
🛡 Project 1 Updated: 
Secured Simple Python 
LLM App
💡From  secured code →  to secured 
container → secured working AI API.
🎓 Part of Remoder Inc.’s - AI Engineer Upskilling Program

Remoder Inc. - remoder.com 

http://remoder.com


WHY?

By implementing these best practices and security layers, we can 
significantly improve:

- the overall quality 
- security of our AI Agent application 

It is really essential to build RESPONSIBLE AI-AGENTS. As we go, 
we will learn from our mistakes and findings on where else we can 
make our agents better. 

If you still have questions on the overall Project-1, please refer to V1 of this 
document in previous Posts. 



If you still have questions on the overall Project-1, please refer to 
V1 of this document in previous Posts. 

There are few things that changed from 
original version of this document. The 
changes are mostly made for security 
enhancements. So, in a nutshell, we changed 
the following:

- Dockerfile Enhancements 
- FastAPI Security and Configuration 🛡 => 

app.py
- Dependency Management 📦  

=> requirements.txt 

http://app.py


Dockerfile  Enhancements 

- Current Dockerfile is a good start, but it can be improved for better security and 
efficiency. To do that we basically now: 

Use a Specific Base Image

Instead of using a general ubuntu:20.04 image, we now use  python:3.9-slim. This will 
significantly reduce the size of our image and minimize the attack surface by 
excluding unnecessary packages.

Run as a Non-Root User

Running containers with root privileges is a major security risk. We can create a 
dedicated user with limited permissions to mitigate this.



Benefits of a Multi-Stage Build and pip-audit
1. Security Through 

Separation 🛡
2. Dependency Auditing ✅
3. Reduced Attack Surface 🔒
4. Smaller Image Size 📦
(screenshot does not show full 
Dockerfile!)



FastAPI Security and Configuration 🛡
Input Validation and Sanitization

FastAPI has several built-in features that can secure our 
application. While Pydantic handles basic data validation, we 
can add more specific constraints to our Prompt model to 
prevent malicious inputs. For example, we can limit the length 
of the input text to avoid resource exhaustion.



Implement Rate Limiting

To protect our API from 
denial-of-service (DoS) attacks, we 
can implement rate limiting. This will 
restrict the number of requests a user 
can make in a given time frame. We 
can use a library like slowapi to easily 
add this functionality.

1. We add slowapi to our 
requirements.txt

2. We integrate the slowapi to 
app.py



Dependency Management 📦
Managing our dependencies effectively is crucial for maintaining a secure and stable application.

Pin Dependencies

Our requirements.txt file is a good start, but we can make it more robust by pinning the exact versions of all 
our dependencies, including transitive ones. This ensures that our application will always build with the 
same set of packages, preventing unexpected breaking changes.

We can generate a detailed requirements.txt file using pip freeze:

pip freeze > requirements.txt

Regularly Scan for Vulnerabilities

It's important to regularly scan our dependencies for known vulnerabilities. We can use a tool like pip-audit 
to automate this process. In this demo, I have just added the pip-audit step into the Dockerfile and I am 
running it as a separate STAGE before building the final PROD version of the image. Refer back to SLIDE-4.



Questions?

Contact us & come learn with us  ٩(◕‿◕｡)۶

- https://www.linkedin.com/company/remoder
- https://www.linkedin.com/in/sanjars/
- https://www.youtube.com/@remoder-inc
- remoder.com
- Full walkthrough of this project is available on our “Master AI 

Deployment “ course

https://www.linkedin.com/in/sanjars/
https://www.youtube.com/@remoder-inc
http://remoder.com

