
 44  

 

 

 

 

 

Vulnerability Analysis of Digital Banks’ Mobile Applications 

*PV Falade, GB Ogundele 

Department of Cyber Security, Nigerian Defence Academy, Kaduna 

*Corresponding Email: pvfalade@nda.edu.ng 

ABSTRACT 

There is a rapid increase in the number of mobile banking applications users due to an increase in smart 

mobile devices. Mobile banking is a financial transaction and service offered through mobile devices. 

Almost all financial institutions now provide mobile banking services to their customers. However, the 

security of mobile banking applications is of huge concern because of the amount of personal data and 

information they collect. If an attacker gets hold of personal information, they can access bank payment 

or card accounts. This research aims to analyze the vulnerability of the UK digital banks’ applications to 

identify vulnerabilities in the apps and proffer countermeasures that can help improve the security of the 

bank applications. Androbugs, a vulnerability scanner, was used to analyze the vulnerability of six digital 

banks’ android applications. Starling, Monese, Atom bank, Transferwise, Monzo, and Revolut were 

scanned. All the scanned digital banks’ applications have vulnerabilities; however, some have more 

vulnerabilities than others. For example, Revolut’s mobile application has the highest number of 

identified vulnerabilities, while the Starling mobile application has the least identified vulnerabilities. 

Therefore, there is a need for more security in the digital banks’ applications as well as other mobile 

banking applications. 

KEYWORDS: Mobile Banking Applications, Digital Banks, Vulnerability scanning  

INTRODUCTION 

There is a rapid increase in the number of mobile 

banking applications users due to an increase in 

smart mobile devices (Bucko, 2017; Luvanda, 

2014; Palma et al., 2020; Szczepanik & Jóźwiak, 

2018). Mobile banking is a financial transaction 

and service offered through mobile devices 

(Hayikader et al., 2016). Almost all financial 

institutions now provide mobile banking services 

to their customers. Some business reasons for 

embracing mobile banking services are attracting 

new customers, keeping existing customers, 

projecting market leadership, and meeting cost 

and competitive pressures (Bakar et al., 2017; 

Digital.ai, 2021; Nwoduh, 2019). While to the 

customers, mobile banking is a convenient, easy 

and fast way to perform transactions remotely 

(Szczepanik & Jóźwiak, 2018).  

Although mobile banking services offer lots of 

advantages, we cannot deny the security 

challenges they pose to organizations that own 

them and customers that use them (Bucko, 2017; 

Digital.ai, 2021; Szczepanik & Jóźwiak, 2018). 

Security of mobile banking applications is of huge 

concern because of the amount of personal data 

and information they collect. If an attacker gets 

hold of personal information, they can access 

bank payment or card accounts (Bucko, 2017; 

Digital.ai, 2021). Therefore, most customers are 

still reluctant to use mobile banking apps because 

of the fear of fraudsters (Digital.ai, 2021). 

Moreover, the insufficient security of mobile 

banking applications gives customers a justifiable 

reason to fear. Vulnerability in mobile 

applications is exposed by reverse engineering. 

70% of digital banking fraudulent activities stem 

from the mobile channel by 2021’s second-

quarter—mobile banking app fraud amounting to 

NDA Journal of Military Science 

and Disciplinary Studies 

ISSN: 2814-3264 
Volume 1, Issue 1, June 2022, pp. 44 - 55 

 



 45  

 

the highest increase (Digital.ai, 2021). Cyber 

attackers usually develop scoundrel mobile 

applications from decompiled legitimate banking 

apps’ source code (Digital.ai, 2021; El Janati El 

Idrissi et al., 2017) and upload to app stores; the 

rate of uploading reprobate mobile apps has 

reached 66% (Digital.ai, 2021). With the rate at 

which Mobile security risks are increasing 

everywhere, it is important to conduct a security 

assessment of mobile banking applications.  

This research aims to assess the UK digital banks 

mobile applications to find the security 

vulnerabilities in the android apps, identify cyber 

threats that can exploit the vulnerabilities found 

on the digital banks' apps, and recommend 

countermeasures for some of the common 

vulnerabilities. The research shall use Android 

application vulnerability scanners to assess mobile 

apps. The scope of this research shall focus on the 

security of mobile banking applications, 

specifically android applications. 

