

CUTTING TOOL CATALOG

ISO Turning Inserts	22	For CCInsert	122
ISO Turning Insert Denomination System	24	For DCInsert	123
Overview of Turning Grades	27	For VB/VPInsert	124
Overview of Turning Insert Geometries	28	ABF Backturning Tool Hoder	125
Turning Grade Description	44	ASW Multifunctional Tool Hoder	126
Cutting Parameter Recommendations Table	46	ASWP Parting off Series Inserts	127
Negative 80° C Shape Insert	50	ASWB Backturning Series Inserts	129
Negative 55° D Shape Insert	54	ASWT Threading Series Inserts	129
Negative 90° S Shape Insert	57	Solid Sarbide Boring Tool Hoder	130
Negative 60° T Shape Insert	60	ASIB Solid Boring Tool	131
Negative 35° V Shape Insert	63	ASIG Solid Internal Grooving Tool	135
Negative 80° W Shape Insert	65	ASIF Solid Face Grooving Tool	140
Negative 90° L Shape Insert	68	ASIT Solid Threading Tool	141
Train Wheel Re-turning Insert	69		
Positive 80° C Shape Insert	70	Grooving	144
Positive 55° D Shape Insert	74	Overview of Grooving Holders	144
Positive 90° S Shape Insert	78	ASGHR/L External shallow Grooving Holder for Swiss Lathe	147
Positive 60° T Shape Insert	79	SASGHL External Shallow Grooving Sleeve Holder for Swiss Lathe	148
Positive 35° V Shape Insert	84	ATGHR/L External Shallow Grooving Holder	149
Positive 80° W Shape Insert	89	Holder Denomination System	150
Positive Round Insert	90	ATSER/L External Turning and Grooving Holder	151
		ATSER/L-D Reonforced External Turning and Grooving Holder	153
PCBN Inserts	91	ATSER/L-SW External Turning and Grooving Holder for Swiss Lathe	154
PCBN Insert Denomination System	92	AGUER/L External Undercutting Holder	155
Overview of Grades	93	ATSFR/L Face Turning and Grooving Holder	156
Negative 80° C Shape Insert	94	ATSFR/L-OB Face Grooving and Turning Holder (Outside Bluge Type)	157
Negative 55° D Shape Insert	95	AGSFR/L External & Face Grooving and Turning Holder	159
Negative 90° S Shape Insert	96	AGPFR/L Face Grooving and Turning Holder	160
Negative 60° T Shape Insert	96	ATPFR/L Face Grooving and Turning Holder	161
Negative 35° V Shape Insert	97	ATPIR/L Internal Turning, Grooving and Profiling Holder	162
Negative 80° W Shape Insert	97	ATGIR/L Internal Grooving Holder	163
Positive 80° C Shape Insert	98	ATSIR/L Internal & Face Grooving and Turning Holder	164
Positive 55° D Shape Insert	99	AGSIR/L Internal & Face Grooving and Turning Holder	165
Positive 60° T Shape Insert	100	AGUIR/L Internal Undercutting holder	166
Positive 35° V Shape Insert	101	Grooving Grade Description	167
		Insert Geometry Introduction	169
PCD Inserts	102	Grade Application Guide	170
PCD Insert Denomination System	102	Triangular Shallow Grooving Insert Denomination System	171
Overview of Grades	103	Swiss Grooving-ASG Series	172
Positive 80° C Shape Insert	104	Profiling Grooving-ATG Series	173
Positive 55° D Shape Insert	105	Insert Denomination System (Pressing Insert)	175
Positive 60° T Shape Insert	106	Parting off-Grooving CS Geometry Series	175
Positive 35° V Shape Insert	107	Parting off-Grooving CM Geometry Series	176
	100	Parting off-Grooving CH Geometry Series	177
Small Tools	109	Grooving-Turning GS Geometry Series	178
Turning Shank Denomination System	110	Grooving-Turning TS Geometry Series	179
For CCInsert	112	Grooving Profiling PM Geometry Series	179
For DCInsert	113	Grooving-Profiling RM Geometry Series	180
For TCInsert	115	Grooving-Profiling RA Geometry Series	180
For VBInsert	116	Insert Denomination System (Ground Insert)	181
For VCInsert	118	Grooving-Turning Ground Geometry Series	182
For VPInsert	119	Blank Insert of ATBD	184 185
External Classic Holder Denomination System	120	Cutting Parameter Recommendation Table	185

G

ISO Turning Insert Denomination System

Other clearance angle

3- Tolerance

Others

- 7		7	10/	
Class	Unit	In.Circle dimension IC	Nose height m	Thickness s
Α	in	± 0.0010	± 0.0002	± 0.0010
С	in	± 0.0010	± 0.0005	± 0.0010
E	in	± 0.0010	± 0.0010	± 0.0010
F	in	± 0.0005	± 0.0002	± 0.0010
G	in	± 0.0010	± 0.0010	± 0.0005
н	in	± 0.0005	± 0.0005	± 0.0010
J	in	*	± 0.0002	± 0.0010
к	in	*	± 0.0005	± 0.0010
L	in	*	± 0.0010	± 0.0010
М	in	*	*	± 0.0005
U	in	*	*	± 0.0005
N	in	*	*	± 0.0010

^{*} For details refer to right and below tables

M&N shape	D sh	nape	V sh	ape
IC	d	m	d	m
7/32	±0.002	±0.004		
1/4	±0.002	±0.004	±0.002	±0.006
5/16	±0.002	±0.004	±0.002	±0.006
3/8	±0.002	±0.004	±0.002	±0.006
1/2	±0.003	±0.006	±0.003	±0.008
5/8	±0.004	±0.007	±0.004	±0.011
3/4	±0.004	±0.007	±0.004	±0.011

