Mantua Township Black Brook Flood Study

FINAL
JULY 2023

Table of Contents

1.0 Introduction 1
1.1 Study Background 1
1.2 Flood Study Objectives. 1
2.0 Study Area 2
2.1 Watershed 2
2.2 Topography 7
2.3 Existing Infrastructure and Condition Assessment 7
2.3.1 Mantua Center Road 7
2.3.2 Mantua Center Road Bridge 8
2.3.3 Driveway Culverts 10
3.0 Stormwater Modeling Methodology 12
3.1 Model Set-up and Calibration 12
3.2 Data Sources 13
3.2.1 Stream Flow Data 14
4.0 Sensitivity Analysis 15
4.1 Introduction 15
Scenario 1 - Existing Conditions 16
Scenario 2a - Existing Conditions with no Downstream Restrictions 16
Scenario 2b - No flow from Northwest Branch of Black Brook 16
Scenario 2c - No Flow from Southwest Branch of Black Brook 16
Scenario 2d - No Flow from Southeast Branch of Black Brook 17
Scenario 2fa - Reduce Flow from Southeast Branch by 50\% - Include Areas 1 and 2 only. 17
Scenario 2fb - Reduce Flow from Southeast Branch by 50\% - Include Areas 1 and 3 only 17
Scenario 2g - Reduce Flows from Southwest Branch by 50\% 17
Scenario 2h - Reduce Flows from Southwest and Southeast Branch by 50\% 17
5.0 Alternatives Development and Evaluation 20
5.1 Alternatives Analysis 20
5.1.1 Infrastructure Improvements 20
5.1.2 Nature Based Solutions 20
5.1.3 Property Acquisition 20
Appendix A - Wetland and Stream AssessmentAppendix B - HEC RAS Model OutputAppendix C - Cost Estimates

1.0 Introduction

1.1 Study Background

A one-mile-long section of Mantua Center Rd. between Winchel Rd and SR 82 in Mantua Township is prone to frequent flooding. This section conveys the Black Brook in 8 -foot deep ditches along both sides of the road. Flooding along Mantua Center Road has caused, and continues to cause, personal property damage, infrastructure deterioration, and inhibits emergency vehicles from serving residents. In addition, water quality impairments caused by runoff from flooded septic leach fields, agriculture, and a former gravel pit are a concern within the study area. Residents have contended with the effects and costs of damage due to floodwaters for decades. With grant writing assistance from the Chagrin River Watershed Partners (CRWP), this study is funded by an Advanced Assistance award under the Federal Emergency Management Agency (FEMA) DR-4447 Hazard Mitigation Grant Program grant from the Ohio Emergency Management Agency.

The Black Brook Conservancy District was formed in 1942 to drain land for farming and reduce flood risk. In 1879, property owners petitioned the Portage County commissioners to open a road through it to provide access to hundreds of acres of land. As a result, Mantua Center Road was constructed to convey Black Brook.

1.2 Flood Study Objectives

The purpose of this flood study is to identify and evaluate alternatives to mitigating the flood hazards along Mantua Center Road. Results of the flood study will be incorporated into an update to the Black Brook Nine-Element Nonpoint Source Implementation Strategy Plan (NPS-IS) document. The NPS-IS is a watershed action planning tool that summarizes causes and sources of impairment and recommended mitigation. For a project to be eligible for Ohio EPA Section 319 Funding, a proposed project must be described in a U.S. EPA approved NPS-IS. The nine-element nonpoint source implementation strategy plan (NPS-IS) for Black Brook was approved by Ohio EPA on January 3, 2020, and is the first watershed plan for this area.

2.0 Study Area

2.1 Watershed

The study area is located in Mantua Township, Ohio. The drainage area for the study area encompasses approximately 7.8 square miles of the west branch of Black Brook within the Black Brook (HUC 12 041100020105) watershed (Figure 1). The Black Brook watershed drains into the Upper Cuyahoga River basin. There is an earthen dam (Black Brook dike) located at the downstream end of the study area watershed. The dam was constructed in the 1960s as part of the LaDue Reservoir project to partially divert water to the reservoir. Upstream of the dike, Black Brook branches off into several segments within the 7.8 square mile watershed. The watershed of the study area is generally bound by State Route 44 to the east, Chamberlain Road to the west, between Pioneer Trail and State Route 82 to the south, and Winchell Road to the north. The watershed is predominately in Portage County with a small portion on the north located in Geauga County.

According to historic 1905/1906 USGS maps, the study area was predominately wetlands and Mantua Center Road has not yet been constructed (Figure 2). The southeast and northwest branches of Black Brook discharge into the wetland. Black Brook becomes a stream again to the northeast. There is minimal development in the watershed. The 1959/1962 USGS maps show Mantua Center Road completed, Black Brook channelized and conveyed in ditches on either side of the road, and numerous homes in the watershed (Figure 3). A gravel pit is located to the west of the study area and is still present today.

Drainage within the basin has been altered over the past century as farmers worked the land and dams were built for water supply. The Black Brook Conservancy District was formed in 1942 to control water within the watershed as farmers continued to work the land. Mantua Center Road was constructed to allow farmers access to additional land. As part of the road construction, Black Brook was directed into roadside ditches along both sides Mantua Center Road.

Figure 1 - Watershed of Study Area

Figure 2 - USGS Map 1905/1906

Figure 3 - USGS Map 1959/1962

Figure 4 - Study Area

2.2 Topography

The study area is low-lying with only a 0.16% slope from the upstream end to downstream end along the one-mile stretch of Mantua Center Road. The road elevation at the south end of the study area is 1150 feet and the road elevation at the north, at the Mantua Center Road bridge, is 1142 feet. This equates to only eight feet of fall along the length of the road for stormwater runoff. The topography directly east of the study area rises considerably before Wayne Road up to an elevation of 1196 feet. West of the study area, the topography also rises to a maximum elevation of 1206 feet at Frost Road.

2.3 Existing Infrastructure and Condition Assessment

Osborn performed a site visit on August $16^{\text {th }}, 2021$ to observe existing infrastructure and visually assess the conditions within the study area. The field team observed one road, one bridge, driveway culverts, and utilities along the one-mile segment of Mantua Center Road. A site visit was also conducted on July $17^{\text {th }}, 2021$ to observe the study area inundated with flood waters.

2.3.1 Mantua Center Road

Mantua Center Road is paved with asphalt in good condition. The road is 24 feet wide with deep ditches running parallel to the road on either side. The ditches convey the southeast and southwest branches of Black Brook (see photographs 2.1 and 2.2). During heavy rain events, Mantua Center Road often overtops with flood water and, at times, becomes impassable. The Mantua Township Road service department maintains the road which includes periodic removal of sediment from the ditches, roadside mowing, filling of potholes, and other maintenance. Frequent flooding along the road causes the road embankments to erode and requires periodic repairs to maintain integrity.

2.3.2 Mantua Center Road Bridge

The Mantua Center Road bridge is located at the north end of the study area approximately 350 feet south of Herman Road. The bridge conveys the west branch of Black Brook and spans approximately 21 feet (Figure 1). Ditches located on each side of Mantua Center Road which convey the southeast of southwest branches of Black Brook intersect the west branch of Black Brook and drains to the east. The bridge appeared to be well maintained and in good condition (see photographs 2.1 through 2.4).

Figure 5 - Mantua Center Rd Bridge Profile

2.3.3 Driveway Culverts

There are 15 driveway culverts on the east side and 14 driveway culverts on the west side of Mantua Center Road along the one-mile stretch within the study area. The culverts are constructed of various materials including concrete, corrugated metal pipes, steel girders, and wood. The culverts are maintained by the homeowners. The conditions of the culverts vary widely. Some are in need of repair or replacement and others are in good condition.

3.0 Stormwater Modeling Methodology

3.1 Model Set-up and Calibration

Hydraulic analysis of the study area was carried out using the HEC-RAS program version 6.2. Model calibration consists of fine tuning of model parameters until the model simulates field conditions to an established degree of accuracy. Fine-tuning of the model entails adjusting the model parameters to obtain the desired output data. The optimal model parameters can be set with manual calibration by changing the parameters little by little until the model output is stable and representative of real-world conditions, to the greatest extent possible. Calibration is important to establish model credibility, create a benchmark, produce a predictive tool, increase knowledge and understanding of the system and its operations, and to discover errors or unknown conditions in the field.

During the calibration process, the following parameters were modified to develop stable, reliable results:

The computation interval option within HEC-RAS can vary from 0.1 second up to one day. Computational intervals for 2D models typically produce stable results at less than one minute time step, however the smaller the time step, the more computations the simulation runs therefore creating a longer simulation time. A balance of model stability and run time was factored into selecting a 15 second computational interval for this model.

The Black Brook Flood Study hydraulic model in this report is a HEC-RAS 2D model with a computational grid mesh based on available GIS data sourced from local government agencies. The 2D grid mesh created during the modeling process can vary in detail based on the modeler's desire for an accurate but speedy model. The smaller the grid, the more computational grid cells the model will calculate. Therefore, the more grid cells the model computes the longer the model run. The calibration process deems to identify a grid size that is as functionally accurate as it can be to real world conditions while running quickly and efficiently. Additionally, supplementary data was added to the 2D grid mesh to better represent some existing stream channel geometry.

Hyfi, working for Chagrin River Watershed Partners through a grant from the Great Lakes Protection Fund, supplied Osborn Engineering stream flow data for two locations along Black Brook; one at Mantua Center Road and the other at Winchell Road. Below is a list of locations, observed data, and time frame.

Mantua Center Road - Elevation - April 28, 2021 through May 28, 2022
Mantua Center Road - Depth - April 28, 2021 through May 28, 2022
Winchell Road - Elevation - December 14, 2020 through May 28, 2022
Winchell Road - Depth - December 14, 2020 through May 28, 2022

The data was utilized to calibrate the model flows through the observed locations and was also used to interpolate an accurate stream base flow to include in the model.

Inflow hydrographs were also calibrated through the modeling process to represent real world land use and soil types as well as accurate time of concentrations for each inflow. The hydrograph data tables were developed in HydroCAD with observed land use and soil data from the USGS Web Soil Survey. Time of concentration paths were developed for each watershed and adjusted to follow observed flow paths, slopes and roughness. These finalized hydrographs were added to HEC-RAS as inflow boundary conditions for each watershed.

Design storms were used to develop hydrographs for use in the HEC-RAS model to predict flood depths for existing conditions, the sensitivity analysis, and alternatives evaluation. The rainfall depths are based on the National Oceanic and Atmospheric Administration's (NOAA) Precipitation Frequency Data Server (PFDS), also known as NOAA Atlas 14. The design storm rainfall depths for each of these recurrence interval events are listed in the table below.

Table 1 - Design Storm Rainfall Depths (NOAA Atlas 14)

RECURRENCE INTERVAL	24-hr RAINFALL DEPTHS (inches)
1-year	2.07
2-year	2.47
5-year	3.07
10-year	3.56
25-year	4.27
50-year	4.87
100-year	5.51

3.2 Data Sources

The digital terrain data used for this hydraulic analysis was obtained from Portage and Geauga Counties and was observed in January 2016 in 2-foot contour intervals and is derived from the Ohio Statewide Imagery Program. The data references elevations to the NAVD 88. Horizontal control is referenced to the NAD83 Ohio State Plane South Zone, US Foot. All hydraulic model results are in NAVD88 and NAD83.