The remaining part of this article is grouped into 

five sections. Section 2 gives the literature review 

of related works, section 3 gives the methodology, 

the results of the security assessment with 

discussions are presented in section 4. While 

section 5 and 6 gives the conclusions and 

recommendations respectively. 

LITERATURE REVIEW 

Digitalization is increasing globally, causing a 

great shift from traditional banks to digital banks, 

from physical to more digital. Fintech is a term 

that combines financial and technology. Fintech 

makes it possible for digital banks to operate 

without physical contacts. Bank customers can 

perform all activities with their smartphones or 

the computer through the inventions of Fintech. 

Digital banks have not only been a trend during 

recent years but have become even more 

appreciated and popular because of the COVID-

19 pandemic. Many countries had to be on 

lockdown or cause disruption to the citizens’ daily 

way of life. Digital banks which offer all of their 

services online enable people to stay at home 

while still performing financial transactions. 

Accessing the banking services through online 

channels became necessary to keep the country’s 

economy growing (Nilsson & Lehmann, 2020). 

Consequently, digital banks also called 

‘Challengers banks’ are stealing the markets of 

standard banks. These banks focus more on 

growth than on profit by offering more value to 

customers through lowering of fees, streamlining 

processes posing as international banks and 

transacting in foreign countries without high fees 

and exchange rates. For example, opening an 

account with a digital bank takes a few minutes 

compared to the tedious complicated process with 

a traditional bank (Nilsson & Lehmann, 2020). 

Therefore, the rate at which these banks are 

growing is alarming. For instance, Revolut, one of 

the digital banks, has more than 8 million 

customers. Revolut was founded in 2015 and is 

already expanding to US and Australia. Likewise, 

Monzo has over 4 million customers in the UK. 

UK digital accounts now hold above 14% market 

share of primary accounts being switched. 

Nubank, a digital bank in Brazil, is now the 

largest digital bank globally, with more than 15 

million unique customers (Deloitte, 2020).  71% 

of millennials would rather visit a dentist than a 

bank, according to the survey carried out by 

Millennial Disruption Index, and the millennial 

forms the target segment for banks. And this 

explains the speedy growth of digital banks 

without physical branches (Nilsson & Lehmann, 

2020). The UK has been recognized as the global 

banking leader (PwC, 2018). For this reason, this 

research shall be focusing on the UK digital 

banks. UK digital banks are Starling, Monese, 

PAYSEND, cashplus, bunq, ANNA, Monzo, 

TANDEM, Atom, Transferwise, and Revolut. 

Some people are comfortable with using digital 

banks. Still, others have no option but to use them 

because these banks tend to have lower 

requirements for opening an account compared to 

standard UK banks with high street physical 

branches. For example, an international student or 

a visitor in the UK without proof of address is 

forced to opt for digital banks for quick, 

convenience, and ease of use. Thereby, even 

though there is a low level of trust for such digital 

banks, people still use them. The relevance of 

digitalized banking will continue to the future. 

When transactions are made, no physical 

component is required. Traditional banks might be 

seen as an old way of banking, making them 

obsolete in the near future, with digital banks 



 46  

 

dominating. The physical interactions during 

digitalized banking might only be required during 

advice sections. Also, the advice section can be 

done through video calls as society is now 

familiar with the new way of communicating. 

Most physical meetings are now arranged through 

Zoom, Skype, Google meet, and others (Nilsson 

& Lehmann, 2020). 

For this research, UK digital banks is defined as 

banks that live on smartphones (app-based) with 

no high street physical branches, but some have 

headquarters addresses. Some mobile accounts 

provide ATM (Automated Teller Machine) 

withdrawals or cash deposits, while others do not. 

Everything about banking with digital banks is 

done on mobile applications, from opening the 

account to managing the account (Nilsson & 

Lehmann, 2020). The security of these mobile 

applications is almost equivalent to the security of 

the physical high street branches of other standard 

banks. Mobile applications are not optional but 

compulsory for all users since there is no option to 

walk into the physical branch. These mobile 

applications need to be secure to ensure the safety 

of their customers.  

