

Working Paper No. 19-24

Autoencoder Asset Pricing Models

Shihao Gu
University of Chicago Booth School of Business

Bryan Kelly

Yale University, AQR Capital Management, and NBER

Dacheng Xiu
University of Chicago Booth School of Business

All rights reserved. Short sections of text, not to exceed two paragraphs. May be quoted without
Explicit permission, provided that full credit including  notice is given to the source.

This paper also can be downloaded without charge from the

Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=3335536

Electronic copy available at: https://ssrn.com/abstract=3335536

http://ssrn.com/abstract=3335536

Autoencoder Asset Pricing Models∗

Shihao Gu

Booth School of Business

University of Chicago

Bryan Kelly

Yale University, AQR Capital

Management, and NBER

Dacheng Xiu

Booth School of Business

University of Chicago

September 30, 2019

Abstract

We propose a new latent factor conditional asset pricing model. Like Kelly, Pruitt, and Su

(KPS, 2019), our model allows for latent factors and factor exposures that depend on covariates

such as asset characteristics. But, unlike the linearity assumption of KPS, we model factor

exposures as a flexible nonlinear function of covariates. Our model retrofits the workhorse un-

supervised dimension reduction device from the machine learning literature—autoencoder neural

networks—to incorporate information from covariates along with returns themselves. This deliv-

ers estimates of nonlinear conditional exposures and the associated latent factors. Furthermore,

our machine learning framework imposes the economic restriction of no-arbitrage. Our autoen-

coder asset pricing model delivers out-of-sample pricing errors that are far smaller (and generally

insignificant) compared to other leading factor models.

Key words: Stock returns, conditional asset pricing model, nonlinear factor model, machine

learning, autoencoder, neural networks, big data

∗Disclaimer: The views and opinions expressed are those of the authors and do not necessarily reflect the views of
AQR Capital Management, its affiliates, or its employees; do not constitute an offer, solicitation of an offer, or any
advice or recommendation, to purchase any securities or other financial instruments, and may not be construed as such.

1

Electronic copy available at: https://ssrn.com/abstract=3335536

1 Introduction

A recent asset pricing literature has emerged challenging the “anomaly” view of characteristic-based

asset return prediction. The anomaly view suggests that certain asset attributes have the power

to forecast returns above and beyond the expected return variation warranted as compensation for

aggregate risk exposures. Kelly, Pruitt, and Su (KPS, 2019) provide empirical evidence that these

so-called anomaly asset characteristics in fact proxy for unobservable and time-varying exposures to

risk factors, and shows that characteristics contain little (if any) anomalous return predictability once

their explanatory power for factor exposures has been accounted for. In other words, characteristics

appear to predict returns because they help pinpoint compensated aggregate risk exposures.

The asset pricing model proposed by KPS assumes that individual returns ri,t possess a K-factor

structure:

ri,t = β(zi,t−1)′ft + ui,t. (1)

The factors ft are treated as latent, and the K× 1 conditional factor exposure β(zi,t−1) is a function

of an P × 1 vector of asset characteristics zi,t−1, where P is potentially high dimensional and strictly

greater than K. KPS make the simplifying assumption that the map from P characteristics to K

betas is linear:

β(zi,t−1)′ = z′i,t−1Γ, (2)

which leads to an especially tractable estimation strategy for both the beta function and the latent

factors.

There are, nonetheless, no obvious theoretical or intuitive justifications for this convenient linear-

ity assumption. To the contrary, there are many reasons to expect that this assumption is violated.

Essentially all leading theoretical asset pricing models predict nonlinearities in return dynamics as

a function of state variables; Campbell and Cochrane (1999), Bansal and Yaron (2004), and He

and Krishnamurthy (2013) are prominent examples. Theory also predicts complex dynamics in fac-

tor risk exposures, as shown for example in the general equilibrium model of Santos and Veronesi

(2004). Moreover, Pohl et al. (2018) show that linear approximations to nonlinear models can lead

to considerable errors in the model predictions for the magnitude of the equity premium or return

predictability.

We generalize the factor model in (1) using models from the autoencoder family. Autoencoders

are workhorse dimension reduction models in the field of machine learning. They can be thought of as

a nonlinear, neural network counterpart to principal components analysis (PCA). Both autoencoders

and PCA are unsupervised methods—they attempt to model the full panel of asset returns using

only the returns themselves as inputs. The statistical content of both methods is a bottleneck that

enforces a parsimonious representation of the return data set. The PCA bottleneck uses a linear

mapping from N individual returns into K � N factors, while autoencoders allow for a nonlinear

mapping through neural networks.

Neither method, in their standard form, uses information in covariates to guide dimension re-

duction. KPS propose “instrumented” PCA (IPCA), which allows the information in covariates to

2

Electronic copy available at: https://ssrn.com/abstract=3335536

guide the reduction via equation (2) but remains reliant on the linear model formulation.

In this paper, we introduce a new conditional autoencoder model for individual stock returns

which, like IPCA, allows covariates to help guide dimension reduction. Our autoencoder uses a

neural network-based compression of returns into a low-dimensional set of factors, allowing stock

characteristic covariates to have nonlinear and interactive effects on factor exposures. At the same

time, we make economically guided choices in structuring the autoencoders, imposing that the factors

are interpretable as portfolios, i.e., that they are linear combinations of individual equity returns.

Ultimately, ours is a nonlinear conditional asset pricing model, where the nonlinearities manifest

through a flexible neural network mapping of covariates into betas.

Our empirical analysis of a 60-year history of individual equity returns in the US shows that our

autoencoder model dominates observable factor models in the tradition of Fama and French (1993)

that use static factor betas, as well as the more sophisticated models such as the linear conditional

beta specification of KPS. We follow KPS and compare models based on two statistical criteria. The

first is a model’s “total R2,” which describes the fraction of variation in the full panel of returns

explained by contemporaneous factor realizations. This measures the model’s ability to describe the

riskiness, or joint return covariation, in the set of assets. The second criterion is a model’s predictive

R2, which describes the fraction of return variation described by lagged conditional betas. This

measures a model’s ability to describe differences in risk compensation across assets.

We conduct all of our comparisons on a purely out-of-sample basis. Focusing, for example, on

three-factor specifications, we find that monthly total R2 from our preferred autoencoder, from IPCA,

and from the Fama-French three-factor model are 12.6%, 13.3%, and 3.4%, respectively, while the

predictive R2 is 0.50% and 0.23% for the autoencoder and IPCA, and is negative for the Fama-French

model.

We also compare the relative performance of models in economic terms. In particular, we form

long-short decile spread portfolios directly sorted on out-of-sample stock return predictions from

each model. Portfolios based on the three-factor autoencoder, IPCA, and Fama-French models earn

annualized Sharpe Ratios of 2.16, 1.26, and -0.40, respectively, when portfolios are equal weighted.

For value weighted portfolios, the respective Sharpe ratios are 0.92, 0.59, and -0.69. In summary,

our conditional autoencoder model outperforms its leading competitors by a wide margin.

We contribute to a burgeoning literature using high dimensional statistical methods, including

machine learning techniques, to analyze the cross section of risk and return in financial markets.

The leading example in this vein is Gu, Kelly, and Xiu (GKX, 2019), who conduct a comparison

of machine learning methods for predicting the panel of individual US stock returns. That paper

outlines a new research agenda marrying machine learning with the study of asset risk premia.1

GKX focus on supervised prediction models but take no stand on the risk-return tradeoff. In other

words, their approaches do not constitute asset pricing models. In this paper, we develop asset

pricing models using unsupervised and semi-supervised learning methods that model the risk-return

tradeoff explicitly. Autoencoders are critical tools in the machine learning suite that have enjoyed

1Other related asset pricing papers include Feng et al. (2019b), Freyberger et al. (2017), Kozak et al. (2017), Feng
et al. (2019a), Giglio and Xiu (2018), and Gagliardini et al. (2016), among others.

3

Electronic copy available at: https://ssrn.com/abstract=3335536

success in wide range of practical applications.2 Our contribution links the methodology literature

on autoencoders with the large finance literature on factor pricing models.

KPS, who focus specifically on conditional factor pricing models, is the closest predecessor to our

analysis.3 They unify the literature on linear latent factor APT models (starting from Ross, 1976)

with the literature on characteristic-based “anomaly” return prediction. One of our contributions is

to extend their work by allowing for a general nonlinear specification of the return factor structure.

To do so, we augment the traditional autoencoder by embedding a neural network in the specifica-

tion of conditional betas, which allows characteristics to determine risk exposures through flexible

nonlinearities and interactions, generalizing the linear “instrumented” beta specification of KPS.4

Another related predecessor is Kozak et al. (2018), who propose an approach to factor analysis

for asset pricing using principal components from “anomaly”-sorted portfolios (reviving an earlier

literature on this approach exemplified by Chamberlain and Rothschild, 1983; Connor and Korajczyk,

1986). This approach, however, fails to explain the risk-return tradeoff when the test assets are

individual stocks. Our conditional autoencoder model does not suffer this shortcoming. It accurately

describes the risk and expected return successfully for individual stocks as well as for anomaly or other

stock portfolios. More broadly, we show that our conditional autoencoder formulation is a valid asset

pricing model. It is equivalent to a nonparametric model for a stochastic discount factor, and imposes

the economic restriction of no-arbitrage pricing. One illustration of the conditional autoencoder’s

empirical success as a pricing model is that it correctly prices so-called anomaly portfolios with small

and insignificant pricing errors. The pricing errors in our model, which are measured on a purely

out-of-sample basis, are a fraction of the magnitude of those from traditional Fama-French factor

models.

The rest of the paper is organized as follows. In Section 2, we set up the model and present our

methodology. Section 3 presents our empirical studies. Section 4 provides Monte Carlo simulations

that demonstrate the performance of our procedures. Section 5 concludes. The appendix contains

mathematical proofs and detailed algorithms.

2 Methodology

In this section we first describe standard autoencoders, then we introduce our new conditional au-

toencoder that leverages covariates as conditioning information. We highlight parallels between

autoencoder models and widely studied factor pricing models, and illustrate that linear factor mod-

2See, for example, Gallinari et al. (1987), Bourlard and Kamp (1988), Hinton and Zemel (1994), and Goodfellow
et al. (2016).

3A related contemporaneous paper that builds on the instrumented beta approach of KPS using kernel methods is
Kozak (2019).

4Our approach to autoencoder learning for factor models is also related to work relying on kernel or sieve approxi-
mations, e.g., Connor et al. (2012) and Fan et al. (2016). Recent work also considers machine learning tools for factor
model estimation, such as nuclear norm penalization (Bai and Ng, 2017; Moon and Weidner, 2018) and partial least
squares (Kelly and Pruitt, 2015). Our autoencoder approach allows for flexible (and conditional) model structures, and
uses stochastic gradient descent to manage the computational complexity in the resulting big data and high parameter
setting. That said, a thorough theoretical analysis on the statistical properties of this alternative learning method is
left for future research.

