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The Cretaceous/Paleogene Boundary Deposits 
on Gorgonilla Island

Hermann Darío BERMÚDEZ1* , Ignacio ARENILLAS2 , José Antonio ARZ3 , Vivi 
VAJDA4 , Paul R. RENNE5 , Vicente GILABERT6 , and José Vicente RODRÍGUEZ7 

Abstract A ca. 20 mm thick spherule bed representing Chicxulub impact ejecta deposits 
and marking the Cretaceous/Paleogene (K/Pg) boundary was recently discovered on 
Gorgonilla Island (Gorgona National Natural Park, Pacific of Colombia). This discovery 
represents the first confirmed record of the K/Pg event in Colombia, South America, 
and the eastern Pacific Ocean. The deposit consists of extraordinarily well–preserved 
glass spherules (microtektites and microkrystites) reaching 1.1 mm in diameter. Impor-
tantly, the Gorgonilla spherule bed is unique relative to other K/Pg boundary sites in 
that up to 90% of the spherules are intact and not devitrified, and the bed is virtually 
devoid of lithic fragments and microfossils. The spherules were deposited in a deep 
marine environment, possibly below the calcite compensation depth. The preservation, 
normal size–gradation, presence of fine textures within the spherules, and absence of 
bioturbation or traction transport indicate that the Gorgonilla spherules settled within 
a water column with minimal disturbance. The spherule bed may represent one of 
the first parautochthonous primary deposits of the Chicxulub impact known to date. 
40Ar/39Ar dating and micropaleontological analysis reveal that the Gorgonilla spherule 
bed resulted from the Chicxulub impact. Intense soft–sediment deformation and bed 
disruption in Maastrichtian sediments of the Gorgonilla Island K/Pg section provide 
evidence for seismic activity triggered by the Chicxulub bolide impact, 66 million years 
ago. It is also notable that the basal deposits of the Danian in the Colombian locality 
present the first evidence of a recovery vegetation, characterized by ferns from a trop-
ical habitat, shortly following the end–Cretaceous event.
Keywords: K/Pg boundary, Chicxulub, microtektites, seismites, Gorgonilla Island, Colombia.

Resumen Una capa de aproximadamente 20 mm de espesor con depósitos de eyecta del 
impacto de Chicxulub, que marca el límite Cretácico–Paleógeno (K/Pg), fue recientemen-
te descubierta en la isla Gorgonilla (Parque Nacional Natural Gorgona, Pacífico colombia-
no). Este es el primer registro confirmado del evento K/Pg en Colombia, Suramérica y el 
Pacífico oriental. El depósito consiste en una acumulación de esferulitas de vidrio (mi-
crotectitas y microcristitas) de hasta 1,1 mm de diámetro extraordinariamente bien pre-
servadas. La capa de esferulitas de Gorgonilla es única entre los depósitos conocidos de 
eyecta de Chicxulub; hasta un 90 % de las esférulas está aún completamente vitrificadas 
y la capa está prácticamente desprovista de líticos o microfósiles. Las esferulitas fueron 
depositadas en un paleoambiente marino de aguas profundas, posiblemente por debajo 
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del nivel de compensación de la calcita. La preservación, gradación normal, presencia de 
estructuras delicadas dentro de las esférulas y ausencia de evidencias de bioturbación 
o de transporte indican que la capa de esferulitas de Gorgonilla se asentó a través de 
la columna de agua con mínima perturbación subsecuente. Esta capa puede represen-
tar uno de los primeros depósitos paraautóctonos primarios del impacto de Chicxulub 
conocidos hasta el momento. Dataciones 40Ar/39Ar y resultados de análisis micropaleon-
tológicos muestran que la capa de esférulas de Gorgonilla fue producida por el impacto 
del asteroide que formó el cráter de Chicxulub. Adicionalmente, la intensa deformación 
sinsedimentaria y la perturbación de las capas del Maastrichtiano en la sección K/
Pg de la isla Gorgonilla proporcionan evidencia de la actividad sísmica producida por 
el impacto de Chicxulub hace 66 millones de años. Es también notable que las capas 
basales del Daniano en la localidad colombiana muestran las primeras evidencias de la 
recuperación de la vegetación, representada por helechos de un hábitat tropical, justo 
después del evento del fin del Cretácico.
Palabras clave: límite K/Pg, Chicxulub, microtectitas, sismitas, isla Gorgonilla, Colombia.

