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A B S T R A C T   

Wetlands are among the most productive natural ecosystems globally, providing crucial ecosystem services to 
people. Regrettably, a substantial 64 % –71 % of wetlands have been lost worldwide since 1900, mainly due to 
changes in land use and land cover (LULC). This issue is not unique to Zambia’s Bangweulu Wetland System 
(BWS), which faces similar challenges. However, there is limited information about the LULC changes in BWS. 
Furthermore, finding accurate and cost-effective methods to understand LULC dynamics is complicated by the 
multitude of available techniques for LULC classification. Non-parametric methods like Machine Learning (ML) 
offer greater accuracy, but different ML models come with distinct strengths and weaknesses. Combining mul-
tiple models has the potential to create a more precise LULC classification model. Open-source software like QGIS 
and spatial data like Landsat also play a significant role in this endeavour. The primary objective of this study 
was to enhance the accuracy of modeling LULC changes in wetland areas. Six ML models: Support Vector Ma-
chine (SVM), Naive Bayes (NB), Decision Tree (DT), Artificial Neural Network (ANN), Random Forest (RF), and 
K-Nearest Neighbour (KNN) were used for LULC image classification of Landsat 8 (2020 image) and Landsat 5 
(1990, 2000, and 2010 images) in QGIS. Four models: SVM, NB, DT, and KNN, performed better than the other 
models. Consequently, The Quad (4) hybrid model was created by fusing the maps from these four models with 
the highest performance. Results revealed that the fusion of the four classified maps of the SVM, NB, DT, and 
KNN (Quad hybrid model) showcased superior performance compared to the individual models with Kappa 
Index scores of 0.87, 0.72, 0.84 and 0.87 for the years 1990, 2000, 2010 and 2020, respectively. The analysis of 
the LULC changes from 1990 to 2020 showed a yearly decline of -1.17 %, -1.01 %, and -0.12 % in forest, 
grassland, and water body coverage, respectively. In contrast, built-up areas and cropland increased at rates of 
1.70 % and 2.70 %, respectively. This study underscores the consistent growth of cropland and built-up areas 
from 1990 to 2020, alongside the reduction of forest cover and grassland. Although the water body experienced a 
gradual decrease over this period, the decline was minimal. Long-term monitoring will be essential for evaluating 
the success of interventions, guiding conservation efforts, mitigating negative impacts on the wetland ecosystem, 
and determining whether the reduction in water bodies is a sustained trend or a short-term phenomenon.   

Introduction 

Global wetlands are distinct ecosystems in which the water table is 
usually at or near the land surface or the land is flooded by water (Kumar 
and Kanaujia, 2018). Ramsar Convention on Wetlands (2018) estab-
lished that wetlands encompass an approximate area of 12.1 million 
square kilometers (Km2) worldwide, of which 54 % are consistently 
submerged by water, and 46 % are periodically inundated. Wetlands 
provide a wide range of economic, social, environmental, and cultural 

benefits that are collectively referred to as ecosystem services (Costanza 
et al., 1997). Zedler and Kercher (2005) emphasized that despite 
covering merely 1.5 % of the Earth’s surface, wetland ecosystems play a 
crucial role in providing approximately 40 % of global ecosystem ser-
vices. These services include (1) provisioning services (food, fresh water 
supply, fiber, and fuel), (2) regulation service (influence on air quality, 
climate regulation, regulation of water flows, erosion prevention) (3) 
habitat/support services (gene pool protection, lifecycle maintenance) 
(4) cultural services (recreation/tourism, spiritual, aesthetic) (Zedler 
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and Kercher, 2005; De Araujo Barbosa et al., 2015). 
African wetlands play a crucial role in providing essential ecosystem 

services that directly support the livelihoods of numerous rural com-
munities (Simaika et al., 2021). Despite the multitude of benefits that 
wetlands provide, they face significant threats due to land use/land 
cover (LULC) changes which include the establishment of settlements, 
expansion of agricultural activities, and various other human-related 
actions (Winton et al., 2021) which are far more prevalent than natu-
ral phenomena like storms, landslides and earthquake (Galatowitsch, 
2018). 

Banda et al. (2023) reported that LULC changes are among the many 
drivers that profoundly impact ecosystem services by altering the nat-
ural functions of wetlands. Davidson (2014) also reported that 64–71 % 
of wetlands have been lost worldwide since 1900 due to anthropogenic 
factors. Zhang et al. (2021) added that the anthropogenic factors such as 
urban growth, has led to wetlands being drained, filled, or altered, 
resulting in the loss of valuable wildlife habitats (FAO, 2017; Xu et al., 
2019). Furthermore, 80 % of global wastewater enters wetlands, posing 
health risks (FAO, 2017; Xu et al., 2019). Xu et al. (2019) also added that 
these factors actually threaten the health and survival of the major 
wetlands. Therefore, Maitima et al. (2010) concluded that LULC changes 
can have detrimental effects such as modifying the wetlands’ ability to 
control floods, disrupting sediment and nutrient transport, compro-
mising aquatic biodiversity, obstructing the migration routes of aquatic 
organisms, increasing soil salinity, making wetlands more susceptible to 
erosion, and disturbing the connectivity of river systems. 

Zambia has eight wetlands designated as wetlands of international 
importance, which are spread throughout seven river basins (Ngoma 
et al., 2017; Ren et al., 2021). These wetlands, especially the Bangweulu 
(meaning “water meets the sky”) Wetland System (BWS), are critical for 
biodiversity and environmental services. The BWS is one of Zambia’s 
most highly prioritised sub-catchments for protection (Lehner et al., 
2021). However, the BWS faces the threats of LULC changes such as 
excessive exploitation of ecosystem services by local populations, un-
sustainable development and fishing practices, deforestation, and agri-
cultural expansion (Kamweneshe et al., 2003; Zambia Wildlife 
Authority, 2006; Zambia Environment Outlook Report 4, 2017). Despite 
these threats, literature is inadequate on the LULC changes related to the 
BWS and its surrounding areas. The surrounding areas consist of regions 
where streams flow into the BWS (Kamweneshe et al., 2003; Zambia 
Wildlife Authority, 2006). This knowledge gap complicates under-
standing and effectively managing the dynamic nature of the BWS. 

Timely and accurate detection of changes in the BWS surface features 
is critical for wetland conservation, sustainable development, and water 
resource management as well as understanding the interactions between 
human and natural phenomena (Lu et al., 2004; Wulder et al., 2019). 
Recent advances in remote sensing tools and techniques enable re-
searchers to detect and monitor such changes at a large scale, as remote 
sensing data like Landsat data are used as the primary source for change 
detection (Hemati et al., 2021). The Landsat data are crucial for envi-
ronmental and ecological monitoring as they provide early baseline data 
for change detection in areas with valuable ecosystems (Wulder et al., 
2019; Hemati et al., 2021). 

