# Grid-Scale Energy Storage Systems and Technologies

Timothy C. Allison, Ph.D. Jeff Moore, Ph.D. Natalie R. Smith, Ph.D. Brittany Tom Aaron McClung, Ph.D.

#### **Southwest Research Institute**

2019 Gas/Electric Partnership Conference XXVII February 2019 Houston, TX











#### The Need for Energy Storage: Renewables



Penetration of renewables into energy supply adds significant instantaneous, hourly, and seasonal variability while also displacing spinning reserve capacity



### The Need for Energy Storage: Fossil/Nuclear

- Baseload generation technologies have poor transient capability
- Reduced off-design performance



| Technology                    | Design Point Plant<br>Efficiency | Hot Startup Time<br>(h) |
|-------------------------------|----------------------------------|-------------------------|
| Simple-Cycle Gas<br>Turbines  | 35-40%                           | 0.16                    |
| NG Combined-<br>Cycle Turbine | 56-60+%                          | 2                       |
| IG Combined-Cycle<br>Turbine  | 38-44%                           | 6-8                     |
| Pulverized Coal -<br>Steam    | 37-43%                           | 3                       |
| Nuclear Steam                 | 30-33%                           | 24                      |

Data Sources: Van den Bergh and Delarue (2015)

Gonzalez-Salazar et al (2017)

GAS/ELECTRIC PARTNERSHIP CONFERENCE 2019 – GRID-SCALE ENERGY STORAGE SYSTEMS AND TECHNOLOGIES EIA 2017 Data, https://www.eia.gov/electricity/annual/html/epa\_08\_02.html, (2019)

#### **Energy Storage Technology Overview**

- **Battery Storage** 
  - Solid-State Batteries
  - Flow Batteries ٠
- Mechanical Storage
  - Pumped hydro
  - Gravitational •
  - **Compressed Air**
  - Liquid Air ٠
  - Flywheel
- Thermochemical Storage
  - Hydrogen ٠
  - CO2 Phase Change
  - Synthesized Fuels
- Thermal Storage
  - Molten salt/refrigerant ٠
  - Pumped thermal energy storage





Image Modified From:

http://css.umich.edu/sites/default/files/U.S. Grid Energy Storage Factsheet CSS15-17 e2018.pdf





## **Battery ES: Solid-State Batteries**

- Working Principles
  - Lithium ion movement between electrodes via electrolyte creates charge and electrical current
- Chemistries
  - Lead Acid and Li-ion are most popular
  - Sodium Sulfur, Zinc Hybrid, Sodium Nickel Chloride also considered
- Round-trip efficiency a function of charge/discharge profile
  - 65-75% for 30-min discharge
  - 75-85% for 2-hour discharge
  - Up to 97%

Data Source: https://www.energystoragenetworks.com/three-battery-types-work-grid-scaleenergy-storage-systems/



Anode

https://www.energy.gov/eere/articles/how-does-lithium-ion-battery-work



Tesla 100 MW/129 MWh Powerpack

GAS/ELECTRIC PARTNERSHIP CONFERENCE 2019 – GRID-SCALE ENERGY STORAGE SYSTEMS AND TECHNOLOGIES https://electrek.co/2018/09/24/tesla-powerpack-battery-australia-cost-revenue/



#### **Battery ES: Solid-State Batteries**

- Turbomachinery Integration
  - Coupled to wind turbine (and PV) farms
  - Pairing with gas turbine peaker plants for improved response time/spinning reserve classification
- Current TRL
  - TRL 9, Many commercial options. Li-ion batteries have ~95% grid-scale market share
- Technology Gaps
  - Long-term durability
  - Scalable cost
  - Material availability (cobalt, others)
- R&D Activities
  - Cost reductions, longevity, power density improvements, battery system management, hazard assessment, abuse/environmental testing, re-use

Data Source: <u>https://www.energystoragenetworks.com/three-battery-types-work-grid-scale-energy-storage-systems/</u>

GAS/ELECTRIC PARTNERSHIP CONFERENCE 2019 - GRID-SCALE ENERGY STORAGE SYSTEMS AND TECHNOLOGIES



Adapted from: GTM Research (2015)