1. Introduction

The Cretaceous/Paleogene (K/Pg) boundary marks one of the 
five major mass extinctions in Earth’s history and has long 
been associated with the Chicxulub impact in the Yucatán Pen-
insula, 66 million years ago (Alvarez et al., 1980; Hildebrand 
et al., 1991; Pope et al., 1991; Schulte et al., 2010). However, 
some authors question this vast evidence, suggesting that the 
Chicxulub impact predated the K/Pg boundary by several hun-
dred thousand years and that it was not responsible for the K/
Pg mass extinction (Keller, 2011; Keller et al., 2001, 2003a, 
2003b; Stinnesbeck et al., 1997, 2002).

Ejecta deposits containing melt droplets in the form of tiny 
glass spherules, with a similar chemical composition as the 
glass from the Yucatán impact breccia, have been document-
ed throughout Central and North America and the Caribbean 
(Keller et al., 2013; Norris et al., 1999; Ocampo et al., 1996; 
Olsson et al., 1997; Schulte et al., 2010; Smit et al., 1992; 
Wigforss–Lange et al., 2007). However, in South America, K/
Pg boundary sections are exceedingly rare, and only two sec-
tions have been formally associated with the Chicxulub impact 
event. In the Neuquén Basin, Argentina, Scasso et al. (2005) 
described a coarse–grained sandstone bed, which occurs in a 
homogeneous shallow shelf mudstone sequence. The authors 
suggested that this siliciclastic unit represents a tsunami depos-
it, triggered by the Chicxulub impact. In a subsequent analysis 
from the same section, however, Keller et al. (2007) suggested 
that the deposition of the sandstone occurred 500 ky after the 
K/Pg hiatus and is unrelated to the Chicxulub impact. At Poty 
quarry, Pernambuco, Northeast Brazil, Albertão & Martins 
(1996) described a shallow–marine marl and limestone suc-
cession with impact–derived exotic products (microtektite–like 
microspherules and shock–metamorphosed quartz), associated 
with a possible impact–generated tsunamite. However, subse-
quent work by Albertão et al. (2004), Morgan et al. (2006), 

and Gertsch et al. (2013) concluded that there is no evidence 
supporting the impact origin of those spherules. The breccia 
unit, interpreted as a tsunamite, is composed of intraformational 
lime– and marlstone clasts but also contains bones, phosphatic 
lumps, phosphatized foraminifera, glauconite, and small pyrite 
concretions, which indicate reworking and erosion from near–
shore areas (Stinnesbeck & Keller, 1996). Gertsch et al. (2013) 
suggested that this unit represented a gravity flow formed 
during the latest Maastrichtian lowstand.

A new pristine K/Pg section has been discovered on Gor-
gonilla Island, in the Pacific of Colombia (Bermúdez et al., 
2016). Although most of the glass spherules formed during the 
Chicxulub impact are now devitrified and have been altered to 
secondary clay minerals, such as smectite, the spherules from 
Gorgonilla Island are virtually unaltered and represent the most 
pristine K/Pg boundary spherules known to date. This unique 
boundary section is the first confirmed record of this event in 
Colombia, South America, and the eastern Pacific Ocean and 
it has been studied with respect to stratigraphy, sedimentol-
ogy, mineralogy, chemistry, micropaleontology, palynology, 
and 40Ar/39Ar geochronology (Renne et al., 2018). The present 
paper is a summary of an international interdisciplinary re-
search project, still in progress, and condenses the information 
available to date.

1.1. Location and Geological Setting

The Gorgonilla Island K/Pg section (2º 56’ N, 78º 12’ W) is 
located in Gorgona National Natural Park, south of the Playa 
del Amor, SW coast of Gorgonilla Island, approximately 35 
kilometers off the Colombian Pacific coast (Figure 1a). The 
island is 0.5 to 1 km in diameter and is located approximately 
500 m SW of the larger Gorgona Island. Rock units only crop 
out along the coast at both islands, and as a result, outcrops are 
generally only accessible during low tide. Gorgona and Gor-
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gonilla are among the less deformed and last accreted portions 
of the Caribbean Plateau and expose a mafic and ultramafic 
magmatic sequence of Late Cretaceous to early Paleocene age, 
which includes basalts, gabbros, peridotites, basaltic komatiites, 
microgabbroic intrusions, and pyroclastic sediments (Dietrich 
et al., 1981; Echeverria & Aitken, 1986; Gansser, 1950; Gansser 
et al., 1979; Kerr, 2005; Serrano et al., 2011). The sedimentary 
rock sequence at Gorgona and Gorgonilla Islands consists of 
Paleogene litharenite, mudstone, tuffaceous shale, radiolarite, 
limestone, and minor conglomerate, and Neogene mudstone, 
fossiliferous shale, and sandstone (Gansser, 1950). 

