# WAGYU BLOODLINES AND BREEDING DECISIONS



- Presented by: Loren Ruth



USA • AUSTRALIA • SOUTH AFRICA

# Wagyu Bloodlines:



**Prefectural Percentages**: 16/16 Analysis: Tajima, Itozakura, Kedaka, etc

-Don't get caught up on these

-There are high marbling Tajima, Shimane, and Kedaka.

-There are high growth Tajima, Shimane, and Kedaka.

**Instead classify sires on traits**: Carcass (MS, MF, REA) specialists, Growth & Maternal specialists, or a Balance of both.

Prefectural Percentages are most useful for tracking inbreeding but Inbreeding coefficients do a better job

Essentially they have become obsolete with  $\operatorname{EBVs}$ 

| Tajima | Kedaka | Tottori | Itozakura | Shimane | Okayama | Hiroshima | Other | TOTAL |
|--------|--------|---------|-----------|---------|---------|-----------|-------|-------|
| 9.4    | 1.6    | 0.5     | 2.8       | 0.4     | 1.1     | 0.3       |       | 16    |

## Quote: Established Breeder

- "Prefecture is not a focus for us, traders and consumers are only interested if it is fullblood, fine marbling, marble score, and eating quality."
   Anthony Winter, Macquarie Wagyu
- Sells into an established Branded Beef line & their herd has bred leading sires such as Prelude, Y408, C1176, etc.





## Female Bloodlines are Important!

### • Aka Cow Families or Maternal Lines

- Female contributes half the DNA, just like the sire
- Often overlooked in carcass results & data evaluation
  - $\cdot\,$ i.e. Itomichi ½ x Mayura Itoshigenami JNR steers will likely perform far better than Itomichi ½ x World K's Haruki 2 steers
  - + May skew your perspective on how good Itomichi  $\frac{1}{2}$  is, Why EBVs are so valuable
- Mitochondrial DNA inheritance only coming from the dam
  - <u>https://www.ajas.info/upload/pdf/17\_243.pdf</u>
- Cytoplasmic inheritance theories
  - <u>https://www.sciencedirect.com/science/article/pii/S0022030286807731</u>
- Epigenetics triggered in utero by the dam
  - <u>https://epigeneticsandchromatin.biomedcentral.com/articles/10.11</u>
    <u>0081-5</u>



### **The Importance of Maternal Lines**

#### HATSUHI TAKAKUNI AIZAKURA **CHIYOTAKE** YAMAFUJI **KITAKAZU** SEKIKURAHIME TETUFUKU TOMOKANE WΔGYI GENETICS 101: **KNOW YOUR MATERNAL LINES. SUZUTANI** SHIGEHIME **OKAHANA** OKUTANI **CHISAHIME KIKUHANA** YURIKO KENSEI RITINTANI **KANETANI** FUKUTOMI **HIKOKURA**

### 1) Risk Management

2) Females Unique Ability to transmit to offspring

3) Marketability

4) Genetic Merit



USA • AUSTRALIA • SOUTH AFRICA



## **RISK MANAGEMENT**

- 1) WE USE HIGH RELIABILITY SIRES
- 2) WHY NOT USE HIGH RELIABILITY FEMALES?
- 3) INCREASED CONSISTENCY AND UNIFORMITY: LESS FAILURE CARCASSES
- 4) HIGHER PERFORMANCE: MARBLE SCORE, MARBLE FINENESS, RIB EYE AREA, 200D WT, CARCASS WT, ETC.











## WHAT IS A MATERNAL LINE?

Synergy Mich Suzi 158D **5-Generation Pedigree** FB204 [] **TAYASU DOI 7208** FB548 [J10328] YASUMI DOI FB320 [] **DAI 4 FUKUMUSUME** FB201 **MONJIRO 11550** [] FB205 **TAMORI DOI 7663** [] FB203 HARUMI 1086409 **JAPANESE COW (BLACK)** NR251B [] Sire: FB1615 [ WKS - 1139 ] WORLD K'S MICHIFUKU B3F, CHSF, CL16F, F11F, F13F [ J472 ] FB212 YASUTANI DOI **TANISHIGE 1526** FB211 [] FB213 [] **TETSUSHIGE 5 101117** FB215 [] **MICHIKO 655635** FB217 **KAMINAKA-13 10804** [] MICHIFUKU 494290 FB216 NR251B [] **JAPANESE COW (BLACK)** FB226 [ J65 ] DAI 7 ITOZAKURA FB678 ITOKITATSURU [J1081] [ 101266 ] FB4569 NISHIZURU [ TF 151 ] FB3685 **ITOZURU DOI** B3F, CHSF, CL16F, F11C FB548 [J10328] **YASUMI DOI** YASUHIME FB662 FUJIHIME FB638 [] STONYRUN ID 151 SUZITO 3 B3F, CHSF, CL16F, F11F Dam: FB11844 [ A3 ] FB609 **TAKAEI 1412** [] FB2892 WORLD K'S TAKAZAKURA B3F, CHSF, CL16F, F11F, F13F [ 14767 ] **DAI NI SAKURA 7** FB612 [2] FB6032 BUZUTAKA 2 B3F, CHSF, CL16F, F11F TANISHIGE 1526 FB211 FB1617 WORLD K'S SUZUTANI [ 976 ] FB227 **SUZUNAMI 472255** F 1



