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Abstract
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1. Introduction

The empirical asset pricing literature has found a large number of stock characteristics

that help predict cross-sectional variation in expected stock returns. Researchers have tried

to summarize this variation with factor models that include a small number of characteristics-

based factors. That is, they seek to find a characteristics-sparse stochastic discount factor

(SDF) representation that is linear in only a few such factors. Unfortunately, it seems

that as new cross-sectional predictors emerge, these factor models need to be modified and

expanded to capture the new evidence: Fama and French (1993) proposed a three factor

model, Hou, Xue, and Zhang (2015) have moved on to four, Fama and French (2015) to five

factors, and Barillas and Shanken (2018) argue for a six-factor model. Even so, research

in this area has tested these factor models only on portfolios constructed from a relatively

small subset of known cross-sectional return predictors. These papers do not tell us how

well characteristics-sparse factor models would do if one confronted them with a much larger

set of cross-sectional return predictors—and an examination of this question is statistically

challenging due to the high-dimensional nature of the problem.1

In this paper, we tackle this challenge. We start by questioning the economic rationale for

a characteristics-sparse SDF. If it were possible to characterize the cross-section in terms of a

few characteristics, this would imply extreme redundancy among the many dozens of known

anomalies. However, upon closer examination, models based on present-value identities or

q-theory that researchers have used to interpret the relationship between characteristics and

expected returns do not really support the idea that only a few stock characteristics should

matter. For example, a present-value identity can motivate why the book-to-market ratio and

expected profitability could jointly explain expected returns. Expected profitability is not

directly observable, though. A large number of observable stock characteristics could poten-

tially be useful for predicting cross-sectional variation in future profitability—and therefore

also for predicting returns. For these reasons, we seek a method that allows us to estimate

1Cochrane (2011) refers to this issue as “the multidimensional challenge.”
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the SDF’s loadings on potentially dozens or hundreds of characteristics-based factors without

imposing that the SDF is necessarily characteristics-sparse.

The conventional approach would be to estimate SDF coefficients with a cross-sectional

regression of average returns on covariances of returns and factors. Due to the large num-

ber of potential factors, this conventional approach would lead to spurious overfitting. To

overcome this high-dimensionality challenge, we use a Bayesian approach with a novel spec-

ification of prior beliefs. Asset pricing models of various kinds generally imply that much

of the variance of the SDF should be attributable to high-eigenvalue (i.e., high-variance)

principal components (PCs) of the candidate factor returns. Put differently, first and second

moments of returns should be related. Therefore, if a factor earns high expected returns,

it must either itself be a major source of variance or load heavily on factors that are major

sources of variance. This is true not only in rational expectations models in which perva-

sive macroeconomic risks are priced but also, under plausible restrictions, in models in which

cross-sectional variation in expected returns arises from biased investor beliefs (Kozak, Nagel,

and Santosh, 2018).

We construct a prior distribution that reflects these economic considerations. Compared

to the naïve ordinary least squares (OLS) estimator, the Bayesian posterior shrinks the SDF

coefficients toward zero. Our prior specification shares similarities with the prior in Pástor

(2000) and Pástor and Stambaugh (2000). Crucially, however, the degree of shrinkage in our

case is not equal for all assets. Instead, the posterior applies significantly more shrinkage

to SDF coefficients associated with low-eigenvalue PCs. This heterogeneity in shrinkage is

consistent with our economic motivation for the prior, and it is empirically important, as

it leads to better out-of-sample (OOS) performance. Our Bayesian estimator is similar to

ridge regression—a popular technique in machine learning—but with important differences.

The ridge version of the regression of average returns on factor covariances would add a

penalty on the sum of squared SDF coefficients (L2 norm) to the least-squares objective.

In contrast, our estimator imposes a penalty based on the maximum squared Sharpe ratio
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implied by the SDF—in line with our economic motivation that near-arbitrage opportunities

are implausible and likely spurious. This estimator is in turn equivalent to one that minimizes

the Hansen and Jagannathan (1997) distance and imposes a penalty on the sum of squared

SDF coefficients (L2 norm).

Our baseline Bayesian approach results in shrinkage of many SDF coefficients to nearly,

but not exactly, zero. Thus, while the resulting SDF may put low weight on the contribu-

tion of many characteristics-based factors, it will not be sparse in terms of characteristics.

However, we also want to entertain the possibility that the weight of some of these candidate

factors could truly be zero. First, a substantial existing literature focuses on SDFs with just

a few characteristics-based factors. While we have argued above that the economic case for

this extreme degree of characteristics-sparsity is weak, we still want to entertain it as an

empirical hypothesis. Second, we may want to include among the set of candidate factors

ones that have not been previously analyzed in empirical studies and that may therefore be

more likely to have a zero risk price. For these reasons, we extend our Bayesian method to

allow for automatic factor selection, that is, finding a good sparse SDF approximation.

To allow for factor selection, we augment the estimation criterion with an additional

penalty on the sum of absolute SDF coefficients (L1 norm), which is typically used in lasso

regression (Tibshirani, 1996) and naturally leads to sparse solutions. Our combined speci-

fication employs both L1 and L2 penalties, similar to the elastic net technique in machine

learning. This combined specification achieves our two primary goals: (i) regularization

based on an economically motivated prior, and (ii) it allows for sparsity by setting some SDF

coefficients to zero. We pick the strength of penalization to maximize the (cross-validated)

cross-sectional OOS R2.

In our empirical application of these methods, we first look at a familiar setting in which

we know the answer that the method should deliver. We focus on the well-known 25 ME/BM-

sorted portfolios from Fama and French (1993). We show that our method automatically

recovers an SDF that is similar to the one based on the SMB and HML factors constructed
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intuitively by Fama and French (1993).

We then move on to a more challenging application in which we examine 50 well-known

anomaly portfolios, portfolios based on 80 lagged returns and financial ratios provided by

Wharton Research Data Services (WRDS), as well as more than a thousand powers and

interactions of these characteristics. We find that (i) the L2-penalty-only based method (our

Bayesian approach) finds robust nonsparse SDF representations that perform well OOS;

therefore, if sparsity is not required, our Bayesian method provides a natural starting point

for most applications; (ii) L1-penalty-only based methods often struggle in delivering good

OOS performance in high-dimensional spaces of base characteristics; and (iii) sparsity in the

space of characteristics is limited in general, even with our dual-penalty method, suggesting

little redundancy among the anomalies represented in our data set. Thus, in summary,

achieving robustness requires shrinkage of SDF coefficients, but restricting the SDF to just

a few characteristics-based factors does not adequately capture the cross-section of expected

returns.

Interestingly, the results on sparsity are very different if we first transform the characteristics-

portfolio returns into their PCs before applying our dual-penalty method. A sparse SDF

that includes a few of the high-variance PCs delivers a good and robust out-of-sample fit of

the cross-section of expected returns. Little is lost, in terms of explanatory power, by setting

the SDF coefficients of low-variance PCs to zero. This finding is robust across our three

primary sets of portfolios and the two extremely high-dimensional data sets that include the

power and interactions of characteristics. No similarly sparse SDF based on the primitive

characteristics-based factors can compete in terms of OOS explanatory power with a sparse

PC-based SDF.

That there is much greater evidence for sparsity in the space of principal component

portfolios returns than in the original space of characteristics-based portfolio returns is eco-

nomically sensible. As we argued earlier, there are no compelling reasons why one should be

able to summarize the cross-section of expected returns with just a few stock characteristics.
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In contrast, a wide range of asset pricing models implies that a relatively small number of

high-variance PCs should be sufficient to explain most of the cross-sectional variation in

expected returns. As Kozak, Nagel, and Santosh (2018) discuss, absence of near-arbitrage

opportunities implies that factors earning substantial risk premia must be a major source of

co-movement—in models with rational investors as well as ones that allow for investors with

biased beliefs. Since typical sets of equity portfolio returns have a strong factor structure

dominated by a small number of high-variance PCs, a sparse SDF that includes some of the

high-variance PCs should then be sufficient to capture these risk premia.

In summary, our results suggest that the empirical asset pricing literature’s multi-decade

quest for a sparse characteristics-based factor model (e.g., with three, four, or five characteristics-

based factors) is ultimately futile. There is just not enough redundancy among the large

number of cross-sectional return predictors for such a characteristics-sparse model to ade-

quately summarize pricing in the cross-section. As a final test, we confirm the statistical

significance of this finding in an out-of-sample test. We estimate the SDF coefficients, and

hence the weights of the mean-variance efficient (MVE) portfolio, based on data until the

end of 2004. We then show that this MVE portfolio earns an economically large and statis-

tically highly significant abnormal return relative to the Fama and French (2016) six-factor

model in the out-of-sample period 2005–2017, allowing us to reject the hypothesis that the

six-factor model describes the SDF.

Conceptually, our estimation approach is related to research on mean-variance portfolio

optimization in the presence of parameter uncertainty. SDF coefficients of factors are pro-

portional to their weights in the MVE portfolio. Accordingly, our L2-penalty estimator of

SDF coefficients maps into L2-norm constrained MVE portfolio weights obtained by Brandt,

Santa-Clara, and Valkanov (2009) and DeMiguel, Garlappi, Nogales, and Uppal (2009).

Moreover, as DeMiguel, Garlappi, Nogales, and Uppal (2009) show, and as can be readily

seen from the analytic expression of our estimator, portfolio optimization under L2-norm

constraints on weights shares similarities with portfolio optimization with a covariance ma-
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trix shrunk toward the identity matrix, as in Ledoit and Wolf (2004). However, despite some

similarity of the solutions, there are important differences. First, our L2-penalty results in

level shrinkage of all SDF coefficients toward zero. This would not be the case with a shrunk

covariance matrix. Second, in covariance matrix shrinkage approaches, the optimal amount

of shrinkage would depend on the size of the parameter uncertainty in covariance estimation.

Higher uncertainty about the covariance matrix parameters would call for stronger shrink-

age. In contrast, our estimator is derived under the assumption that the covariance matrix

is known (we use daily returns to estimate covariances precisely) and means are unknown.

Shrinkage in our case is due to this uncertainty about means and our economically moti-

vated assumption that ties means to covariances in a particular way. Notably, the amount

of shrinkage required in our case of uncertain means is significantly higher than in the case

of uncertain covariances. In fact, when we allow for uncertainty in both means and covari-

ances, we find that covariance uncertainty has negligible impact on coefficient estimates once

uncertainty in means is accounted for.

Our paper contributes to an emerging literature that applies machine learning techniques

in asset pricing to deal with the high-dimensionality challenge. Rapach, Strauss, and Zhou

(2013) applies lasso to select a few predictors from a large set of candidates to forecast global

stock markets. Stambaugh and Yuan (2016) use covariance cluster analysis to identify two

groups of “related” anomalies and then construct factors based on stocks’ average within-

cluster characteristic rank. Kelly, Pruitt, and Su (2018) show how to perform dimensionality

reduction of the characteristics space. They extend projected-PCA (Fan, Liao, and Wang,

2016) to allow for time-varying factor loadings and apply it to extract common latent fac-

tors from the cross-section of individual stock returns. Their method explicitly maps these

latent factors to principal components of characteristic-managed portfolios (under certain

conditions). Kelly, Pruitt, and Su (2018) and Kozak, Nagel, and Santosh (2018) further

show that an SDF constructed using few such dominant principal components prices the

cross-section of expected returns reasonably well. The selection of a few dominant sources
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of covariance as pricing factors in these papers is an ad-hoc imposition of the asset pricing

restriction that links factor mean returns and variances. Rather than imposing a PC-sparse

SDF representation ex-ante, our methodology automatically recovers such sparsity if it im-

proves out-of-sample performance.