Gorgonilla is interpreted to form the southernmost part of 
the Caribbean Oceanic Plateau or part of Gorgona Plateau that 
was accreted to northern South America in the middle Eocene 
(Kennan & Pindell, 2009; Kerr & Tarney, 2005). At the time 
of the Chicxulub impact, the Gorgonilla site was thus located 
approximately 2000–3000 km southwest of the impact site in 
northern Yucatán (Figure 1b).

2. Materials and Methods

Field work was performed during geological campaigns in 
2014 and 2015. The exposure hosting the K/Pg boundary de-
posits was measured and examined for lithological changes, 
composition, sedimentologic structures, trace fossils, erosion 
surfaces, and deformation, and documented through drawings 
and high–resolution photographs. Sediments were sampled at 
close intervals for microfossils, and petrographic, mineralogi-
cal, and geochemical analyses; a total of 140 rock samples were 
collected. For petrographic and electron microprobe analysis, 
polished thin sections were generated from cuts normal and 
parallel to the bedding in the spherule deposit, as well as from 
Maastrichtian and Danian sediments enclosing the event bed. 

To investigate their shapes and surface structures, spherules 
were hand–picked from gently disintegrated samples at the Pa-
leoexplorer SAS laboratory, Bogotá, Colombia. Polished cut 
slabs and disaggregated spherules were coated with graph-
ite, under prevacuum conditions (<10–1 torr), in an Emscope 
TB500 SEM Carbon Coater, at the Departamento de Geo-
ciencias of the Universidad Nacional de Colombia, Bogotá. 
The typical thickness of coating was +/–60 nm. Imaging and 
microanalysis of the spherules were executed in a scanning 
electron microscope (FEI QUANTA 200), equipped with an 
Everhart–Thorney detector (ETD) and a solid–state detector 
(SSD). Additional imaging, chemical analysis, and mapping of 
spherules were performed at the Institut für Geowissenschaften 
of Ruprecht–Karls–Universität, Heidelberg, Germany, with 
an LEO 440 scanning electron microscope equipped with an 
Oxford Inca EDX system. Electron microprobe analyses were 
performed using a CAMECA SX51 instrument equipped with 
five wavelength–dispersive spectrometers (methods described 
in Bermúdez et al., 2016).

For the 40Ar/39Ar geochronology study (Renne et al., 2017, 
2018), spherules were irradiated in the Cd–lined CLICIT of 
the Oregon State University TRIGA reactor, along with the 
Fish Canyon sanidine (FCs–EK) standard; they were analyzed 
individually by stepwise degassing in 9–15 steps, with a defo-
cused CO2 laser, and Ar ion beams were measured using peak 
hopping with an MAP 215C mass spectrometer, following pro-
cedures essentially identical to those of Renne et al. (2013). 
Decay and interference corrections were those of Renne et al. 
(2013). Ages were calculated using the optimization calibra-
tion of Renne et al. (2011).

For the planktic foraminiferan study, samples were disag-
gregated using a solution of 80% acetic acid and 20% H2O2 or a 
2M NaOH solution, and subsequently washed through a 63 μm 
sieve; all foraminiferan specimens were identified, sorted, and 
fixed on standard 60–square micropaleontological slides; some 
of these were examined under the scanning electron microscope 
(Zeiss MERLIN FE–SEM), at the Electron Microscopy Service 
of the Universidad de Zaragoza, Spain.

Ten samples spanning the K/Pg boundary succession were 
processed for palynological analysis at the palynological lab-
oratory at the Department of Paleobiology, in the Swedish 
Museum of Natural History, following standard methods. Two 
strew slides per sample, one kerogen sample (not sieved, nor 
oxidized), and one where the residue was sieved and oxidated, 
were analyzed for organic particles, including pollen and spores.