4

Electronic copy available at: https://ssrn.com/abstract=3335536

Figure 1: Standard Autoencoder Model

Input layer

Output layer

Hidden layer(s)

...

...

...

en
co
de
r

de
co
de
r

Note: This figure describes a standard autoencoder with one hidden layer. The output and input layers are
identical, while the hidden layer is a low dimensional compression of inputs variables into latent factors, which
can be expressed as weighted linear combinations of input variables.

els (and their associated PCA and IPCA estimators) are a special case of autoencoders. Finally, we

describe our autoencoder estimation approach.

2.1 Standard Autoencoder

An autoencoder is a special neural network in which the outputs attempt to approximate the input

variables. The input variables pass through a small number of neurons in the hidden layer(s),

forging a compressed representation of the input (encoding), which is then unpacked and mapped to

the output layer (decoding). Because no other variables are used in this model besides the inputs,

an autoencoder is an unsupervised learning device.

Neural network models (including autoencoders) with L hidden layers can be written using the

following recursive formula. Let K(l) denote the number of neurons in each layer l = 1, ..., L.

Define the output of neuron k in layer l as r
(l)
k , and the vector of all outputs for this layer as

r(l) = (r
(l)
1 , . . . , r

(l)

K(l))
′. In each hidden layer, inputs from the previous layer are transformed according

to a nonlinear activation function g(·) before being passed to the next layer. To initialize the network,

the input layer uses the cross section of returns as raw predictors, r(0) = r = (r1, . . . , rN)′. The

recursive output formula for the neural network in layer l > 0 is then

r(l) = g
(
b(l−1) +W (l−1)r(l−1)

)
, (3)

where W (l−1) is a K(l) × K(l−1) matrix of weight parameters, and b(l−1) is a K(l) × 1 vector of

so-called bias parameters. Throughout this paper we use as our nonlinear activation function the

rectified linear unit (ReLU), g(y) = max(y, 0).5 The number of parameters in each hidden layer l is

5Without ambiguity, we regard g(y) as an entry-wise vector-valued function whose length is equal to that of its

5

Electronic copy available at: https://ssrn.com/abstract=3335536

K(l)(1 +K(l−1)). The final output of the autoencoder,

G(r, b,W) = b(L) +W (L)r(L), (4)

which shares the same dimension as the input, is employed to approximate r itself. Figure 1 illustrates

the architecture of a simple linear autoencoder with a single hidden layer.

2.1.1 Static Linear Factor Models as a Special Case

The autoencoder is a dimension reduction device. Its objective is to learn a low dimensional repre-

sentation of the inputs by passing them through a central hidden layer with many fewer neurons than

the dimension of r. It thus shares the same spirit as PCA, but is more flexible in that it allows for

nonlinear compression of the inputs. In this section we explore the connection between autoencoders

and PCA.

In the finance literature, some of the most commonly studied models of asset returns assume a

linear latent factor specification with static loadings:6

rt = βft + ut, (5)

where rt is a vector of returns in excess of the risk free rate, ft is a K × 1 vector of factor returns,

ut is a N × 1 vector of idiosyncratic errors (uncorrelated with ft), and β is an N × K matrix of

factor loadings. This resembles that standard factor model setting whose econometric properties are

studied in Bai and Ng (2002), Bai (2003), and Giglio and Xiu (2018), among others.

Stacking the time series vectors, the matrix form of the factor model is

R = βF + U.

Following Stock and Watson (2002) and Bai and Ng (2002), a factor model can be estimated with

PCA on the covariance matrix of returns.7 Equivalently, a singular value decomposition (SVD) of

R̄, the demeaned returns of R, yields estimates of factors and factor loadings directly.8 That is,

R̄ = P̂ΛQ̂+ Û , (6)

where P̂ and Q̂ are, respectively, the N ×K and K × T matrices of left and right singular vectors,

and Û is a N × T matrix of residuals.

input vector y.
6For example, Connor and Korajczyk (1986) and Kozak et al. (2017).
7A subtle consideration in estimating asset pricing models with PCA is choosing whether to impose the zero

intercept no-arbitrage restriction. Imposing the restriction amounts to applying PCA to the uncentered second moment
matrix of excess returns, rather than to the (centered) covariance matrix.

8This approach is applicable with any (fixed) number of factors K. An extensive literature studies methods for
choosing K for a large N and large T panel, including Bai and Ng (2002), Hallin and Lǐska (2007), Amengual and
Watson (2007), Alessi et al. (2010), Kapetanios (2010), Onatski (2010), Ahn and Horenstein (2013), and Aı̈t-Sahalia
and Xiu (2017). Throughout the paper, we will treat K as a tuning parameter, which in principle can be estimated
via cross validation.

6

Electronic copy available at: https://ssrn.com/abstract=3335536

The machine learning literature has long recognized the close connection between autoencoders

and PCA (e.g., Baldi and Hornik, 1989) and, by extension, between autoencoders and latent factor

asset pricing models. When the autoencoder has one hidder layer and a linear activation function,

it is equivalent to the PCA estimator for linear factor models described above.

More specifically, we can write the one-layer, linear autoencoder with K neurons as:

rt = b(1) +W (1)(b(0) +W (0)rt) + ut, (7)

where W (0), W (1), b(1) and b(0) are K × N , N × K, N × 1, and K × 1 matrices of parameters,

respectively. The model can be estimated by solving the following optimization problem:

min
b,W

T∑
t=1

∥∥∥rt − (b(1) +W (1)(b(0) +W (0)rt)
)∥∥∥2

= min
b,W

∥∥∥R− (b(1)ι′ +W (1)(b(0)ι′ +W (0)R)
)∥∥∥2

F
, (8)

where the F subscript denotes the Frobenius norm, and ι is T × 1 vector of 1s. The next proposition

establishes the link between this simple autoencoder and the PCA estimator.

Proposition 1. The optimal solution to (8) is given by,

Ŵ (1) = P̂A, Ŵ (0) = (Ŵ (1)′Ŵ (1))−1Ŵ (1)′, b̂(1) = r̄ − Ŵ (1)b̂(0) − Ŵ (1)Ŵ (0)r̄, b̂(0) = a,

where A is any K×K non-singular matrix, a is a constant scalar, r̄ is the sample average of rt, and

P̂ is from equation (6).9

Proposition 1 shows that the linear autoencoder with a hidden layer of K neurons is a linear factor

model with K latent factors. The estimated factor loadings are Ŵ (1), and the estimated factors are

Ŵ (0)R. These span the same spaces as P̂ and Q̂ in equation (6). Needless to say, autoencoder

models are more general than the linear factor model as they allow for dimension reduction via

layers of nonlinear transformations of rt. This additional flexibility has proven valuable in a variety

of applications outside of finance. For example, Hinton and Salakhutdinov (2006) show that deep

autoencoders handily outperform shallow or linear autoencoders for image recognition.

2.2 Extending the Autoencoder Model to Include Covariates

The static linear factor model has been an extremely productive tool for studying asset returns, but

recent research highlights a number of its limitations. The distribution of asset returns is well known

to be highly time-varying, and static factor models abstract from a wealth of relevant conditioning

information. For example, KPS demonstrate large empirical gains from incorporating asset-specific

covariates in the specification of factor loadings. Not only do these covariates improve the estimation

9We provide a proof for the equivalence between the standard (centered) PCA and the linear autoencoder (with
biases). The equivalence in the uncentered case is similar.

7

Electronic copy available at: https://ssrn.com/abstract=3335536

Figure 2: Conditional Autoencoder Model

...

Beta	Output	Layer
										(NxK)

Input	Layer	1	
								(NxP)

Hidden	Layer	(s)

...

(factor)(beta)

(Px1)

Factor	Output	Layer
															(Kx1)

Dot	Product

Output	Layer	
								(Nx1)

...

...

...
...

...g g g g

g g g g
...g g g g

...
...

...

N

P

N

K

... (Nx1)

OR

Input	Layer	2

Note: This figure presents the diagram of an autoencoder augmented to incorporate covariates in the factor
loading specification. The left-hand side describes how factor loadings βt−1 at time t − 1 (in green) depend
on firm characteristics Zt−1 (in yellow) of the input layer 1 through an activation function g on neurons of
the hidden layer. Each row of yellow neurons represents the P × 1 vector of characteristics of one ticker. The
right-hand side describes the corresponding factors at time t. ft nodes (in purple) are weighted combinations
of neurons of the input layer 2, which can either be P characteristic-managed portfolios xt (in pink) or N
individual asset returns rt (in red). In the latter case, the input layer 2 is exactly what the output layer aims
to approximate, which is the same as a standard autoencoder.

of loadings, they also indirectly improve estimates of the latent factors themselves. Their model

formulation amounts to a combination of two linear models: One linear specification for the latent

factors, shown in equation (1), and another linear specification for conditional betas, shown in (2).

While the standard autoencoder in (5) is a powerful tool for dimension reduction, it shares

the same limitation as PCA that it does not leverage conditioning variables to identify the factor

structure, and instead relies only on returns themselves. To overcome this limitation, we design a new

neural network structure by augmenting the standard autoencoder model to incorporate covariates.

Figure 2 illustrates the basic structure of our conditional autoencoder. The left side of the

network models factor loadings as a nonlinear function of covariates (e.g., asset characteristics),

while the right side network models factors as portfolios of individual stock returns. At the highest

level, the mathematical representation of the model is identical to equation (1):

ri,t = β′i,t−1ft + ui,t. (9)

The first key difference between our model and IPCA is in the formulation of conditional betas. We

specify the K × 1 vector βi,t−1 as a neural network model of lagged firm characteristics, zi,t−1. The

8

Electronic copy available at: https://ssrn.com/abstract=3335536

recursive formulation for the nonlinear beta function is:

z
(0)
i,t−1 = zi,t−1, (10)

z
(l)
i,t−1 = g

(
b(l−1) +W (l−1)z

(l−1)
i,t−1

)
, l = 1, ..., Lβ, (11)

βi,t−1 = b(Lβ) +W (Lβ)z
(Lβ)
i,t−1. (12)

Equation (10) initializes the network as a function of the baseline characteristic data, zi,t−1. The

equations in (11) describe the nonlinear (and interactive) transformation of characteristics as they

propagate through hidden layer neurons.10 Equation (12) describes how a set of K-dimensional

factor betas emerge from the terminal output layer. This formalizes the left side of Figure 2.