DeMiguel, Martin-Utrera, Nogales, and Uppal (2017), Freyberger, Neuhierl, and Weber

(2017) and Feng, Giglio, and Xiu (2017) focus on characteristics-based factor selection in

lasso-style estimation with L1-norm penalties. Their findings are suggestive of a relatively

high degree of redundancy among cross-sectional stock return predictors. Yet, as our results

show, for the purposes of SDF estimation with characteristics-based factors, a focus purely

on factor selection with L1-norm penalties is inferior to an approach with L2-norm penalties

that shrinks SDF coefficients toward zero to varying degrees but does not impose sparsity

on the SDF coefficient vector. This is in line with results from the statistics literature where

researchers have noted that lasso does not perform well when regressors are correlated, and

that ridge regression (with L2-norm penalty) or elastic net (with a combination of L1- and L2-

norm penalties) delivers better prediction performance than lasso in these cases (Tibshirani,

1996; Zou and Hastie, 2005). Since many of the candidate characteristics-based factors in our

application have substantial correlation, it is to be expected that an L1-norm penalty alone

will lead to inferior prediction performance. For example, instead of asking the estimation

procedure to choose between the value factor and the correlated long-run-reversals factor

for the sake of sparsity in terms of characteristics, it appears to be beneficial, in terms of

explaining the cross-section of expected returns, in extracting the predictive information

common to both.

Another important difference between our approach and much of this recent machine

learning literature in asset pricing lies in the objective. Most papers focus on estimating

risk premia, i.e., the extent to which a stock characteristic is associated with variation in

expected returns.2 In contrast, we focus on estimation of risk prices, i.e., the extent to which

2See, for example, Freyberger, Neuhierl, and Weber (2017), Moritz and Zimmermann (2016), Huerta,
Corbacho, and Elkan (2013), and Tsai, Lin, Yen, and Chen (2011). An exception is Feng, Giglio, and Xiu
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the factor associated with a characteristic helps price assets by contributing to variation in

the SDF. The two perspectives are not the same because a factor can earn a substantial risk

premium simply by being correlated with the pricing factors in the SDF, without being one

of those pricing factors. Our objective is to characterize the SDF, hence our focus on risk

prices. This difference in objective from much of the existing literature also explains why

we pursue a different path in terms of methodology. While papers focusing on risk premia

can directly apply standard machine learning methods to the cross-sectional regressions or

portfolio sorts used for risk premia estimation, a key contribution of our paper is to adapt the

objective function of standard ridge and lasso estimators to be suitable for SDF estimation

and consistent with our economically motivated prior.

Finally, our analysis is also related to papers that consider the statistical problems arising

from researchers’ data mining of cross-sectional return predictors. The focus of this literature

is on assessing the statistical significance of individual characteristics-based factors when

researchers may have tried many other factors as well. Green, Hand, and Zhang (2017) and

Harvey, Liu, and Zhu (2015) adjust significance thresholds to account for such data mining.

In contrast, rather than examining individual factors in isolation, we focus on assessing

the joint pricing role of a large number of factors and the potential redundancy among

the candidate factors. While our tests do not directly adjust for data mining, our approach

implicitly includes some safeguards against data-mined factors. First, for data-mined factors,

there is no reason for the (spurious in-sample) mean return to be tied to covariances with

major sources of return variance. Therefore, by imposing a prior that ties together means

and covariances, we effectively downweight data-mined factors. Second, our final test using

the SDF-implied MVE portfolio is based on data from 2005–2017, a period that starts after

or overlaps very little with the sample period used in studies that uncovered the anomalies

(McLean and Pontiff, 2016).

(2017).
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2. Asset pricing with characteristics-based factors

We start by laying out the basic asset pricing framework that underlies characteristics-

based factor models. We first describe this framework in terms of population moments,

leaving aside estimation issues for now. Building on this, we can then proceed to describe

the estimation problem and our proposed approach for dealing with the high dimensionality

of this problem.

For any point in time t, let Rt denote an N × 1 vector of excess returns for N stocks.

Typical reduced-form factor models express the SDF as a linear function of excess returns

on stock portfolios. Along the lines of Hansen and Jagannathan (1991), one can find an SDF

in the linear span of excess returns,

Mt = 1− b′t−1 (Rt − ERt) , (1)

by solving for the N × 1 vector of SDF loadings bt−1 that satisfies the conditional pricing

equation

Et−1[MtRt] = 0. (2)

2.1. Characteristics-based factor SDF

Characteristics-based asset pricing models parametrize the SDF loadings as

bt−1 = Zt−1b, (3)

where Zt−1 is an N × H matrix of asset characteristics, and b is an H × 1 vector of time-

invariant coefficients. Without further restrictions, this representation is without loss of

generality.3 To obtain models with empirical content, researchers search for a few measurable

3For example, at this general level, the SDF coefficient of an asset could serve as the “characteristic,”
Zt−1 = bt−1, with b = 1. That we have specified the relationship between bt−1 and characteristics as linear
is generally not restrictive, as Zt−1 could also include nonlinear functions of some stock characteristics.
Similarly, by working with cross-sectionally centered and standardized characteristics, we focus on cross-
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asset attributes that approximately span bt−1. For example, Fama and French (1993) use

two characteristics: market capitalization and the book-to-market equity ratio. Our goal is

to develop a statistical methodology that allows us to entertain a large number of candidate

characteristics and estimate their coefficients b in such a high-dimensional setting.

Plugging Eq. (3) into Eq. (1) delivers an SDF that is in the linear span of the H

characteristics-based factor returns, Ft = Z ′t−1Rt, which can be created based on stock

characteristics, i.e.,

Mt = 1− b′ (Ft − EFt) . (4)

In line with much of the characteristics-based factor model literature, we focus on the un-

conditional asset pricing equation,

E [MtFt] = 0, (5)

where the factors Ft serve simultaneously as the assets whose returns we are trying to explain

as well as the candidate factors that can potentially enter as priced factors into the SDF.

In our empirical work, we cross-sectionally demean each column of Z so that the factors

in Ft are returns on zero-investment long-short portfolios. Typical characteristics-based

factor models in the literature add a market factor to capture the level of the equity risk

premia, while the long-short characteristics factors explain cross-sectional variation. In our

specification, we focus on understanding the factors that help explain these cross-sectional

differences, and we do not explicitly include a market factor, but we orthogonalize the

characteristics-based factors with respect to the market factor. This is equivalent, in terms

of the effect on pricing errors, to including a market factor in the SDF. It is therefore useful

here to think of the elements of F as factors that have been orthogonalized. In our empirical

analysis, we also work with factors orthogonalized with respect to the market return.

With knowledge of population moments, we could now solve Eq. (4) and Eq. (5) for the

sectional variation, but it would be straightforward to generalize to Zt that includes variables with time-series
dynamics that could capture time variation in conditional moments.
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SDF coefficients

b = Σ−1E (Ft) , (6)

where Σ ≡ E
[
(Ft − EFt) (Ft − EFt)′

]
. Rewriting this expression as

b = (ΣΣ)−1 ΣE (Ft) (7)

shows that the SDF coefficients can be interpreted as the coefficients in a cross-sectional

regression of the expected asset returns to be explained by the SDF, which, in this case,

are the H elements of E (Ft), on the H columns of covariances of each factor with the other

factors and with itself.

In practice, without knowledge of population moments, estimating the SDF coefficients

by running such a cross-sectional regression in sample would result in overfitting of noise, with

the consequence of poor out-of-sample performance, unlessH is small. Since SDF coefficients

are also weights of the MVE portfolio, the difficulty of estimating SDF coefficients with bigH

is closely related to the well-known problem of estimating the weights of the MVE portfolio

when the number of assets is large. The approach we propose in Section 3 is designed to

address this problem.

2.2. Sparsity in characteristics-based factor returns

Much of the existing characteristics-based factor model literature has sidestepped this

high-dimensionality problem by focusing on models that include only a small number of

factors. We will refer to such models as characteristics-sparse models. Whether such a

characteristics-sparse model can adequately describe the SDF in a cross-section with a large

number of stock characteristics is a key empirical question that we aim to answer in this

paper.

Before going into the empirical methods and analysis to tackle these questions, it is useful

to first briefly discuss what we might expect regarding characteristics-sparsity of the SDF
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based on some basic economic arguments. While the literature’s focus on characteristics-

sparse factor models has been largely ad hoc, there have been some attempts to motivate

the focus on a few specific characteristics.

One such approach is based on the q-theory of firm investment. Similar predictions

also result from present-value identity relationships like those discussed in Fama and French

(2015) or Vuolteenaho (2002). To provide a concrete example, we briefly discuss the two-

period q-theory model in Lin and Zhang (2013). The key idea of the model is that an

optimizing firm should choose investment policies such that it aligns expected returns (cost

of capital) and profitability (investment payoff). In the model, firms take the SDF as given

when making real investment decisions. A firm has a one-period investment opportunity.

For an investment I0, the firm will make profit ΠI0. The firm faces quadratic adjustment

costs with marginal cost cI0, and the investment fully depreciates after one period. Every

period, the firm has the objective

max
I0

E[MΠI0]− I0 −
c

2I
2
0 . (8)

Taking this SDF as given and using the firm’s first-order condition, I0 = 1
c

(E[MΠ]− 1), we

can compute a one-period expected return,

E [R] = E
(

Π
E [MΠ]

)
= E [Π]

1 + cI0
. (9)

For example, a firm with high expected return, and hence high cost of capital, must either

have high profitability or low investment or a combination thereof. By the same token,

expected profitability and investment jointly reveal whether the firm has high or low load-

ings on the SDF. For this reason, factors for which stocks’ weights are based on expected

profitability and investment help capture the factors driving the SDF. The model therefore

implies a sparse characteristic-based factor model with two factors: expected profitability

E [Π] and investment I0, which seems to provide a partial motivation for the models in Hou,
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Xue, and Zhang (2015) and Fama and French (2015).

In practice, however, neither expected profitability nor (planned) investment are observ-

able. The usual approach is to use proxies, such as lagged profitability and lagged investment

as potential predictors of unobserved quantities. Yet many additional characteristics are

likely relevant for capturing expected profitability and planned investment and, therefore,

expected returns. Moreover, considering that the model above is a vast simplification of

reality to begin with, many more factors are likely to be required to approximate an SDF of

a more realistic and complex model. The bottom line is that, in practice, q-theory does not

necessarily provide much economic reason to expect sparse SDFs in the space of observable

characteristics.

For this reason, we pursue an approach that does not impose that the SDF is necessarily

characteristics-sparse. Moreover, it leads us to seek a method that can accommodate an

SDF that involves a potentially very large number of characteristics-based factors, but at

the same time, still ensures good out-of-sample performance and robustness against in-sample

overfitting. At the same time, we would also like our method to be able to handle cases in

which some of the candidate factors are not contributing to the SDF at all. This situation

may be particularly likely to arise if the analysis includes characteristics that are not known,

from prior literature, to predict returns in the cross-section. It could also arise if there is truly

some redundancy among the cross-sectional return predictors documented in the literature.

To accommodate these cases, we want our approach to allow for the possibility of sparsity

but without necessarily requiring sparsity to perform well out of sample. This will then allow

us to assess the degree of sparsity empirically.

2.3. Sparsity in principal components of characteristics-based factor returns

While there are not strong economic reasons to expect characteristics-sparsity of the

SDF, one may be able to find rotations of the characteristics factor data that admit, at

least approximately, a sparse SDF representation. Motivated by the analysis in Kozak,
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Nagel, and Santosh (2018), we consider sparse SDF representations in the space of PCs of

characteristic-based factor returns.