3. Results

The sedimentary record of the Cretaceous – Paleogene tran-
sition in Gorgonilla Island (Figure 2) is composed of thin to 
medium–bedded light olive–gray tuffaceous litharenite (local-
ly conglomeratic), with calcitic cement rhythmically alternat-
ing with massive gray–yellow tuffaceous marl, siltstone, and 
claystone (Figure 2a–d). Sandstone components are lithic and 
include feldspar, olivine, quartz, pyroxene, and mica, as well 
as abundant volcanic lithics, and floating clasts of siliciclastic 
sedimentary rocks. Diverse microfossils are present in the inter-
calated mudstone, including abundant radiolarians, coccoliths, 
rare poorly preserved foraminifers, and sponge spicules (Ber-
múdez et al., 2016).

Slump and other soft–sediment deformation features are 
abundant at the Gorgonilla K/Pg boundary section in the beds 
underlying the spherule bed (Figure 2g), leading to uneven 
surfaces and disrupted bedding. Upsection from the spherule 
bed, soft sediment deformation is also occasionally present, but 
markedly rarer and restricted to small–scale slumps and the 
contortion of individual thin sediment units, while other units 
appear to be unaffected (Figure 2f). Soft–sediment deformation 
structures include syndepositional faulting and fault–grading, 
hydroplastic mixed layers, pillar and flame structures, small 
and medium–scale slumps with internal folding and associated 



5

The Cretaceous/Paleogene Boundary Deposits on Gorgonilla Island

C
re

ta
ce

ou
s

P
al

eo
ge

ne

f

e

Basalts

PaleogeneAge Lithology
Mud

Pa
leo

ge
ne

C
re

ta
ce

ou
s

D
an

ia
n

M
aa

st
ric

ht
ia

n
Sand

Le
ge

nd

Ductile and brittle
deformation

b

c d

e f

a

Spherule–rich bedSpherule–rich bed

DanianDanian

g

35

30

25

20

15

10

5

0

Thick
(m)

Tu�aceous sandstone

Basalt/microgabbro

Spherule–rich bed

Tuffaceous fosiliferous
mudstone

Soft–sediment
deformation structures

Playa del Amor

Cretaceous

Paleogene

K/Pg boundary
c

d

Cretaceous

K/Pg boundary

MaastrichtianMaastrichtian

MaastrichtianMaastrichtian

Studied interval

1 cm

Danian

K/Pg boundary

Figure 2. Stratigraphic section at Gorgonilla Island. (a) Panoramic view of the studied outcrop during low tide. (b) Outcrop overview of 
the Gorgonilla K/Pg section (c, d, and f indicate location of Figure 2c, 2b, and 2f). (c) Maastrichtian rocks below the spherule–rich bed. 
(d) Aspect of the K/Pg boundary showing the interval from the uppermost Maastrichtian to the lowermost Danian. (e) Spherule deposit 
showing the normally graded sequence. (f) Danian rocks above the K/Pg boundary. (g) Upper Maastrichtian deposits with soft–sediment 
deformation structures and microfaults.



6

BERMÚDEZ et al.

thrusting, contorted laminae, small–scale convolution, abun-
dant sand injections, and convolute structures (Bermúdez et al., 
2015; Renne et al., 2018).

The K/Pg boundary sequence includes a ca. 20 mm thick 
pristine grayish green to dark green spherule–rich bed (Figure 
2e). The deposit is traceable over approximately 20 meters lat-
erally, without significant changes in thickness or lithology; it 
is normally graded and composed of rounded and compressed 
0.1–1.1 mm sized spherules in a matrix composed of calcitic ce-
ment, with an absence of clastic grains or microfossils (Figure 
3a). The spherule deposit lacks sedimentary structures sugges-
tive of traction or mass flow transport (such as cross bedding, 
basal or internal scours, reversals, or interruptions in grading). 

Spherules are black to olive or translucent–honey col-
ored. The majority are round, but oval, teardrop and dumb-
bell morphologies are also frequent (Figure 3b), in addition 
to irregular grape–like clusters of two, three, four, or even 
more spherules; when broken apart, convex–concave contacts 
are observed (Bermúdez et al., 2016). Approximately 70% of 
the spherules are massive glass (microtektites); the other 30% 
contain single, or more rarely two or more vesicles. Up to 
90% of the glass spherules are unaltered or only partly altered. 
In thin section, the glass is usually colorless; some spherules 
are faintly green or yellow. Schlieren textures are frequent. 
Backscattered electron images occasionally reveal the pres-
ence of tiny dendritic and/or fibrous crystals of mafic primary 
microlites, which suggests that some Gorgonilla spherules are 
microkrystites (Figure 3c–f).