Shape: C, E, H, M, O, P, S, T, R, W								
IC	C	i	n	n				
Ю	J,K,L,M,N	U	M, N	U				
3/16	±0.002	±0.003	±0.003	±0.005				
7/32	±0.002	±0.003	±0.003	±0.005				
0.236	±0.002	±0.003	±0.003	±0.005				
1/4	±0.002	±0.003	±0.003	±0.005				
5/16	±0.002	±0.003	±0.003	±0.005				
0.315	±0.002	±0.003	±0.003	±0.005				
3/8	±0.002	±0.003	±0.003	±0.005				
0.394	±0.002	±0.003	±0.003	±0.005				
0.472	±0.003	±0.005	±0.005	±0.007				
1/2	±0.003	±0.005	±0.005	±0.008				
5/8	±0.004	±0.007	±0.005	±0.011				
0.630	±0.003	± 0.007	±0.006	±0.011				
3/4	±0.004	±0.007	±0.005	±0.011				
0.787	±0.004	±0.007	±0.006	±0.011				
0.984	±0.005	±0.010	±0.007	±0.015				
1	±0.005	±0.010	±0.007	±0.015				
11/4	±0.006	±0.010	±0.008	±0.015				
1.260	±0.006	±0.010	±0.200	±0.015				

4 5

3

5- Cı	utting edg	e ler	igth					
	In.Circle			ins	sert sha	ре		
in	Dimension (in)	С	D	R	S	Т	٧	W
1.2 (5)	5/32					06		02
1.5 (6)	5			05				
1.8 (7)	7/32			09				
	0.236		06					
2	1/4	06	07			11	11	04
	0.315			08				
3	3/8	09	11	09	09	16	16	06
	0.394			10				
	0.472			12				
4	1/2	12	15	12	12	22	22	08
5	5/8	16		15	15	27		
	0.630			16				
6	3/4	19		19	19	33		
	0.787			20				
	0.984			25				
8	1	25		25	25			
10	11/4			31				
	1.260			32				
	L	L				L		

8	-
7- Nose radius	
Corner radius	
Example:	R
MO = round insert (metr	ric)
OO = Sharp	6 = 3/32
0 = 0.004	7 = 7/64
0.5 = 0.008	8 = 1/8
1 = 1/64	X = Others
2 = 1/32	
3 = 3/64	
4 = 1/16	
5 = 5/64	V Kr
Wiper	
	Wiper clearance angle (an)
A = 45°	A = 3°
D = 60°	B = 5°
E = 75°	C = 7°
F = 85°	D = 15°
G = 87°	E = 20°
P = 90°	F = 25°
Z = Others	G = 30°
	N = 0°
	P = 11°
	Z = Others

8- Edge preparation	
F	Sharp cutting edge
NO	Edge processing

9-Direction of the blade	
L	Left
R	Right

10- Chip Breaker Illustration Refer to page: 28-43

ACHTECK

www.achtecktool.com/en

THE EXPERTS OF DIFFICULT MACHINING

Turning Inserts

Turning and Grooving Grade Application Guide

					Turning				G Pa	rooving arting of	/ ff	
Material Group		ISO	Coated		net ated				Coated		ated	ISO
			CVD	PVD	Cermet	Uncoated	PCBN	PCD	CVD	PVD	Uncoated	
		P01	AC052P 0P									P01
		P10	AC150P						30P			P10
P	Non-alloy steels/	P20	AC250P	AP200U	AT202				AC230P	AP301U		P20
	Alloyed steels	P30	AC350P	■						AP330M		P30
		P40	AC							A		P40
		P50										P50
		M01										M01
		M10	AC100M	AP100S 1M 0U								M10
M	Stainless steels	M20	AC200M	AP301M AP200U						AP301U		M20
		M30	AC	A						AP330M		M30
		M40								AF		M40
•		K01	02K				06					K01
		K10	AC100K AC102k C202K				PB90					K10
		K20	AC2(AT202				C230F	AP301U		K20
K	Cast iron	K30								AF		K30
		K40										K40
		K50										K50
		N01				X0		0			NOK	N01
	Aluminum/Aluminum	N10				AW100K		PD20			AW100K	N10
N	alloys	N20										N20
		N30										N30
		S01										S01
		S10	Moc	AP100S M JU								S10
S	Heat resistant alloys	S20	AC200M	AP301M AP200U								S20
		S30	AC2	A A								S30
		S40										S40
		H01					PB30					H01
	Hardened steels/	H10					PB3					H10
Н	Hardened steels/ Chilled cast iron	H20					PB —					H20
		H30										H30

Overview of Turning Insert Geometries

Negative Inserts

Application	Chip breaker	Features	Chip breaking range	Cross section geometry	
Profiling	BS	Finishing and semi-finishing profile turning Suitable for turning with changing depth of cut. Smooth chip evacuation	0.118 BS 0.118 0.009 0.009 0.009 0.009 0.000 0.000 0.000	A B	
	PB1	First choice for steel finish turning Light cutting chip breaker, low cutting force, suitable for machining slender shaft, thin wall and unstably clamped parts, good cutting performance	0.157 PB1 0.118 0.009 0.009 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.004 A 0.004 B	
Finishing	SC1	First choice for heat resistant alloy finish turning Excellent performance at low depth of cut.	SC1 a.039 SC1 a.000 a.000 f(in/rev)	A B	
	MB2	First choice for stainless steel finish turning High positive rake angle reduced cutting force and built-up edge, can obtain much better surface quality. Very good chip breaking at low feed and cutting depth.	0.157 MB2 0.118 0.009 0.009 0.009 0.009 0.0004 0.008 0.012 0.016 0.020 f(in/rev)	A	
Light cutting	SL3	Recommended for heat resistant alloy light turning. Suitable for heat resistant alloy, Tialloy. Sharp and wavy cutting edge can get good surface finish and good chip breaking results.	0.157 SL3 0.118 0.004 0.008 0.012 0.016 f(in/rev)	A B	

