.
Recall that a 3-bit stoneage unary count sequence is: …“000”, “001”, “011”, “111”, “000”…. The first part of
this problem involves generating the state diagram, which we show in Figure 23.19. The state diagram is similar
to previous state diagrams for the 2-bit binary up counter with a count enable, but the individual states list the
CNT output in the requested stoneage unary format. The state diagram supports the answer because there only
four states, we represent using two bits of memory. The trick here is to convert the two bits of state memory to
the desired 3-bit output.

Figure 23.19: The state diagram to support our solution.

Next we need to deal with is converting a 2-bit value into a three bits value in the circuit. This is not a big deal
once you realize we’ve been doing this with the NS decoder in all the problems up until now. Anytime you have
an issue such as this, you should think: “decoder”. Thus, the solution is to include what we refer to as an “output
decoder”. This output decoder essentially translates the state of the FSM (the present state, which is the value of
the state registers) to our desired output. It’s a decoder; it’s not a big deal.

Free Range Digital Design Foundation Modeling Chapter 23

- 343 -

Figure 23.20(a) shows the circuit schematic for our solution, including the special placement of the output
decoder. Figure 23.20(b) shows the PS/NS table, which is associated with the next state decoder.

PS
CE ST

NS
ST+

0 0 0 0 0
0 0 1 0 1
0 1 0 1 0
0 1 1 1 1
1 0 0 0 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0

(a) (b)

Figure 23.20: A block diagram for the circuit (a), and the associated PS/NS table. (b).

The new item we need to define for this problem is the output decoder. Since it’s a decoder, we only need to
place the required information in a tabular format. Figure 23.21 shows the table we so eagerly seeking. In the
table, the ST column is the output of the state registers, which makes it the present state of the FSM, while the
CNT output is the stoneage unary output that the problem is looking for.

ST CNT
0 0 0 0 0
0 1 0 0 1
1 0 0 1 1
1 1 1 1 1

Figure 23.21: The definition of the output decoder for this solution.

The outside world only sees the CNT output; the outside world does not know or care about the particular values
of the state variables. This problem needs a binary count on the circuit’s output. Thus, the particular choice of
state variables is not important, so long as we keep it to no more than two bits of storage. This being the case, the
output decoder definition in Figure 23.22 is equally as valid as the output decoder definition of Figure 23.21

ST CNT
1 0 0 0 0
0 0 0 0 1
1 1 0 1 1
0 1 1 1 1

Figure 23.22: Another possible definition of the output decoder for this solution.

Figure 23.23 shows an example timing diagram for this solution. You’ve seen most of this information before.
This only thing worth noting here is that the CNT output arbitrarily starts at “001” for no apparent reason.

Free Range Digital Design Foundation Modeling Chapter 23

- 344 -

Figure 23.23: An example timing diagram for this solution.

Example 23.8: FSM Design #8: 3-Bit Stoneage Unary Up Counter with Status Output

Using the diagram on the right, design a FSM that implements a
synchronous 2-bit stoneage unary up counter. The counter also
has a control enable (CE, positive logic) input that allows the
counter to count up. The counter also contains a “ripple carry
out” output signal that indicates when the counter is currently
outputting its maximum count value. Do not use more than two
bits of storage in your FSM design. Implement the positive logic
RCO signal with the next-state decoder and not with logic
external to the FSM. Provide both a circuit diagram and state
diagram for your solution.

Solution: This problem is similar to a previous problem, but now there is an RCO output, which states when the
counter output is at its maximum count value. The use of RCO-type signals are common with counters as they
are a status output, which provides useful information about the counter’s state. If this counter did not have an
RCO output signal, the digital designer would need to add logic external to the counter to generate the signal.

The problem constrains the solution to using only two bits of storage, which forces us to use an output decoder to
generate the proper 3-bit stoneage unary output count (CNT). The new issue with this problem is how we
represent the RCO signal in the state diagram. Figure 23.24 shows the state diagram for our solution. The RCO
signal is a function of the count only; the count is a function of the present state. In Figure 23.24 we choose to
represent RCO as a Boolean logic variable, rather than write an equation such as “RCO=’1’ ”. While either
approach is acceptable, the approach in Figure 23.24 makes the state diagram more readable.

Figure 23.24: The state diagram to support our solution.

The next step is to generate a circuit diagram, which we show in Figure 23.25(a). The state registers module
consists is two bits wide as the problem specifies. The PS/NS decoder does not change from previous problems

Free Range Digital Design Foundation Modeling Chapter 23

- 345 -

in that this problem only added a new output signal. Figure 23.25(b) shows that the output signal is an output
from the output decoder, which makes sense because RCO is only dependent upon the present state.

PS
CE ST

NS
ST+

0 0 0 0 0
0 0 1 0 1
0 1 0 1 0
0 1 1 1 1
1 0 0 0 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0

(a) (b)

Figure 23.25: A block diagram for our solution (a), and the associated PS/NS table.

The problem requires an output decoder that outputs the correct CNT and RCO values. Figure 23.26 only shows
the output decoder for our solution. The two outputs are dependent upon the present state. The CNT column
shows the stoneage unary outputs for the corresponding state (which is a 2-bit binary sequence); the RCO
column shows that the RCO signal is only asserted the CNT value is “111”, which is the maximum count value
for this counter.

ST CNT RCO
0 0 0 0 0 0
0 1 0 0 1 0
1 0 0 1 1 0
1 1 1 1 1 1

Figure 23.26: The decoder definition for this solution.

Figure 23.27 shows an example timing diagram for this solution. This timing diagram is similar to previous
solutions but there is now a RCO signal. The timing diagram shows that the RCO signal asserts when the count
is at its maximum value, which for this counter is “111”.

Figure 23.27: An example timing diagram for this solution.

Free Range Digital Design Foundation Modeling Chapter 23

- 346 -

Example 23.9: FSM Design #9: Specialty Up Counter

Using the diagram on the right, design a FSM that implements a
synchronous counter that has both a 2-bit binary (BCNT) and a 3-
bit stoneage unary (SBCNT) output. The FSM also has a count
enable input (CE), which serves two functions. When the CE is
asserted, both counter outputs increment of the active clock edge.
When CE is not asserted, the neither count is incremented.
Additionally, the binary count (BCNT) outputs “00” when CE is
not asserted, but returns to its original value when CE is reasserted.
The SBCNT output does not increment, but does not go to zero
when the CE input is not asserted (as does the BCNT output).
Provide both a circuit diagram and state diagram for your solution.

Solution: The counter has two different count outputs: binary and stoneage unary. In terms of counting, they
both react to the same to the CE input, meaning that they both increment their counts on the active clock edge
when CE is asserted. There is, however, a major difference in how the two count outputs react to the CE input.

The SBCNT essentially does not react to the CE input, and is thus similar to the count outputs in previous
examples. The BCNT output needs to react to the CE input: when the CE input is asserted, it outputs its count
value; when the CE input is not asserted, it outputs zero (“00”). What this is officially describing is that the
SBCNT output is a function of only the state (state variables) of the FSM, while the BCNT output is a function
of the state and the CE input. The ramifications of this are the SBCNT output can only change when the state
changes, which is synchronized with the clock, while the BCNT output can change when CE changes as well as
when the state changes. Thus, changes in the BCNT output are not necessarily synchronized with the circuit’s
active clock edge because it is also a function of the CE input. We address these special output characteristics
more formally later in this chapter.

Because the two outputs in this example have significantly different characteristics, we would expect some new
symbology associated with state diagrams to model those output characteristics. Figure 23.28 shows this new
symbology along with a description below.

 The value of the SBCNT output only depends on the present state of FSM, so we can express
the SBCNT output inside of the state bubbles. We can do this because the SBCNT output is
only a function of the present state of the FSM.

 The value of the BCNT output depends on both the CE input as well as the state. Because it
is not a strict function of the present state of the FSM, we can’t list it inside the state bubble as
we did for SBCNT. The CE signal has two functions in this FSM: 1) it controls the state
transitions, and 2) it controls the BCNT output. Because we already used the CE signal in
conjunction with the transition arrows to describe the state-to-state transitions, we need to
then include the BCNT output next to the CE input that are associated with the state
transitions, which is what we did in the state diagram of Figure 23.28. This symbology
requires getting used to, but the underlying approach is straightforward. The main item you
must realize when working with these state diagrams is differentiating between the inputs and
outputs. Because the output (BCNT) is dependent upon the input (CE), we list the output
with the input. When we list outputs next to the state transition arrow, that output is then
associated with the state the transition arrow is leaving. Finally, the BCNT output can change
whenever CE changes; but a change in CE does not necessarily cause a state transition
because state transitions can only happen on active clock edges.

Free Range Digital Design Foundation Modeling Chapter 23

- 347 -

Figure 23.28: The state diagram to support our solution.

Figure 23.29(a) shows the block diagram for our solution. The block diagram of is similar to the previous
example, the only difference being the output decoder now includes the CE signal as an input. The output
decoder must include CE as an input because that inputs controls whether the BCNT is outputting the current
count value, or outputting zeros. The CE input to output decoder changes the structure of the output decoder, but
the next-state decoder remains unchanged. The next-state decoder of Figure 23.29(b) is the same as a previous
example even though the output of the FSM is now responsible for two different count outputs.

PS
CE ST

NS
ST+

0 0 0 0 0
0 0 1 0 1
0 1 0 1 0
0 1 1 1 1
1 0 0 0 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0

(a) (b)

Figure 23.29: A block diagram for the FSM (a), and a description of the next-state decoder (b).

The next part of this solution is to model the output decoder. This is a decoder, so we need to generate a table
that describes the output in such a way as to solve the problem. Looking at the output decoder module in Figure
23.29(a) shows that the decoder has two input signals: ST (a 2-bit bundle) and CE; the output decoder has two
outputs BCNT (a 2-bit bundle) and SBCNT (a 3-bit bundle). Figure 23.30 shows the final decoder definition.
This table looks a bit different. We formatted the table slightly different in order to show some important details,
which we describe below.

 ST in Figure 23.30 is the present state (not the next state); the output decoder always bases its
output on the present state.

 The decoder has three inputs: two bits of state information (ST) and the CE input. We place
the state values before the CE values so that the state values don’t change with every row
change. The CE input changes with every row in the table because we list it as the LSB. The
arrangement of the signals in the table is arbitrary, but we always list them in the most
understandable manner.

 The states now come in pairs; the first two rows are associated with the “00” state, the next
two rows are associated with “01” state, etc. The table uses double lines to emphasize the
changes in state variables (ST).

Free Range Digital Design Foundation Modeling Chapter 23

- 348 -

 The SBCNT changes only when the state changes. This is another way of saying the value of
the SBCNT output is only dependent upon the state: it’s not dependent upon the CE input.
You can see that for each of the pair between the double horizontal lines in the table, neither
the state (ST) nor the SBCNT output changes. Because SBCNT is a function of only the
present state of the FSM, the SBCNT can only change when the state changes. In other
words, changes in the SBCNT output are synchronized with the active edge of the state
register’s clock signal.

 The value of the BCNT output changes for each of the state pairs (except for the ST=”00”
case). This is another way of saying that the BCNT output is dependent upon both the state of
the FSM (ST) and the CE input. Recall that when the CE signal is not asserted (CE=’0’), the
FSM outputs “00” for BCNT; otherwise when CE is asserted, the FSM outputs the associated
count (which happens to be the same as the state variables, or ST). Because the BCNT output
is a function of both the present state and the CE input, it can change when either the state
changes, or when the CE input changes. Changes in the BCNT output are not necessarily
synchronized with the state register’s clock; because it is function of the CE input, BCNT can
change anytime CE changes.

ST CE SBCNT BCNT

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 1 0 0

0 1 1 0 0 1 0 1

1 0 0 0 1 1 0 0

1 0 1 0 1 1 1 0

1 1 0 1 1 1 0 0

1 1 1 1 1 1 1 1

Figure 23.30: The output decoder definition for this example.

Figure 23.31 shows an example timing diagram for our solution, which could be the most important timing
diagram in this text up until now. Here is some helpful verbage.

 The most striking feature is the difference between the BCNT and SBCNT outputs. The
output values are different, as they are two different counts. Note when these counts change
values. The SBCNT only changes value on a rising clock edges. The BCNT can change
values both on the rising clock edges and when the CE signal changes. Regardless of the
rising clock edge, an unasserted CE signal causes the BCNT output to be “00”. In other
words, BCNT is a function of both the present state and the CE signal; changes in CE cause
an immediate change to the BCNT output.

 We use arrows to show how the CE input affects the BCNT output. The first rising edge of
the CE signal causes a value to appear on the BCNT output. The BCNT value of “01” does in
fact correspond to the SBCNT value of “001”. The FSM is effectively remembering the state;
the unasserted CE signal is effectively temporarily clearing the BCNT output, but then
restoring the BCNT output once the CE signal asserts. We can see this behavior happen
between the signal edges labels ‘2’ & ‘3’ as well as ‘4’ & ‘5’ in the timing diagram.

Free Range Digital Design Foundation Modeling Chapter 23

- 349 -

Figure 23.31: An example timing diagram for our solution.

23.3 FSM Illegal State Recovery

The FSMs we’ve examined at this point contained a certain quality that is not always present in all FSMs. Note
that all FSM designs up to this point used every code available in FSM’s state registers. For example, each
example we explored contained four states, which was the maximum number of states that we could represent
using two single-bit storage elements.

Consider the case where we have a count sequence of five numbers that we implement using a FSM. The FSM
for this case requires a minimum of three 1-bit storage elements (or a register with a data width of at least three).
The potential problem here is that with three flip-flops, we can represent up to eight states. What happens to the
three extra states that are not associated with the desired count sequence?

If you need to create a super solid FSM design, you need to know what all unused states are doing. The problem
is that some unforeseen condition may put your FSM in a state that is not part of the desired sequence. Then
what happens? The idea is to design your FSM to “fix” itself if it by chance finds itself in a state that it was not
intended to be in. What we need to do is design the FSM such that it has “illegal state recovery”. The next
example sheds light on the problem.

Example 23.10: Counter Design with Illegal State Recovery

Design a counter that counts in the following sequence: 0, 5, 7, 3, 6, 0, 5… Use a
minimum number of storage elements in your design. Direct all unused states to the
state associated with the zero count.

Solution: This problem is similar to the other counter problems except there are more numbers in the count
sequence and those numbers are not in a typical counting order. The first step is to generate a top-level BBD,
which we show in Figure 23.32.

Figure 23.32: The top-level BBD for this example.

Free Range Digital Design Foundation Modeling Chapter 23

- 350 -

The next thing we need to do is to generate a state diagram that models a solution the problem. Figure 23.33
shows a first pass at the state diagram. We consider this a first pass because while it satisfies the “counting” part
of the problem, it doesn’t provide illegal state recovery. We need to add illegal state recovery, so we need to
represent the states not listed in the counting sequence.

Figure 23.33: The initial state diagram for Example 23.10.

What we’re trying to avoid in this problem is the generation of hang states. In the state diagram, if we do not
explicitly direct all the unused states back to the desired counting sequence, we may end up with a state diagram
that inherently contains hang states. Figure 23.34 shows an example of a state diagram with hang states. In
Figure 23.34, we do indeed have the desired sequence; but the state diagram lists all possible states associated
with the state register (which is three bits wide).

In reality, we implement FSMs with real circuitry, which means they are susceptible to various types of noise1. It
just may happen that the noise places your FSM in a state that is not part of the desire sequence, which according
to Figure 23.34, puts you in a hang state and you’ll never make it back to the desire sequence. The FSM is thusly
hung because it is stuck in a hang state. Figure 23.34 shows two flavors of hang states. The “001”-“010” pair is a
small cycle; the “100” state is a self-looping hang state. In either case, there is no path back to the original
counting sequence, which may or may not be important to the problem at hand2. Bummer!

Figure 23.34: A state diagram containing hang states and other terrible things.

The approach that saves the day is to direct the unused states back to a state in the desired count sequence. If for
some reason your FSM finds itself3 in a hang state, you’ll quickly (in one clock cycle) return to a count value in
the desired sequence. Figure 23.35 shows the associated state diagram for this approach. The problem
description states that you should direct all of your unused states back to state “000”. From this point, it is not a
big deal to generate the PS/NS table using techniques from previous examples.

1 This refers to unwanted electronic effects. A loud stereo will most likely have not effect on your digital circuit designs.
2 Imagine if your FSM were controlling a heart pacemaker; it would not be good if your FSM got hung in a state that no
longer directed the heart to beat. This would not matter for academic administrators as they have all had their hearts
surgically removed as the basic requirement of their employment in academia.
3 Yes Virginia, FSMs are self-aware (or about as self-aware as the average academic administrator).

Free Range Digital Design Foundation Modeling Chapter 23

- 351 -

Figure 23.35: The state diagram with hang-state recovery.

Figure 23.36(a) shows the underlying hardware for our solution. We can use the output of the state register as the
CNT output, which means we do not need to include an output decoder in the hardware. Figure 23.36(b) shows
the PS/NS table, where the shaded rows in represent states not included in the desired sequence. Each of the
shaded rows do in fact direct the FSM back to ZER (CNT=”000”) state called for in the problem description.
Now that we include illegal state recovery in our FSM design, we say that the FSM is self-correcting. Making
your FSM designs self-correcting is important because statistically speaking, you’re going to have unused states
in your FSM because of the binary nature of the elements that FSMs use to store the state variables.

PS
CNT

NS
CNT+

0 0 0 1 0 1
0 0 1 0 0 0
0 1 0 0 0 0
0 1 1 1 1 0
1 0 0 0 0 0
1 0 1 1 1 1
1 1 0 0 0 0
1 1 1 0 1 1

(a) (b)

Figure 23.36: A block diagram for our FSM (a), and the PS/NS table (b).

Free Range Digital Design Foundation Modeling Chapter 23

- 352 -

Example 23.11: FSM Design #10: Self-Correcting Specialty Counter

Design a counter that repeatedly counts in the following sequence: {4, 18, 20, 30, 8}. The
circuit has a HOLD input (positive logic) that stops the counter from counting while
asserted. When the HOLD input is asserted, the count output is halved. Make the circuit self-
correcting by directing all unused states to count = 4. Outputs associated with unused states
should be all 1’s. Minimize the amount of memory in circuit. Provide the top two levels of
circuit diagrams and a state diagram for your solution.

Solution: This problem has several interesting attributes that are not patently obvious from reading the problem.
This problem does not provide you with all the information, as evident from the lack of a BBD. So let’s start
thinking it out on our way to drawing a high-level black box diagram. The following bullets provide an example
of issues that you the design must deal with on your way to solving this problem.

 The maximum value of the output count is 30, which indicates we need five bits on the output to
represent the count. This may lead you to think that the state registers need to be five bits.
However, since there are only five unique numbers in the count, the state registers only need to
be three bits wide.

 According to the previous bullet, we have three bits for the state registers, but only five states
that we need to represent the count. This means the FSM has three unused states that we need to
account for in both the next state decoder and the output decoder.

 The FSM has one 5-bit output, which is the count. The exact form of this count output depends
on the value of the HOLD input, thus this is a Mealy-type output.

At this point, we’re ready to draw the top-level BBD. Figure 23.37 shows where the previous bullets have left us.

Figure 23.37: The top-level black box diagram for this problem.

The lower-level schematic of our circuit contains the three standard sub-modules of an FSM. Figure 23.38 shows
the detailed schematic for this solution. Note in Figure 23.38 that the output count is 5-bits and that the output
decoder is a function of both the present state (ST) and the external input (HOLD).

Figure 23.38: The lower-level BBD to support our solution.

Free Range Digital Design Foundation Modeling Chapter 23

- 353 -

The next step is to generate either the state diagram or the definitions for the next-state and output decoders.
Unlike previous problems we’ve worked with, we use the same table for both the next state decoder and the
output decoder. This approach can be confusing, so we start by reminding ourselves that the next state (ST+ in
this case), is only associated with the next-state decoder. Similarly, when we work with defining the output
decoder, it is always dependent upon the present state.

We have one more decision to make before we proceed with the generating the table for the decoder. This
counter has five output values in its count sequence, yet we already established that we’ll represent those five
values with a 3-bit state register. This means that we must correlate the state values to the output count values.
How exactly we relate these two sets of values is arbitrary, so we decide to relate them in a way that causes us
the least confusion.

Our approach is to relate the individual state values in order {0, 1, 2, 3, 4} to the given order of the count
sequence {4, 18, 20, 30, 8}. Our only constraint here is that the output count sequence is in the given order. The
combined decoder table is flexible in the way it can model the FSM, so we always strive to model the FSM in a
way that reduces our chances of making an error. This means that we associate the first value in the output count
(4) with the first possible state values (“000”).

Table 23.1 shows the completed combined next-state & output decoder table. Here are some of the
important things to notice about this table.

 We use the abbreviation H for the HOLD input

 We list the three variables of the PS on the far left of the next-state decoder inputs. This is not
the only way to do this but this approach makes the table more readable.

 The table also includes double lines around the same PS states for increased readability.

 The table includes the outputs in both binary and decimal for increased clarity.

 The row pairs delineated by double lines representing the states show that for any given state,
the output can be different because the output is dependent upon the input.

 We arbitrarily assign the state “101”→”111” (5-7) as the unused states. The table uses
darkened cross-hatching to indicate this attribute.

 We direct the unused states back to the “000” state to make the FSM self-correcting. The
problem stated to make the FSM self-correcting by directing unused states back to the 4 count;
the 4 count corresponds to the “000” state.

Free Range Digital Design Foundation Modeling Chapter 23

- 354 -

PS NS output

ST H ST+ CNT
CNT
(dec)

0 0 0 0 0 0 1 0 0 1 0 0 4

0 0 0 1 0 0 0 0 0 0 1 0 2

0 0 1 0 0 1 0 1 0 0 1 0 18

0 0 1 1 0 0 1 0 1 0 0 1 9

0 1 0 0 0 1 1 1 0 1 0 0 20

0 1 0 1 0 1 0 0 1 0 1 0 10

0 1 1 0 1 0 0 1 1 1 1 0 30

0 1 1 1 0 1 1 0 1 1 1 1 15

1 0 0 0 0 0 0 0 1 0 0 0 8

1 0 0 1 1 0 0 0 0 1 0 0 4

1 0 1 0 1 0 0 1 1 1 1 1 n/a

1 0 1 1 1 0 0 1 1 1 1 1 n/a

1 1 0 0 1 0 0 1 1 1 1 1 n/a

1 1 0 1 1 0 0 1 1 1 1 1 n/a

1 1 1 0 1 0 0 1 1 1 1 1 n/a

1 1 1 1 1 0 0 1 1 1 1 1 n/a

Table 23.1: The combined next-state & output decoder definition for this example

Now that the combined next-state & output decoder table are complete, we can move onto the state diagram.
While the table description of the FSM in Table 23.1 is complete, it is cumbersome to read; a better option is to
transfer the information in the table to a state diagram. Figure 23.39 shows the associated state diagram. Here are
a few important things to note regarding the state diagram.

 The state diagram is not 100% complete, as it does not represent the fact that our FSM is self-
correcting. We address this later.

 The FSM does not include how we encode the states. We consider this a low-level
implementation detail and we are designing at a higher level.

 We use H to represent the HOLD input in order to save space and clutter in the state diagram.

 The external input is associated with the state transition arrows because it controls the state
transitions from a given state.

 The outputs of the FSM are a function of both the state and external input. In this example, the
external output is always different in every state as it is a function of the external input. This
requires that we associate the external outputs with the external inputs.

 We put in a special annotation to indicate that the binary values are the CNT output.

Free Range Digital Design Foundation Modeling Chapter 23

- 355 -

Figure 23.39: The partial (but adequate) state diagram to support our solution.

The state diagram in Figure 23.39 does not completely represent the information in Table 23.1. To be complete,
we must include the information associated with the unused states, since our work included making the FSM
self-correcting. The state diagram in Figure 23.40 represents the complete state diagram for this problem. Here is
some extra information to note about Figure 23.40:

 Each of the three unused states unconditionally transition back to state “FOR”, which the
original problem stated. Directing unused states back to a valid state makes this FSM self-
correcting.

 We show the CNT output in the top five states as a Mealy-type output, which is because the
value of H determines the value of the CNT. The CNT in the unused states is always the same,
so we list that CNT value in the state bubble. Though this listing makes it appear like a Moore-
type output, it is a Mealy-type output based on the five valid states in the FSM.

Figure 23.40: The complete state diagram to support our solution.

23.4 FSM Overview and Summary

The term “Finite State Machine” has many official meanings and definitions in digital-land. As you saw
previously, any circuit that has the ability to remember something (namely bits), can be regarded as having a
“state”. A circuit-oriented definition of a FSM is this: a circuit whose behavior can be modeled using the concept
of “state” and the transitions between the various states in that circuit. We soon move onto using FSMs
primarily as controller circuits, or a circuit that control other circuits.

Free Range Digital Design Foundation Modeling Chapter 23

- 356 -

People use FSMs in one form or another in many different technical disciplines and each discipline seems to
have its own particular flavor of representing FSMs. Despite these many flavors to modeling FSM, always keep
in mind that the best approach is to be clear in a way that expedites the transfer of information. Always
remember that the state diagram is a model that visually describes the behavior of the FSM.

23.5 High-Level Modeling of Finite State Machines

Digital design typically classifies FSMs as one of different two types: Moore-type or Mealy-type. In this text, we
simplify this definition as follows: there is only one type of FSM, but FSMs can have Moore-type and/or Mealy-
type outputs. All FSMs share the same properties: the only difference is the two types of FSM outputs.

Figure 23.41 shows a basic model of an FSM. We can abstract the FSM’s internal circuitry into three separate
blocks: 1) Next State Decoder, 2) the State Registers, and 3) the Output Decoder. The output decoder can have
two types of outputs, which we refer to as Moore and Mealy-type outputs; Moore-type outputs are a function of
the present state of the FSM while Mealy-type outputs are a function of both the FSM’s present state and the
external inputs. Table 23.2 provides a detailed description of the FSM’s individual modules.

Figure 23.41: The lower-level BBD for a generic FSM.

Free Range Digital Design Foundation Modeling Chapter 23

- 357 -

Module Description and Comments

State
Registers

The State Registers represent the memory elements in the FSM. The term register implies
the circuit is a synchronous storage element. The state register is the only sequential module
in an FSM; the other two modules are both combinatorial circuits. The state registers store
the state variables of the FSM; the value stored in the state registers is the state of the FSM.

Next
State
Decoder

The Next State Decoder is a combinatorial circuit that provides excitation input logic to the
state register module. The next state logic generally has two types of inputs, which provide
the excitation inputs to the state registers: 1) the current value of the state variables (the
present state, and, 2) the inputs from the external world. Excitation inputs to the state
registers determine the next state of the state register. On the next active clock edge, the data
inputs to the state registers becomes the next state of the FSM, which is why we refer to
next state decoder as the next state logic. The external inputs to the next-state decoder
function as status signals from the world outside of the FSM.

Output
Decoder

The Output Decoder is a combinatorial circuit that generates the external outputs of the
FSM. The output decoder is responsible for generating the two types of FSM outputs:
Moore-type outputs and Mealy-type outputs. Moore-type outputs are a function of the
FSM’s state only, while Mealy-type outputs are a function of both the FSM’s state and the
external inputs to the FSM. The outputs from the output decoder generally serve as control
signals to the device(s) controlled by the FSM.

Table 23.2: A detailed description of the three main FSM functional blocks.

23.6 The FSM: Symbology Overview

Probably the hardest thing about FSMs is understanding the state diagram symbology. The good news is that it’s
relatively simple once you work with it. Although we developed an intuitive approach to the FSM structure and
symbology earlier in this chapter, we present it again from a different angle.

23.6.1 The State Bubble

FSMs use the state bubble to represent a particular state in an FSM. Figure 23.42(a) shows a typical state bubble.
The following verbage lists some of the key features regarding the state bubble:

 A state needs some way to visually delineate it from other states, which is why the state
bubble contains identifying information. State bubbles provide the state with a symbolic name
that identifies the purpose of that state to the human reader.

 Timing diagrams represent the states by the time slots representing the possible states. Figure
23.42(b) shows that the boundaries of these time slots delineated the associated active edges
of the FSM’s clock input, which is the clock input to the state registers.. Figure 23.42(b) show
that the state registers are rising-edge triggered (RET) because the rising clock edge defines
the state boundaries.

Free Range Digital Design Foundation Modeling Chapter 23

- 358 -

(a) (b)

Figure 23.42: The State Bubble and associated timing diagram.

23.6.2 The State Diagram

The state diagram is one of many methods we use to model FSMs. The main purpose of the state diagram is to
convey meaning and understanding to the human viewer. State diagrams provide four main forms of
information: 1) the states in the FSM, 2) the state transitions the FSM makes, 3) the input conditions controlling
the state transitions, and, 4) the output values associated with the FSM. Figure 23.43(a) shows a fragment of a
state diagram. The following verbage describes some of the key features of this state diagram.

 We refer to the terminology describing how a FSM goes from one state to another as a state
transition or just transition. State diagrams use singly directed “arrows”, directed from the
source state to the destination state to represent state transitions.

 There are only two possible state transitions in a state diagram from a given state. On the active
clock edge, a transition can occur from, 1) one state to another state (indicated by the “state
change” label in Figure 23.43(a)), or, 2) the FSM can remain in the same state (indicated by the
“no state change” label in Figure 23.43(a)). We refer to the “no state change” arrow as a “self-
loop”.

 The state diagram contains no explicit clock signal; the clock signal is implied rather
specifically listed. The only part of the clock signal we’re interested in is the active clock edge;
the state transition arrows represent what action occurs on the active clock edge associated the
FSM.

 The two states in Figure 23.43(a) have unique names. In real life, you would want to give these
more meaningful names such as something to indicate why the state exists.

 The state names in Figure 23.43(a) give no indication how we would represent the states if we
were to implement the FSM. In other words, the state diagram provides no commitment to the
actual state variable assignment that disambiguates the states on a hardware level.

 The relation between the timing diagram in Figure 23.43(b) and the state diagram in Figure
23.43(a) is the key to understanding state diagrams in general. When we talk of state, we’re
talking about all the time in-between the active edges of the clock. The state bubble essentially
represents all the time between any two active edges of the system clock. The state transition
arrow represents what happens on each of the FSM’s active clock edges. On each clock edge,
one of two things must necessarily occur: the FSM transitions either to another state or the FSM
remains in the same state. A state transition occurs on every active clock edge, but sometimes it
transitions back to the same state.

 The concept of Present State (PS) and Next State (NS) is somewhat hard to define in a timing
diagram such as the one in Figure 23.43(b). The problem is that the present state (and hence the
next state) is constantly changing as you travel from left to right on the time axis. If you declare
one state as the present state, then you can declare the following state as the next state relative to
the present state. This definition changes as you traverse the timing diagram. PS/NS tables do a
better job of presenting present and next-state information.

Free Range Digital Design Foundation Modeling Chapter 23

- 359 -

(a) (b)

Figure 23.43: A state diagram (a) and the associated timing diagram (b) with some interesting
details.

23.6.3 State Transitions Controlling Conditions

As you would guess from examining the state diagram of Figure 23.43(a), there must be some mechanism that
decides which transition will occur from a given state on the next active clock edge. In Figure 23.43(a), state1
has two arrows leaving the state, which mean there are conditions associated with those arrows that decide on
which transition occurs.

There are two forms of information that determine the transition a FSM takes: 1) at least one of the external
inputs to the FSM, and, 2) the present state of the FSM4. The external inputs to a FSM are generally status signal
from the circuit the FSM is controlling. Each state has its own set of conditions that govern transitions, so we’re
concerned on a state-by-state basis what external input conditions determine the state transitions from a given
state. Figure 23.44 shows that we indicate the conditions governing transitions by placing the conditions next to
the state transition arrows. On this note, there are three important things to keep in mind:

1) The conditions associated with the state transition arrows leaving a given state must be
mutually exclusive. This means that there can never be the same input conditions associated
with two different transitions arrows leaving the same state.

2) The set of conditions associated with a particular state must be complete, meaning it must
provide a transition arrow for every possible meaningful combination of input conditions. If
there is a set of conditions in given state not covered by the associated state transition arrows,
the FSM won’t know what to do5. State diagrams should leave no room for guessing, if they
do, their behavior will not be deterministic (which is an impressive way of saying your FSM
won’t always work as you intend).

3) If the transition is unconditional, then the state diagram indicates this by listing a “don’t care”
symbol by that transition.

4 Recall that the PS and the external inputs are the inputs to the next-state decoder.
5 In cases such as these, the tools you’re working with will generally not tell you about such conditions and will arbitrarily
decide what it wants to do. In general, software design tools are generally make the assumption you know what you’re doing
and that you always do the right thing. With that assumption, the tools gladly fill in any details that you have unintentionally
forgotten.

Free Range Digital Design Foundation Modeling Chapter 23

- 360 -

Figure 23.44: How state diagrams indicate the conditions associated with state transitions.

23.6.4 FSM External Outputs

The external outputs from a FSM are generally “control signals” that are controlling other circuits. The state
diagram has different states and thus the control signals output from one state are generally not the same as
control signals output from other states, so the FSM is performing different control functions based on the
different states.

There are two different types of outputs in a FSM: Mealy-type outputs and Moore-type outputs. Although these
outputs are similar in their controlling functions, they have one major difference. The outputs Moore-type
outputs are a function of the state variables only while the Mealy-type outputs are a function of both the state
variables and the current external inputs.

Since Moore-type outputs are a function of the state variables only, we represent them by placing their values
inside the state bubble. Figure 23.45 shows a state diagram that uses this approach. There can be any number of
outputs represented inside the bubble.

Figure 23.45: The State Bubble with associated Moore outputs.

We can’t represent Mealy-type outputs inside the state bubble because they are a function the external inputs as
well as the state variables. To account for these characteristics in a state diagram, we list the Mealy-type outputs
next to the external inputs associated with the individual state transition arrows. We separate external inputs and
outputs with a forward slash. Figure 23.46 shows an example of this approach; we comma-separate multiple
Mealy-type outputs.

Figure 23.46 lists two sets of Mealy-type outputs because there are two transitions from state1. The arrows are
associated with the state transitions, which are based upon the current external inputs; the Mealy-type outputs are
also a function of those same inputs. Since the Mealy-type outputs are a function of the external inputs, we
represent them by placing them next to the external inputs. We always associated Mealy-type outputs with the
state the arrow is leaving (and not the state the arrow is entering).

Free Range Digital Design Foundation Modeling Chapter 23

- 361 -

Figure 23.46: Representing Mealy-type outputs in a state diagram.

In addition, we can represent both Mealy and Moore-type outputs in the same state diagram. Figure 23.47 shows
an example of a state diagram that contains both Mealy and Moore-type outputs.

Figure 23.47: A state diagram that has both Mealy and Moore-type outputs.

23.6.5 Non-Important FSM Outputs

While there are times when you may need to generate a “complete” state diagram, you must remember that the
state diagram is primarily meant for a human viewer. Combine this notion with the fact that even a modest sized
FSM can have enough external inputs and outputs to quickly compromise the readability of the state diagram.

There are generally many outputs from a FSM, but the state diagram does not necessarily need to assign a value
for every output in every state. If in any state a given output is not assigned, it is assumed to be a “don’t care” in
the context of that state, which means that output does not affect the external operations associated with that
state. You can thus omit outputs from a given state if those outputs don’t matter for that state. It is not
necessarily bad practice to list all external outputs for each state, but your state diagram becomes harder to
understand.

23.6.6 Non-Important FSM Inputs

The external input conditions control the state transitions of the FSM; these conditions must be mutually
exclusive. This seems like we requires a complete set of inputs for each transition and for every state, but this is
not the case. In real FSMs, you’ll find that not all external inputs matter in every state. In those cases, we don’t
need to include the inputs that don’t matter next to the state transition arrow. If we include the inputs that don’t
matter, we make our state diagrams less readable.

The example state diagrams we’ve work with so far seem to indicate the FSM states are somehow limited in the
number or transition arrows that can leave (or enter) the state. There is no limit, though we do need to ensure the
conditions governing the transitions are mutually exclusive. Figure 23.48 shows a state diagram fragment with
many arrows leaving the “state1” state. The point Figure 23.48 is making is that there is no limit to the number
of transition arrows leaving a given state. There are a few key issues to be aware of regarding the transition
arrows exiting a given state.

Free Range Digital Design Foundation Modeling Chapter 23

- 362 -

 Your state diagram must account for every possible set of external input conditions for every
state. For example, if your FSM has “n” external inputs, every state must necessarily account for
2n possible combinations of those inputs in order to completely specify the FSM. In reality, the
2n is the worst-case scenario; you often find that not all inputs matter for all states.

 You must make sure that all conditions associated with the arrows leaving a given state are
mutually exclusive, which means that no two arrows can have the same conditions. If two states
had the same set of conditions, the FSM would know the correct transition.

 You can’t assume that an FSM stays in the same state if you don’t explicitly and completely
specify all transition arrows leaving the state. This means that if there is a condition where the
FSM does not transition to another state, it must indicate this condition with a self-loop, which
explicitly states the associated conditions.

For example, what we know from Figure 23.48 is that there must be at least three external inputs to this FSM
because there are five arrow leaving “state1”. If this FSM only had two external inputs, we could only uniquely
represent four transitions. With these there external inputs, we could represent up to eight different arrows
leaving “state1”. Since Figure 23.48 only has five transitions but can handle up to eight transitions, some of the
arrows in Figure 23.48 must be associated with more than one combination of the three inputs if the state
diagram is indeed correct.

FSM are neither magical nor intelligent. FSMs do exactly what you design them to do. This means you must
never allow the FSM to “make a decision” on its own. It’s quite easy to not completely specify a FSM and get a
good feeling that the FSM is working properly in all of your testing. Inevitably, if you don’t properly specify the
FSM, it will fail, and probably fail during a demo of your product to a potential buyer or investor.

Figure 23.48: The State Bubble.

23.7 The Final State Diagram Summary

Figure 23.49 provides a quick overview of the relation between the FSM black box and the example state
diagrams we’ve been working with in this section. What you should be gathering from this diagram is that
properly designed state diagrams have a particular structure and use a particular symbology.

 Singly directed arrows represent state transitions

 The FSM has external inputs that govern the state transitions from a given state

 Each transition arrow lists the external inputs that control its transition

 The state bubbles list the Moore outputs since they are only a function of state

 We list Mealy-type outputs with the external inputs (and hence the state transitions) since they are a
function of both the present state and the external inputs.

Free Range Digital Design Foundation Modeling Chapter 23

- 363 -

Figure 23.49: The relation between the state diagram and the high-level FSM.

The good news is that once you understand FSMs, and traverse the associated learning curve, you’ll agree that
there is not much to them. Here is everything in a nutshell.

 The heart of the FSM is the state registers; the heartbeat of the FSM is the clock signal that
controls the state-to-state transitions of the FSM.

 On each active clock edge, the state of the FSM can transition to the present state (self-loop)
or transition to a different state.

 The next state is a function of the present state of the FSM and the external inputs, which
form the inputs to the next-state decoder.

 The outputs of the next-state decoder are the inputs to the state registers and thus determine
the next state of the FSM.

 The FSM’s external inputs are generally status signals from the outside world.

 The FSM sends the control signals to the outside world via the output decoder.

 The external outputs from the FSM are a function of the state variables (Moore-type) or a
function of both the state variables and the external inputs (Mealy-type).

Free Range Digital Design Foundation Modeling Chapter 23

- 364 -

23.8 Chapter Summary

 State diagrams use state bubbles to represent the various states of the FSM. The state bubbles generally
contain a symbolic name that represents the purpose of a given state.

 State diagrams use singly directed arrows to represent state transitions. Arrows can either be from one state
to another state or from one state to itself (a self-loop indicating no state change, or a state change from a
given state back into that state).

 State-to-state transitions are synchronous and thus occur on the active edge of the clock; we show these with
an arrow leaving a state and that same arrow entering a state.

 Asynchronous transitions are “somewhere-to-state” and are not synchronized with an active clock edge; we
indicate these transitions using an arrow not coming from a state but entering a state.

 External FSM inputs control state transitions in an FSM. From any given state, transitions are only a
function of the external inputs. Transitions in the overall FSM are a function of both the external inputs to
the FSM and the present state of the FSM.

 FSM can contain both Mealy and Moore-type external outputs. State diagrams represent Moore-type outputs
inside the state bubble since they are only a function of the current state. State diagrams represent Mealy-
type outputs as functions of the external inputs by placing them next to the state transitions arrows.

 All transitions from a given state must be mutually exclusive from all other transitions from that state. This
means that there can be no combinations of external inputs that are represented in more than one transition
arrow exiting a given state.

 The state transition arrows must represent all possible external input combinations exiting a given state. Not
specifying every possible condition causes undefined FSM behavior.

 State diagrams are easier to understand if they omit external inputs and outputs (both Moore & Mealy) from
the state diagram under circumstances where they don’t matter (when they are don’t cares relative to a given
state (output) of given transition (external input).

 FSMs can end up in hang states under certain circumstances. Designers can avoid this unwanted condition
by designing the FSM to be self-correcting, which is done by directing all unused states back to a valid state
in the given FSM.

Free Range Digital Design Foundation Modeling Chapter 23

- 365 -

23.9 Chapter Exercises

1) Briefly explain the general purpose of a state diagram.

2) Briefly explain why do individual states in state diagrams have unique, self-commenting labels.

3) Briefly explain why we typically omit lock signals from state diagrams.

4) Briefly explain why we label unconditional transfers with some type of “don’t care” symbol.

5) Briefly explain why PS/NS tables don’t include clock signals.

6) Briefly explain how we represent asynchronous signals in state diagrams.

7) Briefly explain the main function of an FSM’s next-state decoder.

8) Briefly explain the main function of an FSM’s output decoder.

9) Briefly explain the main purpose of an FSM’s state registers.

10) Briefly explain the different between Moore and Mealy-type outputs on FSMs.

11) Briefly describe why it is most convenient to not place Mealy-type outputs in the state bubbles.

12) Briefly describe with it is most convenient to place Moore-type outputs in the state bubbles.

13) Briefly explain what is meant by the term “unused state” in an FSM.

14) Briefly explain what is meant by the term “hang state” and how an FSM can end up in a hang state.

15) Briefly explain the difference between a hang state and an unused state in an FSM.

16) Briefly explain the main strategy behind designing FSM to be self-correcting.

17) Briefly explain why some FSM designs inherently do not have hang states.

18) Briefly explain why the transition arrows associated with a given FSM state must have conditions that are
mutually exclusive.

Free Range Digital Design Foundation Modeling Chapter 23

- 366 -

23.10 Design Problems

For each of the following problems:

 Show all the underlying hardware, but minimize your use of hardware, particularly with the state
registers

 Completely specify all decoders with an appropriate table

 Assume all inputs and outputs are positive logic unless stated otherwise.

 Provide a state diagram that models the circuit you created to solve the given problem

1) Use a FSM to design a synchronous 2-bit binary counter that has an UP and DN (down) input. When the up
input is asserted, the counter counts up. When the DN input is asserted, the counter counts down. When both
the UP and DN inputs are simultaneously asserted, the counter clears (output “00”). If neither the UP or DN
input is asserted, the counter’s output values does not change.

2) Use an FSM to design an up counter that counts repeatedly in the following sequence: { “0001”, “0010”,
“1000”, “1000”…}: . When the counter’s UP input is asserted, the counter counts up; otherwise the counter
output does not change.

3) Use an FSM to design a 3-bit binary up counter that counts. When the counter’s UP input is asserted, the
counter counts up; otherwise the counter output does not change. The counter also has a RCO (ripple carry
out) output that indicates when the counter has reached its maximum count.

4) Use an FSM to design a 3-bit binary counter that counts either using 3-bit odd or 3-bit even count values.
When the counter’s EVN input is asserted, the counter counts up using even number; otherwise the counter
counts up using odd number.

5) Use an FSM to design a 3-bit binary counter that counts either using 3-bit odd or 3-bit even count values.
When the counter’s EVN input is asserted, the counter counts up using even number; otherwise, the counter
counts up using odd number. The counter has a RCO (ripple carry out) output that indicates when the
counter has reached its maximum count. Note that the RCO signal is dependent upon there value of the
EVN input, so that the RCO is asserted when the count is 6 and the EVN signal is asserted; otherwise the
RCO is asserted when the count is 7 when the EVN signal is not asserted.

6) Use an FSM to design an up counter that counts repeatedly in the following sequence: { “100001”,
“110010”, “011000”, “001100”, “101010”…}: . When the counter’s FOR input is asserted, the counter
counts up; otherwise, the counter output does not change. Design the FSM to be self-correcting.

7) Use an FSM to design a binary up counter that repeatedly counts in the following sequence: {...0, 2, 4, 6, 8,
10…}. When the counter’s UP input is asserted, the counter counts up; otherwise, the counter output does
not change. The counter also has a RCO (ripple carry out) output that indicates when the counter has
reached its maximum count. Design the counter to be self-correcting.

8) Use an FSM to design a binary counter that counts in the following sequence: (…2, 17, 23, 11, 30, 2, 17,
23…). This circuit has an active-low asynchronous RST input that forces the count to be ‘2’ when asserted;
otherwise allows the circuit to count. Use only simple registers in your design (no LD signal). Make this
circuit self-correcting by directing unused states to the state associated with the count value 17.

Free Range Digital Design Foundation Modeling Chapter 24

- 367 -

24 FSM Clocking Issues

24.1 Chapter Overview

The main topic of this chapter is the timing/clocking issues associated with FSM design. The good thing is that
these topics apply to all sequential circuits, particularly circuits that use some sort of system clock signal for
synchronization purposes. While none of these issues is overly complicated, they are important to creating FSMs
that not only work, but also work at a maximum clock rate.

Main Chapter Topics

SEQUENTIAL CIRCUIT ATTRIBUTES: Many digital circuits contain a system clock.
This chapter describes the basic terminology associated with clocking signals.

PRACTICAL DEVICE ASPECTS: Digital circuit elements are physical devices and
therefore have basic limitations based on device physics. This chapter describes
some of the attributes in the context of clocking basic FSM circuits.

Chapter Acquired Skills

 Be able to describe attributes of clocking signals such as period, frequency, and
duty cycle

 Be able to describe physical attributes of digital circuits such as set-up & hold times

 Be able to calculate the maximum clock frequencies of simple sequential circuits

24.2 Clocking Waveforms

We consider FSMs to be synchronous circuits because they contain synchronous memory elements. The term
synchronous refers to the fact that changes in the state of the FSM’s state registers are synchronized to the
FSM’s active clock edge. This section describes some of the important terms involved in clocking digital
circuits.

24.2.1 The Period

The most important aspect of clocking waveforms is that the clock signal is most always periodic. We define a
periodic clock signal as one that has attributes that remain constant over time; no matter where in time you view
the waveform, the clock signal always appears to have the same form. Figure 24.1 shows both a periodic (CLK1)
and a non-periodic waveform (CLK2).

Free Range Digital Design Foundation Modeling Chapter 24

- 368 -

Figure 24.1: A periodic (CLK1) and non-periodic (CLK2) waveform.

A periodic waveform is a waveform that repeats itself “every so often”, or periodically. The period of the
waveform indicates the amount of time required for the waveform to repeat itself, which makes “time” the unit
of measure associated with the period. Figure 24.2 shows a periodic waveform where we use the “T” to clearly
delineated one period. We consider this waveform as periodic because the waveform between (a) and (b) is the
same as the waveform between (b) and (c).

Figure 24.2: Timing diagram showing a timespan we consider the period.

24.2.2 The Frequency

The frequency of the waveform represents the number of times a signal repeats itself over a given amount of
time. This definition is to general so we usually refine it somewhat to make it more usable. The “span of time”
we’re usually interested in is one second (1s). Using this one-second time slot simplifies the translation of period
to frequency.

Period and frequency have a reciprocal relationship when we consider the amount of time is one second; Figure
24.3 shows these relationships. The units for frequency are Hertz, or Hz for short. The term Hertz is technically
defined as the number of cycles per second, which refers to the number of times a given signal repeats itself in
one second. The term Hertz has units of s-1, which underscores its reciprocal relationship to the period.

Units: time (seconds)

Units: Hz (seconds)-1

(a) (b)

Figure 24.3: The calculations and units for Period and Frequency.

Example 24.1: Waveform Frequency Calculation

A given waveform has a 40ns period. What is the frequency of this waveform?

Solution: Taking the reciprocal of the period provides the frequency the calculation in Figure 24.4 shows.

1)(
1 frequency

frequency
TPeriod 1)(

11 T
TPeriod

frequency

Free Range Digital Design Foundation Modeling Chapter 24

- 369 -

Figure 24.4: The solution to Example 24.1.

Example 24.2: Waveform Period Calculation

A given waveform has a 50M Hz frequency. What is the period of this waveform?

Solution: Taking the reciprocal of the frequency provides the period. You can find the entire calculation below.

Figure 24.5: The solution to Example 24.2.

24.2.3 Duty Cycle

All the periodic waveforms we’ve dealt with up to now were symmetrical, which means that the signal was high
and low for the same percentage of time. Sometimes the clock signal high and low times are not equivalent; in
these cases, we use the term duty cycle to describe the waveform.

The duty cycle refers to the percentage of the period that the signal is in its high state. In technical terms, the
duty cycle is the ratio of the time the signal is high to the period of the signal. Figure 24.6(a) shows the official
equation for duty cycle. Because the duty cycle refers to a ratio, there are no units associated with duty cycle.

Units: none

(a) (b)

Figure 24.6: Duty cycle calculations and units.

Example 24.3: Duty Cycle Calculation

A waveform with a 25% duty cycle is high for 12.5ns. Find the frequency of the waveform.

Solution: If the waveform is high 25% of the period, than 12.5ns represents ¼ of the period. The entire period is
then four times longer than the amount of time the signal is high; therefore, the period of the waveform is 50ns.
The frequency is the reciprocal of the period, or 20MHz.

MHzHzx
xns

frequency 251025
1040

1

40

1 6
9

ssx
sxMHz

TPeriod 201020
1050

1

50

1 6
16

T
tdutycycle h

Free Range Digital Design Foundation Modeling Chapter 24

- 370 -

24.3 Practical Synchronous Circuit Clocking

Most of our FSM discussion thus far dealt with the notion of idealized storage elements, which allowed us to
focus on the basic functioning of the devices. We now must take into account a few timing considerations in
order for our sequential circuits to work properly with increasing clock speeds. Many factors prevent digital
circuits from working properly, but our focus is on two major timing considerations. In addition to propagation
delays, register have issues associated with the synchronous nature of the circuit that we need to consider.