On the right side of Figure 2, we see an otherwise standard autoencoder for the factor specification.

The recursive mathematical formulation of the factors is:

r
(0)
t = rt, (13)

r
(l)
t = g̃

(
b̃(l−1) + W̃ (l−1)r

(l−1)
t

)
, l = 1, ..., Lf , (14)

ft = b̃(Lf) + W̃ (Lf)r
(Lf)
t . (15)

Equation (13) initializes the network with the vector of individual asset returns, rt. Equations in

(14) transform and compress the dimensionality of returns as they propagate through hidden layers.

Equation (15) describes the final set of K factors at the output layer. Throughout our empirical

analysis, we assume a single linear layer on the factor network, that is, Lf = 1, in that this structure

maintains the economic interpretation of factors: they are themselves portfolios (linear combination

of underlying asset returns).

At last, the “dotted operation” multiplies the N ×K matrix output from the beta network with

the K × 1 output from the factor network to produce the final model fit for each individual asset

return.

In practice, using the full cross section of individual stock returns in the factor network faces two

daunting obstacles. The first is that the number of individual firms in our sample is roughly 30,000,

which means that the number of weight parameters in the factor network can be astronomical, while

the number of time series observations in our data set is a mere 720. Second, the panel is extremely

unbalanced—in any given month, we have on average around 6,000 non-missing stocks, thus most of

the stock-level weight parameters would require estimation from very few time series observations.

We therefore make one key modification to the factor side of the model that massively reduces the

model’s computational cost up front. Instead of initializing the network with the full cross section

10Equations (11) and (14) assume the convention that z
(l)
i,t−1 and r

(l)
t are vectors that stack the output from all

neurons in the lth layer.

9

Electronic copy available at: https://ssrn.com/abstract=3335536

of stock returns in equation (13), we instead initialize it with a set of portfolios, defined as

xt = (Z ′t−1Zt−1)−1Zt−1rt. (16)

This P × 1 vector is a set of portfolios that are dynamically re-weighted (or “managed”) on the

basis of stock-level characteristics. The jth element of xt is akin to a return on a long-short portfolio

constructed by sorting stocks based on the jth characteristic. Initializing the model with r
(0)
t = xt

accomplishes three things at once. First, it performs a preliminary reduction of the data that

eliminates tens of thousands of parameters from the model. This preprocessing step in (16) can be

viewed as adding a new initial layer to the factor neural network that dynamically (as a function

of Zt−1) collapses the N returns, rt, down to P neurons, xt, before proceeding with the rest of

the network propagation. Second, it sidesteps issues of panel incompleteness, since portfolios are

formed from the subset of stocks that are non-missing at each point in time. Third, it connects

the factor autoencoder to the finance literature on characteristic-managed portfolios, including KPS,

Feng et al. (2019a), Kozak et al. (2017), and Giglio and Xiu (2018). KPS and Giglio and Xiu (2018),

in particular, show that conditional linear factor models for individual stocks can be recast as static

factor analysis on characteristic-managed portfolios.

2.2.1 Conditional Linear Factor Models as a Special Case

Just like the autoencoder model nests the static linear factor model, the augmented autoencoder

nests the IPCA factor model proposed by KPS as a special case. KPS propose a method called

IPCA to estimate their linear, time-varying beta model. IPCA solves the optimization problem:

min
Γ,F

T∑
t=1

N∑
i=1

∥∥ri,t − z′i,t−1Γ′ft
∥∥2

= min
Γ,F

T∑
t=1

∥∥rt − Zt−1Γ′ft
∥∥2
. (17)

where F = (f1, f2, . . . , fT) and Zt = (z′1,t, z
′
2,t, . . . , z

′
N,t)

′, and subject to restrictions that identify a

unique rotation of factors.11

For comparison, consider a particularly simple version of the conditional autoencoder that uses

a linear activation function and one layer of K neurons on both the beta side and the factor side

of the network. In this case, β′i,t = Zt−1W
′
0 and ft = W1xt, so the the estimation objective of the

conditional autoencoder is:12

min
W0,W1

T∑
t=1

∥∥rt − Zt−1W
′
0W1xt

∥∥2
. (18)

The next proposition formalizes the equivalence between IPCA and this linear conditional autoen-

11The identifying assumptions are

ΓΓ′ = IK , FF ′ is a diagonal matrix with descending diagonal entries, F ι ≥ 0.

These restrictions place no economic restrictions on the model and solely serve to pin down a uniquely identified solution
to the first-order conditions.

12Without loss of generality, we suppress the bias term, i.e., b0, in the neural networks, as it can instead be
represented via a constant in the list of conditioning variables.

10

Electronic copy available at: https://ssrn.com/abstract=3335536

coder.

Proposition 2. The solution to (18) is equivalent to the solution of (17) if Z ′tZt = Σ for a constant

matrix Σ.

In the general case where Z ′tZt is non-constant, the two estimators are similar but no longer

equivalent (as we can see from the proof). We find that the empirical performance of (17) and (18)

is similar in our data.

2.3 Regularized Autoencoder Learning

Autoencoders, like neural networks more broadly, have many advantages relative to traditional linear

factor models. In particular, the high capacity of a neural network model enhances its flexibility to

construct the most informative features from data. With enhanced flexibility, however, comes a

higher propensity to overfit. Following GKX, we take a variety of measures to alleviate overfitting,

including a careful design of the empirical strategy and the extensive use of regularization.

2.3.1 Training, Validation, and Testing

We divide our sample into three disjoint time periods that maintain the temporal ordering of the

data. The first, or “training,” subsample is used to estimate the model subject to a specific set of

tuning hyperparameter values. These are critical to the performance of machine learning methods

as they control model complexity.

The second, or “validation,” sample is used for tuning the hyperparameters. We construct fitted

values for data points in the validation sample based on the estimated model from the training

sample. Next, we calculate the objective function based on errors from the validation sample, and

iteratively search for hyperparameters that optimize the validation objective.

Tuning parameters are chosen from the validation sample taking into account estimated param-

eters, but the parameters are estimated from the training data alone. The idea of validation is to

simulate an out-of-sample test of the model. Hyperparameter tuning amounts to searching for a

degree of model complexity that tends to produce reliable out-of-sample performance. The valida-

tion sample fits are of course not truly out-of-sample because they are used for tuning, which is in

turn an input to the estimation. Thus the third, or “testing,” subsample, which is used for neither

estimation nor tuning, is truly out-of-sample and thus is used to evaluate a method’s out-of-sample

performance.

2.3.2 Regularization Techniques

The most common machine learning device for guarding against overfitting is to append a penalty

to the objective function in order to favor more parsimonious specifications. This “regularization”

approach mechanically deteriorates a model’s in-sample performance in the hope of improving its

stability out-of-sample. This will be the case when penalization manages to reduce the model’s fit

of noise while preserving its fit of the signal.

11

Electronic copy available at: https://ssrn.com/abstract=3335536

Let L(θ; ·) denote the objective function to optimize the autoencoder (9), where θ summarizes the

weight parameters in the loading and factor networks of (10) through (15). We define our estimation

objective to be

L(θ; ·) =
1

NT

T∑
t=1

N∑
i=1

∥∥ri,t − β′i,t−1ft
∥∥2

+ φ(θ; ·), (19)

where φ(θ) is a penalty function that regularizes the model. There are many choices for the penalty

function φ(·); we use LASSO, or “l1,” penalization, which takes the form

φ(θ;λ) = λ
∑
j

|θj |.

The fortunate geometry of the LASSO penalty sets coefficients on a subset of covariates to exactly

zero. In this sense, the LASSO imposes sparsity on weight parameters, encouraging insignificant

weights to vanish. The LASSO penalty involves a non-negative hyperparameter, λ, which is deter-

mined in the validation sample.

In addition to l1-penalization, we employ a second machine learning regularization tool known as

“early stopping.” It begins from an initial parameter guess that imposes parsimonious parameteriza-

tion (for example, setting all θ values close to zero). In each step of the optimization algorithm, the

parameter guesses are gradually updated to reduce fitting errors in the training sample. At each new

guess, estimates are also constructed for the validation sample, and the optimization is terminated

when the validation sample errors begin to increase. This typically occurs before the fitting errors are

minimized in the training sample, hence its name (see Algorithm 1). By ending the parameter search

early, parameters are shrunken toward the initial guess, and this is how early stopping regularizes

against overfit. It is a popular substitute to “l2”-penalization of θ parameters because it achieves

regularization at a much lower computational cost.

As a third regularization technique, we adopt an ensemble approach in training our neural net-

works. In particular, we use multiple random seeds, say, 10, to initialize neural network estimation

and construct model predictions by averaging estimates from all networks. This enhances the stabil-

ity of the results because the stochastic nature of the optimization can cause different seeds to settle

at different optima.

2.3.3 Optimization Algorithms

The high degree of nonlinearity and nonconvexity in neural networks, together with their rich pa-

rameterization, make brute force optimization highly computationally intensive (often to the point

of infeasibility).

A common solution uses stochastic gradient descent (SGD) to train a neural network. Unlike

standard gradient descent that uses the entire training sample to evaluate the gradient at each

iteration of the optimization, SGD evaluates the gradient from a small random subset of the data at

each iteration. This approximation sacrifices accuracy for enormous acceleration of the optimization

12

Electronic copy available at: https://ssrn.com/abstract=3335536

routine. A critical tuning parameter in SGD is the learning rate, which controls the step size of

the descent. It is necessary to shrink the learning rate toward zero as the gradient approaches

zero, otherwise noise in the calculation of the gradient begins to dominate its directional signal.

We adopt the adaptive moment estimation algorithm (Adam, Algorithm 2), an efficient version of

SGD introduced by Kingma and Ba (2014) that computes adaptive learning rates for individual

parameters using estimates of first and second moments of the gradients.

We also adopt “batch normalization” (Ioffe and Szegedy (2015), Algorithm 3), a simple technique

for controlling the variability of predictors across different regions of the network and across different

datasets. It is motivated by the phenomenon of internal covariate shift in which inputs of hidden

layers follow different distributions than their counterparts in the validation sample. This issue is

constantly encountered when fitting deep neural networks that involve many parameters and rather

complex structures. For each hidden layer in each training step (a “batch”), the algorithm cross-

sectionally de-means and variance standardizes the batch inputs to restore the representation power

of the unit.

3 An Empirical Study of US Equity

3.1 Data

We analyze the same dataset studied in GKX, which contains monthly individual stock returns from

the Center for Research in Securities Prices (CRSP) for all firms listed in the three major exchanges:

NYSE, AMEX, and NASDAQ. We use the Treasury bill rate to proxy for the risk-free rate from

which we calculate individual excess returns. Our sample begins in March 1957 (the start date of

the S&P 500) and ends in December 2016, totaling 60 years.