3.2.1 Stream Flow Data

There are no USGS stream gages on Black Brook. However, two water level sensors were installed by hyfi through a Great Lakes Protection Fund grant. One sensor is mounted to the bridge on Mantua Center Rd. where the east and west ditches intersect the Black Brook (41.330057966, -81.245251903). This sensor measures water level data that combines the Black Brook and the west ditch. The second sensor measures water level downstream of the study area and is installed on the Winchell Rd. bridge that conveys Black Brook.

Figure 6 - Flow Sensor on Mantua Center Road Bridge

4.0 Sensitivity Analysis

4.1 Introduction

Several hydraulic model scenarios were developed and evaluated in HEC-RAS to gain an understanding of how the study area performs under various conditions. Each scenario was modeled for the 1-year, 5-year, and 100-year storms. Six locations were selected within the study area to compare the resulting flood depths. A description of these locations is listed below in Table 2.

Table 2 - Locations for Flood Level Comparisons

LOCATION	ADDRESS
1	4002 Herman Road
2	12330 Mantua Center Road
3	Mantua Center Road
4	12100 Mantua Center Road
5	12002 Mantua Center Road
6	11967 Mantua Center Road

The study area was divided into three subwatersheds; the northwest, southwest, and southeast branches of Black Brook as shown on Figure 7. The objective was to determine which of these three branches contributes the most stormwater runoff to flood-prone areas compared to existing conditions. Understanding which branch, if any, contributes more significantly than other subwatersheds could assist with locating flood control improvements in optimal areas.

Results of the first run of the sensitivity analysis showed the southeast subwatershed contributed the most to flooding along Mantua Center Road. Based on this outcome, the southeast subwatershed was further divided into three subwatersheds (areas 1, 2, and 3) to isolate small upstream Black Brook tributaries. Again, the purpose of analyzing these smaller subwatersheds was to identify optimal areas that could be used for flood control. See Appendix A for an output of model results.

A total of nine scenarios were modeled and analyzed as part of the sensitivity analysis as listed in Table 3.

Table 3 - Sensitivity Analysis Scenarios

SCENARIO ID	DESCRIPTION
1	Existing Conditions
2 a	Existing Conditions with no Downstream Restrictions
2 b	No Flow from Northwest Branch of Black Brook
2 c	No Flow from Southwest Branch of Black Brook
2 d	No Flow from Southeast Branch of Black Brook
2 fa	Reduce Flow from Southeast Branch by 50\% - Include Areas 1 and 2 only
2 fb	Reduce Flow from Southeast Branch by 50\% - Include Areas 1 and 3 only
2 g	Reduce Flows from Southwest Branch by 50\%
2 h	Reduce Flows from Southwest and Southeast Branch by 50\%

Scenario 1 - Existing Conditions

The existing conditions model is the baseline for comparison to the other scenarios. The terrain was modified to include field measurements of culverts along SR 82, SR44, Wayne Rd, and Mantua Center Rd.

Scenario 2a-Existing Conditions with no Downstream Restrictions

In this scenario, the terrain in the model was modified to remove downstream restrictions east of the Mantua Center Road bridge. The purpose of running this scenario was to find out if flood waters are backing up into the study area. The results showed the flood levels were almost the same as the existing conditions indicating conditions downstream (e.g. stream geometry) of the study area have little to no effect on flooding.

Scenario 2b-No flow from Northwest Branch of Black Brook

For Scenario 2b, all stream flow from the northwest branch of Black Brook was removed. Results showed a 30 to 100 percent reduction of flood depth in northern part of study area and little to no reduction in flood depth in the southern part of study area.

Scenario 2c - No Flow from Southwest Branch of Black Brook

The results for Scenario 2c are similar to Scenario $2 b$ with the greatest reduction in flood depth in the northern portion of the study area.

Scenario 2d - No Flow from Southeast Branch of Black Brook

Results of the Scenario 2d model showed the greatest amount of flood reduction. However, removing all the water from the southeast subbasin isn't likely to be feasible from a cost perspective. Based on these results, the southeast watershed was further subdivided into three subwatersheds for further study. See Scenarios 2 fa and 2 fb .

Scenario 2fa-Reduce Flow from Southeast Branch by 50\% - Include Subwatersheds 1 and 2 only

As demonstrated in Scenario 2d, runoff from the southeast appears to be contributing the most to the flood levels. Scenario 2 fa includes runoff from subwatersheds 1 and 2. Results showed a considerable reduction in flood depths but the reduction wasn't as significant as shown in the results for Scenario 2 fb .

Scenario 2fb - Reduce Flow from Southeast Branch by 50\% - Includes Subwatersheds 1 and 3 only

This Scenario appears to be the ideal balance between volume of water to be controlled versus results. While the results are not as significant as Scenario 2d, the flood depths are reduced considerably in the three storm events modeled. It is recommended that subwatershed 3 be the focus are to implement stormwater controls.

Scenario $2 g$-Reduce Flows from Southwest Branch by 50\%

Scenario 2 g was run as a check to Scenario 2c. Again, results indicated flood reduction in the northern portion of the study area but minimal and even an increase in the southern area.

Scenario $2 h$ - Reduce Flows from Southwest and Southeast Branch by 50\%

Scenario 2 h was also run as a check and to verify general consistency of the modeling efforts. Results indicated that there may be some benefit to flood water reduction by controlling flows in both the southwest and the southeast branches of Black Brook. While the southeast area is ideal, land may be available in the southwest which could be used for flood control.

Figure 7 - Study Area Subwatersheds

1-YRSTORM																	
LOCATION	SCENARIO																
	1	2a		2b		2 c		2d		2fa		2fb		2g		2h	
	Depth	Depth	\% Reduction														
1	0.00	0.00	N/A														
2	0.36	0.36	0\%	0.24	33.3\%	0.26	27.8\%	0.24	33.3\%	0.26	27.8\%	0.24	33.3\%	0.26	27.8\%	0.23	36.1\%
3	1.85	1.85	0\%	1.85	0.0\%	1.65	10.8\%	1.20	35.1\%	1.64	11.4\%	1.24	33.0\%	1.64	11.4\%	0.61	67.0\%
4	0.34	0.34	0\%	0.34	0.0\%	0.25	26.5\%	0.24	29.4\%	0.25	26.5\%	0.24	29.4\%	0.25	26.5\%	0.16	52.9\%
5	0.28	0.29	-4\%	0.28	0.0\%	0.28	0.0\%	0.00	100.0\%	0.29	-3.6\%	0.14	50.0\%	0.29	-3.6\%	0.23	17.9\%
6	0.12	0.13	-8\%	0.13	-8.3\%	0.14	-16.7\%	0.07	41.7\%	0.15	-25.0\%	0.07	41.7\%	0.15	-25.0\%	0.10	16.7\%
5-YR STORM																	
LOCATION	SCENARIO																
	1	2a		2b		2 c		2d		2 fa		2fb		2g		2h	
	Depth	Depth	\% Reduction														
1	0.00	0.00	N/A														
2	0.68	0.68	0\%	0.48	29.4\%	0.59	13.2\%	0.46	32.4\%	0.60	11.8\%	0.54	20.6\%	0.63	7.4\%	0.54	20.6\%
3	2.16	2.18	-1\%	2.18	-0.9\%	2.01	6.9\%	0.92	57.4\%	2.07	4.2\%	1.98	8.3\%	2.10	2.8\%	1.93	10.6\%
4	0.53	0.52	2\%	0.54	-1.9\%	0.48	9.4\%	0.13	75.5\%	0.47	11.3\%	0.40	24.5\%	0.48	9.4\%	0.39	26.4\%
5	0.37	0.39	-5\%	0.39	-5.4\%	0.39	-5.4\%	0.00	100.0\%	0.30	18.9\%	0.19	48.6\%	0.36	2.7\%	0.31	16.2\%
6	0.29	0.30	-3\%	0.30	-3.4\%	0.30	-3.4\%	0.07	75.9\%	0.18	37.9\%	0.10	65.5\%	0.30	-3.4\%	0.19	34.5\%
100-YR STORM																	
LOCATION	SCENARIO																
	1	2a		2b		2 c		2d		2 fa		2fb		2g		2 h	
	Depth	Depth	\% Reduction														
1	0.46	0.46	0\%	0.00	100.0\%	0.00	100.0\%	0.00	100.0\%	0.00	100.0\%	0.00	100.0\%	0.00	100.0\%	0.00	100.0\%
2	2.01	2.01	0\%	0.95	52.7\%	1.66	17.4\%	1.13	43.8\%	1.50	25.4\%	1.23	38.8\%	1.84	8.5\%	1.70	15.4\%
3	2.53	2.56	-1\%	2.56	-1.2\%	2.47	2.4\%	1.73	31.6\%	2.34	7.5\%	2.26	10.7\%	2.53	0.0\%	2.47	2.4\%
4	1.00	1.02	-2\%	1.02	-2.0\%	0.99	1.0\%	0.25	75.0\%	0.70	30.0\%	0.58	42.0\%	0.99	1.0\%	0.94	6.0\%
5	0.66	0.68	-3\%	0.68	-3.0\%	0.70	-6.1\%	0.00	100.0\%	0.46	30.3\%	0.28	57.6\%	0.70	-6.1\%	0.70	-6.1\%
6	0.58	0.58	0\%	0.58	0.0\%	0.59	-1.7\%	0.09	84.5\%	0.38	34.5\%	0.14	75.9\%	0.59	-1.7\%	0.59	-1.7\%

5.0 Alternatives Development and Evaluation

5.1 Alternatives Analysis

5.1.1 Infrastructure Improvements

As shown in the modeling efforts, raising Mantua Center Rd and driveways subject to flooding can increase the level of safety along this corridor. While this alternative improves access, it does little to reduce flooding around homes and other structures. A planning level cost estimate was prepared and assumed raising Mantua Center Road by an average of two feet. The cost estimate (Appendix C) also includes building up driveways and installing new culverts.

Planning-Level Cost Estimate: $\$ 2.6 \mathrm{M}$

5.1.2 Nature Based Solutions

This study included a considerable amount of effort in evaluating the potential for nature-based solutions such as stream restoration, wetland enhancements and restoration and floodplain improvements to control flood water. A summary report detailing the findings of field work conducted as part of the study is provided in Appendix B.

Planning-Level Cost Estimate: $\$ 4.8 \mathrm{M}$

5.1.3 Property Acquisition

Another approach to mitigating flooding at the most impacted homes and properties is to purchase the most flood-prone properties and restore them to natural floodplain storage. There are 49 individual properties within the 100-year flood plain along Mantua Center Road. This number does not include the three parcels owned by the Black Brook Conservancy District. There are various structures on the properties including 23 homes. The homes vary in condition and propensity to flooding. For the purpose of this evaluation, a cost estimate was developed to buy the 49 properties. Acquisition, relocation, and structure demolition costs were included in the estimate (Appendix C).

```
Planning-Level Cost Estimate: $5M
```

Appendix A - Wetland and Stream Assessment

MEMORANDUM

Date: October 11, 2022
To: Loretta Snider PE, Osborn Engineering Joe Ferenczy PE, Osborn Engineering

From: Suzanne Hoehne, Biohabitats, Inc.
RE: Black Brook Flood Study
Subject:Baseline Assessment-DRAFT

This memorandum summarizes the results of the database review and field activities conducted for the Black Brook Flood Study. The ecological survey/field assessment aims to determine if natural-based opportunities exist to solve flooding problems.