## NOT A SUZUTANI?

Stonyrun ID 151 Yasu 4





## NOT A SUZUTANI?

Stonyrun Shig Hikokura 15



USA • AUSTRALIA • SOUTH AFRICA









### **STONYRUN JERSEYS CASE STUDY**

- 1985-1995 Observe/track maternal lines of USA Jersey Dairy Cattle
- 1988-2000 Acquire specific Jersey maternal lines
- 1995-2005 Export embryos to Australia from acquired donors

Note: Genetics entering Australia without any performance indexing on dams or sires in some cases

- 2000-2015 Development of imported female lines, females begin to out perform contemporaries in Australia
- 2015-Present Introduction of Genomics shown these maternal lines to be elite in a 2<sup>nd</sup> country, 20 yrs later



#### **Current Stonyrun-Aus Jersey Herd**

- 125 milking
- 100 young stock (replacement heifers)
- 6 of Top 100 Genomic females from 5 maternal lines

| Maternal Line | Color |
|---------------|-------|
| Hikokura      |       |
| Suzutani      |       |
| Chiyotake     |       |
| Chisahime     |       |
| Kensei        |       |
| Okutani       |       |
| Yamfuji       |       |
| Fukutomi      |       |
| Yuriko        | 17    |
| Tomokane      | ji c  |
| Sakikurahime  | 1     |
| Moritakashige |       |
| Sekiyoshiro 3 |       |