In addition, we build a large collection of stock-level predictive characteristics based on the

cross section of stock returns literature. These include 94 characteristics (61 of which are updated

annually, 13 updated quarterly, and 20 updated monthly), see GKX for a full list. Most of these

characteristics are released to the public with a delay. To avoid a forward-looking bias, we assume

that monthly characteristics are delayed by at most one month, quarterly releases are delayed with

a four month lag, and annual releases with a six month lag. Thus, we match realized returns at

month t with the most recent monthly characteristics at the end of month t − 1, the most recent

quarterly data as of t − 4, and most recent annual data as of t − 6. Observations are occasionally

missing some characteristics. We replace a missing characteristic with the cross-sectional median of

that characteristic during that month.

Distributions of some characteristics are highly skewed and leptokurtic. Following a common

tack in the literature that avoids undue influence of outlying observations, we rank-normalize all

characteristics into the interval (−1, 1) for each month t. We then form 94 managed portfolios using

(16). We also include one equal-weighted market portfolio that corresponds to a constant regressor

in Zt−1.

Unlike the existing literature, we do not impose any filters based on stock prices or share codes,

13

Electronic copy available at: https://ssrn.com/abstract=3335536

or rule out financial firms. Past literature has imposed these filters in large part because they find

it difficult to reconcile the return behavior of low price stocks, uncommon share codes, and financial

sector stocks with the rest of the sample. We have no such difficulty thanks to the superior capacity

of our model and the rich feature sets we allow for in our framework. The total number of stocks in

our sample is nearly 30,000, with the average number of stocks per month exceeding 6,200.

3.2 Models Comparison Set

We compare a range of latent factor models in our empirical analysis. The first model, which we

refer to as “PCA,” corresponds to specification (5). It assumes a linear functional form, constant

betas, no conditioning information, and is estimated via PCA.13 The second model we refer to as

“IPCA” and follows the KPS specification of (1) and (2). In particular, it assumes a linear factor

structure and conditional betas that are likewise linear in covariates.

We then consider a range of conditional autoencoder (CA) architectures with varying degrees

of complexity. The simplest, which we denote CA0, uses a single linear layer in both the beta and

factor networks as described in (18), making it similar (but not identical) to IPCA. Next, CA1 adds

a hidden layer with 32 neurons in the beta network. Finally, CA2 and CA3 add a second and third

hidden layer, with 16 and 8 neurons respectively, to the beta side.

CA0 through CA3 all maintain a one-layer linear specification on the factor side of the model. In

these cases, the only variation in factor specification is in the number of neurons, which we allow to

range from 1 to 6, and which corresponds to the number of factors in the model.

We also compare the autoencoder specifications against benchmark models with observable fac-

tors. We refer to these models collectively as “FF,” which possess 1 to 6 factors. The first observable

factor is the excess market return, then we add SMB, HML, and UMD, sequentially. The five-factor

model is the market, SMB, HML, CMA, and RMW, and the six-factor model again appends UMD.14

We divide the 60 years of data into 18 years of training sample (1957 - 1974), 12 years of validation

sample (1975 - 1986), and the remaining 30 years (1987 - 2016) for out-of-sample testing. Because

machine learning algorithms are computationally intensive, we avoid recursively refitting models each

month. Instead, we refit once every year as most of our signals are updated once per year. Each time

we refit, we increase the training sample by one year. We maintain the same size of the validation

sample, but roll it forward to include the most recent twelve months.

3.3 Statistical Performance Evaluation

We evaluate out-of-sample model performance using the total and predictive R2s defined by KPS.

These pool errors across firms and over time into grand panel-level assessments of each model. The

total R2 quantifies the explanatory power of contemporaneous factor realizations, and thus assesses

13The universe of individual stocks changes over time, so our PCA estimation must cope with unbalanced panels.
We use an EM algorithm for PCA (Stock and Watson, 2002). The IPCA algorithm devised by KPS is robust to missing
data. Likewise, the SGD algorithm for autoencoder models is not affected by missing data, because individual stock
returns across periods are collected in a single pool from which random batches of observations are drawn.

14Market, SMB, HML, CMA, RMW, and UMD factor returns are from Ken French’s website.

14

Electronic copy available at: https://ssrn.com/abstract=3335536

the model’s description of individual stock riskiness:

R2
total = 1−

∑
(i,t)∈OOS(ri,t − β̂′i,t−1f̂t)

2∑
(i,t)∈OOS r

2
i,t

. (20)

The OOS set indicates that fits are only assessed on the testing subsample, whose data never enter

into model estimation or tuning.

The predictive R2 assesses the accuracy of model-based predictions of future individual excess

stock returns. This quantifies a model’s ability to explain panel variation in risk compensation. It is

defined as

R2
pred = 1−

∑
(i,t)∈OOS(ri,t − β̂′i,t−1λ̂t−1)2∑

(i,t)∈OOS r
2
i,t

, (21)

where λ̂t−1 is the prevailing sample average of f̂ up to month t− 1.

Table 1 reports the out-of-sample total R2 for individual stocks, rt. The best overall model in

terms of explained out-of-sample return variation is IPCA with six-factors, which delivers a 14.5%

total R2. It is closely followed by the conditional autoencoder with one hidden beta layer of 32

neurons (CA1) and six factors, which achieves an out-of-sample R2 of 14.3%. Other CA models are

similar but slightly weaker.

Interestingly, and somewhat surprisingly, the worst performing models are those with observable

factors. We can trace the poor performance of observable factor models to two features of our em-

pirical design. The first is that we infrequently re-estimate model parameters. At the individual

stock level, betas are highly time varying, and infrequent re-estimation clearly reveals a shortcoming

of traditional observable factors and their static beta formulations. In contrast, we find that infre-

quent re-estimation has little effect on the out-of-sample fits for conditional models (both IPCA and

CA versions), likewise revealing the comparative strength of these methods—their ability to capture

time variation through covariates rather than through ad hoc rolling parameter updates. Second, we

analyze a much larger cross section of stocks (nearly 30,000) than typically studied in the literature

(e.g., roughly 12,000 in KPS). This reveals that observable factors are poorly suited to describe the

performance of the much larger universe of stocks that we cover. Note that, even though our current

data set is much larger than that of KPS, the performance of IPCA is remarkably robust to this

change in environment.

Table 1 also reports the out-of-sample total R2 at the level of managed portfolios, xt. Given our

predictions at the individual equity level, the prediction at the portfolio level is immediate available.

Model refitting is not needed as the portfolio weights are known ex ante (see GKX for more discussion

on this “bottom-up” approach for prediction). These portfolios are large and diversified collections

of individual stocks, thus much of the idiosyncratic risk in the data is averaged out. As a result, total

R2 at the portfolio-level tends to be far higher. It is still the case that IPCA provides the best fit,

followed by CA1. The comparative performance of observable factor FF models is much improved

15

Electronic copy available at: https://ssrn.com/abstract=3335536

Table 1: Out-of-Sample R2
total(%) Comparison

K
Model Test Assets 1 2 3 4 5 6

FF rt 4.8 4.6 3.4 0.1 -2.3 -6.1
xt 49.4 64.8 69.5 70.4 71.1 72.2

PCA rt 7.3 3.3 5.0 5.3 4.2 3.9
xt 66.6 31.7 46.2 47.1 39.8 34.8

IPCA rt 11.2 12.4 13.3 13.7 14.3 14.5
xt 78.0 86.8 92.1 93.8 96.0 96.7

CA0 rt 10.9 11.8 12.3 12.2 12.5 12.4
xt 73.7 80.4 86.2 87.1 87.7 85.9

CA1 rt 10.4 11.5 12.2 12.9 13.4 14.3
xt 71.4 78.3 82.2 85.2 87.2 92.2

CA2 rt 10.7 11.8 12.6 13.2 13.6 13.8
xt 72.7 79.5 84.0 86.4 88.2 89.3

CA3 rt 10.7 11.8 12.5 13.3 13.7 13.8
xt 73.1 79.9 83.6 87.1 88.8 89.0

K=1 K=2 K=3 K=4 K=5 K=6

I
n
d
iv
id
u
a
l
S
t
o
c
k
s
T
o
t
a
l
R

2

0

5

10

15

FF

PCA

IPCA

CA
0

CA
1

CA
2

CA
3

K=1 K=2 K=3 K=4 K=5 K=6

M
a
n
a
g
ed

P
o
rt
fo
li
o
s
T
o
ta
l
R

2

0

20

40

60

80

100

FF

PCA

IPCA

CA
0

CA
1

CA
2

CA
3

Note: In this table, we report the out-of-sample total R2(%) for individual stocks rt and managed portfolios xt using
observable factor models (FF), PCA, IPCA, and conditional autoencoders CA0 through CA3. In all cases, the number
of factors K varies from 1 to 6.

at the portfolio level,15 but nonetheless dominated by conditional latent factor models.

Next, Table 2 compares models in terms of predictive R2. Whereas IPCA dominated in terms

of total R2, its predictive R2 of 0.3% per month is nearly doubled by the predictive power of (deep)

conditional autoencoders. CA1, CA2, and CA3 generate a predictive R2 of 0.53%, 0.58%, and 0.57%,

respectively. All of conditional models, including IPCA and CA0, dramatically outperform the static

15Intuitively, dynamically reweighting portfolios to maintain roughly constant characteristic values reduces time
variation in portfolio betas and thus gives static factor models (including PCA) a better chance to fit the data.

16

Electronic copy available at: https://ssrn.com/abstract=3335536

Table 2: Out-of-Sample R2
pred(%) Comparison

K
Model Test Assets 1 2 3 4 5 6

FF rt 0.08 0.08 < 0 < 0 < 0 < 0
xt 0.65 0.69 0.93 0.62 0.73 0.45

PCA rt < 0 < 0 < 0 < 0 < 0 < 0
xt < 0 < 0 < 0 < 0 < 0 < 0

IPCA rt 0.10 0.10 0.23 0.31 0.31 0.30
xt 0.49 0.53 0.88 0.76 0.76 0.68

CA0 rt 0.11 0.11 0.23 0.25 0.27 0.27
xt 0.63 0.66 0.89 0.79 0.84 0.77

CA1 rt 0.13 0.17 0.45 0.52 0.56 0.53
xt 0.60 0.70 0.80 0.85 1.17 0.83

CA2 rt 0.15 0.17 0.50 0.57 0.57 0.58
xt 0.70 0.66 0.95 1.20 1.06 1.17

CA3 rt 0.14 0.17 0.52 0.55 0.54 0.57
xt 0.69 0.63 1.10 0.97 0.85 1.12

K=1 K=2 K=3 K=4 K=5 K=6

I
n
d
iv
id
u
a
l
S
t
o
c
k
s
P
r
e
d
.
R

2

0

0.2

0.4

0.6

FF

PCA

IPCA

CA
0

CA
1

CA
2

CA
3

K=1 K=2 K=3 K=4 K=5 K=6

M
a
n
a
g
ed

P
o
rt
fo
li
o
s
P
re
d
.
R

2

0

0.5

1

1.5

FF

PCA

IPCA

CA
0

CA
1

CA
2

CA
3

Note: In this table, we report the out-of-sample predictive R2(%) for individual stocks rt and managed portfolios xt
using observable factor models (FF), PCA, IPCA, and conditional autoencoders CA0 through CA3. In all cases, the
number of factors K varies from 1 to 6.

