
⚙ vLLM vs Ollama
Choosing the Right LLM Inference for Real 
Systems

🧠 AI is powerful

🏗 Systems make it usable

🚀 Inference is an engineering decision

Remoder.com



The Real Question

❌ Wrong Question

“Which LLM tool is better?”

✅ Right Question

“Which inference pattern fits my system?”

🔹 Local vs Production
🔹 Single-user vs Multi-tenant
🔹 Low latency vs High throughput
🔹 Cost vs Performance

👉 Inference is infrastructure



Ollama 🧠
Developer-First Inference

✅ Best for:

● Local development & demos 🧪
● Fast iteration & experimentation ⚡
● Single-user or small teams 👤
🛠 Characteristics:

● Simple CLI & API
● Minimal setup
● Runs locally (CPU/GPU)
● Low operational overhead

💡 Think: Developer productivity



 vLLM ⚙
Production-Grade Inference

✅ Best for:

● High-throughput systems 🚀
● Multi-tenant workloads 🏢
● GPU-optimized inference 🖥
● Platform & API layers 🌐
🛠 Characteristics:

● Efficient batching
● PagedAttention (GPU memory optimization)
● High concurrency
● Designed for scale

💡 Think: Platform reliability & performance



Key Engineering Differences



How Systems Engineers Should Think

🏗 Inference Is a Systems Decision

Ask these questions:

● 🔄 How many concurrent users?

● ⏱ Latency vs throughput requirements?

● 💰 GPU cost constraints?

● 🔐 Multi-tenant isolation?

● 📈 Future scaling needs?

🧠 Models change.
🏗 Architecture stays.



When to Migrate: Ollama ➜ 
vLLM

🔁 The Inflection Point

You should start thinking about vLLM when:

🚨 Traffic increases

● Multiple users hitting the model concurrently

● API-backed applications, not just local usage

🚨 Latency becomes inconsistent

● Queueing delays under load

● GPU memory pressure



When to Migrate: Ollama ➜ 
vLLM

🚨 Costs start to matter

● Inefficient GPU utilization

● Need for batching and memory optimization

🚨 Platform responsibility appears

● SLAs, SLOs, uptime guarantees

● Multi-tenant isolation

👉 Ollama = build fast
👉 vLLM = scale responsibly



Docker Deployment Patterns 🐳
Container-First Inference

Ollama with Docker

 ✅ Best for:

● Local dev environments

● Demos & labs

● Internal tools

🛠 Pattern:

● Docker / Docker Compose

● Single container per model

● Simple volume mounts



vLLM with Docker

 ✅ Best for:

● API services
● GPU-backed containers
● CI/CD-driven deployments

🛠 Pattern:

● GPU-enabled containers
● Explicit resource limits
● Reverse proxy (NGINX / API Gateway)

👉 Docker is the starting point for both



Kubernetes Patterns ☸
- Production AI Systems
- vLLM on Kubernetes

 🏗 Designed for:

● Horizontal scaling
● Multi-tenant workloads
● Enterprise environments

🔧 Common components:

● GPU node pools
● HPA / custom autoscaling
● Resource quotas
● Ingress / API Gateway
● Observability (metrics + logs)



Production AI Systems

vLLM on Kubernetes

📈 Benefits:

● Predictable scaling
● Cost control
● Fault isolation

👉 Kubernetes is where AI becomes a platform

🎯 Final Note for the Deck

“AI maturity is not about models — it’s about systems.”



🎯 Build Smart. Scale Intentionally.

✔ Use Ollama to learn, prototype, and move fast
✔ Use vLLM when reliability, scale, and efficiency matter
✔ Match inference to workload maturity

🚀 AI systems succeed only when infrastructure is done right

💬 What inference patterns are you seeing in real systems?



Questions? Reach out to us ٩(◕‿◕｡)۶ 

📌 Website: https://remoder.com

📘 LinkedIn (Company): https://www.linkedin.com/company/remoder

󰞵 LinkedIn (Sanjars): https://www.linkedin.com/in/sanjars/

🎥 YouTube: https://www.youtube.com/@remoder-inc

📧Contact: hello@remoder.com OR Directly Message Me: 

https://www.linkedin.com/in/sanjars/

🚀 Want the Full Walkthrough or Hands On Labs?

This entire project — step-by-step, production-ready, with diagrams, videos and code — 
is covered inside our AI Systems Engineering - mentored path. 

More information: https://remoder.com/%F0%9F%A7%A0-ai-systems-engineer

https://remoder.com
https://www.linkedin.com/company/remoder
https://www.linkedin.com/in/sanjars/
https://www.youtube.com/@remoder-inc
mailto:hello@remoder.com
https://www.linkedin.com/in/sanjars/

