Yasaka YSK2 Servo Design Maintenance and Use Manual

YSK2 Servo Design And Maintenance Instructions

Product Information BrochureInformation code 19010002A01

Preface

First of all, thank you for purchasing the YSK2 Servo Drive product.

YSK2 series servo drive products are high performance small and medium power AC servo products. The YSK2-E servo drive series adopts industrial Ethernet communication interface and supports EtherCAT communication protocol ,which can realize the network operation of multiple servo drives in cooperation with the host computer.;

The YSK2-D servo drive series adopts industrial Ethernet communication interface and supports Profinet communication protocol, which also can realize the network operation of multiple servo drives in cooperation with the host computer.

The YSK2-A is a special series for pulse control, and it can also realize cooperative control or monitoring of multiple servo drives through the RS485 interface

YSK2-A	YSK2-E	YSK2-D
Pulse	EtherCAT	Profinet

The YSK2 provides single parameter adjustment, parameter online self-learning, vibration suppression, low frequency vibration suppression and other functions, making servo commissioning easy to learn. Combined with the VM-TA series 23-bit encoder high response servo motor, the servo system runs quietly and smoothly, suitable for advanced manufacturing industries such as lithium-ion, photovoltaic, electronic non-standard, semiconductor, etc., to achieve fast and accurate positioning and trajectory control.

Chapter 1: Security Instructions

Thank you very much for using this product, this manual provides information about the YSK2-E drive.

We hope you will read this manual carefully before use and use this product correctly.

This manual is the user's manual for the YSK2-E Servo Drive and provides product safety information, drive and motor installation instructions, hardware wiring, and troubleshooting. For first time users, please read the manual carefully. If you have any doubts about some functions and performance, please consult our technical staff for assistance.

1 The information provided by our company is subject to change without notice due to our commitment to the continuous improvement of the Servo Drive.

caveat emptor

(1) To illustrate the detailed parts of the product, the diagrams in the manual are sometimes shown with the outer cover or safety cover removed. When using this product, be sure to install the housing or cover as specified and follow the instructions.

(2) The diagrams listed in this manual are for illustration purposes only and may differ from the product you ordered.

(3) The contents of this manual are subject to change due to product upgrades or specification changes, and for the convenience and accuracy of the manual.

2 When opening and inspecting the goods, please carefully confirm that.

Confirmation of projects	instructions
Does the product arrive with the model number you ordered?	The box contains the machine you ordered. Please confirm by the YSK2-E Servo Drive nameplate model number.
Is the product damaged in any way?	Please check the whole appearance of the machine and whether the product has been damaged during transportation. If you find some kind of omission or damage, please contact our company or your supplier to solve it quickly.

3 Security precautions:

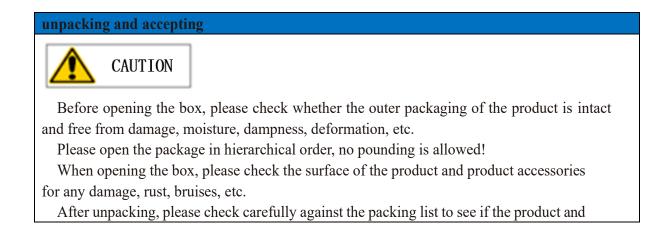
Please read and follow these safety precautions when installing, operating, or maintaining the product.

For personal and equipment safety, follow all safety precautions as marked on the product and described in the manual when installing, operating and maintaining the product.

The "Cautions", "Warnings" and "Dangers" in the manual do not represent all safety matters to be observed, but are only supplementary to all safety precautions.

This product should be used in an environment that conforms to the design specifications, otherwise it may cause malfunction, and abnormal function or damage to parts caused by failure to comply with the relevant regulations is not covered by the product quality warranty. We will not assume any legal responsibility for personal safety accidents or property damage caused by non-compliant operation of the product.

Definition of security level :


"Dangerous" means that death or serious bodily injury will result if the operation is not carried out in accordance with the regulations.