FF and PCA models, which generally fail to produce any out-of-sample predictability whatsoever.

3.4 Economic Performance Evaluation

It is difficult to infer the economic contribution of a model from R2 alone. To assess model perfor-

mance in economic terms, we evaluate how return predictions from each model translate into Sharpe

ratios for portfolios formed based on those predictions.

For each model, we sort stocks into deciles based on the model’s out-of-sample return forecasts.

17

Electronic copy available at: https://ssrn.com/abstract=3335536

Table 3: Out-of-Sample Sharpe Ratios of Long-Short Portfolios

K
Equal-Weight 1 2 3 4 5 6

FF -0.66 -0.85 -0.40 -0.30 0.36 -0.21
PCA 0.28 0.09 0.13 -0.08 -0.12 0.15
IPCA 0.20 0.19 1.26 2.16 2.31 2.25
CA0 0.23 0.32 1.34 1.87 2.10 2.18
CA1 0.30 0.39 2.12 2.63 2.67 2.60
CA2 0.30 0.38 2.16 2.64 2.68 2.63
CA3 0.31 0.38 2.19 2.57 2.57 2.59

K
Value-Weight 1 2 3 4 5 6

FF -0.82 -1.13 -0.69 -0.60 0.18 -0.53
PCA 0.12 -0.18 0.05 -0.10 -0.30 -0.08
IPCA -0.15 -0.07 0.59 0.81 1.05 0.96
CA0 -0.11 -0.03 0.41 0.81 0.83 0.88
CA1 -0.03 0.11 0.91 1.30 1.48 1.40
CA2 -0.03 0.08 0.92 1.39 1.45 1.53
CA3 -0.02 0.08 1.09 1.41 1.34 1.51

Note: In this table, we report annualized out-of-sample Sharpe ratios for long-short portfolios using Fama-French
models (FF), a vanilla factor model (5), and a variety of autoencoders, A0, A1, A2, A3, based on (9), respectively,
where the number of factors in (5) or the number of neurons in the hidden layer on the right-hand side of (9), K, varies
from 1 to 6.

We construct a zero-net-investment portfolio that buys the highest expected return stocks (decile 10)

and sells the lowest (decile 1). We rebalance portfolios each month, and consider both equal-weighted

and value-weighted portfolios.

Table 3 reports the annualized Sharpe ratios of these 10-1 spread portfolios over our 30-year

out-of-sample period. The results essentially recast the model comparison of predictive R2 in terms

of economic magnitudes. The overall best performing portfolio is that based on the conditional

autoencoder with two hidden beta layers, CA2. This model achieves a Sharpe ratio of 2.63 for

the equal-weighted portfolio, and 1.53 with value weights. The performance of CA1 and CA3 is

only slightly lower. Following the nonlinear conditional autoencoders, the best model is IPCA,

which delivers Sharpe ratios of 2.25 and 0.96 with equal and value weights, respectively (and which

outperforms the linear conditional autoencoder CA0). Finally, corroborating the R2 results above,

static linear models FF and PCA broadly exhibit poor out-of-sample portfolio performance.

To evaluate the multi-factor mean-variance efficiency of each model, we report the ex ante uncon-

ditional tangency portfolio Sharpe ratio among factor portfolios. We calculate out-of-sample factor

returns following the same re-estimation approach described earlier. The tangency portfolio return

for a set of factors is constructed on a purely out-of-sample basis by using the mean and covariance

matrix of estimated factors through t and tracking the post-formation t+ 1 return.

We report results in Table 4. All conditional factor specifications (IPCA and CA0 through CA3)

produce high unconditional Sharpe ratio statistics, consistent with the findings of KPS. The most

dominant overall model on this dimension is CA3 with five factors, though performance is broadly

18

Electronic copy available at: https://ssrn.com/abstract=3335536

Table 4: Out-of-Sample Factor Tangency Portfolio Sharpe Ratios

K
1 2 3 4 5 6

FF 0.51 0.41 0.53 0.71 0.71 0.82
PCA 0.35 0.23 0.25 0.38 0.48 0.55
IPCA 0.39 0.44 1.81 3.14 3.71 3.72
CA0 0.42 0.48 1.47 1.76 1.94 1.97
CA1 0.56 0.91 3.18 3.82 3.63 4.58
CA2 0.54 0.75 3.56 4.26 4.72 2.77
CA3 0.54 0.77 3.94 4.75 4.94 4.37

Note: In this table, we report annualized out-of-sample Sharpe ratios for the mean-variance efficient portfolio of factors
using observable factor models (FF), PCA, IPCA, and conditional autoencoders CA0 through CA3. In all cases, the
number of factors K varies from 1 to 6. We scale the tangency weights each month by targeting 1% monthly volatility
based on historical estimates of factor risk premium and covariance matrix.

similar for CA1 through CA3. Static factor models perform markedly worse than conditional models.

Results in Table 4 reflect the fact that conditional models capture extensive comovement among assets

while, at the same time, reconciling their differences in average returns with their factor loadings.

These results should not be viewed as performance of implementable trading strategies. The factor

tangency portfolios describe the mean-variance efficiency of models without considering practical

frictions such as trading costs. Instead, they should be viewed as providing a non-implementable but

nonetheless helpful quantitative comparison of models’ mean-variance efficiency in economic terms.

3.5 Risk Premia vs. Mispricing

An important implication emerges from a comparison of Table 2 versus the return prediction anal-

ysis of GKX. In their paper, the best performing machine learning model forecasts monthly indi-

vidual stock returns (in the exact same data set as ours) with an R2 of 0.58%. Yet theirs are pure

prediction models—there is no factor structure or risk-return tradeoff—and thus they make no dis-

tinction between predictability coming through compensation for risk exposure, and compensation

from mispricing (i.e., alpha). In contrast, the nonlinear factor models in this paper force all the

characteristic-based predictability to come solely through factor risk exposures. That is, the con-

ditional autoencoder models are all specified without an intercept, thus they impose the economic

restriction of no-arbitrage. Despite this restriction, the conditional autoencoder model achieves

nearly identical predictive power for monthly stock returns, 0.58% for the CA2 specification. This is

a significant result—it suggests that stock characteristics predict returns not because they capture

“anomalous” compensation without risk, but rather because the characteristics proxy for (and help

identify) compensated factor risk exposures.

In this section, we directly test whether the zero-intercept no-arbitrage restriction is satisfied

in the data. If it is, the time series average of model residuals for each asset—that is, the pricing

errors in our model—should be statistically indistinguishable from zero. We focus this analysis on

19

Electronic copy available at: https://ssrn.com/abstract=3335536

Figure 3: Out-of-sample Pricing Errors Across Models

FF5 PCA

Raw Return (%)

0 0.2 0.4 0.6 0.8

A
lp

h
a

(%
)

-0.1

0

0.1

0.2

0.3

0.4

#Alphas(t<3.0)=58

#Alphas(t>3.0)=37

Raw Return (%)

0 0.2 0.4 0.6 0.8

A
lp

h
a

(%
)

-0.1

0

0.1

0.2

0.3

0.4

#Alphas(t<3.0)=68

#Alphas(t>3.0)=27

CA0 CA1

Raw Return (%)

0 0.2 0.4 0.6 0.8

A
lp

h
a

(%
)

-0.1

0

0.1

0.2

0.3

0.4

#Alphas(t<3.0)=75

#Alphas(t>3.0)=20

Raw Return (%)

0 0.2 0.4 0.6 0.8

A
lp

h
a

(%
)

-0.1

0

0.1

0.2

0.3

0.4

#Alphas(t<3.0)=87

#Alphas(t>3.0)=8

CA2 CA3

Raw Return (%)

0 0.2 0.4 0.6 0.8

A
lp

h
a

(%
)

-0.1

0

0.1

0.2

0.3

0.4

#Alphas(t<3.0)=87

#Alphas(t>3.0)=8

Raw Return (%)

0 0.2 0.4 0.6 0.8

A
lp

h
a

(%
)

-0.1

0

0.1

0.2

0.3

0.4

#Alphas(t<3.0)=86

#Alphas(t>3.0)=9

Note: The figure reports out-of-sample pricing errors (alphas) for 95 characteristic-managed portfolios xt, relative to
the Fama-French five-factor model (FF5), the static linear latent five-factor model (PCA), and conditional autoencoders
(CA0 through CA3). Alphas with t-statistics in excess of 3.0 are shown in red dots, while insignificant alphas are shown
in hollow squares.

unconditional pricing errors, defined as:

αi := E(ui,t) = E(ri,t)− E(β′i,t−1ft).

20

Electronic copy available at: https://ssrn.com/abstract=3335536

Alphas for the managed portfolios xt are defined analogously.

We focus our pricing error tests on xt, whose comparatively low dimensionality avoids inferential

difficulties that arise with rt.
16 To construct estimates of the out-of-sample pricing error, we calculate

the average difference between xt and its out-of-sample model fit. These pricing errors can be

interpreted as the average gain of a hedging portfolio that has a zero-exposure on any systematic

factors. In a no-arbitrage model, zero-exposure assets should earn zero excess return.

Figure 3 scatters the estimated out-of-sample pricing errors for each model against the average

returns of xt. The figure also reports the number of alphas whose t-statistics exceed 3.0. The

overall magnitude of alphas shrinks as we move from static linear models to nonlinear conditional

autoencoders. For the five-factor Fama-French model, 37 of the 95 managed portfolios have alpha

t-statistics in excess of 3.0. For CA2, that number drops to 8 out of 95. Furthermore, those that

remain significant are economically small (below 7 basis points per month) compared to alphas from

the Fama-French model.

3.6 Characteristics Importance

Following GKX, we identify influential covariates by ranking them according to a notion of variable

importance, defined as the reduction in total R2 resulting from setting all values of a given charac-

teristic to zero while holding the remaining model estimates fixed. For this analysis, we focus on the

five-factor specification of each model.