Mobile applications can be defined as applications 

that run on mobile devices displaying information 

on the device’s screen. Mobile banking 

applications can be either Android or iOS 

applications depending on the operating system 

used on a mobile device (ARGAW, 2018;  et al., 

2020). However, IBM Security Trustee Research 

discovered that more mobile fraud toolkits are 

offered in the underground forums. Some of the 

general risks to mobile banking applications and 

the use of mobile devices in general are: malicious 

code and applications, violation of privacy, 

payment infrastructure, wireless carrier 

infrastructure, and SMS vulnerabilities. Other 

threats include: eavesdropping, malware, lack of 

user awareness, third party application threat, 

phishing, platform malfunction, denial of service, 

unencrypted Wi-Fi, application/ device 

malfunction, unauthorized access, and loss theft or 

improper disposal of device. Top of the list of 

security issues of mobile banking applications is 

fraud and identity theft.  

Szczepanik et al. (Szczepanik & Jóźwiak, 2018) 

investigated the security issues in mobile banking 

implementations through GSM (Global System 

for Mobile communication) network with South 

African banks as a case study. Their goal was to 

provide protocols for users to secure mobile 

banking applications via GSM network and GPRS 

(General Packet Radio Services) mediums 

(Szczepanik & Jóźwiak, 2018).  Jozef (Bucko, 

2017) analyzed the security of mobile devices in 

Slovakia's chosen banks, checking if the settings 

of the mobile devices are appropriate for using 

mobile banking applications securely as part of 

the work done (Bucko, 2017). Also, El Janati et 

al. (El Janati El Idrissi et al., 2017) presented 

some security concerns peculiar to android 

banking applications using reverse engineering 

(El Janati El Idrissi et al., 2017).  On the other 

hand, Anthony (Luvanda, 2014) proposed a 

framework for protecting mobile banking apps 

from Man in the middle attack, ensuring that 

communications between application and server 

are secure. 

Although there are existing tools for scanning the 

vulnerabilities of Android and iOS applications in 

general which are QARK (Quick Android Review 

Kit), Androbugs, and MobSF (Mobile Security 

Framework), Dexcalibur, StaCoAn, Runtime 

Mobile Security, Ostorlab, Quixxi, SandDroid, 

ImmuniWeb and App-Ray (Kumar, 2020), 

AUSERA (Automated Security Risk Assessment) 

was a framework specially developed by Chen et 

al. (Chen et al., 2020) to assess mobile banking 

applications. They used this framework to assess 

about 693 banking apps across the globe. They 

found AUSERA to outperform QARK, MobSF, 

and Androbugs in terms of precision rate and 

time. QARK has the best precision rate amongst 

the other three. During their empirical assessment, 

about 2,157 weaknesses were found across the 

693 real-world banking apps (Chen et al., 2020). 

Although AUSERA is proven to be better in 

assessing mobile banking app than other scanners, 

it is not accessible for use. Therefore, this research 

used a general vulnerability scanner.  

METHODS 

The security of the UK digital banks' mobile 

applications shall be assessed by scanning for 

vulnerabilities in the Android versions of mobile 

banking applications. The vulnerability scanner 

will identify security loopholes in each of the 



 47  

 

applications. Randomly selected six (6) UK 

digital banks; Starling, Monese, Monzo, Atom, 

Transferwise, and Revolut banks will be scanned 

using Androbugs. AUSERA specifically created 

for mobile banking applications could have been 

best fit but inaccessible. Also, attempt to use 

QARK on Windows came with many errors that 

we could not fix due to time constraints. 

Androbugs 

Androbugs is an open source vulnerability scanner 

developed by Yu-Cheng Lin and used by both 

hackers and developers to find potential security 

vulnerabilities in Android applications (Lin, 2015; 

Markiewicz, 2018). The framework has been 

published under the GNU General Public License 

v3.0 and written in python. It works on APK files 

with no need for root permissions on the device. 

However, it does not have an impressive 

Graphical User Interface (GUI) interface. The 

requirement for running Androbugs is to install 

Python 2.7.x on the intended device, while the 

PyMongo library is needed for massive analysis. 

The massive analysis involves running many 

applications using the Mongo database for 

analysis optimization and saving of results 

(Markiewicz, 2018). The massive analysis mode 

was not used for this dissertation since we 

scanned six (6) mobile applications. Androbugs 

Framework has the following features (Lin, 2015; 

Markiewicz, 2018): 

 Search for security vulnerability 

 Verify if the codes follow best practices 

 Verify all dangerous shell commands 

 Analyze more than one application at a time 

 Verify the application’s security protection 

After the analysis by Androbugs, a report is 

automatically generated, and the report contains 

the following (Lin, 2015): 

i. Title of vector 

ii. Paths for source code 

iii. Severity level of vulnerability (critical, warning, 

notice, info.) 