Based on the eigendecomposition of the factor covariance matrix,

Σ = QDQ′ with D = diag(d1, d2, ..., dH), (10)

where Q is the matrix of eigenvectors of Σ, and D is the diagonal matrix of eigenvalues

ordered in decreasing magnitude, we can construct PC factors

Pt = Q′Ft. (11)

Using all PCs, and with knowledge of population moments, we could express the SDF as

Mt = 1− b′P (Pt − EPt) , with bP = D−1E[Pt]. (12)

In Kozak, Nagel, and Santosh (2018), we argue that absence of near-arbitrage (extremely

high Sharpe ratios) implies that factors earning substantial risk premia must be major sources

of co-movement. This conclusion obtains under very mild assumptions and applies equally

to “rational” and “behavioral” models. Furthermore, for typical sets of test assets, returns

have a strong factor structure dominated by a small number of PCs with the highest variance

(or eigenvalues dj). Under these two conditions, an SDF with a small number of these high-

variance PCs as factors should explain most of the cross-sectional variation in expected

returns. Motivated by this theoretical result, we explore empirically whether an SDF sparse

in PCs can be sufficient to describe the cross-section of expected returns, and we compare

it, in terms of their pricing performance, with SDFs that are sparse in characteristics.
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3. Methodology

Consider a sample with size T . We denote

µ̄ = 1
T

T∑
t=1

Ft, (13)

Σ = 1
T

T∑
t=1

(Ft − µ̄) (Ft − µ̄)′ . (14)

A natural, but naïve, estimator of the coefficients b of the SDF in Eq. (4) could be constructed

based on the sample moment conditions

µ− 1
T

T∑
t=1

Ft = 0, (15)

1
T

T∑
t=1

MtFt = 0. (16)

The resulting estimator is the sample version of Eq. (6),4

b̂ = Σ−1
µ̄. (17)

However, unless H is very small relative to T , this naïve estimator yields very imprecise

estimates of b. The main source of imprecision is the uncertainty about µ. Along the

same lines as for the population SDF coefficients in Section 2.1, the estimator b̂ effectively

results from regressing factor means on the covariances of these factors with each other. As is

generally the case in expected return estimation, the factor mean estimates are imprecise even

with fairly long samples of returns. In a high-dimensional setting with large H, the cross-

sectional regression effectively has a large number of explanatory variables. As a consequence,

the regression will end up spuriously overfitting the noise in the factor means, resulting in

a very imprecise b̂ estimate and bad out-of-sample performance. Estimation uncertainty in

the covariance matrix can further exacerbate the problem, but as we discuss in greater detail

4When T < H, we use Moore-Penrose pseudoinverse of the covariance matrix.
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in Internet Appendices A and B, the main source of fragility in our setting are the factor

means, not the covariances.

To avoid spurious overfitting, we bring in economically motivated prior beliefs about the

factors’ expected returns. If the prior beliefs are well motivated and truly informative, this

will help reduce the (posterior) uncertainty about the SDF coefficients. In other words,

bringing in prior information regularizes the estimation problem sufficiently to produce ro-

bust estimates that perform well in out-of-sample prediction. We first start with prior beliefs

that shrink the SDF coefficients away from the naïve estimator in Eq. (17) but without im-

posing sparsity. We then expand the framework to allow for some degree of sparsity as

well.

3.1. Shrinkage estimator

To focus on uncertainty about factor means, the most important source of fragility in

the estimation, we proceed under the assumption that Σ is known. Consider the family of

priors,

µ ∼ N
(

0, κ
2

τ
Ση

)
, (18)

where τ = tr [Σ], and κ is a constant controlling the “scale” of µ that may depend on τ andH.

As we will discuss, this family encompasses priors that have appeared in earlier asset pricing

studies, albeit not in a high-dimensional setting. At this general level, this family of priors

can broadly capture the notion—consistent with a wide class of asset pricing theories—that

first moments of factor returns have some connection to their second moments. Parameter

η controls the “shape” of the prior. It is the key parameter for the economic interpretation

of the prior because it determines how exactly the relationship between first and second

moments of factor returns is believed to look like under the prior.

To understand the economic implications of particular values of η, it is useful to consider

the PC portfolios Pt = Q′Ft with Σ = QDQ′ that we introduced in Section 2.3. Expressing
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the family of priors (18) in terms of PC portfolios we get

µP ∼ N
(

0, κ
2

τ
Dη

)
. (19)

For the distribution of Sharpe ratios of the PCs, we obtain

D−
1
2µP ∼ N

(
0, κ

2

τ
Dη−1

)
. (20)

We can evaluate the plausibility of assumptions about η by considering the implied prior

beliefs about Sharpe ratios of small-eigenvalue PCs. For typical sets of asset returns, the

distribution of eigenvalues is highly skewed: a few high-eigenvalue PCs account for most of

the return variance, many PCs have much smaller eigenvalues, and the smallest eigenvalues

of high-order PCs are tiny.

This fact about the distribution of eigenvalues immediately makes clear that the assump-

tion of η = 0 (as, e.g., in Harvey, Liechty, and Liechty, 2008) is economically implausible. In

this case, the mean Sharpe ratio of a PC factor in Eq. (20) is inversely related to the PC’s

eigenvalue. Therefore, the prior implies that the expected Sharpe ratios of low-eigenvalue

PCs explode toward infinity. In other words, η = 0 would imply existence of near-arbitrage

opportunities. As Kozak, Nagel, and Santosh (2018) discuss, existence of near-arbitrage

opportunities is not only implausible in rational expectations models, but also in models in

which investors have biased beliefs, as long as some arbitrageurs are present in the market.

Pástor (2000) and Pástor and Stambaugh (2000) work with η = 1. This assumption is

more plausible in the sense that it is consistent with absence of near-arbitrage opportunities.

However, as Eq. (20) makes clear, η = 1 implies that Sharpe ratios of low-eigenvalue PCs are

expected to be of the same magnitude as Sharpe ratios of high-eigenvalue PCs. We do not

view this as economically plausible. For instance, in rational expectations models in which

cross-sectional differences in expected returns arise from exposure to macroeconomic risk

factors, risk premia are typically concentrated in one or a few common factors. This means
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that Sharpe ratios of low-eigenvalue PCs should be smaller than those of the high-eigenvalue

PCs that are the major source of risk premia. Kozak, Nagel, and Santosh (2018) show

that a similar prediction also arises in plausible behavioral models in which investors have

biased beliefs. They argue that to be economically plausible, such a model should include

arbitrageurs in the investor population, and it should have realistic position size limits (e.g.,

leverage constraints or limits on short selling) for the biased-belief investors (who are likely

to be less sophisticated). As a consequence, biased beliefs can only have substantial pricing

effects in the cross-section if these biased beliefs align with high-eigenvalue PCs; otherwise,

arbitrageurs would find it too attractive to aggressively lean against the demand from biased

investors, leaving very little price impact. To the extent it exists, mispricing then appears in

the SDF mainly through the risk prices of high-eigenvalue PCs. Thus, within both classes

of asset pricing models, we would expect Sharpe ratios to be increasing in the eigenvalue,

which is inconsistent with η ≤ 1.

Moreover, the portfolio that an unconstrained rational investor holds in equilibrium

should have finite portfolio weights. Indeed, realistic position size limits for the biased-

belief investors in Kozak, Nagel, and Santosh (2018) discussed above translate into finite

equilibrium arbitrageur holdings and therefore finite SDF coefficients. Our prior should be

consistent with this prediction. Since the optimal portfolio weights of a rational investor

and SDF coefficients are equivalent, we want a prior that ensures b′b remains bounded. A

minimal requirement for this to be true is that E[b′b] remains bounded. With b = Σ−1µ, the

decomposition Σ = QDQ′, and the prior (18), we can show

E[b′b] = κ2

τ

H∑
i=1

dη−2
i , (21)

where di are the eigenvalues on the diagonal ofD. Since the lowest eigenvalue, dH , in a typical

asset return data set is extremely close to zero, the corresponding summation term dη−2
i is

extremely big if η < 2. In other words, with η < 2, the prior would imply that the optimal
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portfolio of a rational investor is likely to place huge bets on the lowest-eigenvalue PCs.

Setting η ≥ 2 avoids such unrealistic portfolio weights. To ensure the prior is plausible, but

at the same time is also the least restrictive (“flattest”) Bayesian prior that deviates as little

as possible from more conventional prior assumptions like those in Pástor and Stambaugh’s

work, we set η = 2.

To the best of our knowledge, this prior specification is novel in the literature, but as we

have argued, there are sound economic reasons for this choice. Based on this assumption,

we get an independent and identically distributed (i.i.d.) prior on SDF coefficients, b ∼

N
(
0, κ2

τ
I
)
. Combining these prior beliefs with information about sample means µ̄ from a

sample with size T , assuming a multivariate-normal likelihood, we obtain the posterior mean

of b

b̂ = (Σ + γI)−1 µ̄, (22)

where γ = τ
κ2T

.5 The posterior variance of b is given by

var (b) = 1
T

(Σ + γI)−1 , (23)

which we use in Section 4 to construct confidence intervals.

3.1.1. Economic interpretation

To provide an economic interpretation of what this estimator does, it is convenient to

consider a rotation of the original space of returns into the space of principal components.

Expressing the SDF based on the estimator (22) in terms of PC portfolio returns, Pt = Q′Ft,

5We obtain this formula by first computing the posterior mean of µ based on the standard formula
for the conjugate multivariate normal prior with a known covariance matrix. That is, letting the prior
parameters µ0 = 0 and Σ0 = κ2

τ Ση, we get the posterior means µ̂ =
(
Σ−1

0 + TΣ−1)−1 (Σ−1
0 µ0 + TΣ−1µ̄

)
=(

Σ + γΣ(2−η))−1 Σµ̄. Next, we use the fact that b̂ = Σ−1µ̂ and η = 2 to obtain Eq. (22).
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with coefficients b̂P = Q′b̂, we obtain a vector with elements

b̂P,j =
(

dj
dj + γ

)
µ̄P,j
dj

. (24)

Compared with the naïve exactly identified GMM estimator from Eq. (17), which would

yield SDF coefficients for the PCs of

b̂ols
P,j = µ̄P,j

dj
, (25)

our Bayesian estimator (with γ > 0) shrinks the SDF coefficients toward zero with the

shrinkage factor dj/(dj +γ) < 1. Most importantly, the shrinkage is stronger the smaller the

eigenvalue dj associated with the PC. The economic interpretation is that we judge as im-

plausible that a PC with low eigenvalue could contribute substantially to the volatility of the

SDF and hence to the overall maximum squared Sharpe ratio. For this reason, the estimator

shrinks the SDF coefficients of these low-eigenvalue PCs particularly strongly. In contrast,

with η = 1 in the prior—which we have argued earlier is economically implausible—the

estimator would shrink the SDF coefficients of all PCs equally.