"Warning" indicates that death or serious bodily injury may result if not handled as specified.

"Caution" may result in minor bodily injury or equipment damage if not operated as specified.

product accessories are complete in quantity and information.

WARNING

Please check the product and product accessories for damage, rust, signs of use, etc. before opening the box, do not install!

Do not install the product if you find water inside, missing parts or damaged parts when you open the box!

Please check the packing list carefully and do not install if you find that the packing list does not match the product name!

When storing and transporting

Please store and transport the product according to the storage and transportation conditions, with storage temperature and humidity meeting the requirements.

Avoid storage and transportation in places such as splashing rain, direct sunlight, strong electric field, strong magnetic field, strong vibration, etc.

Avoid storing the product for longer than 3 months; for longer storage times, perform tighter protection and necessary checks.

Please pack the products strictly for vehicle transportation, and closed boxes must be used for long distance transportation.

It is strictly forbidden to mix this product with equipment or articles that may affect or damage this product for transportation.

Be sure to use professional handling equipment to move large or heavy equipment and products!

When handling the product with your bare hands, be sure to hold onto the product casing to avoid dropping the product parts, otherwise there is a risk of causing injury!

When handling the product, please be sure to carry it gently and keep an eye on objects under your feet at all times to prevent tripping or dropping, otherwise there is a risk of injury or product damage!

No one is allowed to stand or stay underneath the equipment when it is lifted by a lifting tool.

when installing

WARNING

Be sure to read the product's instructions and safety precautions carefully before installation! Modification of this product is strictly prohibited!

It is strictly forbidden to unscrew the fixing bolts and red marking bolts of the product parts and components!

Do not install this product in places with strong electric fields or strong electromagnetic wave interference!

When this product is installed in the cabinet or terminal equipment, the cabinet or terminal equipment needs to provide corresponding protective devices such as fireproof enclosure, electrical protective enclosure and mechanical protective enclosure, and the protection level should comply with the relevant IEC standards and local laws and regulations.

Product installation, wiring, maintenance, inspection or part replacement by non-professionals is strictly prohibited!

Installation, wiring, maintenance, inspection or parts replacement of this product should only be carried out by professionals with adequate electrical knowledge who have been trained in the relevant aspects of electrical equipment!

The installer must be familiar with the product installation requirements and relevant technical data.

When you need to install equipment equipment with strong electromagnetic wave interference such as transformers, please install a shielding protection device to avoid false operation of this product!

When wiring

Product installation, wiring, maintenance, inspection or part replacement by non-professionals is strictly prohibited!

Do not perform wiring work with the power on, as there is a risk of electric shock.

Before wiring, disconnect all power to the equipment. There is residual voltage in the capacitors inside the device after the power is cut off, so wait at least 15 minutes before wiring.

Always ensure that the equipment and product are well grounded, otherwise there is a risk of electric shock.

Follow the procedures specified in the electrostatic preventive measures (ESD) and wear an electrostatic hand ring for operations such as wiring to avoid damage to the equipment or the circuitry inside the product.

It is strictly forbidden to connect the input power to the output of the device or product, otherwise it may cause damage to the device or even cause a fire.

When connecting the drive to the motor, be sure to pack the drive with the exact same phase sequence as the motor terminals to avoid causing the motor to rotate in reverse.

The cable used for wiring must meet the appropriate wire diameter and shielding requirements, and the shielding layer of shielded cables must be reliably grounded at one end!

After wiring is complete, make sure there are no dropped screws or exposed cables inside either the unit or the product.

On power up

Before powering up, make sure that the equipment and product are well installed, wired securely, and that the motor unit is allowed to restart.

Before powering up, please make sure the power supply meets the requirements of the equipment to avoid causing damage to the equipment or starting a fire!

Before power is applied, the mechanism of the equipment or product may move suddenly, so be careful to keep away from the mechanism.

Do not open the door of the cabinet or the protective cover of the product after the power is applied, otherwise there is a risk of electric shock.