Project Location

The study area is located in Portage County, centered around Mantua Center Road within Mantua Township, bounded approximately by Hwy 44 on the east, Black Brook on the north, Frost Road on the west, and Pioneer Road on the South. The study area (Figure 1) contains a mix of forest, wetlands, and residential and commercial land use.

Figure 1. Study area outlined in red

Literature review

Study area information was obtained from known available resources to support field activities. The literature review was performed before field activities commenced to avoid duplication of past efforts. The review involved collecting GIS data and reviewing other agency resources. Information was obtained from:

- Ecoregions of Indiana and Ohio (Woods et al. 1998)
- Web Soil Survey (USDA NRCS, http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm)
- Aerial photography circa. 1952-2019. http://www.historicaerials.com
- Black Brook NPS-IS (Chagrin Valley Watershed Partners 2019)
- Flood Insurance Study of Portage County, OH, (FEMA 2017)

Ecoregion

The study area is situated within two sub-ecoregions, the Summit Interlobate Area (approximately the Mantua Center Road vicinity) and the Low Lime Drift Plain (on either side of the Summit Interlobate Area) (Woods et al. 1998). Both sub-ecoregions are a subset of the Erie/Ontario Drift and Lake Plain ecoregion, which lies between Lake Erie and the Western Allegheny Plateau.

With a rolling landscape comprised of low rounded hills with scattered end moraines and kettles, the Erie/Ontario Drift and Lake Plain ecoregion is comprised of stream networks with lakes and wetlands where the soil is clayey or where streams have been disturbed. Soils in this ecoregion are less fertile than those of other glaciated ecoregions.

Much of the Summit Interlobate Area is different from the other sub-ecoregions within the Low Lime Drift Plain. It's flatter topography leads to more lakes, wetlands, and slow-moving streams. Oak forests
within well-drained areas historically dominate it. Currently, the landuse is a mix of woodlands, quarries, low-density residential, and agriculture.

Within the Low Lime Drift Plain sub -ecoregion, the landscape is composed of low rounded hills with scattered end moraines and kettles with less naturally fertile soils. Current land uses are a mix of urban, industrial, and farming, with the uplands composed of woodlands.

Soils

According to the Portage County Soil Survey (2021), the majority of the site is comprised of Canfield silt loam (CdB), Carlisle Muck (Cg), and Wooster Silt Loam (WuB) (Figure 2). The following is a summary of each soil type found in the project area.

Canfield Silt Loam (CdB) - Southern third of the site

Canfield Silt Loam occurs on 2-6\% slopes, is found in the uplands, and consists of deep, moderately well-drained soils. A typical profile is brown silt loam (0-89"), firm yellowish and dark yellowish brown silt loam (8-22"), and below that, a firm very compact fragipan is found consisting of fine sandy loam and mottled dark yellowish-brown loam. Within wet periods, a perched water table is found within two feet of the surface. The soil is in hydrologic soil group C/D.

Carlisle Muck (Cg) - Northern portion of the site, especially along Mantua Center Road
Carlisle Muck is a very poorly drained organic soil often found in level or depressional areas in bogs or kettles. It is difficult to drain, and natural drainage might not be available. Soils are subject to subsidence and are in hydrologic soil group A/D. They formed out of muck and peat deposits more than 51 inches thick and the upper 17 inches is black friable muck.

Wooster Silt Loam (WuB) - Lower third of the site
Wooster silt loam is found on 2 to 6 percent slopes and is found on uplands or adjacent to drainage ways. The soil is dark grayish brown silt loam ($0-9$ "), yellowish brown and dark yellowish-brown loam ($9-23$ "), and a very firm and brittle dark yellowish-brown loam fragipan (23-43"). The hydrologic soil group is C .

Figure 2. Study Area Soils Map featuring Hydrologic Soil Groups

Database review

Information on the study area was obtained from known available resources to support the various field activities.

Database Review Responses
An endangered species request was initiated with the U.S. Fish and Wildlife Service's Information for Planning and Consultation (IPaC) website to identify rare and endangered species within the project area prematurely. Their review identified rare or endangered species potentially affected by activities in the project area. They include the endangered Indiana Bat (Myotis sodalist), threatened Northern Longeared Bat (Myotis septentrionalis), endangered Mitchell's Satyr Butterfly (Neonympha mitchellii mitchellii), and the threatened Northern Wild Monkshood (Aconitum noveboracense). This location has critical habitat for the Indiana Bat (Myotis sodalist), but it is not defined at this time. Investigations would need to be completed prior to initiating nature-based or engineering solutions to define areas of habitat such as where there is exfoliating bark trees and trees over a certain size. There are no existing or proposed state nature preserves, unique ecological sites, geological features, breeding or non-breeding animal concentrations, state parks, state forests, or wildlife areas within the project area. A formal Rare, Threatened and Endangered Species request should be submitted to the USFWS, Division of Ecological Services upon completion of any design plans to avoid impacting any threatened and endangere species (state or federal).

A Natural Heritage Data Request Form was submitted to the Ohio Department of Natural Resources.. The response was that this type of study needs an Environmental Review. An Environmental Review
request was submitted on September 21, 2022. A response has not been received as of the date of this technical memo but will be included in Appendix A once received.

Wetland Delineation

The NWI map indicated the presence of numerous wetlands within the study area. Wetland types fall into four categories, freshwater ponds, freshwater emergent, freshwater forest/scrub wetland, and lake (Figure 3). These maps show approximate wetland locations. Site investigation will be necessary prior to design to confirm the presence and/or absence of wetlands and, if present, their boundaries.

Figure 3. NWI results for project site.

Field assessment

The field assessment nethods consisted of a remote investigation of aquatic resources, terrestrial resources, wetlands, and endangered species using secondary data, and site visits. The site visits involved examining stream morphology, performing a primary headwater habitat evaluation, identifying vegetation, and identifying opportunities for nature-based solutions to flooding. This fieldwork was performed on March 17-18, 2022, with a follow-up visit on September 13, 2022.

Section Descriptions

The study area was divided into three areas based on the existing stream network. The valley bottom along Mantua Center Road, where the East Tributary and the West Tributary join, was defined as the Mainstem area. The West area is to the southwest and contains the West Tributary. The East area is to the southeast, contains the East Tributary, and stretches just past the Hwy 44 and 82 intersection. Figure 4 shows for the locations of these three areas. Emphasis was placed on the East area, due to the initial modeling efforts by Osborn Engineering indicating that this sub watershed contributes the largest flow
contributing to the inundation of the Mainstem area. The fieldwork is further described in subsequent subsections below.

Figure 4. Sections of the Black Brook Study Area

East Section

The upper watershed of the East Tributary contains the village of Mantua Corners and the most developed area of the entire watershed. Historic aerial photos show that much of the watershed has been ditched to facilitate drainage before 1952. Most flow paths through the landscape have been modified, through ditching, channelization, and impoundment. Starting at the upstream end of the watershed near Hwy 44, the East Tributary runs under Hwy 44 in two culverts- a 22 " RCP and a 24 " CPP. The northern branch has no defined channel and is a long linear wetland mixture of scrub-shrub and emergent wetlands. It is located directly south of the old railroad line location that ran southwest to northeast through Mantua Center. The southern branch is a defined channel that has been channelized and disconnected from its floodplain.

Figure 5. South Branch channelized stream through forest (left) confluence South and North Branch (right)
It flows through various landscapes, including industrial and recently logged mature wet forest. Just before joining the south branch, another channelized tributary enters from the south, draining a portion of the watershed including Mantua Corners. The headwaters of this tributary have been piped and the stormwater from mantua Corners enters into this stream, which is channelized into a straight ditch parallel to businesses. The confluence of the south and north branches is located in an emergent/scrubshrub wetland approximately 2200 linear feet southeast of the north branch crossing Hwy 44 . The East Tributary continues to flow northeast parallel to the old railroad line. A driveway impounds the stream/wetland complex with three -36 " CPP to pass base flow.

Figure 6. Ponded area upstream of driveway embankment (left) and blown out culvert at old railroad line crossing (right)

On both sides of this crossing, there is ponded water. Approximately 900 feet downstream, the tributary takes a northern turn through a break in the railroad embankment. The culvert has blown out at this location, draining an upstream former pond.

The pond has become a mostly emergent wetland dominated by phragmites and reed canary grass with some scrub-shrub wetland mix around the edges. Downstream of the former railroad embankment, the stream enters a forest. The stream has been channelized with the spoils left in a linear mound along the left or right side. Remanent sinuous channels appear through the forest, highlighting historic flow paths.

Figure 7. Entrenched channelized stream in East Section upstream of Wayne Road
A tributary enters from the south approximately 300 feet upstream of Wayne Road. This tributary's flow path is similar to the East Tributary, with an old pond upstream of the railroad crossing that has developed as an emergent wetland dominated by invasive species.

Downstream of Wayne Road, the East Tributary has been channelized and the south side is residential, whereas the north side is a scrub-shrub or forested wetland patches interspersed with residential properties. At Mantua Center Road the East Tributary joins with the West Tributary and becomes the Mainstem. A ditch enters halfway between Wayne and Mantua Center Road from the north, draining the northern properties to the East Tributary.

The above described drainage modifications, likely speed up runoff from the area and may contribute to increased flooding peaks along the Mainstem area.

West Section

The upper watershed of the West Tributary is primarily agricultural in land use. The flow path starts in a large wetland south of HWY 82 and west of Mantua Center and drains northeast toward Mantua Center. Near Hwy 82, the stream has been channelized and impounded on both sides of the highway. Downstream of the impoundment on the north side of the West Tributary enters a large scrubshrub/emergent wetland complex, surrounded by forested wetlands.

Figure 8. Forested wetland (left) and scrub shrub wetland (right) in West Section
Portions of the north side of the wetland have been ditched, and the West Tributary exits the wetland through ditches both running north and west toward Mantua Center Road and the confluence with the East Tributary. The wetlands and low-lying areas of the site have a very high-water table, indicated by the natural hummocking of the soil and the evidence of frequent ponding on the surface.

Mainstem Section

At the upstream end of the mainstem section, the East Tributary and the West Tributary join by a culvert under Mantua Center Road. The flow travels north parallel to Mantua Center Road in two large ditches adjacent to the road, which connect to Black Brook. Due to prior land use (sod farm), ditches have been excavated perpendicular to the ditches throughout the site, and an additional parallel ditch to the road can be found on the west side of the valley next to the quarry.

Figure 9. Mainstem and side ditch (left) along Mantua Center Road and far west ditch (right)

Within the far west ditch, there is evidence of beaver activity. Much of the valley is fallow and portions of it have been allowed to revert to scrub/shrub wetlands with patches of forest and emergent wetlands. Other portions of the valley are maintained as periodically mown meadows, with a few properties in the far north being used for agriculture. Some of the properties have tile drains that outlet into the Mainstem drainage ditch. Even with all the ditching and the tile drains present, the section has a very high-water table in the spring, with water evident on the surface or within the upper foot of the soil. Within the wetland areas, hummocking is present.