24.3.1 Setup and Hold Times

One of the consequences of properly clocking synchronous circuits is that you need to pay attention to the
device’s non-clock control inputs near the active edge of the clock. More specifically, control inputs need to
remain stable for a given amount of time both before and after the active clock edge. We refer to the amount of
time the control input needs to remain stable before the active clock edge as the setup time and the amount of
time the control input needs to remain stable after the active clock edge as the hold time.

Figure 24.7(a) and Figure 24.7(b) show the setup and hold times associated with a rising-edge and falling-edge
triggered synchronous device, respectively. The control input (such as the “D” input of a D flip-flop) must be
stable (it must not change) for the duration of the setup time and the hold time. If the control input were to
change during these times, the output, and thus, the state of the flip-flop would be indeterminate. If your circuit
violates a setup or hold time, your device may become metastable1, which means the output of the device is
neither high nor low; it is somewhere in-between and it may stay there for an extended length of time.

(a) (b)

Figure 24.7: Setup and hold times for rising edge (a) and falling edge (b) triggered flip-flops.

Setup and hold times are associated with many different types of digital circuits, and the idea is always the same:
keep a signal stable for a given amount of time both before and after some critical clock edge. We consider a few
practical aspects of a sequential circuit that use the setup and hold times. But, mark my words… someday you’ll
be working on a circuit that does not seem to want to work properly. You’ll toil over it for a while and then it
hits you: you violated a setup and/or hold time.

24.4 Maximum FSM Clock Frequencies

In this modern age, faster is generally associated with better; the same is true for digital circuits. Namely, for a
given circuit, there is always a question of how fast you can clock the circuit and still have the circuit operate
properly. In other words, what is maximum frequency that the circuit’s sequential elements can operate at
without violating things such as setup and hold times?

Figure 24.8 shows a model of an FSM. Recall that there are propagation delays associated all digital circuits;
there are also issues of setup and hold times associated with sequential logic. From the diagram of Figure 24.8,
you should sense that the amount of circuitry in the various boxes lowers the maximum rate at which the FSM
can operate, with the idea that signal requires more time to propagate through larger circuits than smaller
circuits. Attributes in each of the submodules in Figure 24.8 affect the maximum clock frequency of the circuit.

For this discussion, we assume that the Output Decoder does not affect the maximum clocking frequency of the
circuit. What does matter is the propagation delay though the Next State Decoder, the setup times associated

1 And yet again, a digital design word makes it out of digital design land. We often use the word metastable to describe
people who are unpredictable; the type you’ll do best to avoid. Academic administrators, for example.

Free Range Digital Design Foundation Modeling Chapter 24

- 371 -

with the state registers, and some combination of the state register’s hold time and/or the propagation delay
through the register. These items require time: as the time accumulates, the period for the clock signal becomes
greater, and hence, the maximum clock frequency becomes lower.

Figure 24.8: The generic FSM model.

In order to simplify the analysis of FSM circuits, we also make some other assumptions about this circuit. For a
given flip-flop, we have both a hold time and a propagation delay time that we need to deal with. For these
problems, we assume that the propagation delay for the state register is greater than the hold time. This allows
the exclusion of the hold time from the calculation. Once again, the only factors affecting the maximum clock
frequency (or minimum period) for the circuit are the setup time, the propagation delay through the Next State
Decoder, and the propagation delay and setup times associated with the state registers. Figure 24.9 provides a
visual representation of these attributes.

Figure 24.9: The set-up & hold times for a rising and falling clock edge.

Figure 24.9 shows four time slices that we need to consider when calculating maximum clock frequencies.
Despite the fact that the timing diagram shows it twice, there is only one tNS_dec. We show this value twice
because it is a continuation from the portion of the waveform ending with the falling edge on the right side of the
diagram to the same portion of the waveform on the left side of the diagram. Another factor we include in this
diagram is the tslop value. The idea here is that you never want to design to the absolute operating boundaries of
your circuit; you always want to throw in a safety margin to guard against circuit conditions that may adversely
affect the circuit2. We use these four values to calculate the minimum period as Figure 24.10 shows. Figure
24.10 shows the minimum period is the reciprocal of the maximum clock frequency.

Tmin = tns_dec + tslop + tsetup + tpd_ff

Frequencymax = (Tmin)-1

Figure 24.10: Official calculations for minimum period and maximum clock frequency.

2 These factors would include ambient temperature variations and physical variations in the device itself.

Free Range Digital Design Foundation Modeling Chapter 24

- 372 -

Example 24.4: Maximum Clock Frequency Calculation for FSM

What is the maximum system clock frequency at which the following sequential circuit can operate? For
this problem, the flip-flops have a setup time of 10ns and a propagation delay of 13ns, and the next state
decoder has a worst-case propagation delay of 18ns. For this problem, add a safety margin of 12ns.
Assume the propagation delay for the flip-flops is greater than the hold time. Assume the X input is
stable and the outputs drive a circuit that is not sensitive to the maximum clock frequency.

Solution: We don’t need to worry about the X input because the problem states that the X input value is stable.
The problem also stated that the outputs are another item we don’t need to worry about. What we need to do for
this problem is total up the various delays in order to find the maximum clock frequency we can drive this FSM
at and still have it operate properly. The safety margin of 12ns makes of the tslop value. Figure 24.11 shows the
final solution for this example.

Tmin = tns_dec + tslop + tsetup + tpd_ff

Tmin = 18ns + 12ns + 10ns + 13ns

Frequencymax = (Tmin)-1 = (53ns)-1 = 18.9MHz

Figure 24.11: The calculations: plug and chug.

Free Range Digital Design Foundation Modeling Chapter 24

- 373 -

24.5 Chapter Summary

 Waveforms in digital design are usually periodic in nature. Periodic signals can be described by a given
waveform that repeats itself after a given amount of time referred to as the period of the signal. Periodic
signals can also described by the frequency, which is defined as the reciprocal of the period.

 Periodic waveforms are also described by their duty cycles, which are defined to be the ratio of the time in
the period that the signal is in a high state to the period of the signal.

 All clocked digital devices have physical attributes that govern their performance. Two of the attributes
typically associated with sequential digital circuits are the setup and hold times. The setup time is the
amount of time that an input signal needs to remain stable before the active clock edge of a device. The hold
time is the amount of time that the input signal needs to remain stable after the active clock edge.

 On major concern of FSMs is the maximum clocking frequency that the FSM can use while not
compromising the operation of the FSM. Using a simple model, the maximum clock frequency is a function
of the propagation delay of the next state decoder, the propagation delay of the flip-flop, the setup time of
the flip-flop, and usually some margin of safety.

Free Range Digital Design Foundation Modeling Chapter 24

- 374 -

24.6 Chapter Exercises

1) Briefly describe the units associated with the following three clock signal attributes:

a) Periodic Signal

b) Period

c) Frequency

d) Duty Cycle

2) Breifly describe whether non-periodic clock signals can have duty cycles.

3) For the system clock signal displayed below with tx=30ns and ty=25ns, find the period, frequency, and duty
cycle of the waveform. (1ns = 1x10-9 seconds)

4) A system clock signal with a 70% duty cycle is in a high state for 14ns of its period. What is the period and
frequency of the clock? (1ns = 1x10-9 seconds).

5) A system clock if running at 50M Hertz. What amount of time is the signal high if the system clock has a
40% duty cycle? (1 M Hertz = 1x106 Hertz)

6) The following clock waveform is in a low state for 80% of the period. Find the duty cycle, period, and
frequency (its OK to only setup the frequency calculation).

tb = 20ns

7) The following clock waveform is in a high state for a 40% of the period. Find the duty cycle, period, and
frequency (it’s OK to only setup the frequency calculation).

ta = 20ns

8) The following clock waveform is in a low state for a 20% of the period. Find the duty cycle, period, and

frequency (it’s OK to only setup the frequency calculation). The diagram is not drawn to scale.

 tb = 60ns

9) What is the maximum clock frequency that can be used by the following circuit? For this problem, add a
safety margin that is 10% of the minimum clock period based on the timing values stated below. Assume the
Z outputs drive a circuit that is not sensitive to the maximum clock frequency. Assume the X input is stable.
Use the listed circuit parameters for this problem:

Free Range Digital Design Foundation Modeling Chapter 24

- 375 -

flip-flop propagation delay: 20ns

NS DCDR propagation delay: 10ns

flip-flop set-up time: 6ns

flip-flop hold time: 7ns

10) For the previous problem, you now need to add a different margin of safety to the clocking operation of the
circuit. Redo problem 7 and add a 20ns margin of safety, tslop, to the minimum clock period. What is the new
minimum clock period and new maximum clock frequency?

11) The following circuit was designed to operate at 20MHz (20x106Hz). Under these conditions, how much of
a safety margin (if any) has been added to the circuit? Assume the X input is stable and the Z outputs drive a
circuit that is not sensitive to the maximum clock frequency. Also assume that the propagation delay of the
flip-flops is much greater than the flip-flops set-up time. Use the listed circuit parameters for this problem:

flip-flop propagation delay: 17ns

NS DCDR propagation delay: 9ns

flip-flop set-up time: 8ns

flip-flop hold time: 7ns

12) What is the maximum clock frequency that can be used by the following circuit? For this problem, add a
safety margin that is 20% of the minimum clock period based on the timing values stated below. Assume the
Z outputs drive a circuit that is not sensitive to the maximum clock frequency. Assume the X input is stable.
Use the listed circuit parameters for this problem:

flip-flop propagation delay: 20ns

NS DCDR propagation delay: 15ns

flip-flop set-up time: 5ns

flip-flop hold time: 7ns

Free Range Digital Design Foundation Modeling Chapter 25

- 376 -

25 Introductory Controller-Based FSM Design

25.1 Introduction

Our previous work with FSMs has primarily been involved with implementing FSM using relatively low-level
hardware modules. We’re moving towards using FSMs as controller circuits, but we’re first need to gather more
experience generating state diagrams to solve problems. We know the mechanics of FSMs; now we change our
focus to state diagram generation.

Here are the important truths regarding modern FSM design: 1) we rarely implement FSMs using low-level
hardware, and 2) generating the state diagram represents most of the engineering associated with designing
FSMs. Although anyone can implement a FSM from a given state diagram, it requires a complete understanding
of all aspects of FSMs, all aspects of digital design, and a complete understanding of the problem at hand in
order to generate a state diagram for a given problem.

This chapter provides an intuitive look at state diagrams and their associated timing diagrams. Having an
intuitive feel for state diagrams and being familiar with the associated timing diagram renders you ready to
handle any control problem. Our initial approach to designing FSMs was to design both the underlying logic and
the associated state diagram. In this chapter, we move away from implementing FSMs with lower-level logic and
concentrate more on generating the state diagrams.

Main Chapter Topics

HISTORICAL PERSPECTIVE OF FSMS AS CONTROLLERS: The chapter provides a
brief history of FSMs in the context of controlling digital circuits.

FSM PROBLEM SOLVING: This chapter introduces basic state diagram generation in
the context of sequence detectors. Sequence detectors provided relatively simple
problems to understand which allows you to focus your efforts on generating the
associated state diagram.

Chapter Acquired Skills

 Be able to solve simple control problems using FSMs as circuit controllers. This set
of problems includes basic signal synthesis problems and sequence detectors.

 Describe the history of using digital circuits to control digital circuits.

25.2 FSM Historical Overview

The world progressed nicely for bajillions of years without having the concept of finite state machines. In recent
history, we’ve developed a need for low-level control of just about everything in our lives, particularly control
by tiny electronic things. In regards to FSMs, the following verbage provides an overview of the path that has led
us to where we are today (though a few details are missing).

In relatively recent history, digital stuff (computers and things) started happening1. All the new digital stuff
required some digital circuitry to control it; FSMs were the logical option. You could have used a computer to

1 It actually started happening a long time ago, but until relatively recently, the cost of digital stuff was such that the average
human could not afford to take notice.

Free Range Digital Design Foundation Modeling Chapter 25

- 377 -

control a computer, but computers were big and expensive, and had names like “HAL”2. The problem with
software-based control was that it increased the complexity of the software and required extra program memory3.
In order to deal with these issues, we typically farmed out the software control requirements of projects to
hardware devices, such as FSMs. This approach worked because the required hardware was not prohibitively
expensive.

Later, integrated circuits (ICs) started taking over. There were already many ICs out there, but all of a sudden,
there were many more ICs out there. These new ICs provided more complex functionality, which meant that
some of the control functions handled by FSMs were built into the ICs. There were also ICs dedicated to
controlling specific devices (such as memory and interrupt controllers), which became a requirement because
control requirements were growing in complexity.

As time went on, microcontrollers (MCUs) started becoming prevalent4. The MCUs were more versatile than
FSMs in that we could program MCUs to do anything while the FSMs were hardcoded to performing one task.
This meant that hardware devices could now essentially be under program control (programs run on the MCUs)
rather than under hardware control (what FSMs are constructed from). The upside of this software control is the
flexibility in software (namely its re-programmability characteristic). The downside is that using the MCU to
control hardware requires processing time from the MCU or dedicating an entire MCU to the control task. This
option also requires someone who possesses the skill to design and program a MCU-based system. Although
MCUs nicely handle some control tasks, they are not appropriate for all such tasks, particularly as the number of
control tasks in a given system increase.

As more time went on, Programmable Logic Devices (PLDs) such as FPGAs and CPLDs hit the market. This
meant that you could use PLDs to design hardware to handle the control issues. Though PLDs are hardware
devices, they are flexible because they are reprogrammable. PLDs were powerful and inexpensive, which meant
transferring control from MCUs to FSMs was not overly costly. Thus, the advent of relatively inexpensive but
powerful PLDs allows the offloading of control tasks from the system software to external hardware.

One of the downsides of MCUs is their basic limitation is the number of pins they need to interface to the outside
world. The pin count generally relates to the cost of the MCU also: the more pins on your MCU, the more you’re
going to pay for it. Now days, MCUs can do many tasks (generally at the same time, sort of), which is good. The
downside of having MCUs do many tasks is that the associated software architecture becomes more complicated
(slower and more error-prone) based on the number of tasks it must control.

The good news is that FSMs are not quite dead; people still use them quite often to avoid some of the hassles
created by complicating the software associated with the controlling circuits using MCUs. In addition, not all
control problems are well suited for MCUs; some control requirements are too small to warrant farming off to an
MCU. Although you probably don’t know it, there are most likely quite a few FSMs embedded in the amazingly
complex ICs that control everyday devices such as cell phones, MP3 players, bowling balls and other such
useless devices that we can’t seem to live without. FSMs generally simplify required control tasks by off-loading
the software-based control requirements to non-software-based circuitry, namely FSMs. In addition, FSMs can
help reduce the I/O pin count requirements in MCU-based applications.

The question arises: How do I use a FSM to control something? The answer is that you must understand the
following:

 Understand how the FSM operates in terms of the underlying hardware (such as the state
registers, output decoding logic, next state decoding logic)

 Understand the various lingo used when dealing with FSM, such as present state, next state,
state transitions, external inputs, external outputs, state variables, next state decoder, output
decoder, Mealy outputs, Moore outputs, self-loops, strike, spare, etc.

 Understand the symbology used to describe the FSM; namely, the state diagram symbology

2 “Sorry Dave, I can’t do that”.
3 Keep in mind that back in these days, memory was much more expensive than it was today.
4 They had actually been around for a while, but they were now less expensive. More importantly, the development
environments (primarily PC-based) and associated CAD tools were significantly less expensive.

Free Range Digital Design Foundation Modeling Chapter 25

- 378 -

 Understand how to implement the FSM, either with flip-flops and discrete logic components
or high-level modeling with some type of PLD.

Figure 25.1 shows the general model of the FSM acting as a controller circuit. The things that are important to a
controller circuit are the control signals (outputs from the FSM that control external components) and the status
signals (inputs to the FSM that allow the FSM to know what and how to control the external components). In the
FSM model of Figure 25.1, the external inputs act as the status signals from the circuit the FSM is controlling,
while the external outputs act to control the components external to the FSM. A clock input keeps things flowing
evenly.

Figure 25.1: The general view of a FSM used as a controller circuit.

25.3 Digital Design Overview

This section gives an overview of digital design, including Digital Design Foundation Modeling. Much of this
information was presented in previous chapters; we include it here for completeness.

Digital design is the process where you create a digital circuit to solve a given problem. There are many
approaches you can use to solve given problems, designing a digital logic circuit is only one of them. A given
digital design solves problems by having the outputs react to the inputs in a manner such that it solves the given
problem. There are two basic types of digital logic circuits:

 Combinatorial Circuits: circuit outputs are a function of the circuit’s inputs.
These circuits can’t store information.

 Sequential Circuits: circuit outputs are a function of the sequence of the circuit’s
inputs. These circuits can store information.

The two basic tenets of digital logic are:

 Digital logic circuits are hierarchical: We can describe a digital circuit at various levels; the level at
which we describe digital logic is generally the one that allows us to transfer as much useful
information as quickly as possible. Abstracting digital designs to higher levels aids in understanding
and designing circuits.

 Digital logic circuits are decomposable into a set of standard digital modules: Although there are
many ways to describe digital circuits, we strive to make the descriptions an aggregate compilation of
standard digital circuits in able to help us understand the circuits.

25.3.1 DDFM Overview

The focus of DDFM is to present digital design in a simple and organized manner, which facilitates and
expedites learning the subject matter. These are the main tenets of DDFM:

 The main purpose of digital design is to solve problems using digital circuits

 We can best describe digital circuits in a modular and hierarchical manner

 Digital circuits are a set of digital modules that exchange information under the control of some entity

Free Range Digital Design Foundation Modeling Chapter 25

- 379 -

 We perform digital circuit design in a structured5 manner, meaning that we can model any digital
circuit using a relatively small subset of digital modules, which we refer to as the digital design
foundation modules. Each foundation module performs a relatively small set of simple operations.

 We present the digital design foundation modules at a high-level by modeling the modules in terms of
their data, control, and status signals, which allows us to use the modules in designs, while not requiring
us to initially understand underlying implementation details.

 We classify the digital design foundation modules as either “controlled” or “controller” circuits

 We consider there to be four approaches to controlling a digital circuit:

5) NO CONTROL (no flexibility in circuit behavior)

6) INTERNAL CONTROL (controlling circuits using internal signals)

7) EXTERNAL CONTROL (controlling circuits with devices such as buttons, switches, etc.)

8) CIRCUIT CONTROL (controlling circuits using FSM or computer).

 We categorize digital design approaches into three categories:

4) BRUTE FORCE DESIGN (BFD)

5) ITERATIVE MODULAR DESIGN (IMD)

6) MODULAR DESIGN (MD)

Figure 1.2 shows a digital circuit containing various modules. We define a digital circuit as a controlled
interaction between a set of sequential and combinatorial circuits (the two types of digital circuits). Solving
problems using digital circuits requires controlling the flow of data through the circuit in such a way that it
solves the given problem. Figure 1.2 also shows the modularity (the various modules) and the hierarchical
(modules within modules, or boxes within boxes) characteristics of digital circuits.

Figure 25.2: A generic digital circuit containing a set of digital modules.

Figure 1.3(a) shows the standard approach to modeling digital circuits, where all digital circuit signals were
classified as either inputs or outputs. Figure 1.3(b) and Figure 1.3(c) shows how DDFM further classifies inputs

5 This is an analogy to structured computer program design

Free Range Digital Design Foundation Modeling Chapter 25

- 380 -

and outputs by first separating digital modules into “controlled circuits” and “controller circuits”. Figure 1.3(b)
shows that we further classify the inputs to controlled circuits as either “data” or “control” and classify the
outputs of controlled circuits as either “data” or “status”. This means the various circuit elements in Figure 1.3(b)
are able to 1) pass data from their data inputs to their data outputs under the direction of the “control” inputs,
and, 2) describe characteristics of the data transfers using the status outputs. Similarly, the status outputs of the
controlled circuit form the status inputs of the controller circuit. The controller circuit of Figure 1.3(c) inputs the
status signals of controlled circuits and manages the controlled circuits by outputting the appropriate control
signals to control the controlled circuits.

(a) (b) (c)

Figure 25.3: Old digital circuit model (a); models for controlled (b) and controller circuits (c).

The DDFM paradigm allows us to model all digital circuits as a controller that controls a set of modules. We
then consider the solution to any digital design problem as a matter of using a controller to properly control the
dataflow through a set of controllable modules. Figure 1.4 shows an example of many circuit modules controlled
by a controller circuit; the controller circuit is either a finite state machine (FSM) or some type of computer
control, such as a microcontroller. Figure 1.4 includes three different module shapes showing that controllable
modules can either be combinatorial or sequential circuits, as well as off-the-shelf computer peripherals.

Figure 25.4: Our unifying digital circuit model.

25.3.2 The Three Approaches to Digital Design

Part of DDFM includes categorizing digital design into three different approaches, which we discuss in more
detail later in the text. With some combination of these three approaches, you can create any digital circuit.

BRUTE FORCE DESIGN (BFD): Our first approach to digital design. Although simple, its simplicity
limits its practicality in non-trivial designs.

ITERATIVE MODULAR DESIGN (IMD): Our second approach to digital design. Although IMD
removes some of the limitations of BFD, it is only applicable to a few of circuits.

MODULAR DESIGN (MD): Our final and most powerful approach to digital design, and is thus
where this text expends most of its efforts.

Free Range Digital Design Foundation Modeling Chapter 25

- 381 -

Figure 25.5(a) shows the basic model of a digital logic circuit; we characterize the signals that the outside world
sees as either inputs or outputs. Because we need to control the flow of data through the digital circuit, we must
more specifically define the inputs and outputs of a basic digital circuit module. Figure 25.5 (b) shows that we
further classify the inputs as either “data” or “control” and classify the outputs as either “data” or “status”. This
means the various circuit elements in Figure 25.5 (b) are able to 1) pass data from their data inputs to their data
outputs under the direction of the “control” inputs and, 2) output characteristics of the data transfers using the
status outputs.

(a) (b)

Figure 25.5: Models for a basic logic circuit (a), and a more refined basic digital logic circuit (b).

Something must control the flow of data through the generic digital circuit. We therefore must have some other
entity that interprets the status signal outputs of the circuit modules and issues control signals to those circuit
modules. For this beginning digital design text, we consider the controlling circuit to be an FSM. Figure 25.6
shows a generic model of an FSM. The FSM simply interprets the status signal outputs from various digital
modules and then outputs the appropriate control signals that are the various digital modules use as control
inputs. Other interesting characteristics to note include:

 FSMs generally do not have data inputs and data outputs. You can design FSMs with data inputs
and outputs, but they tend to be klunky and non-generic.

 The FSM is a sequential circuit because it has the ability to store bits. The FSM only stores bits
to represent the “state” of the FSM, which it does in its “state variables”.

 The underlying model of the FSM includes three primary elements: 1) the next state decoder, 2)
the output decoder, and, 3) the state registers. The next state decoder is a combinatorial circuit
that decides the next state based on the given state and status inputs. The output decoder is a
combinatorial circuit that generates control outputs based on either state only (Moore-type) or
state and status inputs (Mealy-type). Figure 25.7 shows a model for an FSM with both Moore
and Mealy-type outputs.

Figure 25.6: A black box model of a FSM.

Free Range Digital Design Foundation Modeling Chapter 25

- 382 -

Figure 25.7: A black box model showing the component parts of an FSM.

25.4 Attack of the Blinking LEDs

Digital designers often use FSMs to aid in the synthesis of signals. This means you can use FSMs to generate
output signals with specific properties that would not be easy to obtain using any other digital design techniques.
These FSMs are useful handy because they are relatively straightforward to design for novice FSMers, and
because they present simple techniques that you often draw upon when using FSMs to solve design problems.

Example 25.1: FSM Design #1: Blinking LED with 50% Duty Cycle

Use an FSM to blink a single LED with a 50% duty cycle and
at half the clock frequency of the FSM’s clock. Provide a
state diagram for your solution.

Solution: There are three main design issues associated with this problem. First, we need to blink an LED.
Second, we need to blink that LED at a 50% duty cycle. Third, the blink frequency needs to be half that of the
FSM frequency. The FSM handles each of these requirements quite naturally.

Figure 25.18 shows two versions of a state diagram for our solution. These two solutions are equivalent, and
represent to different methods of representing the outputs of state diagram. Here is the fun stuff:

 A Moore-type output nicely implements our solution. This makes sense, particularly since the
FSM has only one input: the clock.

 The state diagram has two states: an “on” state and an “off” state. We list the LED output as
either on or off in the given state. We list the LED output value directly in Figure 25.18(a) by
specifying the output directly, and somewhat indirectly in Figure 25.18(b) by showing the
LED label with either an overbar when the LED is off, and no overbar when the LED is on.

 All transitions are unconditional

 The state diagram has two states, both with unconditional transitions. This means that the
FSM always transition from one state to the other, which then means that the LED spends
half the time on and the other half of time off. This provides the 50% duty cycle as requested.

Free Range Digital Design Foundation Modeling Chapter 25

- 383 -

(a) (b)

Figure 25.8: The different but functionally equivalent state diagrams for our solution.

Figure 25.9 shows an example timing diagram associated with our solution. Here is some cool stuff to realize
regarding this timing diagram.

 The timing diagram arbitrarily starts in the LED_OFF state.

 On each active clock edge (the rising clock edge) the FSM changes state, as seen in the
STATE line.

 The LED changes value every active clock edge. As a result, the frequency of the LED
blinking is half the frequency of the FSM’s clock signal.

Figure 25.9: An example timing diagram for our solution.

Example 25.2: FSM Design #2: Blinking LED with Control Features

Use an FSM to blink a single LED with a 50% duty cycle
at half the clock frequency of the FSM’s clock when a
button is not pressed. The circuit’s button input, when
asserted (positive logic), prevents the LED from changing
status (off vs. on). Provide a state diagram for your
solution.

Solution: This problem is similar to the previous problem but we added an external input signal that controls the
operation of the FSM. When the BTN input is asserted, it prevents the FSM from changing states. The way we
prevent an FSM from changing states is to not allow it to leave the present state, which means the FSM
transitions back to the state it is currently in. Figure 25.10 shows the state diagram for this example.

Free Range Digital Design Foundation Modeling Chapter 25

- 384 -

Figure 25.10: The state diagram for this example.

Figure 25.11 shows an example timing diagram for this problem. Here are some special things to note regarding
this timing diagram.

 The FSM does not change state on the first two active clock edges because the BTN input is
asserted.

 The FSM toggles on the third rising clock edge as the BTN input is not asserted. The FSM
also toggles on the fifth and sixth clock edge.

 The LED output follows the LED assignment in the state diagram. The LED is off
(LED=’0’) when the FSM is in the LED_OFF state; the LED is on in the LED_ON state.

 The arrows indicate that the CLK input (the active edge) and the BTN input combine to cause
the state change, and then the state change causes a change in the state of the LED output. The
arrows indicate that the clock edge and BTN input caused changes in both the LED and state.

Figure 25.11: An example timing diagram for our solution.

Example 25.3: FSM Design #3: Blinking LED with Control Features

Use an FSM to blink a single LED with a 50% duty cycle at
half the clock frequency of the FSM’s clock when the circuit’s
button is not pressed. This circuit’s BTN input, when asserted
(positive logic), prevents the LED from changing status if the
LED is off. Provide a state diagram for your solution.

Solution: In the previous example, when the button was asserted, the FSM could not change state. When the
BTN signal is asserted in this problem, it causes the FSM to hold state if the FSM is currently in the LED_OFF
state, but does not cause the FSM to hold the state if the FSM is in the LED_ON state. One other thing to note:

Free Range Digital Design Foundation Modeling Chapter 25

- 385 -

 The “-“ listed on the transition arrow from the LED_ON state represents an unconditional transition.
The conditions associated with the don’t care symbol are officially: !BTN + BTN, which is always true.

Figure 25.12: The associated state diagram for our solution.

Figure 25.13 shows an example timing diagram for the solution. Here are the so-called highlights listed in the
order of rising clock edges. .

1) The state does not change because the BTN input is asserted.

2) The state changes because the BTN input is no longer asserted.

3) The BTN input is asserted, but the FSM always transitions from the LED_ON state to the LED_OFF
state on the next active clock edge.

4) The BTN input is not asserted so the FSM changes state.

5) The FSM always changes state when in the LED_ON state.

6) The FSM changes states because the BTN input is not asserted.

Figure 25.13: An example timing diagram for our solution.

Example 25.4: FSM Design #4: Blinking LED with Special Duty Cycle

Use an FSM to blink a single LED with a 33.3% duty cycle at
a frequency of 60MHz. State the frequency of CLK signal for
this problem. Provide a state diagram for your solution.

Solution: This problem is a similar to the first blinking LED example, but now we have something other than a
50% duty-cycle. The problem states that we need a 1/3 duty-cycle. Clock signals are generally periodic with
50% duty-cycles. Thus, what we need to do for this problem is to turn on the LED for 1/3 of the time, and off for

Free Range Digital Design Foundation Modeling Chapter 25

- 386 -

2/3 of the time. The best way to do with for FSM problems is to add more states to the state diagram to get the
LED output timing we’re looking for. Figure 25.14 shows the state diagram for our solution.

 The state diagram has three states; all state transitions are unconditional

 The LED is off in two states and on in one state; this provides the desired 33.3% duty cycle.

Figure 25.14: The state diagram associated with our solution.

The problem asks up to state a CLK frequency in order to blink the LED at 60MHz frequency. Mathematically
speaking, the period associated with the LED blink rate is three times as long as the period of the system clock.
Since frequency and period have a reciprocal relationship, the frequency of the CLK signal must be three times
the frequency of the LED blink rate. The desired clock frequency is thus 180MHz.

Figure 25.15 shows a timing diagram associated with our solution. The 33.3% duty-cycle is evident by
examining the LED output. The FSM transitions from one state to another on every rising clock edge.

Figure 25.15: An example timing diagram for our solution.

Example 25.5: Maximum Value Displayer

Design a circuit that finds the largest of four 8-bt unsigned binary inputs after a button is
pressed. The maximum value stays on the output until the circuit detects another button press.
The circuit also ensures the button is press is released before it is able to find another
maximum value. Minimize your use of hardware in your design; don’t use more than one
comparator in your design. Provide a top-level and lower-level BBD for your solution, and a
state diagram if necessary. Also, describe what controls your final solution.

Solution: This problem is similar to previous problems we did when before we started working with sequential
circuits. The main constraint in this problem is that we use no more than one comparator, which essentially
forces us to design a circuit controlled by an FSM. Figure 25.16(a) show the result of the first step in this
solution, which is a top-level BBD.

The next step is to create an inventory of the modules this design requires. Here is the thought process:

Free Range Digital Design Foundation Modeling Chapter 25

- 387 -

 Any circuit that establishes maximum and minimum values of a set of data requires a
comparator.

 The output of the problem also needs to be persistent, which means we need a register to hold
the final value.

 Since we only have one comparator, we need to “select” which input values we are comparing,
so the circuit also needs a MUX.

 The circuit requires some type of control, so the circuit needs a FSM.

Figure 25.16(b) shows the lower-level BBD for our solution. Here are some important items to note:

 The diagram only routes data signals in order to make the diagram more readable. We
understand that the non-routed signals are status and control signals, which are inputs to and
outputs of the FSM, respectively. We clearly label the FSM’s inputs and outputs on both the
“unrouted” signals to clarify their connectivity.

 The FSM has two status inputs: 1) the button, and 2) the LT output of the comparator. The FSM
uses these signals to determine the state transitions in the associated state diagram.

 The FSM has three outputs: 1) the SEL, 2) the CLR, and 3) the LD signals. The FSM uses
these signals to control the other circuit elements. The control outputs of the FSM do in fact
connect to the various control inputs of the other modules.

 We must state the CLR control input to the register has precedence over the LD input.

 The comparator compares a value external to the circuit to the current output of the register.
This circuit then continually updates the current maximum value as it examines the other input
values.

(a) (b)

Figure 25.16: A block diagram for circuit (a), and underlying circuitry (b).

Figure 25.17 shows the state diagram that models the circuit’s FSM. Here are some of the finer points
of the state diagram.

 In the “wait” state, the FSM waits for a button press to start the process. When the circuit
receives a button press, the circuit first clears the output register. Clearing the register
effectively makes the first comparison with zero, which is the smallest possible value for an
8-bit unsigned binary number. If the circuit determined the minimum value, we would then
first initially load this register with all 1’s.

Free Range Digital Design Foundation Modeling Chapter 25

- 388 -

 We modeled the clearing action of the circuit as a Mealy-type output; we could model it as a
Moore-type output, but that would have required an extra state in the state diagram.

 The four “C_x” states use the SEL input of the MUX to step through the four comparisons.
The FSM’s SEL output differs for each of these four states.

 It is possible to connect the LT output of the comparator directly to the LD input of the
counter. We did not do this because we want to be able to disable to the register’s LD control
when we find and display the max value. If we made the direct connection, we would have no
way of preventing that the maximum value on the output from changing during the two wait
states.

 Once the circuit finds the maximum value, it then waits for a button lift in the “wait_btn”
state. We do this is because circuits like this one typically operate faster than you can press
and lift the button. The self-loop in the “wait_btn” state ensures that the circuit only finds one
maximum values per button press6.

Figure 25.17: The state diagram associated with this example.

This circuit has both external and circuit control. The BTN input is the external control that serves as a
status input to the FSM. The control signals on the MUX and the register are outputs of the FSM,
which is circuit control.

25.5 FSMs as Sequence Detectors

Designing sequence detectors is one of the earliest topics in FSM design because they are highly instructive and
spiritually enriching while not being overly complicated. Designing sequence detectors gives you practice
generating different flavors of state diagrams under limited external input control and with few external outputs.

Figure 25.18(a) shows the general form of a simple sequence detector. There is one external input X and one
external output Z; there is also a clock input because this is an FSM. This particular example monitors whether
the sequence “101” to appears on the X input. Figure 25.18(b) shows a sample input sequence for the X input
and the resulting outputs for two different ways of examining the input sequence. The data in Figure 25.18(b) is
the data present when the active clock edge appears on the FSM (each column represents one clock edge).

6 There are also switch-bounce issues that we’re not dealing with here.

Free Range Digital Design Foundation Modeling Chapter 25

- 389 -

X: 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0

Z (no reset): 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0

Z (with reset): 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

Time

(a) (b)

Figure 25.18: A black box diagram (a), and sample inputs/outputs for finding “101” sequence (b).

Figure 25.18(b) lists two types of outputs: one where the FSM does not reset (non-resetting) after finding the
correct sequence and the other where the Z “resets” (“resetting”) after finding the correct sequence. In this
context, resetting refers to the ability of the output to reuse past inputs regardless of whether they were part of a
previously successful7 sequence or not. In the case where there is no reset, the Z output is a ‘1’ anytime the
previous three X inputs8 are the sequence “101”. For this case, the FSM can use previous X input values from
other “101” sequences that were previously successfully detected. For the case where the Z does reset, the FSM
can’t reuse values from other successfully detected sequences can’t in a new sequence.

The resetting and non-resetting flavors allow for two types of problems. Additionally, because we are designing
FSM, we can model the Z output as either a Mealy or a Moore-type output. Sequence detector problems can
have one of four solutions based on the type of FSM output (Mealy or Moore) and whether the machine resets or
not after detecting the correct sequence.

The following diagrams works through the example of Figure 25.18(b) thus producing a result in the four
different methods (“Mealy” vs. “Moore” and “resetting” vs. “non-resetting”). We list less detail in some
diagrams due to the similarities in the development process. The next four figures show the solutions that
represent all the possible conditions for the reset/no reset and Mealy/Moore options.

7 Meaning that the sequence led to the finding of desired sequence.
8 Once again, the most correct wording is that ‘1’ was present on the X input when an active edge clock edge arrived. For
problems such as these, we generally constrain the X input to only changing no more than once per clock period.

Free Range Digital Design Foundation Modeling Chapter 25

- 390 -

The best place to start is before the FSM sees any correct values in the
sequence. The transition is where the FSM finds the undesired input of
‘0’, so it stays in the state looking for the desired input of ‘1’. Since
FSM has not found the correct sequence, the Z output is a ‘0’. We
arbitrarily assign the state as “a”.

Each state bubble must account for two arrows leaving the state
representing the possible values of the X input. A ‘1’ on the X input
causes a transition to the new state. When in state (b), then you know
you’ve seen the first value of the sequence. There are two arrows
leaving state (a); conditions associated with those transitions are
mutually exclusive.

As long as the FSM receives a ‘1’ on the X input in state (b), we stay
in that state as the self-loop arrow indicates. If the FSM receives more
‘1s’ in state (b), there is no reason to exit this state. No matter how
many‘1’s you receive in state (b), you won’t leave, the state since ‘1’ is
the first value in the desired sequence and ‘0’ is the second value.

Receiving a ‘0’ in state (b) represents the second correct value in the
sequence. In this case, you must transition to a new state. The output Z
is still ‘0’ because the complete correct sequence is yet to be found.
State (b) is complete now that there are two arrows exiting the state.

Being in state (c) indicates you’ve found the first two values in the
desired sequence. If at this point you were to receive a ‘0’, you would
essentially need to start the search sequence over which would result in
a transition back to state (a). Anytime you receive two contiguous ‘0’s,
you must start again because two zeros are not part of the sequence.

If the FSM receives a ‘1’ in state (c), two things happen. First, you
found the desired “101” sequence and the output Z is set to ‘1’.
Second, because the FSM does not reset, you can reuse the one that
made the “101” sequence a success as the first ‘1’ in a new sequence;
the transition to state (b) accomplishes this. You could not transition
back to (b) if the FSM was to reset after finding the correct sequence.

Figure 25.19: Generation of a state diagram that detects a “101” sequence without resetting.

Free Range Digital Design Foundation Modeling Chapter 25

- 391 -

The Moore state diagram for the example problem is similar to
the Mealy state diagram. The main difference is the Mealy state
diagram divides the outputs from the Mealy version of this
problem into two states. Each of the two state bubbles includes a
different output Z because they’re Moore outputs. This solution
shows one of the differences between Mealy and Moore-type
FSMs: the Moore-type FSMs have more states than a Mealy-
type FSM implementing the same functionality.

(a) (b)

Figure 25.20: State diagram (a) and explanation (b) for Moore-output (no reset) for “101”
sequence.

Only one state is different from this diagram and the non-
reset diagram. All cases from state (c) return to the start case
with one output being a ‘0’ to indicate failure and one output
being a ‘1’ to indicate roaring success.

(a) (b)

Figure 25.21: State diagram (a) and explanation (b) for Mealy-output (with reset) for “101”
sequence.

Again, this state diagram is similar to the diagram of the
Figure 25.20. The two differences are associated with state (d).
It is interesting to note the strange similarities between this
state diagram and the state diagram of Figure 25.21.

(a) (b)

Figure 25.22: State diagram (a) and explanation (b) for Moore-output (with reset) for “101”
sequence.

25.5.1 Sequence Detector Post-Mortem

Even though you should never simply “follow rules” when you’re solving sequence detector problems, here are a
few “suggestions” to chew on. As you do more of these designs, you’ll develop your own style and collect your
own set of tricks that make these problems easier.

Free Range Digital Design Foundation Modeling Chapter 25

- 392 -

1) Construct a sample input to clarify problem description.

2) Construct a path for the correct sequence first; then go back and fill missing transitions.

3) Try to add new arrows to existing states before adding new states.

4) Verify each state has one exit path for each value of the input variable (two arrow leaving)

5) Apply sample sequences to final state diagram to verify proper state diagram operation.

OK, items two and three are the opposite of each other; choose one or the other or somewhere in between. Keep
in mind here is that you can easily generate your own sequence detector practice problems.

25.6 Timing Diagrams: The Mealy & Moore-Type Outputs

The final step in developing a true understanding of FSMs is to understand the relationship between the state
diagram and the timing diagram. Sequence detector problems provide simple examples for understanding the
timing differences between the FSM’s Mealy and Moore-type outputs.

The FSM we previously worked with asserted the Z output when the sequence “101” appeared on the X input.
Figure 25.23(a) provides a block diagram of this FSM; Figure 25.23(b) and Figure 25.23(c) show the state
diagrams for the non-resetting Moore-type and Mealy-type FSMs for this problem, respectively.

(a) (b) (c)

Figure 25.23: The block diagram of the sequence detector FSM (a), the associated Moore-type
output approach (b), and the associated Mealy-type output approach (c).

The difference between the Mealy and Moore-type state diagram is evident in that the Mealy-type has one less
state than the Moore-type. This highlights the functional difference between FSMs with Mealy-type or Moore-
type outputs. Here are the two main ramifications.

1) A FSM implemented with Mealy-type outputs generally have fewer states than a functionally
equivalent FSM with a Moore-type output. This is because Mealy-type outputs can change in
the middle of a state (because they are a function of the FSM’s external input) while Moore-
type outputs can only change when the state changes. The FSM with Moore-type outputs must
have extra states to generate the correct outputs in states that have true Mealy-type outputs.

2) Mealy-type outputs can change with an external input changes, which means that Mealy-type
outputs can potentially “react” faster (change output values) because Moore-type outputs need
to wait until the next clock edge to change the output.

The main difference between these two diagrams is in the final two states in Moore-type state diagram and the
final state in the Mealy-type state diagram. One approach to describing this difference is to say that the Mealy-
type diagram divided state (c) into states (c) and (d) in the Moore-type state diagram. We had to do it this way
because in the Moore-type state diagram, we required a separate state to indicate when the FSM detects the final
bit in the sequence.

For the case of the FSM with a Moore-type output, the output Z is asserted for the duration of the state (state d
Figure 25.23(b)). The corresponding state in the Mealy-type state diagram is state c. From this state, the Z output

Free Range Digital Design Foundation Modeling Chapter 25

- 393 -

can be either a ‘1’ or a ‘0’ depending on the value of the X input. Because the output can be either a ‘1’ or a ‘0’
in state c, there is no need to break the single state c into two states (states c & d) as in the Moore-type state
diagram. The output of state c in the Mealy-type state diagram can immediately indicate when the FSM detects
the final bit of the sequence in the third state in the state diagram (state c). When the X input changes to a ‘1’ in
the c state, the correct sequence is “found” and the Z output indicates this by transitioning from ‘0’ to ‘1’.
Conversely, in the Moore-type state diagram, the output waits for the next clock edge to transition to state d
where the Moore-type output is ‘1’.

Figure 25.24 shows two example timing diagrams associated with the state diagrams of Figure 25.23(b) and
Figure 25.23(c). For these two timing diagrams, assume that the FSM’s active clock edge is the rising edge. By
inspection, you can see that the top timing diagram must be the one associated with the Moore FSM because
changes in the Z output are always synchronized with state changes. The arrows in the top timing diagram of
Figure 25.24 show this synchronization.

The lower timing diagram of Figure 25.24 shows that output of the FSM with Mealy-type outputs. In the timing
diagram for the Mealy-type outputs, the output Z changes at times other than at the same time as the rising edge
of the clock. In state c of the low timing diagram of Figure 25.24, the Z input follows the change in the X input.
Figure 25.23(c) show this characteristic by the two state transitions from state c in the Mealy-type state diagram.
The transition associated with the X=0 input has an associated output of ‘0’ while the transition associated the
condition that X=1 has an output of ‘1’. The state diagram thus indicates that the Z output has two possible
values in state c, as the output is a function of the X input as well as the state.

Figure 25.24: The timing diagram associated with the FSM with Moore-type outputs (top) and the
Mealy-type outputs (bottom). Figure 25.23(b) shows the state diagram for the Moore-type FSM

while Figure 25.23(c) shows the state diagram for the Mealy-type FSM.

Free Range Digital Design Foundation Modeling Chapter 25

- 394 -

Example 25.6: FSM Timing

Use the following state diagram to complete the timing diagram provided below. Show how the
inputs affect the state transitions and outputs Z by filling in the “state” and “Z” lines in the
timing diagram. Assume all setup and hold times are met and that propagation delay times are
negligible. Assume state transitions occur on the rising edge of the clock signal. Assume CLR
is an asynchronous, active low input.

Solution: Figure 25.25 shows the solution to this problem. Here is the list of important things to note:

 The CLR input is initially asserted, which places the FSM in a state A according to the
asynchronous input in the state diagram.

 On the first rising clock edge, the FSM transitions to state C because of the asserted X input,
which we indicate with an arrow emanating from the rising clock edge combined with the dot
on the X input. In state C, Z1 is always a ‘1’ (as it’s a Moore-type output). Z2 is a Mealy-type
output, but it is always a ‘1 in state C because the X input remains asserted while in state C for
this time period.

 On the second rising clock edge, the FSM does not change state because the X input is a ‘1’.

 In the time interval labeled (3), the CLR input asserts, which forces a transition back to the state
A. The state does not change when CLR unasserted in that same cycle. This change in state
causes changes in the Z1 & Z2 outputs accordingly.

Free Range Digital Design Foundation Modeling Chapter 25

- 395 -

 For the other states, the Z1 output is always follows the state as it is a Moore-type output. We
can characterize the Z2 output by examining interval (6) & (7), and by referring to the state
diagram. The Z2 output is an inversion of the X input in state A (interval (6)); the Z2 output is
the same as the X input in state C (interval (7)).

Figure 25.25: The timing diagram solution.

Free Range Digital Design Foundation Modeling Chapter 25

- 396 -

25.7 Chapter Summary

 A FSM is generally used as a controller for some other hardware device. The external inputs to the FSM are
status signals from the circuit being controlled while external outputs from the FSM are used as control
signals to the device being controlled.

 FSMs can be used to synthesize specific output signals, particularly to provide signals with duty cycles other
than 50%.

 Sequence detector design is one of the most basic FSM design problems since they are instructive and can
be relatively easy to do using state diagrams as a starting point.

 Sequence detector problems can be one of four different types based on the notions of Mealy vs. Moore
machines and “resetting” vs. “non-resetting”. The notion of resetting implies that the FSM can’t “reuse”
values of previously found sequence in the search for the next sequence while “non-resetting” can reuse bits
from a previously found sequence.

Free Range Digital Design Foundation Modeling Chapter 25

- 397 -

25.8 Chapter Exercises

1) What is the minimum number of states in a state diagram you would need to obtain a 7/17 duty cycle on an
external blinking LED? Briefly explain the reasoning behind your answer.

2) Briefly describe an application where a sequence detector would be useful.

3) Briefly describe the operational difference between a FSM with a Moore-type output and a functionally
equivalent FSM with a Mealy-type output. Consider both FSMs to have equivalent clock frequencies.

4) Briefly describe two advantages to using a FSM exclusively Mealy-type outputs over an functionally
equivalent FSM with exclusively Moore-type outputs.

5) We often consider FSMs as “reacting”. In the context of controlling a digital circuit, briefly describe what
we mean by “reacting”. Be sure to describe what the FSM is reacting to and what the ramifications of these
reactions do in a holistic view of the FSM.

6) Briefly explain why it is that FSMs with Mealy-type outputs can react faster than an equivalent FSM with
Moore-type outputs.

7) Use the following state diagram to complete the two timing diagram provided below. Show how the
inputs affect the state transitions and outputs Z by filling in the “state” and “Z” lines in the timing
diagram. Assume all setup and hold times are met and that propagation delay times are negligible.
Assume state transitions occur on the rising edge of the clock signal. Assume CLR is an asynchronous,
active low input.

Free Range Digital Design Foundation Modeling Chapter 25

- 398 -

8) The following timing diagram completely specifies an FSM. Use the following timing diagram generate the state
diagram that would generate the listed timing diagram. For this problem, assume the CLR input to be an
asynchronous active low input that places the FSM into the appropriate state. Assume all setup and hold times
have been met and that propagation delay times are negligible. Assume state transitions occur on the rising edge
of the clock signal.

9) Use the following state diagram to complete the timing diagram provided below. Show how the inputs affect the
state transitions and outputs Z by filling in the “state” and “Z” lines in the timing diagram. Assume all setup and
hold times have been met and that propagation delay times are negligible. Assume state transitions occur on the
rising edge of the clock signal. Assume CLR is an asynchronous, active low input.

Free Range Digital Design Foundation Modeling Chapter 25

- 399 -

Free Range Digital Design Foundation Modeling Chapter 25

- 400 -

25.10 Design Problems

For the following problems:

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution

 Minimize the number of states in the associated state diagrams

 Minimize the use of hardware when problem require extra hardware

 Assume all inputs and outputs are positive logic unless stated otherwise

 Disregard all setup and hold-time issues

 For sequence detector problems assume the X input is stable when each clock edge arrives and that X
can change no more than once per clock period.

 State all forms of control for your solution.

1) Provide a state diagram and black box diagram (BBD) that blinks a single LED at half the FSM clock
frequency.

2) Provide a state diagram and black box diagram (BBD) that blinks a single LED with a 50% duty cycle. If
the button is pressed, the LED stops blinking and either stays ON or stays OFF depending on when the
button was pressed.

3) Provide a state diagram and black box diagram (BBD) that blinks a single LED with a 50% duty cycle. If
the button is pressed, the LED always turns off.

4) Provide a state diagram and black box diagram (BBD) that implements a 2-bit binary counter. The output of
the FSM is two LEDs that represent the 2-bit binary count.

5) Provide a state diagram and black box diagram (BBD) that blinks a single LED at 40kHz with a 25% duty
cycle. Also state the required system clock frequency.

6) Provide a state diagram and black box diagram (BBD) that blinks a single LED at 100Hz with a 20% duty
cycle. Also state the required system clock frequency.

7) Design a circuit that outputs a single blinking LED. If the button input to the circuit is ON, then the LED
blinks at ½ the system clock frequency with a 50% duty cycle; otherwise the LED blinks at ¼ the system
clock frequency with a 25% duty cycle. Show a BBD and state diagram for this problem.

8) Design a circuit that outputs a single blinking LED. If the button input to the circuit is ON, then the LED
blinks at ½ the system clock frequency with a 50% duty cycle; otherwise the LED blinks at ¼ the system
clock frequency with a 75% duty cycle. Show a BBD and state diagram for this problem.