The chemical composition of unaltered or minimally altered 
glass spherules at Gorgonilla is variable (Figure 4), especially 
in spherules with schlieren textures. SiO2 ranges from 48 to 
69 wt %, Al2O3 from 8 to 15 wt %, FeO from 4.0 to 6.6 wt %, 
MgO from 1.8 to 4.6 wt %, CaO from 5 to 29 wt %, Na2O from 
0.9 to 5 wt %, and K2O from 0.1 to 1.9 wt %. In contrast, totals 
from the microprobe analyses are close to 100 wt %, indicating 
a rather low volatiles (Bermúdez et al., 2016).

Planktic foraminiferans are absent in the Cretaceous deposits 
at Gorgonilla, except for scarce specimens identified in G–11.20 
and G–15.30 samples (the numbers represent the stratigraphic 
position in the sequence), which includes the Maastrichtian in-
dex–species Pseudoguembelina palpebra (Figure 5). No plank-
tic foraminifera were identified in samples from the deformed 
microtektite bed, nor in washed residues or thin sections, con-
trary to previous claims by Gerta KELLER in Bermúdez et al. 
(2016). Foraminiferans are absent in the 50 mm thick strati-
graphic interval between the top of the spherule bed and the first 
sample (G–19.98), with preserved planktic foraminifera, whose 
assemblages belong to the Zone Pα, in the basal Danian (Renne 
et al., 2018). These assemblages include index–species such as 
Parvularugoglobigerina longiapertura, Parvularugoglobigeri-
na eugubina, and Eoglobigerina simplicissima.

All samples, without exception, were poor in organic matter. 
Green algae are present through the succession, which possibly 
reflect an influx of fresh–water from tropical wetland environ-
ments. Importantly, relatively abundant assemblages of the wa-
ter fern Azolla, represented by microspores and the megaspore 
massulae, appear above the spherule bed together with fern 
spores, including Cyathidites minor, Gleicheniidites senonicus, 
and Deltoidospora toralis (Figure 5). These cooccur with sparse 
fungal spores and clusters of fungal hyphae.

To test whether the Gorgonilla spherules are Chicxulub–
derived tektites, Renne et al. (2018) used 40Ar/39Ar methods to 
date them. Incremental heating of 25 individual spherules, in 9 
to 15 steps, yielded plateau ages for all spherules, with 19/25 
yielding 100% concordant plateau and the remainder compris-
ing >85% of the 39Ar released. The weighted mean of all plateau 
ages is 66.051 ± 0.031 Ma (1 sd, analytical uncertainties only). 
This age is indistinguishable from the 40Ar/39Ar ages (66.038 ± 
0.025 Ma) of the Haitian tektites, and from the age (66.043 ± 
0.010 Ma) of the K/Pg boundary (Renne et al., 2013). 

4. Discussion

The external geometry, faint normal grain size gradation and 
sorting, and micropaleontological assemblages at the Gorgo-
nilla Island K/Pg section suggest that this rhythmic bedding 
sequence was deposited as turbidites in pelagic bathyal envi-
ronments. The evidence suggests that the Gorgonilla site was 
close enough (2000–3000 km) to the impact site to receive 20 
mm of ejecta, yet also located far enough away from the shelf 
edge so as not to be affected by the destabilization and collapse 
of the continental margin. Its pelagic position in deep water 
in the tropical western Pacific likely protected the Gorgonil-
la spherule bed from reworking by impact–induced tsunami 
waves (Bermúdez et al., 2016). The absence of siliciclastic 
debris, bioturbation, or microfossils indicates rapid deposition 
and an absence of reworking. This is also supported by the 
excellent preservation of delicate details of the texture, such as 
the convex–concave contacts and agglutination of spherules. 
This suggests parautochthonous deposition and indicates that 
Gorgonilla's spherules settled within a water column with min-
imal disturbance.

