

NEUMAN & ESSER

New and Improved – 560hs

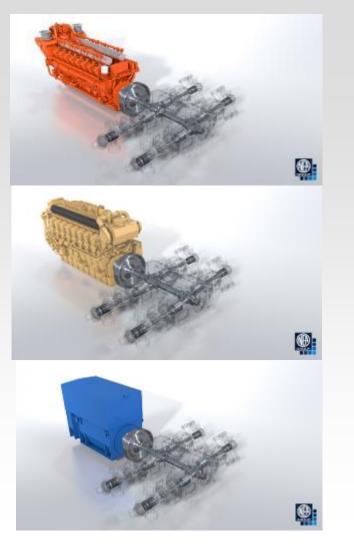
560hs: Why the development?

NEA GROUP

M004

Build upon NEA's experience with custom and engineered to order applications with difficult gases:

- Downstream compressor robustly developed for difficult applications.
 - Based on slow-speed and foundation mounted compression.
- N. America has developed into a "packaging" market for high-speed and lower-speed models


Downstream Models High-Speed Models		40 n/a	30 80hs	63 150hs	130 250hs	190 n/a	320hs 320hs	300 560hs	320 700hs	500 1500hs
Specifications	Max Rod Load (API combined rating) (LBS / kN)	9,000 40	18,000 80	33,700 150	56,200 250	85,400 380	105,700 470	126,000 560	193,300 860	382,200 1,700
	Max Speed (RPM) (lube or non lube)	1,000	1,800	1,800	1,200	1,000	1,200	1,200	750	750
	Max Discharge Pressure (PSIG / BARG)	4,500 310	15,000 1,000	15,000 1,000	15,000 1,000	15,000 1,000	15,000 1,000	15,000 1,000	15,000 1,000	15,000 1,000
	Max Stroke (IN / MM)	3.9 100	4.7 120	6.7 170	7.1 180	9.6 245	6.9 175	11.0 280	14.8 375	17.7 450
	Available Throws	1	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4	2,4,6	2,3,4,6	2,3,4,6	2,4,6,8
	Configuration	vertical	horizontal vertical	horizontal vertical V-type	horizontal vertical V-type	horizontal vertical	horizontal	horizontal vertical	horizontal vertical	horizontal

*Approximate values - not for detailed design purposes.

560hs: Why the development?

Target and optimize the compressor for the larger BHP engines / motors for 1,000RPM:

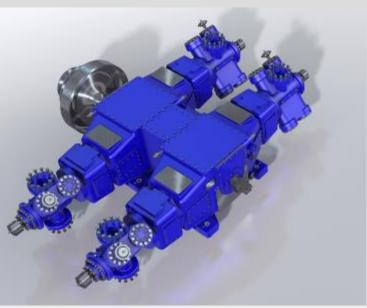
COMPRESSOR SPECIFICATIONS	560hs
Max Power (BHP / kW)	10,000 7,500
Max Rod Load (API combined rating) (LBS / kN)	126,000 560
Max Speed (RPM) (lube or non lube)	1,200
Max Discharge Pressure (PSIG / <mark>BARG</mark>)	15,000 1,000
Max Stroke (IN / MM)	6.9 175
Available Throws	2,4,6
Configuration	horizontal

*Approximate values - not for detailed design purposes.

560hs: Goals of the development

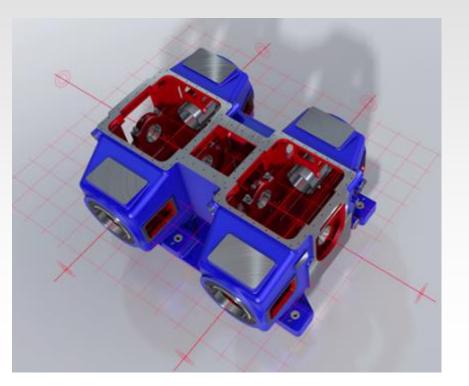
Build upon NEA's experience with API 618 robust compressor designs:

- Stay true to Reliability through design. Do not "cheapen" the product at the sacrifice of reliability.
- Industry leading power and capacity per throw modeled through KO3.
- Utilize NEA USA's time proven OEM packaging model.



560hs: Materials of Construction

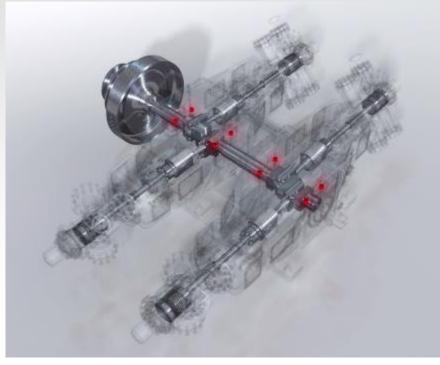
Component	Material		
Frame	Nodular Iron		
	Forged Steel or		
Cylinder	Nodular Iron		
	Centrifugal Cast		
Cylinder Liner (if furnished)	Iron		
Piston	Cast Iron		
Piston Rod	Stainless Steel		
Crankshaft	Forged Steel		
Main Bearings	Galvanic		
Crank Pin Bearings	Galvanic		
Connecting Rod	Forged Steel		
	Cast Steel w/		
Crosshead	Babbit Surface		
Crosshead Pin	Forged Steel		
Crosshead Pin Bushing	Lead-Bronze		

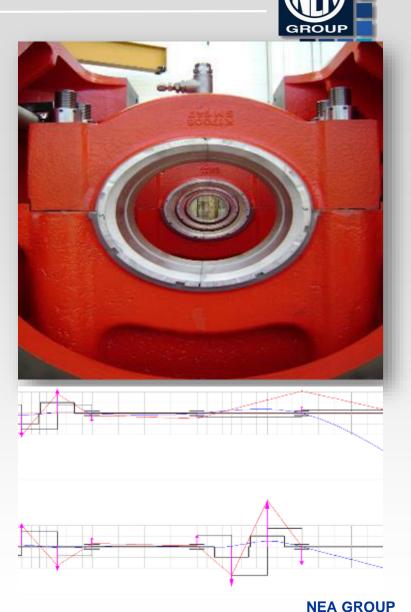


560hs: Frame Highlights

NEA's robust one-piece crankcase:

- Always truly flat, square and ready for packaging upon arrival.
- Custom machined surfaces available for upgraded instrumentation.
- GAS LOAD RATING: 173,000 lbs
- Frame lubrication provided by independent stainless steel header and tubing system.

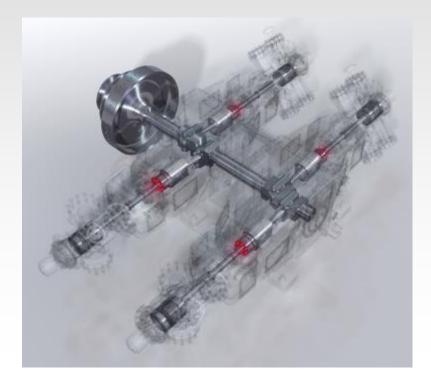




560hs: Frame Highlights

Main Bearings & Drivetrain:

- No parting lines on the highest loaded area.
- Tri-metal construction.
- Locked into place with a screw (no detents).
- Hydraulic bolted main journals.
- TORSIONAL STUDY BY NEA



M004

560hs: Frame Highlights

Stainless steel piston rods:

- Hydraulic bolted, flanged connection onto the crosshead.
- Ease of Use and Efficient.
- Uniform Loading and Increase in Thread Life
- Safer to Use

560hs: Utilizing NEA's time proven business model

25 years in the USA:

• Sales, applications, engineering, service and parts located in Katy, Texas