### MEASURING SUCCESS OF MATERNAL LINES: SIRE PRODUCTION

|                                       |        | Ma    | y 2018 | Wagyu | GROU | P BREE | DPLAN | V       |        |         |       |        |        |          |                |                  |
|---------------------------------------|--------|-------|--------|-------|------|--------|-------|---------|--------|---------|-------|--------|--------|----------|----------------|------------------|
| Name/ID                               | Gestat | Birth | 200    | 400   | 600  | Mat    | Milk  | Scrotal | Carcas | Eye     | Rump  | Retail | Marble | Marble   | Terminal       | Maternal         |
|                                       | Length | Wt    | Day    | Day   | Day  | Cow    | (kg)  | Size    | Wt     | Muscle  | Fat   | Beef   | Score  | Fineness | Carcase        | Line             |
|                                       | (days) | (kg)  | Wt     | Wt    | Wt   | Wt     |       | (cm)    | (kg)   | Area    | (mm)  | Yield  |        | (%)      | Index          |                  |
|                                       |        |       | (kg)   | (kg)  | (kg) | (kg)   |       |         |        | (sq cm) |       | (%)    |        |          |                |                  |
| MACQUARIE WAGYU C1176 (AI)            | -0.7   | -1.1  | 1      | 0     | 0    | 1      | -1    | -1.1    | 9      | 3.4     | -3    | 0.6    | 2.8    | 0.42     | \$633          | Aino/Aizakura    |
| MAYURA ITOSHIGENAMI JNR (AI)          | 1.5    | 2.2   | 10     | 11    | 13   | 17     | -5    | -0.7    | 19     | 5.6     | 0     | 0.3    | 2.3    | 0.38     | \$575          | Hikokura         |
| COATES ITOSHIGENAMI G113              | 1.1    | 1.3   | 10     | 18    | 21   | 25     | 0     | 0       | 39     | 1.8     | -1.4  | 0      | 1.8    | 0.37     | \$561          | Hikokura         |
| SUMO CATTLE CO MICHIFUKU F154 (AI)    | 1.1    | 0.9   | 9      | 17    | 21   | 19     | -1    | -0.4    | 27     | 2       | 2.9   | -0.8   | 1.9    | 0.48     | \$527          | Hikokura         |
| MACQUARIE WAGYU Y408 (AI) (ET)        | -1.8   | 1     | 12     | 23    | 22   | 20     | 3     | 0.5     | 17     | 1.9     | -3.4  | 1      | 2.1    | 0.34     | \$520          | Chiyotake        |
| WESTHOLME FUJITERU 3 (AI) (ET)        | -0.7   | 0.5   | 6      | 10    | 10   | 14     | -7    | 0.5     | 8      | 0.7     | 0.5   | -1.5   | 2.1    | 0.38     | \$477          | Hikokura         |
| WESTHOLME NAMIYOSHICHIKA              | -0.6   | -2.8  | 2      | 7     | 6    | 12     | 2     | -0.8    | 14     | 5       | 2.6   | -0.3   | 1.9    | 0.36     | \$464          | Yamafuji         |
| MAYURA ADMIRAL A0113 (AI)             | 0.6    | -0.2  | 2      | 2     | 4    | 7      | -5    | -1      | 17     | 1.4     | -1.4  | -0.2   | 1.7    | 0.24     | \$435          | Chiyotake        |
| WESTHOLME FUJITERUYOSHI               | -0.6   | 0.8   | 8      | 14    | 18   | 20     | -2    | 0.5     | 16     | 1.1     | -0.9  | -0.6   | 1.7    | 0.34     | \$430          | Tomokane         |
| THE WRIGHT WAGYU HPCFK0262            | 0.6    | 2.9   | 20     | 26    | 41   | 31     | 5     | -0.1    | 29     | -0.5    | 0.8   | -0.7   | 1.4    | 0.26     | \$428          | Kensei           |
| WESTHOLME ASH 14 ITOSHIGE [CC]        | -0.2   | 1.5   | 16     | 25    | 41   | 32     | 1     | 2       | 42     | 2.8     | 0.4   | 0      | 1.1    | 0.23     | \$423          | Kitayufuku       |
| WESTHOLME HIRAMICHI TSURU             | 1.9    | 4.9   | 23     | 43    | 49   | 50     | 5     | 2.1     | 35     | 0.3     | 1.8   | -0.6   | 1.2    | 0.31     | \$413          | Hatsuhi          |