iv. Category of vector 

v. Vulnerability background knowledge 

vi. Recommendations on how to mitigate the 

vulnerability 

AndroBugs Scanning Process 

The following steps were followed to scan the 

downloaded APK files of each digital bank 

mobile application using Androbugs on Windows: 

i. Open the command prompt on windows and type 

“mkdir C:\AndroBugs_Framework” to create a 

directory. 

ii. Change directory to AndroBugs_Framework 

using this command: “cd 

C:\AndroBugs_Framework.” 

iii. Unzip the latest Windows version of AndroBugs 

Framework from Windows releases.  

iv. Go to Computer->System Properties->Advanced-

>Environment Variables. Add 

"C:\AndroBugs_Framework" to the "Path" 

variable. 

v. Download the APK file of the application to be 

scanned. 

vi. Open command prompt and type “androbugs.exe 

–h” click on “Enter’ to run. 

vii. Execute this command: “androbugs.exe -f [APK 

file]” to start analyzing the APK file. 

viii. After the analysis, the output is downloaded. 

RESULTS 

Mobile Banking Applications Vulnerabilities 

Security vulnerability of mobile banking 

applications discussed in this chapter are gotten 

from the identified critical issues, warnings and 

notices reported from the six scanned 

applications.  Almost all the critical issues 

identified across the six applications are included 

as mobile banking application security 

vulnerabilities since they are confirmed 

vulnerability. In addition, some of the warnings 

reported across the six scanned applications are 

also included, but only a few of the notices were 

considered security vulnerabilities for mobile 

banking applications. 

Vulnerability is a weakness in the design, 

implementation, operation, or internal control of a 

process that, when exposed, could be exploited by 

a threat from a threat event (Garrett, 2011). The 

vulnerabilities for mobile bank applications 

identified were picked based on their ability to be 

exploited by a threat event leading to harm. For 

example, security vulnerability such as “file 

unsafe deleting” is noticed but considered a 

https://github.com/AndroBugs/AndroBugs_Framework/releases


 48  

 

security vulnerability for mobile banking 

applications because of the sensitivity of data used 

in mobile banking applications. It will be risky for 

that sensitive information to be recovered in the 

case of lost or stolen devices. Also, screenshot 

capturing might not necessarily be a vulnerability 

to other applications that deal with less sensitive 

information. Still, screenshot capturing can lead to 

sensitive information leakage for mobile banking 

applications. A third party can easily copy vital 

information out of the application within the 

shortest time accessing the application (Chen et 

al., 2020). The identified security vulnerabilities 

for mobile bank applications are explained as 

follows. Note more vulnerabilities can be 

identified and added to the list, perhaps from 

scanning other digital bank applications outside 

these six. 

1. Implicit intent for service: a messaging object 

can request action from another application 

component. On the other hand, a component that 

carries out operations without a user interface (in 

the background) is called a service. An implicit 

intent is a type of intent that does not specify the 

component but rather declares operations, 

generally allowing other applications’ components 

to handle it (Intents and Intent Filters, 2022). It is 

a security hazard to use implicit intent to start a 

service in mobile banking applications. The 

service that will respond to the intent might not be 

ascertained, leaving the user ignorant of what 

service starts. Not all users are aware of this or 

know how to fix it, making it a vulnerability that 

an attacker can exploit.  

2. Misconfiguration of intent-filters: another 

vulnerability related to intent is the 

misconfiguration in the "intent-filter" of these 

components. Config "intent-filter" should have at 

least one "action." If the intent filter is not 

configured properly, it can be exploited by a 

threat event causing harm to the application. 

3. Content Provider access from other apps on 

the device: the repository data of an application is 

managed by a content provider. Although content 

providers are meant to be managed by other 

applications (Content Provider Basics, 2021), 

permissions should control the access. For 

example, it is a risk to allow other applications on 

the device to access the content provider of the 

mobile banking application without permission 

because there might be malicious applications 

installed on the user’s device, which can exploit 

the mobile banking application if granted access. 

4. Remote code execution:  WebView 

"addJavascriptInterface" vulnerability can be used 

in allowing the host application to be controlled 

through JavaScript. This feature can be both 

powerful and risky because this method in a 

WebView with untrusted content could allow the 

malicious manipulation of host applications with 

permission through java code. Additionally, 

attackers can utilize this method to execute 

malicious code remotely. 