Figures 4 illustrates characteristic importance for each conditional autoencoder specification. It

focuses on the top 20 characteristics for each model. Beyond these, variable importance hovers near

zero (we show importance for the full list of characteristics in Figure 5). The total contribution by

the top twenty characteristics is around 80% for CA0, and 90% for CA1 through CA3.

Three categories of characteristics stand out as the most influential. The first is a price trend

category, which includes short-term reversal (mom1m), stock momentum (mom12m), momentum

change (chmom), industry momentum (indmom), recent maximum return (maxret), and long-term

reversal (mom36m). The second category includes liquidity variables, such as turnover and turnover

volatility (turn, std turn), log market equity (mvel1), dollar volume (dolvol), Amihud illiquidity (ill),

number of zero trading days (zerotrade), and bid-ask spread (baspread). Risk measures constitute

the third influential group, including total and idiosyncratic return volatility (retvol, idiovol), market

beta (beta), and beta-squared (betasq). Interestingly, all variants of the autoencoder model agree on

the importance of these three categories. Moreover, these results closely coincide with the findings of

GKX, who track variable importance using R2
pred (there is no notion of R2

total in their analysis because

they focus solely on prediction and therefore do not consider contemporaneous factor associations).

This consistency of variable importance across different objectives is an indication of robustness in

our list of key variables, and an indication that these variables matter for understanding variation

in both expected returns and realized returns.

We further look into the importance of characteristics for the beta and factor networks separately,

16For example, stock-level idiosyncratic risk is so large that stock-level alpha estimates tend to be extremely noisy.

21

Electronic copy available at: https://ssrn.com/abstract=3335536

Figure 4: Top Twenty Characteristics by Variable Importance

CA0 CA1

indmom
ps

betasq
convind

nincr
mom36m
zerotrade

maxret
std_turn

dolvol
beta

ill
baspread
mom12m

turn
retvol

mom6m
idiovol

mom1m
mvel1

0.00 0.05 0.10 0.15

bm
indmom

zerotrade
nincr

maxret
std_turn

dy
mom36m

dolvol
baspread

betasq
turn

ill
mom12m

beta
mom6m

retvol
idiovol

mom1m
mvel1

0.00 0.05 0.10 0.15

CA2 CA3

bm
zerotrade

indmom
nincr

std_turn
maxret

dy
mom36m

betasq
dolvol

turn
baspread

ill
mom12m

beta
mom6m

retvol
idiovol

mom1m
mvel1

0.00 0.05 0.10 0.15

bm
zerotrade

nincr
std_turn
indmom
maxret

dy
mom36m

dolvol
turn

baspread
ill

betasq
mom12m

beta
mom6m

retvol
idiovol

mom1m
mvel1

0.00 0.05 0.10 0.15

Note: This figure compares variable importance for the top twenty most influential variables in each model, based on
an average over all training samples. The variable importances within each model are normalized to sum to one. All
models fix K = 5.

in Figure 6. To calculate the characteristics importance for the beta (resp. factor) network, we again

set all values of a given characteristic in the beta (resp. factor) network to zero, without altering the

values of this characteristic in the factor (resp. beta) network, and then measure the reduction in

total R2. Interestingly, the relative importance of characteristics are consistent for the two networks.

3.7 Robustness Check

Last but not least, we demonstrate the robustness with respect to the choice of assets in the training

and testing samples. In particular, we re-train the CA2 model using subsamples of stocks comprised

of odd or even permnos, respectively. We report the out-of-sample total R2(%), predictive R2(%),

equal-weight and value-weight Sharpe ratios for the subsamples in Table 5. Throughout, the CA2

model performs almost equally well, even when the assets used in the training and testing samples

are completely non-overlapped.

22

Electronic copy available at: https://ssrn.com/abstract=3335536

Figure 5: Overall Importance Rankings of All Characteristics

pchdepr
divi

pchcapx_ia
grcapx

pchsale_pchrect
chatoia

operprof
pchcurrat

sin
realestate

bm_ia
mve_ia
chpmia

divo
cinvest

pchgm_pchsale
pricedelay

ear
tb

stdcf
stdacc
aeavol

chtx
egr

invest
quick

grltnoa
chinv

lgr
pchsale_pchinvt

pchsale_pchxsga
sgr

pctacc
tang

saleinv
chcsho

pchsaleinv
salecash
secured

cfp
absacc

pchquick
rsup
acc

rd
currat
cfp_ia

chempia
orgcap

securedind
hire
herf

depr
cash

salerec
gma
age

roeq
roavol

rd_mve
cashpr

roic
ms

cashdebt
ep

convind
agr
ps
lev

roaq
rd_sale

sp
std_dolvol

nincr
chmom

bm
dy

maxret
indmom

zerotrade
dolvol

std_turn
mom36m

betasq
baspread

ill
turn

mom12m
beta

mom6m
retvol

idiovol
mom1m

mvel1

IPCA CA0 CA1 CA2 CA3

Note: This figure ranks 94 stock-level characteristics in terms of overall model contribution. Characteristics are ordered
based on the sum of their ranks over all models, with the most influential characteristics on top and least influential on
bottom. Columns correspond to individual models, and color gradients within each column indicate the most influential
(dark blue) to least influential (white) variables.

23

Electronic copy available at: https://ssrn.com/abstract=3335536

Figure 6: Separate Importance Rankings of All Characteristics

pchdepr
divi

pchcapx_ia
grcapx

pchsale_pchrect
chatoia

operprof
pchcurrat

sin
realestate

bm_ia
mve_ia
chpmia

divo
cinvest

pchgm_pchsale
pricedelay

ear
tb

stdcf
stdacc
aeavol

chtx
egr

invest
quick

grltnoa
chinv

lgr
pchsale_pchinvt

pchsale_pchxsga
sgr

pctacc
tang

saleinv
chcsho

pchsaleinv
salecash
secured

cfp
absacc

pchquick
rsup
acc

rd
currat
cfp_ia

chempia
orgcap

securedind
hire
herf

depr
cash

salerec
gma
age

roeq
roavol

rd_mve
cashpr

roic
ms

cashdebt
ep

convind
agr
ps
lev

roaq
rd_sale

sp
std_dolvol

nincr
chmom

bm
dy

maxret
indmom

zerotrade
dolvol

std_turn
mom36m

betasq
baspread

ill
turn

mom12m
beta

mom6m
retvol

idiovol
mom1m

mvel1

CA1 CA2 CA3
pchdepr

divi
pchcapx_ia

grcapx
pchsale_pchrect

chatoia
operprof

pchcurrat
sin

realestate
bm_ia

mve_ia
chpmia

divo
cinvest

pchgm_pchsale
pricedelay

ear
tb

stdcf
stdacc
aeavol

chtx
egr

invest
quick

grltnoa
chinv

lgr
pchsale_pchinvt

pchsale_pchxsga
sgr

pctacc
tang

saleinv
chcsho

pchsaleinv
salecash
secured

cfp
absacc

pchquick
rsup
acc

rd
currat
cfp_ia

chempia
orgcap

securedind
hire
herf

depr
cash

salerec
gma
age

roeq
roavol

rd_mve
cashpr

roic
ms

cashdebt
ep

convind
agr
ps
lev

roaq
rd_sale

sp
std_dolvol

nincr
chmom

bm
dy

maxret
indmom

zerotrade
dolvol

std_turn
mom36m

betasq
baspread

ill
turn

mom12m
beta

mom6m
retvol

idiovol
mom1m

mvel1

CA1 CA2 CA3

Note: These two plots rank 94 stock-level characteristics in terms of model contribution to β(zi,t−1) and ft, respectively.
Characteristics are ordered according to the same order in Figure 5. Columns correspond to individual models, and
color gradients within each column indicate the most influential (dark blue) to least influential (white) variables.

24

Electronic copy available at: https://ssrn.com/abstract=3335536

Table 5: Using Subsamples of Stocks Split by Odd or Even Permnos

Training Sample
Total R2(%) Predictive R2(%)

Testing Sample Odd Even Odd Even

Odd 13.7 13.6 0.48 0.49
Even 13.6 13.5 0.52 0.54

Equal-Weight SR Value-Weight SR
Testing Sample Odd Even Odd Even

Odd 2.42 2.38 1.28 1.26
Even 2.52 2.53 1.29 1.19

Note: In this table, we report the out-of-sample total R2(%), predictive R2(%), equal-weight and value-weight Sharpe
ratios for subsamples of stocks that have odd and even permnos, based on parameters estimated separately with each
subsample, respectively. In total there are 29,892 unique tickers in our dataset including 14,984 tickers with odd
permnos and 14,908 tickers with even permno. Columns indicate the subsample (Odd, Even) for which we estimate
parameters, whereas rows represent the subsample (Odd, Even) for which we evaluate the OOS performance. All
estimates are based on the five-factor CA2 model.

4 Monte Carlo Simulations

To demonstrate the finite sample performance of our autoencoder learning method, we simulate a

conditional 3–factor model for excess returns rt, for t = 1, 2, . . . , T :

ri,t = βi,t−1ft + εi,t, βi,t−1 = g∗(ci,t−1; θ), ft = Wxt + ηt

where ct is an N ×Pc matrix of characteristics, ft is a 3×1 vector of factors, xt is a Px×1 vector

of factor components, W is a 3 × Px factor weighting matrix, and ηt and εt are 3 × 1 and N × 1

vectors of idiosyncratic errors respectively.

We choose xt ∼ N (0.03, 0.12 × IPx), ηt ∼ N (0, 0.012 × I3) and εi,t ∼ t5(0, 0.12), in which their

variances are calibrated so that the average time series R2 is about 45% and the average annualized

volatility is around 60%.

We simulate the panel of characteristics for each 1 ≤ i ≤ N and each 1 ≤ j ≤ Pc from the

following model:

cij,t =
2

n+ 1
rank(c̄ij,t)− 1, c̄ij,t = ρj c̄ij,t−1 + εij,t, (22)

where ρj ∼ U [0.9, 1], and εij,t ∼ N (0, 1), so that the characteristics feature some degree of persistence

over time, yet is cross-sectionally normalized to be within [−1, 1]. This matches our data cleaning

procedure in the empirical study.

We consider one fixed matrix W and two cases of g?(·) functions:

W =

1 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0


25

Electronic copy available at: https://ssrn.com/abstract=3335536

(a) Linear factor loadings: g∗(ci,t; θ) = (1.2× ci1,t, ci2,t, 0.8× ci3,t)′.

(b) Non-linear factor loadings: g∗(ci,t; θ) =
(
c2
i1,t, 2× (ci1,t × ci2,t), 0.6× sgn(ci3,t)

)′
.