80° 80° Rhombus	55° Rhombus	90° Square	60° Triangle	35° 35° Rhombus	80° So Trigon	Round 880°
	DNMG-BS			VNMG-BS		
	P54			P63		
CNMG-PB1	DNMG-PB1	SNMG-PB1	TNMG-PB1	VNMG-PB1	WNMG-PB1	
		0		< O >		
P50	P54	P57	P60	P63	P65	
CNMG-SC1	DNMG-SC1		TNMG-SC1	VNMG-SC1	WNMG-SC1	
P50	P54		P60	P63	P65	
CNMG-MB2	DNMG-MB2	SNMG-MB2	TNMG-MB2	VNMG-MB2	WNMG-MB2	
P50	P54	P57	P60	P63	P65	
CNMG-SL3	DNMG-SL3	SNMG-SL3	TNMG-SL3	VNMG-SL3	WNMG-SL3	
	.0	0				
P50	P54	P57	P60	P63	P65	

Application	Chip breaker	Features	Chip breaking range	Cross section geometry	
Semi-finishing	PB3	First choice for steel semi finish turning The positive rake angle combined with small land guarantees edge strength and sharpness, reducing the cutting forces. The wavy side edge design has a good chip breaking results in outcopying turning on the shoulder, and in profile turning at different cutting depths.	0.157 PB3 0.118 0.004 0.008 0.012 0.016 0.020 f(in/rev)	0.005 A	
Semi-fi	PC3	Alternative chipbreaker for steel semi-finish turning Unique geometry design offers wider chip breaking range. Double rake angle for smooth cutting. Enhanced insert tip reduced crater wear.	0.157 PC3 0.118 0.008 0.012 0.016 0.020 f(in/rev)	0.006 A 0.008 B	
	PD3	First choice for steel medium turning It has a strong chip control ability at low feed and cutting depth, and reduces crater wear. The chip breaking is also very good at high feed and cutting depth due to the geometry design. Double rake angle design makes sharp cutting edge and reduces cutting force.	0.226 PD3 0.197 0.197 0.118 0.079 0.039 0.004 0.008 0.012 0.016 0.020 0.024 f(in/rev)	0.008 A 0.008 B	
Medium	PC4	First choice for cast iron medium turning Alternative chipbreaker for carbon steel and alloy steel medium turning Flat T-land guarantees the strength of the cutting edge. This multipurpose geometry can be used in universal applications.	0.236 PC4 0.197 0.118 0.079 0.004 0.008 0.012 0.016 0.020 0.024 0.028 f(in/rev)	0.010 A	
	PL5	First choice for steel slender bar turning Open chip breaker leads to smooth cutting with low cutting force, which is suitable for slender shaft turning.	0.226 PL5 0.197 0.0157 0.009 0.009 0.009 0.000 0.012 0.016 0.020 0.024 f(in/rev)	5,0.008 A	

80° Rhombus	55° Rhombus	90° Square	60° Triangle	35° 35° Rhombus	80° Trigon	Round 380°
CNMG-PB3	DNMG-PB3		TNMG-PB3	VNMG PB3	WNMG-PB3	
P50	P54		P60	P63	P65	
CNMG-PC3	DNMG-PC3	SNMG-PC3	TNMG-PC3	VNMG-PC3	WNMG-PC3	
P50	P55	P57	P60	P63	P65	
CNMG-PD3	DNMG-PD3	SNMG-PD3	TNMG-PD3	VNMG-PD3	WNMG-PD3	
P50	P55	P57	P60	P64	P66	
CNMG-PC4	DNMG-PC4	SNMG-PC4	TNMG-PC4	VNMG-PC4	WNMG-PC4	
P51	P56	P58	P61	P64	P66	
	DNMG-PL5		TNMG-PL5		WNMG-PL5	
	P55		P60		P66	
	. 50		. 30		. 50	

Application	Chip breaker	Features	Chip breaking range	Cross section geometry	
ium	SC3	First choice for heat resistant alloy medium turning Used in heat resistant alloy and titanium alloy medium turning. Large rake angle and small land width design allows for easy cutting and is suitable for soft steel turning.	0.197 SC3 0.157 0.004 0.008 0.012 0.016 0.029 f(in/rev)	0.006 A	
Medium	MC3 First choice for stainless steel medium turning Sharp cutting edge, low cutting force, wide chip breaking range and good chip removability.		0.276 MC3 0.226 0.197 0.118 0.079 0.008 0.012 0.016 0.020 f(in/rev)	0.012 A	
	PD5	Alternative chipbreaker for steel rough turning A strong cutting edge. Double rake angle design effectively reduces the cutting force, can still have good chip breaking at small cutting depth.	0.276 PD5 0.236 0.197 0.197 0.004 0.008 0.012 0.016 0.020 0.024 0.028 f(in/rev)	0.010 A	
Roughing	MC4	Alternative chipbreaker for stainless steel and heat resistant alloy rough turning Large chip breaker design, smooth chip evacuation, good chip breaking, with high metal removal rate.	0.354 MC4 0.315 0.236 0.236 0.236 0.337 0.157 0.157 0.157 0.157 0.157 0.109 0.009 0.009 0.0000 0.012 0.016 0.020 0.024 0.028 f(in/rev)	0.012 8. 0.013 B	
Rouç	KC4	First choice for cast iron turning It has strong cutting edge, reliable and stable performance.	0.276 KC4 0.226 0.197 © 0.118 0.079 0.039 0.008 0.012 0.016 0.020 0.024 f(in/rev)	0.012 A	
	KD5	First choice for cast iron rough turning High cutting edge strength, suitable for interrupt cutting and unstable cutting.	0.276 KD5 0.236 0.197 © 0.118 0.079 0.009	A	