It should be noted that for several decades, the statistical approach, 
specifically parametric methods, has served as the conventional method 
for fitting models in LULC classification. This approach operates under 
the assumption that the data is generated using a stochastic data model 
(Loussaief and Abdelkrim, 2017). The challenge with this approach is 
that they work with a pattern that can be statistically well analysed but 
can not be predicted precisely. As a result, statistical data model con-
clusions are about the model’s mechanism rather than nature’s mech-
anism; if the model is a poor emulator of nature, the conclusion may be 
incorrect (Breiman, 2001a; Loussaief and Abdelkrim, 2017). Further-
more, statistical models in spatial LULC analysis are problematic 
because they assume that data is statistically independent and uniformly 
distributed. However, spatial LULC data are highly heterogeneous and 

tend to be dependent, a phenomenon known as spatial autocorrelation 
(Charif et al., 2012). 

Machine Learning (ML) is a field of artificial intelligence (AI) and 
computer science that is based on the idea that systems can learn from 
data and algorithms modeling culture to mimic how humans learn, 
identify patterns, and make decisions (Breiman, 2001a; Chollet, 2017). 
The use of ML models in this research was primarily motivated by the 
models’ universal approximation capabilities and high performance in a 
wide range of scientific fields (Charif et al., 2012). ML employs algo-
rithmic models that treat the data mechanism as unknown, complex, and 
highly heterogeneous. In addition, algorithmic modeling can be used on 
large complex data sets as well as on smaller data sets as a more accurate 
and informative alternative to statistical data modeling (Breiman, 
2001a; Loussaief and Abdelkrim, 2017). 

ML algorithms can be used to predict how ecosystems respond to 
changes in environmental variables by detecting nonlinear empirical 
relationships between variables based on a set of representative data sets 
(Antunes et al., 2021; Sadiq et al., 2019). Hence, ML algorithms prove to 
be valuable tools for modeling complicated ecosystems like wetlands. 
Their advantages encompass operational simplicity, reliability in 
handling nonlinearity, robustness, and the ability to handle noisy data 
(Kang et al., 2012; Antunes et al., 2021). There are several classification 
algorithms used in ML which include: (1) Artificial Neural Networks 
(ANNs), (2) Naïve Bayes (NB), (3) Support Vector Machines (SVM), (4) 
Decision Tree (DT), (5) Random Forest (RF), and (6) K-Nearest Neigh-
bour (KNN) algorithms, among others. 

ML models, being diverse in nature, possess unique sets of strengths 
and weaknesses that set them apart from one another. These distinctions 
arise due to differences in algorithmic approaches, training data re-
quirements, interpretability, generalisation capabilities, computational 
efficiency, methods, time and space, and robustness to noise (Cutler 
et al., 2012; Qiu et al., 2015; Chen et al., 2020). Therefore, experi-
mentation and evaluation of different ML models on the specific task are 
crucial to determine the best model that is capable of achieving reliable 
accuracy (Maxwell et al., 2018; Camargo et al., 2019; Talukdar et al., 
2020). The multiple best models can then be integrated into a hybrid 
model which would allow for the creation of a more powerful and ac-
curate model by leveraging the diverse strengths and weaknesses of 
different models (Polikar, 2006; Rokach, 2010). 

The use of machine learning approaches such as SVM, DT, AAN, RF, 
NB, and KNN in Africa has shown success in improving LULC classifi-
cation performance (Boateng et al., 2020; Mahmoud et al., 2023; Yuh 
et al., 2023). However, these methods often require significant image 
pre-processing, especially with coarse-resolution images, to reduce un-
certainties in LULC classifications. Furthermore, there has been limited 
application of these approaches to effective monitoring of changes in 
LULC within wetland areas across Africa (Yuh et al., 2023), where 
coarse-resolution satellite images are frequently the only available op-
tion. Existing studies have generally relied on applying only a single 
method (Gxokwe et al., 2023; Thamaga et al., 2022; Yuh et al., 2023), 
which can increase classification uncertainties relative to the use of an 
ensemble approach. 

The contributions of this study to literature include the use of six 
distinct ML models (SVM, NB, DT, ANN, RF, and KNN) for the LULC 
classification of Landsat data. In addition, the paper presents a novel 
method for achieving a more accurate LULC classification: it builds a 
Quad hybrid model by combining the maps from the four top- 
performing ML models (SVM, NB, DT, and KNN). This kind of classifi-
cation approach was also recommended by Ouma et al. (2022) who 
concluded that this strategy could perform better than individual 
models. Furthermore, the research offers valuable perspectives on LULC 
changes in the study area, with possible implications for policy and 
management choices, these contributions deepen our understanding of 
LULC dynamics and wetland protection. 

The main objective of this study was to enhance the accuracy of 
modeling LULC changes in wetland areas, encompassing the past and the 
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present (1990 to 2020). This could facilitate informed decision-making 
processes for wetland management and conservation, particularly in 
developing nations. The following were the specific objectives: (1) to 
identify the best performing ML models in LULC classification, (2) to 
develop a superiorly hybrid ML model for modeling the past and present 
LULC changes (from 1990 to 2020), and (3) to determine the extent of 
LULC changes between 1990 and 2020. In this research, it was 
hypothesised that integrating multiple machine learning models into a 
hybrid model could result in improved performance compared to indi-
vidual models alone. 

Materials and methods 

Study area description 

The BWS, located in Zambia’s upper Congo River basin, covers an 
area of about 30,000 km2, with over 11,900 km2 of seasonally flooded 
plains and permanent swamps. The system is characterised by seasonal 
flooding, which impacts the local economy and environment. The 
climate is divided into three distinct seasons: a cool dry season from 
April to August, a hot dry season from August to October, and a warm 
wet season from November to April. The wetland is fed by 17 major 
rivers from a catchment area of 190,000 km2 but is only drained by one 
river, the Luapula River (Kamweneshe et al., 2003). 

The BWS has five vegetation zones: upper mainland woodland, 
fringing open woodlands, termitaria and fringing grasslands, seasonal 
floodplain, and permanent swamp. Upper mainland woodlands consist 
of miombo trees and grassy understory. Termitaria zones have dense 
tree and shrub growth due to termite mounds. Open waters have sub-
merged macrophytes, while flooded areas near papyrus swamps are 
dominated by grass. Deep-water floodplains have semi-floating grasses 
and sedges, including permanently inundated sections (Fanshawe, 1971; 
Storrs, 1995; Zambia Wildlife Authority, 2006). 