It is strictly forbidden to disassemble any device or part of the equipment and product while it is energized, otherwise there is a risk of electric shock!

runtime

It is strictly forbidden to touch any terminal of the equipment in the operating state, otherwise there is a risk of electric shock!

It is strictly forbidden to disassemble any device or part of the equipment and product in the operating condition, otherwise there is a risk of electric shock!

Never touch the equipment housing, fan or resistor to test the temperature, as this may cause burns!

It is strictly forbidden for non-specialized technical equipment personnel to detect signals during operation, as this may cause personal injury or equipment damage!

During operation, avoid dropping other objects or metal objects into the unit, as this may cause damage to the unit!

Do not use the contactor on/off method to control the start/stop of the unit, as this may cause damage to the unit!

when taking care of

DANGER

Installation, wiring, maintenance, inspection or part replacement of equipment by non-professional personnel is strictly prohibited!

It is strictly forbidden to carry out maintenance on the equipment while it is energized, otherwise there is a risk of electric shock!

After turning off the power to all equipment, wait at least 15 minutes before performing operations such as equipment maintenance.

🔨 WARNING

Please follow the equipment maintenance and care requirements for daily and periodic inspection and maintenance of equipment and products, and keep maintenance records.

During repairs

Installation, wiring, maintenance, inspection or part replacement of equipment by nonprofessional personnel is strictly prohibited!

It is strictly forbidden to repair the equipment in an energized state, otherwise there is a risk of electric shock!

After disconnecting the power to all equipment, wait at least 15 minutes before performing equipment checks, repairs, etc.

Please follow the product warranty agreement for equipment warranty.

In the event of equipment failure or damage, the equipment and products are troubleshot by professional personnel in accordance with maintenance instructions and maintenance records are kept.

Please follow the product wear parts replacement instructions.

Do not continue to use an already damaged machine as this will cause more damage.

After replacing the unit, be sure to perform the unit wiring check and parameter setting again.

at the time of retirement

Please follow the relevant national regulations and standards for the scrapping of equipment and products to avoid property damage or casualties!

Please dispose of end-of-life equipment and products in accordance with industrial waste

standards for recycling to avoid polluting the environment.

Chapter 2 : Models and Installation

2.1 About the Drive

2.1.1 Drive Models

YSK2	-	075	А	-
Product Series		Power	Voltage level	Туре
YSK2 Series		040: 400W	A: AC220V	Blank: Pulse type
		075: 750W	T: AC380V	E: EtherCAT type
		100: 1KW		S: Special version
		150: 1.5KW		
		200: 2KW		
		300: 3KW		
		450: 4.5KW		
		550: 5.5KW		
		750: 7.5KW		

2.1.2 Drive Part Name

Names of the drive components.

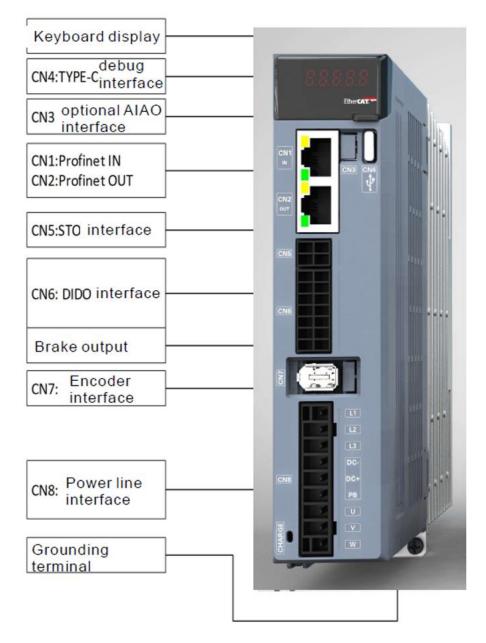


chart0-1 Name of each part of the drive

2.1.3 Braking resistor selection

The drive can choose to use the default braking resistor or an external braking resistor of another size.

(1) A braking resistor is connected by default between DC+ and PB on port CN8 with the following specifications.