3.1.2. Representation as a penalized estimator

We now show that our Bayesian estimator maps into a penalized estimator that resembles

estimators common in the machine learning literature. If we maximize the model cross-

sectional R2 subject to a penalty on the model-implied maximum squared Sharpe ratio

γb′Σb,

b̂ = arg min
b

{
(µ̄− Σb)′ (µ̄− Σb) + γb′Σb

}
, (26)
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the problem leads to exactly the same solution as in Eq. (22). Equivalently, minimizing the

model HJ-distance (Hansen and Jagannathan, 1991) subject to an L2 norm penalty γb′b,

b̂ = arg min
b

{
(µ̄− Σb)′Σ−1 (µ̄− Σb) + γb′b

}
, (27)

leads again to the same solution as in Eq. (22). Looking at this objective again in terms of

factor returns that are transformed into their principal components, one can see intuitively

how the penalty in this case induces shrinkage effects concentrated on low-eigenvalue PCs

in the same way as the prior beliefs do in the case of the Bayesian estimator above. Suppose

the estimation would shrink the coefficient b̂P,j on a low-eigenvalue PC toward zero. This

would bring a benefit in terms of the penalty, but little cost, because for a given magnitude

of the SDF coefficient, a low eigenvalue PC contributes only very little to SDF volatility, and

so shrinking its contribution has little effect on the HJ distance. In contrast, shrinking the

coefficient on a high-eigenvalue PC by the same magnitude would bring a similar penalty

benefit, but at a much larger cost, because it would remove a major source of SDF volatility

from the SDF. As a consequence, the estimation tilts toward shrinking SDF coefficients of

low-eigenvalue PCs.

Eq. (26) and (27) resemble ridge regression, a popular technique in machine learning

(e.g., see Hastie, Tibshirani, and Friedman, 2011) but with some important differences.

A standard ridge regression objective function would impose a penalty on the L2-norm of

coefficients, b′b in Eq. (26), or, equivalently, weight the pricing errors with the identity ma-

trix instead of Σ−1 in Eq. (27). One can show that this standard ridge regression would

correspond to a prior with η = 3, which would imply even more shrinkage of low-eigenvalue

PCs than with our prior of η = 2. However, the estimator one obtains from a standard

ridge approach is not invariant to how the estimation problem is formulated. For example,

if one estimates factor risk premia λ in a beta-pricing formulation of the model, minimiz-

ing (µ̄− Iλ)′ (µ̄− Iλ) subject to a standard ridge penalty on λ′λ, the resulting estimator
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corresponds to a prior with η = 1, that, as we have argued, is not economically plausible.

In contrast, in our approach the estimator is pinned down by the asset pricing equation (5)

combined with the economically motivated prior (18).

3.2. Sparsity

The method that we have presented so far deals with the high-dimensionality challenge

by shrinking SDF coefficients toward zero, but none of the coefficients are set to exactly

zero. In other words, the solution we obtain is not sparse. As we have argued in Section 2,

the economic case for extreme sparsity with characteristics-based factors is weak. However,

it may be useful to allow for the possibility that some factors are truly redundant in terms

of their contribution to the SDF. Moreover, there are economic reasons to expect that a

representation of the SDF that is sparse in terms of PCs could provide a good approximation.

For these reasons, we now introduce an additional L1 penalty γ1
∑H
j=1 |bj| in the penal-

ized regression problem given by Eq. (27). The approach is motivated by lasso regression

and elastic net (Zou and Hastie, 2005), which combines lasso and ridge penalties. Due to

the geometry of the L1 norm, it leads to some elements of b̂ being set to zero, that is, it

accomplishes sparsity and automatic factor selection.6 The degree of sparsity is controlled

by the strength of the penalty. Combining both L1 and L2 penalties, our estimator solves

the problem7:

b̂ = arg min
b

(µ̄− Σb)′Σ−1 (µ̄− Σb) + γ2b
′b+ γ1

H∑
i=1
|bi| . (28)

This dual-penalty method enjoys much of the economic motivation behind the L2-penalty-
6L2 regularization penalizes the square of SDF weights, while L1 regularization penalizes their absolute

value. Relative to L1 regularization, L2 regularization therefore focuses on pushing big weights down sub-
stantially more than tiny ones. More precisely, the first derivative of the L2 penalty in a small neighborhood
around a zero SDF weight is approximately zero. Therefore, changing the weight from zero to a small num-
ber has virtually no effect on the penalty. As a consequence, the estimator retains an SDF factor that does
not contribute much explanatory power with a small, but nonzero, weight. In contrast, for the L1, the first
derivative is far from zero even in a close neighborhood around zero SDF weight. Changing a weight from
a small value to exactly zero can therefore have a substantial effect on the penalty, which makes it “costly”
to retain SDF factors with small explanatory power at a nonzero weight.

7To solve the optimization problem in Eq. (28), we use the LARS-EN algorithm in Zou and Hastie
(2005).
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only method with an added benefit of potentially delivering sparse SDF representations. We

can control the degree of sparsity by varying the strength of the L1 penalty and the degree

of economic shrinkage by varying the L2 penalty.

Despite the visual similarities, there are important, economically motivated differences

between our method and a standard elastic net estimator. First, we minimize the HJ-

distance instead of minimizing (unweighted) pricing errors. Second, unlike in typical elastic

net applications, we do not normalize or center variables: the economic structure of our setup

imposes strict restrictions between means and covariances and leaves no room for intercepts

or arbitrary normalizations.

While we will ultimately let the data speak about the optimal values of the penalties γ1

and γ2, there is reason to believe that completely switching off the L2 penalty and focusing

purely on lasso-style estimation would not work well in this asset pricing setting. Lasso is

known to suffer from relatively poor performance compared with ridge and elastic net when

regressors are highly correlated (Tibshirani, 1996; Zou and Hastie, 2005). An L2 penalty

leads the estimator to shrink coefficients of correlated predictors toward each other, allowing

them to borrow strength from each other (Hastie, Tibshirani, and Friedman, 2011). In

the extreme case of k identical predictors, they each get identical coefficients with 1/k-th

the size that any single one would get if fit alone. The L1 penalty, on the other hand,

ignores correlations and will tend to pick one variable and disregard the rest. This hurts

performance because if correlated regressors each contain a common signal and uncorrelated

noise, a linear combination of the regressors formed based on an L2 penalty will typically do

better in isolating the signal than a single regressor alone. For instance, rather than picking

book-to-market as the only characteristic to represent the value effect in an SDF, it may be

advantageous to consider a weighted average of multiple measures of value, such as book-to-

market, price-dividend, and cashflow-to-price (CF/P) ratios. This reasoning also suggests

that an L1-only penalty may work better when we first transform the characteristics-based

factors into their PCs before estimation. We examine this question in our empirical work
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below.

3.3. Data-driven penalty choice

To implement the estimators (22) and (28), we need to set the values of the penalty

parameters γ, γ1, and γ2, respectively. In the L2-only penalty specification, the penalty

parameter γ = τ
κ2T

following from the prior (18) has an economic interpretation. With our

choice of η = 2, the root expected maximum squared Sharpe ratio under the prior is

E[µΣ−1µ]1/2 = κ, (29)

and hence γ implicitly represents views about the expected squared Sharpe ratio. For exam-

ple, an expectation that the maximum Sharpe ratio cannot be very high, i.e., low κ, would

imply high γ and hence a high degree of shrinkage imposed on the estimation. Some re-

searchers pick a prior belief based on intuitive reasoning about the likely relationship between

the maximum squared Sharpe Ratio and the historical squared Sharpe ratio of a market in-

dex.8 However, these are intuitive guesses. It would be difficult to go further and ground

beliefs about κ in deeper economic analyses of plausible degrees of risk aversion, risk-bearing

capacity of arbitrageurs, and degree of mispricing. For this reason, we prefer a data-driven

approach. But we will make use of Eq. (29) to express the magnitude of the L2-penalty that

we apply in estimation in terms of an economically interpretable root expected maximum

squared Sharpe ratio.

The data-driven approach involves estimation of γ via K-fold cross-validation (CV). We

divide the historic data into K equal subsamples. Then, for each possible γ (or each possible

pair of γ1, γ2 in the dual-penalty specification), we compute b̂ by applying Eq. (22) to

K − 1 of these subsamples. We evaluate the OOS fit of the resulting model on the single

withheld subsample. Consistent with the penalized objective, Eq. (26), we compute the

8Barillas and Shanken (2018) is a recent example. See also MacKinlay (1995) and Ross (1976) for similar
arguments.
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OOS R-squared as

R2
oos = 1−

(
µ̄2 − Σ2b̂

)′ (
µ̄2 − Σ2b̂

)
µ̄′2µ̄2

, (30)

where the subscript 2 indicates an OOS sample moment from the withheld sample. We

repeat this procedure K times, each time treating a different subsample as the OOS data.

We then average the R2 across these K estimates, yielding the cross-validated R2
oos. Finally,

we choose γ (or γ1, γ2) that generates the highest R2
oos.

We chose K = 3 as a compromise between estimation uncertainty in b̂ and estimation

uncertainty in the OOS covariance matrix Σ2. The latter rises as K increases due to difficul-

ties of estimating the OOS covariance matrix precisely. With high K, the withheld sample

becomes too short for Σ2 to be well behaved, which distorts the fitted factor mean returns

Σ2b̂. However, our results are robust to using moderately higher K.

This penalty choice procedure uses information from the whole sample to find the penalty

parameters that minimize the R2 based on Eq. (30). The cross-validated OOS R2 at the

optimal values of the penalty parameters is therefore typically an upward-biased estimate of

the true OOS R2 that one would obtain in a new data set that has not been used for penalty

parameter estimation (Tibshirani and Tibshirani, 2009; Varma and Simon, 2006). Our in-

terest centers on the optimal degree of regularization and we therefore are only concerned

about the relative performance of models at various degrees of regularization, not the level

of the OOS R2. For this purpose, the cross-validated OOS R2 is a well-motivated target just

like in the OLS case in which it is optimal to estimate parameters by maximizing the sample

R2 even though the sample R2 is an upward-biased estimate of the OOS R2. In a subsequent

step, in Section 5, we perform a true OOS exercise where we evaluate the estimated SDF on

a part of the sample that has not been used to estimate the penalty parameters.
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4. Empirical analysis

4.1. Preliminary analysis: Fama-French ME/BM portfolios

We start with an application of our proposed method to daily returns on the 25 Fama-

French ME/BM-sorted (FF25) portfolios from July 1926 to December 2017, which we orthog-

onalize with respect to the Center for Research in Security Prices (CRSP) value-weighted

index return using βs estimated in the full sample.9 Portfolio returns are further rescaled to

have standard deviations equal to the in-sample standard deviation of the excess return on

the aggregate market index. In this analysis, we treat the 25 portfolio membership indicators

as stock characteristics, and we estimate the SDF’s loadings on these 25 portfolios. These

portfolios are not the challenging high-dimensional setting for which our method is designed,

but this initial step is useful to verify that our method produces reasonable results before

we apply it to more interesting and statistically challenging high-dimensional sets of asset

returns where classic techniques are infeasible.

For the FF25 portfolios, we know quite well from earlier research what to expect, and we

can check whether our method produces these expected results. From Lewellen, Nagel, and

Shanken (2010), we know that the FF25 portfolio returns have such a strong factor structure

that the 25 portfolio returns (orthogonalized with respect to the market index return) are

close to being linear combinations of the SMB and HML factors. As a consequence, essen-

tially any selection of a couple of portfolios out of the 25 with somewhat different loadings

on the SMB and HML factors should suffice to span the SDF. Thus, treating the portfolio

membership indicators as characteristics, we should find a substantial degree of sparsity.

From Kozak, Nagel, and Santosh (2018), we know that the SMB and HML factors essen-

tially match the first and the second PCs of the FF25 (market-neutral) portfolio returns.

Therefore, when we run the analysis using the PCs of the FF25 portfolio returns as the basis

assets, we should find even more sparsity: two PCs at most should be sufficient to describe

9The resulting abnormal returns are Fi,t = F̃i,t − βiRm,t, where F̃i,t is the raw portfolio return. We
thank Ken French for providing FF25 portfolio return data on his website.
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the SDF well.

