

WATER MANAGEMENT: THE NEXT MIDSTREAM REVOLUTION

JIM SUMMERS AND KRISTIE MCLIN

January 31, 2018

WATER MANAGEMENT FOR UNCONVENTIONAL RESERVOIRS

MARKET EVOLUTION

Natural Gas

Pipeline de-regulation & new end use markets led to Midstream Gas Business

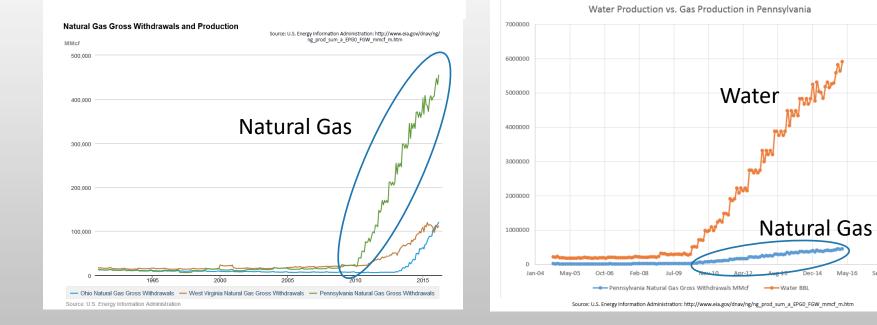
Power

Utility de-regulation & gas fired combined cycle technology led to Independent Power Producers

3

Renewables

Government incentives & mass scale production led to wind and solar development



Water

The next major market evolution revolution

THE SHALE WATER REVOLUTION

The steep slope of the gas boom in PA, starting in 2009...

... dwarfed by the "water boom"

Mav-16

Sep-17

THE OIL & GAS WATER MARKET

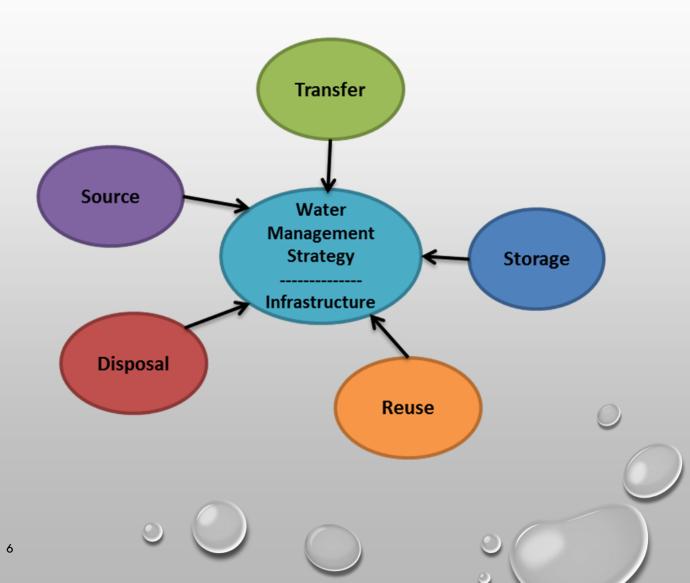
Operating

Expenditures Water Costs per Well

50+%

WATER IN:		Capital
Conventional:	30,000 bbls/well * 1 well = 30,000 bbls	Expenditures Water-Related Costs
Shale:	500,000 bbls/well * 12 wells = 6,000,000 bbls (<i>200X increase</i>)	10-30%
WATER OUT:		
Conventional:	500 bpd/well – 250 bpd/well (waterflood)= 250 bpd	
Shale:	4,000 bpd/well * 12 wells = 48,000 bpd (<i>200X increase</i>)	

- Onshore oil and gas activity in the United States produces over 20 Billion barrels of ٠ "produced" water annually (6X greater than crude oil)
- Drilling and completions activity *consumes* an additional **2 billion barrels** of "source" ٠ water each year
- Nationwide, less than 2% of all produced water is re-used ٠


New math for the hydraulic fracturing of shale

Estimates: \$80 - \$100 Billion of investments in the Permian alone

WATER MANAGEMENT STRATEGY = INFRASTRUCTURE

- ALL DECISIONS AROUND WATER
 MANAGEMENT REVOLVE AROUND
 INFRASTRUCTURE
- HEAVY INVESTMENT NEEDED TO FIT
 DEMAND, BUT UTILIZATION IS OFTEN
 CYCLIC
- SIGNIFICANT OPPORTUNITY FOR
 MIDSTREAM SOLUTIONS