Drive power	50W	100W	200W	400W	750W	1kW	1.5kW	2kW
Braking resistor resistance value	50Ω	50Ω	50Ω	50Ω	50Ω	50Ω	30Ω	30Ω
Braking Allowable Power	50W	50W	50W	50W	50W	50W	80W	80W

Voltage input level 220V.

Voltage input class 380V.

Drive power	1kW	2kW	3kW	5kW	7.5kW	
Braking resistor	80Ω	80Ω	80Ω	50Ω	50Ω	
resistance value	0052	8052	8052	5082	5082	
Braking Allowable	80W	80W	80W	120W	120W	
Power	00 W	00 W	80 W	120W	120W	

(2) Other sizes of braking resistors can also be connected between DC+ and PB on port CN8 according to the actual needs, selected as follows.

Voltage input level 220V.

Drive power	50W	100W	200W	400W	750W	1KW	1.5KW	2KW
Braking resistor resistance value	≥30Ω	≥30Ω	$\geq 30\Omega$	≥30Ω	$\geq 30\Omega$	≥30Ω	$\geq 20\Omega$	$\geq 20\Omega$
Minimum braking power	50W	50W	50W	50W	50W	50W	80W	80W

Voltage input class 380V.

Drive power	2KW	3KW	5KW	7.5KW
Braking resistor	$\geq 60\Omega$	$\geq 50\Omega$	$\geq 30\Omega$	$\geq 30\Omega$
resistance value				
Minimum	120W	120W	180W	180W
braking power				

When using an external braking resistor, you need to set drive parameters F01.18 (braking resistor configuration), F01.19 (external braking resistor power capacity), F01.20 (external braking resistor resistance value), and F01.21 (external braking resistor heat-up time constant).

Caution.

1. For applications requiring external braking resistors, please refer to the table above for installation of braking resistors.

2. the use of the above table of braking resistor resistance does not always guarantee performance.

3. When using external braking resistors, if the heating temperature is too high, please improve the heat dissipation condition of the resistor or choose a higher power resistor.

2.2 About the motor

YSK1	-	М	н	075		Ν	
1		2	3	4	5	6	Ø

No.	Name	Remarks	
1	Product	YSK1 series	
	series		
2	Product type	M: motor	
3	Inertia	H: High inertia	G: Medium inertia
		M: Low inertia	
4	Rated power	040: 400W	075: 750W
		085: 850W	100: 1KW
		150: 1.5KW	130: 1.3KW
		180: 1.8KW	200: 2KW
5	Rated	Blank: AC220V	B: AC380V
	voltage		
6	Brake/Oil	N: With oil seal	
	seal	B: With brake and oil seal	
7	Encoder	Blank: 17-bit incremental,	A: 17-bit absolute, magnetic
		magnetic	3: 23-bit multi-turn optical encoder
		2: 23-bit, optical encoder	

2.3 Selection table for drive and motor packages (continuously updated)

2.4 Cable Selection Table

The suffix -XX.X corresponds to the length L with one decimal, in m; the default fixed line, to which the suffix -T corresponds to the drag chain line is appended.

Chapter 3: Wiring Instructions

3.1 System Wiring Diagram

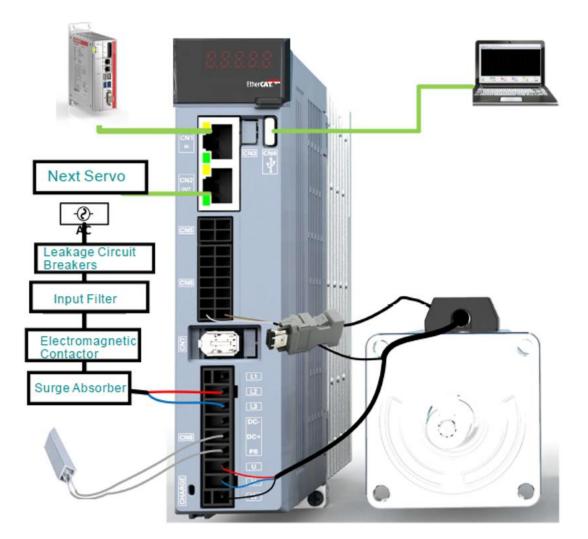


chart0-1 Servo system wiring diagram

Servo motor and drive system wiring instructions.