Habitat Types

Emergent wetlands - Emergent wetlands are prevalent throughout the site, concentrated primarily in the East section of the study area. Vegetation found within these areas includes reed canary grass (Phalaris arundinacea), Common Reed (Phragmites australis), rice cut grass (Leersia oryzoides), cattails (Typha spp), a variety of sedges (Carex spp), white turtlehead (Chelone glabra), and jewelweed (Impatiens capensis). Depending on the location, water depths can vary from 0-12" deep.

Scrub Shrub Wetlands - These wetlands are the most prevalent type of wetland found within the Mainstem and West areas. Often the soil is hummocked, indicating a high-water table and frequent ponding. The dominant shrub types include a variety of dogwoods (Cornus spp) (red osier, rough) and willow (Salix spp.) with an understory of herbaceous species including Joe-Pye weed (Eutrochium purpureum) and jewelweed.

Forest - The forests historically were very wet along the flow paths and are dominated by red maple (Acer Rubrum), elm (Ulmus americana), and green ash (Fraxinus pennsylvanica) with an understory of sensitive fern (Onoclea sensibilis), poison ivy (Toxicodendron radicans), multiflora rose (Rosa multiflora) and a variety of sedges (Carex spp). Further up in the landscape, the upper story of the forest changes to tulip poplar (Liridendron tulipfera), sassafras (Sassafras albidum), red oak (Acer rubrum), and American beech (Fagus grandifolia) with an understory of spicebush (Lindera benzoin), barberry (Berberis vulgaris) and hog-peanut (Amphicarpaea bracteata).

Primary Headwater Habitat Evaluation

In-stream habitat within the East section was calculated by using the Field Evaluation Manual for Ohio's Primary Headwater Habitat Streams (OEPA, 2009). This section was divided into five reaches with the HHEI scores ranging from 54 to 66 out of 100 (Appendix B). Four of the reaches would classify the stream as Class III-PHW, which "prevailing flow and temperature conditions of these streams are influenced by groundwater. They exhibit moderately diverse to highly diverse communities of cold water adapted native fauna present year-round..." (OEPA, 2020). The lowest scoring reach which is located just downstream of Hwy 44 near Mantua Corners, classifies as a Class II PHW, which area "normally intermittent, but some may have perennial flow derived from shallow groundwater in which case the ambient stream temperature remains relatively warm during the summer and fluctuates to a greater degree seasonally" (OEPA, 2020) As previously mentioned, the stream suffers from bank erosion and channelization. Most of the riffles are composed of gravel and are frequently mobilized during large storm events. Instream aquatic habitat is lacking with a limited variation in flow regimes (slow-shallow, fast-shallow, fast-deep, slow-deep) with slow shallow being the dominant variety. Bank erosion is likely to increase and the PHW score is likely to decrease as the channel degrades even further.

Natural-based Solutions For Flooding

After evaluation of the study area, the following intervention opportunities could be used to slow and store water on the landscape to reduce or slow flood peaks and provide ecological uplift within the watershed. Historically, the mainstem section of the study area was frequently flooded, as indicated by the type of soils present and the site's natural topography. Flooding will continue to occur, however, these methods may have some effect on the smaller storm events, reducing the frequency of inundation, and minimizing the impact on existing wetlands and forests. Appendix C shows locations of these opportunities.

Floodplain Restoration - Floodplain restoration involves lowering the existing grade down to an elevation where more frequent storm events can access a floodplain, slowing and storing water. The newly graded floodplain would be graded to store smaller storm events on the landscape in depressional areas, allowing it to soak into the ground or be taken up by wetland vegetation. This type of grading is called hummock and hollow grading and mimics old-growth forest landscapes, providing a complex diversity of niche habitats for a variety of species. The floodplain would be planted with a native plant palette, most likely either scrub/shrub or forest in composition.

Wetland Enhancement - Wetland enhancement involves minor interventions into existing wetland complexes, to restore a more natural vegetation palette by removal of invasive species such as phragmites and reed canary grass. Most often these species when found in a wetland dominate the landscape, choking out the natives. To remove these species, excavation can be a method, which would create more storage within the wetland by removing the dense plant and root mass of the invasive species and replacing it with a more open native species palette. Additional areas adjacent to the wetlands could also be excavated and restored as wetlands to provide more storage.

Floodplain Reconnection - Floodplain reconnection involves restoring the stream channel in place, by raising the invert of the channel through the installation of riffles and/or large wood jams. By reconnecting the stream channel to the existing floodplain, the water will spread out more frequently and slow down, changing the timing of when it reaches the downstream sections which can affect the peak discharge size. Through the installation of instream structures, ecological uplift will be realized by improving water quality, increasing instream habitat complexity, rehydrating the floodplain improving, and increasing the acreage of wetlands.

Stream Restoration - Stream restoration is proposed in areas where the stream has been channelized and there is limited floodplain access. These areas are good candidates for a restoration of an integrated stream and wetland complex - which would include restoring a well-connected baseflow channel system where flows can frequently access a floodplain. This type of restoration would increase storage capacity, improve water quality, and create a variety of habitats including wetlands and forests.

Stormwater bmps - Many of the businesses within Mantua Corners drain directly to a stormwater system which then discharges water to the stream. By reducing the flashiness of the runoff directly from developed areas, the peak discharge further downstream can be reduced, eliminating the size or frequency of flooding during rain events. Retrofitting the drainage network with stormwater bmps such as wet swales, bio-retention facilities, stormwater ponds, etc can provide storage, slow the water, and allow it to infiltrate into the soil.

Wetland Restoration - In former wetlands areas (drained or degraded), wetland restoration and enhancement is proposed. The existing grade could be excavated six to 18 inches to provide more storage within the ditch network of the mainstem section of the site and planted with appropriate
wetland species for the type of wetland proposed. The depth of excavation would be limited due to the high-water table.

In aggregate, these nature-based interventions have the potential to slow and store water and reduce flood peaks and frequency of inundation for lower runoff events. However, further modeling will be required to assess cost-effectiveness.

References

Chagrin River Watershed Partners. 2020. Nine-Element Nonpoint Source Implementation Strategic Plan. Black Brook (HUC 12) 041100020105. Approved January 3, 2020.

FEMA, 2009. Flood Insurance Study for Portage County, Ohio. Map No. 39133C020055D. August 18, 2009

FEMA, 2020. Building Community Resilience with Nature-Based Solutions: A Guide for Local Communities.

Ohio EPA. 2020. Field Methods for Evaluating Primary Headwater Streams in Ohio. Version 4.1. Ohio EPA Division of Surface Water, Columbus, Ohio. 130 pp.

USDA NRCS. Web Soil Survey: http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm
U.S. Fish and Wildlife Service, IPaC, Information for Planning and Consultation:
https://ecos.fws.gov/ipac/
U.S. Fish and Wildlife Service, National Wetlands Inventory:
https://www.fws.gov/wetlands/data/mapper.html
Woods, A.J., J..M. Omernik, C.S. Brockman, T.D.Gerber, W.D.Hosteter, and S.H. Azevedo. (1998). Ecoregions of Indiana and Ohio

ODNR ENVIRONMENTAL REVIEW REQUEST

APPENDIX A

September 21, 2022

Ohio Department of Natural Resources
Division of Wildlife
Ohio Natural Heritage Program
2045 Morse Rd., Bldg. G-3
Columbus, OH 43229-6693
environmentalreviewrequest@dnr.state.oh.us

To whom it may concern:

We have been contracted by Mantua Township to complete an alternatives study of a tributary of Black Brook to reduce flooding along Mantua Center Road through nature based solutions. The types of solutions being proposed include the following: Property buyouts, wetland and stream restoration, pond restoration, stormwater best management practices within developed areas, etc. As a part of this project, we want to make sure we avoid any sensitive habitat for species of concern within the study area. A natural heritage data request form was submitted, however a response was received that this type of work does not meet the requirements for that type of review and that an Environmental Review was needed. The project is bound by quarries on the west, roughly Wayne Road/Hwy 44 to the east, Black Brook to the north and south of Hwy 82 and is located in Portage County (41.1850,-81.1442).

USGS topographic maps of the Aurora and Mantua Quadrangles with the study area are enclosed, along with a aerial indicating the study area(see Figure 1) and the Natural Heritage Data Request form. I am writing to request data on rare, threatened, and endangered species sited within the project area.

Thank you for your assistance with our project. If you have additional questions regarding our project please contact us at the address or telephone number provided.

Sincerely,

Biohabitats, Inc.

Suzanne Hoenne

[^0]

(n)

mantua, OH

Figure 1. Approximate Study Area outlined in Red.

NATURAL HERITAGE DATA REQUEST FORM

ODNR Division of Wildlife Ohio Natural Heritage Program

2045 Morse Rd., Bldg. G-3
Columbus, OH 43229-6693
Email: NHDRequest@dnr.state.oh.us
Phone: 614-265-6818

WHAT KIND OF REVIEW DO I NEED?

ODNR provides two kinds of project reviews, an Ohio Natural Heritage Database (ONHD) data request and an Environmental Review (ER). ONHD data requests will be processed for projects that meet one of the following four criteria:

- consultant prepared reports for ODOT projects
- completion of OEPA's Ohio Rapid Assessment Method for wetlands
- academic research projects
- other non-development or non-construction projects

As applicable to your project, the ONHD will provide records for state and federally listed plants and animals, high quality plant communities, geologic features, breeding animal concentrations, scenic rivers, protected natural areas (managed areas), and significant unprotected natural areas (conservation sites). A one mile radius around the project site will automatically be searched. Because the ONHD contains sensitive information, it is our policy to provide only the data needed to complete your specific project.

If your project does not meet one of these criteria, you will need to submit it for an ER. An ER includes comments on potential impacts to the species and their habitats, and therefore constitutes coordination with ODNR under NEPA, the Fish \& Wildlife Coordination Act, the Federal Water Pollution Control Act, and other laws. If your project requires ODNR coordination, please go to http://realestate.ohiodnr.gov/environmen-tal-review for additional information including appropriate contacts. An ONHD search is included as part of the environmental review process.

INSTRUCTIONS:

Please complete all the information on both sides of this form, sign (required) and email it to NHDRequest@ dnr.state.oh.us. Please provide a description of the work to be performed at the project site, and a map detailing your project site boundaries. If you request a GIS response, please also submit a shapefile of your project site (unbuffered). Data requests will be completed within approximately 30 days. There is currently no charge to process requests.

Date: 8/25/2022 Company name: Biohabitats, Inc.
Name of person response letter should be addressed to:
Mr. \square Ms. $\square \quad$ Suzanne Hoehne
Address: 120 Webster St, Suite 326
City/State/Zip: Louisville, KY 40204
Phone: 502-650-8880
E-mail address:
shoehne@biohabitats.com

Project Name:
Blackbrook Flood Study
\qquad
Project City or Township: Mantua Township

Project site is located on the following USGS 7.5 minute topographic quad(s):
Mantua, OH

Project latitude and longitude: $\quad 411850 \mathrm{~N} 811442 \mathrm{~W}$

Description of work to be performed at the project site:
A study to determine nature based solutions to flooding within the valley

How do you want your data reported? Both formats provide the same data. The manual search is most appropriate for small scale projects or for those without GIS capabilities. With this option we will send you a letter with a list of records and a map showing their location. If you request a GIS shapefile, we will send you a letter and shapefile of data layers. You will then need to make your own map and list of data for your report. You must have GIS capabilities. If you do not make a selection or if you choose both options, a manual search will be performed (Please choose only one option).