9) Design a circuit that has eight 8-bit inputs (A,B,C,D,E,F,G,H). Each input is output for one clock cycle and
the circuit cycles through the eight inputs continuously so long as the button is pressed. If the button is not
pressed (button = ‘0’), the circuit outputs then starts over at outputting the eight values starting with the first
value. Use an FSM in this design. Provide a BBD describing your circuit.

10) Design a circuit that has eight 8-bit inputs (A,B,C,D,E,F,G,H). Each input is output for one clock cycle and
the circuit cycles through the eight inputs continuously. If the button is pressed (button = ‘1’), the circuit
outputs does not increment and displays the same count for as long on the button is pressed. The circuit
consecutively displays the values in the sequence so long as the button is not pressed. Use an FSM in this
design. Provide a BBD and state diagram describing your circuit.

Free Range Digital Design Foundation Modeling Chapter 25

- 401 -

11) Design a circuit that has eight 8-bit inputs (A,B,C,D,E,F,G,H). Each input is output for one clock cycle and
the circuit cycles through the eight inputs continuously. If the button is pressed (button = ‘1’), the circuit
outputs the next values going forward in the sequence (…A,B,C,D…); otherwise the circuit outputs the
values going backwards in the sequence (…D,C,B,A…). Use an FSM in this design. Provide a BBD and
state diagram describing your circuit.

12) Provide a state diagram that can be used to implement a FSM that indicates when the sequence “1011”
appears on the FSM input (X). The FSM has two inputs (CLK,X) and one output (Z). This FSM does not
reset when a ‘1’ occurs on the output. The Z output is ‘1’ only when the desired sequence is detected.
Implement the state diagram two times: one time the output is a Mealy-type, the other time it is a Moore-
type.

13) Repeat the previous problem but make the FSM reset when the it finds the indicated sequence.

14) Provide a state diagram that can be used to implement a FSM that indicates when the sequence “01011”
appears on the FSM input (X). The FSM has two inputs (CLK,X) and one output (Z). This FSM does not
reset when a ‘1’ occurs on the output. The Z output is ‘1’ only when the desired sequence is detected.
Implement the state diagram two times: one time the output is a Mealy-type, the other time it is a Moore-
type.

15) Repeat the previous problem but make the FSM reset when the it finds the indicated sequence.

16) Provide a state diagram that can be used to implement a FSM that indicates when the number of ‘1’s
received at the FSM input (X) is divisible by 3. (0,3,6,9… are divisible by 3). This FSM has two inputs
(CLK,X) and one output (Z). The Z output is ‘1’ only when the desired sequence is detected. Provide two
different state diagrams by considering the Z output to be a Mealy-type output and then a Moore-type
output.

17) Provide a state diagram that can be used to implement a FSM that indicates when the sequence “101” or
“110” appears on the FSM input (X). This FSM has two inputs (CLK,X) and one output (Z). This FSM does
not reset when one of the two given sequences appears. The Z output is ‘1’ only when the desired sequence
is detected. Implement the state diagram two times: one time the output is a Mealy-type, the other time it is a
Moore-type.

18) Provide a state diagram that can be used to implement a FSM that outputs the following sequence: “0100
110 110 110 …”. This FSM has one input (CLK) and one Mealy-type output (Z). This FSM also includes an
asychrounous reset input RST that transitions the FSM to the “0100” state.

19) Provide a state diagram that can be used to implement a FSM that indicates when at least two ‘1’s and two
‘0’s have appeared on the FSM input (X). Design the state diagram such that the order of occurrence of the
inputs does not matter. The FSM has two inputs (CLK,X) and one Moore-type output (Z). The Z output is
‘1’ only when the desired number of ‘1’s and ‘0’s has occurred.

20) Provide a state diagram that describes a FSM that indicates when the sequence “1101” appears on the FSM
input (X). The output (Z) is ‘1’ only when this condition is detected. Implement this design as both a Mealy
and then Moore-type machine. Design this FSM to reset once the sequence is found.

21) Repeat the previous problem but make the FSM non-resetting when the it finds the indicated sequence.

22) Provide a state diagram that describes a FSM that indicates when the sequence “11001” appears on the FSM
input (X). The output (Z) is ‘1’ only when this condition is detected. Implement this design as both a Mealy
and Moore machine. Design your state diagram so that the FSM resets once the correct sequence is detected.

23) Repeat the previous problem but make the FSM non-resetting when a ‘1’ occurs on the output.

24) Provide a state diagram that describes a FSM that indicates when the sequence “10011” appears on the FSM
input (X). The output (Z) is ‘1’ only when this condition is detected. Implement this design as both a Mealy
and Moore-type machine. Design your state diagram so that the FSM resets once the correct sequence is
detected.

25) Repeat the previous problem but make the FSM non-resetting when the it finds the indicated sequence.

Free Range Digital Design Foundation Modeling Chapter 25

- 402 -

26) Provide a state diagram that describes a FSM that indicates when either one of the following two sequences
are detected on the X input. Your design must use a Moore-type FSM that resets if either sequence is found.
The Z output is asserted only when either sequence is found. Minimize the number of states you use in your
solution.

Assume:

 the X input is stable when each clock edge
arrives

 the W input can change when only when the
proper sequence is found

 full encoding with three flip-flops will be
used to encode the FSM (limits state
diagram to eight states!)

W
Sequence searched
for on X Input

0 1 0 1 1 0

1 1 0 1 1 1

27) Design a FSM that detects when the sequence “0101” appears on the FSM input (X). The output (Z) is ‘1’
only when this sequence is detected. Implement this design as a Moore machine and resets when the correct
sequence is found. This FSM has an output P that is a ‘1’ when Z is ‘1’ and when the bits previously
processed by the FSM have even parity; otherwise the P output is ‘0’ when Z is a ‘1’ and the processed bits
have odd parity. In other words, this FSM needs to always indicate the proper parity of all the bits
previously seen when the correct sequence is found.

Assume the X input is stable when each clock edge arrives and that X can change no more than once per
clock period. Disregard all setup and hold-time issues. You only need to provide a state diagram for this
design.

28) Provide a state diagram that describes a FSM that indicates when the sequence “10110” appears on the FSM
input (X). The output (Z) is ‘1’ only when this condition is detected. mplement this design as a Moore
machine. Design you state diagram so that the FSM is non-resetting once the correct sequence is detected.
This FSM also has a P output (positive logic) that is asserted when the parity of all the previous bits the
FSM has seen is either odd (P=0) or even (P=1). Assume the X input is stable when each clock edge arrives
and that X can change no more than once per clock period. Disregard all setup and hold-time issues.

Free Range Digital Design Foundation Modeling Chapter 25

- 403 -

29) Design an FSM that can be used control a car safety device. Unfortunately, you live in an area with lot of
large hungry birds that like using your car windshield as a target. Your car windshield has three sensors
attached to it and uses them to sense if bird poop is on your windshield. If a sensor has bird poop over it, it
outputs a ‘1’; otherwise it outputs a ‘0’.

For this problem, if one and only one sensor senses poop, the FSM actuates a warning light (LT=’1’) until
no sensor senses poop. If two sensors sense poop, the FSM turns on the windshield wipers (WW=’1’) until
less than two sensors sense poop. If all three sensors sense poop, the car engine is automatically shut off
(KILL=’1’) until no sensors detect poop.

30) Design a FSM that creates a power-saving control of a set of hallway lights. The hallway has four sensor
inputs (S1,S2,S3,S4), three light outputs (L1,L2,L3), and two door lock outputs (DA, DB) as indicated by
the diagram below. The sensors indicate when a person is near and causes the nearest light(s) to turn on.
When a person first enters the hallway, only one light turns on; as a person walks through the hallway, only
the two nearest lights turn on. When a person enters the hallway, the FSM locks the two doors from the
outside so people can only exit (and not enter); both doors are unlocked when no one is inside. For this
problem, make the following assumptions:

 The sensors completely sense the
hallway with no overlap in the
coverage area

 Only one person at a time can enter
the hallway

 When a person enters one side of the
hallway, the person will eventually
exit on the other side

31) Design an FSM that can be used to control the lock mechanism of a car. The lock mechanism has four
different button inputs in addition to a clock input (as shown below). In order to unlock the car door, you
need to input the following code sequence: “enter”, “C”, “BC”, “AC”. Note that you sometimes must
simultaneously press two different buttons. This FSM uses the clock to automatically reset the sequence (go
back to the “waiting for an enter state”) if the proper code is not pressed before the next clock edge.

Provide a state diagram for this design. Be sure to state any assumptions you make for this problem.
Minimize the number of states in your design.

32) Design a circuit that does the following. The circuit checks the values of the A & B inputs on each rising
clock edge. The circuit always outputs the value of the A input except under the following condition. If the
circuit detects that the A & B inputs have been equivalent for three simultaneous clock cycles, the circuit
ignores the values of A & B and outputs B for three clock cycles. After the circuit outputs B for three clock
cycles, the circuit resumes checking for the A & B equivalency for the previously stated three clock cycles.

Free Range Digital Design Foundation Modeling Chapter 25

- 404 -

33) Using the listed circuit, design a FSM that outputs the sum of (A + B) as long as no carry is generated. If a
carry is present on an active clock edge, the circuit outputs a 0x00 then 0xFF for one clock cycle each, then
outputs the C value for at least two clock cycles but for as long as A does not equal B. If and when A equals
B, the circuit once again displays the sum of (A+B), etc. The circuit also asserts ERR output whenever the
circuit output is not the sum of (A + B). Assume the FSM clock is much faster than then changes in A, B,
and C.

34) Using the listed circuit, design a FSM that outputs the value of the C signal while the values of A and B are
equal. When A and B are found to be not equal on an active clock edge, the circuit outputs 0xFF then 0x00
for one clock cycle each, then outputs the sum of (A + B) as long as no carry is generated. If and when a
carry is generated, the circuit goes back to outputting the value of C with the conditions previously
described. The circuit also asserts ERR output whenever the circuit is not the value of C. Assume the FSM
clock is much faster than then changes in A, B, and C. Disregard all setup and hold-time issues.

35) Design a circuit that detects when A=B. When it detects that condition, the circuit outputs 0xFF for at least
three clock cycles, or until a button is pressed, whichever is shorter. When the circuit is not outputting 0xFF,
it should output the value of A. The circuit does this operation continuously. Consider A & B to be 8-bit
unsigned binary values.

36) Design a circuit that compares two 8-bit unsigned binary values. It compares A & B and continues to do so
until the circuit detects that A>B on three on three consecutive clock cycles. The circuit continues to
compare A & B and does so continues to do so until the circuit detects A<B on three clock cycles. While the
circuit is looking for A>B, it turns on an LED; the circuit turns off the LED when it is looking for A<B on
three clock consecutive cycles.

37) Design a circuit that continuously outputs the following sequence of operations. A+B, A-B, -A+B, -A-B, on
consecutive clock cycles. If any of the operations are not valid, the circuit outputs zero and turns on an extra
single bit signal. Assume the data inputs are 10-bit signed binary (RC format) operations.

Free Range Digital Design Foundation Modeling Chapter 25

- 405 -

38) Design a circuit that upon the pressing of BTN1, adds A+B+1 if BTN2 is pressed, or adds A+B if the BTN2
is not pressed. The results of the addition are displayed on the circuit’s outputs. If three consecutive addition
results generate a carry, then the circuit outputs zero for the sum until BTN1 is pressed, at which time it
starts the addition operations again. The circuit outputs zero while it is waiting for a BTN1 press. Consider
A, B and the result to be 8-bit unsigned binary numbers. The circuit keeps track of the number of times one
and only one of the MSBs of the two operands are set (equal to ‘1’). This circuit also starts over when this
count value reaches 31. This count is persistent while waiting for a BTN1 press, but the BTN1 pressed
clears the counter before proceeding with the additions.

39) Design a circuit that upon the pressing of BTN1, adds A+B+1 if BTN2 is pressed, or adds A+B if the BTN2
is not pressed. The results of the addition are displayed on the circuit’s outputs. If two consecutive addition
results generate a carry, then the circuit outputs zero for the sum until BTN1 is pressed, at which time it
starts the addition operations again. The circuit outputs zero while it is waiting for a BTN1 press. Consider
A, B and the result to be 8-bit unsigned binary numbers.

Free Range Digital Design Foundation Modeling Chapter 26

- 406 -

26 Counters

26.1 Introduction

Counters are essentially a register with “features”. A counter is another type of controlled circuit with many uses
in digital design. We worked with low-level implementations of counters in a previous chapter; we now abstract
our discussion upwards and discuss counters at the module level.

Main Chapter Topics

COUNTERS: Counters are simple registers with “features”: This chapter defines and
describes counters and their associated functionality and vernacular.

Chapter Acquired Skills

 Understand the various vernacular associated with counters

 Understand the various control inputs and status outputs of counters

 Use various flavors of counters in solutions to digital design problems

26.2 Counters: A Register with Features

A counter is a type of register, which means it inherits all the attributes of a register. The main new “feature” of a
counter is that it outputs a given sequence of codewords, which is the “count” sequence. Counters typically
synchronize their stepping through the count sequence to an active clock edge input to the counter. Counters can
have one or more typical operational features, which we control with the counter’s “control” inputs. Counters
can also have status outputs that provide external circuits information about the counter.

Our approach is to define and describe every word and/or term you typically hear in the context of counters, and
then do a few example problems. Counters used to be a big deal back when you had to design them yourself
using discrete logic. Now, discrete ICs have many flavors of counters, and more importantly, HDLs make the
modeling of counters trivial.

When you say the word counter, it has a few standard connotations that you can assume are true unless told
otherwise. The following list describes even more assumptions made when dealing with counters.

 Because counters are registers, they are a sequential circuit.

 An active clock edge synchronizes a counter’s traversing of the count sequence; there is one
count value, or code-word, from the count sequence at each clock cycle.

 A counter’s output represents a repeatable sequence of a given number of bits. The sequence the
counter “counts” in does not change; the bit-width of the counter won’t change either.

 When a counter completes a traversal through its count sequence (either in the up or down
direction), the counter automatically starts counting over (and is thus “circular”).

Free Range Digital Design Foundation Modeling Chapter 26

- 407 -

There are many different types of counters out there, but introductory digital design courses typically only deal
with a few types, which we handily list below. The less common counters that we do not list include Johnson
counters, twisted-ring counters, and a few others that I can’t recall now.

 Binary Counter: A counter that counts in a binary sequence. This means a 4-bit binary count
sequence goes from 0-15, or 0x0 to 0xF (up direction).

 Decade Counter: A counter that counts in a binary coded decimal (BCD) sequence. This
means a 4-bit decade counter counts from 0-9 (up direction).

There is a set of vernacular associated with counters. Digital designer must be fluent with all the new terms
associated with counters so they can converse with their peers and understand important things such as
datasheets. Here are the common terms associated with counters:

 n-bit Counter: A counter that uses n-bits to represent each of the values (or codewords) in its
count sequence.

 Up Counter: A counter that counts up (increasing count values in count sequence).

 Down Counter: A counter that counts only down (decreasing count values in count
sequence).

 Up/Down Counter: A counter that can counter either up or down according to a control input
on the device.

 Increment: An operation associated with counters where ‘1’ is added to the current value of
counter.

 Decrement: An operation associated with counters where ‘1’ is subtracted from the current
value of counter.

 Counter Overflow: The notion of a counter being incremented beyond its ability to represent
values; unless otherwise stated, overflow is generally characterized as the counter
transitioning from its largest representable value to its smallest value.

 Counter Underflow: The notion of a counter being incremented beyond its ability to
represent values; unless otherwise stated, overflow is generally characterized as the counter
transitioning from its smallest representable value to its largest value.

 Cascadeable: A characteristic of many digital devices such as counters and shift registers that
allow you to effectively increase the overall bit-width of devices providing inputs and outputs
such that you can easily interface the devices. One such output is the “ripple carry out”.

 Count Enable: A signal on counters that enables the counting operation of the counter when
asserted and disables the counting when not asserted.

 Ripple Carry Out (RCO): A signal typically found on counters that indicate when the
counter has reached its maximum count value (for an up counter) or minimum count (for a
down counter). Counters often use the term RCO to indicate when the counter has reached its
terminal count value.

 Parallel Load: A characteristic of a counter or shift register indicating that all the storage
elements in the device can simultaneously latch external values.

 Circular: When counters overflow their maximum or minimum counts, we consider them to
“overflow”. Counters are typically circular meaning that when the counter reaches the

Free Range Digital Design Foundation Modeling Chapter 26

- 408 -

maximum value, it automatically continues counting in the same direction starting at the
minimum value1.

Example 26.1: Up/Down Counter Timing Diagram

The block diagram on the right shows a model of an 8-
bit counter. Use the block diagram to complete the
following timing diagram. Assume propagation delays
are negligent.

Solution: This problem shows you everything interesting and useful with counters. Figure 26.1 shows the final
solution to this example; the following verbage describes some of the more interesting things about the solution.
In this case, the interesting things are when the output changes and what causes those changes.

1) The circuit was initially in a reset condition. On this active clock edge, the counter output is
incremented due to the assertation of the UP signal.

2) The UP signal is still asserted, but due to the way we modeled the LD signal, it takes precedence over
the LD signal. Thus, the output loads the value on the D_IN input into the counter.

3) This is an increment operation due to the assertation of the UP signal.

4) This is another increment operation due to the assertation of the UP signal.

5) This is a decrement operation since the UP signal is no longer asserted.

6) This is another decrement operation since the UP signal remains unasserted.

7) This is a register clear operation due to the assertion of the RESET signal.

1 This characteristic is for an up counter; the same idea is true for a down counter.

Free Range Digital Design Foundation Modeling Chapter 26

- 409 -

Figure 26.1: The solution (with annotations) to this example.

Example 26.2: Counter Timing Diagram

Use the BBD on the right to complete the timing
diagram below. For this disarm, the UP input
allows the counter to count up when enabled,
and count down when not asserted. The RCO
output indicates when the counter is outputting
its terminal count. The LD input takes
precedence over the HOLD and UP input. The
HOLD input takes precedence over the UP
input.

Solution: Figure 26.2 shows the solution to this example. Here are a few things to note:

 The LD signal is asserted on the first rising clock edge, which causes the counter to load the
DATA_IN value into the register.

Free Range Digital Design Foundation Modeling Chapter 26

- 410 -

 The HOLD input is asserted on the second clock edge, which prevents the count output from
changing.

 The first count operation occurs on the third rising clock edge; because the UP control input is
asserted, the counter output increments.

 On the fourth rising clock edge, the counter increments again, but because the counter is at its
terminal counter (in the up direction), the count output rolls over to “000”.

 On the seventh rising clock edge, the counter decrements because the UP input is unasserted.
The counter thus rolls under, and the resultant count is “111”.

 The RCO status output asserts at two different times for distinctly different reasons. The first
RCO assertion is because the UP input is asserted and the counter reaches its terminal count
in the UP direction. The second RCO assertion is because the UP signal unasserted and the
counter reaches its terminal count in the down direction.

 The HOLD input is synchronous, which means the FSM ignores the second and third pulses
on the HOLD signal, as they do not overlap a rising clock edge.

Figure 26.2: The timing diagram solution for this problem.

26.3 Typical Counter Feature Set Issues

When we use counters in our design, we must specify which features we are using and how the counter inputs
and outputs represent those features. We can do this because counters are straightforward to design in HDL. Our
mission is to use what counter features we need in our designs, but them must explicitly state how our counter
inputs and outputs represent those features. The problem is that a seemingly simple counter input such as “UP”
is not completely specified if we use it in a schematic. From the way we wrote “UP”, we can assume that when
asserted, it allows the counter to count. What is not clear is what happens when UP is not asserted. The only
option is to include disambiguation information somewhere obvious in the schematic.

Free Range Digital Design Foundation Modeling Chapter 26

- 411 -

Circuit Comments

This counter contains no data inputs or outputs. It is an up counter because
the UP signal is permanently connected to the asserted state. There is also
RCO. If you use this module in your circuit, you must state the width of
the counter as it is not included in the module.

This counter has a data output but does not contain data inputs. It is an up
counter, but we don’t need to state the data width as it is given by the
width of the DATA_OUT signal.

This is an up counter, with a data output width of “n”. We can assume that
the counter counts up when the UP control input is asserted, but we must
state what the counter does when the UP signal is not asserted. The !UP
signal typically causes the counter to hold or count down.

This counter has a data input, which means it needs a control signal that
allows the counter to load the data. This signal is typically a LD signal
(“load”). Anytime you have a data input signal, you need a control input
for that loading. The UP signal means that it counts up when asserted, but
you must specify what the counter does when UP is unasserted, as well as
the precedence of the UP and LD inputs.

This counter has a HOLD signal, which means the counter does not
change the output on the active clock edge. We must specify two items: 1)
we must specify how the !UP affects the counter, and 2) we must specify
which input (HOLD or UP) has precedence if they are both asserted.

This counter has three control inputs. In general, we must specify all
possibilities for the set of three inputs. DOWN means the counter counts
down and UP means it counts up, but we need to specify what happens if
both UP & DOWN assert simultaneously. You can assume the HOLD
input has precedence over the UP & DOWN inputs.

This is a counter that can count both up and down. We must specify what
happens when both inputs are simultaneously asserted.

This counter has a UP and CLR control input. We generally assume that
all UP/DOWN/HOLD inputs are synchronous, but it’s common for clear-
type inputs to be asynchronous. Whatever it may be, if we use this module
in our design, we must specify whether the input is synchronous or not.
You must specify the precedence of the CLR and UP inputs.

Table 26.1 Counter features that must be further explained when appearing in circuit.

Free Range Digital Design Foundation Modeling Chapter 26

- 412 -

Example 26.3: Design #1: Counter-Based Design

Design a circuit with the following count sequence is: (6,7,8,9,10,11,12, 13, 14, 15,
6,7,8,9,10...) This circuit also has an extra LED output that is on when the counter output
is greater than 11. Provide a top-level and lower-level BBD for your solution, and a state
diagram if necessary. Also, describe what controls your final solution.

Solution: This counter counts up except when the counter reaches its terminal count. There are two main design
issues with this problem: 1) we need the counter to count in the given sequence, and 2) we need the LED output
to indicate when the count is greater than eight. Figure 26.3(a) shows the top-level BBD for our solution.

The next step is to create an inventory of modules out final circuit requires. This counter does not start counting
from zero; once the counter output hits 15, the next number in the sequence is 6. In terms of what we consider a
typical counter, this means we need to load the counter with a new starting value once the counter hits its
terminal count of 15. For this issue, what we need to is connect the counter’s RCO status output to the LD
control input of the counter. If we also connect the value of “0110” to the counter’s data input, the counter loads
the value of 6 after displaying the value of 15.

We also need an LED that indicates when the counter output is greater than 11. We can do this by including a
comparator in our circuit, but we can do it with less hardware including some extra logic. Note that 12 in binary
is “1100”; this means that when the two MSBs of the counter’s output are set, the count must be greater than 11.
The LED output is thus an ANDing of the two MSBs of the counter’s output. Figure 26.3(b) show the lower-
level BBD for our solution.

(a) (b)

Figure 26.3: A block diagram for circuit (a), and underlying circuitry (b).

Figure 26.4 shows an example timing diagram for our solution; be sure to note these items:

 We include the RCO in this timing diagram to provide a deeper understanding of the problem.
When the RCO output is asserted on a rising clock edge, the counter loads the value of 6 into
the counter.

 The LED signal asserts when the count is greater than 11 and remains asserted until the
RCO signal causes the counter to load the new starting value. We show the causality
of these operations with the dot in the CNT signal output, synchronized to the rising
edge of the clock.

 The RCO is a signal internal to the circuit; we include it in the timing diagram for
clarity. The RCO signal asserts when the counter is outputting its terminal count.

Free Range Digital Design Foundation Modeling Chapter 26

- 413 -

Figure 26.4: The state diagram associated with this example.

The RCO controls the LD input of the counter, which is a control input. We hardwire the UP input to always be
asserted. These are both forms of internal control.

Example 26.4: Design #2: Counter-Based Design

Design a circuit with the following binary count sequences: the count sequence is either
(3→15) or (6→15) based on whether a button is pressed or not, respectively. This counter has
an extra LED output that indicates when the count is less than 8. Minimize your use of
hardware in your design. Provide a top-level and lower-level BBD for your solution, and a
state diagram if necessary. Also, describe what controls your final solution.

Solution: Both of these counts indicate we’re dealing with an up counter. We need to load either 3 or 6 into the
counter based on the press of a button. We also need some extra circuitry to indicate when the count is less than
8. Figure 26.5(a) shows the top-level BBD for our solution.

The next step is to make an inventory of the modules our solution requires. This problem requires that the
circuit make a decision based on the button; this means the circuit needs a MUX to decide whether to load one
of the two starting count values into the circuit. The circuit also requires a LED output that indicates when the
count is less than 8. We can do this using a comparator, but there is an easier way. For an unsigned 4-bit binary
count, if the MSB is set, the count is at least 8. This means we can provide the LED output as a complement of
the MSB of the CNT signal. Figure 26.5(b) shows the lower-level BBD for our solution.

(a) (b)

Figure 26.5: A block diagram for circuit (a), and underlying circuitry (b).

Free Range Digital Design Foundation Modeling Chapter 26

- 414 -

Both the MUX and the counter both have control inputs. An external button controls the MUX’s control input
while the RCO status output of the counter controls the LD control input of the counter. Thus, this circuit
utilizes both external and internal control.

Example 26.5: Design #3: Counter-Based Design

Design a circuit that has the following count sequence: (3→12). This counter has an extra
LED output that indicates when the count is 8. Minimize your use of hardware in your design.
Provide a top-level and lower-level BBD for your solution, and a state diagram if necessary.
Also, describe what controls your final solution.

Solution: Yet again, this counter is some form of an up counter. Previous problems dealt with starting the count
at 3; but a problem we need to deal with making 12 the terminal count for the counter. Figure 26.6(a) shows the
top-level BBD for our solution.

The next step is to create an inventory of the modules our solution requires. This counter needs the terminal
count at 12, which is different from the terminal count of 15 (in the up direction) for typical 4-bit counters. We’re
tempted to use a comparator for is function, but it is easier to simply provide the logic that determines when the
counter reaches the desired terminal count of 12. Additionally, we need to indicate when the count is 8 using the
output LED. We once again choose to use logic instead of using a comparator. The circuit uses a NOR gate for
this function; using an AND gate would require using three inverters rather than the one inverter when we use
the NOR gate. Figure 26.6(b) shows the final solution for this example.

(a) (b)

Figure 26.6: A block diagram for circuit (a), and underlying circuitry (b).

Figure 26.7 shows an example timing diagram for our solution. Here are a few things to note:

 The LED signal asserts when the counter output is eight; all other count values cause
the LED signal to de-assert.

 The LD signal is an internal signal, but include it in the timing diagram for clarity. The
circuit synchronously loads a new starting value into the counter when the counter’s
count value is 12. The LD asserts when after initially outputting 12 (after a nominal
propagation delay of the state registers and next-state decoder); the actual loading of
the starting count values happens on the next clock edge.

Free Range Digital Design Foundation Modeling Chapter 26

- 415 -

Figure 26.7: The state diagram associated with this example.

Finally, the circuit uses internal control; the two MSBs of the count control when LD signal of the
counter, which dictates when the counter loads the new starting value. Additionally, we hardwire the
UP signal to always be asserted.

Example 26.6: Design #4: FSM-Based Specialty Counter

Design a circuit that drives four LEDs with a binary count. The circuit only counts up.
The circuit also has an extra LED output that turns on for one [0,15] count, then off for
the next [0-15] count, etc. Minimize your use of hardware in your design. Provide a
top-level and lower-level BBD for your solution. Use a FSM to control your circuit and
provide a state diagram if necessary. Also, describe what controls your final solution.
Finally, state the frequency of the blinking LED in terms of the system clock.

Solution: The first step in this solution is to generate the to-level BBD, which we show in Figure 26.8(a). The
next step in this solution is to discern which underlying modules the solution requires.

The next step in this problem is to make an inventory of the modules the solution requires. This problem
requires a counter; the problem states that the circuit is counting using a standard 4-bit unsigned binary counting
sequence: [0,15]. The circuit’s other requirement is to turn on an LED for one traversal of the sequence, then
turn it off for the next traversal of the counter sequence. This means that the circuit needs to “remember”
whether the LED is on (so it can turn it off) or if the LED is off (so it can turn it on).

There are several approaches to doing generating the notion of being able to remember if the LED was on or
off. The most straightforward approach is to simply use a 5-bit counter; the MSB of the 5-bit counter could then
server as the X_LED output. However, the problem requests that we use an FSM, so this solution is not valid
(though interesting and instructive). The FSM for this solution needs to monitor the RCO output of the 4-bit
counter. When the FSM detects the asserting of the RCO, the FSM transitions from the X_LED on state to the
X_LED off state (or vice versa). The status input to the FSM is the RCO status output of the counter. We can
then control the LED output with the control output of the FSM. Figure 26.9 shows the state diagram we use to
describe the FSM in our solution.

Figure 26.8(b) shows the lower-level BBD for our solution. Here are a few things to note in the circuit
solution:

 The counter is always counting up, so we connect the counter’s UP control input to ‘1’.

 The dotted line in Figure 26.8(b) represents the CKT box in Figure 26.8(a).

Free Range Digital Design Foundation Modeling Chapter 26

- 416 -

 The circuit diagram in Figure 26.8(b) does not connect the control and status signals. Anyone
reading the diagram understands that the RCO output from the counter module connects to the
RCO input to the FSM.

 We omit the clock signal from the lower-level BBD for clarity. Routing clock signals and
control/status signals quickly makes circuit diagrams unreadable, so we generally do not do it
unless there is some compelling reason to do so. Note that we do leave in the “triangles” to
remind ourselves that the associated devices are indeed synchronous and do in fact require
connection to a clock signal.

(a) (b)

Figure 26.8: A block diagram for circuit (a), and underlying circuitry (b).

Figure 26.9: The state diagram associated with this example.

The circuit uses a 4-bit counter. The FSM uses the RCO status output from the counter to control
transitions between the two states in the FSM. This means that the FSM changes states every 24, or 16
clock cycles. We calculate the blink frequency from the fact that the LED needs to be on for 16 counts
and then off for 16 counts, as directed by the FSM. This means the system clock frequency is 32 times
greater than the blink frequency.

We tie the counter’s UP control input in this circuit to ‘1’, so that is internal control. The circuit also
contains an FSM. This circuit has both internal and circuit control.

Free Range Digital Design Foundation Modeling Chapter 26

- 417 -

Example 26.7: Design #5: FSM-Based Specialty Counter

Design a 4-bit binary counter that counts up through two full count sequences, then
down for two full count sequences, the up again, etc. This circuit has two extra LED
outputs. One LED toggles each system clock cycle; the other LED toggles each
completion of the count sequence, no matter if it is the up or down sequence. Minimize
your use of hardware in your design. Provide a top-level and lower-level BBD for your
solution, and a state diagram if necessary. Also, describe what controls your final
solution.

Solution: This example uses an up/down counter with a plain 4-bit binary up counter : [0,15]. In addition, there
are two LED outputs. We can generate the desired output for one LED by simply connecting it to the system
clock. The other LED toggles with each traversal of the count sequence in either the up or down direction.

The control we’re looking for in this circuit is for the LED blinking at the lower frequency and the count
directions. We can control the blinking LED using states in a state machine: one state for both the on and off
LED. The other form of control this circuit requires is the count sequence traverses in the up direction for two
sequences, followed by the down direction for two sequences, which means the circuit requires memory to know
which state it is in. The most straightforward way to do this is with a FSM.

The next step is to make an inventory of the modules this circuit requires. From the description in the previous
paragraph, we seem to only require a standard 4-bit up/down counter and a FSM; if we need other modules, we
can add them later.

Figure 26.10 shows the final circuit for this problem. Here are a few comments to solidify your understanding

 One LED connects directly to the clock input without any other logic. The BBD shows this
connection, but we once again do not connect the clock to the synchronous to the other
synchronous modules in the circuit to make the diagram more readable.

 The other LED is an output of the FSM, thus the FSM controls the blink frequency of that
LED.

(a) (b)

Figure 26.10: A block diagram for circuit (a), and underlying circuitry (b).

Figure 26.11 shows the state diagram modeling the FSM that controls this circuit.

 The RCO output of the counter controls all state transitions.

 We use Moore-type outputs to control the slower blinking LED and the count direction; every
state transition toggles the value of the FSM’s Moore output.

 The FSM controls the counter direction; the top two states make the counter up; the bottom two
states makes the counter count down.

Free Range Digital Design Foundation Modeling Chapter 26

- 418 -

Lastly, we control the circuit using another circuit, namely the FSM. The FSM reads the status output of the
counter (RCO) and controls the count direction by assigning values to the counter’s UP control input.

Figure 26.11: The state diagram associated with this example.

The FSM in this circuit controls the counter’s UP input, as well as other operations in the circuit. Because the
FSM provides all control in this circuit, we consider the solution as having circuit control.

Example 26.8: Design #6: Counter-Based Design

Design a circuit that outputs the following sequence:

 (…14,15,0 0 0 1,2,3,4,5,6,7,8,9,19,11,12,13,14,15,0,0,0,1,2…)

Minimize your use of hardware in your design. Provide a top-level and lower-level BBD for
your solution, and a state diagram if necessary. Also, describe what controls your final
solution.

Solution: This counter is some form of an up counter, but has a special feature: the counter outputs the value of
zero for three counts (clock cycles). Figure 26.12(a) show the top-level BBD for our solution.

The next step is to make an inventory of the modules our solution requires. Here is an example thought
process:

 We need something to control the count operation; an FSM is a straightforward choice.

 The heart of this design includes a counter, which the FSM controls. Specifically, we need a
counter with an UP input such that the counter counts up when the UP input is asserted and
holds when the UP input is not asserted. The FSM must control the UP control input of a
counter.

 We only require a standard 4-bit up counter and a FSM; if we need other modules, we toss them
in later without losing and credit

Figure 26.12(b) shows the lower-level BBD for our solution. We include a note in the lower-level BBD that
indicates how the counter’s UP control input operates; the circuit would not be 100% if we did not do this.

Free Range Digital Design Foundation Modeling Chapter 26

- 419 -

(a) (b)

Figure 26.12: A block diagram for circuit (a), and underlying circuitry (b).

Figure 26.13 shows state diagram for modeling the FSM that controls our circuit. Here are some interesting
things to note:

 The state diagram indicates the circuit waits for an RCO, and then does not increment the
count for effectively three clock cycles. Although there are only two states where the UP
signal is not asserted, it is not until the third clock cycle after RCO asserts that the counter
once again begins increment.

 The transition in the “count” state is conditional as the FSM is waiting for an asserted RCO
signal to transition to the “hold_1” state. Transitions from the other states are unconditional as
those two states only serve to provide a delay on the count of zero.

Figure 26.13: The state diagram associated with this example.

The timing diagram in Figure 26.14 shows the critical timing of the circuit. Here are some things to note:

 When the counter reaches its terminal count, the RCO asserts. When RCO is asserted, the FSM
transitions to the “hold_1” state.

 When the FSM enters the “hold_1” state, it de-asserts the UP signal, which is a control signal
for the counter. The timing diagram shows a small offset to highlight the fact that the UP signal
de-asserts after the active clock edge, which means the counter does not increment on the next
clock edge.

 The FSM de-asserts the UP signal for two states; the UP signal asserts upon entering the
“count” state, but does not cause the counter to increment until the next active clock edge. It
seems that there should be three hold states in this FSM, but the timing diagram shows that this
is not the case.

Free Range Digital Design Foundation Modeling Chapter 26

- 420 -

Figure 26.14: The state diagram associated with this example.

The counter in this circuit requires control; this problem uses an FSM to control the counter. Thus, this
circuit uses circuit control.

Example 26.9: Design #7: Counter-Based Design

Design a circuit that outputs the following sequence:

 (…14,15,15,15,0,1,2,3,4,5,6,7,8,9,19,11,12,13,14,15,15,15,0,1,2…)

Minimize your use of hardware in your design. Provide a top-level and lower-level BBD for
your solution, and a state diagram if necessary. Also, describe what controls your final
solution.

Solution: This need requires a special up counter, which is similar to the previous problem, but now the counter
pauses for three clock cycles on the count of 15. Figure 26.15(a) shows the top-level BBD for this problem.

The next step is to make an inventory of the modules our solution requires. The heart of this problem is a
counter; because the counter pauses on one particular count, we know we need to control the counter in a
special way. The best way to do this is to include a FSM that controls the UP input of a counter. Because
the count spans from [0,15], we know we need a 4-bit counter. Figure 26.15(b) shows the lower-level
BBD for the solution.

(a) (b)

Figure 26.15: A block diagram for circuit (a), and underlying circuitry (b).

Free Range Digital Design Foundation Modeling Chapter 26

- 421 -

Figure 26.16 shows the state diagram for the solution. Here are some important items to note.

 We model the UP signal as a Mealy-type output in the “count” state and as a Moore-type output
in the other two states. The UP output of the FSM is officially a Mealy-type output, but
modeling it as both types of outputs makes the state diagram more readable.

 Once the counter reaches 15, the RCO asserts, which causes the FSM to transition to the
“hold_1” state. The state diagram de-asserts the UP input when the RCO asserts, which holds
the count at 15. The count holds at 15 until it eventually returns to the “count” state, where the
counter starts at zero due to the asserted UP signal in the “hold_2” state.

 The two hold states provide the three count delay when the count reaches 15.

Figure 26.16: The state diagram associated with this example.

Figure 26.17 shows an example timing diagram for our solution. We include the RCO in this timing diagram to
provide a deeper understanding of the problem. Here are some important points to note in the timing diagram.

 The RCO asserts when the CNT output reaches its terminal value of 15.

 The asserted RCO causes the FSM to transition from the “count” state to the “hold_1” state.

 The UP signal re-asserts upon entering the “hold_2” state. We place tiny delays in the timing
diagram to indicate that it’s not until after enter the “hold_2” state that the UP signal asserts.
This means that the counter does not increment from 15 to zero, until the clock cycle that
transitions the FSM from the “hold_2” state to the “count” state. This is a particularly important
mechanism to understand.

 When the FSM enters the “count” state from the “hold_2” state, the count is now at zero, and
the RCO de-asserts, which allows the FSM to count starting from zero in the “count” state.

Figure 26.17: An example timing diagram for our solution.

Free Range Digital Design Foundation Modeling Chapter 26

- 422 -

The counter in this circuit requires control; this problem uses an FSM to control the counter. Thus, this
circuit uses circuit control.

26.4 Special Counter Circuits: Event Counters

When you think of counters, you may have the idea that they are simply circuits that step through a given output
sequence of values in an automatic manner. However, we can configure counters to act as event counters, where
the main task is to determine the number of times a certain “event” occurs. The event in question could be things
like how many times an RCA generates a CO, how many times a circuit sees a certain value, etc. Additionally,
this form of counting is a special form of accumulation, but instead of accumulating any value, the circuit is
always accumulating ‘1’.

In the special case where you require a circuit that always accumulates ‘1’, it’s always best to use a counter
rather than an accumulator2. Counters are registers, so they naturally cover the register part of the typical
accumulator. Counters typically increment the count, which is an operation that always adds ‘1 to the current
count; this operation handles the addition operation, which the RCA associate with a standard accumulator
handles.

Example 26.10: Design #7: Counter-Based Design

Design a circuit that counts the number of times the value of 0x47 appears on the circuit’s
input. Upon the press of a button, the circuit evaluates the circuit’s 8-bit unsigned binary data
input on 1024 consecutive rising clock edges. The circuit has two outputs: one output shows
the final count; the other output is an LED that turns on when the circuit completes the
inspection of the 1024 input data values. Provide a top-level and lower-level BBD for your
solution, and a state diagram if necessary. Also, describe what controls your final solution.

Solution: This example “counts” something (a value on the input), which means it’s an ideal situation to use a
counter as an event counter. The counter then counters the number of times the value of 0x47 appears on the
circuit’s inputs. Our first mission is to generate a top-level BBD. The problem clearly states that the circuit’s
inputs are an 8-bit data signal, a button, and a clock signal, but the problem does not clearly state the output.

The circuit examines 1024 data inputs on consecutive clock edges; the maximum possible count determines the
data width of the count output. The extreme case is where all data inputs are 0x47, which would result in a count
of 1024. It would be tempting to think the width of the count output is ten bits due to the fact that 210=1024, but
this is not correct. The maximum value for ten bits is when all bits are set, which is the number 1023; this
indicates that using ten bits for the output width is not sufficient. Thus, the bit-width of the output is eleven bits.
Figure 26.18(a) shows the top-level BBD for our solution.

The next step is to make an inventory of the modules our solution requires. We know we require one counter to
count the occurrences of 0x47; but we also need another counter to counts 1024 times, which is the number of
data inputs we need to examine. We need to make comparisons, so we need a comparator as well. Finally, we
need a FSM to control the operation of the circuit. Figure 26.18(b) shows the final circuit for our solution. Here
are some important things to note about our solution.

 Both counters use the same CLR signal, which is an output of the FSM.

 We hardwire the comparator’s B input to the value we’re checking for.

2 Recall that an accumulator comprises of an RCA and a register.

Free Range Digital Design Foundation Modeling Chapter 26

- 423 -

 The circuit has no need for the DATA output of the 10-bit counter, so we leave it
unconnected. The circuit completes examining the input data when the RCO associated with
the 10-bit counter asserts.

 The diagram indicates that the counter’s CLR control input has precedence of the counter’s
UP control signal. We officially need to list this to ensure the circuit and corresponding state
diagram make sense.

 The 10-bit counter always counts up, we connect the UP control of the 10-bit counter to ‘1’.

(a) (b)

Figure 26.18: A block diagram for circuit (a), and underlying circuitry (b).

Figure 26.19 shows the state diagram describing the FSM in Figure 26.18(b). Here are some fun things to note
about the state diagram.

 The “wait” state waits for a button press. The FSM uses the CLR as a Mealy-type output, so
when the FSM detects a button press, it asserts the CLR signal. Modeling CLR as a Mealy-
type output is arbitrary, but since it saves a state, we typically do this when we can.

 The “c_A” state is where the circuit actuates the event counter. In this case, we assign the UP
control output of the to the comparator’s EQ status output. While it seems tempting to
connect the EQ directly to the event counter’s UP control input, this would potentially cause
the event counter to increment while in the “wait” state. There are a few ways to handle this
issue; having the FSM deal with the issues is always the best solution.

 The FSM continues in the “count” state until the FSM receives an asserted RCO output from
the circuit’s event counter.

Figure 26.19: The state diagram associated with this example.

Free Range Digital Design Foundation Modeling Chapter 26

- 424 -

This circuit has two forms of control. First, the BTN input is an external control as it starts the search
process in the circuit. The two counters in the circuit have control inputs that the circuit’s FSM
provides; thus, the circuit has both external control and circuit control.

26.5 Digital Design Foundation Notation: Counters

We consider the counter to be a Digital Design Foundation modules. The counter is a controlled circuit.
Figure 26.20 shows the appropriate digital design foundation notation for the counter. This foundation
module is more flexible and thus harder to define than other foundation modules. For example, the only
required signal for a counter is a clock, as we consider the counter a synchronous device; the only
required information we need to know about counters is the bit-width of their internal storage elements.
Because counters are straightforward to design and/or model in with an HDL, we typically only include
(or connect) counter inputs and outputs as we need them.

Figure 26.20: Typical data, control and status signals for a counter.

Table 26.2 shows all the inputs and outputs that we can typically associate with a counter. Essentially
Table 26.2 lists a set of features that we can apply to a counter. The two things to note about this list is
1) that not every counter has every listed feature, and 2) actual counter implementations typically
combine many of the control features as required into less signals than listed.

Free Range Digital Design Foundation Modeling Chapter 26

- 425 -

 Signal Name Description

IN
P

U
T

D

A
T

A

DATA_IN
A counter is a register, so it can typically load data in to the counter’s storage
elements. The DATA_IN input is the data that is loaded to the counter.

O
U

T
P

U
T

D

A
T

A

DATA_OUT
A counter is a register, so the DATA_OUT signal is the data currently being
stored in the counter’s storage elements. The DATA_OUT signal is necessarily a
given value in the counter’s count sequence.

C
O

N
T

R
O

L

CLK
Counters are typically synchronous circuits, in that many counter operations are
synchronized with the active edge of the clock signal.

LD
As with registers, this signal controls the latching (loading) of the DATA_IN
signal to the counters storage elements. This signal is always synchronous.

CLR
Latches 0’s into each of the counter’s storage elements. Can be synchronous or
asynchronous.

HOLD, EN
Prevents the output from changing (HOLD) or enables the output to change (EN)
based on other control signals (sort of the same idea)

UP
Directs counter to count “forward” in the sequence; the an asserted up signal
counts forward while an non-asserted count signal counts backwards

DOWN Directs the counter to count “backward” in the sequence.

S
T

A
T

U
S

RCO

This signal indicates when the counter has reached the terminal value in the
associated count sequence. For counters counting up, the terminal value is the
max count value (all internal storage elements set); for counters counting down,
the terminal value is the min counter value (all internal storage elements cleared).

Table 26.2: The foundation description for a full-featured counter.

Free Range Digital Design Foundation Modeling Chapter 26

- 426 -

26.6 Chapter Summary

 A counter is a special type of register; we consider a counter to be a register with added features beyond that
of a simple register. Counters typically have load and clear inputs as do simple registers, but also have extra
inputs to control the operation of the counter.

 The counting and most other operations on a counter are synchronous. Often times the clear control input is
asychrounous. BBDs must state such information in order to be correct.

 Extra inputs to counters are hold inputs (prevents counter output from changing state) and up & down inputs
(allows the counter to increment or decrement, respectively).

 The exact function of counter outputs are not always evident from schematic diagrams, which means BBDs
must include appropriate information to disambiguate the such issues in order to achieve correctness.

 Counters often include status outputs such as RCO (ripple carry out) that indicate when the counter has
reached its terminal count.

 Counters output a repeatable sequence of values, which we refer to as the count. Counters come in many
flavors; this text only uses binary counters. Other counter types include decade counters, Johnson counters,
twisted ring counters, etc.

 Counters can act as accumulators when the item being accumulated is a ‘1’. We often refer to counters
configured in this manner as event counters.

Free Range Digital Design Foundation Modeling Chapter 26

- 427 -

26.7 Chapter Exercises

1) The block diagram on the right shows a model of an 8-bit
counter. Use the following assumptions in order to complete the
following timing diagram. Assume propagation delays are
negligent.

 The LD input enables the DIN loading into the counter

 The RESET input is an asynchronous and active low
used to reset the counter

 The COUNT output shows the current value stored by
the counter

 The counter counts up when the UP input is asserted
(active high) or down otherwise. All count operations
are synchronous.

2) Show a schematic that uses two standard 8-bit up counters to implement a 16-bit up counter.

3) In your own words, describe how it is that a counter can replace an accumulator in certain circumstances.

4) Briefly describe the difference between the RCO when the counter is counting up verse counting down.

Free Range Digital Design Foundation Modeling Chapter 26

- 428 -

26.8 Design Problems

For the following problems:

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution

 Minimize the number of states in the associated state diagrams

 Minimize the use of hardware when problem require extra hardware

 Assume all inputs and outputs are positive logic unless stated otherwise

 Disregard all setup and hold-time issues

 For sequence detector problems assume the X input is stable when each clock edge arrives and that X
can change no more than once per clock period.

 State all forms of control for your solution.

1) Design a circuit that displays the sum of two 8-bit unsigned binary inputs. The circuit also outputs the
number of times the two input values generate a carry. The count of the number of carrys is based on what
values are being summed on the rising clock edge of the circuit; the maximum value of this count is 255 (the
counter rolls over to 0 automatically). Don’t use an FSM in this design.

2) Design a circuit that displays the sum of two 8-bit unsigned binary inputs. The circuit also outputs the
number of times the two input values generate a carry. The count of the number of carrys is based on what
values are being summed on the rising clock edge of the circuit; the maximum value of this count is 255 (the
counter rolls over to 0 automatically). To make this circuit start operating, it must detect a button press,
which also causes a clearing of the counter. Also, once the count value reaches the maximum count, it rolls
over, but the circuit must wait for another button press before the cycle is repeated.

3) Design a circuit that outputs either the output of a 4-bit binary counter or zero. If the button input to the
circuit is pressed (button=’1’), then circuit outputs the binary count; otherwise the circuit outputs zero. The
binary counter is an up counter and thus always counts up whether the button is pressed or not. Don’t use an
FSM in your design.

4) Design a circuit that outputs either the output of a 4-bit binary counter or zero. If the button input to the
circuit is pressed (button=’1’), then circuit outputs the binary count; otherwise the circuit outputs zero and
disables the counter as long as the button is not pressed. The binary counter is an up counter and thus always
counts up. Don’t use an FSM in your design.

5) Design a circuit that outputs the following sequence: (…1, 0, 3, 0, 5, 0, 7, 0, 1, 0…) on an active (rising)
clock edge. Minimize the bit-width of the sequence outputs. Don’t use an FSM in your design.

6) Design a circuit that has eight 8-bit inputs (A,B,C,D,E,F,G,H). Each input is output for one clock cycle and
the circuit cycles through the eight inputs continuously. If the button is pressed (button = ‘1’), the circuit
starts over at outputting the eight values starting with the first value (A). The circuit outputs the first value
(A) as long as the button remains pressed. Don’t use a FSM in this design.

7) Design a circuit that outputs the following sequence: (…2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, 0, 14, 0, 0, 0, 2…) an
active clock edge (rising). Minimize the bit-width of the sequence outputs. Don’t use an FSM in your
design.

8) Design a circuit that does the following. If the circuit detects a button press on an active clock edge, the
circuit increments the 8-bit output, but then holds that count value for three clock cycles before waiting for
the next button press. While the circuit is holding the count value, the circuit outputs the value 0xF3.
Consider this counter to be an 8-bit counter and that it only counts up.

Free Range Digital Design Foundation Modeling Chapter 26

- 429 -

9) Design a circuit that has four 8-bit inputs (A,B,C,D). Each input is output for one clock cycle and the circuit
cycles through the four inputs continuously. If the button is pressed (button = ‘1’) for two clock cycles, the
circuit starts the count sequence over starting with the A input. The circuit keeps traversing the sequence
while the number of button presses is less than two.