Item	Instructions
Peripheral machine composition	In order to comply with the European IEC standard, set up according to [Fig. 2.1.1 System wiring diagram] on the basis of the selected machine for each specification.

	The drive is set up in a contamination level 2 or contamination level 1
Setting the environment	environment as specified in IEC 60664-1.
Power supply 1: AC200 to 240V (main and control circuit power)	Our products are intended for use in power supply environments in the overvoltage category II, as specified in IEC 60664-1.
Power supply 2: DC24V I/O power supply Motor brake disengagement power	The following conditions must be met for the selected DC24V external power supply specification. Use a SELV power supply (*) with a capacity of 150W or less. This is the condition when CE corresponds. ** SELV: safety extra low voltage (Safety special low/non-hazardous voltage, hazardous voltage with reinforced insulation)
wiring	Motor power cable, AC220V input cable, FG cable and main circuit in case of multi-axis composition Power distribution cable, please use AWG18/600V voltage resistant cable under 750W, over 1KW Please use AWG14/600V voltage resistant wire.
Earth leakage circuit breaker	To protect the power supply line, cut the circuit when overcurrent flows. Be sure to use UEC specifications and UL-approved circuit brakes between the power supply and the noise filter according to [Figure 2.1.1 System Wiring Diagram]. To comply with EMC standards, use our recommended circuit brakes with a leakage detection function.
Noise Filters	Prevents noise interference from the power cord. To comply with EMC standards, use our recommended noise filters.
Electromagnetic contactors	Perform mains power cutover (ON/OFF). Please connect an overvoltage protector for use.
Surge absorber Signal Line Noise Filter /Ferrite Cores	For EMC compliance, use our recommended overvoltage protector for use. To comply with EMC standards, use our recommended noise filters.
brake resistor	This product comes with an energy braking resistor, and other sizes of braking resistors can be connected as required. If the smoothing capacitor inside the power supply unit cannot adequately absorb and process regenerative power, a braking resistor is required. When the energy braking overload warning A.91 occurs during servo operation, connect another size of braking resistor, increase the resistor power and improve the heat dissipation conditions, and set the braking resistor related parameters.

	Braking resistor reference specification: Refer to [2.1.3 Braking resistor selection].
earth (electric connection)	The grounding of our products is performed using protective grounding terminals in protective boxes and electrical boxes with EMC measures in place. The protective earth terminal section is indicated using the symbols shown below. Please connect the ground terminal of the motor to the ground terminal of the drive and connect it to earth reliably to reduce the possibility of potential electromagnetic interference.

Wiring points.

(1) The control circuit power supply and the main power supply should be wired from the same AC220V power supply.

- (2) 400W (rated 2.7A) and below power models only support single-phase input, from L2, L3 access to the main power; 750W and above power models main power can choose single-phase or three-phase AC220V input, when choose single-phase, L1, L2, L3 any two inputs.
- (3) If the length of the user I/O cable exceeds 50 cm, use a twisted pair cable with a shield.
- (4) The encoder cable length is 20m or less.

3.2 Description of port CN1/CN2

The definition of this network port is different for different drive models, so please check the model before using it. Port CN1/CN2 detail drawing.