The stratigraphic position of the Gorgonilla spherule bed, 
coupled with preliminary biostratigraphic and geochemical 
data (Bermúdez et al., 2016), suggests that these spherules are 
correlative with those found in many circum–Caribbean loca-
tions closely associated with the K/Pg boundary and ascribed 
to impact melt produced by the Chicxulub impact. The range 
of the main elemental compositions and the oxide variation of 
the Gorgonilla glasses are compatible with those from Beloc, 
Haiti and Mimbral, and Mexico. The average chemical com-
positions are similar to those of yellow and black glasses from 
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Figure 5. Planktic foraminiferal and palynological record in the Gorgonilla section. The green shading indicates stratigraphic intervals 
with preserved planktic foraminifera. (1) Zonation of Berggren & Pearson (2005). (2) Zonation of Arenillas et al. (2004).
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Beloc (Glass & Simonson, 2013; Izett et al., 1991; Koeberl & 
Sigurdsson, 1992).

New micropaleontological and geochemical data confirm a 
K/Pg age for the spherule bed (Renne et al., 2018). The first Da-
nian biozone (Zone P0) within planktic foraminiferan scales has 
not been recognized in Gorgonilla. If it were absent, we should 
infer that there is a small hiatus of no more than 10 ka, ac-
cording to the biochronological scale of Arenillas et al. (2004). 
However, this short hiatus would not preclude the conclusion 
that the spherule bed is chronostratigraphically correlatable 
to the K/Pg boundary. Moreover, this hiatus could be a local 
taphonomic artifact in the planktic foraminiferal record. The 
absence of preserved calcareous microfossils (foraminifera) and 
the abundance of siliceous microfossils (radiolarians) suggest 
that the substrate was below the carbonate compensation depth 
(CCD) for much of the time interval recorded in the Gorgonilla 
section. Foraminiferans are absent in the 50 mm thick strati-
graphic interval between the top of the spherule bed and the first 
sample with preserved planktic foraminifera, suggesting these 
sediments were still deposited below the CCD. The dissolution 
of the foraminiferan tests in this thin stratigraphic interval pre-
vents the verification of whether Zone P0 is present or absent 
in Gorgonilla.

The fern spores, which only occur above the K/Pg bound-
ary at Gorgonilla, are represented by ground fern taxa such 
as Gleicheniaceae and Dictyophyllum, together with the 
abundant occurrence of the aquatic fern Azolla (Renne et al., 
2018). Interestingly, these cooccur with fungal spores and hy-
phae. A posited fungal spike has previously been described 
from a New Zealand K/Pg boundary clay coincident with the 
iridium–enriched layer and was interpreted as a response to 
short–term darkness (Vajda & McLoughlin, 2004; Vajda et al., 
2015). The genus Azolla consistently characterizes warm–cli-
mate lacustrine environments and first appears in the geolog-
ical record in Lower Cretaceous successions (Vajda, 1999; 
Vajda & McLoughlin, 2005). The ranges of many Azolla spe-
cies span the K/Pg boundary and the identification of Azolla 
microspores and massulae in Colombia, directly following 
the K/Pg boundary event, which at the Gorgonilla locality is 
marked by the spherule bed (Bermúdez et al., 2016), shows 
their potential to endure altered environmental conditions. 
Aquatic ferns such as Azolla can reproduce asexually through 
vegetative regeneration in association with nitrogen–fixing 
cyanobacterial symbionts, which are shown to be abundant in 
the same samples. These characteristics provided an advan-
tage in the aftermath of the Chicxulub impact and our results 
show that not only high–latitudinal settings but also low–lati-
tudinal tropical environments were indeed affected by cooling 
and darkness.

The global pattern of recovery in the vegetation following 
the K/Pg mass extinction event is typified in North America 
(Schulte et al., 2010), Japan (Saito et al., 1986), and New Zea-

land (Vajda et al., 2001), by a posited fern–spike, an interval of 
short duration represented by a pioneering succession of ferns 
(Vajda & Bercovici, 2014). Although end–Cretaceous succes-
sions in Europe mainly represent marine depositional settings, 
the ecological collapse on land following the Chicxulub im-
pact is also traceable in marine strata. In the Netherlands, for 
example, an anomalous abundance of bryophyte (moss) spores 
characterize the recovery community preserved within the basal 
part of the boundary clay (Brinkhuis & Schiøler, 1996; Hern-
green et al., 1998). Here, we show the first evidence of post-
impact recovery vegetation expressed by a fern–spike from the 
paleo–tropics.

