

WNK81MA Diffused Silicon Pressure Transmitter

WNK81MA pressure transmitter is a high stable pressure transmitter by using specific ASIC signal conditioning chip and high performance SS316L diaphragm diffused silicon pressure sensor. The internal specific ASIC integrated circuit transforms milivolt signal to standard voltage, current or frequancy signal. It can easily connect with PC interface card, controlling instruments, smart gauges or PLC. It is compact designed, light and stainless steel sealing structure, which enable it capability of working in corrosive environment.

Application

KT ĐẠI NGUYỄN PHÁT

WNK81MA is solution for below applications:

- Pressure measurement of gas, vapor or liquid in various areas;
- •Liquid level, volume or mass measurement;
- Integrated in a variety of user-defined solutions; com

•Smart water and gas management system, smart fire controlling, automotive electronics controlling, air compressor, HVAC, pump, valve and etc;

Features

•Specific high performance ASIC conditioning circuit;

- •Diffused silicon pressure sensor;
- •Stainless steel, aluminium and copper housing;
- •0.5...4.5V, 4...20mA, 1...5V and 0...10V analog output or I²C and SPI digital output;
- •Fast respond, no hysteresis ;
- •Various process thread or other customization port acceptable;
- •Accurate, stable and reliable

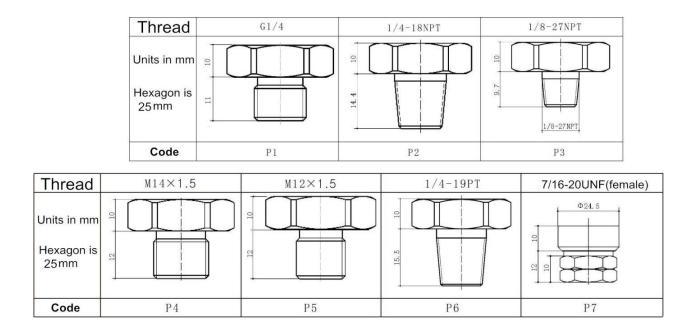
Specifications

Performance

Input						
Pressure type	Gauge pressure, sealing pressure, absolute pressure					
Measuring range	-0.1~60MPa					
Output						
Analog	0.54.5V, 420mA, 15V, 010V					
Analog	I ² C, SPI					
Accuracy						
0.2%	Linearity, hysteresis, repetitiveness: <0.2% sensor full range					
0.5%	Linearity, hysteresis, repetitiveness: $<$ 0.5% sensor full range					
Overload						
2.5X pressure sensor full scale						
Housing Info.						
Housing Material	SS 304, Cu, Al					
Wetting Material	SS316L IP67					
Ingress Protection	IP67					
	TRAINE					

Ingress Protection	IP67
Power Supply	CÔNG TY TNHH MTV TM KT ĐẠI NGU TLA
	ONG TI 155 comphat.com
Supply voltage	5V \24VDCregulated power supply,
Supply voltage	5V supply voltage effect: min.3V/max.5.5V
effect	ullet For 0.54.5V output sensor, voltage has no effect for linearity and temperature compensation,
	voltage is proportional to LRV and FRV.
	● For I ² C and SPI digital output sensor, voltage has no effect for linearity, LRV, URV and compensation
	temperature.
	24V supply power effect: min.9V/max30V
	● For 420mA current output sensor, voltage has no effect for linearity, LRV, URV and compensation
	temperature.

Operating condition: Temperature


Environment	-40 to 85 °C
Storage	-45 to 85℃

Electrical connection

Packard M12*4P		Cable Outlet Mini DIN43650		GX12-3						
3 (°) 49 (\$) 40 (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$)				Φ24.5 25.5		15,5 Φ Φ Ψ φ Ψ φ Ψ φ Ψ φ Ψ φ Ψ φ Ξ				
C1			C2		c	3		24	c	5
Current	Voltage	Current	Voltage	12C	Current	Voltage	Current	Voltage	Current	Voltage
(2 wire)	(3 wire)	(2 wire)	(3 wire)	(4 wire)	(2 wire)	(3 wire)	(2 wire)	(3 wire)	(2 wire)	(3 wire)
Pin1: Supply V+ Pin2: Output Pin3: N/A	Pin1: Supply V+ Pin2: Common Pin3: Output	Pin1:Supply V+ Pin2: Output Pin3: N/A Pin4: N/A	Pin1:Supply V+ Pin2: Output Pin3:Common Pin4:N/A	Pin2: SCL	Green: Output	Red: Supply V+ Green:Common Yellow: Output	Pin2: Output	Pin1: Supply V+ Pin2: Common Pin3: Output	Pin1: Supply V+ Pin2: Output Pin3: N/A	Pin1: Supply V+ Pin2: Common Pin3: Output

CÔNG TY TNHĩ MUN 0904376755 Process connection⁰¹@dainguyenphat.com

Ordering Info

Model	Product description						
WNK81MA	Pressure Transmitter						
CODE	Pressure Type						
А	Absolute Pressure						
G	Gauge pressure						
S	Sealing pressure						
CODE	Accuracy						
2	0.2%FS - Not available						
5	0.5%FS						
CODE	Sensor range						
А	0.1bar	E	10 bar				
В	0.5 bar	F	50 bar				
С	1 bar G 100 bar						
D	5bar	Н	600 bar				
Other ranges are in developing							
CODE	Output						
1	0.54.5V DC						
2	420mA						
3	Output 0.54.5V DC 420mA I ² C SPI 010V DC bat COM						
4	SPI TNHH MI						
5	0. IOV DC						
6	SPI 0).10V DC 1.5V DC Customization						
Х	Customization						
CODE	Electrical connector	Electrical connector					
C1	Packard	Packard					
C2	M12						
C3	Cable outlet (pls put down cable length, such as 01 for 1 meters)						
C4	Mini DIN43650						
C5	GX12-3						
СХ	Customization						
CODE	Process connector						
P1	G1/4	Р5	M12×1.5				
P2	1/4-18NPT	P6	1/4-19PT				
Р3	1/8-27NPT P7 7/16-20UF(female)						
P4	M14×1.5 PX Customization						
Pls contact WNK for other process connectors							
Typical ordering code: WNK81MA GC2 C1 P1							
WNK81MA GC2 C310 P1C3 direct cable outlet length is 1 meter.							