Throughout, we fix N = 200, T = 180 and Pc = Px = 50. In both cases, g?(·) only depends on 3

covariates, so there are only 3 non-zero entries in θ, denoted as θ0. Case (a) is simple and sparse linear

model. Case (b) involves a nonlinear covariate c2
i1,t, a nonlinear and interaction term (ci1,t × ci2,t),

and a dummy variable sgn(ci3,t). We calibrate the values of θ0 such that the total R2 is around 40%,

and the predictive R2 is 5%.

For each Monte Carlo sample, we divide the whole time series into 3 consecutive subsamples

of equal length for training, validation, and testing, respectively. For Vanilla PCA and IPCA, we

combine training and validation samples together because they don’t have any tuning parameter. For

CA0, CA1, CA2 and CA3 we estimate them in the training sample, then choose tuning parameters

for each method in the validation sample, and calculate the prediction errors in the testing sample.

We report the average OOS total and predictive R2s for each method over 100 Monte Carlo

repetitions in Table 6. For model (a), IPCA delivers the best OOS total and predictive R2s. This is

not surprising given that the true model is sparse and linear in the input covariates. More advanced

methods such as CA1, CA2 and CA3 tend to overfit, so their performance is slightly worse. By

contrast, for model (b), these methods clearly beat IPCA, because the latter cannot capture the

nonlinearity in the model. The Vanilla PCA method is always overfitting in the training sample so

that it cannot achieve a good OOS R2s. The comparison among autoencoder models demonstrates

a stark trade-off between model flexibility and implementation difficulty. As shown in the table,

shallower conditional autoencoders tend to outperform in our simulation setting, which is consistent

with our findings in empirical analysis.

Overall, the simulation results suggest that the conditional autoencoder methods are successful in

learning the factor structure in both linear and nonlinear situations. This is not surprising, as these

methods are implemented to improve fitting and prediction by allowing more complex functional

forms of conditional factor loadings.

5 Conclusion

We propose a new approach to latent factor modeling for asset pricing that draws on autoencoder

methods from the machine learning literature. We adapt the standard autoencoder to allow latent

factors and factor exposures to depend on asset characteristic conditioning variables. The result

is a nonlinear conditional asset pricing model that embeds the economic restriction of no-arbitrage

within a broader neural network framework.

In the empirical context of monthly US stock returns, our conditional autoencoder model dom-

inates competing asset pricing models, including Fama-French models, PCA methods, and linear

conditioning methods such as IPCA. A long-short decile spread portfolios sorted on stock return

predictions from our preferred autoencoder produces an annualized value-weighted Sharpe ratio of

1.53, beating the next closest competitor (IPCA, with Sharpe ratio 0.96) by a wide margin, and

26

Electronic copy available at: https://ssrn.com/abstract=3335536

Table 6: Comparison of Total R2(%)s and Predictive R2(%)s in Simulations

Model (a) K
Total. R2 1 2 3 4 5 6

PCA 3.5 4.7 5.5 6.3 7.1 7.8
IPCA 18.6 32.2 40.7 41.0 41.4 41.7
CA0 15.6 26.7 33.7 33.5 33.4 33.2
CA1 17.6 30.3 38.1 37.7 37.3 37.1
CA2 17.7 29.2 36.8 36.5 36.3 35.9
CA3 17.6 25.6 30.0 29.5 26.3 23.4

Pred. R2

PCA 0.17 0.10 0.04 0.01 -0.01 -0.03
IPCA 2.20 2.93 3.33 3.32 3.32 3.32
CA0 2.04 2.84 3.17 3.14 3.12 3.13
CA1 2.11 2.93 3.27 3.29 3.26 3.26
CA2 2.10 2.85 3.22 3.22 3.23 3.22
CA3 2.06 2.57 2.89 2.86 2.58 2.39

Model (b) K
Total. R2 1 2 3 4 5 6

PCA 3.4 5.1 6.0 6.6 7.3 7.9
IPCA 11.0 11.4 11.9 12.3 12.7 13.1
CA0 8.5 8.2 7.9 7.6 7.4 7.2
CA1 15.0 24.6 31.8 32.0 31.9 31.8
CA2 15.7 23.5 30.9 31.8 30.2 28.2
CA3 15.9 15.6 14.6 14.0 11.2 9.2

Pred. R2

PCA 0.15 0.19 0.15 0.12 0.10 0.09
IPCA 0.84 0.82 0.81 0.80 0.79 0.79
CA0 0.80 0.76 0.77 0.76 0.72 0.70
CA1 1.83 2.31 2.70 2.70 2.71 2.73
CA2 1.95 2.24 2.73 2.80 2.69 2.53
CA3 1.77 1.43 1.32 1.26 1.06 0.86

Note: In this table, we report the average out-of-sample (OOS) Total R2(%)s and Predictive R2(%)s for models (a)
and (b) using PCA, IPCA, CA0, CA1, CA2 and CA3, respectively. We fix N = 200, T = 180, and Pc = Px = 50. The
number of Monte Carlo repetitions is 100.

on a purely out-of-sample basis. Finally, the pricing errors in our model (likewise measured on an

out-of-sample basis) are a fraction of the magnitude of those from traditional Fama-French factor

models.

References

Ahn, Seung C., and Alex R. Horenstein, 2013, Eigenvalue ratio test for the number of factors,

Econometrica 81, 1203–1227.

Aı̈t-Sahalia, Yacine, and Dacheng Xiu, 2017, Using principal component analysis to estimate a high

dimensional factor model with high-frequency data, Journal of Econometrics 201, 388–399.

27

Electronic copy available at: https://ssrn.com/abstract=3335536

Alessi, Lucia, Matteo Barigozzi, and Marco Capasso, 2010, Improved penalization for determining the

number of factors in approximate factor models, Statistics and Probability Letters 80, 1806–1813.

Amengual, Dante, and Mark W. Watson, 2007, Consistent estimation of the number of dynamic

factors in a large N and T panel, Journal of Business and Economic Statistics 25, 91–96.

Bai, Jushan, 2003, Inferential Theory for Factor Models of Large Dimensions, Econometrica 71,

135–171.

Bai, Jushan, and Serena Ng, 2002, Determining the number of factors in approximate factor models,

Econometrica 70, 191–221.

Bai, Jushan, and Serena Ng, 2017, Principal components and regularized estimation of factor models,

Technical report, Columbia University.

Baldi, Pierre, and Kurt Hornik, 1989, Neural networks and principal component analysis: Learning

from examples without local minima, Neural networks 2, 53–58.

Bansal, Ravi, and Amir Yaron, 2004, Risks for the long run: A potential resolution of asset pricing

puzzles, The journal of Finance 59, 1481–1509.

Bourlard, Hervé, and Yves Kamp, 1988, Auto-association by multilayer perceptrons and singular

value decomposition, Biological cybernetics 59, 291–294.

Campbell, John Y, and John H Cochrane, 1999, By force of habit: A consumption-based explanation

of aggregate stock market behavior, Journal of political Economy 107, 205–251.

Chamberlain, Gary, and Michael Rothschild, 1983, Arbitrage, factor structure, and mean-variance

analysis on large asset markets, Econometrica 51, 1281–1304.

Connor, Gregory, Matthias Hagmann, and Oliver Linton, 2012, Efficient semiparametric estimation

of the fama–french model and extensions, Econometrica 80, 713–754.

Connor, Gregory, and Robert A Korajczyk, 1986, Performance measurement with the arbitrage

pricing theory: A new framework for analysis, Journal of Financial Economics 15, 373–394.

Fama, Eugene F, and Kenneth R French, 1993, Common risk factors in the returns on stocks and

bonds, Journal of financial economics 33, 3–56.

Fan, Jianqing, Yuan Liao, and Weichen Wang, 2016, Projected principal component analysis in factor

models, Annals of statistics 44, 219.

Feng, Guanhao, Stefano Giglio, and Dacheng Xiu, 2019a, Taming the factor zoo: A test of new

factors, Journal of Finance, forthcoming .

Feng, Guanhao, Nicholas G. Polson, and Jianeng Xu, 2019b, Deep learning in asset pricing, Technical

report, University of Chicago.

28

Electronic copy available at: https://ssrn.com/abstract=3335536

Freyberger, Joachim, Andreas Neuhierl, and Michael Weber, 2017, Dissecting characteristics non-

parametrically, Technical report, University of Wisconsin-Madison.

Gagliardini, Patrick, Elisa Ossola, and Olivier Scaillet, 2016, Time-varying risk premium in large

cross-sectional equity datasets, Econometrica 84, 985–1046.

Gallinari, Patrick, Yann LeCun, Sylvie Thiria, and Francoise Fogelman-Soulie, 1987, Memoires as-

sociatives distribuees, Proceedings of COGNITIVA 87, 93.

Giglio, Stefano W, and Dacheng Xiu, 2018, Asset pricing with omitted factors, Technical report,

University of Chicago.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville, 2016, Deep Learning (MIT Press), http:

//www.deeplearningbook.org.

Gu, Shihao, Bryan Kelly, and Dacheng Xiu, 2019, Empirical asset pricing via machine learning,

Review of Financial Studies, forthcoming .

Hallin, Marc, and Roman Lǐska, 2007, Determining the number of factors in the general dynamic

factor model, Journal of the American Statistical Association 102, 603–617.

He, Zhiguo, and Arvind Krishnamurthy, 2013, Intermediary asset pricing, American Economic Re-

view 103, 732–70.

Hinton, Geoffrey E, and Ruslan R Salakhutdinov, 2006, Reducing the dimensionality of data with

neural networks, science 313, 504–507.

Hinton, Geoffrey E, and Richard S Zemel, 1994, Autoencoders, minimum description length and

helmholtz free energy, in Advances in neural information processing systems, 3–10.

Ioffe, Sergey, and Christian Szegedy, 2015, Batch Normalization: Accelerating Deep Network Train-

ing by Reducing Internal Covariate Shift, International Conference on Machine Learning 448–456.

Kapetanios, George, 2010, A testing procedure for determining the number of factors in approximate

factor models, Journal of Business and Economic Statistics 28, 397–409.

Kelly, Bryan, and Seth Pruitt, 2015, The three-pass regression filter: A new approach to forecasting

using many predictors, Journal of Econometrics 186, 294–316.

Kelly, Bryan, Seth Pruitt, and Yinan Su, 2019, Characteristics are covariances: A unified model of

risk and return, Journal of Financial Economics, forthcoming .

Kingma, Diederik, and Jimmy Ba, 2014, Adam: A method for stochastic optimization, arXiv preprint

arXiv:1412.6980 .

Kozak, Serhiy, 2019, Kernel trick for the cross section, SSRN Working Paper .