> Printed list and map (manual search) OR X GIS shapefile (computer search)

The standard data we search includes state and federally listed plants and animals, high quality plant communities, geologic features, breeding animal concentrations, scenic rivers, managed areas, and conservation sites, including a one mile radius around your project area. List any information in addition to this that you require:

How will the information be used?
Information will be used to inform the study and identify potential locations for sites to install nature based solutions to help reduce downstream flooding

The chief of the Division of Wildlife has determined that the release of the ONHD data you have requested could be detrimental to the conservation of a species or unique natural feature. Pursuant to section 1531.04 of the Ohio Revised Code, this information is not subject to section 149.43 of the Revised Code. By signing below, you certify that the data provided will not be disclosed, published, or distributed beyond the scope of your project.

Signature \qquad Date: $\quad 8 / 25 / 2022$

THIS PAGE INTENTIONALLY LEFT BLANK

HHEI FORMS

 APPENDIX BSTE NQMELOCATON SE Branch Black Brook 1 SITE NUMBER \qquad RIVER BASIN $0 / 110 / 1(1)$ (l ivs RIVER CODE \qquad 0.2 LENGTH OF STREAM REACH (f) \qquad Lat 41.313023 LONG 41.222448 RIVER MILE \qquad dATE $9 / 13 / 22$ scorer SH, fl, KG cOMMENTS
NOTE: Complete All Items On This Form - Refer to "Headwater Habitat Evaluation Index Field Manual" for Instructions STREAM CHANNEL MODIFICATIONS: \square NONE/ NATURAL CHANNEL \square reCOVERED \square RECOVERING \square RECENT OR NO RECOVERY

1. SUBSTRATE (Estimate percent of every type present). Check ONLY wo predominant substrate TYPE boxes. (Max of 32). Add total number of significant substrate types found (Max of 8). Final metric score is sum of boxes A \& B

PERCENT
BLDR SLABS [16 pts]
BOULDER $(>256 \mathrm{~mm})[16 \mathrm{pts}]$
BEDROCK $[16 \mathrm{pts}]$
COBBLE $(65-256 \mathrm{~mm})[12 \mathrm{pts}]$
GRAVEL $(2-64 \mathrm{~mm})[9 \mathrm{pts}]$
SAND $(<2 \mathrm{~mm})[6 \mathrm{pts}]$

Total of Percentages of Bid Slabs, Boulder, Cobble, Bedrock 0% (A) SCORE OF TWO MOST PREDOMINATE SUBSTRATE TYPES
SILT [3 pt t]
LEAF PACKWOODY DEBRIS [3 pts]
FINE DETRITUS [3 pts]
CLAY or HARDPAN [0 pt]
MUCK [0 pts]
ARTICICIAL [3 pts] TOTAL NUMBER OF SUBSTRATE TYPES:

HEL Metric Points Substrate Max $=40$

2. Maximum Pool Depth (Measure the maximum pool depth within the 61 motor (200 feet) evaluation reach at the
\square
\square
\square time of evaluation. Avoid
>30 centimeters [20 pts]
$>22.5-30 \mathrm{~cm}[30$ pts]
$>22.5-30 \mathrm{~cm}[30 \mathrm{pts}]$
$>10-22.5 \mathrm{~cm}[25 \mathrm{pts}]$
COMMENTS \qquad MAXIMUM POOL DEPTH (centimeters):
BANK FULL WIDTH (Measured as the average of 3-4 measurements) (Check ONLY one box):
Q $>1.0 \mathrm{~m}=1.5 \mathrm{~m}\left(>3^{\prime} 3^{\circ}-4^{\prime} 8^{\circ}\right)[15 \mathrm{pts}]$
>4.0 meters $\left(>13^{\prime}\right)$ [30 pts]
$>3.0 \mathrm{~m}-4.0 \mathrm{~m}\left(>9^{\prime} 7^{\circ}-13^{\prime}\right)[25$ pts]
$\square \leq 1.0 \mathrm{~m}\left(\leq 3^{\prime} 3^{*}\right)[5 \mathrm{pts}]$
$>1.5 \mathrm{~m}-3.0 \mathrm{~m}\left(>4^{\prime} 8^{*}-9^{\prime} 7^{7}\right)[20 \mathrm{pts}]$
COMMENTS \qquad AVERAGE BANKFULL WIDTH (meters)
This Information must also be completed
RIPARIAN ZONE AND FLOODPLAN QUALITY * NOTE: River Left (L) and Right (R) as looking downstream*
RIPARIAN WIDTH ${ }^{*} \cdots$ FLOODPLAIN QUALITY (Most Predominant per Bank) *

COMMENTS
FLOW REGIME (At Time of Evaluation) (Check ONLY one box):

Stream Flowing
Subsurface flow with isolated pools (interstitial)

Moist Channel, isolated pools, no flow (intermittent)

COMMENTS \qquad
Dry channel, no water (ephemeral)

SINUOSITY (Number of bends per $61 \mathrm{~m}(200 \mathrm{ft})$ of channel) (Check ONLY one box):

1.0
$\square \begin{aligned} & 2.0 \\ & 2.5\end{aligned}$
3.0
>3

STREAM GRADIENT ESTIMATE
Flat (0.5 Nos a)
Flat to Moderate
\square Moderate (2*100~)
\square Moderate to Severe
\square Severe (to Nice f)

QHEI PERFORMED? Yes \square No QHEIScore

\qquad (If Yes, Attach Completed QHEI form)

DOWNSTREAM DESIGNATED USE(S)WWH Name: \qquad colk
CWH Name: \qquad
Distance from Evaluated Stream \qquad Distance from Evaluated Stream \qquad
EWH Name: \qquad Distance from Evaluated Stream \qquad
MAPPING: ATTACH COPIES OF MAPS, INCLUDING THE ENIIRE WATERSHED AREA CLEARLY MARK THE STTE LOCATON.
USGS Quadrangle Name: \qquad NRCS Soll Map Paga: \qquad NRCS Soil Map Stream Order. \qquad countr: $P(Y-1 \log \ell$ тownshapcity... Manty a. Tgunship miscellaneous

Base Flow Conditions? (Y/N): \qquad 1. Photo-documentation Notes: \qquad Date of last precipitation: \qquad Quantity: \qquad

Elevated Turbidity?(YN): N Canopy (\% open): Were samples collected for water chemistry? (Y/N):

Lab Sample \# or ID (attach results): \qquad 4

Field Measures:Temp (${ }^{\circ} \mathrm{C}$) \qquad Dissolved Oxygen (mgl) \qquad pH (S.U.) \qquad Conductivity (umhos/cm) \qquad
Is the sampling reach representative of the stream $(Y N)$ If not, explain: \qquad

Additional comments/description of pollution impacts: \qquad

BIOLOGICAL OBSERVATIONS

(Record all observations below)
Fish Observed? (YNN) Y Species observed (f known): \qquad
Frogs or Tadpoles Observed? (Y/N) \qquad Species observed (ff known): \qquad
Salamanders Observed? (Y/N) \qquad Species observed (f known): \qquad
Aquatic Macroinvertebrates Observed? (Y/N) \qquad Species observed (if known): \qquad Comments Regarding Biology: \qquad

Ste namerocation SITE NUMBER \qquad RIVER BASIN 01110 UUZOIIS RIVER CODE \qquad DRAINAGE AREA (mil) $\frac{0.22}{2.2}$ DATE 9113122 SCORER SH, $\mathrm{m}, \mathrm{K}_{1}$ cOMMENTS
\qquad RIVER MILE \qquad
NOTE: Complete All Items On This Form - Refer to "Headwater Habitat Evaluation Index Field Manual" for Instructions STREAM CHANNEL MODIFICATIONS: \square NONE/ MATURAL ChaNnel \square recovered \triangle recovering \square recent or no recovery

1. SUBSTRATE (Estimate percent of every type present). Check OW U Y gnp predominant substrate TYPE boxes. TYPE (Max of 32). Add total number of significant substrate types found (Max of 8). Final metric score is sum of boxes A \& B

BLDR SLABS [16 pts]
BOULDER ($>256 \mathrm{~mm}$ [16 pts] BEDROCK [16 pts] COBBLE ($65-256 \mathrm{~mm}$) [12 pts] GRAVEL ($2-64 \mathrm{~mm}$) [9 pts] SAND ($<2 \mathrm{~mm}$) [6 pts]

Total of Percentages of
Bids Slabs, Boulder, Cobble, Bedrock

SILT [3 pt] LEAF PACKWOODY DEBRIS [3 pts] FINE DETRITUS [3 pts] CLAY or HARDPAN [0 pt] MUCK [0 pts] ARTIFICIAL [3 pts]
 TOTAL NUMBER OF SUBSTRATE TYPES:
 SCORE OF TWO MOST PREDOMINATE SUBSTRATE TYPES:

$$
2
$$

2 Maximum Pool Depth (Measure the maximum pool depth within the 61 meter (200 feet) evaluation reach at the time of evaluation. Avoid plunge pools from road culverts or storm water pipes) (Check ONLY one box):
 >30 centimeters [20 pts]
$>22.5-30 \mathrm{~cm}[30 \mathrm{pts}]$ $>10.22 .5 \mathrm{~cm}$ [25 pts]

COMMENTS

\qquad $5 \mathrm{~cm}-10 \mathrm{~cm}$ [15 pts] $<5 \mathrm{~cm}$ [Spts] NO WATER OR MOIST CHANNEL [Opts] MAXIMUM POOL DEPTH (centimeters):

3. BANK FULL WIDTH (Measured as the average of $\mathbf{3 - 4}$ measurements) (Check ONLY one box):
>4.0 meters (> $\mathbf{1 3}^{13}$) [30 pts]
$>3.0 \mathrm{~m}-4.0 \mathrm{~m}\left(>9^{\prime} 7^{-13}\right.$) [25 pts]
$\square \rightarrow 1.0 \mathrm{~m}-1.5 \mathrm{~m}\left(>3^{\prime} 3^{*}-4^{\prime} 8^{\circ}\right)[15 \mathrm{pts}]$
$>1.5 \mathrm{~m}-3.0 \mathrm{~m}\left(>4^{\prime} 8^{\circ}-9^{\prime} 7^{\prime}\right)$ [20 pts]
COMMENTS \qquad AVERAGE BANKFULL WIDTH (meters)

QHEI PERFORMED? \square Yes \square No QHEI Scoro

\qquad (If Yes, Attach Completed QHEI form)

DOWNSTREAM DESIGNATED USE(S)
\square WWH Name:
CWH Name: \qquad Distance from Evaluated Stream \qquad Distance from Evaluated Stream \qquad
MAPPING: ATTACH COPIES OF MAPS, INCLUDWG THE ENTIRE WATERSHED AREA CLEARLY MARK THE SITE LOCATION.