The area is home to both endemic species like black lechwe and 
numerous bird species, as well as a human population of over 50,000 
living within the wetland (Kamweneshe et al., 2003; Zambia Wildlife 
Authority, 2006). The study area (Fig. 1) is a sub-catchment of the 
Luapula River Basin with an estimated area of 75,158.143 Km2 which 

covers the Bangweulu Wetland (30,000 km2) and the surrounding areas 
(45,158.143 Km2). 

Methods for data collection and analysis 

Field and spatial data 
Several studies highlight the significance of having a sufficient 

number of training samples and the general pattern of enhanced clas-
sification accuracy as the sample size increases. However, these studies 
do not explicitly offer specific conclusions or optimal recommendations 
for sample sizes in LULC classification tasks as the appropriate sample 
size is determined by various factors, including the type of model used, 
predictor variables, LULC class definition, as well as the size and spatial 
characteristics of the study area (Ma et al., 2017; Hernandez et al., 2020; 
Mohammadpour et al., 2022). 

Ramezan et al. (2021) investigated the impact of sample size on 
various machine-learning models. The results revealed a minimal 
decrease of 1 % in overall accuracy when the training sample size ranged 
from 315 to 10,000 samples. Moraes et al. (2021) also conducted a study 
on the impact of sample size (50 to 6000 samples) in LULC classification 
using Random Forest and found that 2000 samples achieved the highest 
accuracy (73.7 %), while 6000 samples yielded the lowest accuracy 
(71.5 %). Despite a drastic reduction in training sample units, there was 
only a 2 % accuracy variation, indicating consistent classification ac-
curacy performance. Furthermore, different studies have used different 
numbers of training samples. For example, Kulkarni & Lowe (2016) 
trained the Random Forest model using the dataset of 600 samples and 
achieved an overall accuracy of 96 %. Laban et al. (2019) utilized 708 
training and validation samples for various machine learning LULC 
classifications, resulting in an overall accuracy rate of 92.7 %, 92 %, 
92.1 %, and 94.4 % for the RF, K-NN, ANN, and SVM algorithms, 
respectively. 

In view of the above, this research considered the use of cost- 
effective methods by using minimum training samples that could still 
yield desirable performance for modeling LULC changes. Therefore, we 
employed purposive sampling, wherein the researcher selected elements 
to be included in the sample based on their relevance to the study topic 
and the prevailing conditions in the field as described by Etikan (2016). 

Fig. 1. The location of the Bangweulu Wetland System and the surrounding areas in Zambia. The red boundary shows the exact extent of the study area, which is a 
sub-catchment of the Luapula Basin. 
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We used a combination of field surveys conducted between October to 
December 2022 and March to April 2023, and a visual inspection of 
very-high-resolution images available on Google Earth Pro-to collect 
training and validation data for the 2020 image. This approach allowed 
us to create a total of 800 polygons for training and validation purposes. 

During the field investigations, 315 geometry points were collected 
from accessible areas representing various LULC categories, namely 
built-up areas (including roads, settlements, and barren land), grass-
lands (all grass types and open shrubs), forests (encompassing thick 
shrubs and wooded regions), croplands, and water bodies. The geometry 
points were superimposed on the 2020 Landsat image and 315 polygons 
were created based on the location of geometry points. 

Additionally, the 315 training and validation polygons were sup-
plemented with 485 other polygons. This supplemental dataset of 
polygons was created through visual inspection of high-resolution im-
ages obtained from Google Earth Pro, which represented various LULC 
classes and served as an additional source of information for training 
and validating the models. To obtain the coordinates and attribute in-
formation of LULC, we primarily relied on a handheld global positioning 
system (GPS). We also relied on a visual inspection of the Google Earth 
pro time series, the Landsat images, and the researcher’s expertise to 
create the training and validating dataset of polygons for 1990, 2000, 
and 2010 images. 

Data partitioning 
The dataset containing 800 polygons was partitioned into five seg-

ments based on the following percentages: 60 %, 10 %, 10 %, 10 %, and 
10 %, resulting in 480, 80, 80, 80, and 80 polygons, respectively. The 60 
% portion and one of the 10 % portions were allocated for model 
development and validation, respectively. The remaining three 10 % 
portions were set aside specifically for conducting triple post- 
classification accuracy assessment, as illustrated in Fig. 3. A triple 
cross-validation was used to enhance the reliability of the model’s LULC 
classification and the averaged results obtained through cross-validation 
were reported as the main performance of the model. Reporting aver-
aged metrics enhances transparency and facilitates fair comparisons 
among different models. These results provide a more robust and 
representative evaluation, accounting for the variability of the data and 

offering a reliable estimate of the model’s performance on unseen 
samples (Basheer et al., 2022; Hosseiny et al., 2022). Fig. 2 shows the 
distribution of training and validation polygons in the study area. 

Spatial data 
Annual average conditions of preprocessed images of Landsat 5 

(1990, 2000, and 2010 images) and Landsat 8 (2020 image) with four 
bands (near-infrared, red, green, and blue) of the Bangweulu Wetland 
and the surrounding areas were downloaded from Climate Engine (http 
s://app.climateengine.com/climateEngine). The annual average condi-
tions of pre-processed images are single average images generated by 
the Climate Engine by combining several input images from January to 
December (Huntington et al., 2017). The downloaded images were 
classified using various machine learning algorithms (ANN, NB, SVM, 
DT, RF, and KNN algorithms) through the Orfeo Toolbox in QGIS 3.28.5. 

Model development and accuracy assessment 
Various algorithms, namely ANN, NB, SVM, DT, RF, and KNN were 

used for model development. The models were created using a total of 
480 reference polygons as training data samples, and an additional 80 
reference polygons were reserved for evaluating the accuracy of the 
models. This process is visually depicted in Fig. 3. Among the developed 
models, those that demonstrated exceptional performance, surpassing 
the others with a Kappa Index (KI) exceeding 0.60 were selected for 
further analysis based on Table 2. 

Model development set parameters 
The parameters for various algorithms used in the model develop-

ment were established by taking into consideration the guidelines of 
various scholars as well as fine-tuning their specific parameters through 
trial and error thereby ensuring that each model achieved the best 
possible performance. For RF, the following number of trees were used 
for fine turning 10, 50, 100, and 150. However, different numbers of 
trees did not provide sufficient influence on the classification results. 
This observation was expected as it has already been reported by other 
scholars (Guan et al., 2013; Belgiu and Drăgu, 2016). Therefore, the 
default setting value (100) of the Orfeo Toolbox in QGIS was used. 
Similarly, the default value (32) of K was also used for KNN. For SVM 
and DT, the parameters used were based on the findings of various 
scholars (Gholami and Fakhari, 2017; Abidi et al., 2020; Ramezan et al., 
2021). The parameters used are presented in Table 1. 

