@ Project 1Undated:
Secured Simple Pythen

® From secured code — 1o secured
container — secured working Al API.

¢ Partof Remoder Inc.’s - Al Engineer Upskilling Program

Remoder Inc. - remoder.com

http://remoder.com

WHY?
i

By implementing these best practices and security layers, we can
significantly improve:

- the overall quality
- security of our Al Agent application

It is really essential to build RESPONSIBLE AI-AGENTS. As we go,
we will learn from our mistakes and findings on where else we can
make our agents better.

If you still have questions on the overall Project-1, please refer to V1 of this
document in previous Posts.

If you still have questions on the overall Project-1, please refer to
V1 of this document in previous Posts.

There are few things that changed from
original version of this document. The
changes are mostly made for security
enhancements. So, in a nutshell, we changed
the following:

- Dockerfile Enhancements &=
- FastAPI Security and Configuration @ =>
app.py

- Dependency Management @
=> requirements.txt U/
AN

http://app.py

Dockerflle Enhancementst *=

- Current Dockerfile is a good start, but it can be improved for better security and
efficiency. To do that we basically now:

Use a Specific Base Image

Instead of using a general ubuntu:20.04 image, we now use python:3.9-slim. This will
significantly reduce the size of our image and minimize the attack surface by
excluding unnecessary packages.

Run as a Non-Root User

Running containers with root privileges is a major security risk. We can create a
dedicated user with limited permissions to mitigate this.

remoder-lab1 > docker > pri1-secure-simple-lim > Dockerfile > ...

16

Stage 1: The "builder" stage for auditing dependencies
FIX: Changed 'as' to 'AS' for consistent casing

FROM python:3.9-slim AS builder (last pushed 1 week ago)

WORKDIR /app

Copy requirements first to leverage Docker's layer caching
COPY requirements.txt .

Install dependencies and the audit tool
RUN pip install —--no-cache-dir -r requirements.txt

@ Run the audit. If vulnerabilities are found, the build wil

RUN pip-audit

Stage 2: The final, secure production image

FROM python:3.9-slim (last pushed 1 week ago)

[
] - - - - m%%%m "

3.
4.

Security Through
Separation @

Dependency Auditing ¥
Reduced Attack Surface §
Smaller Image Size &

(screenshot does not show full
Dockerfile!)

FastAPl Security and Configuration ©

Input Validation and Sanitization V\

FastAPI has several built-in features that can secure our
application. While Pydantic handles basic data validation, we
can add more specific constraints to our Prompt model to
prevent malicious inputs. For example, we can limit the length
of the input text to avoid resource exhaustion.

Python 10

from pydantic import BaseModel, constr

class Prompt(BaseModel):
text: constr(min_length=1, max_length=500)

from fastapi import FastAPI, Request

from slowapi import Limiter, _rate_limit_exceeded_handler

from slowapi.util import get_remote_address

limiter = Limiter(key_func=get_remote_address)

app = FastAPI()

app.state.limiter = limiter
app.add_exception_handler(_rate_limit_exceeded_handler)

@app.post("/generate/")

@limiter.limit("5/minute")

def generate_text(request: Request, prompt: Prompt):
Your text generation logic here

pass

Implement Rate Limiting

To protect our API from l/\
denial-of-service (DoS) attacks, we
can implement rate limiting. This will
restrict the number of requests a user
can make in a given time frame. We
can use a library like slowapi to easily
add this functionality.

1. We add slowapi to our

requirements.txt
2. We integrate the slowapi to

app.py

\ Dependency Managememt & I}[/\ 4

Managing our dependencies effectively is crucial for maintaining a secure and stable application.

Pin Dependencies

Our requirements.txt file is a good start, but we can make it more robust by pinning the exact versions of all
our dependencies, including transitive ones. This ensures that our application will always build with the
same set of packages, preventing unexpected breaking changes.

We can generate a detailed requirements.txt file using pip freeze:
pip freeze > requirements.txt
Regularly Scan for Vulnerabilities

It's important to regularly scan our dependencies for known vulnerabilities. We can use a tool like pip-audit
to automate this process. In this demo, | have just added the pip-audit step into the Dockerfile and | am
running it as a separate STAGE before building the final PROD version of the image. Refer back to SLIDE-4.

\ Questions? U’\

Contact us & come learn with us

- https://www.linkedin.com/company/remoder

- https://www.linkedin.com/in/sanjars/

- https://www.youtube.com/@remoder-inc

- remoder.com

- Full walkthrough of this project is availahle on our “Master Al
Deployment “ course

https://www.linkedin.com/in/sanjars/
https://www.youtube.com/@remoder-inc
http://remoder.com