5. Getting IMEI and device ID: getting the IMEI 

and device ID can be an issue with devices that do 

not have them. Also, giving out information about 

the users’ devices might be prone to information 

leakage. 

6. Normal protection-level of permission: The 

protection level of "normal" or default 

applications is not secured because it allows other 

applications to register and receive messages for 

the mobile banking application. It is a 

vulnerability because the message transmitted 

from or to the mobile banking application can be 

sensitive, and exposing it to other applications 

will be risky.  

7. Local file system access: An attacker can inject 

malicious script, allowing the attacker to exploit 

other local resources in the device. For example, it 

means the attacker will use the mobile banking 

application to exploit the device's local resources. 

8. Webview Javascript enabled: enabling 

javascript in Webview exposes it to cross-site 

scripting (XSS) attacks.  

9. Not executing ‘root’ or system privilege checks: 

it is important for mobile banking applications to 

check the devices for “root” permission, mounting 

filesystem operations, or monitoring system 

before installation. Since some devices undergo 

“rooting” or “jailbreaking” by their users to gain 

higher privileges exposing the device to attacks. 

Therefore, not checking for “root” or system 

privilege is vulnerable. 

10. ADB backup: ADB Backup is a tool for backing 

up all files. The risk associated with ADB backup 

in the case of mobile banking applications is the 

sensitivity of data used on the application. Also, 

when the backup falls into the hands of a third 

party or an attacker, it can lead to information 

leakage. Sensitive data found in ADB backup 



 49  

 

includes the lifetime access token, username or 

password, and other sensitive data about the 

mobile banking application. 

11. File unsafe deleting: mobile application 

applications that allow unsafe deleting are 

vulnerable. Unsafe deleting means that everything 

deleted can be recovered by the user or an 

attacker, especially for rooted devices. For 

example, if the phone is sold or stolen, the new 

user will recover sensitive information. 

12. Not checking package signature code: checking 

the package signature in the code helps check if a 

hacker hacks the application. Not making 

provisions to check for package signature code is 

vulnerability because the application might be 

hacked and unnoticed. 

13. Allowing Screenshot capturing: screenshot is an 

easy way of harvesting users’ sensitive 

information from the application. Although not a 

vulnerability to all applications but a vulnerability 

to mobile banking applications because of the 

nature of data it handles. The data used in mobile 

banking applications are too sensitive. Allowing 

screenshot capturing is a vulnerability because a 

third party or criminal can easily copy sensitive 

information out of the application within the 

shortest possible time of access. 

14. Not checking APK installer sources: criminals 

are making fake, fraudulent applications and 

making them available on the internet. These fake 

applications look like the original but have a 

malicious intention. Therefore, it is important to 

check for the source of the APK installer, and 

failure to do so is a vulnerability to mobile 

banking applications. 

There are fourteen (14) identified security 

vulnerabilities for mobile banking applications. 

Table 1 shows the security vulnerabilities in each 

of the six scanned applications; colour green 

shows that there is no vulnerability while the 

colour yellow shows there is vulnerability.

 

Table 1: Security Vulnerabilities 

Security Vulnerability Starling Monese Atom Transferwise Monzo Revolut 

Implicit intent for service       

Misconfiguration of intent-

filters 

      

Content Provider access from 

other apps on the device 

      

Remote code execution       

Getting IMEI and Device ID       

Normal protection-level of 

permission 

      

Local file system access       

Webview JavaScript enabled       

Not executing ‘root’ or system 

privilege checks 

      

ADB backup       

File unsafe deleting       

Not checking Package signature 

code 

      

Allowing screenshot capturing       



 50  

 

Not checking APK installer 

sources  

      

 

Comparison of the Scanned Mobile 

Applications Vulnerabilities 

Out of the total security vulnerabilities for mobile 

banking applications identified from scanning the 

six digital banks' mobile applications, Starling 

bank contains the least number of vulnerabilities. 

On the other hand, the Revolut bank mobile 

application has the highest vulnerabilities. Atom, 

Transferwise, and Monzo contain the same 

number of vulnerabilities, although not the same 

vulnerabilities. The percentages of the security 

vulnerabilities contained in the different 

applications are shown in Table 2. 