| WESTHOLME MICHIYUHOU 2/31 [CC]        | 0      | 0.9   | 14     | 22    | 30   | 25     | 0     | 1.6     | 25     | 1.8     | 1.8   | -0.7   | 1.4    | 0.39     | \$410          | Tomokane         |
| SHER MURAI (AI) (ET)                  | -0.7   | 1.7   | 15     | 32    | 45   | 47     | 1     | 1       | 43     | -0.4    | 1.8   | -0.8   | 1      | 0.15     | \$401          | Okutani          |
| SUMO CATTLE CO ITOSHIGENAMI CO158 (AI | 1.8    | 0.1   | 3      | 5     | 4    | 8      | -7    | -0.9    | 17     | 2.1     | 3.6   | -1.2   | 1.5    | 0.39     | \$395          | Hikokura         |
| SUMO CATTLE CO MICHIFUKU F126 (AI)    | -1.4   | 1.9   | 12     | 11    | 20   | 16     | -6    | -0.8    | 17     | 3.1     | 2.4   | -0.8   | 1.5    | 0.41     | \$394          | Hikokura         |
| WESTHOLME ITOKITANAMI                 | -0.3   | 2.8   | 19     | 36    | 41   | 37     | 2     | 1.2     | 41     | -2.4    | 0.7   | -1.4   | 1      | 0.14     | \$392          | Hikokura         |
| WESTHOLME KITAITONAMI (AI) (ET)       | 1.1    | -2.9  | -5     | -13   | -25  | -15    | -16   | -0.8    | -16    | 2.2     | 3.6   | -2     | 2.2    | 0.39     | \$387          | Suzutani         |
| PEPPERMILL GROVE L0004 (AI)           | -0.2   | 1.7   | 8      | 10    | 12   | 12     | -3    | -0.6    | 11     | 2.8     | -1    | 0      | 1.6    | 0.3      | \$385          | Fukutomi         |
| WESTHOLME B0039 (AI) (ET)             | 0.9    | 2     | 14     | 22    | 30   | 26     | 2     | -0.7    | 28     | 0.8     | -0.8  | 0.3    | 1.2    | 0.22     | \$379          | Sekiyoshiro 3    |
| WESTHOLME H0317 [CC]                  | -1.4   | 2.7   | 19     | 37    | 50   | 46     | 5     | 0.9     | 46     | -1.3    | -0.8  | -0.4   | 0.8    | 0.15     | \$374          | Sekimasuokishida |
| MACQUARIE WAGYU F C1255 (AI) (ET)     | 0.6    | 0.5   | 5      | 11    | 5    | -2     | -4    | -1.8    | 13     | 2.3     | 6     | -1.5   | 1.5    | 0.46     | \$373          | Chisahime        |
| ASHWOOD F X014 (AI) (ET)              | -0.1   | 5.2   | 31     | 51    | 84   | 75     | 8     | 5.3     | 77     | 0.2     | 0     | 0.1    | 0.2    | 0.09     | \$372          | Namiko           |
| KURO KIN DM 100/3 (AI) (ET)           | 0.8    | 2.2   | 14     | 25    | 38   | 40     | 0     | -0.4    | 31     | 2.3     | -0.3  | 0.4    | 1.1    | 0.14     | \$371          | Hikokura         |
| SUMO CATTLE CO HIRASHIGETAYASU E148   | 2      | 4.8   | 29     | 39    | 52   | 83     | 0     | 1.8     | 45     | 0.3     | 0.9   | -0.1   | 0.8    | 0.32     | \$370          | Hikokura         |
| GOSHU KITAWAKI (AI)                   | -0.7   | -1.3  | 1      | 3     | -4   | -3     | -2    | -1.7    | -6     | 1.2     | 0.4   | -0.7   | 1.9    | 0.39     | \$369          | Suzutani         |
| TRENT BRIDGE F D103 (AI) (ET)         | 1.4    | 1.4   | 9      | 21    | 22   | 25     | 2     | 1.1     | 26     | 2.6     | 1.6   | -0.5   | 1.2    | 0.33     | \$368          | Hikokura         |
| SUMO CATTLE CO F K014                 | 0.6    | 1.4   | 11     | 17    | 22   | 26     | 0     | -0.1    | 30     | 0.2     | -1.9  | 0      | 1.1    | 0.2      | \$366          | Kensei           |
| SHER ZURUSHIGE B260 (AI) (ET)         | -0.4   | 1     | 9      | 18    | 18   | 23     | 7     | 0.1     | 30     | 3.7     | 1.4   | -0.1   | 1.1    | 0.33     | \$365          | Hikokura         |
| SHER F X254                           | -0.1   | 1     | 10     | 21    | 29   | 29     | -1    | 0.2     | 29     | -0.2    | 0.1   | -0.5   | 1.1    | 0.14     | \$363          | Hikokura         |
| WESTHOLME D0676 (AI) (ET)             | -0.1   | 1.4   | 13     | 22    | 46   | 46     | -3    | 0.3     | 33     | -1.5    | 0     | -0.8   | 1      | 0.16     | \$357          | Kitakazu         |