The 40Ar/39Ar dating suggests the spherule age is 66.051 ± 
0.031 Ma (Renne et al., 2018). This age is indistinguishable 
from the 40Ar/39Ar ages (66.038 ± 0.025 Ma) of the Haitian tek-
tites and from the age (66.043 ± 0.010 Ma) of the K/Pg bound-
ary (Renne et al., 2013). Thus, we conclude that the Gorgonilla 
spherules are tektites produced by the Chicxulub impact at the 
K/Pg boundary.

The uppermost Maastrichtian and the K/Pg boundary de-
posits at Gorgonilla were affected by intense soft–sediment 
deformation and bed disruption, and provide evidence for syn-
depositional microfaulting and faulting, injectites, hydroplas-
tic mixed layers, small–scale slumping, fault–graded beds, and 
pillar and flame structures. These features are found between 
undisturbed Maastrichtian and Danian sediments, including 
the spherule–rich bed (Bermúdez et al., 2015, 2017; Renne et 
al., 2018). They show the development of three different zones 
(soupy zone, rubble zone, and segmented zone) and make evi-
dent gradational contacts between these zones and the bottom, 
but with a sharp boundary at the top (Figure 6). These features 
are typical of seismites (Montenat et al., 2007; Obermeier, 
1996; Seilacher, 1969).

The evidence indicates that the bed–disruption processes 
began slightly before but continued during the emplacement 
of the ejecta deposit. The ubiquitous and obvious deformation 
of the Maastrichtian sediments cannot be explained by differ-
ences in lithology between the Maastrichtian and Paleogene 
strata, local tectonism, or the paleogeographic setting, but must 
result from seismic activity produced by the single very–high–
energy Chicxulub impact. Large–scale seismicity, including 
magnitude 10+ earthquakes, are a predicted consequence of 
this impact (e.g., Boslough et al., 1996; Pierazzo & Artemie-
va, 2012; Schulte et al., 2010, 2012; Shoemaker et al., 1990). 
Accordingly, soft–sediment deformation structures, chaotic 
sediments mixtures and disturbed beds, “shale diapirs”, injec-
tion structures, steeply to vertically inclined sedimentary beds, 
slumps, folds, microfaults and faults, steeply and chaotic seis-
mic reflectors, etc. were reported from a variety of sections in 
Mexico, USA, the NW Atlantic Ocean, Caribbean, and the Gulf 
of Mexico (Figure 7); they have been explained as sediment 
liquefaction, platform collapse, large–scale slope failures, and 
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Figure 6. Stratigraphic section, illustrating the position of deformed zones and representative examples. (a) Maastrichtian undisturbed 
sediments, approximately 15 m below the K/Pg boundary. (b) Opposite vergent structures in the segmented zone, 10 m below the K/Pg 
boundary. (c) Rubble zone, 8 m below the K/Pg boundary, with predominance of plastic deformation in opposite directions, but with 
no major lateral transport. (d) Plastic deformation at the top of the soupy zone, involving the K/Pg spherule–rich bed. (e) Undisturbed 
sediments of the lowermost Danian, just above the K/Pg boundary. (f–g) Detail of the soft–sediment deformation in the K/Pg spherule 
bed (f and g in Figure 6e). (h) Undisturbed sediments of the Danian, 12 m above the K/Pg boundary.

C
re

ta
ce

o
u

s
D

a
n

ia
n

M
a
a
st

ri
ch

tia
n

L
e

g
e
n
d

Gradual
transition

S
e
g
m

e
n
te

d
zo

n
e

U
n
d
is

tu
rb

e
d

se
d
im

e
n
t

10 mm

10 mm

a

b

c

d

e

f g

h

a

b

c

d

e h

g

f

Spheres diameter 
(mm)

0.11–0.13

0.14–0.26

0.27–0.39

0.40–0.52

0.53–0.65

0.66–0.78

0.79–0.91

0.92–1.04

1.05–1.17

Spherule–rich bedSpherule–rich bed

Tuffaceous sandstone

Basalt/microgabbro

Spherule–rich bed

Tuffaceous fossiliferous
mudstone

Soft–sediment deformation
structures

P
a
le

o
g
e
n
e

Age Lithology

Mud Sand

Thick
(m)

3535

30

25

20

15

10

5

0

U
n

d
is

tu
rb

e
d

se
d

im
e

n
t

Sharp boundary

S
o
u
p
y 

zo
n
e

Rubble zone



12

BERMÚDEZ et al.