10) Design a circuit that implements a 4-bit binary count. The counter count up normally counts up, but if a
button is pressed for two clock cycles, the counter waits three clock cycles before restarting the count at the
value of 2. The circuit also has three LED outputs; when the circuit is not counting, the LEDs show “110”;
otherwise the LEDs show “001”.

11) Design a circuit that has four 8-bit unsigned binary inputs. When a button is pressed, the circuit finds the
largest of the four input values and continually outputs that value. Use no more than one comparator in your
design. Use an FSM in this design.

12) Design a circuit that drives four LEDs with a binary count. The circuit only counts up, and only counts up if
a button is ON and has been on for at least two clock cycles. Use a standard counter for this problem. The
circuit also has two extra LED outputs; one LED indicates when the circuit is in the counting mode; the
other LED output indicates when the button is ON but the count is not counting.

13) Design a circuit that drives four LEDs with a binary count. This circuit only increments every third clock
cycle. This circuit also has an extra LED output that blinks with a 66.7% duty cycle.

14) Design a circuit that drives four LEDs with a binary count. This circuit only increments every third clock
cycle. This circuit also has an extra LED output that blinks with a 33.3% duty cycle. This circuit also has a
button input that synchronously clears the counter when pressed; otherwise, the button has no effect.

15) Design a circuit that drives five LEDs with a special binary count. The count sequence is: (3, 4…29, 30, 31,
3, 4…). This circuit also has an extra LED output that is ON when the counter output is greater than 15. Do
this problem both with and then without an FSM.

16) Design a circuit that drives four LEDs with a binary count. This circuit has a button that controls the
resetting of the circuit, where the button must be pressed for two clock cycles in order for the a synchronous
reset to occur but the counter keeps counting while the button is pressed before a reset. The count output
from this circuit only counts in the up direction. Assume the button will not be pressed for more than once
per clock cycle.

17) Design a circuit that drives four LEDs with a binary count. This circuit has a button that controls the
resetting of the circuit, where the button must be pressed for three clock cycles in order for the reset to
occur. The count output from this circuit only counts in the up direction. This circuit also has an LED output
that turns on for one clock cycle to indicate a reset is occurring.

18) Design a circuit that drives four LEDs with a binary count. This circuit has a button that disables the count
sequence as follows: if button is pressed for at least three clock cycles, the counter retains the same count or
two clock cycles or for as long as the button is pressed before it begins counting up again. The count
sequence only counts up, and keeps counting while the button is pressed for less than three clock cycles. .

19) Design a circuit that drives four LEDs with a binary up count. This circuit has a button that disables the
count sequence for eight clock cycles if the button is pressed. The circuit then continues the counting
sequence for at least one clock cycle before entertaining the notion of a delaying for eight clock cycles if the
button is once again pressed. Use no more than four states in your design. For the state diagram, show both a
Mealy and Moore-type FSM. HINT: use two different counters in this design.

20) Show how you can connect two 8-bit up/down counters to create a 16-bit up/down counter. Don’t use a
FSM in this problem.

21) Design a 4-bit binary counter circuit. The counter counts up continuously when either of the circuits’ two
buttons are pressed, otherwise the counter counts down. Don’t use a FSM in this problem

22) Design a 4-bit binary counter circuit. The counter counts up continuously when one and only one of the
circuits two buttons are pressed, otherwise the counter counts down. Don’t use a FSM in this problem

Free Range Digital Design Foundation Modeling Chapter 26

- 430 -

23) Design a 3-bit binary counter that counts in the following sequence if a button is pressed:
(…3,4,5,6,7,3,4…). If the button is not pressed, the circuit counts in the following sequence:
(…1,2,3,4,5,6,7,1,2,3,4…).Don’t use a FSM in this problem

24) Design a 4-bit binary counter circuit that counts in one of the two sequences: (0,6,7…,12,13,14,15,0,6…) or
(0,3,4,5,6,7…,12,13,14,15,0,3,4,5…). The circuit switches back and forth between the two sequences. The
circuit also has a button that when pressed, makes the circuit’s count output zero but internally keeps track
of the internal counting . The state diagram does not need to represent the 16 states of the count.

25) Design a circuit that outputs the following sequence: (…0,1,2,3,4,5,6,0,1…).

26) Design a circuit that outputs the following sequence: (…6,7,8,9,10,11,12,6,7….).

27) Design a circuit that outputs one of the two following sequences: (…4,5,6,7,8,9,10,4,5…) or
(2,3,4,5,6,7,8,9,10,2,3…). The circuit outputs the first sequence if the button is pressed or the second
sequence otherwise.

28) Design a circuit that outputs one of the two following sequences: (…4,5,6,7,8,9,4,5…) or
(5,6,7,8,9,10,11,12,5,6…). The circuit outputs the first sequence if the button is pressed or the second
sequence otherwise.

29) Design a circuit that outputs the following two sequences: (…8,9,10,11,12,13,14,15,0,8…) or
(…10,11,12,13,14,15,0,10…). The circuit outputs one sequence and then pauses on the count of zero for at
least two clock cycles or until a button is pressed (whichever is shorter) before it starts counting the next
sequence. The output continuously cycles through the two sequences.

30) Design a circuit that outputs the following three sequences: (…8,9,10,11,12,13,14,15,0,8…),
(…10,11,12,13,14,15,0,10…), and (…7,8,9,10,11,12,13,14,15,0,7,8…). The circuit outputs one sequence
and stops at a zero count until a button is pressed. The output continuously cycles through the three
sequences. Design a circuit that continually outputs the following two sequences one after the other. This
circuit has four input switches that form a binary number. The sequences are
(0,7,8,9,10,11,12,13,14,15,0,7…) and (0,“switch value”,…15,0,”switch value”,…).

31) Design a circuit that continually outputs the following sequence: (…7,1,2,3,4,5,6,7,6,5,4,3,2,1,2,3 …).

32) Design a circuit that displays the sum of two 8-bit unsigned binary inputs. The circuit also outputs the
number of times the two input values generate a carry. The count of the number of carrys is based on what
values are being summed on the rising clock edge of the circuit; the maximum value of this count is 255 (the
counter rolls over to 0 automatically). If the summation of the two inputs generates a carry, the sum output
shows 0xFF; otherwise it displays the sum.

33) Design a circuit that displays the result of one of the following addition operations: A+B, B+C, A+C, B+B.
The choice of which result it displays is based on the values of two switches; SW1 & SW0, where “00”
chooses A+B, “01” chooses B+C, etc. Any operation that generates a carry outputs the value of 0xFF
instead of the result of the addition and also turns on an LED. The LED remains off when there is no carry
generated. Consider A, B, C, and the result of the additions to be 8-bit unsigned binary values.

34) Design a circuit that displays the result of one of the following addition operations on consecutive clock
cycles: A+B, B+C, A+C, B+B. Any operation that generates a carry outputs the value of 0x00 instead of the
result of the addition and also turns on an LED. The LED remains off when there is no carry generated. The
circuit initially displays 0xFF until the a button press that starts this display sequence; the state of the LED
does not matter in this state. Once the circuit completes the display sequence, the circuit waits for another
button press before starting the sequence again. Consider A, B, C, and the result of the additions to be 8-bit
unsigned binary values.

35) Design a circuit that displays the result of one of the following addition operations on consecutive clock
cycles: A+B, B+C, A+C, B+B. If any of the operations generate a carry, the circuit does not go onto the next
operation until the data inputs are such that they do not generate a carry. Any operation that generates a
carry outputs the value of 0x00 instead of the result of the addition and also turns on an LED. The LED
remains off when there is no carry generated. The circuit initially displays 0xFF until a button press that
starts this display sequence; the state of the LED does not matter in this state. Once the circuit completes the

Free Range Digital Design Foundation Modeling Chapter 26

- 431 -

display sequence, the circuit waits for another button press before starting the sequence again. Consider A,
B, C, and the result of the additions to be 8-bit unsigned binary values.

36) Design a circuit that, at the press of a button, outputs A+B (addition) for eight clock cycles, then outputs
A+C for eight clock cycles. This circuit also has two other outputs in addition to the sums: one output
indicates which operation is being output, the other signal indicates when the operation generates a carry. If
a carry is generated, no need to do anything to the sum output. The circuit outputs zero as it waits for a
button press, otherwise it always outputs the sum. Assume inputs values are in 10-bit unsigned binary
format.

37) Design a circuit that, upon the press of a button, continuously outputs A+B (addition) for as many clock
cycles are required to generate 16 operations without a carry, then does the same thing for a set of A+C
calculations. This circuit also has two other outputs in addition to the sums: one output indicates which
operation is being output, the other signal indicates when the operation generates a carry. If a carry is
generated, the circuit outputs zero. The circuit should output zero while waiting for a button press. For this
problem, consider the inputs and sum output to be 16-bit unsigned binary numbers.

38) Design a circuit that counts the number of time the input A is two greater than the B input on the clock edge,
where both A & B are 8-bit unsigned binary number. The count automatically rolls over after logging the
127 occurrence. The output of this circuit is the count total.

39) Design a circuit that counts how many times B>A on the circuit’s active clock cycle edge. The count goes
up to 50. When the count reaches 50, the circuit clears the counter and counts the number of times A>B. A
& B are 10-bit unsigned binary numbers. The circuit outputs the count. The circuit does this continuously.

40) Design a circuit that counts the number of times A=B, then A<B, then A>B, on an active clock edge. This
circuit switches modes when the counter reaches 50 and also clears the counter. A & B are 10-bit unsigned
binary numbers. The circuit’s output are the count value, and a single-bit output for each of the three tests
(A=B, A<B, A>B).

41) Design a circuit that counts the number of times the sum of A+B is both valid and negative. This count
resets when it reaches 50 or 40, depending on whether a button is pressed (pressed==50). Once the circuit
reaches it the maximum count, it holds that count until a different button is pressed, at which time it clears
the counter. The circuit does not start counting again until the circuit’s other button is pressed. Consider A &
B to be 8-bit signed binary values in RC format. The only output of the circuit is the count value.

42) Design a circuit that shows a count of how many times a given number on the input has repeated itself based
on the value of the input on the active clock edge. The input number is an 8-bit unsigned number. The
circuit starts at the press of a button and runs forever without getting tired. The output shows the number of
repeats from 0-127; this count rolls over automatically after the 127th consecutive value is detected on the
input on the active clock edge.

43) Design a circuit that counts how many times it detects the sequences “1001” and “11011” on a single serial
input. When it detects the former sequence, it increments an 8-bit counter; when it detects the latter
sequence, it decrements the same 8-bit counter. The most straight-forward approach is to use two FSMs in
your; be sure to provided state diagrams for any FSM you use in your design. Assume the serial input does
not change more than once per clock cycle. Allow the counter to underflow or overflow as needed. If both
sequences are found simultaneously, the counter does not change its output. Both sequence detectors are the
resetting type.

Free Range Digital Design Foundation Modeling Chapter 27

- 432 -

27 Shift Registers

27.1 Introduction

Registers come in many forms: this chapter deals with one a common form: the shift register. As the name
implies, shift registers are registers with special functionality. This chapter introduces shift registers along with
their basic applications.

Main Chapter Topics

SHIFT REGISTERS: This chapter describes various flavors of shift registers and their
basic implementations. This chapter also describes several special aspects of shift
register including rotates, barrel shifts, and arithmetic shifts.

Chapter Acquired Skills

 Be able to describe the shift register’s special mathematical operations

 Be able to use the various vernacular associated with shift registers

 Be able to describe shift types including barrel shifts, arithmetic shifts, and rotates

 Be able to describe the various control inputs of shift registers

 Be able to use shift registers in solutions to digital design problems

27.2 Shift Registers: Another Specialty Register

A shift register is another type of register. Shift registers, and their various flavors, are useful devices because of
their ability to quickly perform a small but useful subset of mathematical operations.

We can decompose a shift register down to its most basic component, which we refer to as a shift register cell.
This cell is a storage element, which we model as a D flip-flop. Figure 27.1 shows a schematic diagram of a
generic shift register. Upon further inspection, you should discern the following:

 We can model the n-bit shift register as a set of “n” specially connected D flip-flops. The D flip-
flops in the shift register share the same clock signal.

 The difference between simple registers and shift registers is in the way that the individual
storage elements connect to each other. While simple registers have D flip-flops that receive
data from the inputs, the shift register’s storage elements receive data from interconnections
between individual storage elements. Figure 27.1 shows that the output of one flip-flop becomes
the input to the adjacent flip-flop in the shift register, which allows the device to “shift”.

 The number of bit storage elements in a shift register defines shift registers. The shift register in
Figure 27.1 represents a generic model of a shift register including the magic ellipsis in strategic
locations. Common descriptions of shift registers include “a 4-bit shift register” or “an 8-bit
shift register”, etc. Figure 27.1 shows a generic “n-bit shift register”.

Free Range Digital Design Foundation Modeling Chapter 27

- 433 -

Figure 27.1: A typical n element shift register.

Figure 27.2(a) shows a schematic diagram of a 4-bit shift register while Figure 27.2 (b) shows a model of the
underlying circuitry. Figure 27.3 shows an example timing diagram for a 4-bit shift register in Figure 27.2(b).
Figure 27.3 contains annotations to help with the following description.

(a) (b)

Figure 27.2: A block diagram for a 4-bit simple register (a) and a model of the underlying
circuitry of a 4-bit shift register (b).

Figure 27.3: An arbitrary timing diagram associated with the shift register of Figure 27.2(b).

 This is a 4-bit shift register, meaning that the shift register circuitry contains four storage
elements. Figure 27.2(a) shows a BBD for a 4-bit shift register.

 The schematic in Figure 27.2(b) labels each of the internal shift register signals to help describe
the operation of the basic shift register in Figure 27.3.

Free Range Digital Design Foundation Modeling Chapter 27

- 434 -

 The “Qx” notation indicates the bit positions of the storage elements in the shift register. We
consider Q3 the higher order bit while Q0 (or data_out) is the lowest order bit1. Note that
data_out and Q0 are the same signal.

 We consider shift registers to “shift” in either direction; that is, they shift to the left (“shift left”)
or shift to the right (“shift right”). Figure 27.2(b) shows a right-shifting shift register.

 The notion of this circuit shifting is primarily a term of convenience and not altogether accurate.
The “thing” being shifted in Figure 27.2(b) is the “data”. Another way to view this is that the
circuit inputs 1’s and 0’s from the left side of the circuit and passing them through to the right
side.

 Since this is a sequential circuit, the storage elements have a state associated with them. For the
timing diagram of Figure 27.3, the initial state of each storage element is ‘0’, which is arbitrary.

 Since the storage elements are D flip-flops, they only change state on the active clock edge.

 On the clock edge labeled ‘1’, all of the flip-flops transfer the value on their inputs to their
outputs. On the active clock edge, the left-most flip-flop latches “data_in”; Q3 latches into the
second to the left-most flip-flop, etc.

 The “data_in” input can change at various times; it only has an effect on the active clock edge.

If you stand back a few paces, you can see the so-called shifting action of the shift register. The individual
signals are shifted versions of each other; specifically, Q3 is a shifted version of “data_in”, Q2 is a shifted
version of Q3, etc. Another way to view this is that the “data_out” signal is a delayed version of the “data_in”
signal. In this case, Q0 is a delayed version of Q3; the delay is three clock cycles because the pulse appearing on
Q0 is the same pulse that appeared on Q3 three clock cycles earlier. The right-shift operation (one shift in the
right direction) is the same thing as a divide-by-two operation with truncation2.

Another issue that usually surrounds shift registers is the notion of cascadeabilitly. If you’re unfortunate enough
to use shift registers on discrete ICs, you may need to use a bunch of them to obtain the data width that you need.
For example, if you need a 64-bit shift register, and all you have to work with are ICs containing 8-bit shift
registers, you’ll need to cascade3 eight 8-bit shift registers in order to create a 64-bit shift register.

1 Keep in mind that we often use shift registers for mathematical operations; numbers generally have weights associated with
the bit positions (unless you’re a cave-person).
2 Truncation means the lowest order bit is lost; a similar operation is “round-up” where the value of the lowest order bit is
“taken into account” and your weeds are killed at the same time.
3 In this context “cascade” is a fancy way of saying “connect up the part properly”.

Free Range Digital Design Foundation Modeling Chapter 27

- 435 -

Example 27.1: A Simple Shift Register Timing Diagram

Using the block diagram on the right to complete the timing
diagram provided below. Consider the circuit to be a 4-bit
right shifting shift register that is active on the rising-edge
triggered of the clock signal. Consider the line labeled “Q” to
represent the 4-bit value stored by the shift register. Assume
the “data_out” signal is the LSB of Q. Assume the initial value
stored by the shift register is 0x8. Ignore all propagation delay
issues with this circuit.

Solution: The problem asks for what is stored in the shift register despite the fact that only one-bit of shift
registers contents appears as an output (the data_out signal is the output of the LSB). Shift registers typically
provide all stored data bits as outputs.

Figure 27.4 shows the solution to this example. Here are a few items to note:

 This is a right-shifting shift register, which means the data_in signal is the MSB of the shift
register while the data_out signal is the LSB.

 The fact that the shift register is dividing the current shift register contents by two (with
truncation) when the data_in signal is a ‘0’.

Figure 27.4: The solution to this example.

27.3 Universal Shift Registers

Shift registers that only shift in one direction are not overly; typical shift registers perform other operations such
as shift left, shift right, parallel load, parallel clear, hold, etc. The term in digital design for shift registers
containing many features is universal shift register, or USR. There is no one definition for universal shift
registers; the only thing the term means is that you’re dealing with some sort of shift register that does more than
shift in one direction. You must consult the datasheet or designer as to what exactly. The following example is a
USR with arbitrary functionality.

Free Range Digital Design Foundation Modeling Chapter 27

- 436 -

Example 27.2: A Simple Universal Shift Register

Provide a model for an 8-bit universal shift register that supports the following operational
characteristics, hold, shift right, shift left, and parallel load. For this problem, assume that all
shift register operations are synchronous (meaning they are synchronized to the rising clock
edge). The shift register’s output should be only an 8-bit bundle that indicates the current state of
the shift register.

Solution: The first step in this problem is to understand all of the features requested by the problem. The
following list describes these features, in case you were wondering. All of these operations are synchronous.

 Hold: The shift register’s contents do not change state on active clock edge.

 Shift Right: A typical shift right operation; there needs to be a single-bit input to become the
next left-most bit.

 Shift Left: A typical shift left operation; there needs to be a single-bit input to become the next
right-most bit4.

 Parallel Load: Implies that there needs to be an 8-bit bundle input that simultaneously loads all
shift register elements.

From these clarifications, we now know two types of information: the number and widths of the inputs and
outputs required to complete this problem. Specifically, know the following; from this list of happy stuff, we can
generate the block diagram in Figure 27.5. Here is some other fun stuff.

 The shift register has four unique operations: hold, shift-right, shift-left, and parallel load. This
means we somehow need to control which operation occurs. We do this by adding a control
signal that “selects” the desired operation. This signal is an input to the shift register and allows
some external device to control the shift register. Since the shift register has four operations, we
need a two-bit control signal that selects the desired operation.

 We know all the inputs and outputs to the shift register. The problem states that the outputs
comprise of only the state of the shift register storage elements. The inputs include a 2-bit
operation select signal, a 1-bit input for shift-left operations, a 1-bit input for shift-right
operations, an 8-bit bundle for parallel loads, and a lively clock input.

Figure 27.5: A black box diagram of the universal shift register.

Figure 27.6 repeats Figure 27.1 for your viewing convenience; this diagram once again shows a generic
schematic for a simple right-shifting shift register. The way you should think about the hardware-based solution
to this problem is to imagine that each shift register storage element is now going to decide upon what value
loaded on the next active clock edge.

4 You could also use the same signal for inputting signals for either shift-left or shift-right operations. The problem did not
state how to do this so we have arbitrarily decided to have an input for both “sides”. We won’t do this again.

Free Range Digital Design Foundation Modeling Chapter 27

- 437 -

Figure 27.6: A typical n element shift register.

When you hear the word “decision” in digital design-land, you should think “MUX”. If you think about it in this
manner, it sure seems as if each storage element is now going to have its own MUX to decide which value is
loaded to the storage element. Each shift register storage element needs to decide which signal loads into the
element. Figure 27.7 shows the schematic for the single shift register storage element that you’re probably
imagining.

Figure 27.7: A shift register element with an attached MUX for data selection.

Figure 27.7 shows a 4:1 MUX with two control signals. The control signal selects between four different signals
to load into the storage element in order to satisfy the problem. We describe the MUX data signals in Figure 27.7
with the following. Table 27.1 summarizes the information in the previous list.

 Qm (0): The input to the D flip-flop is the current output of the current storage element. Qm is
an internal signal and ensures that the storage element does not change state by “reloading” its
current value, so the present state of the D flip-flop becomes the next state.

 P_load (1): The D flip-flop is a bit from the parallel loading bundle input.

 Qm-1 (2): The input is part of a shift right operation, which indicates the input to this storage
element is the first storage element to the left of this storage element (check out Figure 27.6 for
the details on the subscripted numbers).

 Qm+1 (3): The input is part of a shift left operation, which indicates the input to a storage
element is the first storage element to the right of this storage element (check out Figure 27.6 for
clarification).

S1 S0 D Comment

0 0 Qm hold
0 1 P_load parallel load
1 0 Qm-1 shift right
1 1 Qm+1 shift left

Table 27.1: Summary of the SR element functionality.

We could proceed with at this level, but let’s instead call this example down and bump up to a higher level of
abstraction on later problems.

Free Range Digital Design Foundation Modeling Chapter 27

- 438 -

Example 27.3: Universal Shift Register Timing Diagram

The block diagram on the right shows a model of a
universal shift register; use this model to complete the
timing diagram listed below. Consider the following:

 SEL = “00”: hold

 SEL = “01”: parallel load of D_LOAD data

 SEL = “10”: right shift; DL_IN input on left

 SEL = “11”: left shift: DR_IN input on right

 All operations are rising edge triggered

 Propagation delays are negligent.

 Initial D_OUT value is 0x45

Solution: The first step is to establish the initial state of the storage elements. This problem states that the initial
value of D_OUT value is 0x45; this value is the initial state of the shift register.

A good approach to problems such as these is to list what actions the SEL signal is selecting throughout the
timing diagrams. Figure 27.8 shows a partially annotated timing diagram highlighting the operations selected by
the SEL signal. We synchronize all of these annotations with the rising clock edge.

Figure 27.8: A black box diagram of the universal shift register.

Figure 27.9 shows the final timing diagram. Most of the changes in the DR_IN, DL_IN, and D_LOAD signals
have no effect on the final output.

Free Range Digital Design Foundation Modeling Chapter 27

- 439 -

Figure 27.9: A black box diagram of the universal shift register.

27.4 Barrel Shifters

Another operation associated with shift registers is a “barrel shift”. While simple shift registers only performed
one shift per clock cycle, barrel shifters are capable of performing more than one shift per clock cycle.

We can consider shifting left and right as forms of multiplying (left shift) or dividing (right shift) by two. Thus,
barrel shifters are associated with multiplying and dividing by “powers of two” (such as 4, 8, 16, 32, etc.). These
operations provide super-fast (namely, one clock cycle) multiply and divide operations. Multiplying and dividing
binary numbers is time consuming relative to other computer operations (such as logic operations); barrel
shifters provide a fast, but limited alternative.

We use barrel shifters in arithmetic applications where we do not require 100% accuracy of results primarily due
to truncation of shift right operations. For example, there is always a big push to have your circuit perform
“integer-based math” because working with integers is much less “computationally expensive” than retaining the
full precision of values. Using integer math generally causes a loss in precision, but the increase in speed is
desirable so long as the loss in precision is tolerable.

Table 27.2 shows two examples barrel shifting operations. Both of these examples use an 8-bit value; the top
example is the value before the active clock edge while the bottom value is the value after the active clock edge.
The examples show both a starting and ending point for the barrel shifting operation described by the particular
row in the table. The (a) row shows a 2-bit right barrel shift that arbitrarily inputs 0’s on the left side of the
register. The (b) row shows a 2-bit left barrel shift that arbitrarily inputs 1’s from the right side of the register.

 Description Example

(a)
barrel shift right 2x; stuff in a two 0’s from the
left side.

(b)
barrel shift left 2x; stuff in a two 1’s from the
right side.

Table 27.2: Examples of barrel shifting operations.

The examples in Table 27.2 are arbitrarily 2-bit barrel shifts. The barrel shifter is “shifting two times” in one
clock cycle. There is only one shift, which implies there are connections between each shift register element and

Free Range Digital Design Foundation Modeling Chapter 27

- 440 -

the element that is two shift register elements away. The barrel shifter thus requires the proper signal routing in
order to accomplish this shift, so barrel shifters are typically to only a few shift lengths because routing resources
are expensive in digital-land.

27.5 Other Common Shifts

Two more common shifting operations are rotates and arithmetic shifts. These operations are also simple in their
basic states. Rotate operations can be useful in many applications, though there is not one slam-dunk great
example I can think of; in theory, these operations fall into the category of “bit tweaking”. Arithmetic shift
operations are similar to simple shift operations but they work correctly with signed binary numbers.

27.5.1 Rotates

Rotate operations include rotate left or a rotate right with the actual shifting occurring on the active clock edge.
The notion with rotate-type shifts is that no bits from the register are lost by “shifting them out” of the register as
is the case with simple shift registers. Specifically, for a rotate right operation, the LSB of the register becomes
the new MSB while all other bits are shifted one position to the right. For a rotate left operation, the MSB of the
register becomes the new LSB while all other bits in the register are shifted one position to the left. Table 27.3
show examples of rotate left and right operations on an 8-bit register.

 Description Example

(a) rotate right; the LSB is transferred to the MSB;

(b) rotate left; the MSB transfers to the LSB.

Table 27.3: Examples of rotate-type shifts.

27.5.2 Arithmetic Shifts

Arithmetic shifts are similar to simple shifts; the key difference is that arithmetic shifts work with signed binary
number and preserve the “signedness” of the value they operate on. For an arithmetic shift left operation, the
value of the sign bit does not change because of the shift. Thus, the left shift operation retains the sign of the
number as well as the ability to perform fast multiplication with the left shift operation. For an arithmetic shift
right operation, we both retain the sign bit as a sign bit and propagate the sign bit to the right with each shift.

Free Range Digital Design Foundation Modeling Chapter 27

- 441 -

 Description Example

(a)

An arithmetic shift right of a positive number in RC
format; the operation copies the sign bit from sign-bit
position to the adjacent bit on the right with each shift.
This is a divide by two on a positive signed number.

(b)

An arithmetic shift right of a negative number in RC
format; the operation copies the sign bit from the sign-
bit position to the next bit on the right with each shift
(the sign bit remains unchanged). This is a divide by
two on a negative signed number.

(c)

An arithmetic shift left on a positive value in RC
format; the left shift does not alter the sign; all other
bits shift left and the operation arbitrarily stuffs a ‘0’
into the LSB. The bit adjacent to the sign bit shifts left
into nowhere land. This is a multiply by two on a
positive signed number.

(d)

An arithmetic shift left on a negative value in RC
format. The left shift does not alter the sign bit; all
other bits shift left and the operation arbitrarily stuffs
a ‘0’ into the LSB position. The bit adjacent to the
sign bit shifts left into nowhere land. This is a
multiply by two on a negative signed number.

Table 27.4: Examples of many flavors of arithmetic shifts.

Example 27.4: A Shifting and Rotating Circuit

Using the following specifications, complete the provided timing diagram. Assume that
all operations are synchronized with the rising edge of the clock signal. Assume that
propagation delays are negligent. Assume the DR_IN signal is the bit that is an input on
the right for shift left operations while shift right operations utilize the sign bit for an
input. Assume D_OUT represents the 8-bit value stored by the shift register.

 SEL = “00”: arithmetic shift right
 SEL = “01”: arithmetic shift left
 SEL = “10”: rotate right
 SEL = “11”: rotate left

Free Range Digital Design Foundation Modeling Chapter 27

- 442 -

Solution: The first step is to generate the black box diagram. From the problem statement we can see that the
circuit’s input are a clock signal (CLK), a selection signal (SEL), and a bit input signal (DR_IN). The only
output of the circuit is the D_OUT signal, which represents the contents of the shift register. Figure 27.10 shows
the final block diagram for this example problem.

Figure 27.10: A black box diagram of the universal shift register of Example 27.4.

The next step is to annotate the provided timing diagram to explicitly show (in English) the operations selected
by the SEL signal. This step is not necessary, but it ensures the mistakes you make are of the intelligent type
rather than dumbtarted type. Figure 27.11 shows this intermediate helper step.

Figure 27.11: A black box diagram of the universal shift register of Example 27.4.

Without too much verbage, Figure 27.12 shows the final timing diagram solution to Example 27.4. One thing to
note about this problem is that the circuit only uses the DR_IN input for arithmetic shift left operations.

Figure 27.12: A black box diagram of the universal shift register of Example 27.4.

Free Range Digital Design Foundation Modeling Chapter 27

- 443 -

Example 27.5: Design #1: Pre-Determined Shifting Circuit

Design a circuit that shifts a 16-bit value left the number of times indicated by the value on the
circuit’s four switches (a binary value). When this circuit sees an asserted GO signal, the
operation begins on the circuit’s 16-bit input. Shift operations should input 0’s into the circuit.
The circuit’s output is also a 16-bit value. The final value remains on the circuit’s output until
another assertion of the GO signal. Provide two levels of BBDs for your solution as well as a
state diagram modeling the circuit’s FSM. Also, state the forms of control the circuit uses.
Minimize your use of hardware in the solution.

Solution: The problem description does not provide a BBD, so the first step is to generate one from the problem
description; Figure 27.13(a) shows this first step.

(a) (b)

Figure 27.13: A block diagram for circuit (a), and underlying circuitry (b).

The next step in the solution is to make an inventory of the modules we need in the solution. Here is the thought
process:

 The circuit needs to do some shifting, so we know the circuit requires a shift register. Even
though we only need to shift in one direction, we use a 16-bit USR in our solution.

 The circuit needs to shift the number of times on the SW input (considering the SW input as a
binary number).

 Since the USR only shifts once per clock cycle, we need some way of keeping track of how
many times we shift. This functionality calls out for a counter; what we do is load the switch
value into a counter, then decrement the counter until the counter is zero. We know the counter
output is zero when the RCO output of the counter asserts.

 The circuit elements require a FSM to act as a master controller.

Figure 27.13(b) shows the lower-level BBD for the solution; here are a few of the more important points.

 We connect the DBIT input to zero; this is arbitrary, as the problem did not mention it. It’s
generally the safer approach to connect this input to zero as opposed to connecting it to one.

 We connect the UP input of the counter zero, which makes it always count down (we know this
because of the annotation included in the BBD). We also include an annotation that states the
precedence of the UP and LD signals of the counter.

 The counter’s RCO output asserted when the counter reaches its terminal count in the down
direction. The RCO is a status signal that is input to the FSM.

Free Range Digital Design Foundation Modeling Chapter 27

- 444 -

 The FSM controls the SEL control input of the USR. We include annotations of how the SEL
input controls the USR operations.

Figure 27.14 shows the final state diagram for the solution. Here are the highlights of the state diagram.

 The state diagram has two states; in the “wait” state, the FSM is waiting for an asserted GO
signal. When the GO signal asserts, the FSM transitions to the shift state. We configured the
SEL and LD signals to be Mealy-type outputs, which was arbitrary. Using Mealy-type outputs
allows the state diagram to have two states. If we had used Moore-type outputs for LD and
SEL, the state diagram would have three states, accounting for the differences in the LD and
SEL signals.

 We model the LD output in the “shift” state as a Moore-type output, which may seem confusing
because LD was a Mealy-type output in the “wait” state. The final word is that LD is a Mealy-
type output; we opted to model it as Moore-type output in the “shift” state to simplify the state
diagram.

 We model the SEL signal as a Mealy-type output in the “shift” state, as its value depends upon
RCO. As long as RCO is not asserted, we want the shift register to shift left and allow the
counter to decrement. Once RCO asserts, the count is zero, which means we are done shifting.
At that point, the state diagram directs the FSM to hold its state.

Figure 27.14: The state diagram associated with this example.

Outputs from the FSM connect to the LD and SEL control inputs in the circuit’s modules. The UP
control input is hardcoded. This circuit thus uses circuit (the FSM’s outputs) and internal (the UP
signal) control. The GO signal is a form of external control.

Example 27.6: Design #2: Even Parity Checker Circuit

Design a circuit that determines if an 8-bit input value is even parity. When this circuit sees an
asserted GO signal, the operation begins on the circuit’s 8-bit input. The final parity value
remains on the circuit’s output until another assertion of the GO signal. Don’t use EXOR-type
functions or a MUX in this design. Provide two levels of BBDs for your solution as well as a
state diagram modeling the circuit’s FSM. State the forms of control the circuit uses. Also,
state how many clock cycles your circuit requires to complete the operation. Minimize the
amount of hardware you use in your design.

Solution: The first step is to generate a top-level BBD from the problem specification; Figure 27.15(a) shows the
result of this step.

The next step in the solution is to create an inventory of the modules our circuit requires. The list below shows an
example thought process for the solution.

Free Range Digital Design Foundation Modeling Chapter 27

- 445 -

 The problem states not to use XOR functions, which we know is a straightforward way to solve
this problem. Our other approach to determining parity is to count the number of 1’s in a
number; if there are an odd number of 1’s, then the number has odd parity; otherwise the
number has even parity. We use a counting approach in this problem. This means that we need a
counter. Since we are counting a 8-bit value, the maximum count possible is eight, which means
this needs to be a 4-bit counter (a 3-bit counter has a maximum value of 7).

 This circuit also needs to counter to eight, which means our solution requires a second counter.

 We need a circuit that helps us do the actual count. There are several ways to do this; we choose
a USR for this problem. The trick here is that we use the LSB output of the USR to control the
counter’s UP control input.

 The solution’s final module is an FSM to control circuit operations.

Counting the set bits in a binary value is a trivial operation for humans. The issue in this problem is that we need
to configure the hardware to do the counting for us. In other words, we have an algorithm that generates the
solution; we must implement that algorithm in hardware. Figure 27.15(b) shows the final circuit for this problem;
here is some other good stuff to chew on:

 Both counters share the same CLR signal. When this algorithm starts, both counters need to
start at zero. One counter is counting the number of bits the circuit examines; the other counter
is counter the number of set bits in the input value.

 The circuit uses the LSB of the shift register as a part of the UP control to the bit counter. We
want complete control of the counting operation, which means we want to disable it if we
choose, so we connect the LSB of the shift register to an AND gates. The other input to the
AND gates is the CTRL signal, which gives the circuit the ability to disable the counter’s UP
control input. We do this because the problem states the parity output should be persistent; if we
had connected the LSB directly to the UP, the counter could remain incrementing after the
algorithm completes. Put this in your bag of tricks; it’s typical in this flavor of design problems.

 The LSB of the bit count indicates the parity of the input value. The problem wants to know
when the parity is even, which it is when the LSB of the bit count is zero. We thus invert the
LSB and use that as the EVN_PAR output of the circuit.

 The BBD provides two annotations; one regarding both counter (the CLR comment) and the
other regarding the right-most counter in the BBD. We don’t annotate the left-most counter as
the UP input is hardwired to ‘1’, and there is no confusion as to how the counter reacts to
different asserted UP values.

 The DBIT input of the shift register is hardwired to ‘0’. This is arbitrary for this problem, but
it’s a requirement in a later example problem.

Free Range Digital Design Foundation Modeling Chapter 27

- 446 -

(a) (b)

Figure 27.15: A block diagram for circuit (a), and underlying circuitry (b).

Figure 26.16 shows the state diagram for the problem. There are several approaches to the state diagram; we opt
for this approach, and provide some meaningful commentary:

 We model the SEL input in the as a Mealy-type output in the “wait” state and as a Moore-type
output in the “shift” state. The SEL input is truly a Mealy-type output; it makes the state
diagram more readable to model it as a Moore-type output in the “shift” state.

 We opted to use Mealy-type output for both the SEL and CLR signals. We could model these
two outputs as Moore-type outputs, but that would have required adding an extra state to the
state diagram.

 The CTRL output is a pure Moore-type output; it makes no sense to model it as a Mealy-type
output. In the “wait” state, the CTRL always disables the bit counter’s UP signal; in the “shift”
state, the CTRL input always allows the LSB of the shift register to increment the counter.

 The shift register in this problem is holding, loading or shifting, the three different values of the
SEL signal in the state diagram indicate. As with all shift register problems, the first order of
business is to load the shift register, which we do when the GO input asserts.

 The shift register continues shifting until the RCO status signal of the counter asserts. Once the
RCO signal asserts, the counter shifts one more time. We really don’t care about the shift; we
only care about the value of the LSB output of the shift register, as that determines whether the
counter increments or not.

Figure 27.16: The state diagram associated with this example.

Outputs from the FSM connect to the CLR, CTRL and SEL control inputs in the circuit’s modules.
We hardcode the UP control input on the left-most counter in the diagram. This circuit thus uses circuit
(the FSM’s outputs), internal (the UP signal) control, and external control in the form of the GO
signal.

Free Range Digital Design Foundation Modeling Chapter 27

- 447 -

This solution requires a deterministic amount of clock cycles to complete. After the GO signal asserts,
the first clock cycle transition the FSM to the “shift” state; it stays in the “shift” state for seven clock
cycles. On the eight clock cycle, the asserted RCO signal causes a transition to the “wait” state.
Therefore, this algorithm always requires nine clock cycles.

Example 27.7: Design #3: Even Parity Checker Circuit (Fast Version)

Design a circuit that shifts determines if the 8-bit input value is even parity. When this circuit
sees an asserted GO signal, the operation begins on the circuit’s 8-bit input. The final value
remains on the circuit’s output until another assertion of the GO signal. Don’t use EXOR-type
functions or MUXes in this design. Design this circuit so that it obtains the answer as quickly
as possible in the average case. Provide two levels of BBDs for your solution as well as a state
diagram modeling the circuit’s FSM. State the forms of control the circuit uses. Make a
comment how many clock cycles your circuit requires to generate the correct output. Minimize
your use of hardware in the solution.

Solution: This is the same problem as the previous example, but now we need to increase the average operation
time for the circuit. The top-level BBD is the same as the previous problem; we repeat it in Figure 27.17(a) for
your viewing pleasure.

The next step in the solution is to generate an inventory of modules our solution requires. We make a guess here
that the modules are the same, and then set out to figure out a way to make the algorithm run faster in the average
case. The issue with the previous problem is that, no matter what, the algorithm always requires the same amount
of time to complete because the left-most counter always must reach its terminal count before the algorithm
terminates. The problem is that sometimes the circuit is sometimes examining only zero bits, which do not affect
the final parity count. The solution to this issue is that we can constantly check the USR’s output, because we can
terminate the algorithm early if the remainder of the bits in the USR are zero. That is that the solution in Figure
27.17(b) does; here are some extra notes in addition.

 We no longer use the RCO from the bit counter as an indicator of when to terminate the
algorithm; we now examine all the bits currently stored in the USR. When all the bits are zero,
we terminate the algorithm. We can achieve this functionality using an 8-input NOR gate. We
use a shorthand notation in Figure 27.17(b); this saves us drawing an eight-input NOR gate. The
output of the NOR gates is the ZER signal, which is the new terminal count output.

 For this problem, we must connect the USR’s DBIT input to ‘0’; out new approach to this
problem would not work otherwise.

Free Range Digital Design Foundation Modeling Chapter 27

- 448 -

(a) (b)

Figure 27.17: A block diagram for circuit (a), and underlying circuitry (b).

Figure 27.18 shows the state diagram for our solution. This state diagram is identical to the previous solution
except for the fact that ZER replaces the RCO signal.

Figure 27.18: The state diagram associated with this example.

Outputs from the FSM connect to the CLR, CTRL and SEL control inputs in the circuit’s modules.
We hardcode the UP control input on the left-most counter in the diagram. This circuit thus uses circuit
(the FSM’s outputs) and internal (the UP signal) control. The GO signal is a form of external control

The number of clock cycles required to generate a solution depends upon the input data in this
problem. It many take as few as two clock cycles (if the input value is zero) or as many as nine clock
cycles (if the MSB of the input values is set). We consider this a better solution because the algorithm
runs in fewer clock cycles in the average case.

Free Range Digital Design Foundation Modeling Chapter 27

- 449 -

27.6 Digital Design Foundation Notation: Shift Register

We consider the shift register a Digital Design Foundation module. The shift register is a controlled circuit. We
consider all shift register operations synchronous, except for the CLR input, which is sometimes asynchronous.
Because shift registers are straightforward to model in with an HDL, we typically only include (or connect)
inputs and outputs as we need them. The width of the SEL input sufficient to support the shift register’s
operations. Figure 27.19 shows the foundation module for a shift register.

Figure 27.19: Typical data, control and status signals for a universal shift register.

 Signal Name Description

IN
P

U
T

D

A
T

A
 DATA_IN

A counter is a register, so it can typically loaded data in to the counter’s storage
elements. The DATA_IN input is the data that is loaded to the counter.

DBIT
The bit that becomes the left-most bit for a right shift operation or the right-most
bit for a left-shift operation

O
U

T
P

U
T

D

A
T

A

DATA_OUT
The DATA_OUT signal is the data currently being stored in the counter’s storage
elements.

C
O

N
T

R
O

L

CLK
Registers are synchronous circuits; most operations are synchronized with the
active edge of the clock signal.

CLR
Latches 0’s into the register’s storage elements; can be synchronous or
asynchronous.

DBIT
The bit that shifts into the register on shift operations, which is the new left-most
bit or the new right-most bit for shift right and shift left operations, respectively.

SEL
These bits select the operation the shift register performs. These operations could
include: shift left, shift right, hold, load, rotate left and/or right, barrel shifts, etc.
The width of this input depends on the number of possible operations.

S
T

A
T

U
S

n/a -

Table 27.5: The foundation description for a universal shift register.

Free Range Digital Design Foundation Modeling Chapter 27

- 450 -

27.7 Register Overview

The registers we’ve worked with include several common sequential circuits such as shift registers and counters.
The main difference between the many types of register is their feature set. Table 27.6 shows a possible
breakdown of the register types and their relation to each other. Many of the features in Table 27.6 can be either
synchronous or asynchronous.

Register Type Sub-Types Features

plain register - Synchronous load of input data

shift register
universal shift
registers, barrel
shifters

Synchronous load, preset, clear, load enable, shift
left/right, arithmetic shift left/right, hold, rotate left/right,
barrel shift, cascadeability

counters
up/down counters,
decade counters

parallel load, preset, clear, load enable, increment,
decrement, cascadeability

Table 27.6: The feature progression of the device referred to as a register.

Free Range Digital Design Foundation Modeling Chapter 27

- 451 -

Chapter Summary

 Shift Registers: Shift registers are in many ways similar to simple registers; their primary different is with
the inputs to the individual shift register storage elements. Shift registers are designed such that the data
output from one shift register element becomes the data input to a contiguous element. IN this way, data is
said to be “shifted through” the shift register. In general, there is one “shift” per clock cycle. Shift register
operations are often used to implement fast but limited mathematical operations with single left shift being a
divide-by-two and a single right shift being a multiply by two.

 Universal Shift Register: A type of shift register that performs more operations than a simple shift register.
These operations can typically include both a shift left and a shift right, a parallel load, a preset and/or clear.
Somewhere in here could also be arithmetic shift operations and various forms of rotate operations.

 Barrel Shifters: A type of shift register that performs multiple shifts on a single clock edge. In reality, barrel
shifters are wired such that they can shift multiple bit locations in one clock cycle, and probably do not
perform multiple shifts. Barrel shifters are useful for mathematical operations including multiplication and
division by powers of two.

 Rotates: These are similar to shift operations except the register retains all bits from the operation. For rotate
right, all bits shift to the right and the LSB becomes the new MSB. For rotate lefts, all bits shift to the left
and the MSB becomes the new LSB.

 Arithmetic Shifts: This type of shift retains the sign bit of the register. For right shifts, the sign bit
propagates to the right; for left arithmetic shifts, the sign bit does not change and the register loses the bit
adjacent to the sign bit.

Free Range Digital Design Foundation Modeling Chapter 27

- 452 -

27.8 Chapter Exercises

1) Use the block diagram on the right to complete the timing diagram
below. Consider the circuit to be a 4-bit shift register (shifts from right-
to-left) that is active on the rising-edge triggered of the clock signal.
Consider the line labeled “Q” to represent the 4-bit value stored by the
shift register and the “data_out” output to represent the value of the
highest order bit stored by the shift register. Assume the initial value
stored by the shift register is 0xC. Ignore all propagation delay issues
with this circuit

2) The block diagram on the right shows a model of a universal
shift register; use this model to complete the timing diagram
listed below. Consider the following:

SEL = “00”: hold

SEL = “01”: parallel load of D_LOAD data

SEL = “10”: right shift; DL_IN input on left

SEL = “11”: left shift: DR_IN input on right

 The rising edge of the CLK signal synchronizes all
shift register operations

 Propagation delays are negligent.

 Initial D_OUT value is 0xAB

Free Range Digital Design Foundation Modeling Chapter 27

- 453 -

3) Complete the following timing diagram. The SEL inputs are the control inputs to an 8-bit
universal shift register. Assume that all operations are synchronized with the rising edge of
the clock signal. Assume that propagation delays are negligent. Be sure to state any other
assumptions you need to make in order to complete this problem. Assume the 0x39 is the
initial value stored by the shift register. Assume “D_OUT” is an 8-bit output representing
the value stored by the shift register.

SEL = “00”: rotate right

SEL = “01”: rotate left

SEL = “10”: divide by 8 (bit stuff 0’s)

SEL = “11”: multiply by 8 (bit stuff 0’s)

4) Use the schematic diagram to complete the Q output. The Q output is a 4-bit bundle; the starting state
of Q is listed in the timing diagram as a hex value (4-bits).. Assume that propagation delays are
negligent.

Free Range Digital Design Foundation Modeling Chapter 27

- 454 -

5) Use the schematic diagram to complete the Q output. The Q output is a 4-bit bundle; the starting state
of Q is listed in the timing diagram as a hex value (4-bits).

Free Range Digital Design Foundation Modeling Chapter 27

- 455 -

27.9 Design Problems

For the following problems:

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution

 Minimize the number of states in the associated state diagrams

 Minimize the use of hardware when problem require extra hardware

 Assume all inputs and outputs are positive logic unless stated otherwise

 Disregard all setup and hold-time issues

 For sequence detector problems assume the X input is stable when each clock edge arrives and that X
can change no more than once per clock period.

 State all forms of control for your solution.

1) Design a circuit that upon the pressing of a button, outputs the value on the inputs multiplied by eight. The
input is an 8-bit unsigned binary value; the output data width is as small as it can possibly be and still
represent the largest possible result from this operation.

2) Design a circuit that upon a button press, divides an 8-bit unsigned binary input values by two for as many
times as required to make the result of the input value less than 17. The result of this operation is also an 8-
bit unsigned binary number.

3) Design a circuit that outputs a value 2.5 times greater than the input value upon the pressing of a button.
Assume the input is an 8-bit unsigned binary value and the width of the output is minimized but the answer
is valid. Don’t worry about round-up for this problem.

4) Design a circuit that outputs a value 5.5 times greater than the input value upon the pressing of a button.
Assume the input is an 8-bit unsigned binary value and the width of the output is minimized but the answer
is valid.

5) Design a circuit that outputs a value 4.75 times greater than the input value upon the pressing of a button.
Assume the input is an 8-bit unsigned binary value and the width of the output is minimized but the answer
is valid. For this problem, the answer should be available in four clock cycles or less.

6) Design a circuit that upon a button press, calculates the parity of a 16-bit value. This circuit has an LED that
indicates the number of bits in the input that are set and also a single LED that indicates parity (off for even
and on for odd).

7) Design a circuit that upon the pressing of a button, divides an 8-bit signed binary input in RC format by two.
For this problem, the circuit needs to make sure the answer is valid in every case. It is OK to truncate your
division operation. The result is also an 8-bit value.

8) Design a circuit that divides an unsigned 8-bit signed binary input by four upon the pressing of a button. For
this problem, apply a standard round-up to the result. The result is also an 8-bit value. Show a BBD of your
solution; minimize the amount of hardware in your solution.

9) Design a circuit that can either divide or multiply a 32-bit unsigned binary input by the value of a 4-bit
output upon the pressing of a button. The output is also a 32-bit unsigned value. The value that the input
value is multiplied by is a two to the power of the 4-bit input; it multiplies if an input signal OP is set, or
divides if OP is cleared. Assume that the OP signal does not change after a button press. Don’t worry about
this problem overflowing or underflowing; truncation for the divide is OK.

Free Range Digital Design Foundation Modeling Chapter 27

- 456 -

10) Design a circuit that can either divide or multiply a 32-bit unsigned binary input by the value of a 4-bit
output upon the pressing of a button. The output is also a 32-bit unsigned value. The value that the input
value is multiplied by is a two to the power of the 4-bit input; it multiplies in a single-bit input one, or
divides otherwise. Don’t worry about this problem overflowing or underflowing; truncation of the divide is
OK. This circuit also has two outputs that indicate when the calculation is complete and if the answer is
correct. Assume that the OP signal does not change after a button press.. For this problem, division always
output a valid number, but multiplication does not.

11) You can use a FSM to model a shift register. For this problem, provide a state diagram that could be used to
model a 2-bit shift register. Consider the Q output to be a 2-bit bus that indicates the result of the
synchronous shifting action. Consider the DIN input as the bit being shifted into the shift register (shifts left
to right). Consider the RESET input to be an asynchronous input that takes precedence over all other inputs.
When the HOLD input is asserted, the Q output does not change.

12) You can use a FSM to model a shift register. For this problem, provide a state diagram that could be used to
model a 3-bit shift register. Consider the Q output to be a 3-bit bus that indicates the result of the
synchronous shifting action. Consider the DIN input as the bit being shifted into the shift register (shifts left
to right). Consider the RESET input to be an asynchronous input that takes precedence over all other inputs.

13) You can use a FSM to model a shift register. For this problem, provide a state diagram that models a 2-bit
shifting left shift register. In addition to DIN (data in) and a CLK (clock) input, this shift register has two
asynchronous reset inputs, RST0 & RST1, which place the shift register in “00” & “01” states respectively.
The shift register also has a HOLD input that when asserted, keeps the same shift register output in the
FSM, but effectively puts the FSM in a hang state. Exiting any hang state is thus done using one of the two
asynchronous reset inputs.