| DIAMOND BRAND ICHIRYUNO Z626 (ET)     | -0.1   | 1.4   | 12     | 16    | 25   | 22     | 5     | -0.2    | 27     | 4       | 2.5   | -0.3   | 1.1    | 0.18     | \$355          | Chivotake        |
| WESTHOLME NAMIYOSHI 4 (AI) (ET)       | 0.6    | -0.1  | 5      | 10    | 11   | 15     | -3    | 0.3     | 18     | 4       | 2.5   | -0.3   | 1.3    | 0.23     | \$355          | Chisahime        |
| WESTHOLME SHIGETERUDOI (AI)           | 1.1    | -2.4  | -3     | -7    | -19  | -14    | -4    | -0.9    | -14    | 0       | 2.5   | -1.8   | 2      | 0.4      | \$353          | Sekiyohou        |
| WESTHOLME H0232                       | -1.2   | 0.7   | 14     | 25    | 30   | 32     | 6     | 1.4     | 27     | -1.6    | 2.1   | -1.6   | 1.1    | 0.18     | \$351          | Moritakashige    |
| WORLD K'S KITAGUNUR                   | -0.3   | -3.6  | -13    | -20   | -42  | -23    | -7    | -0.5    | -23    | -0.3    | 0.5   | -2.2   | 2.2    | 0.36     | \$350          | Nakavuki         |
| WESTHOLME K1325                       | -0.8   | -2    | 3      | 5     | 3    | 3      | 1     | -0.5    | 3      | 3       | 2.3   | -0.7   | 1.6    | 0.33     | \$349          | Takakuni         |
| TRENT BRIDGE E F0115 (AI)             | 0.4    | -0.3  | 5      | 10    | 12   | 12     | -2    | -0.8    | 17     | 25      | 0.8   | -0.1   | 13     | 0.32     | \$349          | Hikokura         |
| GIN IO E W0088 (AI) (ET)              | 14     | 0.0   | 7      | 13    | 13   | 21     | -1    | -0.4    | 26     | 0.2     | 2     | -1     | 11     | 0.2      | \$348          | Hikokura         |
|                                       | 0.3    | -16   | -7     | -6    | -12  | 1      | -7    | -0.8    | 20     | 4 3     | -1.1  | 03     | 1.6    | 0.21     | \$347          | Chisahime        |
|                                       | -0.7   | -0.6  | 7      | 13    | 8    | 3      | -6    | -0.3    | 7      | 0.8     | 2.5   | -11    | 1.5    | 0.21     | \$346          | Sakae            |
|                                       | 0.7    | 0.0   | 0      | 18    | 20   | 25     | -1    | 17      | 15     | 0.8     | 0.6   | -0.5   | 1.3    | 0.27     | \$341          | Kitavufuku       |
| LONGEORD 005 (AI) (ET)                | -1.4   | -1.7  | 0      | 10    | 20   | 25     | -1    | -1.2    | -17    | 3.0     | 0.0   | 0.5    | 1.0    | 0.3      | \$341          | Suzutani         |
|                                       | -1.4   | -1.Z  | 70     | -3    | -/   | -0     | -4    | -1.1    | -12    | -1.6    | -1    | 0.4    | 1.9    | 0.42     | \$341          | Sakikurahima     |
|                                       | 1.2    | 4.1   | 28     | 52    | 100  | -17    | 5     | _1 _    | 54     | -1.0    | -0.9  | 11     | 1.0    | 0.09     | \$330<br>\$330 | Jakikuranime     |
|                                       | 1.5    | -1.5  | -2     | -/    | -12  | -12    | -2    | -1.5    | -8     | _0.0    | 2.2   | -1.1   | 1.8    | 0.2/     | \$339          | Chivotaka        |
|                                       | -0.4   | -0.2  | 17     | 77    | 20   | 77     | 2     | 0.1     | 19     | -0.6    | 0.5   | -1.3   | 1.2    | 0.13     | \$336          | Hikokurs         |
|                                       | -2.4   | 0.7   | 12     | 21    | 30   | 21     | 4     | 0.9     | 33     | -3      | -1.6  | -1     | 0.9    | 0.11     | \$338          | Hikokura         |
| MAYUKA D0427 (AI)                     | 0.5    | -1.2  | -2     | 0     | -8   | 6      | -5    | -0.4    | 10     | 0.1     | 1-1.6 | -0.7   | 1.4    | 0.27     | 2228           | нікокига         |