Figure 7. Paleogeographic map of key areas exhibiting evidence of Chicxulub impact–induced seismicity. (1) La Popa Basin, NE Mexico. 
(2) Brazos Texas, USA; NE Mexico (La Sierrita, Mimbral, El Toro sections). (3) Alabama, USA. (4) DSDP Sites 536 & 540, Gulf of Mexico. (5) El 
Tecolote, NE Mexico. (6) Bermuda Rise. (7) Black Nose. (8) Baja California, Mexico. (9) Gulf of Mexico. (10) SE Mexico. (11) Demerara Rise, 
South Atlantic. (12) South Dakota, USA. Source: Bermúdez et al. (2015).
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catastrophic sedimentation by bolide impact–related seismic 
shocking (e.g., Arenillas et al., 2006; Arz et al., 2001, 2004; 
Bralower et al., 1998; Busby et al., 2002; Denne et al., 2013; 
Grajales–Nishimura et al., 2000; Klaus et al., 2000; MacLeod 
et al., 2007; Norris & Firth, 2002; Norris et al., 2000; Schulte 
et al., 2009, 2010, 2012; Smit et al., 1996; Soria et al., 2001; 
Stoffer et al., 2001).

Different from the situation in these proximal sections, the 
seismic energy did not cause erosion, slope failure, and severe 
reworking of fossils and lithologies of different ages at this 
study site (frequently known as the K/T (now K/Pg) “impact 
cocktail”; Bralower et al., 1998). Slope failure debris deposits 
or evident traction transport of sediments are not seen in the 
deformed Maastrichtian sequence at Gorgonilla (Bermúdez et 
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al., 2017). Even though intense ductile and brittle deformation 
reaches to 12 m below the ejecta bed, these sediments are still 
placed in their correct stratigraphic order, and the sequence 
appears structurally intact. The spherule bed, for instance, is 
continuous over a distance of more than 15 meters and does 
not show changes in thickness or texture. Soft sediment defor-
mation at this deep ocean site, at approximately 2000–3000 km 
distance from Chicxulub impact site, thus resulted in in situ liq-
uefaction and microfaulting of soft and semilithified sediments. 

The presence of in situ deformed sediments in northern 
South America strengthens the evidence that seismic shaking 
generated by the impact, and possible aftershocks, represents a 
major geological event that affected the uppermost Maastrich-
tian sediments in a vast region; the seismic energy released 
was sufficient to affect localities more than 2000 km from the 
Chicxulub impact site (Renne et al., 2018). The interpretation 
of the K/Pg boundary deposits in areas proximal to the impact 
site should be revised with caution, since the effects of seismic 
deformation would affect the position and distribution of ejecta 
in the Chicxulub–linked clastic units (e.g., deposits of eventual 
collapse of continental shelves and/or associated tsunamites).

5. Conclusions

This study confirms the first evidence of Chicxulub ejecta de-
posits (K/Pg boundary) in Colombia, South America, and the 
eastern Pacific Ocean. 

The Gorgonilla Island spherule bed is approximately 20 
mm thick and consists of extraordinarily well–preserved glass 
spherules (microtektites and microkrystites) up to 1.1 mm in 
diameter.

The size, morphology, and chemical composition of these 
spherules are similar to Chicxulub spherule ejecta from North 
and Central America, and the Caribbean, but differ in their 
unrivaled excellent preservation (up to 90% of the spherules 
are still completely vitrified). The Gorgonilla spherule bed 
thus represents a deposit of the most pristine K/Pg boundary 
spherules known to date.

The ejecta deposit is normally graded, with no evidence for 
traction transport, subsequent reworking or bioturbation, and 
thus, indicates that the Gorgonilla spherules settled within a 
water column with minimal disturbance.

40Ar/39Ar dating, geochemical, and micropaleontological 
analyses reveal that the Gorgonilla spherule bed resulted from 
the Chicxulub impact.

The basal deposits of the Danian in Gorgonilla Island 
demonstrate the first evidence of a recovery vegetation repre-
sented by ferns from a tropical habitat closely following the 
end–Cretaceous event.

The presence of intense soft–sediment deformation and bed 
disruption in Maastrichtian sediments of the Gorgonilla Island 
K/Pg section, provide proof for seismic activity triggered by 

the Chicxulub bolide impact, and strengthens the evidence that 
seismic shaking generated by the meteorite collision, and pos-
sible aftershocks, represents a major geological event that af-
fected the uppermost Maastrichtian sediments in a vast region.
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