Fig. 1 presents results for our dual-penalty estimator in Eq. (28). The results using the

raw FF25 portfolio returns are shown in the left-hand side in Fig. 1a; those using PCs of

these returns are shown in the right-hand side plot Fig. 1b. Every point on the plane in these

plots represents a particular combination of the two penalties γ1 and γ2 that control sparsity

and L2-shrinkage, respectively. We vary the degree of L2-shrinkage on the horizontal axis,

going from extreme shrinkage on the left to no shrinkage at all at the right border of the plot.

To facilitate interpretation, we express the degree of shrinkage in terms of κ. In the L2-only

penalty case, κ has a natural economic interpretation: it is the square root of the expected

maximum squared Sharpe ratio under the prior in Eq. (18), and it is inversely related to the

shrinkage penalty γ = τ
κ2T

. Variation along the vertical axis represents different degrees of

sparsity. We express the degree of sparsity in terms of how many factors remain in the SDF

with nonzero coefficients. Thus, there is no sparsity at the top end of the plot and extreme

sparsity at the bottom. Both axes are depicted on logarithmic scale.

The contour maps show the OOS R2 calculated as in Eq. (30) for each of these penalty

combinations. Our data-driven penalty choice selects the combination with the highest OOS

R2, but in this figure, we show the OOS R2 for a wide range of penalties to illustrate how L2-

shrinkage and sparsity (L1 penalty) influences the OOS R2. Warmer (yellow) colors indicate

higher OOS R2. To interpret the magnitudes, it is useful to keep in mind that with our

choice of K = 3, we evaluate the OOS R2 in withheld samples of about 31 years in length,

i.e., the OOS R2 show how well the SDF explains returns averaged over a 31-year period.

Focusing first on the raw FF25 portfolio returns in Fig. 1a, we can see that for this

set of portfolios, sparsity and L2-shrinkage are substitutes in terms of ensuring good OOS

performance: the contour plot features a diagonal ridge with high OOS R2 extending from

the top edge of the plot (substantial L2-shrinkage, no sparsity) to the right-edge (substantial

sparsity, no shrinkage). As we outlined above, this is what we would expect for this set

of asset returns: a selection of two to three portfolios from these 25 should be sufficient to
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(a) Raw Fama-French 25 portfolios
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Fig. 1. OOS R2 from dual-penalty specification (Fama-French 25 ME/BM portfolios). OOS cross-
sectional R2 for families of models that employ both L1 and L2 penalties simultaneously using 25
Fama-French ME/BM-sorted portfolios (Panel a) and 25 PCs based on Fama and French portfolios
(Panel b). We quantify the strength of the L2 penalty by prior root expected SR2 (κ) on the
x-axis. We show the number of retained variables in the SDF, which quantifies the strength of the
L1 penalty, on the y-axis. Warmer (yellow) colors depict higher values of OOS R2. Both axes are
plotted on logarithmic scale. The sample is daily from July 1926 to December 2017.

span the SDF that prices all 25 well, and adding more portfolio returns to the SDF hurts

OOS performance unless more L2-shrinkage is imposed to avoid overfitting. Unregularized

models that include all 25 factors (top-right corner) perform extremely poorly in the OOS

evaluation.10

Fig. 1b, which is based on the PCs of the FF25 portfolio returns, also shows the expected

result: even one PC is already sufficient to get close to the maximum OOS R2, and two PCs

are sufficient to attain the maximum. Adding more PCs to the SDF does not hurt the

OOS performance as long as some L2-shrinkage is applied. However, with PCs, the ridge of

close-to-maximum OOS R2 is almost vertical, and hence very little additional L2-shrinkage

is needed when sparsity is relaxed. The reason is that our estimator based on the L2 penalty

10We impose a floor on negative R2 at -0.1 in these plots. In reality, unregularized models deliver R2

significantly below this number.
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Fig. 2. L2 model selection and sparsity (Fama-French 25 ME/BM portfolios). Panel (a) plots
the in-sample cross-sectional R2 (dashed) and OOS cross-sectional R2 based on cross-validation
(solid), with no sparsity imposed. Dotted lines depict ±1 standard error (s.e.) bounds of the CV
estimator. In Panel (b), we show the maximum OOS cross-sectional R2 attained by a model with
n factors (on the x-axis) across all possible values of L2 shrinkage, for models based on original
characteristics portfolios (solid) and PCs (dashed). Dotted lines depict −1 s.e. bounds of the CV
estimator. The X mark indicates OOS performance of the Fama-French model that uses only SMB
and HML factors. The sample is daily from July 1926 to December 2017.

in Eq. (27) already downweights low-variance PCs by pushing their SDF coefficients close to

zero. As a consequence, it makes little difference whether one leaves these coefficients close

to zero (without the L1 penalty at the top edge of the plot) or forces them to exactly zero

(with substantial L1 penalty toward the bottom edge of the plot).

In Fig. 2, we further illustrate the role of L2-shrinkage and sparsity by taking some cuts

of the contour plots in Fig. 1. Fig. 2a focuses on L2-shrinkage by taking a cut along the top

edge of the contour plot for the raw FF25 portfolio returns in Fig. 1a, where we only shrink

using the L2-penalty but do not impose sparsity. The OOS R2 is shown by the solid red

line. In line with Fig. 1a, this plot shows that the OOS R2 is maximized for κ ≈ 0.23. For

comparison, we also show the in-sample cross-sectional R2 (dashed blue). The contrast with

the OOS R2 vividly illustrates how the in-sample R2 can be grossly misleading about the

ability of an SDF to explain expected returns OOS—and especially so without substantial
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shrinkage.

Fig. 2b presents the OOS R2 for various degrees of sparsity, choosing the optimal (i.e.,

OOS R2 maximizing) amount of L2-shrinkage for each level of sparsity. In other words, we

are following the ridge of the highest values in the contour plots from the bottom edge of

the plot to the top. The solid blue line is based on the raw FF25 portfolio returns and the

dashed red line based on the PCs. Dotted lines on the plot show approximate −1 standard

error bounds for the CV estimator.11 This plot makes even more transparent our earlier

point that a sparse SDF with just a few of the FF25 portfolio is sufficient to get maximal

OOS performance—comparable to the an SDF with SMB and HML shown by the black

X12—and that in PC-space even one PC is enough. The PC that is eliminated last as we

raise the degree of sparsity is PC1 (i.e., with the one with the highest variance). PC1 is

highly correlated with the HML factor (and somewhat with SMB); the SDF based on PC1

is therefore effectively the same as Fama-French’s and performs similarly.

To summarize, these results confirm that our method can recover the SDF that Fama

and French (1993) constructed intuitively for this set of portfolios. The method also can

detect sparsity where it should (few portfolios and very few PCs are sufficient to represent

the SDF) for this well-known set of portfolios. The true strength of our method, however,

comes in dealing with multidimensional settings characterized by a vast abundance of char-

acteristics and unknown factors where classic techniques are inadequate. We turn to these

more challenging settings next.

11We estimate these by computing variance of the CV estimator under the assumption that K = 3 CV
estimates are i.i.d. In that case, var

(
R2

CV estimator
)

= var
(

1
K

∑K
j=1 R̂j

2)
≈ 1

K var
(
R̂j

2)
, where R̂j

2
is an

estimate of the OOS R2 in the j-th fold of the data. Standard errors of the CV estimator can thus be
computed as 1√

K
sd
(
R̂1

2
, ..., R̂K

2)
.

12To put both approaches on equal footing, we shrink Fama-French coefficients toward zero based on
the amount of “level” shrinkage implied by our method. This modification significantly improves OOS
performance of the FF factors. Since SMB and HML are long-short factors, one could also view them as
representing four portfolio returns rather than the two that we assumed here.
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4.2. Large sets of characteristics portfolios

We start with the universe of US firms in CRSP. We construct two independent sets

of characteristics. The first set relies on characteristics underlying common “anomalies” in

the literature. We follow standard anomaly definitions in Novy-Marx and Velikov (2016),

McLean and Pontiff (2016), Kogan and Tian (2015), and Hou, Xue, and Zhang (2015) and

compile our own set of 50 such characteristics. The second set of characteristics is based

on 70 financial ratios as defined by WRDS: “WRDS Industry Financial Ratios (WFR) is a

collection of most commonly used financial ratios by academic researchers (often for purposes

other than return prediction). There are in total over 70 financial ratios grouped into the

following seven categories: capitalization, efficiency, financial soundness/solvency, liquidity,

profitability, valuation, and others.” We supplement this data set with 12 portfolios sorted

on past monthly returns in months t− 1 through t− 12. The combined data set contains 80

managed portfolios (we drop two variables due to their short time series and end up with 68

WRDS ratios in the final data set). We provide definitions of all variables in both data sets

in Internet Appendix D.13

To focus exclusively on the cross-sectional aspect of return predictability, remove the

influence of outliers, and keep constant leverage across all portfolios, we perform certain

normalizations of characteristics that define our characteristics-based factors. First, similarly

to Asness, Frazzini, and Pedersen (2014) and Freyberger, Neuhierl, and Weber (2017), we

perform a simple rank transformation for each characteristic. For each characteristic i of

a stock s at a given time t, denoted as cis,t, we sort all stocks based on the values of their

respective characteristics cis,t and rank them cross-sectionally (across all s) from 1 to nt,

where nt is the number of stocks at t for which this characteristic is available.14 We then

13We make the data available at: https://sites.google.com/site/serhiykozak/data
14If two stocks are “tied,” we assign the average rank to both. For example, if two firms have the lowest

value of c, they are both assigned a rank of 1.5 (the average of 1 and 2). This preserves any symmetry in
the underlying characteristic.
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normalize all ranks by dividing by nt + 1 to obtain the value of the rank transform:

rcis,t =
rank

(
cis,t
)

nt + 1 . (31)

Next, we normalize each rank-transformed characteristic rcis,t by first centering it cross-

sectionally and then dividing by sum of absolute deviations from the mean of all stocks:

zis,t =

(
rcis,t − r̄cit

)
∑nt
s=1

∣∣∣rcis,t − r̄cit∣∣∣ , (32)

where r̄cit = 1
nt

∑nt
s=1 rc

i
s,t. The resulting zero-investment long-short portfolios of transformed

characteristics zis,t are insensitive to outliers and allow us to keep the absolute amount of

long and short positions invested in the characteristic-based strategy (i.e., leverage) fixed.

For instance, doubling the number of stocks at any time t has no effect on the strategy’s

gross exposure.15 Finally, we combine all transformed characteristics zis,t for all stocks into

a matrix of instruments Zt.16 Interaction with returns, Ft = Z ′t−1Rt, then yields one factor

for each characteristic.