14) You can use a FSM to model a shift register. For this problem, provide a state diagram that models a 2-bit
shifting left shift register. In addition to DIN (data in) and a CLK (clock) input, this shift register has two
asynchronous reset inputs, RST0 & RST1, which place the shift register in “00” & “01” states respectively.
The shift register also has a HOLD input that when asserted, causes the FSM to not change state for one
clock cycle. After that one clock cycle, the HOLD input is ignored for one clock cycle.

15) Provide a state diagram that models the operation of a 3-bit shift register that shifts right on each clock edge.
Also, this FSM controls an LED that blinks so long as the shift register value is “111”; the blink rate is equal
to half the clock frequency. Assume all set-up and hold-times are met and that circuit delays are negligible.

Free Range Digital Design Foundation Modeling Chapter 27

- 457 -

16) Provide a state diagram that models the operation of a 2-bit shift register that shifts either right or left. Be
sure to state any assumptions you make for this problem. Minimize the number of states in your design.

 The D_in input represents the value that is shifted into the
shift register for both shift directions

 The Reset signal is an asynchronous input that places the
input into the “00” state

 The Y output is the value of the shift register

 If the R input is a ‘1’, the FSM shiftS right; otherwise the
shift register left.

17) Provide a state diagram that models the operation of a 2-bit shift register that shifts either right or left. Be
sure to state any assumptions you make for this problem. Minimize the number of states in your design.

 If the L input is a ‘1’, the FSM shifts left; otherwise the
shift register shifts right

 The D input represents the value that is shifted into the
shift register for both shift directions

 The Reset signal is an asynchronous input that places
the input into the “11” state

 The Q output is the value of the shift register

18) Provide a state diagram that models the operation of a 2-bit left shifting shift register. For this design, the
shift register should not have the same output for more than three clock cycles. In order to avoid this
condition, the “00” state transitions to “11”, and the “11” state transitions to “00” in such a way as to avoid
this condition. Be sure to state any assumptions you make for this problem. Minimize the number of states in
your design. Don’t use a counter in this design.

 The D input represents the value that is shifted into the
shift register

 The Reset signal is an asynchronous input that places
the input into the “11” state

 The Q output is the value of the shift register

19) Design a circuit that inputs a 10-bit unsigned value (A) and five times that value (5A) after a “GO” signal is
asserted.

Free Range Digital Design Foundation Modeling Chapter 28

- 458 -

28 Structured Memory: RAM and ROM

28.1 Introduction

The previous chapters dealt with basic memory elements in digital design, but on a relatively small scale (flip-
flops and registers). While those types of memory are important, you typically find other types of memory in
digital systems. We classify flip-flops and registers as “incidental” memory; this chapter introduces the notion of
“structured1” memory, which has significantly more storage capacity than incidental memory. You must learn a
new set of skills and vernacular when you deal with structured memory; this chapter discusses some of the more
basic aspects of memory.

Main Chapter Topics

OPERATIONAL OVERVIEW OF MEMORY: This chapter provides an overview of the
basic operational and performance characteristics of memory as well as common
terminology associated with memory.

MEMORY TYPES: This chapter introduces the two accepted main types of memory,
RAM and ROM, by describing their differences and similarities.

MEMORY INTERFACE METRICS: This chapter describes the basic interface issues
involved in structured memory device.

Chapter Acquired Skills

 Be able to describe the difference between incidental and structured memory

 Be able to name and describe the basic memory types

 Be able to describe basic performance parameters of structured memory

 Be able to use basic structured memory devices to solve digital design problems

28.2 Memory Introduction and Overview

There are many different types of memory out there; most of them are beyond the scope of a basic digital design
course. If you ever need to work with a new memory device, you’ll be ready because you’re familiar with the
basic operation of structured memory.

Before we start, we need to make one clarification. Often time when we discuss the notion of memory, we
sometime use the terms “data” and “information” interchangeably. In most cases, this is no big deal, but you
need to understand there is a distinct difference. In the context of digital design, data is nothing more than a
bunch of 1’s and 0’s, while information relates to the interpretation of the 1’s & 0’s. We often refer to data as
having information content; there is actually a unit used to measure the information content of data2. It is up to
the user to interpret data as having certain information content or not. For example, consider a memory unit; if

1 I’ve adopted this term from the notion of “regular structures”, which roughly refers to larger semiconductor devices that
have a large and repeated structure that is dedicated to a single purpose. In this case, the purpose is memory.
2 Somewhat unfortunately, we use the term “bit” to measure the information content of data. This metric is a function of
probability and is not related to the “binary digit” definition of bit that we use in this text.

Free Range Digital Design Foundation Modeling Chapter 28

- 459 -

the stored data represents instructions to a computer, then you could consider the data to be information. On the
other hand, if you have a memory that you have never written to, the memory is still full of 1’s and 0’s, but the
data has no meaning.

28.2.1 Basic Memory Operations: READ and WRITE

The two operations associated with memory are reading and writing. The notion of a “memory read” or “reading
from a memory” refers to the action of retrieving data currently stored in memory. Retrieving data specifically
means that you’re copying the data from memory to another place, but not changing the data in memory. The
notion of a “memory write” or “writing to a memory” refers to the action of placing new data in memory, which
means you are changing the data stored in memory. Reading and writing memory are the copying of data from
memory (reading) and the transfer of data into memory (writing), respectively.

28.2.2 Basic Memory Types: ROM and RAM

There are many different flavors of memory in digital-land; each of these memory types has their own acronym
describing them. Despite this relatively high number of memory types, we classify all of them as either RAM or
ROM, , which are acronyms for random access memory and read only memory, respectively. These terms are
rather misleading, particularly in regards to the attributes of modern memory. In an effort to classify memories as
either RAM or ROM, these two acronyms have rather loose definitions. Here is the information embedded in
those acronyms.

 The notion of a “read only memory”, or ROM, implies that you’ll only be reading from a
memory, and never writing to it. Because the memory is a “read only” memory, you can only
retrieve data from that memory; you cannot “easily”3 alter the data in that memory.

 The notion of a ROM brings up the issue of whom or what put the data into the ROM. This
starts delving down into the various sub-types of ROM; we don’t want to go there because we
want to keep this discussion general. Writing to a ROM is a “special” operation performed by
“something”. All we’re interested in is that there is data in the ROM.

 The term random access refers to the fact that it requires the same amount of time to access
(either reading or writing) each “chunk” of memory stored in the device. While this notion
seems rather simple, not all memory devices fall into the category of “random access”. The two
most obvious notions of non-random access memories are “hard drives” and “tape drives”. The
time required to access data in your hard drive is different depending on the physical location of
the data on the disk and the current location of the read/write heads. Recall that the hard drive is
a mechanical storage device that requires motors to move a physical device (the read/write
head) radially across the spinning media to access the data. If the heads are close to the data, it
require less time to access the data than if the heads must move a long way to access the data.

 Although the term ROM refers to read only memory, ROMs are also random access devices.
Thus, you can access any of the chunks of data stored on a ROM in an equal amount of time.

 All memories have the notion of being either volatile or non-volatile. If a particular memory is
volatile, the data stored in that memory is lost when you remove power from that circuit.
Conversely, the data in non-volatile memory is not lost when you remove power. It is generally
accepted that RAMs are volatile and ROMs are non-volatile.

Despite all these misleading terms and acronyms associated with structured memory, RAM and ROM do have
accepted definitions. Table 28.1 lists these accepted differences and similarities.

3 Meaning that many types of ROM can be written to; we’ll not discuss those cases.

Free Range Digital Design Foundation Modeling Chapter 28

- 460 -

Memory Type Random Access Operations Volatility

RAM yes read & write volatile

ROM yes read non-volatile

Table 28.1: Accepted attributes of RAM and ROM.

28.3 Software Arrays vs. Hardware Structured Memories

The notion of structured memory is not as new as it seems, as there is a direct analogy to the use of arrays in
programming languages. Recall that an array in computer programming is a data structure that allows you to
store values and later access those store values.

Accessing values in an array: This operation is analogous to a read of a memory. In computer
programming, when you access a value in an array, your program must provide an index that
indicates which value in the array you want to access. The array “returns” the requested value
without changing that value in the array. In hardware, the circuit must provide value (the
address) that indicates which address in the memory you want to read from. The memory then
outputs that value; the read operation does not change the value.

Changing values in an array: This operation is analogous to a write of memory. In computer
programming, when you place a new value into an array, your program must provide an index
that indicates which value in the array you want to change. The array then replaces that value
with the new value. In hardware, they circuit must provide a value (the address) that indicates
which value in the memory you want to write to and the new data. The memory then changes
the value at that address to the new value.

28.4 Memory Operation Details: Reading and Writing

Figure 28.1 shows a high-level diagram of a generic memory device. We can classify the various signals
associated with interfacing with a memory device into three categories: address lines, data lines, and control
lines4. The following is a general overview of these lines. In general, the widths of these bundles are associated
with the specific capacity attributes of the memory; we deal with those issues soon.

Data Lines: The data lines are a set of signals that route the bits you’re writing or reading into
or out of the memory device. The arrow associated with the data lines has an arrowhead on each
end, which signifies that data on those particular lines can travel either into the memory (for
read operations) or out of the memory (for write operations)5. The data lines can be either serial
or parallel; the bundle notation in Figure 28.1 means the data lines are parallel. Figure 28.1
happens to show only one set of data lines; memories often separate input and output data lines.

Address Lines: The address lines are a set of signals that provide the memory with a “location”
within the memory to write to or read from. The address lines are the method that the memory
uses to differentiate between chunks of memory on the interior of the device.

Control Lines: The control lines are a set of signals that determine and direct the various
operations associated with the memory. The best example of the responsibility of the control
lines are with RAM devices that are both readable and writeable; the control lines allow the user

4 In this context, the notion of “lines” refers to a bundle of wires or signals. You often hear the term “lines” associated with
standard bundles such as “data”, “address”, and “control” lines.
5 But not both directions at the same time.

Free Range Digital Design Foundation Modeling Chapter 28

- 461 -

to control which operation occurs. The underlying notion of control lines is that simple
memories have few control lines; more complex memories have more control lines6.

We soon delve further into the details of memory interfacing; for now, you can consider the general interfacing
operation of a memory read as: 1) give the memory an address, 2) tweak the control lines, and 3) wait for the
data. For memory writes, you generally 1) give the memory an address, 2) give the memory the data, 3) tweak
the control lines, and 4) wait for the data to write to memory.

Figure 28.1: A general diagram of a memory integrated circuit.

28.5 Memory Specification and Capacity

When working with memory and memory systems, the two most important pieces of information are the
capacity and the speed of the memory. The memory capacity refers to how much data the memory can store
while the memory speed refers to how fast you can access (read or write) that data.

People in digital-land describe memory capacity in many different ways. As is typical in any human oriented
pursuit, people attempt to make their “thing” sound better than it really is; the same idea applies to memory
capacity specifications. While these statements are not lies, they are misleading. You, the digital designer must
see through the smoke and hand waving and understand the characteristics of the memory you’re working with.

We know that memory stores bits, and these bits are stored at certain addresses within the memory, but
memories are rarely bit-addressable. In other words, specific memory devices only allow you to access larger
chunks of data. If you need to read or write a single bit, you must start with the minimum chunk of addressable
data specified by the device. Making memory bit-addressable would create an inefficient device, so memories
generally compromise by providing data only in chunks.

Memories usually store data in groups of bits, which we refer to as a word. The official definition of a word is
the smallest addressable unit (or chunk of bits) in a memory. This term is important because we typically
described memories and memory systems in terms of words rather than bits. Referring to memory in terms of
words is the honest approach.

Figure 28.2 shows a diagram of a generic memory including some typical memory characteristics. The metrics in
the diagram are typical of most memory devices. Here is an overview of the most important aspects of Figure
28.2 while Table 28.2 summarizes all the gory details.

 The by “2m x S” notation is how we state the capacity of a memory. The underlying notion is
that we are modeling the memory as a two-dimensional grid, as the “x” in “2m x S” indicates.

 Everything having to do with memories relates to binary. The term “m” refers to the width of
the address bus or number of address lines, which is the number of memory chunks that a
memory can access is two raised to the number of address lines. The true capacity of a memory
(the amount of data it can store) relates to the number of address lines.

 The term “S” is the width of the data bus or data lines, or the word width for the memory.
Datasheets often state this metric in bits, but should state it in word capacity.

6 In an effort to increase memory capacity while keeping physical size small, interfacing some modern memories have
become rather complicated and thus have a relatively large number of control signals.

Free Range Digital Design Foundation Modeling Chapter 28

- 462 -

 The total word storage capacity for the memory is how many words the memory can store. For
this particular memory, the word storage capacity is thus 2m.

 The total bit storage capacity for the memory is a product of the number of words and the
number of storage locations in the memory. Thus the bit storage capacity is given by 2m x S.

 We don’t include a bundle width indication on the control lines in order to keep the discussion
general. The notion of 2m x S is common; the control lines for memory modules tend to vary
greatly across different devices.

Figure 28.2: A diagram of memory indicating notions of storage capacity.

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑖𝑛 𝑏𝑖𝑡𝑠 2 ∙ 𝑆

Equation 28.1: Closed form formula for memory storage capacity in bits.

Symbol Definition

m Bit-width of address bus

S Bit-width of data bus (word size)

2m Memory capacity in words

2m x S Memory capacity in bits

Table 28.2: Summary of memory definitions and properties.

28.6 Memory Interface Details

This section examines the control lines and their relation to the data and address lines for basic read and write
operations on a generic memory. Recall that a memory write transfers a word to be stored in memory while a
memory read prompts a memory to output the contents of memory. The reading and writing of memory is
controlled by the “control lines” of the memory device. Every memory has its own method of reading and
writing; specifically, each memory has its own protocol for tweaking the control lines in such a way as to obtain
the desired function from the memory device.

Memory Writes: For a memory write operation, you provide the memory with data that
overwrites data currently stored in the memory. The information on the address lines provides the
location of where the word is stored. The bits on the data lines provide the data that we transfer
and store on the memory device. The write operation overwrites the data currently stored at the
address indicated by the address lines.

Memory Reads: For a memory read operation, you prompt the memory device to output the data
currently stored at a specific location in memory. The information on the address lines provides
the location in memory of where you want to read from. Thus, the address lines provide the
memory location of the word that transfers out of the memory; the transfer occurs by placing the

Free Range Digital Design Foundation Modeling Chapter 28

- 463 -

data at the specified address onto the data lines. Read operations don’t alter values stored in the
memory device.

Steps for Memory Writes Steps for Memory Reads

Apply the information representing the
memory location of where you desire to store
the given word to the address lines.

Apply the information representing the actual
data bits to be written to the data lines.

Tweak the control lines to make the write
operation occur.

Wait for data to write

Apply the information representing the
memory location of where you desire to
retrieve the given word to the address lines.

Tweak the control lines to make the read
operation occur.

Wait for valid data to be output

Table 28.3: Summary of generic steps required for memory reads and writes.

28.7 Memory Performance Parameters

When we speak about memory devices, we’re talking about actual physical electronic devices. This means that
read and write operations require finite amounts of time to happen. Most of the associated performance
parameters are outside the scope of this discussion, but some are basic enough for an overview here.

Figure 28.3 shows a BBD for a simple RAM. This RAM has two control inputs: CLK and WE, where WE is a
common acronym for write enable. The BBD for this RAM does not completely describe how the device
operates; you need more information, as we use this device in several examples. Here is what we need to know
about the device in Figure 28.3:

 The RAM in has an asychrounous read. This means that the RAM outputs the requested data as
soon as it is physically capable after it receives a new address value; the read operation is not
dependent upon the clock signal. The WE enable remains unasserted for read operations.

 The RAM in has a synchronous write. This means that write operations are synchronized with
the active edge of the clock, which we assume is the rising edge in this example. The device
initiates the write operation when it detects an asserted WE signal at the same time as a rising
clock edge. The write operation requires a finite amount of time to complete.

Figure 28.3: A typical control sequence for a memory read operation.

Figure 28.4 and Figure 28.5 show generic timing diagrams associated with typical read and write operations,
respectively. For this device, the number of address and data lines does not matter for this discussion

Free Range Digital Design Foundation Modeling Chapter 28

- 464 -

Figure 28.4 shows a timing sequence for a memory read operation. Because the reads are synchronous, we don’t
need to show the CLK input. The one control input of interest is the WE, which remains unasserted for the read
operation. Once a valid address appears on the ADDR input, the RAM outputs the data at that storage address
after a finite amount of time, which we refer to as the read access time.

Figure 28.4: A typical control sequence for a memory read operation.

Figure 28.5 shows a timing sequence for a memory write operation. Because this RAM has synchronous writes,
we include a CLK signal in the timing diagram. The writing of new data to the RAM is initiated by two control
signals: CLK and WE. For a write to initiate, the WE control input must be asserted when a rising edge appears
on the CLK input. The physical writing of data to the RAM occurs a finite amount of time later, which we refer
to as the write cycle time.

Figure 28.5: A typical control sequence for a memory write operation.

We use three main parameters to describe memory performance, which states how fast you can read from
memory (read access time), how fast you can write to memory (write cycle time), and roughly how much data
you can pass back and forth to and from the memory (bandwidth). Figure 28.4 and Figure 28.5 show graphic
examples of the read access and write cycle times, respectively. The list below provides a more detailed
description of these three performance parameters.

Memory Read Access Time: The minimum time required to access a word from memory. This
is the amount of time measured from the application of a valid address to the address lines to the
appearance of the valid data on the data lines.

Free Range Digital Design Foundation Modeling Chapter 28

- 465 -

Memory Write Cycle Time: The minimum time required to write a word to memory. This is
the time measured from the application of a valid address lines to the completion of the internal
operations required to successfully store the data in memory.

Memory Bandwidth: The maximum data transfer rate for a memory device. Since both read
and write operations require finite amounts of time, it’s worthwhile knowing the amount of data
that we can physically transfer to and from memory in a given amount of time.

As with just about everything in digital-land, the faster something can operate, the more highly regarded that
devices. This is maybe even more so true with structured memory devices as they are typically a major
component in many digital systems, particularly computer systems. Moreover, in many digital systems, more
than one device in the system must access memory. Often times more than one device must simultaneously
access memory; this situation creates what we refer to as a bottleneck. This condition is undesirable in the one or
more devices must wait to access memory7. The notion of “waiting” in digital-land means your device is
probably doing nothing, thus probably lowering the overall throughput of your system. Roughly speaking, the
faster your memory operates, the less chance of a bottleneck; or the less problematic that bottleneck is if you had
a slower memory.

Any time you work with a new memory device, you’ll find yourself concerned with the above parameters.
Probably one of the most informative items regarding working with memory devices is the associated timing
diagram, which you can find in the associated datasheet. There is almost a special language used to specify all
the timing parameter associated with memory devices, once you start working with memories, you’ll quickly get
the hang of things.

28.8 Memory Address Ranges

Anytime you work with memories, you run into similar sets of numbers having to do with ranges and maximum
values. Table 28.4 shows a set of values that you inherently become intimately familiar with once you spend
some time working with memory. The values in Table 28.4 are systematic; familiarizing yourself with these
values is not a big deal.

Table 28.4 shows the relation between the number of address bits of a given memory and the associated address
range. The first column in Table 28.4 shows the number of address bits associated with a given memory while
the other three columns show the zero-based address ranges possible from those given address bits. The decimal
representations quickly become barely perceptible. We don’t even bother writing out the binary equivalents, as
we would quickly inundate your brain with 1’s and 0’s.

There are a few other important things to realize about Table 28.4. The “Address Range” column provides the
associated address range in an 8-digit hexadecimal format. Note the maximum address in any range is associated
with all the address bits being at a ‘1’ value. This subsequently provides the “1→3→7→F” format associated
with the first non-zero digit reading from left to right. Also note for both the third and fourth columns of Table
28.4 that the number ranges double as you proceed downwards in the table. This is a by-product of the
underlying binary nature of memories.

7 There is a notion of “multi-port” memories. These memories typically allow some type of parallel operation such that two
devices can simultaneously read from two different memory locations. These types of memories become expensive and
certainly exercise the inherent trade-offs in digital systems designs.

Free Range Digital Design Foundation Modeling Chapter 28

- 466 -

of Address
Bits

Decimal
Range

Address Range
(hexadecimal)

Abbreviated
Range

1 0-1 0-00000001 -
2 0-3 0-00000003 -
3 0-7 0-00000007 -
4 0-15 0-0000000F -
5 0-31 0-0000001F -
6 0-63 0-0000003F -
7 0-127 0-0000007F -
8 0-255 0-000000FF -
9 0-511 0-000001FF -

10 0-1023 0-000003FF 0-1k
11 0-2047 0-000007FF 0-2k
12 0-4095 0-00000FFF 0-4k
13 0-8191 0-00001FFF 0-8k
14 0-16383 0-00003FFF 0-16k
15 0-32767 0-00007FFF 0-32k
16 0-65535 0-0000FFFF 0-64k
17 0-131071 0-0001FFFF 0-128k
18 0-262143 0-0003FFFF 0-256k
19 0-524287 0-0007FFFF 0-512k
20 0-1048575 0-000FFFFF 0-1M
24 0-16777215 0-00FFFFFF 0-16M
32 0-4294967295 0-FFFFFFFF 0-4G

Table 28.4: Number of bits and associated number ranges.

Example 28.1: Design #1: RAM Summation

Design a circuit that sums the values in a 16x8 RAM. Assume some external device previously
placed the data into the RAM. The summation begins when a GO signal asserts. The final sum
remains on the circuit’s output until another assertion of the GO signal. Assume the circuit
contains numbers in unsigned binary format. Provide two levels of BBDs for your solution as
well as a state diagram modeling the circuit’s FSM. State the forms of control the circuit uses.
Also, state how many clock cycles your circuit requires to complete the operation. Minimize
the amount of hardware you use in your design.

Solution: The first step in your solution is drawing the top-level BBD. The problem statement generally states
the exact characteristics of outputs in problems such as these (though sometime not overly explicit), but this
problem requires some extra thought and calculation. We need to show the width of the output, which represents
a summation of the 16 values in the RAM. The width of the data in the RAM is 8-bits, and we know they are
unsigned values. This means the largest value of the sum is 16 x (28-1). We could break out the calculator, but
it’s better to note that we’re working with powers of two, so the maximum summation is 24 x 28, or 212.
Therefore, the width of the summation is 12 bits. Figure 28.7 shows the top-level BBD for this problem.

Free Range Digital Design Foundation Modeling Chapter 28

- 467 -

Figure 28.6: The top-level BBD for this example.

The next step in the solution is to create an inventory of the modules our solution requires. The following is an
outline of our thought process.

 We know this problem has a RAM because the problem description says so.

 Any RAM we work with in this text uses the output of a counter to provide an address input to
the RAM. Many different circuits or modules can provide the address inputs, but the simplest
approach for this text is to use a counter output provide the address.

 The circuit also is summing all the values in the RAM. Because the RAM can only output one
value at a time, we need a circuit that keeps a running total of the RAM’s stored values. This
calls out for an accumulator, which is a combination of an RCA and a register. The
accumulator’s register provides a persistent output.

 Something must control this circuit, and this control is non-trivial, which calls out for a FSM.

Figure 28.7: The lower-level BBD for this example.

Figure 28.7 shows the final circuit for this problem; meaningful commentary follows the diagram.

 The counter always counts up when it’s not loading.

 We need to zero-extend the RAM data to make it 12 bits, which makes the RAM output
compatible with the output of the accumulator’s register, and the other input to the RCA. We
use the square symbol with a “+” in the center to do this (which is arbitrary).

 We had to include an annotation stating that the counter’s CLR input has precedence over the
UP control input.

Figure 28.8 shows the state diagram for this example; here are a few items of interest to note about the state
diagram.

 We drew the state diagram using two states, which requires treating CLR as a Mealy-type
output. This approach was arbitrary, but it saved drawing an extra state.

 In the “wait” state, the register’s LD input is disabled; we enable it while the circuit is summing.

Free Range Digital Design Foundation Modeling Chapter 28

- 468 -

 We always disable the RAM’s WE input as this problem requires no writing to the RAM.

 The FSM remains in the “sum” state until the counter asserts RCO.

Figure 28.8: The state diagram associated with this example.

The FSM controls both the LD and CLR inputs, while the UP input of the counter is hardwired to
always count up. The GO signal is a form of external control. This circuit thus has external, circuit,
and internal controls.

The counter has 16 unique count values that it steps through after receiving a GO signal. The first
clock cycle causes the FSM to transition from the “wait” state to the “sum” state. The summing
operation for this circuit thus requires 17 clock cycles.

Example 28.2: Design #2: Minimum Value & Address Displayer

Design a circuit that finds the smallest value in a 16x8 RAM. Assume some external device
previously placed the data into the RAM. The summation begins when a GO signal asserts.
The circuit’s output shows the minimum value as well as the address where that value resides
in RAM. Both the value and the address remain on the circuit’s output until another assertion
of the GO signal. Assume the circuit contains numbers in unsigned binary format and that
every value in the RAM is unique. Provide two levels of BBDs for your solution as well as a
state diagram modeling the circuit’s FSM. State the forms of control the circuit uses. Also,
state how many clock cycles your circuit requires to complete the operation. Minimize the
amount of hardware you use in your design.

Solution: This is another problem that requires iterating through all the values in a RAM. In this case, the circuit
outputs the minimum value in RAM as well as the address of that minimum value. Figure 28.9 shows the top-
level BBD for this solution.

Figure 28.9: The top-level BBD for this example.

The next step in the solution is to create an inventory of the modules our solution requires. Here is the general
thought process.

Free Range Digital Design Foundation Modeling Chapter 28

- 469 -

 The problem description states that the circuit contains a RAM; we then know that the circuit
then uses a counter to generate an address for the RAM. There are 16 values in the RAM, so the
width of the counter’s output is 4-bits.

 The circuit needs to store two values: the smallest value in the circuit and the location in RAM
of the smallest value. These values both need to be persistent after the algorithm completes, so
we know that the circuit requires two register. The register storing the smallest value is eight
bits while the register storing the address of that value is four bits.

 This circuit needs to do continual comparisons to find the smallest value, so we also require an
8-bit comparator.

 In an effort to make this circuit generic, we first pre-load the 8-bit register with the minimum
possible unsigned 8-bit value. The first step in the algorithm is then to load “all 1’s” into the
register that holds the minimum value, which we do in order to reduce the complexity of the
overall circuit. This is somewhat of a trick, but it is something you see often.

 We use a MUX to select what value appears on the minimum value register’s DATA input. We
first need to load the register with the maximum 8-bit value; after that, we need to be able to
load the register with the current RAM value when the comparison result dictates.

 We need to state that CLR has precedence over the UP input for the counter, and that the CLR
input has precedence over the LD inputs for the two registers.

Figure 28.10: The lower-level BBD for this example.

Figure 28.11 shows the state diagram for this example. Although it looks quite busy, it’s actually very structured,
as the following items indicate.

 We model the LD1 and CLR as Mealy-type outputs in the “wait” state, which is arbitrary. We
did this in order to save a state in the state diagram.

 When the GO signal asserts, the FSM clears the address register and counter, and loads the
minimum value register with the largest possible 8-bit unsigned binary value.

 This circuit does not write to RAM, so we always disable the WE signal.

 The “search” state appears busy, but it’s actually structured. Two things are happening. First,
when the LT signal is not asserted, we don’t load any new values to either register (LD1 & LD2
are not asserted). When the LT signal is asserted, we load the current address (the output of the

Free Range Digital Design Foundation Modeling Chapter 28

- 470 -

counter) to the address register, and load the current RAM data output to the minimum value
register. One of these two operations always happens no matter whether the RCO signal is
asserted or not. When the RCO signal is asserted, that means the counter’s output is at its
maximum value and we must terminate the algorithm by transitioning back to the “wait” state.

 There are four arrows leaving the “search” state; each of these arrows has the four different
possible combinations of the RCO & LT inputs.

Figure 28.11: The state diagram associated with this example.

The FSM controls both the LD and CLR inputs for both registers, while we hardware the UP input of
the counter to always count up. The GO signal is a form of external control. This circuit thus has
external, circuit, and internal controls.

The counter has 16 unique count values that it steps through after receiving a GO signal. The first
clock cycle causes the FSM to transition from the “wait” state to the “search” state. This circuit thus
requires 17 clock cycles to locate the minimum value for the circuit.

Example 28.3: Design #3: Value Event Counter

Design a circuit that finds the number of times the value 0x47 appears in a 16x8 RAM.
Assume some external device previously placed the data into the RAM. The search for the
given value begins when a GO signal asserts. The circuit’s output persistently shows the
resultant count value until another assertion of the GO signal. Assume the circuit contains
numbers in unsigned binary format. Provide two levels of BBDs for your solution as well as a
state diagram modeling the circuit’s FSM. State the forms of control the circuit uses. Also,
state how many clock cycles your circuit requires to complete the operation. Minimize the
amount of hardware you use in your design.

Solution: This is another problem where we need to carefully choose the width of the output value. This problem
asks that we count the number of value in the RAM that are equivalent to 0x47. The greatest count is when all
the values in the RAM are 0x47, which is a count of 16. We thus require an output data width of five bits. Figure
28.12 shows the top-level BBD for this problem.

Free Range Digital Design Foundation Modeling Chapter 28

- 471 -

Figure 28.12: The top-level BBD for this example.

The next step in the solution is to create an inventory of the modules our solution requires; here is our module
inventory thought process.

 We know the circuit requires a RAM, so we know the circuit then uses a counter to generate an
address for the RAM. There are 16 values in the RAM, so the counter’s output is 4-bits wide.

 We are looking for the value of 0x47, which means we need to compare the data at each RAM
location with that value. Our circuit thus requires a comparator.

 We must determine the number of times the 0x47 appears in the RAM, so the first thought may
be that our circuit requires an accumulator. We could use an accumulator, but we can satisfy our
circuit’s needs with an event counter, which is a counter that increments when it detects a
certain event. The event we are detecting is the presence of 0x47 in the RAM.

 We need a FSM to control our circuit.

Figure 28.13 shows the lower-level BBD for our solution. Here are a few interesting items in that BBD:

 The comparator hardwires one the “event” value to one of its inputs.

 We don’t need to provide a note for the event counter regarding the precedence of the LD and
CLR inputs; the FSM handles that aspect of the circuit.

 The CLR signal on the two counters are physically the same signal.

 The DATA input to the RAM is hardwired to zero; when we find the value of 0x47 at a
particular address, the circuit writes 0x00 to that address location.

Figure 28.13: The lower-level BBD for this example.

Figure 28.14 shows state diagram for our solution. The state diagram looks rather busy, but once again, it is
nicely structured. If you see and understand that structure, the state diagram seems relatively simple. Here the
full story:

 We model the LD and CLR as Mealy-type outputs in the “wait” state, which is arbitrary. We
did this in order to save a state in the state diagram.

Free Range Digital Design Foundation Modeling Chapter 28

- 472 -

 This WE input is always disabled in the “wait” state. The state of the WE signal in the “scan”
state depends on the EQ input, where it writes a new value to RAM when the EQ is asserted, or
does not change the RAM contents otherwise. We thus model the WE input as a Mealy-type
output in the “scan” state and as a Moore-type output in the “wait” state.

 The “scan” state has four arrows leaving the state, where each arrow represents one combination
of the two inputs (RCO & EQ).

 When the RCO is not asserted, the circuit either increments the count and clears that
corresponding address in RAM, or it does nothing; it then transitions back to the scan state.
When RCO is asserted, it performs the exact two actions, but the FSM then transitions to the
“wait” state.

Figure 28.14: The state diagram associated with this example.

The FSM controls the LD, CLR, and WE inputs for the counters and RAM. The GO signal is a form
of external control. Thus, this circuit has both circuit an external control.

The counter has 16 unique count values that it steps through after receiving a GO signal. The first
clock cycle causes the FSM to transition from the “wait” state to the “search” state. This circuit thus
requires 17 clock cycles to locate the minimum value for the circuit.

Free Range Digital Design Foundation Modeling Chapter 28

- 473 -

28.9 Digital Design Foundation Notation: RAM

We consider the RAM to be a Digital Design Foundation module. The RAM is a controlled circuit. Figure 28.15
shows the digital design foundation notation for the counter. This foundation module is both data inputs and data
outputs, both of which are the same width. We use a simple device for the foundation model and consider read
operations to be asynchronous and write operation to be synchronous. The WE signal controls whether the
device is reading or writing, where WE is asserted for write operations and unasserted for read operations. We
consider ROMs to be a subset of RAMs; ROMs are not able to write. Table 28.5 shows the foundation
description for the RAM.

Figure 28.15: Typical data, control and status signals for RAM. .

 Signal Name Description

IN
P

U
T

D

A
T

A

DATA_IN Data to be synchronously written to RAM.

O
U

T
P

U
T

D

A
T

A

DATA_OUT Data stored in the RAM at the address given by the ADDR input.

C
O

N
T

R
O

L

CLK The CLK signal synchronizes the writing of data to the RAM

ADDR
The RAM stores the value of IN_DATA at the address associated with the value
of ADDR on the active clock edge (synchronously) when the WE signal is
asserted.

WE
When asserted, allows the loading of DATA_IN to the RAM location specified
by ADDR, which is a write operation. When unasserted, the RAM outputs the
data stored at the location specified by the WE input.

S
T

A
T

U
S

n/a -

Table 28.5: The foundation description for a RAM.

Free Range Digital Design Foundation Modeling Chapter 28

- 474 -

28.10 Chapter Summary

 Memory is a form of a sequential circuit, but we further divide memory into two categories: “incidental
memory” and “structured memory”. Incidental memory refers to items such as flip-flops and registers
(relatively small) while structured memory refers to larger capacity regular structures.

 There are many type of memory in digital-land, but we can roughly classify them all as either ROM or RAM.
ROM is “read only” memory while RAM is “random access” memory. Both of these memories have the
random access attribute in that all of the data on the devices is accessible in the same amount of time. ROMs
are considered non-volatile while RAMs are not. RAMs can be both written to and read from while ROM can
only be generally read from.

 The notion of reading from a memory, or a memory READ, consists of making the data within the memory at
a given address available to entities external to the memory. Memory reads generally do not alter the data
stored in the memory. The notion of writing to a memory, or a memory WRITE, consists of overwriting data
contained in the memory at a given address with data provided by some entity external to the memory.

 Interfacing with memory generally requires tweaking one the three types of I/O associated with memory. The
three types of memory I/O are address lines, data lines, and control lines. The address lines provide an index
into the memory and allow access to a particular chunk of data stored in memory. The data lines provide a
path for data to flow into (write) or out of (read) memory. The control lines provide a structured approach to
read from and/or writing to the memory device.

 Memories are generally rated by the capacity (how many bits they can store) and the speed (how fast you can
read and/or write the memory). The term “word” is used to refer to the smallest chunk of memory available at
a given address in the memory. Memory capacity can be stated in bits or words; any other approach is suspect
as it can be misleading

 Memories typically store two raised to an integral power number of words. The integral power in this case is
the number of address lines on the memory. The number of address lines is sometimes referred to as the
width of the address bus.

 Memory speed is rated by how fast you can read from it and/or write to it. The term “read access time” refers
to how fast you can read from a memory. The term “write cycle timing” refers to how fast you can write data
to a memory. The term “memory bandwidth” refers to the maximum amount of data going to and coming
from a particular memory in a given amount of time.

Free Range Digital Design Foundation Modeling Chapter 28

- 475 -

28.11 Chapter Exercises

1) In your own words, briefly describe what is meant by the term “random access” in the context of computer
memories.

2) In your own words, briefly describe what is meant by the term “random access” in the context of computer
memories.

3) In your own words, briefly describe what is meant by the term “random access” in the context of computer
memories.

4) In your own words, explain how read and write access times affect the bandwidth of a given memory.

5) Describe a circuit situation where having a large memory bandwidth would be important.

6) Faster memories are typically more expensive than slower memories. Speculate on why you feel this would
be the case.

Free Range Digital Design Foundation Modeling Chapter 28

- 476 -

28.12 Design Problems

For the following problems:

 Provide a top-level BBD and as many lower-level BBDs as necessary to describe your solution

 Minimize the number of states in the associated state diagrams

 Minimize the use of hardware when problem require extra hardware

 Assume all inputs and outputs are positive logic unless stated otherwise

 Explicitly state whether state diagrams have Mealy or Moore outputs where appropriate

 Disregard all setup and hold-time issues

 For sequence detector problems assume the X input is stable when each clock edge arrives and that X
can change no more than once per clock period.

 State all forms of control for your solution.

1) Design a circuit that upon the pressing of a button, determines how many values in a 16 RAM are negative,
and displays that value until another button press. The RAM contains 8-bit signed numbers in RC format.

2) Design a circuit that upon the pressing of a button, finds the maximum value in a 16x8 RAM, and displays
that value until another maximum value is found after another button press. The RAM contains 8-bit
unsigned numbers.

3) Design a circuit that upon the pressing of a button, finds the minimum value in a 16x8 RAM, and displays
that value until another minimum value is found after another button press. The RAM contains 8-bit
unsigned numbers.

4) Design a circuit that upon the pressing of a button, determines how many values in a 16x8 RAM are evenly
divisible by eight, and displays that value a button press restarts the process. The RAM contains 8-bit
unsigned numbers.

5) Design a circuit that upon the pressing of a button, determines how many values in a 16x8 RAM have a
value of 15 or less, and displays that value until a button press restarts the process. The RAM contains 8-bit
unsigned numbers. Don’t use a comparator in this problem.

6) Design a circuit that upon the pressing of a button, sums all the values in a 16x8 RAM and displays that
value until a button press restarts the process. The RAM contains 8-bit unsigned numbers.

7) Design a circuit that upon the pressing of a button, determines if the value in a 16x8 RAM are in ascending
order. If they are in ascending order, the circuit turns on an LED; otherwise it leaves the LED unlit. The
circuit does this each time a button is pressed. The RAM contains 8-bit unsigned numbers.

8) Design a circuit that upon the pressing of a button, determines how many bits are set in a in a 16x8 RAM
and displays that number on the output. The circuit does this each time a button is pressed.

9) Design a circuit that reads all the values in a 16x8 RAM. If the value is less than 26, the circuit changes that
value to 0x00. The circuit does this each time the button is pressed.

10) Design a circuit that upon the pressing of a button, determines how many values value in a 16x8 RAM are
even parity and how many values are odd parity. The circuit does this each time a button is pressed.

11) Provide a hardware diagram and state diagram that controls the hardware to complete the following
task. Upon receiving a “GO” signal, the circuit counts the number of values in each even address
location in a 16x8 RAM that are evenly divisible by 8 and stores that count in a register.

Free Range Digital Design Foundation Modeling Chapter 28

- 477 -

12) Provide a hardware diagram and state diagram that controls the hardware to complete the following task:
Upon receiving a “GO” signal, the circuit finds the minimum value in a 16x8 RAM. Upon completion, the
circuit continually outputs both the minimum value and the RAM address of that value until another GO
signal is detected. The RAM contains unsigned 8-bit values.

13) Provide the hardware diagram and state diagram that controls the hardware to complete the following task.
Upon receiving a “GO” signal, the circuit counts how many values in each even address location in a 16x8
RAM are evenly divisible by 8. Consider address “0000” to be an even address location.

14) Provide a hardware diagram and state diagram that controls the hardware to complete the following task.
Upon receiving a “GO” signal, the circuit stores the largest value in a 16x8 RAM into an 8-bit register.

15) Provide a hardware diagram and state diagram that controls the hardware to complete the following task.
Upon receiving a “GO” signal, the circuit sums the values in each memory location of a 16x8 RAM if they
are less than 63 and stores the result in a register. The final result should not be changed until another GO
signal is detected. The RAM contains unsigned 8-bit values.

16) Provide a hardware diagram and state diagram that controls the hardware to complete the following task.
Upon receiving a “GO” signal, the circuit counts number of values in each memory location of a 64x8 RAM
that are less than 32 and stores that count in a register. The final result should not be changed until another
GO signal is detected. The RAM contains unsigned 8-bit values.

17) Provide a hardware diagram and state diagram that controls the hardware to complete the following task:
Upon receiving a “GO” signal, the circuit sums the values in two 8x8 RAMs and outputs that sum until it
receives another GO signal. Design your circuit for either minimum operating time or minimum hardware;
state which approach you are taking. The RAM contains unsigned 8-bit values.

18) Provide a hardware diagram and state diagram that controls the hardware to complete the following task:
Upon receiving a “GO” signal, the circuit finds the maximum value in a 16x8 RAM, and then clears that
value in RAM. Upon completion of this operation, the circuit waits for another GO signal. The RAM
contains unsigned 8-bit values.

Free Range Digital Design Foundation Modeling Appendix

- 478 -

Appendix

Free Range Digital Design Foundation Modeling Mealy’s Laws of Digital Design

- 479 -

Mealy’s Laws of Digital Design

Mealy’s First Law of Digital Design: If in doubt, draw some black box diagrams.

Justification: You always know enough to draw the top-level BBD interface. When you start drawing black
boxes and listing what you know, you generate ideas on how to solve the problem.

Mealy’s Second Law of Digital Design: If your digital design is running into weird obstacles that require
kludgy solutions, toss out the design and start over from square one.

Justification: There is never one correct circuit to solve a digital design problem, which means there are
many paths to take when working on a digital design problem. You’re inevitably going to take the wrong
path, so be ready to realize as much, and switch to a different path.

Mealy’s Third Law of Digital Design: Every digital design problem can have many different but equivalent
solutions; the absolute right solution is eternally elusive.

Justification: Digital circuitry is inherently flexible, which allows you to solve digital design problems in
different ways. The digital design must be familiar enough with digital circuitry to be able to create their
designs to satisfy the design criteria and to then verify their designs work as expected.

Mealy’s Fourth Law of Digital Design: The digital design process is circular, not linear. If you think you’re
going to generate the correct solution with the first pass, you’re bound for disappointment. The digital design
process is circular; always make going backwards a few steps to fix issues part of the design process. Don’t try
to make your design perfect from the get-go, make it simple to understand so that you can fix issues as they
arise.

Justification: Based on Mealy’s Second and Third Laws, you always need to be willing to go temporarily
backwards on your designs. Design, go back and make necessarily refinement, design some more, repeat.

Mealy’s Fifth Law of Digital Design: Model circuits using many smaller sub-modules as opposed to fewer
larger sub-modules; as this approach supports testing and increases the chances module reuse.

Justification: Large designs are harder to understand and test, particularly if you’re first passing off your
models to an HDL synthesizer. Make your designs reliant upon a strong foundation of basic digital modules
is always the best approach.

Mealy’s Sixth Law of Digital Design: Don’t rely on the HDL synthesizer; create your HDL models by having a
remote vision of what underlying hardware should look like in terms of standard digital modules.

Justification: Although HDLs give you the ability to model digital circuits, they are not magic. The HDL
synthesizer’s task is to convert pages of text into circuits; the more the options you give to the synthesizer,
the less probable the synthesizer will successfully generate a circuit that works as you intended.

Mealy’s Seventh Law of Digital Design: Always first consider modeling a digital circuit or part of a digital
circuit using some type of decoder. Decoders in digital design are anything we can describe in a tabular format,
so they are essentially look-up tables (LUTs).

Justification: The basis of all digital design is defining circuits in a tabular format, whenever possible.
Although this approach represents low-level design, HDL tools have strong support for table-based models.

Free Range Digital Design Foundation Modeling DDFM Cheatsheet

 - 480 -

Requiem for the Digital Logic Designer
Digital design is the process where you create a digital circuit to solve a given problem. There are many
approaches you can use to solve given problems, designing a digital logic circuit is one of them. What makes
digital design so useful is that the design can generally interface with other digital circuits such as computer-type
circuits. The two basic tenets of digital logic are:

Digital logic circuits are hierarchical: We can describe a digital circuit at various levels; the level at which we
describe digital logic is generally the one that allows us to transfer as much useful information as possible.
Abstracting digital designs to higher levels aids in understanding and designing circuits.

Digital logic circuits are decomposable into a few basic digital circuits: Although there are many ways to describe
digital circuits, we strive to make the descriptions an aggregate compilation of standard digital circuits in able to
help us understand the circuits.

A given digital design solves problems by having the outputs react to the inputs in a manner such that it solves the
given problem. There are two basic types of digital logic circuits:

Combinatorial Circuits: circuit outputs are a function of the circuit’s inputs.

Sequential Circuits: circuit outputs are a function of the sequence of the circuit’s inputs.

The main ramification of sequential circuits is that they can “remember” the previous “state” of the circuit.
Sequential circuits can store (remember) bits; we refer to the bits the circuit is remembering as the “state” of the
circuit. Combinatorial circuits, by definition, do not have state.

Figure 28.16shows a digital logic circuit containing both sequential and combinatorial modules. We can thus
model digital circuits as a controlled interaction between a set of sequential and combinatorial circuits. Solving
problems using digital circuits requires controlling the flow of data through the circuit in such a way that it
provides a solution to the given problem.

Figure 28.16: A basic logic circuit.

Figure 28.17(a) shows the basic model of a digital logic circuit; we characterize the signals that the outside world
sees as either inputs or outputs. Because we need to control the flow of data through the digital circuit, we must
more specifically define the inputs and outputs of a basic digital circuit module. Figure 28.17(b) shows that we
further classify the inputs as either “data” or “control” and classify the outputs as either “data” or “status”. This
means the various circuit elements in Figure 28.17(b) are able to 1) pass data from their inputs to their outputs

Free Range Digital Design Foundation Modeling DDFM Cheatsheet

 - 481 -

under the direction of the “control” inputs and, 2) output characteristics of the data transfers using the status
outputs.

(a) (b)

Figure 28.17: Models for a basic logic circuit (a), and a more refined basic digital logic circuit (b).

Something must control the flow of data through the generic digital circuit. We therefore must have some other
entity that interprets the status signal outputs of the circuit modules and issues control signals to those circuit
modules. For the purpose of this discussion, we consider this circuit to be a finite state machine (FSM). The
important thing to remember is that something controls the circuit, whether it is an FSM, a computer, or a herd of
confused academic administrators.

Figure 28.18 shows a generic model of an FSM. The FSM interprets the status signal outputs from various digital
modules and then outputs the appropriate control signals that are the various digital modules use as control inputs.
Other interesting characteristics to note include:

FSMs generally do not have data inputs and data outputs. You can design FSMs with data inputs and outputs, but
they tend to be klunky and non-generic. Non-generic FSMs require modifications if the data widths within the
controlled circuit change.

The FSM is a sequential circuit because it has the ability to store bits. The FSM only stores bits to represent the
“state” of the FSM, which it does in its “state variables”.

The underlying model of the FSM includes three primary elements: 1) the next state decoder, 2) the output
decoder, and, 3) the state variables. The next state decoder is a combinatorial circuit that decides the next state
based on the given state and status inputs. The output decoder is a combinatorial circuit that generates control
outputs based on either state only (Moore machine) or state and status inputs (Mealy machine). Figure 28.19
shows models for the Moore and Mealy-type FSMs.

Free Range Digital Design Foundation Modeling DDFM Cheatsheet

 - 482 -

Figure 28.18: A black box model of a FSM.

Figure 28.19: The FSM model showing the two types of outputs (Mealy and Moore).

Figure 28.20 shows a modified version of Figure 28.17 that includes an FSM as a control element. Figure 28.21
shows that we can further this abstraction. Figure 28.21 shows that the circuit control elements can either be
hardware (FSMs) or software (microcontrollers). Additionally, Figure 28.21 shows that the modules that we can
control in a digital circuit include “computer peripherals” as well as the low-level digital modules Figure 28.17.
Figure 28.21 represents computer peripherals using circles.

Figure 28.20: A basic logic circuit controlled by FSM

Free Range Digital Design Foundation Modeling DDFM Cheatsheet

 - 483 -

Figure 28.21: A basic logic circuit with peripherals and various control circuits.

Free Range Digital Design Foundation Modeling DDFM Cheatsheet

 - 484 -

Ripple Carry Adder (RCA)

The RCA is a combinatorial module that performs addition. We often model the RCA as a series of Full Adders
(FAs) connected in series such that the Co from one module connects to the Cin of the next higher bit location.
The RCA can also perform subtraction by changing the sign of one addend before performing the addition.

 RCA: Device Summary

F
ou

nd
at

io
n

 N
ot

at
io

n

In
p

ut
/O

u
tp

ut

DATA IN: A, B, Cin. A & B are the addends; Cin is the carry in.

CONTROL: none

DATA OUT: SUM. Summation of: A+B+Cin.

STATUS: Co. The Carry out; indicates if addition operation generated a carry out

U
sa

ge

 Circuits use RCAs when they require addition or subtraction operations

 An RCA is a primary component of an accumulators (an register is the other component)

 The RCA’s carry out (CO) is effectively the (n+1)th bit of a n-bit RCA

 The CO indicates “validity” of the SUM output when using unsigned binary numbers

Figure 28.22: The RCA Foundation Module overview.

Free Range Digital Design Foundation Modeling DDFM Cheatsheet

 - 485 -

Multiplexor (MUX)

The MUX is a combinatorial circuit that selects which of many (more than one) data inputs appear on the circuit’s
single data output. The SEL signal determines which signals transfers to the output, which requires that it have a
width of at least: ⌈ 𝑙𝑜𝑔 number of data inputs ⌉. The width of the data inputs and outputs are equivalent. The
most generic forms of MUXes include 2:1, 4:1, 8:1, 16:1, etc.

 MUX: Device Summary

F
ou

nd
at

io
n

 N
ot

at
io

n

In
p

ut
/O

u
tp

ut

DATA IN: A, B, C, etc; (MUXes have two or more data inputs)

CONTROL: SEL. selects which data input appears on the DATA OUT. The width of the SEL
signal is such that 2SEL ≥ the number of data inputs.

DATA OUT: A single output, which is one of the inputs (selected by the SEL signal)

STATUS: none

U
sa

ge

 Circuits use MUXes when they need to make decisions. The general hardware approach to
decision making is to generate valid values of all MUX inputs and then select one of the values
as an output to the MUX.