From Table 1, all the scanned applications have 

the vulnerability “file unsafe deleting.” Also, all 

applications except the Starling bank mobile 

application have the vulnerability “local file 

system access.” Only Revolut bank mobile 

application has the following vulnerabilities; 

“misconfiguration of intent-filters,” “content 

provider access from other apps on the device,” 

“normal protection-level of permission,” and “not 

checking package signature code.” Also, only the 

Starling bank mobile application has the 

vulnerability “ADB backup.” Finally, the 

vulnerability “remote code execution is found in 

only Monese bank mobile application.” 

Furthermore, from Table 1, it is seen that the 

vulnerability “implicit intent for service” is 

contained in only Monese and Revolut bank 

mobile applications; the other four applications 

use explicit intent for service. Also, Monese and 

Transferwise bank mobile applications get IMEI 

and device ID; others do not. Webivew Javascript 

is disabled for other mobile applications except 

for Monese, Atom, and Transferwise bank mobile 

applications, which have their Webview 

JavaScript enabled. Atom, Transferwise, Monzo, 

and Revolut bank mobile applications do not 

check for “root” or system privilege execution, 

while Starling and Monese bank mobile 

applications perform checking. Screenshot 

capturing is prevented in Atom and Transferwise 

bank mobile applications while Starling, Monese, 

Monzo, and Revolut permit screenshot capturing.  

Finally, Monzo, Atom, and Revolut bank mobile 

applications do not have a code for checking APK 

installer sources while Starling, Monese, and 

Transferwise perform checks

. 

Table 2: Security Vulnerability Percentages 

Digital Banks Total number of security 

vulnerabilities identified in 

the application 

Percentage of security 

vulnerabilities identified 

Starling 3 21.43% 

Monese 7 50.00% 

Atom 5 35.71% 

Transferwise 5 35.71% 

Monzo 5 35.71% 

Revolut 10 71.43% 

 

Threats and Countermeasures 

In this section, threats that can exploit the 

identified vulnerabilities are presented. And to 

prevent an attack from occurring, the 

countermeasures that can prevent the threat from 

exploring the vulnerabilities are also provided. 



 51  

 

Threats 

Threats are potential harm that can exploit 

vulnerabilities to cause an attack (Garrett, 2011). 

The threats that can exploit the mobile 

applications, the vulnerability they exploit, and a 

description is presented in Table 3: 

 Lack of user awareness 

 Application malfunction 

 Third-party application threat 

 Unauthorized access 

 Information Leakage  

 Malware 

 Cross-site scripting threat 

 Platform manipulation 

 Improper disposal of the device 

 Hacking 

 Phishing through fake applications 

 

Table 3: Description Of Threats 

Security vulnerability Threat Description 

Implicit intent for service Lack of user awareness Most users are not aware of 

the different intents for 

services, so if the application 

is not correctly set, the user 

will not know it. 

Misconfiguration of intent-

filters 

Application malfunction Without properly configuring 

the application, unexpected 

actions can occur. 

Content Provider access 

from other apps on the 

device 

Third-party application threat There might be malicious 

applications on the device, and 

gaining access without 

permission could be harmful to 

the mobile banking 

application. 

Remote code execution Unauthorized access If remote code execution is 

allowed, an attacker can access 

the application remotely 

without authorization. 

Getting IMEI and Device 

ID 

Information leakage Getting IMEI and device ID 

might lead to information 

leakage. 

Normal protection-level of 

permission 

Third-party application threat If the protection-level 

permission is not set, others 

can register and receive 

messages for the application. 

Local file system access Malware (malicious code) Malicious codes can be 

injected, thereby exploiting the 

system. 

Webview JavaScript 

enabled 

Cross-site Scripting threat It makes it prone to cross-site 

scripting attacks. 

Not executing ‘root’ or 

system privilege checks 

Platform manipulation Sometimes users “root” or 

“jailbreak” devices to gain 

higher privileges. 



 52  

 

Unfortunately, this can leak 

sensitive information from the 

application, so it is important 

to check for ‘root’ in systems 

where the mobile banking apps 

are installed. 

ADB backup Improper disposal of the 

device 

Improper device disposal with 

the installed application can 

lead to ADB backup falling 

into the wrong hands. 

File unsafe deleting Improper disposal of devices If the device is lost, sold, or 

stolen, the deleted sensitive 

information can be retrieved. 

Not checking Package 

signature code 

Hacking  When hacking occurs, it 

cannot be detected by the 

application. 