To ensure that the results are not driven by very small illiquid stocks, we exclude small-

cap stocks with market caps below 0.01% of aggregate stock market capitalization at each

point in time.17 In all of our analysis, we use daily returns from CRSP for each individual

stock. Using daily data allows us to estimate second moments much more precisely than

with monthly data and focus on uncertainty in means while largely ignoring negligibly small

uncertainty in covariance estimates (with exceptions as noted below). We adjust daily port-

folio weights on individual stocks within each month to correspond to a monthly rebalanced

buy-and-hold strategy during that month. Table 1 in the Internet Appendix shows the

annualized mean returns for the anomaly portfolios. Mean returns for the WFR managed

15Since the portfolio is long-short, the net exposure is always zero.
16If zis,t is missing we, replace it with the mean value, zero.
17For example, for an aggregate stock market capitalization of $20 trillion, we keep only stocks with

market caps above $2 billion.
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Fig. 3. OOS R2 from dual-penalty specification (50 anomaly portfolios). OOS cross-sectional
R2 for families of models that employ both L1 and L2 penalties simultaneously using 50 anomaly
portfolios (Panel a) and 50 PCs based on anomaly portfolios (Panel b). We quantify the strength
of the L2 penalty by prior root expected SR2 (κ) on the x-axis. We show the number of retained
variables in the SDF, which quantifies the strength of the L1 penalty, on the y-axis. Warmer
(yellow) colors depict higher values of OOS R2. Both axes are plotted on logarithmic scale. The
sample is daily from November 1973 to December 2017.

portfolios are reported in the Internet Appendix, Table 2. Finally, as in the previous section,

we orthogonalize all portfolio returns with respect to the CRSP value-weighted index return

using βs estimated in the full sample.

4.2.1. Fifty anomaly characteristics

We now turn to our primary data set of 50 portfolios based on anomaly characteristics.

The sample is daily from November 1973 to December 2017. Fig. 3 presents the OOS R2

from our dual-penalty specification as a function of κ (on the x-axis) and the number of

nonzero SDF coefficients (on the y-axis). A comparison with our earlier Fig. 1 for the FF25

portfolios shows some similarities but also features that are drastically different. Focusing on

the left-hand Fig. 3a based on raw returns of the 50 anomaly portfolios, one similarity is that

unregularized models (top-right corner) demonstrate extremely poor performance with OOS
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R2 substantially below zero. Hence, substantial regularization is needed to get good OOS

performance. However, unlike for the FF25 portfolios, there is not much substitutability

between L1 and L2-regularization here. To attain the maximum OOS R2, the data calls for

substantial L2-shrinkage but essentially no sparsity. Imposing sparsity (i.e., moving down

in the plot) leads to a major deterioration in OOS R2. This indicates that there is almost

no redundancy among the 50 anomalies. The FF25 portfolios have so much redundancy

that a small subset of these portfolios is sufficient to span the SDF. In contrast, to ade-

quately capture the pricing information in the 50 anomalies, one needs to include basically

all of these 50 factors in the SDF. Shrinking their SDF coefficients is important to obtain

good performance, but forcing any of them to zero to get a sparse solution hurts the OOS

R2. In other words, a characteristics-sparse SDF with good pricing performance does not

exist. Hence, many anomalies do in fact make substantial marginal contributions to OOS

explanatory power of the SDF.

If we take the PCs of the anomaly portfolio returns as basis assets, as shown in Fig. 3b,

the situation is quite different. A relatively sparse SDF with only four PCs, for example,

does quite well in terms of OOS R2, and with ten PCs we get close to the maximum OOS

R2. Thus, a PC-sparse SDF prices the anomaly portfolios quite well.

Fig. 4 provides a more precise picture of the key properties of OOS R2 by taking cuts of

the contour plots. The solid red line in Fig. 4a represents a cut along the top edge of Fig.

3 with varying degrees of L2-shrinkage but no sparsity. As the figure shows, the OOS R2 is

maximized for κ ≈ 0.30. The standard error bounds indicate that OOS R2 around this value

of κ is not only economically but also statistically quite far above zero. Table 1a lists the

anomaly factors with the largest absolute t-statistics, where standard errors are based on Eq.

(23). The largest coefficients and t-statistics are associated with industry relative-reversals

(low vol.), industry momentum-reversals, industry relative-reversals, seasonality, earnings

surprises, return on equity (ROE), value-profitability, momentum, etc. Not surprisingly,

these are the anomalies that have been found to be among the most robust in the literature.
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Fig. 4. L2 model selection and sparsity (50 anomaly portfolios). Panel (a) plots the in-sample
cross-sectional R2 (dashed), OOS cross-sectional R2 based on cross-validation (solid), and OOS
cross-sectional R2 based on the proportional shrinkage (dash-dot) from Pástor and Stambaugh
(2000). In Panel (b), we show the maximum OOS cross-sectional R2 attained by a model with
n factors (on the x-axis) across all possible values of L2 shrinkage, for models based on original
characteristics portfolios (solid) and PCs (dashed). Dotted lines in Panel (b) depict −1 s.e. bounds
of the CV estimator. The sample is daily from November 1973 to December 2017.

Our method uncovers them naturally. The t-statistics are quite low, but it is important to

keep in mind that what matters for the SDF is the joint significance of linear combinations

of 50 of these factors. Table 1b shows t-statistics for particular linear combinations: the

PCs of the 50 portfolio returns. As the table shows, the loadings on PC1, PC2, PC4, and

PC9 are all significantly different from zero at conventional significance levels.18 Our earlier

analysis in Fig. 4b showed that the SDF already achieves a high OOS R2 with only these

four PCs. It is also consistent with our economic arguments in the beginning of the paper

that the PCs with the biggest absolute coefficients are PCs with the highest variance.

In Section 3.1, we argued on economic grounds that our prior specification with η = 2

is reasonable. However, it would be useful to check whether this economic motivation is

18Since L2 regularization is rotation invariant, we obtain the same solution (in terms of the weight that
an individual anomaly factor obtains in the SDF) whether we first estimate the model on the original assets
and then rotate into PC space or directly estimate in PC space. Thus, the coefficients Table 1b are linear
combinations of those in Table 1a.
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Table 1. Largest SDF factors (50 anomaly portfolios)

Coefficient estimates and absolute t-statistics at the optimal value of the prior root expected SR2

(based on cross-validation). Panel (a) focuses on the original 50 anomaly portfolios. Panel (b)
pre-rotates returns into PC space and shows coefficient estimates corresponding to these PCs.
Coefficients are sorted descending on their absolute t-statistic values. The sample is daily from
November 1973 to December 2017.

(a) Raw 50 anomaly portfolios

b t-stat
Industry rel. rev. (L.V.) -0.88 3.53
Ind. mom-reversals 0.48 1.94
Industry rel. reversals -0.43 1.70
Seasonality 0.32 1.29
Earnings surprises 0.32 1.29
Value-profitablity 0.30 1.18
Return on market equity 0.30 1.18
Investment/Assets -0.24 0.95
Return on equity 0.24 0.95
Composite issuance -0.24 0.95
Momentum (12m) 0.23 0.91

(b) PCs of 50 anomaly portfolios

b t-stat
PC 4 1.01 4.25
PC 1 -0.54 3.08
PC 2 -0.56 2.65
PC 9 -0.63 2.51
PC 15 0.32 1.27
PC 17 -0.30 1.18
PC 6 -0.29 1.18
PC 11 -0.19 0.74
PC 13 -0.17 0.65
PC 23 0.15 0.56
PC 7 0.14 0.56

also accompanied by better performance in the data. To do this, the yellow dash-dot line in

Fig. 4a plots the OOS R2 we would get with the more commonly used prior of Pástor and

Stambaugh (2000) with η = 1.19 Recall that our method performs both level shrinkage of all

coefficients, as well as relative shrinkage (twist) that downweights the influence of small PCs.

The method in Pástor and Stambaugh (2000) employs only level shrinkage. We can see that

optimally chosen level shrinkage alone achieves OOS R2 lower than 5% (an improvement

over the OLS solution) but falls substantially short of the 30% R2 delivered by our method.

Relative shrinkage, which is the key element of our method, therefore contributes a major

fraction of the total out-of-sample performance.

Fig. 4b takes a cut in the contour plots along the ridge of maximal OOS R2 from bottom

to top where we vary sparsity and choose the optimal L2-shrinkage for each level of sparsity.

The solid blue line shows very clearly how characteristics-sparse SDFs perform poorly. The

19For the Pástor and Stambaugh (2000) level shrinkage estimator, we show E
(
SR2) under the prior on

the x-axis, but it no longer coincides with the κ parameter in this case.
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OOS R2 only starts rising substantially at the lowest sparsity levels toward the very right of

the plot. In PC space, on the contrary, very sparse models perform exceedingly well: a model

with only two PC-based factors captures roughly two-thirds of the total OOS cross-sectional

R2. A model with ten PC factors achieves nearly maximal R2, while a model with ten factors

in the space of characteristics-based factors achieves less than a third of the maximum. Many

of the PC factors that our dual-penalty approach picks in PC-sparse SDF representations

are the same as the PCs with highest t-statistics in Table 1. For instance, the first selected

factor is PC1, followed by PC4, PC2, and PC9. (see Fig. 3 in Internet Appendix E for more

details).

To summarize, there is little redundancy among the 50 anomalies. As a consequence,

it is not possible to find a sparse SDF with just a few characteristics-based factors that

delivers good OOS performance. For this reason, it is also important to deal with the

high-dimensional nature of the estimation problem through an L2-shrinkage rather than just

an L1-penalty and sparsity. L2-shrinkage delivers much higher OOS R2 than a pure L1-

penalty lasso-style approach, and the dual-penalty approach with data-driven penalty choice

essentially turns off the L1 penalty for this set of portfolios. However, if these portfolio

returns are transformed into their PCs, a sparse representation of the SDF emerges. These

findings are consistent with the point we made in Section 2 that the economic arguments for

a characteristics-sparse SDF are rather weak, while there are good reasons to expect sparsity

in terms of PCs.

4.2.2. WRDS financial ratios (WFR)

The data set of 50 anomalies is special in the sense that all of these characteristics are

known, from the past literature, to be related to average returns. Our method is useful to

check for redundancy among these anomalies, but this set of asset returns did not expose the

method to the challenge of identifying entirely new pricing factors from a high-dimensional

data set. For this reason, we now look at 80 characteristics-based factors formed based on

38



0.01 1

1

10

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

(a) Raw WFR portfolios

0.01 1

1

10

-0.1

0

0.1

0.2

0.3

0.4

(b) PCs of WFR portfolios

Fig. 5. OOS R2 from dual-penalty specification (WFR portfolios). OOS cross-sectional R2 for
families of models that employ both L1 and L2 penalties simultaneously using 80 WFR portfolios
(Panel a) and 80 PCs based on WFR portfolios (Panel b). We quantify the strength of the L2

penalty by prior root expected SR2 (κ) on the x-axis. We show the number of retained variables
in the SDF, which quantifies the strength of the L1 penalty, on the y-axis. Warmer (yellow) colors
depict higher values of OOS R2. Both axes are plotted on logarithmic scale. The sample is daily
from September 1964 to December 2017.

the WFR data set. We supplement the data set with 12 portfolios sorted on past monthly

returns in months t−1 through t−12. The sample is daily from September 1964 to December

2017. Some of the characteristics in the WFR data set are known to be related to expected

returns (e.g., several versions of the P/E ratio), but many others are not. It is therefore

possible that a substantial number of these 80 factors are irrelevant for pricing. It will be

interesting to see whether our method can: (i) properly de-emphasize these pricing-irrelevant

factors and avoid overfitting them; (ii) pick out pricing factors that are similar to those that

our analysis of 50 anomalies found relevant; and (iii) potentially find new pricing factors.