29

Electronic copy available at: https://ssrn.com/abstract=3335536

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Kozak, Serhiy, Stefan Nagel, and Shrihari Santosh, 2017, Shrinking the cross section, Technical

report, University of Michigan.

Kozak, Serhiy, Stefan Nagel, and Shrihari Santosh, 2018, Interpreting factor models, Journal of

Finance 73, 1183–1223.

Moon, Hyungsik Roger, and Martin Weidner, 2018, Nuclear norm regularized estimation of panel

regression models, Technical report, University of Southern California.

Onatski, Alexei, 2010, Determining the number of factors from empirical distribution of eigenvalues,

Review of Economics and Statistics 92, 1004–1016.

Pohl, Walter, Karl Schmedders, and Ole Wilms, 2018, Higher order effects in asset pricing models

with long-run risks, The Journal of Finance 73, 1061–1111.

Ross, Stephen A, 1976, The arbitrage theory of capital asset pricing, Journal of economic theory 13,

341–360.

Santos, Tano, and Pietro Veronesi, 2004, Conditional betas, Technical report, National Bureau of

Economic Research.

Stock, James H, and Mark W Watson, 2002, Macroeconomic forecasting using diffusion indexes,

Journal of Business & Economic Statistics 20, 147–162.

30

Electronic copy available at: https://ssrn.com/abstract=3335536

Appendix

A Mathematical Proofs

A.1 Notation

We use (A : B) to denote the column concatenation of two matrices A and B. The vector ei has

a value of 1 in the ith position and 0 elsewhere (and whose dimension implicitly conforms to the

context). Likewise, the vector ι denotes a conformable vector with all entries being 1. For any time

series of vectors {at}Tt=1, we denote ā = 1
T

∑T
t=1 at. In addition, we write āt = at − ā. A denotes

the matrix (a1 : a2 : . . . : aT), and Ā = A − āι′ correspondingly. We use λj(A) to denote the jth

largest eigenvalue of A, and σj(A) the jth largest singular value. We use ‖A‖ and ‖A‖F to denote

the operator norm (or L2 norm) and the Frobenius norm of a matrix A = (aij), that is,
√
λ1(A′A)

and
√

Tr(A′A), respectively.

A.2 Proofs

Proof of Proposition 1. At first, we set the partial derivative with respect to b(1) to zero.

∂

∂b(1)

∥∥∥R− (b(1)ι′ +W (1)(b(0)ι′ +W (0)R)
)∥∥∥2

F
= 0(

R− b(1)ι′ −W (1)(b(0)ι′ +W (0)R)
)
ι = 0

b̂(1) =
1

T

(
Rι− TW (1)b(0) −W (1)W (0)Rι

)
.

Then we insert the solution into (8).

min
b,W

∥∥∥R− (b(1)ι′ +W (1)(b(0)ι′ +W (0)R)
)∥∥∥2

F

= min
W

∥∥∥∥(R− 1

T
Rιι′

)
−W (1)W (0)

(
R− 1

T
Rιι′

)∥∥∥∥2

F

= min
W

∥∥∥R̄−W (1)W (0)R̄
∥∥∥2

F
,

where R̄ is a matrix of demeaned returns. Thus, the problem becomes independent of the bias terms.

We focus on the weights W (0)and W (1).

Next, we set the partial derivative with respect to W (0) to zero and assume R̄R̄′ and W (1)′W (1) both

have full rank.

∂

∂W (0)

∥∥∥R̄−W (1)W (0)R̄
∥∥∥2

F
= 0

W ′(1)W (1)W ′(0)R̄R̄′ −W ′(1)R̄R̄′ = 0

W (0) = (W ′(1)W (1))−1W ′(1).

31

Electronic copy available at: https://ssrn.com/abstract=3335536

So, the optimization problem becomes

min
W

∥∥∥R̄−W (1)W (0)R̄
∥∥∥2

F

= min
W (1)

∥∥∥∥R̄−W (1)
(
W ′(1)W (1)

)−1
W ′(1)R̄

∥∥∥∥2

F

= min
W (1)

∥∥R̄− PW (1)R̄
∥∥2

F
.

The Eckart-Young-Mirsky theorem for the Frobenius norm states that the best rank K approximation

for a matrix is
∑K

i=1 sip̂iq̂i
′ = P̂ΛQ̂. Therefore, W (1) is the solution if and only if it satisfies

PW (1)R̄ = P̂ΛQ̂ (A.1)

It is obvious that W (1) = P̂ is one solution for the above equation, because

PW (1)R̄ = P̂ (P̂ ′P̂)−1P̂ ′R̄ = P̂ (P̂ ′P̂)−1P̂ ′(P̂ΛQ̂+ Û) = P̂ΛQ̂.

However, the solution of (A.1) is not unique. W (1) = P̂A is also a solution, where A is any K ×K
full-rank matrix. The linear autoencoder is equivalent to PCA since they have the same factor

loading matrix P̂ (up to a rotation matrix).

Proof of Proposition 2. At first, we consider the objective function of IPCA when Z ′t−1Zt−1 = Σ.

The first-order condition for F is given by

f̂t = (ΓZ ′t−1Zt−1Γ′)−1ΓZ ′t−1rt = (ΓΣΓ′)−1ΓZ ′t−1rt.

Then we plug in f̂t to the objective function of IPCA (17)

min
Γ,F

T∑
t=1

∥∥rt − Zt−1Γ′ft
∥∥2

= min
Γ

T∑
t=1

∥∥rt − Zt−1Γ′(ΓΣΓ′)−1ΓZ ′t−1rt
∥∥2
. (A.2)

For the two-sided Autoencoder model, we use the managed portfolios xt = (Z ′t−1Zt−1)−1Z ′t−1rt as

the inputs of the right-hand side. We can rewrite the objective function (18) as

min
W0,W1

T∑
t=1

∥∥rt − Zt−1W
′
0W1xt

∥∥2
= arg min

W0,W1

T∑
t=1

∥∥rt − (x′t ⊗ Zt−1W
′
0)vec(W1)

∥∥2
. (A.3)

Next the first order condition of vec(W) is

vec(W1) =

(
T∑
t=1

(x′t ⊗ Zt−1W
′
0)′(x′t ⊗ Zt−1W

′
0)

)−1(T∑
t=1

(x′t ⊗ Zt−1W
′
0)′rt

)

=

(
T∑
t=1

xtx
′
t ⊗W0Z

′
t−1Zt−1W

′
0

)−1(T∑
t=1

(
xt ⊗W0Z

′
t−1rt

))
.

32

Electronic copy available at: https://ssrn.com/abstract=3335536

We plug in Z ′t−1Zt−1 = Σ,

vec(W1) =

(
T∑
t=1

xtx
′
t ⊗W0ΣW ′0

)−1(T∑
t=1

(
xt ⊗W0Z

′
t−1rt

))

=

(T∑
t=1

xtx
′
t

)−1

⊗ (W0ΣW ′0)−1

(T∑
t=1

(
xt ⊗W0Z

′
t−1rt

))

=

T∑
t=1

(T∑
t=1

xtx
′
t

)−1

xt ⊗ (W0ΣW ′0)−1W0Z
′
t−1rt

 .

Then we recover W1 from vec(W1)

W1 =

T∑
t=1

(W0ΣW ′0)−1W0Z
′
t−1rtx

′
t

(
T∑
t=1

xtx
′
t

)−1


=
T∑
t=1

(W0ΣW ′0)−1W0Σxtx
′
t

(
T∑
t=1

xtx
′
t

)−1


= (W0ΣW ′0)−1W0Σ.

We can plug in the solution of W1 to the objective function of the two-sided Autoencoder (18),

min
W0,W1

T∑
t=1

∥∥rt − Zt−1W
′
0W1xt

∥∥2
= arg min

W0

T∑
t=1

∥∥rt − Zt−1W
′
0(W0ΣW ′0)−1W0Σxt

∥∥2
. (A.4)

We see IPCA and the two-sided Autoencoder have the same objective functions A.2 and A.4. The

Autoencoder solution and the IPCA solution are identical with Γ = W0. They give us identical

factor estimates f̂t and factor loading estimates β̂i,t−1.

B Algorithms

33

Electronic copy available at: https://ssrn.com/abstract=3335536

Algorithm 1: Early Stopping

Initialize j = 0, ε =∞ and select the patience parameter p.
while j < p do

Update θ using the training algorithm (e.g., the steps inside the while loop of Algorithm 2 for h
steps).

Calculate the prediction error from the validation sample, denoted as ε′.
if ε′ < ε then

j ← 0.
ε← ε′.
θ′ ← θ.
else
j ← j + 1.

end

end
Result: The final parameter estimate is θ′.

Algorithm 2: Adam for Stochastic Gradient Descent (SGD)

Initialize the target parameter vector θ0.
Set m0 = 0, v0 = 0, t = 0, β1 = 0.9, β2 = 0.999, ε = 1e− 8.
Tuning parameters: learning rate α, batch size b.
while θt not converged do

t← t+ 1.
gt ← ∇θ

[
1
b

∑
s∈Bt

L(θ; s)
] ∣∣
θ=θt−1 , where Bt is the set of batch subsamples.

mt ← β1mt−1 + (1− β1)gt.
vt ← β2vt−1 + (1− β2)gt � gt.17
m̂t ← mt/(1− (β1)t).
v̂t ← vt/(1− (β2)t).
θt ← θt−1 − αm̂t � (

√
v̂t + ε).

end
Result: The final parameter estimate is θt.

Algorithm 3: Batch Normalization (for one Activation over one Batch)

Input: Values of x for each activation over a batch B = {x1, x2, . . . , xN}.

µB ←
1

N

N∑
i=1

xi

σ2
B ←

1

N

N∑
i=1

(xi − µB)2

x̂i ←
xi − µB√
σ2
B + ε

yi ← γx̂i + β := BNγ,β(xi)
Result: {yi = BNγ,β(xi) : i = 1, 2 . . . , N}.

34

Electronic copy available at: https://ssrn.com/abstract=3335536

	Introduction
	Methodology
	Standard Autoencoder
	Static Linear Factor Models as a Special Case

	Extending the Autoencoder Model to Include Covariates
	Conditional Linear Factor Models as a Special Case

	Regularized Autoencoder Learning
	Training, Validation, and Testing
	Regularization Techniques
	Optimization Algorithms

	An Empirical Study of US Equity
	Data
	Models Comparison Set
	Statistical Performance Evaluation
	Economic Performance Evaluation
	Risk Premia vs. Mispricing
	Characteristics Importance
	Robustness Check

	Monte Carlo Simulations
	Conclusion
	Mathematical Proofs
	Notation
	Proofs

	Algorithms