Allowing Screenshot 

capturing 

Improper disposal of the 

device 

If the mobile banking 

application gets into the wrong 

hand, the attacker can easily 

screenshot sensitive 

information out of the 

application. 

No APK installer sources 

checks 

Phishing through fake 

applications. 

Criminals are fond of creating 

fake applications to deceive 

users into installing them, 

thereby stealing sensitive 

information from the user. 

Therefore, it is important to 

check the APK installer source 

to ascertain it is genuine. 

 

Countermeasures 

Countermeasures are security mechanisms 

implemented to prevent attacks by either 

eliminating the vulnerability or preventing the 

threat occurrence. In this section, two groups of 

countermeasures shall be presented, the 

countermeasures to be implemented by the 

developers to fix the vulnerability and those to be 

implemented by the users to prevent the 

likelihood of threat occurrence. 

Developer’s Countermeasures 

The developers need to make changes in the code 

of applications to fix the vulnerabilities. Table 4 

gives the vulnerabilities and their 

countermeasures.  

 

Table 4: Countermeasures for Developers 

Security vulnerability Countermeasures 

Implicit intent for service Always use explicit intent when starting a service. 

Misconfiguration of intent- Config "intent-filter" should have at least one 



 53  

 

filters "action." 

Content Provider access 

from other apps on the 

device 

Set at least "signature" protectional Level permission 

or make it “false.” 

Remote code execution Modify code to disallow remote code execution. 

Getting IMEI and Device 

ID 

If the device ID is needed, use the "Installation" 

framework instead. 

Normal protection-level of 

permission 

The app should declare the permission with the 

"android:protectionLevel" of "signature" or 

"signatureOrSystem" so that other apps cannot 

register and receive messages for this app. 

android:protectionLevel="signature" ensures that 

apps with request permission must be signed with the 

same certificate as the application that declared the 

permission. 

Local file system access This can be mitigated or prevented by disabling local 

file system access. (It is enabled by default). 

Webview JavaScript 

enabled 

Disable Webview Javascript. 

Not executing ‘root’ or 

system privilege checks 

There should be a code for checking for “root” or 

system privilege in the device. 

ADB backup Disable ADB backup in an application. 

File unsafe deleting Do not use "file.delete()" to delete essential files. 

Not checking Package 

signature code 

There should be a code in the application for 

checking package signature. 

Allowing Screenshot 

capturing 

This application should have a code for preventing 

screenshot capturing. 

No APK installer sources 

checks 

The application should have a code for checking 

APK installer sources. 

 

User’s Countermeasures  

The countermeasures in this section are the 

responsibilities of the users to implement to 

reduce the likelihood of occurrence of threats. 

 Do not use mobile banking applications for 

jailbreak or rooted mobile devices: this will 

help prevent the threat of platform manipulation. 

 Download mobile banking applications from 

trusted app stores: doing this will help reduce 

the risk of phishing through fake applications. 

 Use mobile anti-virus applications: using 

updated anti-virus or anti-malware on the mobile 

phone can help prevent the execution of malicious 

codes on the device. 

 Physically protect the mobile device: physically 

protecting the mobile device keeps it safe from 

criminals and third parties, thereby reducing the 

threat of improper disposal of devices that can 

lead to information leakage.  

 Update mobile banking applications regularly: 

this will help the user have a better secured and 

updated version. Moreover, the updated version 

usually has some of the vulnerabilities fixed. 

Therefore, the likelihood of occurrence of threats 

like information leakage, cross-site scripting 

threat, unauthorized access, third party 



 54  

 

applications threat, and application manipulation 

will be reduced. 

 Update mobile device’s operating system: this 

will help tackle threats like hacking and 

application malfunction. 

CONCLUSIONS AND 

RECOMMENDATIONS 

In conclusion, there is a great need for more 

security in the digital banks’ Android 

applications. This research is beneficial to the 

digital banks, their developers, and users. All the 

scanned digital banks’ applications have 

vulnerabilities; however, some have more 

vulnerabilities than others. For example, 

Revolut’s mobile application has the highest 

number of identified vulnerabilities, while the 

Starling mobile application has the least identified 

vulnerabilities. Therefore, there is a need for more 

security in the digital banks’ applications as well 

as other mobile banking applications. 

For future work, other vulnerability scanners can 

scan more mobile banking applications to identify 

more vulnerabilities, thereby identifying more 

threats and recommending more countermeasures 

to users and developers of mobile banking 

applications. As a result, creating a more secure 

digital banking world for users. 