 The width of the data inputs and data outputs generally match

 MUXes can have almost any number of inputs (greater than one); the constraint is:

2(width of SEL) ≥ the number of data inputs

Figure 28.23: The MUX Foundation Module overview.

Free Range Digital Design Foundation Modeling DDFM Cheatsheet

 - 486 -

Comparator

The comparator is a combinatorial circuit that generates an equality-type relationship between the two inputs. The
comparator has outputs of EQ (equal), LT (less than), and GT (greater than) which are characteristics of the
relationship between the two input. The comparator’s two input values are typically bundled values of equal width.

 Comparator: Device Summary

F
ou

nd
at

io
n

 N
ot

at
io

n

In
p

ut
/O

u
tp

ut

DATA IN: A, B. the two bundled values to be compared.

CONTROL: none

DATA OUT:: none

STATUS: EQ (A=B), LT (A<B), GT (A>B)

U
sa

ge
 Circuits use comparators when they need to establish equality relationships between two number

 The data width of the two inputs is generally the same

 When appearing in circuits, comparators don’t need to include every status output

Figure 28.24: The Comparator Foundation Module overview.

Free Range Digital Design Foundation Modeling DDFM Cheatsheet

 - 487 -

Generic Decoder

The generic decoder is a combinatorial circuit that establishes a functional relationship between the module’s data
inputs and data outputs. The generic decoder is a digital circuit implementation of a look-up-table (LUT). The
generic decoder’s inputs and outputs are hard to classify because inputs can include data and/or control and
outputs can contain at and/or status. We thus describe this circuit using the DATA IN input for all the inputs
(whether they be data or control) and the DATA OUT for all outputs (whether they be data or status). Both DATA
IN & DATA OUT can be bundles or single bits, which allows us to classify basic logic gates as generic decoders.

 Generic Decoder: Device Summary

F
ou

nd
at

io
n

 N
ot

at
io

n

In
p

ut
/O

u
tp

ut

DATA IN: DATA; the function’s independent variables

CONTROL: none

DATA OUT: DATA; the function’s dependent variables

STATUS: none

U
sa

ge

 Circuits use generic decoders: 1) as true LUTs where we havepre-calculated values (DATA
OUT) indexed by DATA IN, or 2) as a replacement for logic functionality

 Generic decoder DATA IN & DATA OUT data widths must be at least one bit

 You must include a adequate description of a generic decoder if you use it in a circuit

Figure 28.25: The Generic Decoder Foundation Module overview.

Free Range Digital Design Foundation Modeling DDFM Cheatsheet

 - 488 -

Standard Decoder

The standard decoder is a combinatorial and is a subset of generic decoders. The standard decoder has a special
relationship between the SEL inputs and the outputs. The number of single-bit outputs = 2 . The output
bits have either a one-hot (only one output bit is set) or one-cold (only one output bit is cleared) form. We often
describe standard decoders using the notation: 1:2, 2:4, 3:8, 4:16, etc.

 Standard Decoder: Device Summary

F
ou

nd
at

io
n

 N
ot

at
io

n

In
p

ut
/O

u
tp

ut

DATA IN: none.

CONTROL: SEL; selects the form of the output

DATA OUT: none

STATUS: Sx; the set of outputs in one-hot or one-cold form

U
sa

ge

 Circuits use standard decoders when they need to select only one of several outputs to actuate

 Standard decoders are a subset of generic decoders

Figure 28.26: The Standard Decoder Foundation Module overview.

Free Range Digital Design Foundation Modeling DDFM Cheatsheet

 - 489 -

Parity Generator

The parity generator is a combinatorial circuit that establishes a given parity for the aggregate combination of the
DATA inputs and PAR output. In other words, the parity generator assigns the parity bit such that the DATA &
PAR bits are either odd or even parity. Parity “checkers” circuits are similar to parity generators, where the PAR
output indicates the DATA bits are either odd or even parity.

 Parity Generator: Device Summary

F
ou

nd
at

io
n

 N
ot

at
io

n

In
p

ut
/O

u
tp

ut

DATA IN: data used for establishing parity

CONTROL: none

DATA OUT: none

STATUS: PAR bit provides information regarding the parity of the DATA IN bits, which the
circuit can then use to establish a given parity

U
sa

ge

 Circuits use parity generators when they need to: 1) establish the parity of the DATA IN bits,
or 2) when they need to include a bit with DATA IN to ensure the aggregate set of bits
(DATA IN & PAR) is of a given parity

 The notion of parity is also associated with a serial stream of bit; in this case, the circuit must
have some mechanism to store the DATA IN bit stream

Figure 28.27: The Parity Generator Foundation Module overview.

Free Range Digital Design Foundation Modeling DDFM Cheatsheet

 - 490 -

Registers

The register is a sequential circuit that to stores bits of data. Registers generally store multiple bits of data; we refer
to a 1-bit register as a flip-flop. The register’s load control input (LD) enables the register to load the input data to
the register; the register synchronizes this loading with the active edge (rising or falling) edge of the CLK signal.
Any data loaded to the register appears on the register’s OUT_DATA output after a given propagation delay.
Registers also have inputs such as CLR, which clears each of the bit storage elements in the register. Signals such
as CLR are often asynchronous, which means the given action occurs immediately upon asserting the CLR signal.

 Register: Device Summary

F
ou

nd
at

io
n

 N
ot

at
io

n

In
p

ut
/O

u
tp

ut
 DATA IN: data to be synchronously loaded into the register.

CONTROL: CLK, LD, CLR; The CLK signal synchronizes the loading of data into the register,
which happens when both an active clock edge occurs when the LD input is asserted. The CLR
input clears each bit storage element in the register (can be either synchronous or asynchronous).

DATA OUT: the data previously loaded to the register.

STATUS: none

U
sa

ge

 Circuits use registers when they need to store values

 Register loading is always synchronous, while clear-type inputs can be either asynchronous of
synchronous depending upon design requirements

 A register is a primary component of an accumulators (an RCA is the other component)

Figure 28.28: The Register Foundation Module overview.

Free Range Digital Design Foundation Modeling DDFM Cheatsheet

 - 491 -

Counters

The counter is a sequential circuit and is essentially a special type of register, which means it retains all the control
inputs associated with a register. The register’s load control input (LD) enables the register to load the input data
to the register; the register synchronizes this loading with the active edge (rising or falling) edge of the CLK
signal. The counter as the ability to count up (adds ‘1’ to stored value) or count down (subtracts ‘1 from stored
value). As with the LD signal, changes to the stored register value are synchronized with the active clock edge.
Counter typically have inputs such as CLR, which serves to clear each of the bit storage elements in the register.
Counter also have inputs such as CLR, which clears each of the bit storage elements in the register. Counters
generally automatically “roll over” when they reach their terminal values, which means that the count transitions
from its maximum value to zero when counting up and from zero to its maximum value when counting down.

 Counter: Device Summary

F
ou

nd
at

io
n

 N
ot

at
io

n

In
p

ut
/O

u
tp

ut

DATA IN: parallel data for synchronous loading.

CONTROL: CLK, LD, CLR, UP, DOWN, HOLD. The CLK signal synchronizes the loading
of data into the register and the changing of the count, which can either be up or down as
controlled by the UP, DOWN, & HOLD signals. The LD signal controls the synchronous
loading of new data into the register. The CLR input clears each bit storage element in the
register either synchronously or asynchronously.

DATA OUT: OUT_DATA; the data previously stored in the circuit and possibly modified as
loaded to the register. The OUT_DATA signal is the “count” value of the counter.

STATUS: RCO; establishes when the counter outputs are at the counter’s terminal value, where
the terminal value depends on the count direction.

U
sa

ge

 Circuits use counters primarily in two ways: 1) to keep track of how many times something
has happened (event counter), or 2) to ensure a circuit does some action a given number of
times

 There is flexibility in the UP, DOWN, & HOLD functionality as the circuit design requires

 The RCO signal is count direction dependent

 Not all counter implemenations require the entires set of inputs & outputs

 The DATA IN & DATA OUT data width are equivalent

Figure 28.29: The Counter Foundation Module overview.

Free Range Digital Design Foundation Modeling DDFM Cheatsheet

 - 492 -

Shift Registers

The shift register is a sequential circuit that is a special type of register. The register’s SEL input choose operations
such as loading of the DATA_IN value to the register, holding, and various flavors of left and right shifts. Most
operations are typically synchronous, though the CLR input is often asynchronous. The DBIT signal serves as the
new input bit for shift operations, namely the new MSB for right shift or the new LSB for left shifts. We refer to
shift registers that do more than one operation as universal shift regsiters (USRs).

 Shift Register: Device Summary

F
ou

nd
at

io
n

 N
ot

at
io

n

In
p

ut
/O

u
tp

ut

DATA IN: DATA_IN is the multibit signal to be loaded into the shift regsiter; DBIT is the single
bit of that becomes the new left-most or right-most bit of the stored value for right or left shifts,
respectively

CONTROL: CLK, CLR, SEL. The SEL input selects the functionality of the shift register.
Typical shift registers include hold, load, shift-left, and shift-right functionality. The CLK signal
synchronizes the loading of data into the register, as well as both left and right shifts. The CLR
input clears each bit storage element in the register either synchronously or asynchronously.

DATA OUT: OUT_DATA; the data stored in the shift register.

STATUS: none

U
sa

ge

 Circuits use shift registers when they require 1) fast division by two (right shift) or fast
multiplication by two (left shift), or 2) when they requires special shift-type bit manipulation

 DATA_IN & DATA_OUT bit widths always match

 A shift register is a special type of register

Figure 28.30: The Shift Register Foundation Module overview.

Free Range Digital Design Foundation Modeling DDFM Cheatsheet

 - 493 -

Random Access Memory (RAM)

The RAM is a sequential circuit that allows for the storage of large amounts of data relative to registers. RAM
contains three types of input/output signals: address, data (input and output), and control. The IN_DATA signal is
the data that will be written to the RAM; the OUT_DATA is the data that is read from RAM. All data reads and
write occur at the RAM location specified by the address inputs. The value of the control signals allow the data
reads or writes. While memory modules often have many control signals, we only consider a CLK and a WE
(write enable) signal in order to simplify this description. Reading data from the RAM is an asynchronously
operation; writing to the RAM is a synchronous operation. Read Only Memories (ROMs) have most of the same
features of a RAM except for the WE signal. Additionally, reading from ROMs can either be synchronous or
asynchronous.

 RAM: Device Summary

F
ou

nd
at

io
n

 N
ot

at
io

n

In
p

ut
/O

u
tp

ut

DATA IN: data to be synchronously written to RAM.

CONTROL: CLK, WE, ADDR; The CLK signal synchronizes the writing of data to the RAM; the
RAM stores the value of IN_DATA at the address associated with the value of ADDR on the active
clock edge (synchronously) when the WE signal is asserted. Data read from RAM is asynchronous;
data appearing on OUT_DATA is the data associated with the ADDR input.

DATA OUT: OUT_DATA; the data currently stored in the shift register.

STATUS: none

U
sa

ge
 Circuits use RAMs when they requires a significant amount of easily accessed data storage

 DATA_IN & DATA_OUT always have the same data widths

 In any given clock cycle RAMs either write or read, but not both

Figure 28.31: The RAM Foundation Module overview.

Free Range Digital Design Foundation Modeling DDFM Cheatsheet

 - 494 -

Finite State Machine (FSM)

The FSM is a sequential circuit that controls other digital circuits. The FSM reacts to status inputs and issues
appropriate control outputs. The FSM’s control inputs are “status” outputs form other digital modules, while the
FSM’s status outputs become “control” inputs to other digital modules. The FSM uses the value of the status
inputs to transition through the various states of the FSM on the active edge of the CLK signal. The control outputs
can either Moore (outputs a function of state only) or Mealy-type (outputs are a function of both state and status
inputs).

Diagram Input/Output

Data In: none

Inputs: CLK, status; The CLK signal synchronizes state transitions of
the FSM; status inputs are the status outputs of modules external to the
FSM. Status input values determine the FSM’s state transitions.

Outputs: control; circuit elements external to the FSM use the control
outputs to facilitate data handling; control outputs can be either Mealy
or Moore-type. Mealy-type outputs are a function of present state and
external inputs, while Moore-type outputs on a function of present state
only.

Status Out: none

Figure 28.32: The Finite State Machine.

Free Range Digital Design Foundation Modeling DDFM Cheatsheet

 - 495 -

Digital Designer Foundation Model Cheatsheet

 Circuit Diagram Data IN Control IN Data OUT Status OUT

C
 o

 m
 b

 I
 n

 a
 t

 o
 r

 i
a

l

RCA

A
B

Cin
- SUM Co

MUX

Multiple
DATA_IN

SEL DATA_OUT -

Generic
Decoder
(LUT)

DATA - DATA -

Standard
Decoder

- SEL - STATUS

Comparator

A
B

- -
EQ
GT
LT

Parity
Generator

DATA_IN - - PAR

S
 e

 q
 u

 e
 n

 t
 I

 a
 l

Register

DATA_IN
CLK
LD

CLR
DATA_OUT -

Counter

DATA_IN

CLK
LD, CLR

UP/DOWN
HOLD

DATA_OUT RCO

Shift
Register

DATA_IN,
DBIT

CLK, SEL
CLR, DBIT
DATA_IN

DATA_OUT -

RAM

IN_DATA
-

CLK
WE

ADDR

OUT_DATA
-

IN_DATA
-

 Inputs Outputs
FSM

-
CLK
status

- control

F
S

M

M
od

el

Free Range Digital Design Foundation Modeling Digital Design Dictionary

 - 496 -

Digital Design Dictionary

-A-

ABEL: An early hardware description language (HDL);
it’s still used today but it’s tough to find someone who
would admit to using it.

Absolute Time: A term used to describe one of two
methods used to represent time in simulations. Absolute
time refers to the notion that all references to time are
based on an “absolute” number, such as the beginning of
the simulation. Simulations can also use relative time (see
“relative time”).

Academic Administrators: A term referring to alien D-
bags representing the largest obstacle to actual learning in
academia.

Academic Exercise: Any amount of work that looks good
and keeps you busy but actually has no meaningful
purpose in life in general.

Academic Purposes: Any process or endeavor that
requires time but has no real lasting meaning or lasting
effect.

Academic-Types: That special type of person who is
intent on being successful in academia at any cost and
without regards to anyone or anything they damage in the
process. The hallmark of an academic-type student is that
they gets good grades but typically don’t know squat. The
hallmark of an academic-type teacher is the one who
generally places little or no effort into teaching; they
primarily forcus their efforts advancing their careers
(which in modern academia has nothing to do with
providing quality teaching). The hallmark of an academic
administrator are the ones who do nothing while placing
amazing amounts of efforts into justifying their overpaid
academic existence.

Academonic: The rallying cry for those who dare to
expose the endemic corruption in academia.

Action State: The voltage level of a signal associated with
notion that some action should take place when the signal
is at this level; same as “active state”.

Active Edge: A term that refers to either a “0→1”
transition (rising edge) or a 1→0” transition (falling edge)
of a signal that synchronizes changes in a circuit’s state.

Active State: The voltage level of a signal associated with
notion that some action should take place when the signal
is at this level; same as “action state”.

ADC: An acronym representing analog-to-digital
conversion; (see “Analog-to-Digital Conversion”).

Addend: A number added to another number to form a
sum.

Adder: A generic term referencing a device that adds
numbers. There are many forms of adders in digital

design, each with their own set of characteristics.

Address Lines: A set of signals associated with an
address. Most often, address lines are associated with
memory devices, with the address lines being one of the
three types of signals associated with memory (data and
control lines are the other two). In this case, the address
lines provide an index into the memory to read from or
write to that particular memory location.

Adjacency Theorem: One of the basic theorems
associated with Boolean algebra. This theorem facilitates
the use of Karnaugh Maps to reduce Boolean functions.
We sometimes refer to this theorem as the Combining
Theorem.

Administrator: A person who purposely creates problems
and/or purposely prevents others from solving existing
problems. And if you manage to solve known problems
despite the efforts of administrators, they attempt to claim
credit for your efforts.

Algebra: A mathematical system used to generalize
arithmetic operations by using letter or symbols to stand
for numbers based on rules derived from a minimal set of
basic assumptions.

Algorithm: A step-by-step procedure for solving
problems including the notion that you can solve the
problem in finite number of steps.

ALU: An acronym referring to the arithmetic logic unit;
(see “arithmetic logic unit”).

Analog vs. Digital: The term digital refers to items that
are discrete in nature while the term analog refers to items
that are continuous in nature. The world we live in is
primarily analog, but computers are primarily digital.
Digital design allows the successful interaction between
computers the analog world.

Analog: A description of something that (such as a signal
or data) that we express by a continuous range of values.
The continuousness of analog implies that there are an
infinite number of possible values in the given range.

Analog-to-Digital Conversion: A term that describes the
translation of a signal represented by a single voltage level
(analog) to a signal represented by a given number of bits
(digital). The term ADC is a shorthand representation of
analog-to-digital conversion.

AND Plane: A structured array of logic that allows for the
combination of Boolean variables and/or function outputs
in such a way as to form product terms of Boolean
functions.

AND/NOR Form: One of the basic eight logic forms
based but not commonly used in digital design. We derive
this form from OR/AND form (POS form) by excessive
use of DeMorgan’s theorem.

Free Range Digital Design Foundation Modeling Digital Design Dictionary

 - 497 -

AND/OR Form: One of the basic eight logic forms and
one of the most popular four ways to describe a circuit
using either Boolean equation or the circuit model of the
associated Boolean equation. We also refer to this form as
sum of product form or SOP form.

Annotations: This word relates to “notes”. Any time
you’re describing something, you should include as many
annotations as possible. Good designers always include
annotations with timing diagrams, block diagrams, state
diagrams, and circuit schematics.

Architecture (VHDL): The part of a VHDL model that
describes the operational characteristics of a circuit. The
architecture pairs with the VHDL entity to model a digital
circuit.

Architecture: A term that refers to the structure of a
device; in particular, the modules contained in that device
and how those modules are connected. In the context of
digital hardware, the architecture of circuit describes the
individual modules of a circuit and the connection
between the modules.

Arithmetic Logic Unit (ALU): The ALU is generally a
datapath submodule, which in turn is a submodule of
CPU. The ALU performs all standard bit operations such
as arithmetic and logical operations (and shifts and any
other way you can think of to tweak bits). The ALU
typically generates status of various operations (zero,
negative, overflow, carry, pointlessness, parity, etc.)
which are individual bits stored outside of the ALU.

Arithmetic Shift: A shift register operation on signed
binary numbers that protects the sign of the shifted
number. Arithmetic shifts include both left and right
shifts.

Arithmetic Unit: A term describing one of the main sub-
modules of an arithmetic logic unit (ALU). The arithmetic
unit generally handles operations that can be classified as
“arithmetic” in nature such as addition, subtraction,
multiplication, etc.

Assemblers: A software program that translates assembly
language programs into machine code.

Assembly Language Program Parts: There are three
types of information found in assembly language
programs: 1) comments, 2) assembler directives, and, 3)
assembly language instructions.

Assembly Language: A computer language that uses
mnemonics to represent the instructions available to the
programmer (the instruction set) for a given computer
architecture. The mnemonics give hints as to what the
instruction does in terms of the underlying hardware.
Assemblers translate assembly language programs into
machine code by use of a software program referred to as
an assembler. Assembly language is non-portable because
a given computer has a finite set of assembly instructions
specific to that computer.

Assertation Levels: A term that references the notion that
signal can be either negative or positive logic.

Asserted High: A term that refers to the notion that a
given signal is a positive logic.

Asserted Low: A term that refers to the notion that a
given signal is a negative logic.

Asserted: The notion that the current state of a signal is
associated with the action state. Whether a signal is
asserted or not is independent of the logic level (negative
or positive) associated with that signal.

Assignment Operator: A symbol that represents the
transfer of information from one expression to another.
The characters “<=” represent the assignment operation in
VHDL while “=” is used as the assignment operator in C.

Asynchronous Input: An input to a sequential circuit that
affects the circuit any time the signal is asserted as
opposed to being synchronized to some other signal in the
circuit such as a clock signal.

Asynchronous: An operation that is asychrounous occurs
independent of any clock signal in a given circuit.

Augend: A number that adds to another number.

Automatic Verification: A term that refers to the notion
of a HDL testbench’s ability to discern whether a
particular HDL model is working properly. The testbench
designer can construct the testbench such that the
testbench directly states whether the model is working or
not; this is opposed to “manual verification” which is the
other approach to HDL model verification; (see “manual
verification”).

Axiom: A statement that is universally accepted as true.

-B-

Background Task: A term describing the program code
associated with an interrupt service routine.

Barrel Shift: A shift operation that shifts more than one
bit location in one clock cycle. Barrel shifts come in both
left and right-shifting flavors.

Base: A synonym for the radix of a given number system.

BBD: An acronym used for black box diagram (see “black
box diagram”).

BCD: An acronym used for binary coded decimal; (see
“binary coded decimal”).

Behavioral Style: A term that refers to using behavioral
models in HDL.

BFD: An acronym that referring to “brute force design”;
this is essentially a pejorative synonym for the “iterative
design”.

Bi-Directional Register: A term that typically describes
registers that use the same set of signals for both inputs
and outputs. These registers necessarily have extra signals
the register uses to control the bi-directionality of the
signals to prevent the condition of the signals being
simultaneously used as both inputs and outputs.

Free Range Digital Design Foundation Modeling Digital Design Dictionary

 - 498 -

Bi-Directional Signals: A term that refers to the notion
that data can flow through a line in two directions (though
not at the same time) rather than only one direction. Bi-
directions signals are associated with tri-state outputs
because a given device cannot generally simultaneously
drive a signal and read from that signal.

Bi-Directional: A term commonly associated with signals
in digital circuits that can support data flowing in two
different directions, but not two different directions
simultaneously.

Binary Coded Decimal: Or BCD, is a number system
that uses four bits to represent each digit in a decimal
number. Four bits can provide up to 16 different values,
which include digits (0-9) and sometimes alpha characters
(A-F).

Binary Counter: A counter that counts in a binary
sequence.

Binary Encoding: A term that refers to one of many
different methods used to encode the state variables in a
finite state machine (FSM). Using binary encoding
minimizes the width of the state registers compared to
other coding methods (such as one-hot encoding).

Binary Relationship: A relationship between two entities
where at least one of the entities utilizes a binary
exponential relationship (or a “powers of two”
relationship).

Binary: A number system that uses two symbols to
represent values. These symbols are typically ‘0’ and ‘1’
for digital design and computer applications.

Bit Addressable: A term that refers to the notion that
each bit in a memory has a unique address. More often,
bits are only available for reading or writing as part of a
larger chunk of data such as a word.

Bit Mask: A term that describes a value that “selects”
certain bit locations of a word while disregarding other bit
locations. The disregarded bits are generally cleared by the
bit-masking operation. Microcontrollers require bit
masking because most operations in microcontrollers
implement operations on the the words only.

Bit Stuffing: A phrase used to describe the notion of
adding extra bits to a number to increase its width without
changing the value of the number. The stuffed bits could
be either 1’s or 0’s depending on the signedness of the
number.

Bit-Banging: The process of using bit-masking in word-
based microcontrollers to use the outputs to control and/or
communicate with external peripherals.

Bits: A shorthand name for binary digits.

Bit-Stream: A term that refers to a contiguous set of bits
on a single signal over a given time period. We often refer
to bit-streams as serial lines; (see “serial lines”).

Black Box Diagram: A term that refers to a schematic
based model that promiarly uses black boxes to represent

the modules.

Block Diagram: A modeling approach that uses boxes to
quickly transfer high-level knowledge regarding a given
system to a human reader of the diagram. Block diagrams
are typically hierarchical in nature.

Block-Style Comments: A commenting style where
multiple lines of code can be commented by using a
comment start delimiter and a comment end delimiter such
as “/*” and “*/” in the C programming language and
Verilog HDL. VHDL does not support block commenting.

Bloviation: A technique used to enhance one’s particular
image of self-importance by wasting the time of others
who are polite enough not to say anything. Academic
administrators find this approach useful because people
the control are generally to scared to do anything other
than feign interest in the speaker.

Board-level Digital Design: A term referring to digital
designs comprised primarily of discrete ICs populated on
a printed circuit board and interfaced in such a way as to
achieve a meaningful result.

Boole, George: A 19th century mathematician who
developed a two-valued algebra in order to mathematically
model logical reasoning. The result of his work is Boolean
Algebra and forms the basis of digital design.

Boolean Algebra: An algebra developed by George Boole
in order to mathematically model logical reasoning.
Boolean algebra forms the basis of modern digital design.

Boolean Equation: An equation that is uses Boolean
algebra; we also refer to these as Boolean expressions.

Boolean Expression: A term that refers to a Boolean
equation.

Boolean Variable: A symbolic value that represents one
of two values; in digital design, these values are typically
‘1’ or ‘0’.

Boring: A term that describes of anything you’re not
seeing the point of.

Borrow: A term referring to the notion that if a larger
number is subtracted from a smaller number, the operation
needs to access the next highest bit outside of the upper bit
range associated with the subtraction. The borrow
analogous to the “carry-out” bit associated with an
addition operation. Often times, arithmetic modules use a
signal bit to represent both the carry and borrow with the
actual meaning of the bit being dependent on the operation
that generated it.

Bottleneck: A term referring to the notion that many
devices are attempting access a single device. If the single
device is not able to service all of the accessing devices
simultaneously, the accessing devices remain idle until the
single device is no longer busy. Bottlenecks in system
lowers the overall throughput of a system by requiring
devices that need services to remain idle.

Bottom-Up Design: A hierarchical design approach that

Free Range Digital Design Foundation Modeling Digital Design Dictionary

 - 499 -

starts at the lowest level of abstraction and works
upwards. In this approach, the designer basically initially
develops low-level modules that are later used by higher
levels of abstraction in the design.

Buffer: A device that accepts a signal as an input and
outputs the exact same signal without a change in logic
levels. Circuits typically use buffers to increase a signals
ability to drive more circuit inputs.

Bummer: A brief description of the feeling you get when
you find out that your precious circuit is not behaving as
you expected it to.

Bundle Notation: The act of showing or describing
bundles in circuit models such as schematic diagrams and
timing diagrams.

Bundle: A term that refers to a set of signals that we
arbitrarily group together in a circuit and/or timing
diagram; these signals generally share a common purpose.

Bus Contention: A term that describes the situation
where more than one device is simultaneously driving a
given signal or set of signals (such as a bus) on the same
lines. Bus contention is a by-product of resource sharing
in digital circuit. We avoid bus contention by using
devices with tri-state outputs, which can effectively be
“turned off” by unasserting the device’s enable input.

Bus: A term that refers to a set of electrical signals that are
grouped together because they share a common purpose.
The term also refers to a standard data transmission
protocol, which is why we generally refer to a group of
signals as a bundle.

By Inspection: A term that refers to the notion that we
can solve some problems in our heads, thus removing the
need for expending extra time explicitly writing down
solutions.

Byte Addressble: A term referring to the notion that each
8-bit chunk of data in a memory has a unique address, and
is thus not bit-addressable.

-C-

CAD: An acronym for “computer aided design”; (see
“computer aided design”).

Carry-Out: A bit indicating whether a “carry” has been
generated by a digital device. Carry-out bits are generally
associated with digital devices implementing arithmetic
operations; carry-out bits are typically used to indicate the
validity of mathematical operations and to allow the
“daisy-chaining” or “cascading” of individual digital
devices.

Cascade: A term referring a configuration of multiple
digital devices; devices in a cascade configuration are
placed in a series-type configuration. This term is often
referred to as a “daisy chain”.

Cascadeable: A characteristic of register, particularly
counters and shift registers, that allows the effective bit-
width of the device to be effortlessly extended by adding

more modules to the design.

Case Sensitive: A term that refers to the notion that the
syntax of a specific programming language or hardware
description language differentiates between upper and
lower case of alpha characters. The C programming
language is case sensitive while VHDL is not case
sensitive (about 99.9% of the time).

Case Statement: A statement that supports selection
construct associated with multiple conditional statements.
The case statement in VHDL is one of three main
sequential statements that can appear in the body of
process statements.

Cave: A dark place where I spent most of my time writing
this text.

Central Processing Unit (CPU): The CPU is generally
considered the part of the computer that executes the
instructions. Typical submodules of the CPU include the
control unit, datapath, program counter, instruction
memory, register files, accumulators, ALUs, secondary
memory, roach motels, etc.

Characteristic Table: A set of data presented in a tabular
format that describes the operation of a digital circuit. The
term characteristic table is most often associated with the
description of sequential circuits since they include the
notion of “state”; (see “state”).

Chip Enable: A signal used in digital design to “turn on”
or “turn off” a circuit. When a device is not enabled, the
device has a predetermined output, which must be stated.
When the device is enabled, the device works as a normal
device. The acronyms “CS” or “CE” are typically used to
represent device chip enables.

Chip Select: A term used to describe whether a specific
input is “turned on” or “turned off”. See “chip enable” for
a more complete description.

Circuit Forms: A term that refers to the notion that
digital circuits can be represented in many different ways
associated both Boolean equation-type descriptions and
subsequent circuit-type descriptions. The notion of “circuit
forms” is based on the notion of functional equivalence.

CISC: This acronym officially stands for “Complex
Instruction Set Architecture” and is generally used to
describe computer architectures. CISC computers
generally have the following characteristics:

 They contain relatively few general purpose
registers

 The instruction word formats are of different
lengths

 Instructions require a different number of clock
cycles to complete execution

 Some instructions in the instruction set are
complex (meaning they can generate a
significant amount of processing internal to the
architecture)

 System clock rates are generally slower than
their RISC counter-parts.

Free Range Digital Design Foundation Modeling Digital Design Dictionary

 - 500 -

Classical FSM Approach: An approach to implementing
finite state machines (FSMs) that uses maximum reduction
techniques with every aspect of an FSM implementation.
The classical FSM approach can be tedious and is
constrained by the basic limitations of Karnaugh maps.
The “New FSM Techniques” can be applied to mitigate
some of the constraints of this approach at the cost of “less
reduced” Boolean expressions; (see “New FSM
Techniques”).

Clear Condition: A state of a storage element where the
current value is ‘0’. This is also referred to as a “reset
condition”; (see “reset condition”).

Clear State: The state of a storage element or a signal
where the current value is ‘0’. This is also referred to as a
“reset state”; (see “reset state”).

Clear: When used as a noun, this term refers to the notion
that a signal or storage element has been set to ‘0’. This
term is typically used in conjunction with sequential
circuits; this term is synonymous with “reset”; (see
“reset”).

Clear: When used as a verb, this term refers to making the
value of a signal or storage element a ‘0’. For example,
“we use the signal to clear the register”. This term is
synonymous with “reset”; (see “reset”).

Clock Edge: A term that generally refers to an “active”
edge (either the rising or falling edge) of a synchronous
circuit. Changes in many circuit outputs are typically
synchronized to an edge of a clock signal.

Clock Input: A signal that is generally used to
synchronize digital circuits. Clock signals are typically
periodic.

Clocking Waveform: A term used to describe an attribute
of a waveform in that clocking waveforms are generally
understood to be periodic in nature; (see “clocking
waveforms”).

CMOS: An acronym standing for: Complementary Metal
Oxide Semiconductor. Most modern digital integrated
circuits are created from transistors made with CMOS
technology.

Code Word: A phrase used to refer to a single set of
digits that are designated as belonging to a given set of
other sets of digits that form a given code.

Code-Word: A term sometimes used to describe the
obtainable count values in a counter.

Coding Style: A term that refers to the notion that the
syntax rules of a language allow you to write viable code
that can have about any form. There are accepted forms of
coding style for every language; following these coding
styles will make your code more readable and
understandable to human readers of your code not unlike
yourself.

Combinatorial Logic: Digital logic that does not have
memory, or the ability to store the values of bits.

Combinatorial Process: One half of a two-process
approach to modeling finite state machines (FSMs) using
VHDL; the other half of the FSM model is the
“synchronous process”; (see “synchronous process”). The
combinatorial process is responsible for modeling both the
“next state decoder” and the “output decoder” in the
standard FSM model; both of these decoders are generally
implemented using combinatorial circuits.

Combinatorial vs. Sequential Circuits: The outputs of a
combinatorial circuit are a function of the current inputs
while the outputs of a sequential circuit are a function of
the combination of past inputs. Stated differently,
combinatorial circuits do not have the ability to
“remember” bits while sequential circuits are able to store
values and are this considered to have memory.

Combining Theorem: One of the basic theorems
associated with Boolean algebra. This theorem facilitates
the use of Karnaugh Maps to reduce Boolean functions.
This theorem is sometimes referred to as the “Adjacency
Theorem”.

Comments: A term that refers to text appearing in code
that is ignored by the compiler or synthesizer. Comments
in VHDL are designated by two consecutive dashes; all
text after these dashes is ignored by the entity interpreting
your code. Comments are generally used to explain
portions of code that are not patently obvious to provide
history-type information regarding the particular file.

Compact Maxterm Form: A form that describes a
Boolean function by listing the truth table entries that have
outputs of ‘0’ in terms of the decimal index into the
associated with that particular row of the truth table. This
form uses the capital PI summation signal.

Compact Minterm Form: A form that describes a
Boolean function by listing the truth table entries that have
outputs of ‘1’ in terms of the decimal index into the
associated with that particular row of the truth table. This
form uses the capital Greek summation signal.

Comparator: A digital device that compares two signals
and determines whether they are equal or not; the two
signals can be either single signals or bundles.
Comparators are typically referred to as “n-bit
comparators which indicates the width of the input
signals; outputs of comparators typically include
information about the two inputs such as equality, less-
than, and/or greater-than. Comparators are one the
standard digital circuits used in digital design.

Compiler: A computer program that translates higher-
level language code into machine code. Compilers
generally also produce assembly language code listings
which are specific to the target computer.

Complementary Outputs: A term used to describe two
outputs of a circuit that always represented inverted
versions of each other. The various flavors of flip-flops
typically have complementary outputs.

Computationally Expensive: A term that describes the

Free Range Digital Design Foundation Modeling Digital Design Dictionary

 - 501 -

notion of there being a “cost” associated with computer
operations. All operations performed by digital circuits
require a given amount of time to complete, but not all
operations are equivalent. For example, it is more
computationally expensive to generate the square root of a
number than it is to decrement a number; this is due to the
fact that the square root operation will require more steps
to complete than a decrement based on the application of
an underlying algorithm used to implement the two
operations.

Computer Aided Design (CAD): The act of using a
computer to automate or simplify the design process. Or, a
design that is in some part completed by use of a computer
and associated software.

Computer I/O: One of the three main subsections of a
computer that allows the computer to interact with the
outside world.

Computer: Any electronic device that reads instructions
from memory and carries out those instructions on data. A
given circuit can officially be labeled a compute if it has
the three main components of a computer: memory, CPU,
and I/O.

Concurrency: The notion of two or more things occurring
at the same time. Concurrency is one of the underlying
factors in VHDL in that many of the statements in VHDL
are interpreted as being concurrent in that they can
describe multiple hardware entities that work in parallel,
and thus supporting the concept of parallelism.

Concurrent Signal Assignment: A term that refers to
four types of statements in VHDL that in interpreted as
occurring at the same time. The four types of concurrent
signal assignments, or CSA, are signal assignment,
selective signal assignment, conditional signal assignment,
and process statements.

Configurability: The ability of a device to select one of
several pre-set options as to internal and/or external
operations of the device.

Conspicuous Consumption: A term coined by Thorstien
Veblem that describes the pecuniary motivations of
modern society.

Context Restoration: A term describing what a CPU
does upon completion of servicing an interrupt. In this
case, context restoration refers to the notion that the CPU
must return to the state it was in (flags, registers, etc.)
before the CPU executed the interrupt service routine.

Context Saving: A term that describes what a CPU must
do when an interrupt is acted upon. The general notion is
that interrupts are asynchronous and can occur while the
CPU is executing some important piece of code. In this
case, the CPU will save the current state of the CPU
(flags, registers, etc.) before processing executing the
interrupt service routine.

Control Lines: A set of signals associated with
controlling a device. Most often the notion of control lines
is associated with memory devices, with the control lines

being one of the three types of signals associated with
memory (address lines and data lines are the other two). In
this case, the control lines provide mechanism to read and
write from the memory.

Control Signals: These are signals represented as outputs
from a controlling device and as inputs to a device being
controlled. Finite state machines (FSMs) are typically
used as controllers and contain both control outputs and
status inputs.

Control Tasks: A set of functionality that performs a
specific set of duties and can be described independently
of other sets of functionality; these sets of functionality are
designed to perform the duties of controlling specific
entities. In terms of digital design, control tasks are
typically implemented with microcontrollers or finite state
machines (FSMs).

Control Unit: A term describing one of the sub-modules
of a central processing unit (CPU). The control unit is
generally responsible for controlling the sequencing of
processing associated with the datapath in order to obtain
the desired result.

Controller: A circuit that is used to control another
circuit. Controller circuits generally have both status
inputs (status signals) that allow the controller to know the
state of the circuit it controls and control outputs (control
signals) which are used to directly control some external
circuitry. Finite state machines (FSMs) are typically used
as controller circuits.

Count Enable: A signal used to allow a counter to count
when asserted or disable counting when not asserted.

Counter Design: The notion of designing a sequential
circuit that represents a counter. Finite state machines
(FSMs) are often used to design simple counters; more
complex counters can typically be easily modeled in
VHDL.

Counter Overflow: The notion of a counter being
incremented beyond its ability to represent values; unless
otherwise stated, overflow is generally characterized as
the counter transitioning from its largest representable
value to its smallest value.

Counter Underflow: The notion of a counter being
decrement beyond its ability to represent values; unless
otherwise stated, underflow is generally characterized as
the counter transitioning from its smallest representable
value to its largest representable value.

-D-

D Flip-flop: A shorthand notation for a “data flip-flop”;
(see “data flip-flop”).

Daisy Chain: A term referring a configuration of multiple
digital devices; devices in a daisy chain configuration are
placed in a series-type configuration. This term is often
referred to as a “cascading”.

Data Flip-flop: A flip-flop that changes the output state
when the “data” input to the flip-flop is at a different value

Free Range Digital Design Foundation Modeling Digital Design Dictionary

 - 502 -

than the output of the flip-flop and an active edge occurs
on the clocking input the circuit. The “next state” of a D
flip-flop is a function of the D input only.

Data Inputs: These are the signals on a MUX that can
appear on the MUX’s outputs. The MUX will choose
between one of the data inputs to be the output of the
MUX.

Data Lines: A set of signal associated with some data.
Most often the notion of data lines is associated with
memory devices, with the data lines being one of the three
types of signals associated with memory (address and
control lines are the other two). In this case, the data lines
provide a path for the data associate with the memory.
Flavors of data lines include input data line, output data
lines, and bi-directional data lines.

Data Selection Inputs: The signal on a MUX that are
used to determine which of the MUX’s data inputs will
appear on the MUX output.

Data: The notion of data is an undefined set of bits (‘1’s
and ‘0’s). Once a definition is given to these bits, the data
officially becomes information. Once the data is classified
as information, the data typically takes on other names
such as “address”, “control”, “state”, “op code”, etc.

Datapath: A term describing one of the main submodules
of a central processing unit (CPU). The datapath handles
the crunching of numbers including mathematical and
logic-type operations. The main component in the
datapath is the arithmetic logic unit (ALU).

Datapath: The hardware module that is generally
considered to do the number crunching associated with
instructions. Submodules of the datapath generally include
the ALU, register file, accumulator, various selection
logic, etc.

Debugger: A tool used to remove errors from hardware of
firmware designs. Debuggers are generally associated with
software and firmware development, but they are
appropriately can be used to debug circuit designs as they
often need help also.

Debugging: The act of removing errors from designs
including hardware, firmware, and software.

Decade Counter: A counter that counts in a binary coded
decimal (BCD) sequence.

Decimal: A number system that uses ten symbols to
represent quantities. These symbols are typically ‘0’, ‘1’,
‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, and ‘9’.

Decoder: A combinatorial (or non-sequential) digital
device that establishes a functional relationship between
the device input(s) and output(s). There are two general
types of decoders: generic decoders and standard decoder.
Standard decoders are a subset of generic decoders.

Decrement: An operation typically associated with
counters where ‘1’ is subtracted from the current value
being stored by the counter.

DeMorgan’s Theorem: One of the basic theorems in
digital design; this theorem is used to simplify circuits,
generate other function forms, and design advanced
bowling balls.

DeMorganize: A verb that refers to the act of applying
DeMorgan’s theorem.

Digital Self-Flagellation: A medical term describing the
condition associated with performing excessive amounts
of digital design.

Digital: A description of a something (such as a signal or
data) that is expressed by a finite number of discrete
values (or states). These discrete values include the entire
“range” of possibilities, but does not include any of the
“in-between” values.

Diminished Radix Compliment: A term that refers to a
standard but not common method of represented signed
binary numbers where the left-most bit in the set of
number is considered the sign bit and the other bits are
considered the magnitude bits. This term is often listed as
DRC.

Dinosaurs: A aptly descriptive term for old professionals,
particularly people who claim to be teachers.

Diode: A two-terminal semiconductor device formed from
placing an n-type material on a p-type material, thus
forming a “PN junction” which has many delightful
characteristics.

Direct Polarity Indicators: The use of parenthetical
values (H) or (L) to indicated the logic level associated
with a given signal.

Display Multiplexing: An approach typically used by
LED-based 7-segment displays that allows the driving
device to control many digits without dedicating a signal
to each LED in each segment. The general approach is to
connect each type of segments with one signal and give
each individual display an on/off control. Using this
configuration, display multiplexing only actuates one
display at a time, but does so at a rate that makes it appear
as if all displays are on at the same time. Multiplexing
works for humans because of the notion of retinal
persistence.

Distance: A term used to characterize the difference
between two binary numbers; the distance between two
binary numbers is defined as the minimum number of bits
of one number that must be toggled in order to equal the
second number.

DMUX: A special type of decoder; this term is sometimes
used in digital design-land but does not have a solid
definition. DMUXes, whatever they are, can be considered
a special type of decoder

Don’t Care Transition: A term that refers to a state-to-
state transition in a finite state machine (FSM) that occurs
independently of any conditions in a given FSM. These
transitions are often referred to as unconditional
transitions.

Free Range Digital Design Foundation Modeling Digital Design Dictionary

 - 503 -

Don’t Cares: A slang but common term used to describe
input combinations associated with Boolean functions as
not having specified outputs. This term is derived from the
fact that the given input variable combination will never
occur so the output does not matter (thus, you “don’t
care”).

Down Counter: A counter that counts only in the “down”
direction (count value becomes less).

DPI: An acronym used for “direct polarity indicator”; (see
direct polarity indicator).

DRC: An acronym referring to diminished radix
compliment; (see “diminished radix compliment”).

Driving the Bus: A term associated with digital circuits
that share routing resources. In these circuits, only one
device at any given time can output its information to the
shared resource. The actual device outputting this
information is referred to as the device that is “driving the
bus”.

Dumbtarted: A term applied to technical people who go
through life with blinders on; these people typically go
into management (or administration in an academic
setting) due to their complete lack of technical
competence and ongoing reluctance and/or inability to
learn new and useful things.

DUT: An acronym referring to “device under test”; (see
“device under test”).

Duty Cycle: A term used to describe the percentage of a
period that a given signal is in a “high” state. This term
always refers to a periodic signal.

Dynamic hazard: A type of hazard associated with the
condition where the output is expected to change value
(non-static).

Dynamic logic hazard: A type of hazard based on the
changing of one input variable (the “logic” part) where the
output is expected to change value (the “dynamic” part).

-E-

Elementary Operation: A basic operation performed by a
sequential circuit. Elementary operations are most often
spoken of in terms of registers. Typical operations
performed by registers include loading (generally a
parallel load), setting (sets all bits in register), clearing
(clears all bits in register), shifting/rotating (specifically
for shift registers), and incrementing/decrementing
(generally for counters).

Enable Signal: A signal that controls the general
operation of a circuit in a manner such the circuit outputs
are active when the enable signal is asserted and inactive
when the enable signal is not asserted.

Engineer: A person who solves problems and strongly
shuns worthless administrative tasks.

Engineering Notation: An approach to representing
numbers that uses both numerical and exponential parts.
The numerical part of the number typically contains both

an integral and fractional part. The exponential part of the
number is represented as ten raised to powers that are even
divisible by three. Often times the exponential portion of
the notation is replaced with suffixes that indicate the
particular value of three.

Enumeration Type: A feature in higher-level computer
and hardware description languages and allow users to
define their own types in the models they generate.
Enumeration types generally allow you to specify how the
types are represented internally, but you must explicitly
state this desired representation or one will be assigned for
you.

Equivalence Gate: Another name for an XNOR gate; see
“XNOR gate” for a full definition.

Error Condition: A condition in a cirucit that is not
correct. This may be an ongoing condition such as a bug
or a temporary condition such as a glitch. The condition
may also be permanent or intermittant.

Error Correction: A reference to the ability to correct
one or more errors. Digital circuits can be designed to
detect errors, and, if errors are detected, they can correct
errors. Error correction circuits generally include “extra”
bits along with the “standard” bits (and associated
circuitry) in order to detect errors and subsequently correct
errors.

Error Detection: A reference to the ability to detect one
or more errors. Digital circuits can be designed to detect
errors; “parity generators” and “parity checkers” are two
common digital circuits used to detect error(s) in a set of
bits. Error detection circuits generally include “extra” bits
along with the “standard” bits (and associated circuitry) in
order to detect errors.

Even Parity: A condition that describes a characteristics
regarding a set of bits; in particular, whether a set of bits
has an even number (or zero) number of bits of value ‘1’.

Excitation Table: A set of data in a tabular format that
describes the operational characteristics of a digital
storage element. In particular, excitation tables describe
the input conditions required to attain a given state
change.

EXNOR Gate: A less common name for an XNOR gate;
see “XNOR gate” for a full definition.

Expression: A set of items such as variables and constants
that are combined via operators according to a known set
of rules and used to generate another value by the process
of evaluation of the expression.

-F-

Factory Programmed: A term referring to a device that
contains connections that are made (or not made) on the
silicon level; mask programmability is often referred to as
“factory programmed” as it is generally done at the
associated fab (IC fabrication facility).

Falling Edge: A “10” transition of a given signal that is
typically used to synchronize some other action in a

Free Range Digital Design Foundation Modeling Digital Design Dictionary

 - 504 -

circuit. .

Falling-Edge Triggered: A term used to describe the
notion that changes in a circuit are synchronized to a
“falling edge” of some signal in the circuit. This term is
often abbreviated as “FET”.

Fast Division: A term describing a circuit that performs a
division operation in a relatively fast manner. Shift
registers are widely known for the ability to perform fast
division (right shifting) at the cost of including a
truncation in the operations.

Fast Multiplication: A term describing a circuit that
performs a relatively fast multiplication operation. Shift
registers can typically perform fast multiplication
operations (left shifting) at the cost of a loss of precision
on the lower order bits due to the fact that 0’s are stuff in
the lower order bits. Fast multiplication in shift registers
are limited to multiplying by powers of two.

FET: An acronym referring to “falling-edge triggered”;
(see “falling-edge triggered”).

Field Programmable Gate Array: A logic device that
can be programmed to implement many aspects of a
digital circuit. Usually referred to as FPGAs, these devices
can be quite large and complex on a low level. Modern
FPGAs have complex architectures and include standard
internal devices such as memory, CPUs, specialized
arithmetic circuits, etc. as well as a buttload of routing
resources.

Finite State Machine (FSM): An abstract machine that
defines a finite set of states, actions performed in those
states, and a set of rules defining how the machine
transitions from state to state. FSM are generally classified
as either Mealy or Moore machines. FSMs are one of two
major hardware devices that are typically used to control
other hardware entities. In these cases, FSM inputs are
considered status inputs while FSM outputs are considered
control outputs.

Firmware: Firmware is a computer program that is
written to run on a specific piece of hardware and is thus
often associated with embedded systems. Firmware does
not refer to the language-level in which the program is
written thus can be written in machine code, assembly
code, or a higher-level language.

First Five Things for a New CPU: When you first
examine a new CPU, the five things you should initially
examine are 1) the programmer’s model, 2) the instruction
set, 3) the interrupt architecture, 4) the memory model,
and 5) the I/O architecture.

Flat Design: A term used to describe VHDL models that
do not use a structural modeling approach. Flat designs are
inherently non-hierarchical in nature.

Flicker: An issue associated with display multiplexing
where the multiplexing rate is slow enough for humans to
note that displays are not “always on”.

Flip-Flop: A classic sequential circuit that is functionally

a synchronous 1-bit storage element. Changes in flip-flop
state are synchronized to an edge input to the circuit
(generally a clock signal). Flip-flops are also considered
synchronous latches and 1-bit registers. The main types of
flip-flops are D (data), T (toggle), and JK (who the heck
knows) flip-flops.

Flowchart: A diagram that uses a few distinctive symbols
to model the program flow associated with an algorithm.
Computer programmers use flowcharts as an aid to
program design and/or documentation support. Flowcharts
can and should be hierarchical in nature when appropriate.
The hardware analogy to a flowchart is the black-box
diagram.

Forbidden State: A condition in a sequential circuit that
is generally not allowed to happen to ensure an arbitrary
characteristic of that circuit.

Foreground Task: A term used to describe the program
code associated with the main loop in a program. The
foreground task is generally all the code that is not
initialization code or interrupt service routine code.

FPGA: An acronym for “field programmable gate array”;
(see field programmable gate array).

Fractional Portion: A phrase referring to the digits on
right side of the radix point.

Fragile: A label attached to code that is unmaintainable.
Fragile code breaks if you attempt to modify it, hence the
name fragile. The roots of fragile code are a complete lack
of planning of the code as well as modifications made by
people who don’t know what the f**k their doing.

Frequency: The number of times a signal changes state in
a given time period. If that time period is one second.

FSM Analysis: The act of using a given sequential circuit
to generate an associated state diagram.

FSM Design: The act of generating a sequential circuit
that can be used to solve a given problem. FSMs can be
designed from a word descriptions, timing diagrams, or
state diagrams.

Fun Stuff: A synonym widely used for anything having to
do with digital design.

Function Forms: A common term used to describe the
notion that Boolean expressions or functions can appear
completely different but provide equivalent outputs for a
given set of inputs.