80° 80° Rhombus	55° Rhombus	90° Square	60° Triangle	35° \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	80° Sor Trigon	Round 360°
CNMG-SC3	DNMG-SC3	SNMG-SC3	TNMG-SC3	VNMG-SC3	WNMG-SC3	
P51	P55	P57	P60	P64	P66	
CNMG-MC3	DNMG-MC3	SNMG-MC3	TNMG-MC3	VNMG-MC3	WNMG-MC3	
P51	P55	P57	P61	P64	P66	
CNMG-PD5	DNMG-PD5	SNMG-PD5	TNMG-PD5		WNMG-PD5	
P52	P56	P58	P61		P67	
CNMG-MC4	DNMG-MC4	SNMG-MC4	TNMG-MC4		WNMG-MC4	
P51	P56	P58	P61		P67	
CNMG-KC4	DNMG-KC4	SNMG-KC4	TNMG-KC4	VNMG-KC4	WNMG-KC4	
P52	P56	P58	P61	P64	P67	
CNMA-KD5	DNMA-KD5	SNMA-KD5	TNMA-KD5		WNMA-KD5	
	0					
P52	P56	P59	P62		P67	

Application	Chip breaker	Features	Chip breaking range	Cross section geometry	
	PC8	Light cutting geometry for heavy turning Positive rake angle and curved cutting edge design, low cutting force.	0.472 PC8 0.394 0.315 0.004 0.0157 0.079 0.004 0.012 0.002 0.0028 0.005	0.012 A 0.012 B	
oughing	PD8	Heavy turning geometry for soft steel and stainless steel The geometry design ensures low cutting force. Suitable for low power machine tools. Applied in steel, stainless steel and cast iron heavy turning.	0.394	0.012 A 0.012 B	
Heavy roughing	PC9	First choice for steel heavy rough turning Wavy geometry is good for chip breaking. The geometry has a big space for chips, which is suitable for high metal removal rate.	0.551 PC9 0.472 0.394 0.315 0.008 0.016 0.024 0.031 0.039 0.047 0.055 f(in/rev)	A B	
	Alternative chipbreaker for steel heavy rough turning High edge strength is suitable for big cutting depth and high feed turning. High machining reliability.		0.630 PD9 0.551 0.472 0.394 0.315 0.228 0.157 0.079 0.008 0.016 0.024 0.031 0.039 0.047 0.055 0.063 f(in/rev)	0.024 A B	

80° Rhombus	55° Rhombus	90° Square	60° riangle	35° Rhombus	80° Trigon	Round 800°
CNMM-PC8						
P53						
CNMM-PD8		SNMM-PD8	TNMM-PD8			
P53		P59	P62			
CNMM-PC9		SNMM-PC9				
P53		P59				
CNMM-PD9		SNMM-PD9				
P53		P59				

Negative Ground Insert

Application	Chip breaker	Features	Chip breaking range	Cross section geometry	
hing	UF	Suitable for precision turning Low cutting forces, good chip breaking, suitable for finish turning.	0.159 UF 0.118 0.002 0.004 0.006 f(in/rev)	A B	
Finishing	F	Finish turning Low cutting force, good chip control. The sharp edge produces a good surface finish.	0.039 F 0.002 0.004 0.006 0.008 f(in/rev)	17° A	
Semi-finishing-Rough machining	Н	Light turning Excellent chip control at low to medium feed rates. Strong edge strength.	0.118 H 0.004 0.008 0.012 f(in/rev)	0.008 A	

80° Rhombus	800	55° Rhombus	90° Square	90°	60° Triangle	35° Rhombus	80° Trigon	80°	Round 380°
					TNGG-UF	VNGG-UF			
					P62	P64			
					TNGG-F				
					P62				
					TNGG-H				
					P62				

Overview of Turning Insert Geometry

Positive Pressed Insert

Application	Chip breaker	Features	Chip breaking range	Cross section geometry	
Profiling	BS	Profile turning Profile turning or turning with changing depth of cut, smooth chip evacuation.	0.009 BS 0.009 0.009 0.009 0.000 0.000 0.0012	A A B	
Finishing	PB1	First choice for steel finish turning Positive rake angle reduces cutting force and built-up edge, and obtains better surface finish and longer tool life. Also can be used in stainless steel turning.	0.116 PB1 0.079 0.099 0.0099 0.0099 0.0008 0.012	A B	
Semi-finishing	PC2	First choice for steel and stainless steel semi-finish turning Sharp geometry design ensures low cutting force, less built-up edge and excellent chip control.	0.118 PC2 0.079 0.039 0.039 0.004 0.008 0.012 0.016	0.005 8° A B	

80° Rhombus	55° Rhombus	90° Square	60° Triangle	35° Rhombus	80° Trigon	Round 380°
				VBMT-BS		
				P85		
CCMT-PB1 CPMT-PB1	DCMT-PB1	SCMT-PB1	TCMT-PB1 TPMT-PB1	VBMT-PB1 VCMT-PB1		
P71	P75	P78	P80	P86		
CCMT-PC2 CPMT-PC2	DCMT-PC2	SCMT-PC2	TCMT-PC2 TPMT-PC2	VBMT-PC2 VCMT-PC2		
P71	P75	P78	P80	P86		