Image classification and triple cross validation 
The selected models were employed to classify images from the years 

1990, 2000, 2010, and 2020. The resulting classified maps underwent 
triple cross-validation using three distinct sets of 80 reference polygons. 
Cross-validation is a widely used procedure for validation of the LULC 
classification models. One subset of the dataset is used for model 
training, and another subset is used for validation. This is done for 
multiple (k-fold) times, and the results are eventually averaged to get a 
more robust assessment of the model’s performance (Hayes et al., 2014). 
In this research post classification model validation was done using 
three different datasets. Therefore, Triple (3-fold) cross-validation was 
the name given to the three-step cross-validation process, and the 
averaged Kappa Index (KI) was used to select a more accurate model’s 
performance estimate. This accuracy evaluation process was referred to 
as post-classification triple validation. The average value of the KI ob-
tained from this assessment was used to identify the models with the 
highest performance. Models that had a triple cross-validation KI 
average below 0.60 were excluded, while those with a KI exceeding 0.6 
were selected for further analysis, this was based on Table 2. 

Fusion of classified maps and triple cross validation 
The classified maps from the best-selected models were fused to 

create a hybrid map representing the LULC classes for the years 1990, 
2000, 2010, and 2020. The resulting hybrid maps also underwent triple 

Fig. 2. Distribution of the model development, validation, and post -classifi-
cation cross-validation polygons for 2020 Landsat image based on field data 
and Google Earth Pro. For the red polygons (560 polygons), the algorithms 
picked at random 480 and 80 polygons for model development and validation, 
respectively. 
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cross-validation using the same three sets of 80 reference polygons. This 
was done to compare the accuracy of the hybrid classified maps with the 
individual models classified maps (refer to Figs. 3 and 6). 

Area changes between 1990 and 2020 
The change map was realised by finding the difference between the 

2020 and 1990 hybrid maps. In addition, the annual rates of LULC 
change (ARC) as illustrated in Eq. (1), were calculated using the 
following formula: 

ARC = ((LULC end − LULC start) /LULC start) ∗ 100/(number of years).
(1) 

Where:  

• LULC_start is the value of LULC at the start of the period.  

• LULC_end is the value of LULC at the end of the period.  
• Number of years: years between the start and end of the period. 

Metrics for accuracy assessment 
The metrics employed to evaluate the accuracy of the models’ per-

formances were the Kappa Index (KI) (Eq. (2)), Overall Accuracy (OA) 
(Eq. (3)), and F-score (Eq. (4)) of the LULC classes. 

Kappa index 
The Kappa index (KI) was calculated as shown in Eq. (2) (Alshari and 

Gawali, 2022; Zhang et al., 2021). 

KI =
(Po − Pe)
(1 − Pe)

(2) 

Where: 

Fig. 3. A summary of the research materials and method.  
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• Po is the proportion of agreement between classified LULC classes and reference 

datasets. 
• Pe is the sum of the product of the row and column marginal pro-

portions for each category, divided by the total number of observa-
tions squared. 

KI value ranges from − 1 to 1, Where:  

• KI = 1 indicates perfect agreement.  
• KI = 0 indicates agreement that is no better than chance.  
• KI < 0 indicates agreement worse than chance. 

Overall Accuracy 
The Overall Accuracy (OA) as illustrated in Eq. (3), provides a 

measure of how accurately the model assigns the correct class to each 
pixel or sample. The equation sums up the correctly classified samples 
(both positive and negative, i.e., the sum of the values on the major 
diagonal) and divides it by the total number of samples in the dataset 
(Congalton, 2001). 

OA=
(TP + TN)

(TP + TN + FP + FN)
(3) 

Where:  

• TP (True Positive) represents the number of correctly classified pixels 
or samples belonging to the positive class.  

• TN (True Negative) represents the number of correctly classified 
pixels or samples belonging to the negative class.  

• FP (False Positive) represents the number of incorrectly classified 
pixels or samples that were wrongly assigned to the positive class.  

• FN (False Negative) represents the number of incorrectly classified 
pixels or samples that were wrongly assigned to the negative class. 

• OA ranges from 0 to 1, where 1 indicates perfect classification ac-
curacy and 0 indicates no accuracy at all. 

F-Score 
The F-score (Eq. (4)), also referred to as the F1 score or F-measure 

serves as a performance metric for evaluating Machine Learning models. 
It combines precision and recall into a single metric by calculating their 
harmonic mean. This harmonic mean places more emphasis on lower 
values, making it a suitable metric when precision and recall need to be 
balanced. Precision measures the accuracy of positive predictions, while 
recall quantifies the model’s ability to identify all positive samples. The 
F-score, ranges from 0 to 1, with higher values indicating better accu-
racy (Dalianis, 2018). 

F − score = 2 ∗

(
Precision ∗ Recall
Precision + Recall

)

(4) 

However, the KI in this research was the primary metric used in the 
elimination of underperforming models. Any model with KI less than 
0.60 was eliminated. This was based on (Landis and Koch, 1977; 
McHugh, 2012) as depicted in Table 2. 

Fig. 3 serves as a comprehensive visual representation of all the 
different materials and methods we used in this research and how they 
were combined at different stages. 

Results 

Model development accuracy assessment 

The findings indicated that the KNN algorithm exhibited the highest 
accuracy in model development for the 1990, 2000, and 2020 images, 
yielding KI values of 0.958, 0.918, and 0.969, respectively. However, for 
the 2010 images, the SVM algorithm displayed the highest model 
development accuracy with a KI of 0.964 (refer to Fig. 4). Generally, all 
the algorithms showed consistent and robust performance across 
different classes of LULC, with F-scores ranging from 0.764 to 1 
(Table 3). The highest accuracy was achieved in identifying water 
bodies, with an F-score of over 99 % (Table 3), indicating near-perfect 
classification results for this specific class. This evaluation suggests 
that all the algorithms are effective in LULC classification, especially for 
water bodies, which is critical for various environmental and geospatial 
applications. ANN model which could not be executed due to a bug in 
the latest version of QGIS Desktop 3.28.5, therefore, was excluded at this 
stage and was not considered in the subsequent analysis. 