Function Forms: A reference to the fact that a given
Boolean function can be represented in many different
ways; each of these ways are considered functionally
equivalent. There are many standard function forms out
there, two of which are SOP and POS forms.

Function hazard: A hazard that is present due to the
simultaneous changing of two or more input variables for
a given circuit.

Function Realization: The notion of “realization” in
digital design essentially means that you did something. A

Free Range Digital Design Foundation Modeling Digital Design Dictionary

 - 505 -

function realization would typically be a Boolean
equation-based solution to a given problem.

Function: In digital design, a function is an equation that
describes an input/output relationship of a module in terms
of digital logic.

Functionally Complete: The notion a given logic gate
can perform each the three main logic functions: AND,
OR, and inversion. NAND and NOR gates are
functionally complete while AND, OR, XOR, and XNOR
are not.

Functionally Equivalent: The condition that exists when
various function representations describe the same
input/output relationship. This can be thought of as
different ways of saying the same thing.

Functionally Equivalent: Two Boolean equation forms
that provide the same output for a given set of inputs
despite the fact that the equations are different.

Fuse Blowing: A term that refers to the act of removing
the connection between two signals. The term “blowing a
fuse” means that a previously made connection has been
purposely removed. The notion of having fuses is one of
the mechanisms that give a hardware device the
characteristic of programmability.

Fuse: A term used to describe a temporary connection
made between two signals. Fuses can be “blown” or left
alone (connection broken or left untouched).

-G-

G: An abbreviation used for the metric prefix “Giga”; this
prefix is used in engineering notation.

Gate Array: A generic term used to refer to devices that
can be customized for a particular application. This term is
generally synonymously used with the term complex
programmable logic device.

Generic Decoder: One of two types of decoders; generic
decoders are generally used to replace the notion of
“Boolean functions” by implementing Look-up Tables
(LUTs). The term “decoder” is often used in place of the
term “generic decoder”.

Ghosting: An issue associated with display multiplexing
where an LED is on when it should be off resulting in
dimly lit LED showing incorrect information.

Giga: A standard metric prefix meaning 10-9; the prefix is
abbreviated as “G”.

Glitch: An temporary unwanted error condition in a
circuit. Glitches are typically characterized as low glithces
(1-0-1) or high glitches (0-1-0).

Glue Logic: Relatively simple logic present in modular
designs that is used connect major sub-modules to other
modules.

Gray Code: A type of binary code that is a subset of unit
distance codes.

Ground: A term refer to the reference voltage in
electronics. In digital electronics, this signal is generally
considered a logical ‘0’.

Ground: A term used to indicate the logic ‘0’ in a digital
circuit. In a real circuit, ground is one of the two voltages
used to power a circuit. This term is often referred to as
“GND” and indicated with a down-pointing arrow in a
circuit diagram.

Group of Fours: A phrase used in conjunction with
translating binary numbers to a hexadecimal or BCD
representation; typically four bits at a time are converted,
thus group of “four”.

Group of Threes: A phrase used in conjunction with
translating binary numbers to an octal representation;
typically three bits at a time are converted, thus group of
“three”.

-H-

Half Adder (HA): A one-bit adder that has outputs for
sum and carry-out; the input only include the two bits
being added.

Hand Waving: A term used to describe literal and
figurative gestures to call people’s attention to something
of hand-waver’s choosing. Generally speaking, hand-
waving serves to draw people’s attention away from
problems that were caused by the hand-waver or issues
that need attention to other areas that people would not
have a strong reaction to. Hand-waving is the approach
academic administrators use to dupe the world into
thinking they are actually doing something useful.

Hang States: A state in a state diagram that, once entered,
can never be exited. Hang states are generally undesirable
conditions associated with finite state machine (FSM)
design. Hang states are often associated with self-loops
from the given hang state.

Hard Drive: A mechanical storage device capable of
store large amount of information. Information in hard
drives is stored magnetically on a spinning disc made of a
ferromagnetic material; this information is accessed by the
classic “read/write heads”. Hard drives are not “random
access” devices. Hard drives are well known to crash
when you need them most. Hard drives are also well
known to make great mirrors after you disassemble the
hard drive container.

Hard-Core Microcontroller: Any “microcontroller” (see
“microcontroller”) that is not a “soft-core microcontroller”
(see “soft-core microcontroller”). Hard-core
microcontrollers exist on pre-fabricated integrated circuits
as opposed to being synthesizable on programmable logic
devices as is the case with soft-core microcontrollers.

Hardware: A term referring to technical entities that are
not software or firmware. In the context of digital design,
hardware generally refers to digital circuitry in the form of
devices synthesized on programmable logic devices
(PLDs) or discrete integrated circuits (ICs) on a printed
circuit board (PCB).

Free Range Digital Design Foundation Modeling Digital Design Dictionary

 - 506 -

Hazard: A condition present in a circuit that may under
some conditions cause an unwanted condition, or error
condition, in that circuit.

Hertz: A measure of frequency defined to be the number
of time a signal changes state in a time span of one
second. This term is abbreviated as “Hz”.

Hex: A shorthand notation for hexadecimal; also a
synonym for numbers with a radix of 16.

Hexadecimal: A term used to describe numbers with a
radix of 16.

Hierarchical Design: An approach to digital design that
utilizes various levels of abstraction in order to promote
efficient design and understandable designs.

Hierarchical Design: Designs that are described at
multiple levels. The notion of VHDL structural modeling
is a mechanism that supports hierarchical design.

High-Impedance: A term that indicates the value of a
signal is not being “driven” by some entity in the circuit.
When a signal is not being “driven”, there is not current
flowing in the physical implementation of that signal. No
current flowing indicates a “broken circuit”. If a device is
in a high-impedance state, the device is figuratively not in
the circuit.

High-Z: Yet another term to express the notion of high-
impedance.

Hi-Z: Another term to express the notion of high-
impedance.

Hold Condition: A condition in a sequential circuit where
the output does not change state when given the proper
opportunity; same as “hold state”.

Hold State: A condition in a sequential circuit where the
output does not change state when given the proper
opportunity; same as “hold condition”.

Hold Time: An attribute of physical sequential circuits
defined as the amount of time circuit’s control signals
must remain stable after the active clock edge of the
circuit.

Hold-1 Transition: A feature of a state-change in the
context of a single bit where the present state is a ‘1’ and
the next state is also a ‘1’.

Horse-Sense: A problem solving approach emanating
from the notion that you never stop applying intuition to
your solutions even though many solutions can be done by
rote. Horse-sense can be figuratively described as taking a
few steps back and examining your approach before you
declare your righteousness.

Hybrid FSM: A finite state machine (FSM) that contains
both Mealy and Moore-type outputs.

Hz: An abbreviation typically used for “Hertz”; (see
“Hertz”).

-I-

IEEE Code of Ethics: A set of guidelines that electrical
engineering teachers are required to foist upon their
students in order to have their programs accredited by
ABET. This is a case of “do as I say; don’t do what I do”
as most electrical engineering instructors think that “fair”
is nothing more than a four-letter word starting with “f”.

Identifier: A set of symbols used by a language to form a
name that is assigned to differentiate between items such
as variables, functions, entities, architectures, and bowling
balls.

If Statement: A type of sequential statement in VHDL,
also known as a conditional statement. “if” statements can
appear in the body process statements are and typically
used in behavioral descriptions of digital circuits.

Illegal State Recovery: The notion associated with finite
state machine (FSM) design in that if the FSM finds itself
in a state that it is not intended to be in, the FSM has a
built-in method to exit that state and return the FSM to an
expected state. Illegal state recovery design generally
requires more hardware but will avert the death of an FSM
by avoiding hang states.

IMD: An acronym referring to “iterative modular design”;
(see “iterative modular design”).

Inactive State: A term used to indicate that the current
voltage level of a signal, or state, is not associated with the
active state of that signal.

Incidental Memory: A term used to describe relatively
small pieces of memory in circuits such as flip-flops and
registers. This term is used to differentiate small memory
items from “structured memory” items such as ROMs and
RAMs.

Inclusive OR Gate: The actual name for a simple OR
gate. This name is related to the fact that there is another
gates referred to as an “exclusive OR” gate (XOR).

Incompletely Specified Functions: Boolean functions
that do not have an output specified for every possible
input combination. The main aspect of this type of
function is that there are “don’t cares” associated with the
outputs of those particular input combinations.

Increment: An operation typically associated with
counters where ‘1’ is added to the current value of
counter.

Indentation: A set of white spaced used to differentiate
related sub-areas of computer programming or hardware
design code. Proper use of indentation increases the
readability and understandability of text-based code;
general rules for indentation are found in style-files
associated with the language.

Independent PS/NS Style: One of many approaches to
modeling finite state machines (FSMs) using VHDL.

Independent Variable: A variable representing a value
that can change and thus affect the dependent variable. In
digital design, the independent variable is typically the
input while the dependent variable is typically the output.

Free Range Digital Design Foundation Modeling Digital Design Dictionary

 - 507 -

Indirect Mapping (VHDL): A technique used by VHDL
structural models that links the inputs and outputs of
instantiated modules to the corresponding inputs and
outputs of the next highest level in the hierarchy via a list
of signal names. The connections are implicit and based
upon the order the signal appear in the associated entities.
The alternative approach to direct mapping is indirect
mapping; (see “indirect mapping”).

Indirect Subtraction by Addition: An algorithm that
performs subtraction by first changing the sign of the
augend and adding it to the addend. The advantage of this
approach is that changing the sign of a binary number is
not complicated and the hardware associated with the
addition operation (an adder) can also be used to perform
subtraction.

Information Content: Information is associated with a set
of bits that has some sort of definable meaning. The notion
of information content is loosely associated with generic
information regarding bit. In the context of “information
theory”, information content is measured by the notion of
“bits”, which is based on probability and is thus not
related to the familiar digital notion of 1’s and 0’s.

Information Theory: The study of information content of
data. One of the key aspects of information theory is to
quantify the information content of a data. The metric
used for this quantization is the “bit”, which is not the
same as a “binary digit”. Information theory defines a bit
based on the probabilities of a data appear in a file, bit-
stream, etc.

Information: A set of bits (‘1’s and ‘0’s) that have been
given some type of meaning. In other words, once you
have more details about some bits, these bits can be then
considered information.

Initial State: Problems dealing with sequential circuits
must be provided with the values being stored by the
memory elements in the circuits; the initial values are
referred to as the “initial state” of the circuit.

Instance (VHDL): A term that refers to an instantiated
design unit appearing in the statement region of a VHDL
architecture.

Integer-Based Math: A form of mathematics performed
on digital devices that is considered faster than
alternatives such as using floating point math. The speed
of integer math comes at the cost of lower precision in the
results, which is acceptable for many applications.

Integral Portion: A phrase referring to the digits on the
left side of the radix point.

Integrated Circuit (IC): A piece of semiconductor that
include a complete circuit that generally is able to
complete some given task. Most ICs are generally packed
full of items such as transistor, resistor, capacitors, and
inductors.

Interface (specification): A term used to describe VHDL
entities because they list the inputs and outputs of a given
digital circuit.

Intermediate Signals (VHDL): A term given to signals
that are required by a design but do not appear on the list
of signals included in the VHDL entity. Intermediate
signals are also referred to as “internal signals”.

Internal Signals (VHDL): A term given to signals that
are required by a design but do not appear on the list of
signals included in the VHDL entity. Internal signals are
also referred to as “intermediate signals”.

Iterative Design: A digital design approach that is based
on exhaustively listing all possible inputs and listing a
unique output for each of the input combinations. Iterative
design is typically based on the use of a truth table.

Iterative Modular Design (IMD): One of the three
approaches to performing digital design. The IMD
approach uses multiple instances (the iterative part) of pre-
defined circuits (the modular part) in digital designs, thus
creating hierarchical design. The IMD approach can be
used to design some digital circuits and is considered a
more powerful approach than “brute force design” in that
truth tables and K-maps are typically not part of the IMD
process.

Interrupt: xxxxOne of the three approaches to
performing digitps are typically not part of the IMD
process.

Interrupt Masking: xxxxOne of the three approaches to
performing digitps are typically not part of the IMD
process.

-J-

JK Flip-flop: A flip-flop that may change the output state
according to when the “JK” inputs to the flip-flop. The JK
flip-flop has the ability to hold state, toggle, set, and clear
on the active edge of the flip-flop’s clock input. The “next
state” of a JK flip-flop is a function of both the JK inputs
and the present state of the flip-flop.

Juxtapositional Notation: Placing numbers side by side
and giving the numbers different weights ; using this
notation allows for the representation of more numbers
than are present in the set of numbers representing the
number system.

-K-

k: An abbreviation used for the metric prefix “Kilo”; this
prefix is used in engineering notation.

Karnaugh Map Compression: The act of making
Karnaugh maps smaller by translating one or more of the
independent variables into map entered variables (MEVs).

Karnaugh Map: A tool that allows for visual application
of the adjacency theory to reduced Boolean functions.
Karnaugh Maps employ a special number system onto a
grid of cells; each cell represents a row in the truth table
associated with the given function.

Kilo: A standard metric prefix meaning 10-3; the prefix is
abbreviated as “k”.

Free Range Digital Design Foundation Modeling Digital Design Dictionary

 - 508 -

Kludgy: (pronounced “clue-gee)”A term used to describe
something that works but is far from being an optimal
approach. Electronic circuitry and computer programs
often include this term for things that officially to
officially work but no one really knows why based on the
overall low quality of the design.

K-Map: The shorthand name for “Karnaugh Maps” (see
“Karnaugh Map”).

-L-

Large Scale Integration: A type of integrated circuit that
contains a more transistors than a medium scale integrated
(MSI) IC. This term often described with the acronym
“LSI”.

Large Scale Integration: A type of integrated circuit that
contains a more transistors than a medium scale integrated
(MSI) IC. This term often described with the acronym
“LSI”.

Latch Generation: A term that refers to the notion of
storage being automatically generated by the VHDL
synthesizer. The generation of latches is generally not an
intended operation as latches are not overly useful and
require extra hardware resources to implement. One of the
general rules in using a hardware description language
such as VHDL is to avoid the unintended generation of
latches.

Latch: As a noun, this term describes a sequential circuit
that has the ability to store one bit of data. Latches are
considered “level sensitive” devices in that they generally
always react immediately to circuit inputs.

Latch: As a verb, this term mean to the act of a sequential
circuit storing data. For example: “the data is latched into
the register”.

Leading Zeros: Zeros (‘0’s) placed in front of (taking up
the left-most positions) a given number. Because of the
location of these 0’s, the do not affect the magnitude of
the number being represented.

Leading Zero Blanking: Digit-based displays, such as 7-
segment displays can display multiple digital. This term
refers to the notion that the left-most digits of a given
number are not actuated if the values are zero.

Learning by Rote: A learning approach typically used by
students in order for them to deal with the lack of teaching
skills of instructors.

Least Significant Digit: A phrase referring to the digit
position with the lowest weighting in a juxtapositional
notarized number system.

Legend: A special type of annotation associated with type
of visual representation of something. In particular, all
timing diagrams, circuit diagrams, and particularly state
diagrams should contain legends in order to increase the
readability of the diagrams.

Legends In Their Own Minds: A characteristic typically
associated with every academic administrator on the

planet.

Level of Abstraction: The act of considering something
as a general quality or characteristic, apart from concrete
realities, specific objects, or actual instances. Particular to
digital design is the notion of using black boxes that
perform some function but it is not generally known the
details of how those functions are implemented at a lower
level.

Level Sensitive: A term that refers to the notion that a
digital device react to input signals anytime they may
change. On the contrary, some circuits are considered
edge-sensitive.

Libraries: A storage area for previously designed
modules and/or syntactical term definitions required for
use in the typical design practice.

Lingo: Special vernacular used in the description of
something that only people who typically spend
considerable time working with that something actually
understand. Lingo is often strongly associated with
technical slang.

Local Variables: A type of variable typically found in
computer programming languages; local variables are
located on the stack and do not have permanent storage.

Lock-Step Process: A set of entities that wait on signal
from each other in order to properly sequence their overall
operations.

Logic Analyzer: A device that tests a given digital circuit
implementation by displaying the state of the digital inputs
and outputs at various time interval. Logic analyzers
generally have one of two types of displays: timing
diagrams and state listing. The timing diagrams are happy
timing diagrams; the state listing shows the circuits inputs
and outputs at given time intervals or when changes in
signals occur.

Logic Gate (or just “Gate”): A physical hardware entity
that implements a logic function.

Logic hazard: A hazard that is present due to the
changing of a single input variable for a given circuit.

Logic Unit: A term describing one of the main sub-
modules of an arithmetic logic unit (ALU). The logic unit
generally handles operations that can be considered
“logic” such as ANDing and ORing, etc. Logic units are
typically assigned to handle shifting and rotation
operations also.

Look-Up Table: Also known as LUTs, a structure
commonly used in engineering and software applications.
In algorithmic programming languages, this term is used
to describe the approach of pre-calculating and storing
values and referencing the results as needed. In VHDL,
LUTs are used to implement many of the standard digital
modules.

LSD: An acronym used for least significant digit; (see
least significant digit).

Free Range Digital Design Foundation Modeling Digital Design Dictionary

 - 509 -

LSI: An acronym for “large scale integration”; (see “large
scale integration”).

-M-

M: An abbreviation used for the metric prefix “Mega”;
this prefix is used in engineering notation.

m: An abbreviation used for the metric prefix “mili”; this
prefix is used in engineering notation.

Macrocells: A sub-block of a PLD that can be both
programmable and/or configurable. This term is basically
used to describe the architecture of PLDs.

Magnitude Bits: The portion of a set of bits that refers to
the magnitude portion of the number being represented by
the set of bits. Signed binary number representation
always have both magnitude bits and a sign bit.

Manual Verification: A term that refers to the notion of a
VHDL testbench’s that does not “automatically” verify the
proper operation of a VHDL model. Manual verification
requires that the user examine the simulation results in
order to determine whether the circuit is working or not.

Map Entered Variable: A variable that appears in a
Karnaugh map or truth table where typically only 1’s and
0’s are entered.

Mask Programmable: A term referring to a device that
contains connections that are made (or not made) on the
silicon level; mask programmability is often referred to as
“factory programmed” as it is generally done at the
associated fab (IC fabrication facility).

Maximum Clock Frequency: A term that refers to the
highest clock frequency a sequential circuit can be clocked
and still operate properly. The maximum clock frequency
of a circuit is based on physical attributes of the devices in
the circuit such as setup and hold times.

Maxterm Expansion: Another term referring to Standard
POS form (see “Standard POS form”).

Maxterm: A sum term associated with a given function
that includes one instance of every independent variable in
the function. Maxterms are associated with conditions that
produce a logic ‘0’ on the function’s output. A minterm is
synonymous with a Standard Sum Term.

MCU: An acronym referring to a “microcontroller”; (see
“microcontroller”).

Mealy vs. Moore FSM Models: There are two classes of
finite state machine model which are referred to as Mealy
and Moore “machines”, or “models”. The external outputs
of a Moore machine are a function of state only and output
changes are thus considered to be synchronized to state
changes in the FSM. The external outputs of a Mealy
machine are a function of both FSM state and the internal
inputs. Changes in external outputs of a Mealy machine
are not necessarily synchronized to the changes in FSM
state since they are also a function of external inputs.

Mealy’s First Law of Digital Design: If in doubt, draw

some black box diagrams.

Mealy’s Second Law of Digital Design: If your digital
design is running into weird obstacles that require kludgy
solutions, toss out the design and start over from square
one.

Mealy’s Third Law of Digital Design: Every digital
design problem can have many different but equivalent
solutions; the absolute right solution is eternally elusive.

Mealy’s Fourth Law of Digital Design: The digital
design process is circular, not linear. If you think you’re
going to generate the correct solution with the first pass,
you’re bound for disappointment. The digital design
process is circular; always make going backwards a few
steps to fix issues part of the design process. Don’t try to
make your design perfect from the get-go, make it simple
to understand so that you can fix issues as they arise.

Mealy’s Fifth Law of Digital Design: Model circuits
using many smaller sub-modules as opposed to fewer
larger sub-modules; as this approach supports testing and
increases the chances module reuse.

Mealy’s Sixth Law of Digital Design: Don’t rely on the
HDL synthesizer; create your HDL models by having a
remote vision of what underlying hardware should look
like in terms of standard digital modules.

Mealy’s Seventh Law of Digital Design: Always first
consider modeling a digital circuit or part of a digital
circuit using some type of decoder. Decoders in digital
design are anything we can describe in a tabular format, so
they are essentially look-up tables (LUTs).

Mealy-Type FSM: A class of finite state machine (FSM)
that is characterized by having outputs that are a function
of both the present state of the FSM and the external
inputs to the FSM. Mealy-type FSMs are typically
modeled as having a “next state decoder”, “state variable
storage”, and an “output decoder”.

Mealy-type Outputs: An external output to a finite state
machine (FSM) that exhibits Mealy-type qualities; Mealy-
type qualities refer to the notion that the external output is
a function of both the current state of the FSM and the
values of the external inputs to the FSM.

Medium Scale Integration: A term that roughly refers to
the number of transistors on an integrated circuit. The
exact number of transistors associated with medium scale
integration is not quantifiable; medium scale integration is
generally known as the next step beyond small-scale
integration; usually referred to as MSI.

Mega: A standard metric prefix meaning 10-6; the prefix is
abbreviated as “M”.

Memory Bandwidth: Memory bandwidth refers to the
amount of data that can be transferred to and from
memory. The speed of memory reads and writes are
constrained by physical attributes of the device as well as

Free Range Digital Design Foundation Modeling Digital Design Dictionary

 - 510 -

the system in which the device operates in which thusly
allow for a maximum amount of information to be
transferred to and from the device.

Memory Capacity: A term describing how much data can
be stored in a sequential circuit. This term is most often
used in conjunction with structured memories, in which
case capacity is usually measured in terms of bits, bytes, or
words.

Memory Capacity: The amount of storage a given
memory contains. Memory capacity is stated in various
forms such as total number of bits, total number of bytes,
or total number of words.

Memory Configurations: This term refers to the notion
that multiple memories can be configured in ways to
obtain different memory capacities (number of accessible
storage elements) and different storage characteristics (the
width or word-length) of each storage element.

Memory Element: A digital device that is capable of
storing an arbitrary number of bits. Memory elements are
typically associated with state variable storage in finite
state machines (FSMs). Memory elements are often
referred to as “storage elements”.

Memory Inducing: A term used in the context of using
VHDL to model memory elements in digital circuits.

Memory Levels: A term that encompasses the various
types of memory in a given system. Generally speaking,
the lower-level memories are faster but more expensive
than higher-level memories. Computer system deal with a
trade-off between program execution speed and expense.

Memory Model: A term that describes the general way a
given CPU utilizes the memory resources it has at its
disposal.

Memory Performance Measures: Because systems rely
heavily on memory, items such as read access times, write
cycle times, and memory bandwidth are used to measure
the specific performance of memory devices within the
system.

Memory Reading: An operation that accesses the
contents of memory without changing those contents.

Memory Speed: A term that refers to how fast a
structured memory operates. Depending on the specific
type of memory, this term is generally associated with how
you can read data from a memory and/or write data to a
memory.

Memory Writing: An operation that changes the contents
of memory.

Memory: A term referring to the ability of a digital circuit
to store bits. Sequential circuits are digital circuits defined
as having memory. Memory in digital circuits can be
categorized as either “incidental memory” (flip-flops and
registers) or “structured memory” (ROMs and RAM).

Metastability: Digital circuits can become metastable
when a set-up and/or hold time is not met. Metastability is

a loose definition and means the circuit’s output is neither
high nor low and may remain in that state there for an
unstated amount of time.

Metastable: A term referring to an unwanted condition in
a sequential circuit resulting from not meeting the setup
and/or hold times of that circuit. This term is sometimes
referenced as “metastability”.

MEVs: An acronym used to refer to map entered
variables; see “map entered variables”.

micro: A standard metric prefix meaning 106; the prefix is
abbreviated as “μ”.

Microcontroller: A digital device that is a complete
computer on a single integrated circuit. Being complete
computers (by definition of a computer), microcontrollers
contain an arithmetic logic unit (ALU), a finite amount of
memory (for both data and instructions) and input/output
capabilities (in order to interface with the outside world).
Microcontrollers are programmable at various levels
including higher-level languages and assembly languages.
Microcontrollers typically control other digital and/or
analog devices.

Microoperations: A microoperation is an elementary
operation performed on data stored in a register.
Microoperations can also include interactions with other
registers such as storing the result of microoperations
associated with other circuit elements. Microoperations
are commonly used in higher-level descriptions of digital
circuitry such as computers.

mili: A standard metric prefix meaning 103; the prefix is
abbreviated as “m”.

Minimum period: A term that refers to the smallest
period of a clock signal associated with a sequential circuit
can be clocked and still operate properly. The minimum
period of a circuit is based on physical attributes of the
devices in the circuit such as setup times.

Minterm Expansion: Another term referring to Standard
SOP form (see “Standard SOP Form”).

Minterm: A product term associated with a given function
that includes one instance of every independent variable in
the function. Minterms are associated with conditions that
produce a logic ‘1’ on the function’s output. A minterm is
synonymous with a Standard Product Term.

Minuend: A number from which another number is
subtracted.

Mixed Logic Design: A digital design that contains
signals in both negative and positive logic representations.

Mixed Logic: A term referring to the notion that a given
circuit or system uses both positive and negative logic.

Mnemonic: A set of letters that represents a given
operation. Generally speaking, mnemonics loosely
describe, in an abbreviated manner, the operation they
represent.

Model: A model is a representation of something. A more

Free Range Digital Design Foundation Modeling Digital Design Dictionary

 - 511 -

(definitive) descriptive description of a model is a
description of something in terms that highlights the
relevant information in that thing while hiding the less
useful information. The purpose of a model is to quickly
transfer important information to the entity reading the
model (whether human, or computer, or member of the EE
Faculty). Generally speaking, the quality of any model is
determined by its ability to transfer information to the
user.

Models in Digital Design: a model is a representation or a
description of something using a certain level of detail.
The main purpose of the model in digital design is to
transfer information to the entity using the model. There
are four main types of models used in digital design: black
box model, timing diagrams, written descriptions of digital
circuits, and VHDL models.

Modern Digital Design: Modern digital design is truly
design oriented as opposed to historical approaches which
were not designed oriented due to the unavailability of
implementation tools. Modern digital design is driven by
Hardware Description Languages such as VHDL and
Verilog. The availability of HDLs and the relative low cost
of PLD-based hardware allow digital designs to be
implemented and tested significantly more quickly than
historical design techniques.

Modular Design: A design technique that primarily
utilizes pre-defined black boxes (or modules) as the basis
of the design. This design approach in one of the three
approaches to digital design and is considered the most
powerful and efficient approach. Modular designs are
generally hierarchical in nature.

Mono-Stable Multivibrator: A device that has one stable
state; the stable state can either be the ‘0’ or ‘1’ state. The
device’s output is only in the non-stable state momentarily
before transitioning to the stable state. This term is a fancy
name for a device commonly referred to as a “one-shot”

Moore-Type FSM: A class of finite state machine (FSM)
that is characterized by having outputs that are a function
of the present state of the FSM only. Moore-type FSMs
are typically modeled as having a “next state decoder”,
“state variable storage”, and an “output decoder”.

Moore-type Outputs: An external output to a finite state
machine (FSM) that exhibits Moore-type qualities; Moore-
type qualities refer to the notion that the external output is
exclusively a function of the current state of the FSM.

Most Significant Digit: A phrase referring to the digit
position with the highest weighting in a juxtapositional
notarized number system.

MSD: An acronym used for most significant digit; (see
“most significant digit”).

MSI: An acronym for “medium scale integration”; (see
“medium scale integration”).

Multiplexor: A standard digital device used to select
between a set of two or more signals. Multiplexors
generally have data input, data selection inputs, and data

outputs. Most often multiplexors have a binary-type
relationship between data selection inputs and data inputs;
the characteristic is sometimes used to provide a standard
name to the multiplexor such as “2:1”, or “4:1”, or “8:1”
MUX, etc.

MUX: A shorthand term that refers to a “multiplexor”;
(see “multiplexor”).

-N-

n: An abbreviation used for the metric prefix “nano”; this
prefix is used in engineering notation.

NAND Gate: One of the standard logic gates; a NAND
gate performs an AND function with a complimented
output. A different way to model a NAND gate is an AND
gate with an active low output. NAND gates can have two
or more inputs.

NAND Latch: A sequential circuit comprised on two
NAND gates connected such that they have the ability to
store one bit (the circuit contains feedback). NAND
latches are considered the negative logic version of NOR
latches.

NAND/AND Form: One of the basic eight logic forms
but not commonly used in digital design. This form is
derived from OR/AND form (POS form) by excessive use
of DeMorgan’s theorem.

NAND/NAND Form: One of the basic eight logic forms
and one of the most popular four ways to describe a circuit
using either Boolean equation or the circuit model of the
associated Boolean equation. This form is directly related
to the AND/OR form but is comprised of exclusively
NAND functions (for the Boolean equation) or NAND
gates (for the circuit representation).

nano: A standard metric prefix meaning 109; the prefix is
abbreviated as “n”.

Narcissistic Personality Disorder (NPD): A disorder
inflicting most faculty members in academia. All faculty
members must have this disorder if they plan on climbing
up any academic ladder.

Native VHDL Type: A “type” that is provided by the
particular distribution of VHDL. VHDL has many native
types but also allows you to create your own types by also
including the notion of “enumeration types”; (see
“enumeration types”).

N-bit Adder: A term used to describe the number of bits
in the operands and/or result of a circuit that performs
addition.

N-bit Counter: A counter that uses “n” bits (n is an
integer) to represent each value in its sequence of values.

N-bit Register: A register that can store “n” bits (n is an
integer).

Negative Logic: A term used to indicate that a given
circuit considers the notion of ‘0’ to be the active level for

Free Range Digital Design Foundation Modeling Digital Design Dictionary

 - 512 -

the signals in that circuit.

Negative Logic: A term used to indicate that the ‘0’ state
of a signal represented the active state of that signal.

New FSM Techniques: A set of techniques applied to
finite state machine (FSM) implementation the removes
the need for using Karnaugh map and thus allows for the
implementation of more complex FSMs. One important
characteristic of new FSM techniques is that the resulting
equations are not necessarily in reduced form as they are
with “classical FSM techniques”; (see “classical FSM
techniques”).

Next State Decoder: A combinatorial digital circuit that is
typically used in the modeling of finite state machines
(FSMs). The primary function of the next state decoder is
to provide excitation logic to the storage elements
(generally flip-flops) associated with the FSM.

Next State Forming Logic: This is less common term that
refers to the “next state decoder” typically associated with
a finite state machine (FSM); (see “next state decoder”).

Next State Logic: A term referring to the combinatorial
circuitry that makes up the “next state decoder”; (see “next
state decoder”).

Next State: The notion that a given sequential circuit has
the ability to change the value of the bits it is currently
storing at a later time. This term is generally combined
with “present state” to describe the operation of sequential
circuits.

Noise: A term referring to an undesired transition (either
“01” or “10”) in the value of a signal. In digital
design, a standard form of noise is a “glitch”; (see
“glitch”).

Non-essential prime implicants: A type of prime
implicant that is not necessary to include when generating
the minimum covering in a Karnaugh map function
reduction.

Non-Resetting Sequence Detector: A “sequence
detector” (see “sequence detector”) that can use parts of
previously detected sequences in its current search for the
next sequence.

Non-Volatile: A term that refers to a sequential circuit’s
ability to retain its state (the values stored in memory)
when power is removed from the associated circuit. Non-
volatile circuits retain their state while volatile circuits lose
their state information when power is removed from the
associated circuit.

Noob: A slang description of a very special person.

NOR Gate: One of the standard logic gates; a NOR gate
performs an OR function with a complimented output. A
different way to model a NOR gate is an OR gate with an
active low output. NOR gates can have two or more
inputs.

NOR Latch: A sequential circuit comprised on two NOR
gates connected such that they have the ability to store one

bit (the circuit contains feedback). NOR latches are
considered the positive logic version of NAND latches.

NOR/NOR Form: One of the basic eight logic forms and
one of the most popular four ways to describe a circuit
using either Boolean equation or the circuit model of the
associated Boolean equation. This form is directly related
to the OR/AND form but is comprised of exclusively NOR
functions (for the Boolean equation) or NOR gates (for the
circuit representation).

NOR/OR Form: One of the basic eight logic forms but
not commonly used in digital design. This form is derived
from AND/OR form (SOP form) by excessive use of
DeMorgan’s theorem.

Not Asserted: The notion that the current state of a signal
(or voltage level) is associated with the non-action state.
Whether a signal is asserted or not is independent of the
logic level (negative or positive) associated with that
signal.

N-type: A semiconductor that has been doped with
material containing extra electrons.

Number System: a language system consisting of an
ordered set of symbols (called digits) with rules defined
for various mathematical operations.

Number: a collection of digits; a number can contain both
a fractional and integral part.

-O-

Object Oriented: A design approach that partitions
system entities into objects. For digital design, these
objects are considered black boxes or modules.

Object-Level Design: Designs that utilized previously
designed objects. In digital design, these objects are
generally previously designed black boxes.

Octal: A term used to describe numbers with a radix of 8.

Odd Parity: A condition that describes a characteristics
regarding a set of bits; in particular, whether a set of bits
has an odd number of bits at a value of ‘1’.

Ohm’s Law: This law forms the basis of all electronic
circuits and is commonly listed as “V-IR”, where V is the
voltage (Volts), I is current (Amperes), and R is the
resistance (Ohms). The equation states that the voltage is
directly proportional to both the current and resistance.

Old Dude: A person that is characterized by being
impatient, arrogant, and condescending to those who may
know less they do (but usually don’t); many dinosaurs in
academia fall into this category. This term has nothing to
do with age as anyone can adopt this set of counter-
productive attitudes.

One’s Compliment: An operation that can be performed
on a binary number; taking a 1’s compliment of a binary
number entails toggling the value of each bit in the
number.

Free Range Digital Design Foundation Modeling Digital Design Dictionary

 - 513 -

One-Cold Encoding: A term that refers to one of many
different methods used to encode the state variables
associated with the various states in a finite state machine
(FSM). In particular, one-cold encoding uses one storage
element for each state in the associated FSM. The codes
applied to states have ensures that only one storage
element is a ‘0’ in any given state; while all other storage
elements are ‘1’.

One-Hot Encoded: One of many methods typically used
to encode the state variables associated with a finite state
machine (FSM). The one-hot encoding method uses one 1-
bit storage element for each state in the given FSM; at any
one time (thus in any given state), only one of the state
variables are at a ‘1’ values while all the other state
variables are at a ‘0’ values.

One-Hot Encoding: A term that refers to one of many
different methods used to encode the state variables
associated with the various states in a finite state machine
(FSM). In particular, one-hot encoding uses one storage
element for each state in the associated FSM. The codes
applied to states have ensures that only one storage
element is a ‘1’ in any given state; while all other storage
elements are ‘0’.

One-Shot: The common name for a mono-stable
multivibrator. One-shots are used to synthesize fixed-
length signals in response to signal events such as clock
edges.

On-The-Fly: A term that refers to one method of
accessing test vectors in a VHDL testbench. This term
basically refers to the notion that the test vectors for a
given testbench are hard-coded as part of that test bench.
Other testbench options for accessing test vectors are
reading from hard-coded arrays or reading from external
files.

Op-code: A term that is short-hand for “operational code”.
Op-codes are the bits of an instruction that are used by the
control unit to decode which instruction is being executed.

Open-Circuit: A circuit condition that describes a lack of
connection between two signals.

Operator Precedence: A set of pre-defined rules that
establish the execution order of operators associated with
program or model code.

OR Plane: A structured array of logic that allows for the
combination of Boolean variables and/or function outputs
in such a way as to form sum terms used to implement
other Boolean functions.

OR/AND Form: One of the basic eight logic forms and
one of the most popular four ways to describe a circuit
using either Boolean equation or the circuit model of the
associated Boolean equation. This form is often referred to
as “product of sum” form or POS form.

OR/NAND Form: One of the basic eight logic forms but
not commonly used in digital design. This form is derived
from AND/OR form (SOP form) by excessive use of
DeMorgan’s theorem.

Output Decoder: A combinatorial digital circuit that is
typically used in the modeling of finite state machines
(FSMs). The primary function of the output decoder is to
massage the state variables (Mealy and Moore-type FSMs)
and external inputs (Mealy-type FSMs only) into the
correct output forms to control whatever the FSM needs to
control.

Output Enable: A signal name that is commonly
associated with a signal that allows a device to output a
signal or set of signals. When the output is not enabled, the
device’s outputs typically go into a the high-impedance
states. The acronym “OE” is most often used to represent
the output enable.

Overflow: A condition that indicates the result of a
mathematical operation has exceeded the top end of the
range of numbers associated with the bit-width of the
operands. Overflow is often considered to include
underflow; (see “underflow”).

-P-

PAL: An acronym for “programmable array logic”; (see
programmable array logic).

Paper Design: A design that is done only on paper with
no intention of every actually implementing the design.
Such designs are proven to work with only violent hand-
waving arguments. Such designers generally end up as
administrators as their hand waving arguments are backed
up by their innate intimidation tactics.

Parallel Inputs: A term referring to an input that
simultaneously acts on a set of entities. In particular, a
parallel input to the state variables of a finite state machine
(FSM) act on all the individual storage elements in a
simultaneous manner.

Parallel Load: A characteristic of a register indicating
that all the storage elements in the device can
simultaneously latch external values.

Parallel: A condition that describes a set of multiple items
considered all at the same time.

Parallelism: The notion of doing two or more things at the
simultaneously, particularly in the state of engineering,
computer science, and bowling.

Parenthetical Bundle Indexing: Because bundles contain
more than one signal, the name of the bundle needs to be
modified in order to reference the individual signals in the
bundle. There many ways to do this but this notation is the
most common. This notation assumes that indexes from
zero to one less that the number of signals in the bundle
will be used with the index with the highest number being
the most significant bit in the signal.

Parity Bit: A bit included and/or associated with a set of
bits that indicates whether those bits exhibit the condition
of “even parity” or “odd parity”. The parity bit can also be
viewed as being able to give a set of bits either even or
odd parity by including the parity bit with the set of bits
being considered.

Free Range Digital Design Foundation Modeling Digital Design Dictionary

 - 514 -

Parity Checker: A digital circuit that is used to verify that
a circuit has either “odd” or “even” parity. The parity
checker is one the standard digital circuits used in digital
design.

Parity Generator: A digital circuit that generates a bit
that is associated with a set of bits that describes the parity
of those bits (either “odd” or “even” parity). The parity
generator is one the standard digital circuits used in digital
design.

Parity: A word used to describe a condition associated
with a set of bits. The given set of bits can be in a parallel
configuration (parity considered at one point in time over
more than one signal) or a serial configuration (parity
considered over a span of time for one signal). The notion
of parity provides information regarding the number of
bits at a value of ‘1’ in a given set of bits.

Period: The amount of time a given signal requires before
it repeats itself.

Periodic Waveform: A term used to describe an attribute
of a waveform. Periodic waveforms are generally used as
clocking signals for sequential circuits and often
referenced as “clocking waveforms”; (see “clocking
waveforms”).

Periodic: A term used to describe an attribute of a signal.
A periodic signal is defined as having a set period, which
represents the amount of time before the signal repeats
itself.

Pig: A term that completely describes academic
administrators.

Pin Count: A term referring the number of external pins
on the integrated circuit. This term usually refers to the
number of pins used for input/output requirements of the
device. The main issues here are that the cost of a specific
device increases as the pin count increases.

PLA: An acronym for “programmable logic array”; (see
programmable logic array).

PLC: An acronym representing the “positive logic
convention”; (see positive logic convention).

PLD: An acronym for “programmable logic device”; (see
programmable logic device).

Polling: Processors use polling to interface with external
devices where the process constantly evaluates the status
of the external device in order to determine if the device is
in need of services from the processor. Polling is
considered to be used in “programmed I/O” and is one of
three major types of computer related I/O. Polling is
generally associated with inefficient embedded system
design in that the system is considered to have low overall
throughput when executing a polling loop

Pop: An operation associated with stacks where an item is
removed from a stack; the stack pointer is appropriately
adjusted.

Positive Logic Convention: An approach to representing

mixed logic that uses overbars on signals to indicate
negative logic and no overbars to represent positive logic.

Positive Logic: A term used to indicate that the ‘1’ state
of a signal represents the active state of that signal.

Present State: The notion that a given sequential circuit is
currently storing a given value but that value can change to
a new value. This term is generally combined with “next
state” to describe the operation of sequential circuits.

Prime implicants: A grouping in a Karnough map that
cannot be completely convered by any other single
grouping.

Princeton Architecture: A computer architecture where
data and instructions share the same memory space. This
architecture is also known as a Von Neuman architecture.

Process Body: A part of a VHDL process statement that
include the declarative region of and the statement region
of a process statement.

Process Statement: A type of concurrent statement in
VHDL used in behavioral modeling.

Product of Sums (POS) Form: A function form that is
characterized by sum terms that are logically multiplied
together.

Product Term: A set of Boolean variables that are
ANDed or logically multiplied together.

Product Term: An expression in a Boolean equation that
can be characterized as a logical multiplication of
variables.

Program Counter (PC): The program counter is a simple
counter generally found in a computer’s control unit and
whose output is generally used as an address that points to
the next instruction in program memory to be executed by
the program. The PC is typically expected to do standard
counter microoperations such as parallel load and
increment.

Program Flow Control Instructions: Instructions that
cause or potentially cause the CPU to execute an
instruction other than the instruction following the current
instruction. Examples of program flow control instructions
are conditional/unconditional branches, and subroutine
calls/returns.

Program Flow Control: For computer programs to do
useful things, they must appropriately respond accordingly
to important “events”. This response at a low level
includes executing different portions of the given
computer program. Computer instructions that facilitate
any computer operation other than simple incremental
execution of instructions from the program memory are
generally referred to as program flow control instructions.
Program flow control is generally handled by clever
manipulations of the program counter.

Programmable Array Logic: A type of programmable
logic device characterized by having a programmable
AND plane and a non-programmable OR plane.

Free Range Digital Design Foundation Modeling Digital Design Dictionary

 - 515 -

Programmable Logic Array: A type programmable logic
device characterized by having both programmable AND
plane as well as a programmable OR plane.

Programmable Logic Device (PLD): Any integrated
circuit used to create circuits in which the functionality of
the internal circuit is not defined until the device is
programmed (in this context, the term “program” does not
typically refer to a computer programming language). One
common type of PLD is the FPGA.

Programmable Logic Device: An integrated circuit that
can be configured to implement various logic functions
and/or digital systems. Generally referred to as a PLD, a
programmable logic device covers the entire class of
programmable logic devices including FPGAs, PLAs,
PALs, and CPLDs.

Programmed I/O: One of two main forms of computer
I/O. Programmed I/O is characterized by dedicated
instructions in the instruction set for performing data input
and output. Programmed I/O synchronous in nature as it is
associated with an executed instruction.

Programming Language Levels: Computer programs
can be written on one of three general levels (listed from
low to high): machine code level, assembly code level, or
higher-level. Higher-level languages include C, C++, C#,
Java, Wanker, etc.

Programming Model: The programming model, or
programmer’s model, describes the hardware resources
available on a programmable computer-type device that
the programmer is able to control via the program control.
Program control is provided by the operations described
by the device’s instruction set and can either categorized
as software or firmware.

Prop delays: A shorthand version of “propagation delay”;
see “propagation delay”.

Propagation delay: The time delay associated with the
propagation of a signal through an electronic circuit.
Propagation delays are generally associated with phyical
aspects of the ciruit and are inherent in all electronic
devices to one degree or another.

Proto-Board: A device used for prototyping electronic
circuits; the proto-board is comprised of many tiny holes
in which the stripped end of a wire was pushed into in
order to make an electrical connection. The integrity of
proto-boards diminishes over time as the actual
connections as based on the elastic properties of some very
tiny pieces of metal.

Protocol: A pre-defined set of rules that describe a
mechanism that digital entities can use to communicate
with each other. Any entity that complies with the protocol
can communicate with any other entity also in compliance
with the protocol.

PS/NS Table: A set of data in tabular format that
describes the operational characteristics of a sequential
circuit. The acronyms PS & NS are short-hand notation for
“present state” and “next state”, respectively. The

information in PS/NS tables can be visually represented
using “state diagrams”; (see “state diagrams”).

P-type: A semiconductor that has been doped with
material containing extra holes (or lack of electrons).

Push: An operation associated with stacks where data is
placed onto a stack; the stack pointer is appropriately
adjusted.

-Q-

Q: The letter typically used to refer to the “state” of a
single bit storage element. In terms of finite state machines
(FSMs), this term refers to the present state.

Q+: The term typically used to refer to the “next state” of a
single bit storage element used in a finite state machine
(FSM).

-R-

Radix Compliment: A term referring to a standard and
most common method of representing signed binary
numbers. The left-most bit in a number in radix
complement form is the sign bit; if the sign bit is a ‘1’,
then the number is a negative number.

Radix Point: a symbol used to delineate the fractional and
integral portions of a number.

Radix: the number of digits in the ordered set of symbols
used in a number system.

RAM: The acronym officially stands for Random Access
Memory; a solid definition for RAM is fleeting due to
advances in technology. RAMs are most often
characterized as volatile, random access storage devices.

Random Access: A memory device is considered random
access if it can access any of its contents in a constant
amount of time. Devices such as flash drives are
considered random access while devices such as tape
drives and hard drives are not random access.

Rapid Prototyping: The ability to quickly generate a
working model of a device that exhibits the functionality
of the expected final device.

RC: An acronym referring to radix compliment; (see
“radix compliment”).

RCA: An acronym referring to a ripple carry adder; see
“ripple carry adder” for details.

RCO: An acronym referring to “ripple carry out”; (see
“ripple carry out”).

Read Access Time: The amount of time required for
memory output data to become available after an address
and the correct control signals have been provided to the
device.

Redundant State: A state in a finite state machine (FSM)
that is not essential to the overall operation of the FSM.
While technically correct, we typically omit redundant
states in FSMs because they represent basic inefficiencies
in FSM specification.

Free Range Digital Design Foundation Modeling Digital Design Dictionary

 - 516 -

Register File: An abstract device that is used to model a
given number of general purpose registers that are directly
accessible by the given computers instruction set. Register
files are typically modeled as multiport RAMs that can
read and/or write multiple registers, roughly speaking, in a
simultaneous manner.

Register Transfer Language (RTL): A syntactically
loose approach to specifying a digital circuit that can be
modeled as the synchronous transfer of data between
sequential circuits such as registers. A RTL statement
generally describes a microoperation (or set of micro-
operations) generally associated with a digital circuit. The
two parts of an RTL statement are 1) the register transfer
specification, and 2) the specific conditions that are
necessary for that transfer to occur. Generally speaking,
only signals necessary for the stated transfer to occur are
listed in the RTL statement while non-listed signals are
assumed to be “properly handled” elsewhere. Unless
explicitly stated, each RTL statement is assumed to occur
in one clock cycle though the clock signal is rarely listed
as part of the RTL statement. RTL is also known as
register transfer notation (RTN).

Register: A register is a digital circuit that can store two
or more bits of data (one bit of storage would be
considered a flip-flop). Types of registers include simple
registers, shift registers, and counters. When the term
“register” is used, it typically refers to “simple registers”
and not counters and shift registers. Registers are typically
have both synchronous and asynchronous actions, but
typically data storage is synchronous to an active signal
edge.

Register: An n-bit wide sequential circuit that is primarily
known for its ability to store bits. Registers are generally
modeled as “n” D flip-flops which share a common clock.
Register generally have synchronous parallel load inputs
and sometimes other features (elementary operations) such
as asynchronous or synchronous presets and clears.
Specialized registers include shift registers and counters.

Regular Structures: A term that refers to large digital
circuits that can be modeled and/or synthesized as a large
circuit comprising of many smaller repeated circuit
elements. This term is most often used in conjunction with
circuits such as PLDs (FPGAs, PLAs, PALs, CPLDs, etc.)
and structured memory (ROMs, RAMs, etc.).

Relational Operators: A set of operators used in VHDL
conditional statement to determine the relation between
two expressions.

Relative Time: A term referring to the notion that any
reference to time in a VHDL testbench is based on a
previous time reference, as opposed to always the same
reference as is one in “absolute time”. Relative time
references have the characteristic that they “accumulate”
through a testbench.

Repeated Radix Division: An algorithm used to convert
the integral portion of a number from decimal to any other
radix.

Repeated Radix Multiplication: An algorithm used to
convert the fractional portion of a number from decimal to
any other radix.

Reset Condition: A state of a storage element where the
current value is ‘0’. This is also referred to as a “clear
condition”; (see “clear condition”).

Reset Pulse: A signal that is used to reset a sequential
circuit. This signal is typically short in duration (thus the
term “pulse”) and can either be a ‘1’ pulse or a ‘0’ pulse.

Reset State: The state of a storage element or a signal
where the current value is ‘0’. This is also referred to as a
“clear state”; (see “clear state”).

Reset: When used as a verb, this term refers to making the
value of a signal or storage element a ‘0’. This term is
synonymous with “clear”; (see “clear”).

Resetting Sequence Detector: A “sequence detector” (see
“sequence detector”) that can‘t use parts of previously
detected sequences in its current search for the next
sequence. In other words, when the sequence detector
finds the correct sequence, the sequence detector must
start looking for the first bit in the desired sequence.

RET: An acronym referring to “rising-edge triggered”;
(see “rising-edge triggered”).

Retinal Persistence: The notion associated with the
human visual system that does not allow humans to
perceive an off-state of an LED at the exact time the LED
is turned off. The notion of retinal persistence is what
allows display multiplexing to work for humans.

Ripple Carry Adder (RCA): A digital device that is used
to add two digital values. The RCA is comprised of a
series of one-bit adder elements that are connected in a
series configuration such that the carry from lower-order
bits propagates, or “ripples” in the direction of higher-
order bits.

Ripple Carry Out: A signal typically found on counters
that indicates when the counter has reached its maximum
count value. This value is often used in some devices to
indicate underflow. This signal often aids in cascading
multiple counter devices.