Application	Chip breaker Features		Chip breaking range	Cross section geometry	
Medium	KC2	General purpose geometry for steel, stainless steel and cast iron turning Suitable for medium and rough turning. Simple and durable chip breaker design, very good versatility and wide application range.	0.118 KC2 0.118 0.009 0.009 0.009 0.009 0.009 0.009 0.008 0.0012 0.006	0.005 A B	
hing	KD5	Geometry for cast iron rough turning Suitable for unstable machining due to its strong cutting edge. Reduced chipping.	(ii)	. A	
Roughing	нт	Geometry for steel turning with large cutting depth Open chip breaker is suitable for large cutting depth with smooth chip evacuation. Good cost efficiency.	0.787 HT 0.530 0.530 0.315 0.315 0.157 0.016 0.315 0.047 0.063 0.079 f(in/rev)	0.024 15.4° A	
Semi-finishing	PD8	Geometry for carbon steel and alloy steel heavy turning The wide chip breaker avoids chip jamming at deep depth of cut. Has good chip control at light depth of cut as well.	0.315	0.020 Se. A	
Medium	No code	Alternative chipbreaker for cast iron and alloy steel medium turning Negative land and big rake angle design ensure cutting edge strength and sharpness.	0.157	0.016 A	

80° Rhombus	55° Rhombus	90° Square	60° Triangle	35° Rhombus	80° Trigon	Round 600
CCMT-KC2	DCMT-KC2	SCMT-KC2	TCMT-KC2	VBMT-KC2		
P72	P75	P78	P81	P86		
CCMW-KD5	DCMW-KD5	SCMW-KD5	TCMW-KD5			
P72	P76	P78	P81			
		SCMT-HT				
		P78				
						RCMX-PD8
						•
						P90
						RCMX
						P90

Positive Ground Insert

Application	Chip breaker	Features	Chip breaking range	Cross section geometry	
hing	LF	Finish turning Sharp cutting edge, low cutting force, suitable for Swiss-type automatic lathe with 2 direction machining.	0.157 0.118 0.009 0.009 0.0002 0.0004 0.0006 0.0008	A B	
Finishing	UF	First choice for heat resistant alloy turning Peripheral ground finish turning inserts. High repeatibility on insert positioning. Sharp cutting edge can achieve good machining tolerance.	0.318 UF 0.029 0.039 0.039 0.039 0.039 0.039 0.039 0.039	A B	
Semi-finishing	NC2	Choice for aluminium alloy turning Very positive rake angle is designed for non-ferrous metal finish and semi-finish turning. It reduces the cutting force and make smooth chip evacuation. The polished rake surface, with reduced friction and built-up edge.	0.394 NC2 0.3315 0.236 0.236 0.026 0.004 0.008 0.012 0.016 0.020 0.024 0.028 f(in/rev)	25° A	
Finishing	F	Choice for finish turning Excellent chip control at low feed rate. Very low cutting force.	0.009 F a.002 a.004 a.006 f(in/rev)	A	
Low feed	M	Suitable for medium turning in automatic lathes Excellent chip control at low to medium feed rates. Reliable machining. Big rake angle avoids work hardening.	0.197 0.157 0.079 0.009 0.009 0.000 0.002 0.003 0.004 0.005 f(in/rev)	A	
Semi-finishing	Y	Choice for semi-finish rough turning in automatic lathe The strong edge can be used in rough turning. Good chip control for low to medium feed rate	0.079 0.079 0.0099 0.0099 0.0099 0.0090 0.0008 0.0012	0.051 A	

80° Rhombus	55° Rhombus	90° Square	60° Triangle	35° Nhombus	80° Trigon	Round 600
CCGT-LF	DCGT-LF		TCGT-LF	VBGT-LF VCGT-LF VPGT-LF		
P70	P74		P79	P84		
CCGT-UF	DCGT-UF		TCGT-UF	VBGT-UF VCGT-UF		
				VPGT-UF		
P70	P74		P79	P84, 85		
CCGT-NC2	DCGT-NC2	SCGT-NC2	TCGT-NC2	VCGT-NC2		RCGT-NC2
P71	P75	P78	P79	P85		P90
CCET-F	DCET-F		TBET-F TCET-F TPEH-F	VBET-F VCET-F VPET-F	WBET-F	
P73	P76		P81, 82, 83	P86, 87	P89	
CCET-M	DCET-M		TCET-M	VBET-M VPET-M		
P73	P77		P83	P87, 88		
				VBET-Y		
				P88		

Turning Grade Description

Basic Grades for Turning

Steel, cast steel, ferrite/martensite stainless steel and malleable cast iron

Basic grade

AC052P P05(P01-P15)

CVD coated grade, has good crater resistance and chipping resistance, which is recommanded for high productivity medium and rough turning in stable condition, can keep edge reliability in dry or wet machining with high temperature.

AC150P P15(P10-P25)

CVD coated grade, can be used in finish to rough turning on steel and cast steel, and is recommanded in continuous and light interrupted cutting where it can keep high metal removal rate.

AC250P P25(P20-P35)

CVD coated grade, 1st choice for steel turning, used in finish to rough turning on steel and cast steel. It's recommanded for continuous and interrupted machining.

AC350P P35(P25-P45)

CVD coated grade, can be used in rough turning on steel and cast steel under poor conditions. Reliable cutting edge made this grade good for interrupted machining with high metal removal rate.

Supplemental grade

AP200U P25(P15-P35)

PVD coated grade, recommanded for finish turning on low carbon steel with low cutting speed or low feed.

AC200M P35(P25-P40)

CVD coated grade. Supplemental grade for steel turning where high toughness is required.

AT202 P15(P10-P20)

Uncoated cermet grade. It has excellent built-up edge resistance and chipping resistance which can be used in finish turning with good surface quality or where low cutting force are required.