KEY CONCERNS: REGIONAL CONSTRAINTS, IMPACTS

- MARCELLUS
 - SOURCING NOT AS CONSTRAINED, BUT COULD HAVE LOCAL COMPETITION FOR RESOURCE
 - REUSE DRIVEN BY DISPOSAL COSTS AND CONSTRAINTS (REGULATORY)
 - BAKKEN
 - SOURCE NOT AS CONSTRAINED, BUT INFRASTRUCTURE LIMITED (CLIMATE)
 - DISPOSAL BECOMING A LOCAL CONCERN IN SOME AREAS, IMPACTING DRILLING COSTS
 - EAGLE FORD
 - SOURCING CONSTRAINED BY GROUNDWATER CONSERVATION DISTRICTS
 - DISPOSAL CONCERNS WHERE COMMUNICATION FROM INJECTION ZONE TO PRODUCING ZONE COULD OCCUR
 - OKLAHOMA
 - INDUCED SEISMICITY

PERMIAN BASIN

- THE PERMIAN BASIN (DELAWARE, MIDLAND, CENTRAL BASIN PLATFORM) CONSISTS OF
 STACKED PLAYS WITH MULTIPLE PRODUCTIVE INTERVALS
- WATER SUPPLY, TRANSFER, AND DISPOSAL CAN REPRESENT AN AVERAGE OF OVER 20% OF WELL COMPLETION COSTS
- WATER TO OIL RATIOS ARE TYPICALLY ABOVE 1:1 FOR ALL FORMATIONS ACCESSED FOR PRODUCTION, SO PRODUCED WATER DISPOSAL COST CAN REPRESENT OVER 25% OF LIFTING COSTS
- DURING EXPLORATION AND EARLY DEVELOPMENT, MINIMAL INFRASTRUCTURE IS IN PLACE TO SUPPORT WATER DEMAND FOR COMPLETIONS AND PRODUCED WATER DISPOSAL
- PRODUCED WATER REUSE IN COMPLETIONS COULD MITIGATE BOTH WATER SUPPLY AND
 PRODUCED WATER DISPOSAL LIMITATIONS

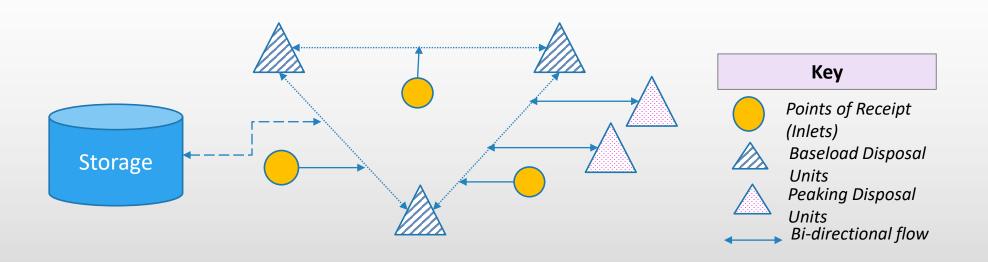
8

- Disposal done by producers or outsourced to service companies and local providers
- Pipeline connects and long term commitments were rare as producers were "experimenting" with shale development

9

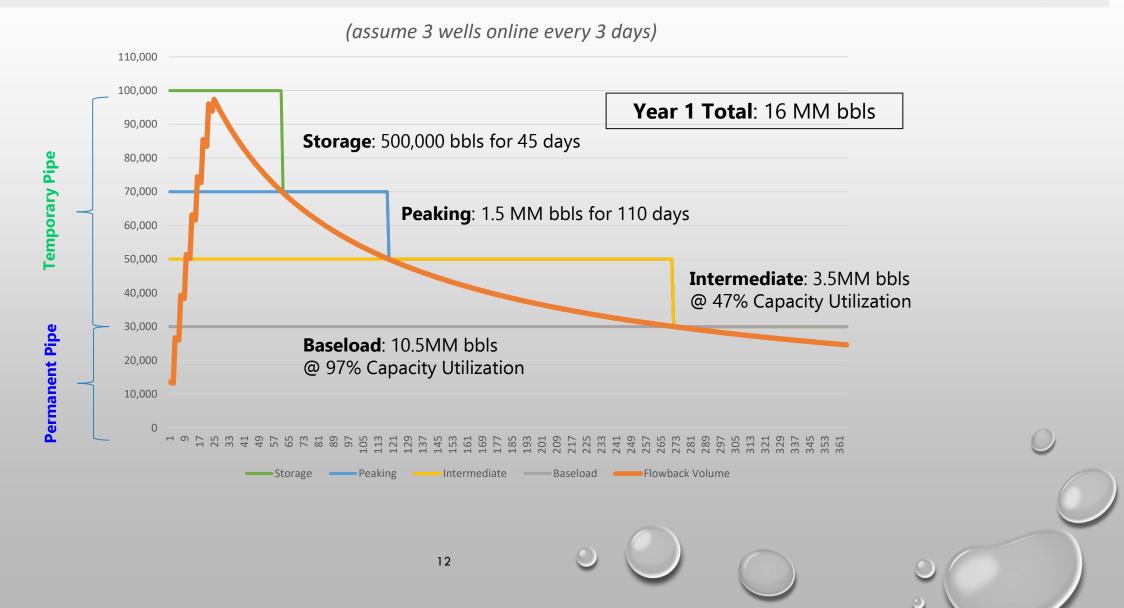
• All-in costs \$2 - \$10+/bbl

SHALE WATER 2.0: PIPE & DISPOSAL


Multiple gathering lines connected to a single 3rd party disposal well is the forerunner to a traditional <u>midstream water</u> model.