| Кеу              |
|------------------|
| Suzutani         |
| Chisahime        |
| Yuriko           |
| Shigehime        |
| JVP Kikuhana     |
| JVP Yasuyoshi    |
| Okutani          |
| Yamaketakafuji 3 |

#### 2017 WSU SIRE SUMMARY EDPS: MATERNAL LINES NOTED

| -        |                                | 1            | _    |      |      |        |      |        |      |                  |
|----------|--------------------------------|--------------|------|------|------|--------|------|--------|------|------------------|
| Reg #    | Name                           | Marbling EPD | Acc. | REA  | Acc. | Ex Fat | Acc. | HCW    | Acc. | Maternal Line    |
| FB2900   | Sanjiro 3                      | 1.01         | 0.49 | 1.5  | 0.51 | -0.02  | 0.32 | -25.25 | 0.75 | Suzutani         |
| FB2101   | JVP Fukutsuru-068              | 0.76         | 0.57 | 0.34 | 0.49 | 0.08   | 0.18 | -      | -    | Foundation Sire  |
| FB5072   | Bar R Yasafuku 42K             | 0.68         | 0.43 | 1.6  | 0.4  | 0      | 0.17 | -22.16 | 0.6  | Chisahime        |
| FB6185   | Bar R Ichiro 31R               | 0.68         | 0.37 | 0.79 | 0.39 | 0.1    | 0.18 | -4.87  | 0.59 | Yuriko           |
| FB6521   | BR Itomichi 4632               | 0.55         | 0.32 | 0.54 | 0.34 | 0.06   | 0.14 | 14.79  | 0.54 | Shigehime        |
| FB13915  | Bar R Saburo 53Y               | 0.54         | 0.29 | 2.27 | 0.3  | -0.06  | 0.13 | -45.94 | 0.52 | Chisahime        |
| FB8994   | Bar R Itoshigenami 48U         | 0.51         | 0.42 | 1.24 | 0.45 | 0.08   | 0.24 | -28.11 | 0.71 | Suzutani         |
| FB9861   | CHR Shigeshigetani 5           | 0.5          | 0.29 | 1.81 | 0.3  | 0      | 0.14 | 12.73  | 0.53 | JVP Yasuyoshi    |
| FB2501   | World K's Sanjirou             | 0.48         | 0.63 | 2.16 | 0.46 | -0.03  | 0.29 | -35.13 | 0.69 | Suzutani         |
| FB12691  | HOH Kiatani 25Y                | 0.46         | 0.45 | 0.91 | 0.47 | -0.02  | 0.26 | -3.76  | 0.63 | Suzutani         |
| FB9420   | Michiyoshi                     | 0.46         | 0.35 | 2.14 | 0.35 | 0      | 0.15 | -9.12  | 0.56 | Yuriko           |
| FB8895   | Bar R Yasufuku 34T             | 0.44         | 0.35 | 1.42 | 0.38 | -0.02  | 0.16 | -22.71 | 0.57 | Shigehime        |
| WSRFS064 | Overflow Mishashi              | 0.44         | 0.41 | -    |      | -      | -    | -      | -    | Okutani          |
| FB5663   | Bar R Sanjirou 4P              | 0.43         | 0.3  | 1.64 | 0.24 | -0.03  | 0.16 | -18.9  | 0.5  | Chisahime        |
| FB1615   | World K's Michifuku            | 0.42         | 0.65 | 1.88 | 0.54 | 0      | 0.3  | -      | -    | Foundation Sire  |
| FB5836   | BR Michifuku 1628              | 0.42         | 0.32 | -    | - 24 | -      | -    | -      | -    | Yuriko           |
| FB4934   | BR Kitateruyasudoi 9680        | 0.41         | 0.41 | 1.33 | 0.32 | 0.01   | 0.05 | -0.51  | 0.53 | Chisahime        |
| FB4954   | Bar R Takasuru 1 K             | 0.41         | 0.36 | 0.94 | 0.37 | 0      | 0.12 | 23.96  | 0.57 | Shigehime        |
| FB5267   | BR Kitateruyasudoi 0632        | 0.38         | 0.37 | 1.92 | 0.26 | 0.02   | 0.09 | -3.7   | 0.58 | Chisahime        |
| FB6135   | BR Kitateruyasudoi 0615        | 0.38         | 0.31 | 1.07 | 0.21 | 0.01   | 0.05 | 9.45   | 0.39 | JVP Kikuhana     |
| FB6152   | BR Michifuku 1604              | 0.38         | 0.36 | 2.07 | 0.37 | 0      | 0.14 | -3.3   | 0.6  | Shigehime        |
| FB5665   | Bar R 12P                      | 0.37         | 0.16 | 0.94 | 0.15 | 0.04   | 0    | -      | -    | Shigehime        |
| WSRFQ062 | Kaneyama                       | 0.36         | 0.47 | -    | -    | -      | -    | -      | -    | Suzutani         |
| FB14289  | Bar R Itomoritaka 42Z          | 0.35         | 0.43 | 1.51 | 0.45 | -0.01  | 0.25 | -17.05 | 0.67 | Chisahime        |
| FB6186   | Bar R Ichiro 32R               | 0.35         | 0.35 | 1.58 | 0.4  | 0.02   | 0.17 | -4.45  | 0.59 | Chisahime        |
| FB7713   | Bar R Dbl Suzutani 50T         | 0.35         | 0.47 | 2.01 | 0.48 | -0.02  | 0.26 | -11.95 | 0.72 | Suzutani         |
| FB7721   | Bar R Dbl Suzutani 59T         | 0.34         | 0.51 | 1.65 | 0.52 | -0.03  | 0.31 | -28.58 | 0.76 | Suzutani         |
| FB8177   | Bar R Shigeshigetani 30T       | 0.34         | 0.52 | 2.25 | 0.54 | -0.09  | 0.34 | 23.31  | 0.78 | Yuriko           |
| PB10308  | Dow Ranches 912                | 0.34         | 0.47 | 1.07 | 0.47 | 0.03   | 0.28 | 42.88  | 0.64 | Purebred         |
| FB14364  | Prescott Ranch OZO             | 0.33         | 0.42 | 1.56 | 0.43 | -0.07  | 0.22 | 25.81  | 0.61 | Yamaketakafuji 3 |
| PB13285  | Dow Ranches DWA33              | 0.33         | 0.44 | 1.38 | 0.45 | 0.01   | 0.24 | 53.01  | 0.62 | Purebred         |
| FB4938   | BR Kitateruyasudoi 9678        | 0.32         | 0.36 | -    | 12   | -      | 121  | -      | -    | JVP Kikuhana     |
| FB5055   | Bar R Fukutsuru 40K            | 0.32         | 0.38 | -    |      | -      | -    | -      | -    | Suzutani         |
| FB4960   | BR Fukutsuru 9670              | 0.31         | 0.36 | -    |      | -      |      | -      | -    | JVP Kikuhana     |
| FB5056   | Bar R Sanjirou 44K             | 0.31         | 0.39 | -    |      | -      | -    | -      | -    | Yuriko           |
| FB14074  | Prescott's Y-15                | 0.29         | 0.43 | 1.34 | 0.45 | 0      | 0.26 | 45.82  | 0.62 | Yamaketakafuji 3 |
| FB2892   | World K's Takazakura           | 0.27         | 0.6  | -    | 1.4  |        | 140  | -      | -    | Foundation Sire  |
| PB15642  | HOH 63Z                        | 0.27         | 0.42 | 0.29 | 0.43 | 0      | 0.23 | -14.95 | 0.6  | Purebred         |
| FB6008   | CHR Hirashige 170P             | 0.26         | 0.33 | 1.47 | 0.33 | 0.04   | 0.15 | 4.59   | 0.55 | Yuriko           |
| FB4937   | BR Kitateruvasudoi 9676        | 0.25         | 0.33 | -    | -    | -      | -    | -      | -    | JVP Kikuhana     |
| FB8376   | Westholme Hirashigetayasu 7278 | 0.25         | 0.38 | 1.02 | 0.38 | 0.06   | 0.19 | -3.28  | 0.58 | Takeharu         |
| FB8995   | Bar R Itoshigenami 49U         | 0.23         | 0.42 | 0.69 | 0.43 | 0.07   | 0.23 | -10.64 | 0.66 | Suzutani         |