Comments Regarding Biology:

DRAWING AND NARRATIVE DESCRIPTION OF STREAM REACH (This must be completed)

SITE NaMELOCATON CELN tob
 LENGTH OF STREAM REACH (n) 261, LAT 41.311917 LONG $\times 1.24 \% 42$ RIVER MILE DATE $1 / 3 / 22$ SCORER SH, F IN, Y / j COMMENTS \qquad NOTE: Complete All Items On This Form - Refer to "Headwater Habitat Evaluation Index Field Manual" for Instructions STREAM CHANNEL MODIFICATIONS: \square NONE I MATURAL ChANNEL \square RECOVERED \square RECOVERING \square RECENT OR NO RECOVERY

1. SUBSTRATE (Estimate percent of every type present). Check ONLY pug predominant substrate TYPE boxes (Max of 32). Add total number of significant substrate types found (Max of 8). Final metric score is sum of boxes A \& B
TYPE
$\square \square$
$\square \square$
$\square \square$
$\square \square$
$\square \square$

PERCENT

FINE DETRITUS [3 pts]
CLAY or HARDPAN [O pt]
MUCK [0 pts]
ARTIFICIAL [3 pts]
(A)

TOTAL NUMBER OF SUBSTRATE TYPES:
 SCORE OF TWO MOST PREDOMINATE SUBSTRATE TYPES:
2. Maximum Pool Depth (Measure the maximum pool depth within the 61 meter (200 feet) evaluation reach at the time of evaluation. Avoid plunge pools from road culverts or storm water pipes) (Check ONLY one box):
\square
\square
>30 centimeters [20 pts]
$>22.5-30 \mathrm{~cm}$ [30 pts]
$>10-22.5 \mathrm{~cm}$ [25 pts]
BLDR SLABS [16 pts]
BOULDER ($>256 \mathrm{~mm}$)[16 pts]
BEDROCK [16 pts]
COBBLE ($65-256 \mathrm{~mm}$)[12 pts]
GRAVEL ($2-64 \mathrm{~mm}$ [9 pts]
SAND ($<2 \mathrm{~mm}$)[5 pts$]$
Total of Percentages of
Slabs, Boulder, Cobble, Bedrock
TWO MOST PREDOMINATE SUBSTRATE TYPES:
$\square 5 \mathrm{~cm}-10 \mathrm{~cm}$ [15 pts]
$<5 \mathrm{~cm}$ [5pts]
NO WATER OR MOIST CHANNEL [Opts] MAXIMUM POOL DEPTH (centimeters):

COMMENTS \qquad

HEL

Metric Points

Substrate Max $=40$

$A+B$
(Check ONLY one box):
Bankfull
3.

BANK FULL WIDTH (Measured as the average of $\mathbf{3 - 4}$ measurements)
$\square>1.0 \mathrm{~m}-1.5 \mathrm{~m}\left(>3^{\prime} 3^{*}-4^{4} 8^{\circ}\right)[15 \mathrm{pts}]$
$\leq 1.0 \mathrm{~m}\left(\leq 3^{3} 3^{2}\right)[5 \mathrm{pts}]$
>4.0 meters ($\gg 13^{\prime}$) [30 pts]
$>3.0 \mathrm{~m}-4.0 \mathrm{~m}\left(>8^{\circ} 0^{\circ}-13\right)[2 \mathrm{~T})$.
$>1.5 \mathrm{~m}-3.0 \mathrm{~m}\left(>4^{\prime} 8^{\circ}-9^{\prime} 7^{\circ}\right)$ [20 pts]
COMMENTS \qquad AVERAGE BANKFULL WIDTH (meters)

This information must also be completed
RIPARIAN ZONE AND FLOODPLAN QUALITY * NOTE: River Left (L) and Right (R) as looking downstream *

RIPARIAN WIDTH
ELOODPLAIN QUALITY (Most Predominant per Bank)

\qquad

COMMENTS
(Check ONLY one box):
FLOW REGIME (At Time of Evaluation) (Check ONLY one box):

Stream Flowing
Subsurface flow with isolated pools (interstitial) \square Moist Channel, isolated pools, no flow (intermittent) Dry channel, no water (ephemeral)
COMMENTS \qquad

SINUOSITY (Number of bends per 61 m (200 ft) of channel) (Check ONLY one box):
$\begin{array}{lll}\text { None } \\ 0.5 & \square \\ 1.5\end{array}$
1.5
$\square \quad 2.0$
2.5
\square
3.0
>3

STREAM GRADIENT ESTIMATEFlat nos mice ma lat to Moderate
\square Moderate (2N1002)
Moderato to Severe
\square Severe (10 N100m)

QHEI PERFORMED？Yes \square No QHEIScore

 （II Yes，Attach Completed QHEI form）DOWNSTREAM DESIGNATED USES）

WWH Name：
CWH Name：
EWH Name： \qquad Distance from Evaluated Stream Distance from Evaluated Stream
\qquad
\qquad Distance from Evaluated Stream \qquad
MAPPING：ATTACH COPIES OF MAPS，INCLUDNG THE ENTIRE WATERSHED AREA．CLEARLY MARK THE SITE LOCATION．
USGS Quadrangle Name： \qquad NRCS Soil Map Page： \qquad NRCS Soil Map Stream Order： \qquad М 」．＂イニい）：
County：
 Township／City：
 Monte $(4-7 \ln \ln) \sqrt{\operatorname{lin}}$

Base Flow Conditions？（Y／N）： \qquad Date of last precipitation： \qquad Quantity． \qquad
Photo－documentation Notes：
Elevated Turbidity？$(\mathrm{Y} / \mathrm{N})$ ： \qquad Canopy（\％open）： \qquad
Were samples collected for water chemistry？（Y／N）：＿＿＿Lab Sample \＃or ID（attach results）： \qquad ． Field Measures：Temp（ ${ }^{\circ} \mathrm{C}$ ） \qquad Dissolved Oxygen（mg／） \qquad pH （S．U．） \qquad Conductivity（umhos／em） \qquad
Is the sampling reach representative of the stream (Y / N) If not，explain： \qquad
Additional comments／description of pollution impacts：＿I，？

| | |
| :--- | :--- | :--- | :--- |

Fish Observed？（YNN） \qquad Species observed（f）known） \qquad
Frogs or Tadpoles Observed？（Y／N） \qquad Species observed（f known）： \qquad
Salamanders Observed？（Y／N）＿＿＿Species observed（if known）：
Aquatic Macroinvertebrates Observed？（YN） \qquad Species observed（1 known）： \qquad ：31： $2 M 2120$
Comments Regarding Biology： \qquad

DRAWING AND
Include important ian
$109)(1 \mathrm{~m}$

STREAM CHANNEL MODIFICATIONS: \square NONE I MATURAL CHANEL \square RECOVERED \square RECOVERNG \square RECENT ORNORECOVERY

1. SUBSTRATE (Estimate percent of every type present). Check OMLY Mo predominant sutstrate TYPE boxes (Max of 32). Add total number of significart substrate types found (Max of 8). Final metric score is sum of boxes A \& B

SILT [3 pt]
LEAF PACKWOCDY DEBRIS[3 pts]
FINE DETRITUS [3 pts]
CLAY or MARDPAN[0 pt]
MUCK [0 pts]
ARTIFICIAL[3 pts]

Total of Percentages of Bldr Slabs, Boulder, Cobble, Bedrock \qquad (A)
 TOTAL NUMBER OF SUBSTRATE TYPES: SCORE OF TWO MOST PREDOMINATE SUBSTRATE TYPES:

RIVER COOE \qquad DRANAGE AREA $\left(\mathrm{mH}^{7}\right)$ \qquad
\qquad Instructions

BLDR SLABS [16 pts] BOULDER ($>256 \mathrm{~mm}$)[16 pts] BEDROCK [16 pts] COBBLE ($65-256 \mathrm{~mm}$)[12 pts] GRAVEL ($2-64 \mathrm{~mm}$) [9 pts] SAND (<2 mm) [6 pts]
(B)

2. Maximum Pool Depth (Measure the maximum pool depth within the 61 meter (200 feet) evaluation reach at the time of evaluation. Avoid plunge pools from road culverts or storm water pipes) (Check ONLY one box):

>30 centimeters [20 pts]
$5 \mathrm{~cm}-10 \mathrm{~cm}$ [15 pts]
$>22.5-30 \mathrm{~cm}$ [30 pts]
$<5 \mathrm{~cm}$ [Spts]
$>10-22.5 \mathrm{~cm}[25 \mathrm{pts}]$
NO WATER OR MOIST CHANNEL [Opts]

Pool Depth Max $=30$

COMMENTS \qquad MAXIMUM POOL DEPTH (centimeters):

BANK FULL WIDTH (Measured as the average of $\mathbf{3 - 4}$ measurements) (Check ONLY one box):
>4.0 meters ($>13^{\prime}$) [30 pts]
$>3.0 \mathrm{~m}-4.0 \mathrm{~m}\left(>9 \mathrm{~g}^{\prime} \mathrm{T}^{-13}\right.$) [25 pts]
$\square>1.0 \mathrm{~m}-1.5 \mathrm{~m}\left(>3^{\prime} 3^{*}-4^{\prime} 8^{*}\right)[15 \mathrm{pts}]$
$>1.5 \mathrm{~m}-3.0 \mathrm{~m}\left(>4^{-8} 8^{\circ}-9^{\prime} 7^{\prime}\right)$ [20 pts]
COMMENTS
AVERAGE BANKFULL WIDTH (meters)
This Information muss also be completed
RIPARIAN ZONE AND FLOODPLAN QUALTY * NOTE: River Left (L) and Right (R) as looking downstream *

R Per Bankiot

(Per Bank) L. R

ElOOOPLAIN QUALITY (Most Predominant per Bank)

Conservation Tllage
Urban or Industrial Open Pasture, Row Crop Mining or Construction

COMMENTS \qquad FLOW REGIME (At Time of Evaluation) (Check OWLY one box):

Stream Flowing
Subsurface flow with isclated pools (intersitial)

- Moist Channel, isolated pools, no fow (intermittent)

Dry channel, no water (ephemeral)
COMMENTS
SINUOSITY (Number of bends per $61 \mathrm{~m}(200 \mathrm{f})$ of channel) (Check ONLY one box):

STREAM GRADIENT ESTIMATE
X Flat 10.5 Nico m
\square Flat to Moderato
\square Moderate anvoon)
\square Moderato to Severe
] Severe ctownen

QHEI PERFORMED? \square Yes \square No QHEI Score

(If Yes, Attach Completed QHEI form)

Distance from Evaluated Stream \qquad Distance from Evaluated Stream \qquad Distance from Evaluated Stream \qquadEWH Name: \qquad
ocaton.

NRCS Soil Map Page: \qquad NRCS Soil Map Stream Order: Township/City:

Base Flow Conditions? (YN): \qquad Date of last procipitasion: \qquad Quantity: \qquad
Photo-documentation Notes:

Were samples collected for water chemistry? $(\mathrm{Y} / \mathrm{N}): N$ Lab Sample \# or ID (attach results): \qquad Field Measures: Temp (${ }^{\circ} \mathrm{C}$) \qquad Dissolved Oxygen (mgr) \qquad Conductivity (umhos/cm) \qquad Is the sampling reach representative of the stream (YN) If not, explain: \qquad I.
Additional comments/description of pollution impacts: \qquad
 Comments Regarding Biology.