Battery environmental and abuse testing



# The Problem with Solid-State Batteries

- Battery costs increase linearly with storage duration
  - Cannot separate power and energy
- Other grid-scale technologies decouple power block from storage duration
  - Higher intercept, lower slope



Image Source: Laughlin (2019)



## **Mechanical ES: Pumped Hydro**

- Current TRL
  - TRL 9, Decades of commercial experience
- Technology Gaps
  - Geography-specific concept -> siting limitations
- Expected Performance
  - 70-80%+ round trip efficiency (Energy Storage Association)
- R&D Activities
  - Subsurface/Subsea pumped hydro
  - Small modular PSH for cost-effectiveness
  - Variable speed/geometry pump/turbines





### **Global Energy Storage Timeline**





#### **Global Energy Storage Technology Breakdown**

Technology Types

| Technology Type           | Projects | Rated Power (MW) |
|---------------------------|----------|------------------|
| Thermal Storage           | 220      | 3275             |
| Electro-chemical          | 994      | 3301             |
| Pumped Hydro Storage      | 351      | 183007           |
| Hydrogen Storage          | 13       | 20               |
| Liquid Air Energy Storage | 2        | 5                |

Pumped Hydro is Dominant Technology, Followed by Thermal (CSP) and Electro-Chemical (Battery)

Image Source: <u>https://www.energystorageexchange.org/projects/data\_visualization</u>

## **Application – Pumped** Hydro

- World's largest energy storage system at 3003 MW, 24 GWh
- Completed 1985
  - Six Francis pump-turbines from Voith-Siemens
- Water levels change 105/60 feet in upper/lower reservoirs
- Pumping/generating flow rates of 12.7/13.5 million GPM
- 79% RT Efficiency, 6 minute response

#### Data source:

https://www.dominionenergy.com/about-us/making-energy/renewablegeneration/water/bath-county-pumped-storage-station





Bath County Pumped Storage Station (above) and turbine-generator (below)



Image Sources: https://www.enr.com/articles/44302-the-10-largest-pumped-storagehydropower-plants-in-the-world?v=preview https://www.bdtonline.com/news/the-guiet-giant-tells-the-story-pumped-GAS/ELECTRIC PARTNERSHIP CONFERENCE 2019 – GRID-SCALE ENERGY STORAGE SYSTEMS AND TECHNOLOGIES hydroelectric-facility-tour/article\_a921e92e-b6cd-11e7-81dd-733d166d4f37.html



### Applications – Grid-Scale Solid-State Batteries

- Hornsdale Wind Farm Plus Power Reserve (AUS)
  - Li-ion, 100 MW, 129 MWh
  - Operational in December 2017
  - 70 MW / 10 min for grid stability
  - 30 MW / 3 hours for load shifting
  - 80% round-trip efficiency
  - <150 ms response



https://electrek.co/2018/09/24/tesla-powerpack-battery-australia-cost-revenue/



Data and Image sources:

https://reneweconomy.com.au/the-stunning-numbers-behind-success-of-tesla-big-battery-63917/

Aurecon (2018)



#### **Application – Gas Turbine + Battery Storage**

- Southern California Edison
- GE LM6000
  - 50 MW
  - 5 min ramp to full power
- Li-ion battery storage
  - 10 MW, 4.3 MWh
- Control system allows seamless transition from battery to turbine, enabling turbine stop during standby
- Online in April 2017

Data and Image sources:

https://www.ge.com/reports/batteries-included-hybrid-power-plants-let-californians-breathe-easy/ https://www.powermag.com/sce-ge-debut-battery-gas-turbine-hybrid-system-2/





#### **Summary**

- Batteries offer a cost-effective solution for near-term storage (e.g. minutes to < 2-3 hours)</li>
  - Critical R&D needed for grid-scale adoption includes:
    - Further cost reductions and life improvement, energy density, and round-trip efficiency (at high rates) for all technologies
- Other technologies under development for cost-effective longer-term storage
  - Many promising longer-duration concepts under development (Advanced CAES, Pumped Thermal, Liquid Air, Hydrogen, others)
    - kW-scale demonstrators, MW-scale pilots
    - Turbomachinery improvements
    - Controls/system development
    - Integrated/hybrid systems with existing power plants





Image Source: Malta (2019) and Highview Power (2019)



# **Questions?**