## Your Breeding Goal Will Determine the Genetics You Need

- Crossbred Program: F1 (50% Wagyu), F2 (75% Wagyu), F3 (87.5% Wagyu)
- **Purebred Program**: F4+ (93% 99.9% Wagyu)
- Fullblood Program: 100% Fullblood Wagyu
- A combination of two or more



## **Establishing a Breeding Strategy:** What should I consider?

Current Resources:

Cattle, land, feed, infrastructure, etc.

#### Your Goals & Strengths:

i.e. Produce premium beef, strong cattle management team, etc.

#### • End/Target Market:

Target marble score, price point, who is your buyer?, etc.



## **Breeding Decisions: Basics**

- End market should dictate decisions: Work backwards
  - ≻ How will I get paid?
  - > What type of animal earns the most money in my payment system?
- What Traits Are Most Economically Important In Your System?
  - Scott de Bruin selected for Rib Eye Area, and now nets \$500 more per carcass with no additional investment
  - $\succ$  SCD/Tenderness have no economic value in a branded beef line, are not worth sacrificing other more valuable traits for
    - $\Box$  Don't mislead prospective buyer
- Successful Breeding is Optimizing Genetic Potential and Minimizing the Risk of Failure!
- Genetic Selection has the Greatest Opportunity for large ROI with the least \$ input!

#### www.InternationalWagyuBreeder.com



Marbling Tenderness Texture Taste

Calving Ease Fertility Polled Sires Rib Eye Area

Healthy Omega-3 MUFA Oleic Acid

# **Common Mating Decision Strategies**

- Random Mating: Turn bulls out breed anyone, no rhyme or reason
- Mating based on inbreeding coefficient
- Corrective Mating:
  - Dairy i.e. mating services
- Linebreeding: Consolidation of desirable traits
- Blanket AI or Natural Service: One sire on all cows
- Terminal Mating:
  - Sexed male semen
  - Carcass traits emphasized
  - No consideration to maternal traits, etc.
- Replacement AI:
  - Sexed female semen –
  - Focused on key replacement heifer traits
  - Less consideration to carcass traits











## **Quote**: Established Breeder

"If I use this bull what is the risk."

-Scott De Bruin, Mayura Station

• "Don't be fooled by Cheap or Inferior Genetics, they will have long lasting effects in your herd."

-Scott De Bruin 2018 AUS Wagyu Edge Presentation

• Mayura has its own Branded Beef line & has bred leading sires such as Mayura Itoshigenami JNR, Mayura Jackpot, Mayura Admiral A0113, etc.