The contour map of OOS R2 in Fig. 5 looks quite similar to the earlier one for the

50 anomaly portfolios in Fig. 3. Unregularized models (top-right corner) again perform

extremely poorly with OOS R2 significantly below zero. L2-penalty-only based models (top

edge of a plot) perform well for both raw portfolio returns and PCs. L1-penalty-only “lasso”
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Fig. 6. L2 model selection and sparsity (WFR portfolios). Panel (a) plots the in-sample cross-
sectional R2 (dashed) and OOS cross-sectional R2 based on cross-validation (solid). In Panel (b),
we show the maximum OOS cross-sectional R2 attained by a model with n factors (on the x-
axis) across all possible values of the prior root expected SR2 (κ) for models based on original
characteristics portfolios (solid) and PCs (dashed). Dotted lines in Panel (b) depict −1 s.e. bounds
of the CV estimator. The sample is daily from September 1964 to December 2017.

based models (right-edge of the plot) work poorly for raw portfolio returns in Fig. 5a.

However, there are some differences as well. As can be seen toward the right-edge of

Fig. 5b, a PC-sparse SDF not only does quite well in terms of OOS R2, but it does so

even without much L2-shrinkage. A potential explanation of this finding is that the data

mining and publication bias toward in-sample significant factors may play a bigger role in

the anomalies data set, which is based on published anomalies, than in the WFR data set.

As a consequence, stronger shrinkage of SDF coefficients toward zero may be needed in the

anomalies data set to prevent these biases from impairing OOS performance, while there is

less need for shrinkage in the WFR data set because in- and out-of-sample returns are not

so different.

This explanation is further consistent with the fact that the OOS R2-maximizing κ ≈ 1,

which is much higher than in the anomalies data set. Fig. 6a illustrates this even more

transparently by taking a cut along the top edge of Fig. 5a. The solid red line shows the OOS
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Table 2. Largest SDF factors (WFR portfolios)

Coefficient estimates and t-statistics at the optimal value of the prior root expected SR2 (based
on cross-validation). Panel (a) focuses on the original WFR portfolios. Panel (b) pre-rotates
returns into PC space and shows coefficient estimates corresponding to these PCs. Coefficients are
sorted descending on their absolute t-statistic values. The sample is daily from September 1964 to
December 2017.

(a) Raw WFR portfolios

b t-stat
Free cash flow/Operating cash flow 3.64 5.49
Accruals/Average assets 2.85 4.13
P/E (diluted, incl. EI) -2.46 3.51
Month t− 9 1.83 3.03
Month t− 11 1.64 2.71
Operating CF/Current liabilities 1.89 2.65
Cash flow/Total debt 1.80 2.48
Trailing P/E to growth (PEG) ratio -1.63 2.47
P/E (diluted, excl. EI) -1.72 2.43
Month t− 1 -1.40 2.31
Enterprise value multiple -1.43 2.11

(b) PCs of WFR portfolios

b t-stat
PC 7 -3.39 6.64
PC 19 -3.69 6.00
PC 6 2.48 5.06
PC 20 -2.83 4.59
PC 26 2.78 4.20
PC 10 1.61 2.85
PC 2 -0.59 2.66
PC 8 1.38 2.56
PC 5 0.98 2.44
PC 36 1.47 2.05
PC 25 1.31 2.00

R2. Its peak is much farther to the right than in the analogous figure for the anomalies data

set (Fig. 4a), consistent with our intuition that WFR are less likely to have been datamined

in an early part of the sample compared to the published anomalies and therefore do not

require as much shrinkage. Standard errors are smaller, too, due to more stable performance

of WFR portfolios across time periods relative to anomalies, which experienced significant

deterioration in the latest (not datamined) part of the sample (McLean and Pontiff, 2016).

Table 2 lists coefficient estimates at this optimal level of L2-only penalty. Coefficients

are sorted descending on their absolute t-statistic values. Table 2a focuses on original WFR

portfolio returns. It shows that our method tends to estimate high weights on factors based

on characteristics known to be associated with expected returns. Among the picks there

are few measures of valuation ratios (price/earnings (PE), PE/G (PEG)), investment (free

CF/operating CF, which equals 1 - capital expenditure/operating CF), accruals (accru-

als/average assets), financial soundness (operating CF/current liabilities, CF/total debt),
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momentum (months t − 9, t − 11), and short-term reversals (month t − 1). None of these

variables on their own, however, are likely to be optimal measures of the “true” underlying

signal (factor). Our method combines information in many such imperfect measures (averag-

ing them by the means of the L2 penalty) and delivers a robust SDF that performs well out

of sample. Combining several measures of each signal (e.g., valuation measures) performs

much better out of sample than using any single ratio.

Table 2b pre-rotates assets into PC space. Most of the entries in this table belong to the

top 20 high-variance PCs. However, compared with the anomaly portfolio PCs in Table 1b,

there are a few more of the lower variance PCs on this list as well. If we also impose some

sparsity through an L1 penalty in a dual-penalty specification, these lower variance PCs drop

out. For example, the best sparse model with five factors, which achieves about almost the

maximal OOS R2, includes PC 1, PC 2, PC 6, PC 7, and PC 19. This is broadly consistent

with our economic arguments that important pricing factors are most likely to be found

among high-variance PCs, although, of course, not every high-variance PC is necessarily an

important factor in the SDF.20

Fig. 6b takes a cut in the contour plots along the ridge of maximal OOS R2 from bottom

to top where we vary sparsity and choose the optimal shrinkage for each level of sparsity.

This figure illustrates that like in the case of the 50 anomalies, there is little sparsity in the

space of characteristics. Even so, sparsity is again much stronger in PC space. A model with

six factors delivers nearly maximum OOS R2.

In summary, the analysis of the WFR data set shows that our method can handle well a

data set that mixes factors that are relevant for pricing with others that are not. Sensibly,

the characteristics-based factors that our method finds to be the ones most relevant with

the highest weight in the SDF are closely related to those that help price the 50 anomaly

portfolios. If sparsity is desired, a moderate level of L1-penalty can be used to omit the

pricing-irrelevant factors, but a L2-penalty-only method works just as well in terms of OOS

20Table 3 in Internet Appendix E shows the variances of the PCs.
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R2.

4.3. Interactions

To raise the statistical challenge, we now consider extremely high-dimensional data sets.

We supplement the sets of 50 anomaly and 80 WFR raw characteristics with characteristics

based on second and third powers and linear first-order interactions of characteristics. This

exercise is interesting not only in terms of the statistical challenge but also because it allows

us to relax the rather arbitrary assumption of linearity of factor portfolio weights in the

characteristics when we construct the characteristics-based factors.

In fact, for some anomalies like the idiosyncratic volatility anomaly, it is known that the

expected return effect is concentrated among stocks with extreme values of the characteris-

tic. Fama and French (2008) and Freyberger, Neuhierl, and Weber (2017) provide evidence

of nonlinear effects for other anomalies but in terms of portfolio sorts and cross-sectional

return prediction rather than SDF estimation. Furthermore, while there is existing evidence

of interaction effects for a few anomalies (Asness, Moskowitz, and Pedersen, 2013; Fama

and French, 2008), interactions have not been explored in the literature for more than these

few—presumably a consequence of the extreme high-dimensionality of the problem. Interac-

tions expand the set of possible predictors exponentially. For instance, with only first-order

interactions of 50 raw characteristics and their powers, we obtain 1
2n (n+ 1) + 2n = 1,375

candidate factors and test asset returns. For 80 WFR characteristics, we obtain a set of

3,400 portfolios.

We construct the nonlinear weights and interactions as follows. For any two given rank-

transformed characteristics zis,t and zjs,t of a stock s at time t, we define the first-order

interaction characteristic zijs,t as the product of two original characteristics that is further

renormalized using Eq. (32) as follows:

zijs,t =

(
zis,tz

j
s,t − 1

nt

∑nt
s=1 z

i
s,tz

j
s,t

)
∑nt
s=1

∣∣∣zis,tzjs,t − 1
nt

∑nt
s=1 z

i
s,tz

j
s,t

∣∣∣ . (33)
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We include all first-order interactions in our empirical tests. In addition to interactions, we

also include second and third powers of each characteristic, which are defined analogously

based on interaction of the characteristic with itself. Note that although we renormalize all

characteristics after interacting or raising to powers, we do not rerank them. For example,

the cube of any given characteristic then is a new different characteristic that has stronger

exposures to stocks with extreme realization of the original characteristic but has the same

gross exposure (leverage). We illustrate how this approach maps into more conventional

two-way portfolio sorts portfolios in Internet Appendix C.

Due to the extremely high number of characteristics-based factors in this case, our three-

fold cross-validation method runs into numerical instability issues in covariance matrix inver-

sion, even with daily data. For this reason, we switch to two-fold cross-validation. This gives

us a somewhat longer sample to estimate the covariance matrix, and this sample extension

is sufficient to obtain stable behavior.21

Fig. 7 shows contour maps of the OOS cross-sectional R2 as a function of κ (on the

x-axis) and the number of nonzero SDF coefficients (on the y-axis). Plots for the raw

portfolio returns are shown in the top row, and plots for the PCs are in the bottom row.

Focusing first on the results for the raw portfolio returns, it is apparent that a substantial

degree of sparsity is now possible for both the anomalies and the WFR portfolios without

deterioration in the OOS R2. Strengthening the L1-penalty to the point that only around

100 of the characteristics and their powers and interactions remain in the SDF (out of 1375

and 3400, respectively) does not reduce the OOS R2 as long as one picks the L2-penalty

optimal for this level of sparsity. As before, an L1-penalty-only approach leads to poor OOS

performance.

The plots in the bottom row show contour maps for PCs. These results are drastically

different from the ones in the top row in terms of how much sparsity can be imposed without

21Because some interactions are missing in the earlier part of the sample, our sample periods shorten to
February 1974 – December 2017 and September 1968 – December 2017 for anomaly and WFR characteristics,
respectively.
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Fig. 7. OOS R2 from dual-penalty specification for models with interactions. OOS cross-sectional
R2 for families of models that employ both L1 and L2 penalties simultaneously using portfolio
returns based on interactions of 50 anomaly (Panel a) and 80 WFR (Panel b) characteristics and
PCs of these portfolio returns (Panels c and d). We quantify the strength of the L2 penalty by prior
root expected SR2 (κ) on the x-axis. We show the number of retained variables in the SDF, which
quantifies the strength of the L1 penalty, on the y-axis. Warmer (yellow) colors depict higher values
of OOS R2. Both axes are plotted on logarithmic scale. The sample is daily from February 1974
to December 2017 and September 1968 to December 2017 for anomaly and WFR characteristics,
respectively.
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Table 3. Largest SDF factors (models with interactions)

Coefficient estimates and t-statistics at the optimal value of the prior root expected SR2 (based
on cross-validation). Panel (a) focuses on the SDF constructed from PCs portfolio returns
based on interactions of 50 anomaly characteristics. Panel (b) shows coefficient estimates
corresponding to PCs of portfolio returns based on interactions of WFR. Coefficients are sorted
descending on their absolute t-statistic values. The sample is daily from February 1974 to Decem-
ber 2017 and September 1968 to December 2017 for anomaly and WFR characteristics, respectively.

(a) PCs of interactions of anomaly portfolios

b t-stat
PC 1 -0.24 3.82
PC 2 0.27 3.22
PC 18 0.24 1.95
PC 17 0.24 1.95
PC 19 -0.23 1.87
PC 41 0.23 1.79
PC 34 0.22 1.78
PC 26 -0.20 1.59
PC 60 0.20 1.57
PC 10 -0.18 1.57
PC 56 -0.20 1.55

(b) PC of interactions of WFR portfolios

b t-stat
PC 1 -0.11 2.89
PC 5 -0.14 1.97
PC 2 -0.08 1.49
PC 21 -0.13 1.46
PC 6 0.11 1.39
PC 50 0.11 1.27
PC 84 -0.09 1.02
PC 7 -0.07 0.97
PC105 0.08 0.87
PC108 -0.08 0.86
PC114 -0.08 0.85

hurting OOS performance. Very few PCs—or even just one—suffice to obtain substantial

OOS explanatory power. But here, too, the combination of sparsity with an optimally

chosen L2 penalty is very important. Adding more PCs does not hurt as long as substantial

L2 shrinkage is imposed, but it does not improve OOS performance much either.