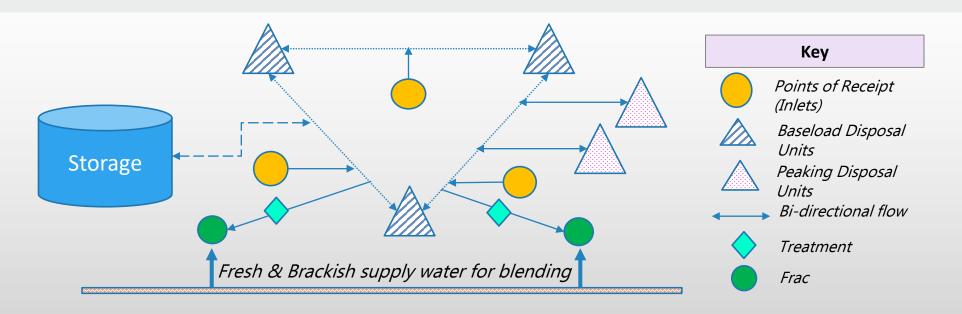
- As water volumes grew and oil prices fell, focus turned from <u>flexibility</u> to <u>cost</u> efficiency
- Strong economics underpin the decision to replace trucks with pipe (costs < \$1.00/bbl)
- Some disposal operators are now installing pipe as part of their business models, most pipe is still producer owned

SHALE WATER 3.0: WATER MIDSTREAM



- Multiple producers and disposal wells on an interconnected system can improve capital efficiency and optionality
- Storage enhances system reliability and balances peaks/valley
- An integrated water network allows disposal capacity to be "dispatched" similar to power grid

11



MANAGING A 25 WELL PAD

SHALE WATER 4.0: INCORPORATING REUSE

- Existing infrastructure can be utilized as a water distribution system (similar to a gas LDC)
- Significant savings can be achieved through reuse, storage, transportation, treatment, and blending services

SAVINGS POTENTIAL FROM RE-USE

Traditional Fresh Water Sourcing

	\$/BBL	BBLs	Total Cost
Fresh	\$0.55	600,000	\$330,000

50/50 Produced Water Blend

	\$/BBL	# BBLs	Total Cost
Re-Use Water			
Producer Re-delivery	(\$0.05)	200,000	(\$10,000)
Producer Banked	\$0.15	50,000	\$7,500
3 rd Party Make-up	\$0.25	50,000	\$12,500
Fresh Water	\$0.55	300,000	\$165,000
Total	\$0.29	600,000	\$175,000

- Outsourced scenario offers significant savings thru re-use
- Re-use strategy leverages installed produced water infrastructure for transportation, storage, and re-delivery
- In this example, a 50-50 blend of produced and fresh water results in a 45% savings in sourcing costs for each well completed

CRITICAL PRODUCER DECISIONS

- 1. WATER INFRASTRUCTURE OR TRUCKING & DISPOSAL? → ALL PRODUCERS SHOULD HAVE A WATER MANAGEMENT STRATEGY THAT UTILIZES INFRASTRUCTURE VS. TRUCKING
- SELF BUILD OR PARTNER? → DEPENDS ON ACREAGE POSITION, SURFACE OWNERSHIP, LEASE AGREEMENTS, EXISTING INFRASTRUCTURE, CAPACITY AND SOURCING LIMITATIONS, DRILLING SCHEDULE, DEVELOPMENT PLAN, ETC.
- 3. WHICH PARTNER? → WHAT ARE THE PRODUCER'S TOP PRIORITIES? SCHEDULE? PRODUCTION? COST? FLEXIBILITY? WHAT IS THE PRODUCER'S RISK TOLERANCE?

FINAL THOUGHTS

- WATER MUST BE EFFICIENTLY, ECONOMICALLY, AND RESPONSIBLY MANAGED FOR SUSTAINED OIL AND GAS PRODUCTION IN THE PERMIAN BASIN
- INFRASTRUCTURE IS THE KEY TO LEVERAGING OPTIMIZED SOLUTIONS FOR THE FULL LIFE CYCLE
 OF WATER
- GROWING CONCERN FOR CUMULATIVE IMPACTS OF BOTH SOURCING AND DISPOSAL CAN
 BE BETTER MANAGED WITH SHARED APPROACHES AND SHARED SYSTEMS
- WATER MANAGEMENT MIDSTREAM IS A GROWING INDUSTRY, WITH INFRASTRUCTURE INVESTMENT EXPECTED TO EXCEED \$100 BILLION IN THE PERMIAN ALONE