REFERENCES 

ARGAW, B. (2018). Security Issues in Mobile 

Banking Service in Ethiopia. 6–10. 

Bakar, R. A., Aziz, N. A., Muhammud, A., & 

Muda, M. (2017). Perceived Ease of Use, 

Security and Privacy of Mobile Banking. 

International Journal of Business and Social 

Research, 2(1), 56–62. 

Bucko, J. (2017). Security of smart banking 

applications in Slovakia. Journal of 

Theoretical and Applied Electronic Commerce 

Research, 12(1), 42–52. 

https://doi.org/10.4067/S0718-

18762017000100004 

 

 

 

 

Chen, S., Fan, L., Meng, G., Su, T., Xue, M., Xue, 

Y., Liu, Y., & Xu, L. (2020). An empirical 

assessment of security risks of global android 

banking apps. Proceedings - International 

Conference on Software Engineering, 1310–

1322. 

https://doi.org/10.1145/3377811.3380417 

Chernenko, P. R., & Orlova, M. M. (2020). Security 

Vulnerabilities in Android OS Applications. 

Visnyk of Vinnytsia Politechnical Institute, 

150(3), 43–50. https://doi.org/10.31649/1997-

9266-2020-150-3-43-50 

Content provider basics. (2021). Developers. 

https://developer.android.com/guide/topics/pro

viders/content-provider-basics 

Deloitte. (2020). The DNA of Digital Challenger 

Banks. 

Digital.ai. (2021). A new approach to securing 

mobile banking apps. 

El Janati El Idrissi, N., Orhanou, G., Kouraogo, Y., 

& Zkik, K. (2017). Security model on mobile 

banking application: attack simulation and 

countermeasures. International Journal of 

Intelligent Enterprise, 4(1/2), 155. 

https://doi.org/10.1504/ijie.2017.10008161 

Garrett, J. (2011). Mobile Banking security. Credit 

Union Magazine, 77(11), 24–28. 

http://search.ebscohost.com/login.aspx?direct=

true&db=buh&AN=67298352&site=ehost-live 

Hayikader, S., Hadi, F. N. H. A., & Ibrahim, J. 

(2016). Issues and security measures of mobile 

banking apps. International Journal of 

Scientific and Research Publications, 6(1), 36–

41. http://irep.iium.edu.my/53522/ 

Intents and Intent Filters. (2022). Developers. 

https://developer.android.com/guide/componen

ts/intents-filters 

Kumar, C. (2020). 11 Mobile App Scanner to Find 

Security Vulnerabilities. 

https://geekflare.com/mobile-app-security-

scanner/ 

Lin, Y.-C. (2015). AndroBugs Framework: An 

Android Application Secrity Vulnerability 

Scanner. 1–14. 

 



 55  

 

Luvanda, A. (2014). Proposed Framework for 

Securing Mobile Banking Applications from 

Man in the Middle Attacks. 4(12), 20–28. 

Markiewicz, M. (2018). Android Security Analysis 

Tools, part two - DIVA app and AndroBugs. 

https://www.netguru.com/blog/android-

security-analysis-tools-part-two-androbugs 

Nilsson, A., & Lehmann, S. (2020). Make Banking 

Simple Again. 1–57. 

Nwoduh, U. J. (2019). Development of an 

Enhanced Mobile Banking Security : Multi- 

Factor Authentication Approach. International 

Journal of Electrical and Telecommunication 

System Research, 10, 2017–2019. 

 

 

 

Palma, F., Realista, N., Serrao, C., Nunes, L., 

Oliveira, J., & Almeida, A. (2020). Automated 

security testing of Android applications for 

secure mobile development. Proceedings - 

2020 IEEE 13th International Conference on 

Software Testing, Verification and Validation 

Workshops, ICSTW 2020, 222–231. 

https://doi.org/10.1109/ICSTW50294.2020.00

046 

PwC. (2018). How to seize the Open Banking 

opportunity. 1–52. 

https://www.pwc.co.uk/industries/financial-

services/insights/seize-open-banking-

opportunity.html 

Szczepanik, M., & Jóźwiak, I. (2018). Security of 

mobile banking applications. Advances in 

Intelligent Systems and Computing, 

635(January 2006), 412–419. 

https://doi.org/10.1007/978-3-319-64474-5_35 

 