Austenitic stainless steel, cast steel, manganese steel, alloyed cast iron, malleable cast iron and free cutting iron.

Basic grade

AC100M M15(M05-M20)

CVD coated grade. It's recommanded for finish machining and light rough machining. It's suitable for machining at medium to high cutting speed due to its heat resistance feature of wear resistant coating.

AC200M M25(M15-M30)

CVD coated grade, optimised for semi-finish to rough turning, can be used in interrupted machining in which it can keep edge reliability due to good thermal shock stability and mechanical shock resistance.

AP200U M25(M15-M35)

PVD coated grade, used in finish turning at low to medium speed and also in interrupted turning due to excellent thermal stability, outstanding performance in machining when sharp edge and edge toughness or good surface quality are required.

AP301M M25(M15-M35)

PVD coated grade. Mainly used in machining steel and stainless steel small parts. It has excellent built-up edge resistance, good machining stability, can obtain good surface quality, and achieve longer tool life.

Supplemental grade

AP100S M15(M05-M25)

PVD coated grade, recommanded for finish turning due to its high hardness and resistance to plastic deformation.

Cast iron, chilled cast iron and short chip malleable cast iron

Basic grade

AC100K K05(K01-K15)

CVD coated grade, has thick and smooth wear resistant coating and hard substrate, recommanded for grey cast iron high speed turning.

AC102K K05(K01-K15)

CVD coated grade, has thick and smooth wear resistant coating and hard substrate, recommended for nodular cast iron high speed turning.

AC202K K15(K10-K30)

1st choice for cast iron turning. It can deal with interrupted cutting due to its high wear resistant CVD coating, used in finish to rough turning on cast iron at low to medium cutting speed.

Supplemental grade

PB90 K10(K01-K20)

CBN grade. Suitable for grey cast iron and chilled cast iron interrupted finish turning due to its good edge strength and wear resistance.

AT202 K15(K10-K20)

Uncoated cermet grade. It has excellent built-up edge resistance and good plastic deformation resistance. It can be used in nodular cast iron finish turning when surface quality, small tolerance or low cutting force are required.

Non-ferrous metals

Basic grade

AW100K N15 (N05-N15)

Uncoated grade. It has both excellent wear resistance and sharp edge. Used in Al alloy rough to finish machining.

PD20 N10 (N01-N20)

PCD grade, used in non-ferrous material and non-metal material machining which can have longer tool life, completely clean cutting and good surface quality.

Heat resistant alloys

Basic grade

AP100S S15(S05-S25)

1st choice for heat resistant alloys. PVD coated grade has high hardness and plastic deformation resistance, can keep high performance and good wear resistance.

AP200U S25(S15-S35)

PVD coated grade. Used in low cutting speed or light interrupted cutting. Suitable for semi-roughing or continuous machining for a short time due to its good notch wear resistance and anti-heat shock capability.

Supplemental grade

AC100M S15(S05-S20)

CVD coated grade, suitable for heat resistant alloy continuous high speed machining .

AC200M S25(S15-S35)

CVD coated grade, suitable for heat resistant alloy general machining.

Hardened materials

Basic grade

PB30 H10(H05-H15)

CBN grade with low CBN content, is used in hardened steel continuous machining at high speed and light interrupted machining.

PB60 H15(H10-H25)

1st choice of CBN grade medium CBN content for hardened steel interrupted machining and continuous machining at medium speed.