## Why Use Proven Genetics??

### • First What is Proven?

- Gold Standard: Performance recorded data, Objective 3<sup>rd</sup> Party Carcass Data, Breedplan data backed proof, etc.
- Next: inhouse performance & carcass data
- Last: Opinion i.e. "I killed some and they looked great"

#### Consistency & Reliability of Outcomes:

- Risk management
- In reality a son is rarely better than his sire/father!
- Need a saleable carcass



## Why Use Proven Genetics??

### • In reality a son is rarely better than his sire/father!

- > Following is the effort that it takes to breed a top Holstein bull:
  - There are 10,000,000 Holstein cows in the USA
  - Of these **4,000,000** are milk fat and protein recorded
  - Of these **827,500** are registered
  - Of these **8,275** are elite cows (top 1%)
  - Of these **3,200** are classified as V.G. 85 or better (type assessment)
  - Of these 1,600 have V.G. maternal sire and V.G. dams
  - + From these,  $\mathbf{600}$  sons enter AI centres
  - After proving their daughters in a minimum of **30 herds** and **70 daughters** and minimum **reliability of 75**%
  - The top 10% return to service = **60 bulls** for use in USA herds
  - 1% or **6 bulls** become elite sires to sire the next generation
  - It takes a **minimum of 6 years** from selection to a proven sire
- How hard do you think it is to breed a genetically superior Wagyu bull?

Source:

http://blackmorewagyu.com/commercial-wagyu-farming

## "Cheap" or Inferior Genetics

 "Don't be fooled by Cheap or Inferior Genetics, they will have long lasting effects in your herd." – Scott de Bruin 2018 AUS Wagyu Edge Presentation

### Long Lasting Effects:

- Their Steers 3yrs+ from conception to harvest
- Their Daughters Replacements: 3yrs+ from conception until calving
- \* Their Daughters Daughter's -5 yrs + if retained for breeding
- **Directly Impact Profitability**: Limit the Potential Performance of Animals



### Genetic improvement, measured

- Importance of genetic improvement of female lines
- Improvement in cow herd
- HSCW lifted by 7.1%
- EMA at 10/11<sup>th</sup> rib increased by 7.4%
- Ausmeat ave marble score increased by 17%
- Age at Slaughter reduced by 24%

| Cow Year Prefix | z     | A      | в     | c I   | D     | E     | F      | G      | н      |
|-----------------|-------|--------|-------|-------|-------|-------|--------|--------|--------|
| AVE HSCW        | 406   | 407.19 | 410   | 415   | 412.6 | 418   | 420.75 | 437.4  | 435    |
| AVE EMA         | 94.45 | 93.56  | 93.79 | 92.92 | 94.62 | 96.34 | 98.39  | 100.45 | 101.43 |
| AVE MS          | 7.45  | 7.88   | 7.75  | 7.77  | 8.07  | 8.05  | 7.75   | 8.28   | 8.73   |

Excellence without Compromise





### The **Danger** of Breeding with Indexes, Single Traits, Etc.

- Potential Loss of Traits
  - Example: Holstein Dairy Cattle
- Potential to Amplify Weaknesses
  - Example: Guernsey Dairy Cattle
- No Corrective Mating
- Inbreeding not controlled

# **Donor Selection**

### • What Should I Consider?

- Carcass Data (if available)
- Genomics
- Pedigree
- Phenotype
- Genotype (recessives, SCD, etc.)

# Mating My Donors

- What Should I Consider?
  - Carcass Data (if available): Strengths, Weaknesses
  - Genomics: Weaknesses, Strengths
  - **Pedigree**: Inbreeding, Complimentary genetics, Linebreeding
  - Phenotype: Strength, Faults/Corrections needed
  - Genotype: Recessives, Exon 5, SCD, etc.
- Sire Factors:
  - Price
  - Availability
  - Reliability
  - Above factors



Mayura L0010



World K's Michifuku



TF Itohana2

## **Proper Strategies for Utilizing Genomics:**

### • Whole Herd:

- Identify the top and bottom of the herd
- Donors & Recipients

### • Within Herd:

- Individual Selection & Decision Making
- Comparison of Siblings & Flush mates
- Identify Individual Strengths/Weaknesses

### National/International Level:

- Top Sire Selection
- Top Females Selectin
- Buy or Acquire new or complimentary genetics



## The Bright Future of Wagyu

- Increasing Global Demand for Premium Beef
- Increasing Buying Power of Global Middle Class
- Genomics/ GEBVs
  - Reducing DOF
  - Continued Progress in Carcass Traits
- Increased Availability of Elite Semen & Genetics
- Strong Diversity of Genetics
- EBVs Make Pedigree Reading Easier





USA • AUSTRALIA • SOUTH AFRICA



## THANK YOU!!

### 1) AS A BREEDER/FEEDER IT IS YOUR JOB/RESPONSIBILITY TO MAKE DECISIONS AND FIGURE IT OUT.

2) AFTER ALL, IT IS YOUR INVESTMENT!