LULC classification and triple cross-validation (Post classification 
accuracy) 

The selected models (SVM, NB, DT, RF, and KNN) were used to create 
LULC maps for the study area. To evaluate the accuracy of the classified 
maps, a triple cross-validation approach was utilised, incorporating 80 
samples organised in triplets (refer to Fig. 3 above). Upon assessing the 
results, it was observed that all models generally exhibited poor per-
formance in classifying cropland in 1990 and 2000, indicated by F- 
scores ranging from 0.06 to 0.42 (Table 4). This poor performance was 
attributed to the low quality of the 1990 and 2000 Landsat 5 images 
which had sparkles. 

The RF model performed well on the training data but it could not 
generalise well to the new, unseen data model for the classification of 
1990 and 2000 images where it failed to meet the KI threshold of 0.60 
(refer to Fig. 5 and Table 2). The primary factor contributing to the RF 
model’s low performance was its misclassification of the built-up, 
grassland, and cropland classes of the 1990 image, with corresponding 
F-scores of 0.070, 0.011, and 0.264, respectively (refer to Table 4). 
Furthermore, the model struggled in classifying forest cover and crop-
land in 2000 images, achieving F-scores of 0.529 and 0.281, respectively 

Table 1 
The specific input parameter values for different models.   

Model  Parameters  

1 SVM Kernel type Cost Gamma SVM 
type 

RBF 4 0.033 CSVC 

2 DT Maximum depth 
of Trees 

Minimum number of 
samples in each node 

Random 
seed    

10 10 0  
3 RF Number of trees 

in forest 
Random seed – –   

100 0   
4 KNN Number of 

Neighbours 
– –    

32    
5 NB – – – – 

*Assumption: the parameters used in Table 1 were assumed to be optimal. 
RBF: Radial Basis Function kernel, CSVC: Complex-valued Support Vector 
Classifier. 
ANN: is missing from the list because it could not be executed (check Section 
3.1). 

Table 2 
KI interpretation.  

Value of Kappa Index Level of Agreement 

− 1 - 0.20 None 
0.21 - 0.39 Minimal 
o.40 - 0.59 Weak 
0.60 - 0.79 Moderate 
0.80 - 0.90 Strong 
Above 0.90 Almost Perfect 

Adapted from Landis & Koch (1977) and McHugh (2012). 
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(refer to Table 4). The observed low F-score by the RF model in built-up, 
cropland, and grassland classification could potentially be attributed to 
the study area’s unique characteristics. Specifically, the majority of the 
study area consists of remote regions characterised by thatched mud 
houses, which are surrounded by agricultural fields, bare land, fallow 
land, and grassland. These LULC types may share similarities in terms of 
color, texture, and shape, making it challenging to accurately distin-
guish between cropland, grassland, and built-up areas (Lasanta and 
Vicente-Serrano, 2012; Wambugu et al., 2021). Consequently, the RF 
model was excluded at this stage and not considered for further analysis. 
The SVM, NB, DT, and KNN models exhibited strong performance with 
KI values ranging from 0.60 to 0.86. As a result, these models were 
selected for subsequent evaluation (refer to Fig. 5 and Table 4). 

Fusion of selected models’ maps and triple cross-validation 

The classified maps generated by the remaining four selected models 
(SVM, NB, DT, and KNN) were fused to produce a single hybrid map for 
each of the years 1990, 2000, 2010, and 2020. This fusion of the clas-
sified maps from the four models is referred to as the Quad (4) hybrid 
model. To evaluate the accuracy of the LULC maps derived from the 
Quad hybrid model, a triple cross-validation approach was employed, 
using the same 80 samples organised in triplets as described earlier 
(Fig. 3 above). 

It was observed that the Quad hybrid model developed as a superior 
machine learning model by combining the classified maps from SVM, 
NB, DT, and KNN, exhibited superior performance compared to using 
individual models alone. This was evident from the F-scores, OA, and KI 
values obtained across all classes (Fig. 6 and Table 4). Specifically, for 
the years 1990, 2000, 2010, and 2020, the Quad hybrid model achieved 
KI values of 0.87, 0.72, 0.84, and 0.87, respectively (Fig. 6). These 
values indicated a higher level of accuracy and reliability in the classi-
fication results compared to using the individual models separately. 

LULC maps between 1990 and 2020 

The Quad hybrid model was employed to produce hybrid maps (from 
the years 1990, 2000, 2010, and 2020) with five distinct LULC classes, 
namely forests, built-up areas, grasslands, bodies of water, and cropland. 
The changes in LULC over the period from 1990 to 2020 were docu-
mented and analysed. The findings revealed a general upward trend in 
land use activities, particularly in the regions encompassing the islands 
in the wetland and the surrounding wetland areas (Fig. 7 and Table 5). 

Bangweulu wetland and the surrounding area change map from 1990 to 
2020 

The creation of LULC change maps for the period between 1990 and 

Fig. 4. Model development Kappa Index of different machine learning models.  

Table 3 
Model development F-Score of different machine learning models.  

Model Development F-Score of Class   Model Development F-Score of Class  

Model F Forest Built-up Grassland Water Cropland  Model F Forest Built-up Grassland Water Cropland  

NB 0.969 0.979 0.921 1 0.951  NB 0.912 0.989 0.857 0.998 0.842  
DT 0.964 0.986 0.905 1 0.941  DT 0.911 0.990 0.846 1 0.858 

1990 KNN 0.970 0.988 0.920 1 0.953 2000 KNN 0.928 0.990 0.876 1 0.877  
RF 0.959 0.987 0.876 1 0.917  RF 0.871 0.990 0.764 1 0.826  
SVM 0.961 0.988 0.905 1 0.947  SVM 0.912 0.991 0.829 1 0.837   

Model Development F-Score of Class   Model Development F-Score of Class  

Model F Forest Built-up Grassland Water Cropland  Model F Forest Built-up Grassland Water Cropland  

NB 0.978 0.980 0.949 1 0.937  NB 0.982 0.978 0.898 0.995 0.865  
DT 0.976 0.986 0.931 1 0.921  DT 0.994 0.985 0.891 0.996 0.883 

2010 KNN 0.976 0.989 0.940 1 0.931 2020 KNN 0.984 0.990 0.959 1 0.942  
RF 0.966 0.988 0.868 1 0.880  RF 0.995 0.986 0.831 0.999 0.844  
SVM 0.975 0.988 0.948 1 0.944  SVM 0.996 0.986 0.912 0.995 0.907  
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2020 involved a comparison of classified images from those respective 
years. This pixel-by-pixel analysis enabled the identification of areas 
where changes in LULC had taken place. The resulting change map 
provided a visual representation of the alterations in the distribution and 
composition of different LULC classes from 1990 to 2020 (Fig. 7A to D). 
The LULC change map (Fig. 7E) serves as a valuable tool for compre-
hending and monitoring environmental changes and evaluating the 
impacts of human activities. It highlights notable transitions that 
occurred during the studied period, such as the conversion of more than 
13,119 Km2 of forest cover and 4821.3 Km2 of grassland area into 
cropland (Fig. 8). These findings provide valuable insights into the dy-
namic nature of the landscape and can aid in making informed decisions 
regarding land use and resource management. 