DRAWING AND NARRATIVE DESCRIPTION OF STREAM REACH (This must be completed)

\qquad
 \qquad drainage area (mir) \qquad
 date \qquad SCORER \qquad r, K_{1} comments \qquad
NOTE: Complete All Items On This Form - Refer to "Headwater Habitat Evaluation Index Field Manual" for Instructions
Stream channel modifications: \square none/natural channel \square recovered \rrbracket recovering \square recent ornorecovery

This Information must also be completed
RIPARIAN ZONE AND FLOODPLAN QUALITY * NOTE: River Left (L) and Right (R) as looking downstream *

RIPARIAN WIDTH (Per Bank)

FlOODPLAIN QUALITY (Most Predominant per Bank)

Wide >10m
Moderate 5-10m
Narrow < 5 m
None

Conservation Tillage mim th mace stere
Urban or Industrial
Open Pasture, Row Crop
Mining or Construction

COMMENTS \qquad
FLOW REGIME (At Tine of Evaluation) (Check ONLY one box):

Stream FlowingMoist Channel, Isolated pools, no flow (Intermittent)
Subsurface flow with isolated pools (interstitial) Dry channel, no water (ephemeral)
COMMENTS \qquad
SINUOSITY (Number of bends per 61 m (200 fl) of channel) (Check ONLY one box):

$\begin{array}{lll}\text { None } & \square & 1.0 \\ 0.5 & \square & 1.5\end{array}$