Table 3 lists coefficient estimates at the optimal level of L2 regularization (i.e., the max-

imum along the top edge of the contour plots). Table 3a focuses on the SDF constructed

from PCs of portfolio returns based on interactions of 50 anomaly characteristics. Table 3b

shows coefficient estimates corresponding to PCs of portfolio returns based on interactions

of WRDS financial ratios (WFR). PC1 has the highest t-statistic for both sets of portfolios.

PC1 is also the last survivor if one imposes enough sparsity that only one PC remains. The

estimated SDF coefficients are quite similar for many of the other PCs in this table that are

ranked lower than PC1 in terms of their t-statistic. However, since these other PCs have
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Fig. 8. L1 sparsity of models with interactions. We show the maximum OOS cross-sectional
R2 attained by a model with n factors (on the x-axis) across all possible values of the prior root
expected SR2 (κ) for models based on interactions of original characteristics portfolios (solid) and
PCs (dashed). Panel (a) focuses on the SDF constructed from PCs of interactions of 50 anomaly
portfolios. Panel (b) shows coefficient estimates corresponding to PCs based on interactions of
WFR portfolios. Dotted lines depict −1 s.e. bounds of the CV estimator.

lower variance, their contribution to SDF variance, and hence the overall squared Sharpe

ratio captured by the SDF, is lower.

The two plots in Fig. 8 take a cut in the contour plots along the ridge of maximal OOS

R2 from bottom to top where we vary sparsity and choose the L2 optimal shrinkage for

each level of sparsity. These plots reinforce the point we noted from the contour plots that

many of the powers and interactions of the characteristics are not adding pricing-relevant

information to the SDF and can be omitted. The SDF that attains the highest OOS R2 is

relatively sparse with about 100 factors for both the anomalies in Fig. 8a and the WFR

portfolios in Fig. 8b. However, as the wide standard error bands show, statistical precision

is quite low. The very large number of portfolios in this case pushes the method to its

statistical limits.

Overall, these results show that many of the powers and interactions of characteristics

seem to be redundant in terms of their pricing implications. A majority of them can be
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excluded from the SDF without adverse impact on OOS pricing performance. But as before,

L2-shrinkage is crucial for obtaining good OOS performance.

5. Asset pricing tests: performance compared with sparse

models

Our cross-validation method evaluates a model’s performance on the part of a sample

not used in the estimation of the SDF coefficients; it is, therefore, by construction an OOS

metric. Yet our choice of the strength of regularization (L1 and L2 penalties) is based on

the entire sample. It is possible that the penalty that is optimal within one sample does not

generalize well on new or fully withheld data. To address this potential issue, we now conduct

a pure OOS test. Using our L2-penalty method, we conduct the entire estimation, including

the choice of penalty, based on data until the end of 2004. Post-2004 data is completely left

out of the estimation. We evaluate performance of this SDF in the 2005–2017 OOS period.

This analysis also allows us to assess the statistical significance of our earlier claim that

characteristics-sparse SDFs cannot adequately describe the cross-section of stock returns.

This OOS exercise further helps to gain robustness against the effects of data mining

in prior published research. Especially for the data set of 50 known anomalies, there is a

concern that the full-sample average returns may not be representative of the ex-ante ex-

pected returns of these largely ex-post selected portfolios. Implicitly, our analysis so far

has already employed some safeguards against data mining bias. For data-mined spurious

anomalies, there is no economic reason why their average returns should be related to ex-

posures to high-variance PCs—and if they are not, our L2 and dual-penalty specifications

strongly shrink their contribution to the SDF. Even so, an OOS test on a fully withheld sam-

ple of post-2004 data provides additional assurance that the results are not unduly driven

by data-mined anomalies.

Our analysis is very much in the spirit of Barillas and Shanken (2018) in that we compare
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the Sharpe ratios of the MVE portfolios implied by competing factor models (rather than

the alphas of some “test assets”), albeit with an OOS focus. We proceed as follows. We first

orthogonalize all managed portfolio returns with respect to the market using βs estimated

in the pre-2005 sample.22 Given the estimate b̂ based on our L2-penalty Bayesian method

in this sample, we construct the time series of the implied MVE portfolio Pt = b̂′Ft in

the 2005–2017 OOS period. We focus on three sets of portfolios in constructing an SDF:

the 50 anomaly portfolios, the 80 WFR portfolios, and the interactions and powers of 50

anomaly characteristics.23 As in our earlier estimation, we choose penalties by three-fold

cross-validation (two-fold if interactions are included) but with shorter blocks because we

only use the pre-2005 sample here.24

We then estimate abnormal returns of this OOS-MVE portfolio with respect to three

characteristics-based benchmarks: the capital asset pricing model (CAPM); the six-factor

model of Fama and French (2016) (with five cross-sectional factors, including the momentum

factor); and our dual-penalty model where we have set the L1 penalty such that the SDF

contains only five cross-sectional characteristics-based factors. To compare the models on

equal footing, we construct the MVE portfolio implied by these benchmarks. Since we work

with candidate factor returns orthogonalized to the market return, the benchmark in the

CAPM case is simply a mean return of zero. For Fama-French six-factor model, we estimate

the unregularized MVE portfolio weights, ŵ = Σ̂−1µ̂, from the five nonmarket factors in

the pre-2005 period.25 We then apply these weights to the five factor returns in the OOS

period to construct a single benchmark return. Finally, for the dual-penalty sparse model

with five factors, we estimate b̂ in the pre-2005 period and then apply these optimal portfolio

weights to returns in the OOS period. If our earlier claim is correct that the SDF cannot be

22The resulting abnormal returns are Fi,t = F̃i,t − βiRm,t, where F̃i,t is the raw portfolio return. In our
previous analysis, we used the full data to estimate βi.

23We do not report results for interactions of WFR portfolios due to issues in estimating covariances in
an even shorter sample with an extremely high number of characteristics-based factors in this case.

24We plot the time series of returns of the MVE portfolios in Fig. 5 in the Internet Appendix.
25As before, we orthogonalize these factors (SMB, HML, UMD, RMW, CMA) with respect to the market

using βs estimated in the pre-2005 sample.
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Table 4. MVE portfolio’s annualized OOS α in the withheld sample (2005-2017), %

The table shows annualized alphas (in %) computed from the time-series regression of the SDF-
implied OOS-MVE portfolio’s returns (based on L2 shrinkage only) relative to four restricted
benchmarks: CAPM, Fama-French six-factor model, optimal sparse model with five factors, and
optimal PC-sparse model with at most five PC-based factors. MVE portfolio returns are normalized
to have the same standard deviation as the aggregate market. Standard errors are in parentheses.

SDF factors
Benchmark CAPM FF 6-factor Char.-sparse PC-sparse

50 anomaly portfolios 12.35 8.71 9.55 4.60
(5.26) (4.94) (3.95) (2.22)

80 WFR portfolios 20.05 19.77 17.08 3.63
(5.26) (5.29) (5.05) (2.93)

1,375 interactions of 25.00 22.79 21.68 12.41
anomalies (5.26) (5.18) (5.03) (3.26)

summarized by a small number of characteristics-based factors, then our OOS-MVE portfolio

constructed from the full set of candidate factors should generate abnormal returns relative

to the MVE portfolio constructed from these sparse benchmarks.

Table 4 confirms that the MVE portfolio implied by our SDF performs well in the withheld

data. The table presents the intercepts (alphas) from time-series regressions of the OOS-

MVE portfolio returns on the benchmark portfolio return in %, annualized, with standard

errors in parentheses. To facilitate interpretation of magnitudes, we scale MVE portfolio

returns so that they have the same standard deviation as the market index return in the

OOS period. The first column shows that the OOS-MVE portfolio offers a large abnormal

return relative to the CAPM for all three sets of candidate factor returns. For example,

for the OOS-MVE portfolio based on the 50 anomalies, we estimate an abnormal return of

12.35%, which is more than two standard errors from zero, despite the short length of the

evaluation sample. The abnormal returns are even larger for the other two sets of portfolios.

As the second column shows, the abnormal returns are very similar in magnitude for the

FF six-factor model, and we can reject the hypothesis of zero abnormal returns at a 5%

level or less for two of the three sets of candidate factor portfolios. The third column shows
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that the results for the sparse six-factor model based on our dual-penalty method is almost

identical to the FF six-factor model. Overall, the evidence in this table confirms our claim

that characteristics-sparse models do not adequately describe the cross-section of expected

stock returns.

In our earlier analysis, we also found that sparse models based on PCs do much better

than sparse characteristics-based models. This result also holds up in this OOS analysis.

The last column shows that the PC-sparse MVE portfolio, which includes only five opti-

mally selected PC-based factors using our dual-penalty method, performs uniformly better

than characteristics-sparse models. Abnormal returns are much smaller and not statistically

significantly different from zero for 80 WFR portfolios and only marginally significant for 50

anomaly portfolios.

6. Conclusion

Our results suggest that the multi-decade quest to summarize the cross-section of stock

returns with sparse characteristics-based factor models containing only a few (e.g., three,

four, or five) characteristics-based factors is ultimately futile. There is simply not enough

redundancy among the large number of cross-sectional return predictors that have appeared

in the literature for such a characteristics-sparse model to adequately price the cross-section.

To perform well, the SDF needs to load on a large number of characteristics-based factors.

Sparsity is generally elusive.

In this high-dimensional setting, shrinkage of estimated SDF coefficients toward zero

is critical for finding an SDF representation that performs well out of sample. L2-penalty

(ridge) based methods that shrink, but do not set to zero, the contributions of candidate

factors to the SDF work very well. In contrast, purely L1-penalty (lasso) based techniques

perform poorly because they tend to impose sparsity even where there is none. For some

data sets—e.g., one where we include an extremely large number of interactions and powers
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of stock characteristics—inclusion of the L1-penalty in combination with an L2-penalty can

help eliminate some useless factors, but the L2-penalty is still most important for out-of-

sample performance, and the number of required factors in the SDF is still very large.

In addition to being empirically successful, the L2-penalty approach also has an economic

motivation. We derive our particular L2-penalty specification from an economically plausible

prior that existence of near-arbitrage opportunities is implausible, and major sources of

return co-movement are the most likely sources of expected return premia. Lasso-style L1-

penalty approaches, on the other hand, lack such an economic justification.

In line with this economic motivation, a sparse SDF approximation is achievable if one

seeks it in the space of principal components of characteristics-based portfolio returns rather

than raw characteristics-sorted portfolio returns. A relatively small number of high-variance

principal components in the SDF typically suffices to achieve good out-of-sample perfor-

mance. This approach inherently still uses all characteristics (factors) in constructing an

optimal SDF, but distilling their SDF contributions in a few principal components factors

can be fruitful for future research on the economic interpretation of the SDF. Researchers

can focus their efforts on linking these few factors to sources of economic risk or investor

sentiment.

The mean-variance efficient portfolio implied by our estimated SDF can also serve as a

useful test asset to evaluate any potential model of the cross-section of equity returns. This

portfolio summarizes the pricing information contained in a large number of characteristics-

based factors, and a candidate factor model can be tested in a single time-series regression.

In an application of this sort, we have shown that the six-factor model of Fama and French

(2016) leaves much of the cross-section of equity returns unexplained.
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