The geographical extent and the corresponding percentage coverage 
values for the LULC maps depicted in Fig. 7 are detailed comprehen-
sively in Table 5. 

Trend analysis of different LULC classes (1990 – 2020) 

The analysis of trend curves for various LULC classes revealed 
noticeable deviations, encompassing both gains and losses. A compre-
hensive summary of the LULC variations within the study area from 
1990 to 2020, can be found in Table 6, as well as Figs. 8, 9 and 10. 
Generally, the findings indicated a decline in forest cover, water bodies, 
and grasslands, while there was an increase in cropland and built-up 
areas between 1990 and 2020. Forest cover remained relatively stable 
between 1990 and 2010 but experienced a significant decrease there-
after until 2020. The grassland exhibited a sharp reduction in size be-
tween 1990 and 2010, followed by a period of stabilization. Water 
bodies also demonstrated a notable decrease from 1990 to 2010, but a 
positive change was observed between 2010 and 2020 as shown in 
Figs. 9 and 10. 

Built-up area change analysis 
The built-up area in the Bangweulu Wetland and its surrounding 

areas has undergone a significant increase between 1990 and 2020, as 
observed from the assessment of changes in the classified maps. Spe-
cifically, the built-up area has expanded from 428.89 Km2 to 873.29 
Km2, representing a growth of over 50 % (Figs. 9 and 10, and Tables 6). 
The period from 1990 to 2000 witnessed the most substantial rise in the 
built-up area, with an increase of more than 40 %, this kind of trend was 
observed by other studies (Kafy et al., 2020, 2022; Taiwo et al., 2023). 
This was followed by the period from 2010 to 2020, which recorded a 
growth of 23.44 %. The period from 2000 to 2010 experienced a 
comparatively lower increase of 17.27 % (Fig. 10 and Table 6). The 
annual rate of change (ARC) of the built-up areas from 1990 to 2020 was 
1.7 % (Table 6). 

Forest cover change analysis 
The forest cover in the Bangweulu Wetland and its surrounding areas 

exhibited a significant decline between 1990 and 2020. The average 
ARC for this period was calculated at − 1.17 %, (Table 6) indicating a 
notable decrease in forest cover over time. This type of trend was also 
observed by other studies (Kafy et al., 2022; Rahaman et al., 2022). 
Specifically, the forest cover decreased from 43,185.75 Km2 to 31, 
973.485 Km2, which corresponds to a decline of 35.07 % between 1990 
and 2020 (Figs. 9 and 10, and Table 6). The most substantial decrease in 
forest cover occurred during the decade from 2010 to 2020, with a 
reduction of 23.50 %. This was followed by the period from 1990 to 
2000, which witnessed a decrease of 2.85 %. Comparatively, the 
smallest decrease in forest cover was observed during the period from 
2000 to 2010, with a decline of only 0.38 % (Fig. 10 and Table 6). 

Cropland area change analysis 
The cropland areas in the Bangweulu Wetland and its surrounding 

areas exhibited a remarkable increase from 3925.11 Km2 to 20,607.57 Ta
bl
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Km2, representing a growth of 80.95 % between 1990 and 2020 (Figs. 9 
and 10, and Table 6). A similar trend was also observed by Gxokwe et al. 
(2023). The average ARC for this period was calculated at 2.7 % 
(Table 6), indicating a consistent upward trend in cropland expansion. 
The most substantial increase in the area under crop production 
occurred between 2010 and 2020, with a notable rise of 83.28 %. This 
was followed by a 70.28 % increase between 2000 and 2010 and a 68.23 
% increase between 1990 and 2000 (Fig. 10 and Table 6). 

Water body change analysis 
This particular LULC class holds significant importance within the 

study area. Compared to other LULC classes, the observed changes in 
this class were found to be minimal as also observed by Faisal et al. 
(2021), Kafy et al. (2022) and Gxokwe et al. (2023). Specifically, the 
water body exhibited an overall decrease from 2611.03 Km2 to 2518.83 
Km2, resulting in a decline of 3.66 % between 1990 and 2020 (Figs. 9 
and 10, and Table 6). The average ARC for this period was calculated at 
− 0.12 % (Table 6), indicating a slight downward trend in water body 

coverage. During the period from 1990 to 2000, the water body expe-
rienced the highest decrease, with a reduction of 118.72 Km2 (− 4.55 %). 
This was followed by the period between 2000 and 2010, which had a 
decrease of 1.72 %. However, the period from 2010 to 2020 witnessed 
an increase in the water body, with a growth of 69.33 square kilometers 
(2.83 %) (Fig. 10 and Table 6). 

Grassland change analysis 
Between 1990 and 2020, there was a general decrease in the grass-

land area within the study area, from 25,014.52 Km2 to 19,184.97 Km2, 
representing a decline of 30.39 % (refer to Figs. 8 and 9, and Table 6). 
This form of trend was also observed by other studies (Kafy et al., 2022; 
Rahaman et al., 2022; Gxokwe et al., 2023). The average ARC for this 
period was calculated at − 1.01 (Table 6), indicating a consistent 
downward trend in grassland coverage. The period from 2000 to 2010 
exhibited the highest percentage decline in vegetation, with a decrease 
of approximately 20.56 %. This was followed by the period from 1990 to 
2000, which recorded a decline of 5.38 % in the grassland area. 

Fig. 5. Post-classification accuracy assessment of the performance of different machine learning models.  

Fig. 6. Quad hybrid model performance compared to the four best-selected models.  
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However, the period between 2010 and 2020 showed a minimal in-
crease in the grassland area, with a growth of 2.03 % (Fig. 9 and 
Table 6). 

Fig. 7. Quad Hybrid Model classified maps of LULC for 1990 (A), 2000 (B), 2010 (C), 2020 (D), and 1990 to 2020 LULC change map (E).  

Table 5 
Estimates of LULC area and their percent coverage from 1990 to 2020.  