STREAM GRADIENT ESTIMATE

NATURAL SOLUTIONS TO FLOODING OPPORTUNITIES

 APPENDIX C

Appendix B - HEC RAS Model Output

100-year - Existing Conditions

100-year - Existing Conditions and 2c

100-year - Existing Conditions and 2d

100-year - Existing Conditions and 2fa

100-year - Existing Conditions and 2fb

5-year - Existing Conditions

5-year - Existing Conditions and 2a

5-year - Existing Conditions and 2b

5-year - Existing Conditions and 2c

5-year - Existing Conditions and 2d

5-year - Existing Conditions and 2fa

5-year - Existing Conditions and 2fb

5-year - Existing Conditions and 2 g

5-year - Existing Conditions and 2h

1-year - Existing Conditions and 2a

1-year - Existing Conditions and 2b

1-year - Existing Conditions and 2c

1-year - Existing Conditions and 2d

1-year - Existing Conditions and 2fa

1-year - Existing Conditions and 2fb

1-year - Existing Conditions and 2 g

1-year - Existing Conditions and 2h

Appendix C - Cost Estimates

> Appendix D - Project Summary

Mantua Township
Black Brook Flood Study
CIIII OSEORN

	Propertasates	Stom feert			Scenario 2a Post－Mitigation Water Elevation		$\begin{gathered} \hline \text { Scenario 2b } \\ \text { Post-Mitigation } \\ \text { Water Elevation } \end{gathered}$	$\begin{gathered} \hline \text { Scenario 2b } \\ \text { Post-Mitigation } \\ \text { Discharge (cfs) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Scenario 2c } \\ \text { Post-Mitigation } \\ \text { Water Elevation } \end{gathered}$	$\begin{gathered} \hline \text { Scenario 2c } \\ \text { Post-Mitigation } \\ \text { Discharge (cfs) } \\ \hline \end{gathered}$		Scenario 2d Post－Mitigation Discharge（cfs）	$\begin{gathered} \hline \text { Scenario 2fa } \\ \text { Post-Mitigation } \\ \text { Water Elevation } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Scenario 2fa } \\ \text { Post-Mitigation } \\ \text { Discharge (cfs) } \\ \hline \end{gathered}$	Scenario 2fb Post－Mitigation Water Elevation	$\begin{gathered} \hline \text { Scenario 2fb } \\ \text { Post-Mitigation } \\ \text { Discharge (cfs) } \\ \hline \end{gathered}$		$\begin{gathered} \text { Scenario 2g } \\ \text { Post-Mitigation } \\ \text { Discharge (cfs) } \end{gathered}$	Scenario 2h Post－Mitigation Water Elevation	$\begin{gathered} \hline \text { Scenario 2h } \\ \text { Post-Mitigation } \\ \text { Discharge (cfs) } \\ \hline \end{gathered}$
${ }^{23,009000000023.000}$	${ }^{12281}$ Mentua Cenere fd	$\frac{1}{5}$	${ }_{\text {n／f }}^{\text {n／a }}$	$\underset{\substack{385 \\ 88.06}}{ }$	${ }_{\text {d／a }}^{n / 8}$		${ }_{\text {n／e }}^{\text {n／}}$		$\stackrel{\text { n／a }}{\text { n／a }}$	${ }_{\substack{0.68 \\ 34.2}}$	${ }_{\text {N／a }}^{\text {n／a }}$	${ }_{\text {l }}^{1247} 1$	$\stackrel{\text { n／a }}{\text { N／a }}$	${ }_{\substack{0.68 \\ 2.68}}$	$\xrightarrow{\text { n／a }}$		$\xrightarrow{n / 8}$	${ }_{\substack{228 \\ 4129}}^{29}$	$\xrightarrow{\text { n／a }}$	${ }_{\substack{165 \\ 3595}}^{\text {ata }}$
		－	$\xrightarrow{n / 8}$	${ }_{3}{ }^{35}$	n／a	0.14	n／a	${ }_{\text {L14．86 }}^{5.19}$	n／a	${ }_{0.88}$	${ }_{\text {n／a }}^{\text {n／a }}$	$\frac{2359}{1.4}$	$\frac{\mathrm{n} /{ }^{\text {n／a }} \text {（ }}{}$		n／	$\xrightarrow{13897}$	${ }_{\text {N／s }}^{\text {N／s }}$		n／a	$\xrightarrow{\text { lipas }}$
${ }^{23.090900000002220000}$	1271 Mantuc Center fd	5 100 1	N／a	${ }_{\text {cki }}^{\substack{836 \\ 2026}}$	$\frac{17 / 8}{14601}$								n／			（ints			$\frac{\mathrm{n} / \mathrm{s}}{\text { n／s }}$	
${ }^{23,0990000002020000}$	3381 Heman Rd	5	$\frac{\mathrm{n} / \mathrm{s}}{\text { n／a }}$	${ }_{\substack{385 \\ 8366}}$	n／a		${ }^{\mathrm{n} / 8}$	$\frac{5}{4.19}$		¢0，	$\frac{\mathrm{n} / \mathrm{m}}{\mathrm{No}}$	${ }_{1}^{1247}$ 1297	$\frac{\mathrm{nd}}{\text { N／a }}$	${ }_{\text {cher }}^{\text {a，}}$	$\xrightarrow{\text { n／s }}$				$\stackrel{\mathrm{nd}}{\mathrm{n} / \mathrm{a}}$	
		${ }_{10}^{10}$			${ }_{\text {lnas }}^{\text {lusi }}$		${ }_{\text {n／a }}$		$\stackrel{n}{ }$		$\underset{\substack{\text { n／}}}{\substack{\text { dem }}}$	－ 1239	$\xrightarrow{\text { n／a }}$	（tas	${ }_{\text {Na }}$		${ }_{\text {ns }}^{\text {n／}}$		${ }_{\text {Nas }}$	
O202000	${ }_{3687} \mathrm{emman}$ Rd	$\frac{1}{5}$	$\frac{\text { n／s }}{\text { n／a }}$		n / s	${ }_{\substack{0.19 \\ 8129}}^{\text {cid }}$	${ }_{\substack{\text { n／a } \\ \text { nos }}}$		${ }_{\substack{\text { n／} \\ \text { n／}}}$	${ }_{\text {a }}^{0.688} 3$		${ }_{\text {che }}^{1247} 1$	${ }_{\substack{\text { n／a }}}^{\text {n／a }}$		${ }^{\mathrm{N} /{ }^{\text {／}} \text {／}}$	${ }^{0.226}$	${ }_{\text {N／f }}^{\text {n／a }}$	$\underset{\substack{228 \\ 4129}}{ }$	${ }_{\text {N／a }}^{\text {n／a }}$	
			$\frac{116600}{\text { m／a }}$	${ }_{\text {20261 }}^{3185}$	${ }_{\text {L14601 }}^{113976}$	$\frac{20261}{014}$	${ }_{\text {n／3 }}^{\text {n／322 }}$	$\frac{11486}{5.19}$				$\frac{2359}{1.47}$	${ }_{\substack{\text { nisa } \\ 119}}$		$\xrightarrow{\text { H／3 }}$	${ }_{\text {Lis，}}^{13,26}$	${ }_{\text {lne }}^{\text {n／3s }}$	$\frac{1888}{2288}$	${ }_{\text {H／}}^{\text {Ins }}$	
23309090000．0090000	${ }^{12} 251$ Mentua cenere fa	．$\frac{5}{100}$	$\frac{\mathrm{Na}}{\substack{14600}}$		$\frac{143688}{114601}$	${ }_{\substack{81.96 \\ 20.61}}$	$\frac{11418}{1448^{2}}$	$\frac{44.34}{11456}$	$\frac{114531}{114555}$		$\frac{114,52^{14517}}{1145}$	${ }_{\substack{12397 \\ 2359}}$	$\frac{114,57}{114585}$				$\frac{11463}{10454}$			${ }_{\substack{3545 \\ 10951}}^{\substack{\text { IT，}}}$
	${ }^{\text {a } 2888 \text { emana }}$ Rd	$\frac{1}{5}$	${ }_{\text {n／a }}^{\text {n／a }}$			${ }_{\substack{0.19 \\ 8196}}^{0.0}$		${ }_{4}^{54.9}$	${ }_{\text {lina }}^{14065}$	${ }_{\text {a }}^{0.088}$		${ }_{\text {L }}^{1297}$	${ }_{\text {L }}^{14066}$	${ }_{\text {a }}^{0.68}$		${ }^{0.226}$	${ }_{\text {L14062 }}^{103}$		$\frac{14066}{1435}$	${ }_{\substack{1.55 \\ 3.55}}^{\text {a }}$
	dors beman Ro	$\begin{array}{r}\text { 5 } \\ \hline 100 \\ \hline\end{array}$		${ }_{\substack{83,061 \\ 2026}}$		${ }_{\substack{8.196 \\ 2026}}$	${ }_{\text {11426 }}^{11425}$		¢	－	¢		¢14368	26898	${ }^{114362}$	¢				¢
${ }^{\text {3，0909000000000000 }}$	$\mathrm{M}_{2} \mathrm{Hemanand}$	$\begin{array}{r}\text { ¢ } \\ \frac{1}{5} \\ \text { 100 } \\ \hline\end{array}$	coin			（in														
				2029		20，			$\frac{144606}{1046}$			（1297	－ 14.4096			迷				
${ }^{23} 3090000000120000$	${ }^{3} 368$ temana Rd	¢ 100	${ }_{\text {Na }}^{\text {Nat }}$		${ }_{\text {lials }}^{\text {lucis }}$							｜inct	${ }_{\text {14as．}}^{\text {145s }}$				${ }^{146.49}$			
${ }^{23} 30090000000011.000$	Heman	$\frac{1}{5}$	${ }_{\text {N／}}^{\text {n／}}$	${ }_{\substack{385 \\ 8356}}$		${ }_{\substack{0.19 \\ 81.56}}$		${ }_{\substack{\text { S．19 } \\ 4.34}}$	$\frac{114123}{11439}$	${ }_{\substack{0.088 \\ 3042}}$	$\frac{114122}{14388}$	${ }_{1297}^{1297}$	${ }_{\text {114122 }}^{11434}$	${ }_{\substack{0.68 \\ 2089}}$	$\frac{11423}{11431}$	${ }_{0}^{026}$	$\frac{114122}{11439}$	${ }_{\substack{2188 \\ 4129}}^{298}$	$\frac{114123}{11438}$	${ }_{3}^{1.65}$
		${ }_{1}^{100}$	${ }_{114601}$		${ }_{\text {144602 }}^{11402}$		${ }^{114469}$		${ }^{114566}$	${ }_{\text {184，}}^{18}$	$\frac{14.517}{1049}$	${ }_{\text {2 } 239}$	${ }^{\text {In4．49 }}$		${ }^{114542}$		$\frac{144584}{1049}$	${ }_{\text {12888 }}$	${ }_{\text {114，}}^{114 .}$	
${ }^{23.0090000000120022}$	Heman	－	$\xrightarrow{\mathrm{Na}}$		$\frac{14.588}{10.602}$		$\frac{\text { latar }}{14.499}$		${ }^{\text {Iatas }}$			${ }_{12239}^{1230}$	（14．34			${ }_{\text {cki }}^{625}$		${ }_{\text {a }}^{4.159}$	${ }^{1414.37}$	
						${ }_{\substack{2024 \\ 0.4 \\ \hline 0.4}}$	${ }_{\text {liala }}$		${ }^{\text {Lu4．569 }}$	coiek			${ }^{1144799}$		${ }_{\substack{\text { lusir } \\ \text { 14178 }}}$				${ }_{\substack{\text { 144，79 }}}^{104}$	
${ }^{23.0090000000120011}$	3316 teman	$\stackrel{5}{100}$	$\stackrel{\text { n／}}{n / 8}$		${ }_{\text {lial }}^{\text {lus }}$	¢，	${ }_{\text {lialat }}^{\text {liata }}$										${ }_{\text {lilisas }}^{\text {lis }}$		${ }_{\text {lias37 }}^{\text {1457 }}$	
${ }^{33,010000000288000}$	mentuc center	$\frac{1}{5}$				${ }_{\substack{0.19 \\ 8.15}}^{\text {cie }}$				${ }_{\substack{0.68 \\ 34.2}}$		${ }_{\text {l }}^{1247} 1$		${ }_{\substack{0.689 \\ 2689}}^{\text {a }}$		${ }_{\text {en }}^{02265}$				${ }_{\substack{165 \\ 3595}}^{\text {che }}$
23．0010．00000293000	${ }^{12272}$ Menua cenerer	5			， 14.45					，	$\xrightarrow{14.326}$	${ }_{\text {1239 }}^{1239}$								
		－		${ }_{\substack{2026 \\ 385}}^{2029}$		${ }_{\text {20，}}^{2024}$	${ }_{\text {H14as }}^{11382}$			${ }_{\substack{1845 \\ 0.68}}$	${ }_{\text {lilis．}}^{112}$	${ }_{\text {2 }}^{1237}$			${ }_{\substack{11536 \\ 1384}}^{\text {Hed }}$			${ }_{\substack{1888 \\ 228 \\ \hline 28 \\ \hline}}$	${ }_{\substack{\text { Lilasi } \\ 1138}}$	
${ }^{23,010000000083030000}$	${ }^{123838}$ mentuac center	¢ $\substack{100}$	${ }_{\substack{14.361 \\ 14605}}$			${ }_{\substack{81.96 \\ 2026}}^{\text {20，}}$	$\underbrace{114.69}_{\text {114．36 }}$				${ }_{\text {lias }}^{\text {1145，}}$	（12392	${ }_{\substack{114388 \\ 11465}}^{\text {14，}}$							${ }_{\substack{354,51 \\ 19,51}}$
${ }^{23,3090900000008.000}$	Eener	$\frac{1}{5}$				${ }_{\text {did }}^{0.19} 8$				${ }_{\text {a }}^{0.68}$	${ }_{\text {liat }}^{\text {14465 }}$	${ }_{\text {1297 }}^{1297}$		${ }^{0.689}$		${ }_{\text {en }}^{0.225}$		${ }_{\substack{2188 \\ 4189}}^{\text {des }}$	${ }_{\text {Lilata }}$	${ }_{\substack{1655 \\ 3545}}^{\text {den }}$
									${ }^{114565}$				${ }^{114551}$	${ }_{\text {lis，}}^{128}$	${ }^{\text {L1453 }}$	${ }_{1359}$	${ }_{14,585}$	1288	${ }_{114.2 .2}$	
200900000007．000	ner	5			隹		H14a99		¢	¢	Hatas 14459	${ }_{\text {1297 }}$	${ }_{\text {Ilatas }}$		${ }^{\text {14a4s }}$	${ }_{\text {ciels }}$				${ }_{\substack{\text { 3，95 }}}^{\substack{16,\\}}$
				${ }_{\substack{2026 \\ 3,85}}$			－		${ }_{\text {H143，}}^{1145}$	（124．5			－		－	$\xrightarrow{\text { 13397 }}$			－ 11453	
${ }^{230909000000006000}$	Mamus center	$\begin{array}{r}5 \\ \hline 100 \\ \hline 1\end{array}$				$\underbrace{\text { 20，}}_{\substack{81.96 \\ 20261}}$							${ }_{\substack{114473 \\ 11456}}^{\text {（1）}}$	2688，	${ }_{\text {11445s }}^{11452}$		$\frac{114476}{14158}$	$\underbrace{188}_{\substack{1189 \\ 188}}$	${ }_{\text {114．65s }}^{1145}$	
${ }^{2330909000000005000}$	Manus center	$\frac{1}{5}$			${ }_{\text {Ilatas }}^{\text {Il4as }}$	$\underbrace{\text { ate }}_{\substack{0.19 \\ 8.15}}$	$\frac{114419}{14454}$		$\frac{114436}{1445}$	$\underset{\substack{0.68 \\ 342}}{\substack{\text { and }}}$	${ }_{\text {114a35 }}^{11445}$	${ }_{\text {lin }}^{1297}$		${ }_{\substack{0.68 \\ 2089}}^{\text {a }}$			${ }_{\text {L14436 }}^{11497}$	$\substack{228 \\ 4189}$	$\frac{114434}{11465}$	${ }_{\substack{1655 \\ 355}}^{\text {仿 }}$
230900000005000	mamasemer	${ }_{100}^{5}$	${ }_{\text {latas }}^{1465}$		${ }^{141465}$							${ }_{2 \text { 2359 }}$	1145.		${ }_{\text {14437 }}$		${ }_{\text {144s9 }}$	${ }_{\text {L }}^{1288}$	${ }_{\text {144 } 57}^{\text {In }}$	
${ }^{23,0909000000000000}$	tener	$\frac{1}{5}$ $\frac{100}{}$									，	¢	（1atasi	coick				，		
13．09090．000．030300	ner	$\frac{1}{5}$			${ }^{1124651}$	${ }_{\text {O，}}^{\text {O，}}$		${ }_{5}^{5149}$			${ }_{\text {L14．647 }}^{11409}$	${ }^{1297}$	${ }_{\text {144648 }}^{11401}$	${ }_{2068}^{2689}$		${ }_{0}^{0225}$	${ }_{\text {L14645 }}^{141406}$	${ }_{\substack{288 \\ 4189}}^{28}$	${ }_{\text {L14．645 }}^{1165}$	${ }_{\text {L }}^{1.45}$
		$\stackrel{5}{100}$			${ }_{\substack{14409 \\ 1473}}$		${ }_{\text {114，54．}}^{11.4}$	${ }_{\text {a }}^{\text {4as．}}$			${ }_{\text {L14，}}^{14193}$			（tas，	${ }_{\text {lill }}^{1490151}$					
23．0090000000202000	mantuc cener	5					Helats			（int	Hemat	${ }_{\text {1239 }}^{1239}$	， 1144.45			${ }_{\text {che }}^{6.2025}$				
		1		${ }_{\substack{2026 \\ 385}}$	${ }_{\substack{\text { 144660 } \\ 114692}}$	${ }_{\text {20，}}^{2024}$				${ }_{\substack{1845 \\ 0.68}}$		${ }_{\text {2 }}^{1237}$	${ }_{\substack{1446585}}^{114685}$		${ }_{\substack{\text { las } \\ 1469}}^{\text {1469 }}$	$\xrightarrow{\frac{13597}{0.26}}$		${ }_{\substack{1888 \\ 228 \\ \hline 28 \\ \hline}}$	${ }_{\substack{145598 \\ 114681}}$	
23，090．00000000 100	Montuc Cener	$\begin{array}{r}5 \\ \hline 100 \\ \hline\end{array}$							¢		$\frac{1147097}{141714}$		${ }_{\text {14471 }}^{1415}$				$\frac{114705}{147474}$	${ }_{\substack{1889 \\ 1888}}^{\text {18，}}$		${ }_{\substack{3545 \\ 17951}}^{\substack{\text { 19，}}}$
11500000024001	Mantas	－						¢		${ }_{\substack{0.68 \\ 3420}}$								${ }_{\substack{288 \\ 4.189}}^{\text {as }}$	${ }_{\substack{114459 \\ 11459}}$	
		1		${ }_{\substack{2026 \\ 385}}^{\substack{\text { 20，}}}$		${ }^{20261}$	年1464	${ }_{\text {11486 }}^{\text {1．}}$				${ }_{\text {2339 }}^{141}$	${ }_{\text {Il462 }}^{11455}$		${ }_{\text {Ilusi4 }}^{11453}$	${ }_{\substack{13,97 \\ 0.26}}^{\text {ind }}$				
${ }^{23,9550000000238001}$	Smanua cener	S $\substack{100}$										${ }_{\substack{12397 \\ 235}}^{129}$								${ }_{\substack{3545 \\ 1051}}^{\text {IT，}}$
${ }^{23} 3155000000292000$	Mentus center	$\frac{1}{5}$	${ }_{\substack{144055 \\ 11465}}$	${ }_{\substack{385 \\ 83,56}}$	${ }_{\substack{114055 \\ 11465}}^{\text {14，}}$			${ }_{\text {Sid }}^{4.34}$	${ }_{\text {L14563 }}^{146}$	${ }_{\substack{0.088 \\ 342}}$	${ }_{\text {latas }}^{11458}$	${ }_{1}^{1297}$	${ }_{\text {liab }}^{11465}$			${ }_{0}^{0.225}$	${ }_{\text {Hi463 }}$	（228	${ }_{\text {lilas }}^{11459}$	${ }_{3}^{1.65}$
		100	${ }^{116653}$	20261	${ }_{114653}^{14 .}$	2026	${ }^{11465.5}$	${ }^{11485}$	${ }^{114649}$	${ }^{18457}$	${ }^{146609}$	${ }_{2259}$	${ }^{114633}$	${ }^{\text {cises }}$	$\stackrel{1465}{ }$	${ }^{\frac{12539}{139}}$	${ }^{10649}$		${ }_{\text {l }}^{114654}$	${ }_{\text {chers }}$

[^0]: Suzanne Hoehne, CSE
 Senior Ecological Designer
 shoehne@biohabitats.com
 p. 502-650-8880

