

CBSE CLASS 8 Simple & Compound Interest

FORMULAE - v1

Dt: 11/02/2022

SIMPLE INTEREST

1.
$$S.I = \frac{P \times R \times T}{100}$$

- Where
- S.I = Simple Interest
- P = Principal
- R = Rate of interest per annum
- T = Time period in years

SIMPLE INTEREST

2.
$$P = \frac{S.I \times 100}{R \times T}$$

Use this formula; If Principal has to be found

3.
$$R = \frac{S.I \times 100}{P \times T}$$

Use this formula; If Rate of interest has to be found

4.
$$T = \frac{S.I \times 100}{P \times R}$$

Use this formula; If Time period has to be found

Always remember, if "T" is given in months, convert it into years by dividing the months given by 12.

- 1. Compounded annually: When the interest is added to the principal at the end of each year, the interest is said to be compounded annually.
- 2. Compounded half yearly: When the interest is added to the principal at the end of every half year, the interest is said to be compounded half yearly.
- **3. Compounded quarterly**: When the interest is added to the principal after every three months, the interest is said to be compounded quarterly.

4.
$$A = P \left(1 + \frac{R}{100}\right)^n$$

- Where
- A = Amount after n years
- P = Principal
- R = Rate of interest per annum
- n = Time period in years

5. C.I = A - P
=
$$P \left(1 + \frac{R}{100} \right)^n - P$$

= $P \left[\left(1 + \frac{R}{100} \right)^n - 1 \right]$

- Where
- C. I = Compound Interest

If the k is the number of times interest is payable (also known as compounded), then the formula are

$$5. \quad A = P \left(1 + \frac{R}{100k} \right)^{nk}$$

- Where
- A = Amount after n years
- P = Principal
- R = Rate of interest per annum
- n = Time period in years

6. C.I =
$$P\left[\left(1 + \frac{R}{100k}\right)^{nk} - 1\right]$$

- Where
- C. I = Compound Interest

When interest is compounded annually, but rate of interests are different each year.

7.
$$A = P\left(1 + \frac{R_1}{100}\right) \left(1 + \frac{R_2}{100}\right) \left(1 + \frac{R_3}{100}\right) \dots \left(1 + \frac{R_n}{100}\right)$$

- Where
- A = Amount after n years
- P = Principal
- R_1 , R_2 , R_3 , R_n = Rate of interest per annum for different years.