Class Name 1990 2000 2010 2020 

Area (km2) % Area (km2) % Area (km2) % Area (km2) % 

Forest 43,185.75 57.45 41,956.13 55.70 41,795.70 55.73 31,973.485 42.54 
Built-up 428.89 0.571 603.27 0.80 707.44 0.94 873.29 1.16 
Grassland 25,014.52 33.28 23,668.14 31.42 18,802.39 25.07 19,184.97 25.53 
Water 2611.03 3.47 2492.31 3.31 2449.50 3.27 2518.83 3.35 
Cropland 3925.11 5.22 6603.23 8.77 11,243.94 14.99 20,607.57 27.42  

Fig. 8. The transition of LULC from one class to another class between 1990 and 2020 in the Bangweulu Wetland and its surrounding areas in Zambia.  
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Table 6 
Estimated percentage change in LULC from 1990 to 2020.   

1990 - 2000 2000 - 2010 2010 - 2020 1990 - 2020  

Class name Area change 
(Km2) 

% Relative 
change 

Area change 
(Km2) 

% Relative 
change 

Area change 
(Km2) 

% Relative 
change 

Area change 
(Km2) 

% Relative 
Change 

% 
ARC 

Forest 
Cover 

− 1229.62 − 2.85 − 160.43 − 0.38 − 9822.22 − 23.50 − 11,212.261 − 35.07 − 1.17 

Built-up 
Area 

174.38 40.659 104.18 17.27 165.84 23.44 444.40 50.89 1.70 

Grassland − 1346.38 − 5.38 − 4865.75 − 20.56 382.58 2.03 − 5829.55 − 30.39 − 1.01 
Water Body − 118.72 − 4.55 − 42.81 − 1.72 69.33 2.83 − 92.20 − 3.66 − 0.12 
Cropland 2678.12 68.23 4640.72 70.28 9363.62 83.28 16,682.46 80.95 2.70 

% Relative change is the difference between the LULC_end and the LULC_start divided by the LULC_start and multiplied by 100 {(LULC_end - LULC_start) / (LULC_start) 
* 100}. 
%ARC: Percent Annual Rate of Change as described in Eq. (1) above. (% Relative Change/Time period). 

Fig. 9. Comparative area estimates for various LULC classes between 1990 and 2020.  

Fig. 10. Estimated percent change of different LULC classes between 1990 and 2020.  
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Discussion 

Performance of different models 

As earlier alluded to in Section 1, it’s important to note that the 
performance of ML algorithms varies depending on the specific dataset, 
the complexity of the problem, the availability of data, sample size, 
methods, time and space. As the “No Free Lunch Theorem” suggests: 
there is no universal machine learning algorithm that performs best on 
all possible problems. This theorem highlights the fundamental limita-
tions of ML algorithms in achieving optimal performance across all 
problem domains (Wolpert and Macready, 1997). Therefore, there are 
several reasons why the models in the study performed differently from 
one another as observed in Table 4. First of all, each machine learning 
method has its strengths and weaknesses. For example, some algorithms 
are better at handling complicated interactions and noisy data than 
others, which could be useful for specific LULC types (Adugna et al., 
2022). Secondly, the models’ performance might have been affected 
differently by the dimensionality, noise level, and class imbalance of the 
input data (Sun et al., 2009; Chao et al., 2022). Thirdly, there is a pos-
sibility that some algorithms were more successful for particular classes 
because different LULC classes typically exhibit different degrees of 
separability in the feature space (Abdi, 2020). 

The RF model was excluded from further consideration as it did not 
meet the desired performance expectation (KI > 0.6) for the classifica-
tion of the 1990 and 2000 images as depicted in Fig. 5 above, indicating 
that it was a weaker model compared to DT, SVM, K-NN, and NB based 
on the methods used in this research. The RF is an ensemble model that 
utilises several decision trees as base classifiers, thus it was expected that 
it would outperform DT. However, in this study, DT performed better 
than RF which contradicts several studies (Gislason et al., 2006; Na 
et al., 2010; Kulkarni and Lowe, 2016). This was possible because this 
research used the minimum training sample size based on the previous 
literature. 

DT can outperform the RF algorithm when the training sample size is 
limited due to its ability to create more flexible, simpler, and finer- 
grained decision boundaries which could potentially capture the spe-
cific patterns present in the limited data more effectively (Breiman, 
2001b). Thakur & Panse (2022) also observed that it’s easier to assess 
the performance of DT than RF with smaller data sets. Therefore, the 
underperformance of the RF model could potentially be attributed to the 
limited size of the training samples used in this research, assuming that 
the set parameters (Table 1 above) were optimal. In addition, the RF is 
an ensemble algorithm, which relies on the diversity and quality of weak 
learners (several decision trees), it typically benefits from larger and 
more diverse training data sets to create complex and stronger models, 
and this was also observed by Kulkarni & Lowe (2016) who stated that 
RF works well when provided with large homogeneous training data. 

Thakur & Panse (2022) also added that RF requires a lot of resources 
and computational power as it relies on several decision trees for image 
classification. So, with the limited training sample size used in this 
research, the RF algorithm might have struggled to generalize well to 
unseen instances, as the limited training data set might not have 
adequately represented the full variability of the dataset, which could 
have restricted their ability to leverage the advantages of ensemble 
learning and the benefits of multiple models thereby creating an un-
stable decision tree with reduced accuracy (Caruana and 
Niculescu-Mizil, 2006; Polikar, 2006; Fernández-Delgado et al., 2014). 

The KI and OA obtained from the four best performing models (SVM, 
NB, DT, and KNN) for the LULC classification of the BWS and the sur-
rounding areas (Table 4) were reasonable based on Table 2 and 
consistent with several other studies (Tehrany et al., 2014; Basheer 
et al., 2022; Bayas et al., 2022). However, it is important to note that the 
performance of these four models exhibited differences in the values of 
the KI and OA. The two accuracy metrics (KI and OA) varied not only 
among the models but also with space and time (refer to Table 4). This 

could be attributed to atmospheric, surface, and illumination fluctua-
tions, data sets, feature representation, hyperparameter adjustment, and 
the individual issue domain as observed by several other studies (Foody, 
2008; Leyk et al., 2018; Rwanga and Ndambuki, 2017; Talukdar et al., 
2020). 

Hybrid machine learning 

The fusion of the four models’ maps (SVM, NB, DT, and KNN) pro-
duced the Quad hybrid maps with a higher KI and OA (Fig. 6 and 
Table 4) than any of the four models, showing that the Quad hybrid 
model’s maps of the LULC were more accurate than any of the four 
models. This was expected because combining multiple models into a 
hybrid model allows for the creation of a more powerful and accurate 
model by leveraging the diverse strengths and weaknesses of different 
models as they capture distinct parts of the data and provide comple-
mentary predictions (Bagui, 2005; Polikar, 2006; Rokach, 2010; Chen 
et al., 2017). These results indicate that the Quad hybrid model could be 
an adaptable tool in enhancing the accuracy of modeling LULC changes 
for large-area mapping of wetlands, where there are limitations on re-
sources and time coupled with challenges in gathering a large number of 
high-quality reference samples for calibration. 