RISC vs. CISC: The age-old computer argument of which
is better that has never been solved. Generally speaking,
RICS architectures require more instructions to complete a
given operation than a CISC architecture would for that
same operation, but those instructions are executed “more
quickly” than a CISC architecture.

RISC: This acronym officially stands for “Reduced
Instruction Set Architecture” and is generally used to
describe computer architectures. In actuality, the term has
little or nothing to do with the size of the instruction set.
RISC architectures generally have the following
characteristics:

 They contain a large register
 The instructions word formats all contain the same

number of bits (no extended opcodes)

Free Range Digital Design Foundation Modeling Digital Design Dictionary

 - 517 -

 The instructione execute in the same number of
clock cycles

 The instructions generally are not complicated
(they don’t require great amounts of processing)

 They have higher system clock frequencies than
non-RISC architectures

Rising Edge: A “0→1” transition of a given signal that is
typically used to synchronize some other action in a
circuit.

Rising-Edge Triggered: A term used to describe the
notion that changes in a circuit are synchronized to a
“rising edge” of some signal in the circuit. This term is
often abbreviated as “RET”.

ROM: The acronym officially stands for Read Only
Memory; a solid definition for ROM is fleeting due to
advances in technology. ROMs are most often
characterized as non-volatile, random access storage
devices.

Rotates: A specialized shift-type operation often
associated with shift registers characterized by shifting all
bits in the register in one direction (either left or right) and
replacing the MSB by the LSB (rotate right) or the LSB by
the MSB (rotate left).

Routing: The act of physically connecting two entities.
This term is often used in the context of printed circuit
board development and PLD architectural/implementation
issues.

RRD: An acronym used for repeated radix multiplication;
(see “repeated radix division”).

RRM: An acronym used for repeated radix multiplication;
(see repeated radix multiplication).

Rubylith: Some red plastic stuff that was used to fabricate
integrated circuits in the early days of IC design and
manufacturing.

-S-

Scalar: A term used to signify that a given item cannot be
sub-divided into sub-items.

Secret Sauce: A term that describes the notion that there
is something not being told to you or provided for you. In
free software distributions, often times the vendor removes
the secret sauce from the free version of the software and
only provides it for those who have the wherewithal to
shell out the big bucks.

Selective Signal assignment: A type of concurrent
statement used in VHDL; selective signal assignment
statements are analogous to the case statement in VHDL
behavioral modeling.

Self-Commenting: The use of identifiers (see “identifier”)
that given the human reader an idea as to the purpose or
functionality of a particular items such signals, entities,
architectures, variables, etc.

Self-Correcting: A term that refers to the notion that a

finite state machine (FSM) has the ability to return to a
desired state in the event that it finds itself in an undesired
or unused state. The notion of self-correction must be
intentionally designed into the FSM by the associated
digital designer.

Self-Loop: A condition in a finite state machine (FSM)
indicating a state transition from a particular state returns
to that state in one state transition. This condition can also
be viewed with the notion that the FSM never actually
exited that given state.

Self-Serving: The defining characteristic of all academic
administrators and most engineering faculty.

Semiconductor: A substance that has an electrical
conductivity based on external factors. This term is also
used to described specific devices made from
semiconductors such as transistors, diodes, etc.

Sensitivity List: A part of a VHDL process statement that
shows which signals will case the process statement to be
evaluated.

Sequence Detectors: A device that can determine when a
specified binary sequence appears on a given digital
signal. Sequence detectors are often implemented using
finite state machines (FSMs); such FSM can either be
“resetting” or “non-resetting” in nature.

Sequential Logic: Digital logic that has memory, or the
ability to store the values of bits. It is generally understood
that the ability to store bits comes from the notion of the
circuit or an element in the circuit having feedback from
an output of the circuit to an input.

Sequential Statement: A type of statement that can
appear in a VHDL process statement. Sequential
statements are evaluated in the order they appear in the
process statement though the process statement itself is a
concurrent statement.

Serial Lines: A term that refers to a signal that sends or
receives a contiguous set of bits over a given time period.
We typically refer to “bit-streams” that are received over
serial lines; (see “bit-streams”).

Serial: A condition that describes a set of multiple items
considered one at a time.

Set Condition: A state of storage element where the
current value is ‘1’.

Set: When used as a verb, this term refers to making the
value of a signal or a storage element a ‘1’. For example,
“the signal sets the flip-flop”.

Set or Clear Method: One of the “new FSM techniques”
associated with JK flip-flops where expression are written
for each state transition that “sets” (0→1) for the J
excitation inputs and or “clears” (0→1) for the K
excitation inputs (see “new FSM techniques”, “special J
reduction” and “special K reduction”).

Set or Hold-1 Method: A part of the “new FSM
techniques” associated with D flip-flops where expression

Free Range Digital Design Foundation Modeling Digital Design Dictionary

 - 518 -

are written for each state transition that “sets” (0→1) or
“holds-1” (1→1); (see “new FSM techniques”).

Set Pulse: A signal that is used to set a sequential circuit.
This signal is typically short in duration (thus the term
“pulse”) and can either be a ‘1’ pulse or a ‘0’ pulse.

Set State: The state of a storage element or a signal where
the current value is ‘1’.

Set Transition: A feature of a state-change in the context
of a single bit where the present state is a ‘0’ and the next
state is also a ‘1’.

Set-Clear Method: A part of the “new FSM techniques”
associated with T flip-flops where expression are written
for each state transition that “sets” (0→1) or “clears”
(0→1); (see “new FSM techniques”).

Set-up & Hold Times: Digital devices that are edge
sensitive (circuit changes state on a rising or falling clock
edge) must hold inputs stable (the inputs must not change
state) for a certain amount of time before the active clock
edge arrives; this time is referred to as the set-up time.
Digital devices must also hold the inputs stable for a
certain amount of time after the active clock edge which is
referred to as the hold time. Failing to meet set-up and/or
hold times leads to the circuit going metastable.

Setup Time: An attribute of physical sequential circuits
defined as the amount of time a circuit’s control signals
must remain stable before the active clock edge of the
circuit.

Shadow Registers: A term used to describe storage
elements for the C and Z flags as part of the RAT MCU
context storage mechanism.

Shift Register Cell: A single bit-storage element that
forms the building block of a shift register.

Shift Register: A sequential circuit that is comprised of
individual bit storage elements connected in such a way as
to facilitate a “shift” operation between elements. The shift
operation generally indicates that each storage element in
the register simultaneously transfers its value to a
contiguous storage element. Shift operations are generally
synchronized to a system clock.

Shift Register: A special flavor of register designed to
perform contiguous bit-level transfers (or serial transfers)
of data between the bit storage elements of the register.
Shift registers generally shift all the storage elements to a
contiguous storage element once per clock cycle.

Short: A short-hand notion referring to a short circuit;
(see short circuit).

Short-Circuit: A circuit condition that describes a
connection between two points.

Sign Bit: A bit in a set of bits representing a binary
number that is used to signify a sign bit. The sign bit
location of the binary number it traditionally the left-most
bit in the set of bits.

Sign Extension: Refers to the act of increasing the bit-

width of a signed number without changing the value of
the number. Extending the bit-width is different for signed
and unsigned numbers.

Sign Magnitude: A term that refers to a standard but not
common method of representing signed binary numbers
where the left-most bit in the set of numbers is considered
the sign bit and the other bits are considered the magnitude
bits. This term is often referred to as “SM”.

Signals (VHDL): A term that refers to a declaration of
internal connections of a VHDL architecture.

Signed Binary Numbers: a set of bits (1’s and 0’s) that
are used to represent a numbers that are either negative,
zero, or positive.

Signedness: A term that refers to the notion that a set of
bits is a representation of a signed number.

Silicon: The main semiconductor material used in the
creation integrated circuits; silicon is the 14th element in
the table of elements and is quite plentiful on planet earth.

Simple Register: A device that can store two or more bits
of data. A “simple” register is a register that is not a
counter or shift register (or various versions of these).
Additional features of a simple register include parallel
loading and other parallel actions such as clearing and
setting.

Simulation: The act of verifying your circuit is working
without actually implementing the circuit.

Simulator: A device that tests a given circuit by providing
a mechanism to list and/or change circuit inputs and views
the resulting changes in circuit outputs. A simulator is a
common design and debugging tool.

Slanted T Symbol: A circuit symbol referring to a
connection to the value of a ‘1’ in a circuit. Most often, the
value of ‘1’ is the voltage value used to provide power to
the circuit.

Slash Notation: A graphical representation used in
schematics to indicate the number of individual signals
contained in a bundle.

SM: An acronym referring to signed magnitude; (see
“signed magnitude”).

Small Scale Integration: A type of integrated circuit that
comprises of up to approximately a hundred transistors;
usually referred to as SSI.

Soft-Core Microcontroller: A “microcontroller” (see
“microcontroller”) is modeled using a hardware
description language (HDL) and is synthesizable on a
programmable logic controller (PLD).

Software: In the specific case, software is a computer
program that is written in a generic way so that it can run
on a more than one type computer. Software does not refer
to the language-level in which the program is written and
thus can be written in machine code, assembly code, or a
higher-level language. In the less specific case, the term
software is often means any code written to run on a

Free Range Digital Design Foundation Modeling Digital Design Dictionary

 - 519 -

computer.

Sorting: A typical hardware and/or software operation
that arranges a set of values based on some pre-determined
criteria such as magnitude.

Spaghetti code: Programming code that does not follow
standard structured programming concepts. Spaghetti code
is by definition fragile; it is hard to understand, maintain,
modify, and reuse.

Speed-Wrap: An antiquated approach to prototyping
electronic circuits. In particular, a wire with a plastic
coating was pushed between two posts that had sharp
edges. The sharp edges would cut through the plastic and
make a connection with the wire.

Spiritually Enriching: A term that refers to the act of
performing any of the various aspects of digital design.

SR Latch: A one-bit storage element with that has a S
(set) and a R (reset) input that are used to either set of
clear the output of the latch, respectively.

SR: An acronym representing “shift register”; (see “shift
register”).

SSI: An acronym for “small scale integration”; (see small
scale integration).

Stack pointer: A term that refers to an entity that contains
information that describes the “top of the stack”.

Stack: An abstract data type that implement a last-in/first-
out (LIFO) queue (or list of things). Stacks can be
implemented in hardware or software with hardware
implementation of stacks employing the use of a stack
pointer to increase efficiency of the device. Stacks are
typically used in computer architectures to keep track of
hierarchically-nested processes such as subroutines and
interrupts.

Standard Decoder: A special type of decoder that
contains a n:2n relationship between the number of inputs
and outputs. The standard decoder is a subset of decoders
in general.

Standard Decoder: A standard decoder is a hardware
device that implements a one-hot or one-cold output based
on a given set of inputs. There is typically a binary
relationship between the number of select inputs and the
number of outputs and come in such flavors as 1:2, 2:4,
3:8, etc.

Standard Product of Sums Form (Standard POS
Form): A description of a Boolean function that includes
an explicit listing of the standard product terms that imply
a non-active state (0’s) on the function’s output. Standard
POS form is also referred to as a maxterm expansion.

Standard Product Term: A product term that includes
one instance of each independent variable; also known as a
minterm.

Standard Sum of Products Form (Standard SOP
Form): A description of a Boolean function that includes
an explicit listing of the standard product terms that imply

an active state (1’s) on the function’s output. Standard
SOP is also referred to as a minterm expansion.

Standard Sum Term: A sum term that includes one
instance of each independent variable; also known as a
“maxterm”; (see “maxterm”).

Standard: A set of rules or guidelines that everyone
agrees to follow or be faced with the notion of choosing a
slow death or becoming an academic administrator.

Start-up code: The code that is inserted automatically by
the assembler as a result of declaring data in the program
that requires initialization. The start-up code is typically
comprised of instructions that initialize data memory.

State Bubble: A visual representation of the values that
can be stored by a sequential circuit. State bubbles can
represent either the stored bits or some symbolic reference
to the stored bits.

State Diagram Symbology: A term referring to the
various standard set of symbols used to represent various
aspects of state diagrams and the finite state machine
(FSM) they represent. Representing state diagrams is not a
science; it’s more of an art form.

State Diagram: A visual representation of a PS/NS table
used to describe the given values that a sequential circuit
can store (or the “state”) and the conditions required to for
the circuit to transition from one state to another state.

State Registers: A sequential circuit used in the modeling
and implementation of finite state machines (FSMs). The
state registers are typically comprised of single-bit storage
elements that are used to store the values associated with
the “present state” of a given FSM.

State Transition Inputs: A term that describes the inputs
to the “synchronous process”; (see “synchronous process”)
that control the functioning of the state variables
associated with a given FSM model. These inputs typically
include parallel load, clears, and pre-sets.

State Transition: The characteristic associated with a
sequential circuit where the values stored by that circuit
change.

State Variable Transition Table: A set of information in
tabular format that lists every state-to-state transition
associated with a state diagram. For each transition, the
conditions that govern that transition and the state changes
for the associated state variables are also listed. This table
is used in conjunction with the “new FSM techniques”;
(see “new FSM techniques”).

Statement Region (VHDL): The region of a VHDL
architecture that support the various forms of VHDL
statements including concurrent signal assignment
statements and component instantiations.

Static logic hazards: A hazard that is present due to the
changing of a single input variable for a given circuit
where the given output is not expect to change (thus
remain “static”).

Free Range Digital Design Foundation Modeling Digital Design Dictionary

 - 520 -

Status Signals: These are signals represented as outputs
from a device being control and provide status information
to a controller device. Finite state machines (FSMs) are
typically used as controllers and contain both control
outputs and status inputs.

Stimulus Driver: A term referring to one major portion of
a VHDL testbench; the other portion of the testbench is the
“device under test”. The stimulus driver’s main function is
to provide inputs to the device under test. The stimulus
driver can use the state of the DUT’s output to generate
conditional stimulus to the DUT. The stimulus driver can
be modeled for either manual or automatic verification of
the DUT.

Stimulus: A term referring to the application of test
vectors to a device under test. The stimulus is generally in
the form of exercising the digital inputs to the device
under test.

Stone-Age Unary: A number system that uses one
physical entity for each thing being counted.

Storage Capacity: A term typically associated with
memory devices that refer to how much data can be store
within a particular memory or memory system. Storage
capacity can be stated in many ways; the two most popular
ways are the number of bits the memory can store or the
number of words the memory can store.

Storage Element: A digital device that is capable of
storing an arbitrary number of bits. Storage elements are
typically associated with state variable representation in
finite state machines (FSMs). Storage elements are often
referred to as “memory elements”.

Structural Style: A term referring to the use of structural
modeling in VHDL.

Structured Code: Code that can be decomposed into
three basic structure: 1) sequence, 2) if-then-else, and, 3)
iterative. Structured code is easily understood, maintained,
modified, and reused.

Structured Digital Design: The notion that modern
digital design is similar to typical computer program
design. Specifically, any well-designed digital circuits can
be decomposed into one of only a few standard and
relatively simple digital circuits. This concept closely
relates to object-level digital design.

Structured Memory: A term referring to the notion of
digital devices with regular structure that can store
relatively large amounts of information, such as ROMs
and RAMs. Smaller memory devices in digital circuits
include “incidental memory items such as flip-flops and
registers.

Structured Programming: A term that refers to the
notion that any properly written program can be
decomposed into a set of four or five simple programming
constructs. The notion here is that poorly written code
cannot be composed into these constructs (aka spaghetti
code).

Sub-Minterms: A subset of a standard minterm. Sub-
minterms are generally used in the derivation and
description of mapped entered variables (MEVs).

Subroutine: A set of instructions that a computer
explicitly transfers to and returns from. In terms of
program flow, the program transfers program execution to
a set of instructions referred to as the subroutine. When
the instructions in the subroutine have completed
executing, control is returned to the instruction after the
instruction, which caused the program to initially transfer
to the subroutine.

Subtractor: A device that subtracts one number from
another number. In digital design, there are many forms of
subtractors, each with their own particular set of
characteristics.

Subtrahend: A number that is subtracted from another
number.

Sum of Products (SOP) Form: A function form that is
characterized by product terms that logically summed
together.

Sum Term: A set of Boolean variables that are ORed or
logically summed together.

Sum Term: An expression in a Boolean equation that is
characterized as a logical summation of variables.

SVTT: An abbreviation for “state variable transition
table”; (see “state variable transition table”).

Switch Bounce: A condition associated with all
mechanical switches were upon actuation, the switch
contacts make and break connections several times before
the “settling” to the connected state. Switch bounce can
last up to 20ms, depending on what source you consult.

Switching time: A term that is used to quantify the
amount of time required for a signal to switch from high-
to-low or low-to-high.

Symbology: A set of visual symbols used to describe the
overall functioning of a device. Often times there is a
specific set of “symbology” associated with a given
classification of the thing being described; at other times,
special symbols can be created by the user and described
via a “legend” (see “legend”) associated with the
description.

Synchronous Circuit: A circuit that has some
functionality that is synchronized to some event in the
circuit, typically an active edge of a clock signal.

Synchronous Input: An input to a sequential circuit that
only has an effect on the circuit based on an active edge of
some other signal in the circuit.

Synchronous Process: One-half of a two-process
approach to modeling finite state machines (FSMs) using
VHDL; the other half of the FSM model is the
“combinatorial process”; (see “combinatorial process”).
The synchronous process is responsible for modeling the
state registers and any logic that control the state registers

Free Range Digital Design Foundation Modeling Digital Design Dictionary

 - 521 -

such as parallel load, clears, and presents. The
synchronous process implements the “state register” block
associated with the standard FSM model.

Synthesize: A term typically used in digital design
indicating the notion of using a model of something in one
form and converting that model to another form. The two
most common usages of this term on in hardware design
languages where the act of synthesizing a VHDL model
creates a new type of model that can eventually be
converted into actual hardware. The other common usage
of this term is to use some entity (such as a
microcontroller for FSM) to recreate signals shown on a
timing diagram.

System Clock: A clock signal for a given circuit that is
typically used for all parts of the circuit. System clock
signals are typically used to synchronize the various parts
of a circuit by using a single signal in which all parts of
the circuit can act upon.

-T-

T Flip-flop: A shorthand notation for a “toggle flip-flop”;
(see “toggle flip-flop”).

Tab Character: A type of white-space that includes any
number of single spaces. Tab characters should never
appear in the text of any type of code.

Tape Drive: A non-random access devices used to store
digital data. Data in tape drives is stored on a magnetic
media attached to some type of tape that is stored on some
type of spool. Tape drives store large amounts of
information but access to that information is slow relative
to other mass storage devices such as hard-drives or flash
drives.

Tedious Grunt Work: A special form of “grunt work”
that has a higher grunt factor than most of other “grunt
work”; (see “grunt work”).

Tedium: A frustrating state of affairs resulting from
“doing” but not “learning”.

Terms of Convenience: A phrase referring to an
irreverent set of words that are typically not used together
in the same context. This text has way too many “terms of
convenience”.

Test Vectors: A term referring to the set of data that is
applied to a device under test. For a given VHDL
testbench, test vectors can be stored in using one of three
approaches: 1) “on the fly”, 2) in hard-coded arrays,
and/or 3) stored in external files.

Testbench: The term given to VHDL models whose
primary purpose is to verify the correct operation of other
VHDL models. The two main parts of a testbench are the
“stimulus driver” and the “device under test’ (DUT).
Generally speaking, the stimulus driver provides input to
the DUT.

Theorem: A proposition that can be proved true from a
given set of axioms.

Three-State Device: An electronic device that has the
ability to be in a third state that is commonly referred to as
the “high-impedance” state. The term “three-state” is
synonymous with the term “tri-state”.

Throughput: A term that describes the amount of useful
information that is processed by a circuit. Typical
throughput metics include intructions per second (IPS),
floating point operations per second (FPS), etc.

Throughput: The throughput of a system is the total
amount of useful information processed or communicated
during a specified time period. Note that this definition is
general. Systems with high throughput are generally
desired over systems with low throughput with the
exception of administrative systems on university
campuses.

Tied High: A term used to indicate an input to a gate is
connected to a logical ‘1’. In a real circuit, this term
generally refers to connecting an input to the high voltage
used to power your digital circuit.

Tied Low: A term used to indicate an input to a gate is
connected to a logical ‘0’. In a real circuit, this term
generally refers to connecting an input to the low or
ground voltage used to power your digital circuit.

Tied-To: A commonly used, but slang notation indicating
an electrical connection for a given device. Two of the
more common uses of this term include “tied to ground” (a
signal is connected to ground, or ‘0’) and “tied to power”
(a signal connected to power, or ‘1’).

Time Slots: A term that refers to finite periods of time.
Time slots are often used to describe the amount of time
associated with a given state in a finite state machine
(FSM).

Timelessness: The feeling you get when you read this
text. No matter how hard you try, you can’t make that
feeling go away.

Timing Analysis: The act of analyzing a given timing
diagram in order to do fun things like gather information
of verify whether the circuit is actually operating correctly.

Timing diagram annotation: A special notation used to
indicate or highlight certain properties or conditions in a
given timing diagram. The underlying purpose of timing
diagram notation is to convey certain information to the
reader; the quality of the timing diagram notation is judged
by how efficiently that information can be conveyed.

Timing Diagrams: A graphical representation of the
operational characteristics of a circuit based on the notion
of observing circuit operation over a given span of time.
The horizontal axis is typically used to represent time in
timing diagrams while the vertical access is used to list
signals and show the state of those signals. Timing
diagrams have two primary uses: they serve as design aids
and they serve to verify the proper operational of circuits.

Tiny Electronic Gadgets: A term referring to entities that
enhance the “conspicuous consumption” tendencies of

Free Range Digital Design Foundation Modeling Digital Design Dictionary

 - 522 -

normally intelligent people by increasing a person’s
personal need to “keep up with the Jones’s”.

Toggle Flip-flop: A flip-flop that changes the output state
when the “toggle” input to the flip-flop is asserted and an
active edge occurs on the clocking input the circuit. The
“next state” of a T flip-flop is a function of both the T
input and the present state of the T flip-flop.

Toggle: A term that refers to changing the value of a bit;
the act of toggling a bit changes the bit value from either
‘1’ to ‘0’ or ‘0’ to ‘1’ depending on the initial value of the
bit.

Top-Down Design: A hierarchical design approach that
starts at the highest level of abstraction and works
downwards. In this approach, the designer fills in the
lower levels of abstraction as the design progresses.

Top-of-stack: A term that generally refers to the more
recent item placed onto a stack.

Tri-State Device: An electronic device that has the ability
to be in a third state that is commonly referred to as the
“high-impedance” state. The term “tri-state” is
synonymous with the term “three-state”.

Tri-State Register: A register that has the ability to be
place its outputs into a high-impedance state.

Tri-State: A term that refers to a devices ability to
effectively remove itself from a circuit. Thus a tri-state
device in a digital circuit can either be high, low, or high-
impedance. The notion of tri-stating is used to share
routing resources in a circuit; the only possible drawback
of tri-stating is that only one device can drive the resource
at a given time, otherwise the condition of contention will
occur, which is ungood.

Truncation: A term used to describe the removal of one
or more digits from a value. The digits removed are
contiguous and are generally either the most significant or
least significant digits in the given number.

Truth Table: A matrix that shows all possible input
combinations and the associated output values.

Two’s Compliment: As a noun this term refers to an
alternate and more popular method of describing radix
compliment (RC) form; (see “radix compliment”). As a
verb, this term refers to the notion of changing the sign of
a signed binary number in RC form.

Two-Valued Algebra: An algebra based on only two
variables. This term commonly refers to Boolean algebra.

-U-

UDC: An acronym used for unit distance code; (see “unit
distance code”).

Unasserted: A term used to indicate that the current
voltage level of a signal is not associated with the active
state of that signal.

Unconditional transition: A term that refers to a state-to-
state transition in a finite state machine (FSM) that occurs

independently of any conditions in a given circuit. These
transitions are often referred to as “don’t care transitions”.

Un-Dead: A term used to describe a circuit element that is
enabled (or not disabled). Similarly, a dead circuit has an
output that is pre-determined and does not change so long
as the circuit remains dead.

Underflow: A condition that indicates the result of a
mathematical operation has exceeded the bottom end of
the rang of numbers associated with the bit-width of the
operands. Underflow is often characterized as a special
case of overflow; (see “overflow”).

Unit Distance Code: A binary code where the differences
between to binary numbers in the sequence differ by a unit
distance (a distance of one).

Universal Shift Register: A shift register that can perform
more operations than simple shifting. These other
operations can include rotation, barrel shifting, parallel
loading, resetting, etc.

Universal Shift Register: A special flavor of shift register
that performs actions other than simple one-directional
shifts including some or all of the following operations:
shift left, shift right, barrel shifts, arithmetic shift, and
rotates.

Unsigned Binary Number: a set of bits (1’s and 0’s) that
are used to represent a numbers greater or equal to zero.
Unsigned binary numbers can be used to represent zero
and positive numbers.

Unused State: A condition generally associated with finite
state machine (FSM) design. This condition is present
because of the binary relationship associated with some
methods used to encode state variables which leave some
combinations of the associated storage elements
intentionally unused. The FSM could thus unintentionally
find itself in these unused states and potentially cause
undesired operation of the FSM.

Up Counter: A counter that counts only in the “up”
direction (count value becomes greater).

Up/Down Counter: A counter that can counter either up
(count value increases) or down (count value decreases)
according to a selection input on the device.

User-Level: A term used to describe the number of bits in
the operands and/or result of a circuit that performs
addition.

USR: An acronym representing “universal shift register”;
(see “universal shift register”).

-V-

Variable Assignment Operator: The VHDL operator
used to assigned values to variables: “:=”.

Variable: A VHDL type used to store intermediate results.
Variables can only be declared in the declarative regions
of process and are only visible in those processes in which
they are declared. The results of variable assignments are
ready for immediate use in the process and are not

Free Range Digital Design Foundation Modeling Digital Design Dictionary

 - 523 -

“scheduled” for assignment once the process completes as
is the case the with signals.

Vcc: A term referring to the power connection in
electronics. In digital eletronics, this signal is generally
considered a logical ‘1’. Sometimes the term “Vdd” is
used in place of “Vcc”, but not often.

Vdd: A term referring to the power connection in
electronics. In digital eletronics, this signal is generally
considered a logical ‘1’. Usually the term “Vcc” is used in
place of “Vdd”.

Vector: A term used to signify that a given item that can
be decomposed into two or more sub-items.

Verilog: A modern hardware description language (HDL)
that is used quite widely in North America but less so in
other areas of the world. Verilog syntax has a strong
resemblance to C programming syntax.

Very Large Scale Integration: A type of integrated
circuit that contains a buttload of transistors (certainly
more transistors then large scale integration (LSI) ICs).
This term often described with the acronym “VLSI”.

VHDL (Very High Speed Circuit Hardware
Description Language): VHDL is one of several
modeling systems referred to as “hardware description
languages”, or HDLs. VHDL is typically used to model
digital circuits; the resultant models can be used to
simulate circuits, or synthesize circuit implementations on
PLDs or silicone.

VLSI: An acronym for “very large scale integration”; (see
“very large scale integration”).

Volatile/Non-Volatile: A device is considered volatile if
its contents are lost when power is removed from the
device while non-volatile devices retain their memory
when power is removed and subsequently returned. The
term volatile is most often associated with memory
devices and PLDs such as FPGAs.

Volatile: A term associated with sequential circuits
(circuits having memory). The accepted definition of a
volatile circuit is that the circuit loses the data it is storing
when power is removed from the circuit.

Von Neuman Architecture: A computer architecture
where data and instructions share the same memory space.
The term Von Neuman machine is often used to mean
Von Neuman architecture. Von Neuman architecture is
sometimes referred to as a “Princeton” architecture.

-W-

Wait Statement: A “wait” statement is a VHDL
sequential statement that is used to suspend execution of
process statements. Only process statements that do not
include process sensitivity lists can use wait statements.
There are four forms of wait statements in VHDL; most of
these forms are particularly useful in modeling VHDL
testbenches.

Wanker: Any person who pretends to be something
they’re not; this includes talking big while knowing small.
All academic personnel seem to have a hopeless case of
wankerism as well as a healthy case of apathy towards
their condition.

Wankerism: A term describing the collective mindset of
wankers. Academic administrators always strive to take
wankeristic tendencies to new heights.

Waveform: A term referring to a visual representation of
a signal over a given amount of time.

Weightings: This is roughly the same term as “weights”;
(see weights).

Weights: This refers to the values assigned to various
digit locations when juxtapositional notation is used. The
weights are typically powers of the radix for a given
number system but can be just about anything as weight
assignments are arbitrary.

White Space: A term describing the areas of text that have
no printed characters in them; white space generally
includes space characters, tab characters, and blank lines.

Width: A term that describes the number of signal in a
bundle or the number of bits associated with digital
devices that operate in parallel such as “comparators” and
“ripple carry adders”.

Wire-Wrap: A method used for prototyping electronic
circuits that entail stripping the plastic coating off of a
wire and wrapping it around a metal post that was
electrically connected to an electronic device.

Word: A term used to describe the smallest addressable
unit (or chunk of bits) in a memory or memory system.

Wrapper: A term used to describe an addition to an item
that abstracts, simplifies, and/or extends the usage of that
item. Wrappers in VHDL generally includes an interface
that is used to customize the usage of an established model

Write Cycle Timing: The amount of time required for
data to be written to memory after a valid address, valid
input data, and the appropriate control signals have been
provided to the device.

Write Enable: A name that is commonly associated with
a signal that allows a sequential device to store new
output’s to the device’s memory elements. output a signal
or set of signals. The acronym “WE” is most often used to
represent the output enable.

-X-

X: The symbol typically used to represent input variables
in finite state machines.

XNOR Gate: A shorthand name for an exclusive NOR
gate, one of the standard logic gates; an XNOR gate
performs an XOR function with a complimented output.
XNOR gates can also be considered to perform an XOR
function with an active low output. XNOR gates are also
known as “equivalence gates” as the gate output indicates
when the gate’s two inputs are equivalent. XNOR gates by

Free Range Digital Design Foundation Modeling Digital Design Dictionary

 - 524 -

definition always have two inputs.

XOR Gate: A shorthand name for an exclusive OR gate,
one of the standard logic gates; an XOR gate performs an
XOR function which is typically defined using a truth
table or a Boolean equation. XOR gates indicate when the
gate’s two inputs are not equivalent. XOR gates by
definition always have two inputs.

-Y-

Y: The letter often used as a label in finite state machine
lingo to refer to external inputs.

-Z-

Z: A letter that is used for two main purposes in digital
circuits. This letter is used to refer to the notion of the
“high-impedance” condition of a circuit’s output. This
letter is also used as a label in finite state machine (FSM)
lingo to refer to external outputs.

Z: The symbol typically used to represent high
impedance. This symbol is also used to represent output
variables state machines.

μ: An abbreviation used for the metric prefix “micro”; this
prefix is used in engineering notation.

Free Range Digital Design Foundation Modeling Index

 - 525 -

Index

1

1’s complement, ‐ 166 ‐
1980’s, ‐ 186 ‐

A

Absorption, ‐ 75 ‐
abstract, ‐ 35 ‐
academic exercise, ‐ 164 ‐
accumulator, ‐ 320 ‐
action state, ‐ 186 ‐
active edge, ‐ 304 ‐
active low, ‐ 306 ‐
active state, ‐ 186 ‐
addend, ‐ 177 ‐
algorithm, ‐ 72 ‐
analog, ‐ 27 ‐
AND operator, ‐ 75 ‐
AND/NOR, ‐ 159 ‐
AND/OR Form, ‐ 159 ‐
annotations, ‐ 99 ‐
arithmetic shift, ‐ 438 ‐
arithmetic shifts, ‐ 438 ‐
arrow, ‐ 356 ‐
arrows, ‐ 296 ‐
Assertation levels, ‐ 187 ‐
Asserted high, ‐ 187 ‐
Asserted low, ‐ 187 ‐
Asserted signal, ‐ 187 ‐
Associative, ‐ 75 ‐
asynchronous, ‐ 305 ‐
augend, ‐ 177 ‐
axioms, ‐ 75 ‐

B

bajillion, ‐ 160 ‐
barrel shift, ‐ 437 ‐
base, ‐ 47 ‐
BCD. See binary coded decimal
BFD. See brute force design
binary coded decimal, ‐ 64 ‐
binary codes, ‐ 64 ‐
Binary Counter, ‐ 405 ‐
bit stuffing, ‐ 170 ‐
bit‐addressable, ‐ 459 ‐
bits, ‐ 47 ‐
bit‐stuffing, ‐ 62 ‐

black box diagram, ‐ 33 ‐
black box modeling, ‐ 35 ‐
Boole, ‐ 75 ‐
Boolean algebra, ‐ 75 ‐
Boolean algebra Axioms, ‐ 75 ‐
Boolean equation, ‐ 76 ‐
Boolean expression, ‐ 76 ‐
bottleneck, ‐ 463 ‐
boxes within boxes, ‐ 40 ‐
brute force design, ‐ 74 ‐
bubbles, ‐ 193 ‐
buffer, ‐ 148 ‐
buffering action, ‐ 148 ‐
Bummer, ‐ 348 ‐
bundle, ‐ 90 ‐
bundle expansion, ‐ 94 ‐
bus, ‐ 90 ‐
byte, ‐ 47 ‐

C

calculus, ‐ 45 ‐
carry bit, ‐ 167 ‐
carry‐in, ‐ 113 ‐
cascade, ‐ 432 ‐
cascadeabilitly, ‐ 432 ‐
Cascadeable, ‐ 405 ‐
cascading, ‐ 118 ‐
caveperson, ‐ 44 ‐
CF. See compact fluorescent
characteristic tables, ‐ 296 ‐
circled cross, ‐ 146 ‐
circled dot, ‐ 146 ‐
circuit forms, ‐ 157 ‐
clear, ‐ 293 ‐
clear state, ‐ 293 ‐
clearing, ‐ 293 ‐
clock edge, ‐ 304 ‐
clock input, ‐ 304 ‐
code‐word, ‐ 404 ‐
combinational, ‐ 289 ‐
combinatorial, ‐ 289 ‐
Combining, ‐ 75 ‐
Commutative, ‐ 75 ‐
compact fluorescent, ‐ 27 ‐
compact maxterm form, ‐ 132 ‐
compact minterm form, ‐ 132 ‐
comparator, ‐ 259 ‐
complementation, ‐ 75 ‐
computationally expensive, ‐ 437 ‐
computer peripherals., ‐ 23 ‐, ‐ 378 ‐

Free Range Digital Design Foundation Modeling Index

 - 526 -

conditional statement, ‐ 239 ‐
continuous, ‐ 27 ‐, ‐ 28 ‐
continuousness, ‐ 27 ‐, ‐ 29 ‐
control signals, ‐ 358 ‐
control tasks, ‐ 375 ‐
Count Enable, ‐ 405 ‐
Counter Overflow, ‐ 405 ‐
Counter Underflow, ‐ 405 ‐
CPLDs, ‐ 375 ‐
crapitalism, ‐ 33 ‐
cross, ‐ 75 ‐
cross coupled NOR cell, ‐ 295 ‐
cycles per second, ‐ 366 ‐

D

D flip‐flop, ‐ 304 ‐
data, ‐ 456 ‐
data flip‐flop. See D flip‐flop
Decade Counter, ‐ 405 ‐
decimal, ‐ 45 ‐
decimal number, ‐ 45 ‐
decoder, ‐ 224 ‐, ‐ 500 ‐
Decrement, ‐ 405 ‐
DeMorgan’s theorem, ‐ 158 ‐
DeMorganize, ‐ 130 ‐, ‐ 159 ‐
dependent variable, ‐ 74 ‐
difference, ‐ 177 ‐
Digit, ‐ 45 ‐
digit position, ‐ 46 ‐
digital, ‐ 27 ‐
digital circuit element model, ‐ 33 ‐
diminished radix complement, ‐ 164 ‐
dimmer, ‐ 27 ‐
Direct Polarity Indicators, ‐ 187 ‐
discontinuity, ‐ 90 ‐
discrete, ‐ 27 ‐, ‐ 28 ‐
discreteness, ‐ 27 ‐
distance, ‐ 66 ‐
Distributive, ‐ 75 ‐
don’t care, ‐ 359 ‐
do‐nothing, ‐ 293 ‐
dot, ‐ 75 ‐
dot operator, ‐ 75 ‐
Double Complement, ‐ 75 ‐
Down Counter, ‐ 405 ‐
down‐pointed arrow, ‐ 147 ‐
DPI. See direct polarity indicator
DRC. See diminished radix complement
drugs, ‐ 108 ‐
duty cycle, ‐ 367 ‐

E

edge‐sensitive, ‐ 304 ‐
edge‐triggered, ‐ 304 ‐

engineering notation, ‐ 52 ‐
equivalence gate, ‐ 146 ‐, ‐ 261 ‐
equivalent forms, ‐ 188 ‐
error detection, ‐ 276 ‐
event counters, ‐ 420 ‐
excitation table, ‐ 297 ‐
exclusive NOR gate, ‐ 146 ‐
exclusive OR, ‐ 146 ‐
Exponential notation, ‐ 52 ‐

F

FA. See full adder
falling‐edge‐triggered, ‐ 304 ‐
fast multiplication, ‐ 438 ‐
feature set, ‐ 448 ‐
feedback, ‐ 290 ‐
FET, ‐ 304 ‐, See falling‐edge triggered
finite state machine, ‐ 23 ‐, ‐ 378 ‐
Finite State Machine, ‐ 353 ‐
floor function, ‐ 51 ‐
follow rules, ‐ 389 ‐
forbidden state, ‐ 293 ‐
forward slash, ‐ 358 ‐
FPGAs, ‐ 375 ‐
fractional, ‐ 45 ‐
fractional portion, ‐ 59 ‐
frequency, ‐ 366 ‐
frets, ‐ 28 ‐
full adder, ‐ 113 ‐
function, ‐ 74 ‐
function realization, ‐ 77 ‐
functional relationship, ‐ 74 ‐
functionally complete, ‐ 145 ‐
functionally equivalent, ‐ 124 ‐, ‐ 133 ‐

G

gate killing, ‐ 226 ‐
generic decoder, ‐ 224 ‐
GND, ‐ 147 ‐
gory details, ‐ 262 ‐
Graphical User Interfaces, ‐ 33 ‐
Gray Codes, ‐ 66 ‐
ground, ‐ 147 ‐, ‐ 214 ‐
group of fours, ‐ 62 ‐
GUIs, ‐ 33 ‐

H

HA. See half adder
HAL, ‐ 375 ‐
Half Adder, ‐ 111 ‐
hang states, ‐ 348 ‐
hard drives, ‐ 457 ‐

Free Range Digital Design Foundation Modeling Index

 - 527 -

Hardware Description Language, ‐ 34 ‐
HDL model, ‐ 34 ‐
Hertz, ‐ 366 ‐
hierarchical, ‐ 37 ‐
hierarchical design, ‐ 38 ‐, ‐ 209 ‐
hierarchy, ‐ 35 ‐
high‐level model, ‐ 35 ‐
hold, ‐ 293 ‐
hold condition, ‐ 293 ‐, ‐ 294 ‐
hold time, ‐ 368 ‐
horse‐sense, ‐ 261 ‐
human brain, ‐ 43 ‐
humans, ‐ 58 ‐
hung, ‐ 348 ‐
Hz, ‐ 366 ‐

I

I/O, ‐ 35 ‐
ICs, ‐ 375 ‐
Idempotent, ‐ 75 ‐
Identity, ‐ 75 ‐
illegal state recovery, ‐ 347 ‐
IMD, ‐ 110 ‐
inactive state, ‐ 186 ‐
incidental memory, ‐ 456 ‐
Increment, ‐ 405 ‐
independent variables, ‐ 74 ‐
indirect subtraction by addition, ‐ 177 ‐
information, ‐ 456 ‐
information content, ‐ 456 ‐
initial state, ‐ 305 ‐
inputs, ‐ 35 ‐
integer‐based math, ‐ 437 ‐
integral, ‐ 45 ‐
integral portion, ‐ 59 ‐
Integrated circuits, ‐ 375 ‐
inversion, ‐ 75 ‐
iterative, ‐ 110 ‐
iterative modular design, ‐ 110 ‐

J

juxtapositional notation, ‐ 45 ‐

K

kludgy, ‐ 39 ‐

L

latch, ‐ 295 ‐
least significant bit, ‐ 73 ‐, ‐ 115 ‐
least significant digit, ‐ 59 ‐

level‐sensitive, ‐ 304 ‐
lingo, ‐ 375 ‐
logic gate, ‐ 77 ‐
logic gates, ‐ 77 ‐
Logic levels, ‐ 187 ‐
logical addition, ‐ 75 ‐
logical multiplication, ‐ 75 ‐
logical reasoning, ‐ 75 ‐
loincloths, ‐ 44 ‐
low‐level model, ‐ 35 ‐
LSB. See least significant bit
LSD, ‐ 59 ‐, See least significant digit

M

magnitude bits, ‐ 164 ‐
magnitude portion, ‐ 52 ‐
maximum clock frequency, ‐ 369 ‐
maxterm, ‐ 128 ‐
maxterm expansion, ‐ 128 ‐
maxterm representations, ‐ 127 ‐
MCUs, ‐ 375 ‐
memory elements, ‐ 355 ‐
metastable, ‐ 368 ‐
microcontroller, ‐ 23 ‐, ‐ 378 ‐
Microcontrollers, ‐ 375 ‐
minimum cost, ‐ 160 ‐
minimum cost solution, ‐ 160 ‐
minimum period, ‐ 369 ‐
minterm, ‐ 128 ‐
minterm expansion, ‐ 128 ‐
minterm representations, ‐ 127 ‐
minterms, ‐ 128 ‐
minuend, ‐ 177 ‐
mixed logic, ‐ 193 ‐
Mixed logic, ‐ 187 ‐
mixed logic design, ‐ 187 ‐
model, ‐ 32 ‐
Modular Design, ‐ 209 ‐
modulo‐2 addition, ‐ 275 ‐
most significant bit, ‐ 73 ‐, ‐ 115 ‐
MSB. See most significant bit
multiplexor, ‐ 240 ‐
MUX. See multiplexor

N

NAND, ‐ 144 ‐
NAND gate, ‐ 144 ‐
NAND latch, ‐ 298 ‐
NAND/AND, ‐ 159 ‐
NAND/NAND, ‐ 159 ‐
n‐bit adder, ‐ 114 ‐
n‐bit Counter, ‐ 405 ‐
n‐bit register, ‐ 315 ‐
negative logic, ‐ 295 ‐

Free Range Digital Design Foundation Modeling Index

 - 528 -

Negative logic, ‐ 187 ‐
next state, ‐ 292 ‐, ‐ 355 ‐
Next State, ‐ 356 ‐
next state decoder, ‐ 355 ‐
Next State Decoder, ‐ 354 ‐
next state forming logic, ‐ 355 ‐
next state logic, ‐ 355 ‐
nibble, ‐ 47 ‐
no‐brainer approach, ‐ 193 ‐
noise, ‐ 348 ‐
non‐action, ‐ 186 ‐
non‐resetting, ‐ 387 ‐
non‐volatile, ‐ 457 ‐
NOR, ‐ 144 ‐
NOR gate, ‐ 144 ‐
NOR latch, ‐ 295 ‐
NOR/NOR, ‐ 159 ‐
NOR/OR, ‐ 159 ‐
NOT operator, ‐ 75 ‐
Not‐asserted signal, ‐ 187 ‐
Null element, ‐ 75 ‐
Number, ‐ 45 ‐
Number System, ‐ 45 ‐

O

off‐the‐shelf, ‐ 23 ‐, ‐ 378 ‐
one‐cold, ‐ 65 ‐
one‐hot code, ‐ 240 ‐
operators, ‐ 75 ‐
OR operator, ‐ 75 ‐
OR/AND, ‐ 159 ‐
OR/NAND, ‐ 159 ‐
Output decoder, ‐ 354 ‐
Output Decoder, ‐ 355 ‐
outputs, ‐ 35 ‐
overbar, ‐ 75 ‐
overflow, ‐ 178 ‐

P

paper designs, ‐ 21 ‐
parallel, ‐ 275 ‐
Parallel Load, ‐ 405 ‐
parity checkers, ‐ 275 ‐
parity generators, ‐ 275 ‐
period, ‐ 366 ‐
periodic, ‐ 365 ‐
pin count, ‐ 375 ‐
pins, ‐ 375 ‐
PLC. See positive logic convention
PLDs. See Programmable Logic Device
POS. See product of sums
positive logic, ‐ 295 ‐
Positive logic, ‐ 187 ‐
Positive Logic Convention, ‐ 187 ‐

power, ‐ 147 ‐
prefix, ‐ 52 ‐
present state, ‐ 292 ‐
Present State, ‐ 356 ‐
present state/next state, ‐ 296 ‐
product of sums, ‐ 125 ‐
Programmable Logic Devices, ‐ 375 ‐
propagation delay, ‐ 369 ‐
PS/NS. See present state/next state
PS/NS table, ‐ 296 ‐

R

Radix, ‐ 45 ‐
radix complement, ‐ 164 ‐
Radix Point, ‐ 45 ‐
RAM, ‐ 457 ‐
random access memory, ‐ 457 ‐
RC, ‐ 164 ‐, See radix complement
RCA, ‐ 114 ‐
read only memory, ‐ 457 ‐
realize, ‐ 77 ‐
register, ‐ 355 ‐
repeated radix division, ‐ 59 ‐
repeated radix multiplication, ‐ 60 ‐
reset condition, ‐ 298 ‐
reset state, ‐ 293 ‐
resetting, ‐ 387 ‐
RET, ‐ 304 ‐, See rising‐edge triggered
ripple carry adder, ‐ 114 ‐, ‐ 115 ‐
Ripple Carry Out, ‐ 405 ‐
rising‐edge‐triggered, ‐ 304 ‐
Role Models, ‐ 33 ‐
ROM, ‐ 457 ‐
rotates, ‐ 438 ‐
RRD. See repeated radix division
RRM. See repeated radix multiplication
Runway Models, ‐ 33 ‐

S

self‐commenting, ‐ 35 ‐
self‐correcting, ‐ 349 ‐
self‐loop, ‐ 356 ‐
self‐looping hang state, ‐ 348 ‐
self‐loops, ‐ 296 ‐
sequence, ‐ 290 ‐
sequence detectors, ‐ 386 ‐
sequential, ‐ 289 ‐, ‐ 290 ‐
serial, ‐ 275 ‐
set, ‐ 293 ‐
set condition, ‐ 294 ‐, ‐ 298 ‐
set state, ‐ 293 ‐
setting, ‐ 293 ‐
setup time, ‐ 368 ‐
shift register, ‐ 430 ‐

Free Range Digital Design Foundation Modeling Index

 - 529 -

shift register cell, ‐ 430 ‐
sign bit, ‐ 164 ‐, ‐ 169 ‐
sign extension, ‐ 170 ‐
Sign extension, ‐ 170 ‐
sign magnitude, ‐ 164 ‐
signedness, ‐ 438 ‐
sign‐extend, ‐ 170 ‐
simulator, ‐ 87 ‐
Single variable theorems, ‐ 75 ‐
slanted lines, ‐ 87 ‐
slanted T symbol, ‐ 226 ‐
slash notation, ‐ 90 ‐
SM. See sign magnitude
soft‐core MCU, ‐ 375 ‐
SOP. See sum of products
SOP form, ‐ 125 ‐
sorting, ‐ 264 ‐
spiritually enriching, ‐ 386 ‐
SR latch, ‐ 298 ‐
standard decoder, ‐ 224 ‐
standard product terms, ‐ 128 ‐
standard SOP form, ‐ 127 ‐, ‐ 128 ‐
state, ‐ 290 ‐, ‐ 353 ‐
state bubble, ‐ 358 ‐
state bubbles, ‐ 296 ‐
state diagram, ‐ 295 ‐, ‐ 354 ‐, ‐ 390 ‐
state diagram symbology, ‐ 375 ‐
state registers, ‐ 330 ‐, ‐ 355 ‐
State Registers, ‐ 354 ‐
state transition, ‐ 356 ‐
state transition arrow, ‐ 356 ‐
state transitions, ‐ 296 ‐
state variables, ‐ 355 ‐
status signals, ‐ 355 ‐
stoneage unary, ‐ 44 ‐
structured memory, ‐ 456 ‐
subtractor, ‐ 217 ‐
subtrahend, ‐ 177 ‐
sum, ‐ 177 ‐
sum of products, ‐ 125 ‐
symbology, ‐ 360 ‐, ‐ 375 ‐
synchronous circuit, ‐ 305 ‐
system clock, ‐ 355 ‐
system software, ‐ 375 ‐

T

tape drives, ‐ 457 ‐
technical drivel, ‐ 20 ‐
tied high, ‐ 147 ‐
tied low, ‐ 147 ‐
tied to ground, ‐ 118 ‐
time axis, ‐ 87 ‐
time slots, ‐ 355 ‐

timelessness, ‐ 86 ‐
timing diagram, ‐ 33 ‐, ‐ 390 ‐
timing diagrams, ‐ 87 ‐
tiny electronic things, ‐ 374 ‐
toggle, ‐ 66 ‐
transition, ‐ 356 ‐
truth table, ‐ 73 ‐
two’s complement, ‐ 167 ‐
two‐valued algebra, ‐ 75 ‐
tying the input low, ‐ 147 ‐

U

UDC. See unit distance code
un‐dead, ‐ 240 ‐
underflow, ‐ 178 ‐
unit distance code, ‐ 66 ‐
units, ‐ 52 ‐
universal shift register, ‐ 433 ‐
universal shift regsiter, ‐ 490 ‐
unsignedness, ‐ 177 ‐
Up Counter, ‐ 405 ‐
Up/Down Counter, ‐ 405 ‐

V

Vcc, ‐ 213 ‐
Vdd, ‐ 213 ‐
verbage, ‐ 20 ‐
Video Games, ‐ 33 ‐
violin, ‐ 28 ‐
volatile, ‐ 457 ‐

W

wankerism, ‐ 521 ‐
weight, ‐ 46 ‐
word, ‐ 459 ‐
written description, ‐ 34 ‐

X

XNOR, ‐ 146 ‐
XOR, ‐ 146 ‐

Z

zero‐extend, ‐ 47 ‐
zero‐extending, ‐ 170 ‐
zero‐stuffing, ‐ 170 ‐

Free Range Digital Design Foundation Modeling Index

 - 530 -