Cutting Data Recommandation--Negative Insert

			Materials																
Minal loyed state					SS	⊊													
Minal loyed stees				due	eng in²)	1	AT202	2	A	C052	P.	Α	C150	P	AC250P				
Minal loyed stees	ISO		Workpiece Materials		무 무 ()	str bs/i	f /	(in/re	v)	f	(in/re	v)	f	(in/re	v)	f	(in/re	v)	
Minal loyed state			·			sile m(I	<u>''</u>	(111/10	v)	- ''	1 (111/164)		- ' '	(in/rev)		- '	(111/10	v)	
Minal loyed state					Brin	Ten	0.004	0.012	0.020	0.004	0.016	0.024	0.004	0.016	0.024	0.004	0.016	0.024	
Disable of the color of the c			C ≤ 0.25%	Annealed	125		650	330	230	2000	1470	1080	1590	1180	880	1240	850	680	
C																			
President Pres		Unalloyed steel			190		650											410	
Part			C > 0.55%	Heat-treated	300	147000	650	260	160	1200	800	590	680	590	490	520	390	360	
Dowalloyed steel			Free cutting steel(short chip)	Annealed	220	108000	650	260	160	1900	1380	980	1440	1010	820	1110	720	570	
Low alloyed steel			Annealed		175	85700	590	260	160	2000	1300	930	1140	850	720	780	570	440	
Heat-treated		Law allawad ataal	Heat-treated		300	146900	590	260	160	1700	1150	820	720	550	490	460	320	270	
High-alloyed steel and high-alloyed steel steel Hardenead and tempered 400 13700 520 200 160 900 650 520 750 400 300 200 270	P	Low-alloyed steel	Heat-treated		380	186000	590	260	160	1080	750	570	520	390	320	320	230	180	
Marcian logical high-salived stell and high-salived stellars and high-salived stellars			Heat-treated		430	214200	590	260	160	870	600	460	290	230					
Marticle Marticle		High-alloyed	Annealed		200	97900	520	260	160	1460	960	700	1080	750	490	680	470	270	
Stainless steel			Hardened and tempered		300	147000	520	260	160	980	650	520	750	460	360	420	270	210	
Stainless steel		and you tool steel			_		490	260	160	720	460	340	260	230					
Austentic, precipitation hardword stainless steel PH 300 147000		Stainless steel		i															
Maileas steel																460	320	230	
Malleable cast Horo Hor	M		<u> </u>	oo stool/DU															
Maileable cast Fermic 200 58000	IVI	Stainless steel		300	147000														
Cast aluminum alloy			Austenitic,ferritic,duplex	230	113000														
Core Cope			Ferritic		200	58000													
Nodular cast iron		iron	Pearlitic		260	101000													
Nodular cast iron	K	Grey cast iron	Low tensile strength																
Nodular cast iron Pearlitic 265 101000		,		tic															
Wrought aluminum alloy		Nodular cast iron																	
Wrought aluminum alloy																			
N Aged alloy 100 49300			<u> </u>																
N S 12% Si, non-aging alloy 75 37700																			
Cast aluminum alloy		,																	
N S S S Non-aging alloy 130 65300																			
Magnesium alloy	N	alloy																	
Copper alloy(bronze/brass) Parass, bronze, red brass Po 45000 Parass Po 45000 Parass Po 45000 Parass Po 45000 Parass Parass, bronze, red brass Po 45000 Parass Parass, bronze, red brass Po 45000 Parass Parass Po 45000 Parass Par		Magnesium alloy			70	36300													
Annealed Solution Solution		_	Unalloyed,electrolytic coppe	r	100	49300													
Annealed Pure Titanium alloy Pure Tit			Brass,bronze,red brass		90	45000													
High tensile,Ampco alloy 300 146500		alloy(bronze/	Cu alloy,short chip		110	55100													
Heat-resistant alloy		Diagoj	High tensile,Ampco alloy		300	146500													
Heat-resistant alloy			Fe-based	Annealed	200	98600													
Annealed 250 122000		Hoot-registant		Aged															
Cast 320 156600					_														
Pure Titanium 200 98600			Ni or Co based		_														
Titanium alloy α and β alloy,aged 375 182700 <t< td=""><td>3</td><td></td><td>Pous Titouinus</td><td>Cast</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	3		Pous Titouinus	Cast															
Balloy A10 203000		Titanium alloy																	
Tungsten alloy		intamum anoy																	
Molybdenum alloy		Tungsten alloy	p-alloy																
Hardened and tempered 50HRC																			
Hardened steel Hardened and tempered 55HRC Hardened and tempered 60HRC																			
Hardened steel Hardened and tempered 55HRC Hardened and tempered 60HRC	H				-														
		Hardened steel			-														
Chilled cast iron Hardened and tempered 50HRC																			
		Chilled cast iron	Hardened and tempered		50HRC														

^{*}The recommended cutting data always refer to general cutting conditions. The actual selection should be adjusted according to the factors such as machine rigidity, tool body, workpiece conditions and coolant (f should be adjust according to insert radius)

 			teck 1																							
 Т		value	1					-	I																	
Α	.C350)P	A	C100	М	A	C200	М	A	P200	U		C100		A	C102	K	Α	C202	!K	A	W100)K	A	P100	S
f	(in/re	ev)	f ((in/re	v)	f ((in/re	v)	f	(in/re	v)	f (in/re	v)	f	(in/re	v)	f (in/re	v)	f	(in/re	v)	f ((in/re	v)
0.004	0.016	0.024	0.004	0.012	0.020	0.004	0.012	0.020	0.004	0.012	0.020	0.004	0.016	0.024	0.004	0.016	0.024	0.004	0.016	0.024	0.004	0.008	0.016	0.004	0.012	0.020
820	550	460							720	680																
650	440	360							550	490																
490 550	410 360	290 290							460 420	390 390																
410	240	210							420	390																
720	470	370							620	550																
650	540	490							420	360																
440	290	230																								
290	210	140																								
500	490	270							390	260																
590 360	270	270							390	260																
490	390	310	720	590	490	620	520	420	470	420	290															
360	260	190	550	460	420	460	360	320	340	260	230															
			820	620	490	650	520	360	590	390	260													780	620	490
			590	520		490	390		360	290														490	270	
			620	550	420	520	420	320	390	320	230													550	470	320
												910	650	550	880	620	520	780	520	420						
												820 1600	550 850	420 650	800 1600	520 820	410 620	650 1300	390 680	310 490						
												820	590	460	780	550	420	650	490	320						
												880	650	490	850	620	820	750	550	390						
												680	520	460	650	490	420	550	390	320						
-																										
			260	190	130	230	160	100	130	80														320	210	
			230	160	90	190	130	65	100	65														260	180	
			230	160	110	190	130	80	100	80														260	180	
			230	160	100	190	130	65	100	65														230	140	
			230	160	100	190	130	65	100	65														190	100	
									210	1/0	110													650	590	140
									210 110	140	110													290 180	180	140
																										- 55