Land use/land cover trend analysis from 1990 to 2020 and policy 
implication 

We employed the Quad hybrid model to understand the dynamic of 
the LULC of the Bangweulu Wetland and the surrounding area between 
1990 and 2020. The trend analysis of LULC from 1990 to 2020 using the 
Quad hybrid model (Table 6 and Figs. 8, 9, 10, and 11) reveals several 
notable patterns as elaborated below. 

There is a consistent decline in forest cover, water bodies, and 
grassland throughout the analysed period, this kind of trend was also 
observed by Muche et al. (2023). On the contrary, there is an upward 
trend in cropland and built-up areas the trend which was also observed 
by Gxokwe et al. (2023) and Taiwo et al. (2023). The decrease in the 
extent of forest cover and grassland could be mainly attributed to factors 
such as deforestation, urbanisation, and agricultural expansion, result-
ing in the conversion of natural land into agricultural fields and built-up 
infrastructure. The declining forest and grassland cover and increase in 
built-up and cropland areas in the BWS and the surrounding areas will 
have several impacts on both the wetland ecosystem itself and the sur-
rounding environment. These impacts include (1) water quality de-
teriorations as observed by several other studies (Camara et al., 2019; 
Song et al., 2020; Tahiru et al., 2020; Nkwanda et al., 2021; Pandey 
et al., 2023;), (2) loss of biodiversity and habitat (Fenta et al., 2020; 
Perennou et al., 2020; Meng et al., 2023), (3) increased wetland sedi-
mentation (Hernández-Romero et al., 2022), and (3) alterations in the 
microclimate such as variation of surface temperature (Kafy et al., 
2021c, 2021a; AlDousari et al., 2023). In addition, the observed 
decrease in the surface water bodies, forest cover and grassland cover 
will accelerate the increasing patterns of drought severity in the BWS 
and the surrounding areas (Kafy et al., 2023). 

There are various policy implications for the observed changes in 
LULC. A considerable environmental protection strategies are necessary 
to minimise deforestation and land degradation, given the fall in the 
forests and grassland covers. Policies for sustainable urban development 
are also required to deal with the significant rise in built-up areas which 
was also suggested by Dey et al. (2021) and Kafy et al. (2021b). The 
necessity for agricultural and food security measures, particularly the 
promotion of sustainable farming methods, is highlighted by the sub-
stantial growth of cropland. Furthermore, policies for managing water 
resources are necessary since the quantity of water in the open water 
bodies is decreasing. 

In view of the above, the assessment of the water-body changes is 
critical for determining the natural and human-induced impact on the 
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water bodies. The continuous assessment of the changes in the water 
body could contribute knowledge to various fields, including studies on 
water resource management and disaster risk reduction, by providing 
critical information about the health and state of freshwater ecosystems 
(Sarp and Ozcelik, 2017; Wang et al., 2023). In addition, the long-term 
water-body change assessment and monitoring will be essential for 
evaluating the success of interventions, guiding conservation efforts, 
mitigating negative impacts on the wetland ecosystem, and determining 
whether the reduction in water in the BWS is a constant trend or a 
short-term phenomenon. 

Limitations 

The study has several limitations that should be considered. Firstly, it 
was difficult to distinguish certain wetland’s different LULC features 
using 30-m Landsat images, which could lead to classification errors 
(Commey et al., 2023). Secondly, it could be possible that some of the 
models’ hyper-parameters used might not have been fully optimised, 
which could affect how accurately the LULC maps were classified 
(Ebrahimi-Khusfi et al., 2021). Thirdly, the study used Landsat 5 images 
of 1990, 2000, and 2010, which had some sparkles in the 1990 and 2000 
images, this could have led to poor performance in classifying certain 
LULC classes (Peng et al., 2023). In addition, this study used limited 
training sample size that might not have been adequately represented 
the full variability of the dataset. This could have restricted the ability of 
certain ML models such as the RF to generalise well to unseen instances 
thereby creating an unstable decision tree with reduced accuracy 
(Polikar, 2006; Fernández-Delgado et al., 2014). Lastly, the study 
excluded some models, such as the ANN model because it could not run 
in Orfeo Toolbox in QGIS 3.28.5, which might have limited the range of 
models considered for further analysis. 

Conclusion 

LULC change is a complex phenomenon that exerts profound effects 
on the environment, ecosystems, societies, and climate. Gaining an 
understanding of the impacts and implications of LULC change is crucial 
for implementing sustainable land management practices, conserving 
biodiversity, mitigating climate change, and fostering equitable and 
resilient societies. 

The SVM, NB, DT, and KNN were identified as the best-performing 
ML models for the LULC classification in the Bangweulu Wetland and 
the surrounding areas. The Quad hybrid model was developed, which 
achieved a higher level of accuracy than individual ML models (SVM, 
NB, DT, and KNN). The developed Quad model was used to study the 
past and the present (1990 to 2020) LULC changes in the Bangweulu 
Wetland and the surrounding area. 

The study has shown that there has been a consistent increase in 
cropland and built-up areas from 1990 to 2020 at the expense of the 
forest cover and grassland. The water body also experienced a gradual 
reduction between 1990 and 2020, although at a minimal rate. 

Our observation highlights significant transformations in the LULC 
composition over the studied time frame. This could jeopardise the 
ecological integrity of the Bangweulu Wetland System, thereby 
compromising the provision of social, economic, and environmental 
benefits to both human and natural systems. It also highlights the need 
for effective land management strategies and sustainable planning to 
mitigate the potential impacts on natural ecosystems and ensure a bal-
ance between human activities and environmental conservation. 

Recommendations 

The following steps are proposed to validate the Quad hybrid model 
and the findings of the LULC changes;  

• Evaluate the quad hybrid model’s robustness: Use different periods, 
geographic locations, and data types to assess how consistently the 
Quad hybrid model performs.  

• Examine the temporal and spatial patterns of changes in LULC: 
Identify areas of change hotspots, estimate rates and directions of 
change, and investigate the implications of these trends for 
ecosystem services such as water quality.  

• Involve stakeholders and decision-makers: communicate the 
research results with interested parties, emphasise the value of sus-
tainable land use and management, and compel the adoption of 
policies and practices that promote long-term social, economic, and 
environmental sustainability. 
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