Cutting Data Recommandation--Positive Insert

		Materials															
		Waterials			_												
				esa	2)	<u> </u>	T00/		Γ.	0050			04.50			0050	
100		M		ardr 3)	trer s/in		AT202	<u> </u>	A	C052	P 		C150		A	C250	P
ISO		Workpiece Materials		Har (HB)	ile s (B)	f (f (in/re		f	(in/rev)		f	(in/re	v)	f	(in/rev)	
				Brinell Hardness (HB)	Tensile strength Rm(lbs/in²)	0.004	0.008	0.016	0.004	0.008	0.016	0.004	0.008	0.016	0.004	0.008	0.016
		C ≤ 0.25%	Annealed	125	62000	656	328	230	1960	1410	1010	1520	1310	1080	1180	1010	850
		0.25 < C ≤ 0.55%	Annealed	190	92700	656	328	230	1770	1260	900	1180	1080	850	950	820	620
	Unalloyed steel	0.25 < C ≤ 0.55%	Heat-treated	210	103000	650	260	160	1250	850	590	880	780	720	650	590	520
	Onanoyeu steer	C > 0.55%	Annealed	190	92700	650	260	160	1700	1190	830	1080	980	950	820	720	680
		C > 0.55%	Heat-treated	300	147000	650	260	160	1180	730	520	680	590	550	520	420	390
		Free cutting steel(short chip)	Annealed	220	108000	650	260	160	1900	1310	910	1440	1310	1240	1050	950	900
		Annealed		175	85700	590	260	160	1930	1280	860	1140	1010	980	850	780	720
Р	Low-alloyed steel	Heat-treated		300	146900	590	260	160	1670	1080	750	650	550	520	440	390	320
	ĺ	Heat-treated		380	186000	590	260	160	1050	680	500	390	320	290	320	270	210
		Heat-treated		430	214200	590	260	160	870	540	390	260	230		210	180	
	High-alloyed	Annealed		200	97900	520	260	160	1390	900	640	1050	950	910	880	780	720
	steel and high- alloyed tool steel	Hardened and tempered		300	147000	520	260	160	920	590	460	650	550	490	550	450	390
		Hardened and tempered Ferritic/Martensite,Annealed		400 200	197000 97900	490	260	160	650	390	340	260	230		210 620	180 550	490
	Stainless steel	Martensite,Heat-treated		330	162000										290	260	190
		Austenitic,hardened		200	97900										290	200	190
М		Austenitic,precipitation hardened stainle	ess steel(PH														
	Stainless steel	stainless steel)		300	147000												
		Austenitic,ferritic,duplex		230	113000												
	Malleable cast	Ferritic		200	58000												
	iron	Pearlitic		260	101000												
K	Grey cast iron	Low tensile strength		180	29000												
		High tensile strength/Austenit	IC	245	50800												
	Nodular cast iron	Ferritic Pearlitic		155 265	58000 101000												
		GGV(CGI)		230	58000												
	Wrought	Non-aging alloy		30	-												
	Wrought aluminum alloy	Aged alloy		100	49300												
		≤ 12% Si, non-aging alloy		75	37700												
	Cast aluminum alloy	≤ 12% Si, aged alloy		90	45000												
N	alloy	> 12% Si, non-aging alloy		130	65300												
	Magnesium alloy			70	36300												
	0	Unalloyed,electrolytic copper		100	49300												
	Copper and copper	Brass,bronze,red brass		90	45000												
	alloy(bronze/ brass)	Cu alloy,short chip		110	55100												
		High tensile,Ampco alloy		300	146500												
		Fe-based	Annealed	200	98600												
	Heat-resistant		Aged	280	136000												
	alloy		Annealed	250	122000												
S		Ni or Co based	Aged	350	171000												
3		Pure Titanium	Cast	320 200	156600 98600												
	Titanium alloy	α and β alloy,aged		375	182700												
	Trainain alloy	α and β alloy,aged β alloy		410	203000												
	Tungsten alloy	p-unoy		300	146500												
	Molybdenum																
	alloy		300	146500													
Н		Hardened and tempered		50HRC 55HRC													
	Hardened steel	Hardened and tempered	· ·														
		Hardened and tempered		60HRC													
	Chilled cast iron	Hardened and tempered		50HRC													

^{*}The recommended cutting data always refer to general cutting conditions. The actual selection should be adjusted according to the factors such as machine rigidity, tool body, workpiece conditions and coolant (f should be adjust according to insert radius)

				turnin			(-5.											-										
1	c350	value	1	utting C100						P200		Λ.	C100	ĸ			K	Λ.	C202	ık	Λ,	W100	nk	AP100S				
-						f (in/rev)									f (in/rev)									f (in/rev)				
T ((in/re	:V)	T ((in/re	v)	T	(ın/re	(V)	T ((in/re	v)	Ť (in/re	v)	T ((ın/re	v)	T (in/re	V)	T	(in/re	V)	T ((ın/re	v)		
0.004	0.008	0.016	0.004	0.008	0.016	0.004	0.008	0.016	0.004	0.008	0.016	0.004	0.008	0.016	0.004	0.008	0.016	0.004	0.008	0.016	0.004	0.008	0.016	0.004	0.008	0.016		
750	490	390							680	650																		
590	370	320							520	450																		
420 490	370 320	270 270							450 420	390 390																		
370	210	180							.20	030																		
680	440	340							620	550																		
620	500	420							420	360																		
410	260	210																										
290	210	140																										
550	450	240							390	260																		
320	260	190							5,0																			
390	320	290	650	550	450	590	490	390	440	390	290																	
230	190	160	520	450	420	420	360	320	340	260	230																	
			750	590	450	620	490	360	550	360	260													720	650	420		
			550	490		450	360		320	260														520	450			
			590	520	420	490	390	320	360	290	230								100					550	490	360		
												850 750	620 520	520 390	770	590 490	490 370	750 620	490 360	390 310								
												1540	820	620	1540		590	1280	650	450								
												750	550	420	720	520	390	620	450	320								
												820	620	450	780	590	780	720	520	360								
												620	490	420	590	450	390	520	360	320								
																					2460	1960	980					
																					2620		980					
																					1640	980	650					
																						1310						
																					910	980	820 420					
																					910	030	420					
			240	180	110	210	140	904	130	80														320	230			
			210	140	90	180	110	606	90	60														260	190			
			210	140	110	180	110	80	90	80														260	190			
			210	140	90	180	110	60	90	60														230	160			
			210	140	90	180	110	60	90	60														190 394	130 328	262		
									210	140	110													213	148	115		
									110	110	90													115	115	98		