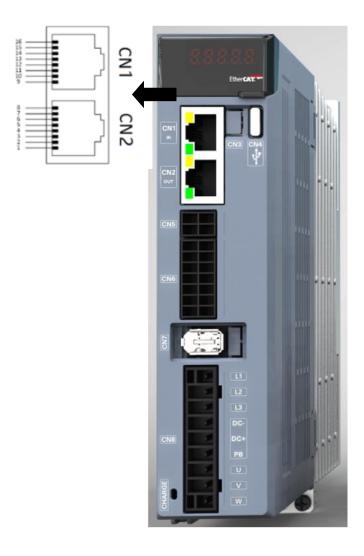


chart0-2 Detail view of CN1/CN2

(1) Pulse type				
models	marki ngs	Terminal Number	Signal Name	elements
		1	NC	
	CN1	2	NC	-
pulsed		3	NC	
		4	RS485+	RS485+ signal from the upper control unit
		5	RS485-	RS485-signal from the upper control unit

The CN1/CN2 pins are defined as follows. (1) Pulse type

Yasaka YSK2 Servo Design and Maintenance User's Manual

		6	NC	
		7	NC	-
		8	NC	
		9	NC	
		10	NC	-
		11	NC	
	CNI2	12	RS485+	RS485+ signal from the upper control unit
	CN2	13	RS485-	RS485-signal from the upper control unit
	-	14	NC	
		15	NC	-
		16	NC	

(2) Profinet or EtherCAT bus type

madala	markin	Terminal	Signal	alomonto
models	gs	gs Number Name		elements
		1	TX+	TX+ signal from the upper control unit
		2	TX-	TX-signal from the upper control unit
3 R	RX+	RX+ signal from the upper control unit		
	CN1	4	NC	
	CNI	5	NC	-
		6	RX-	RX-signal from the upper control unit
		7	NC	-
Bus Type		8	GND	GND signal from the upper control unit
		9	TX+	TX+ signal from the upper control unit
		10	TX-	TX-signal from the upper control unit
		11	RX+	RX+ signal from the upper control unit
	CN2	12	NC	
	CN2	13	NC	-
		14	RX-	RX-signal from the upper control unit
		15	NC	-
		16	GND	GND signal from the upper control unit

3.3 Description of port CN5(Only for YSK2-E and YSK2-D)

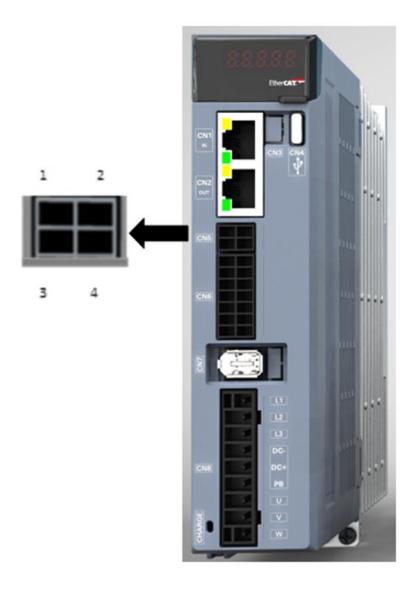


chart0-3 CN5 terminal detail drawing

Port CN5 Pin Name.

Terminal	instructions
Number	
1	STO1: STO1 input
2	STO2: STO2 input
3	+24V: Internal 24V power supply
4	G24V: Internal 24V power ground

(Caution: YSK2-A series drives are not configured with STO interface)

3.4 STO Wiring Instructions

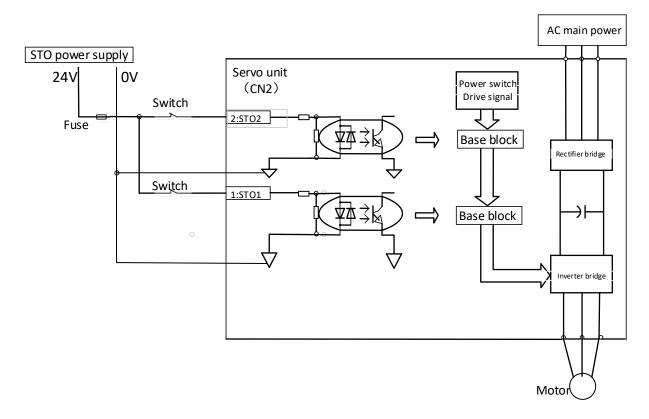
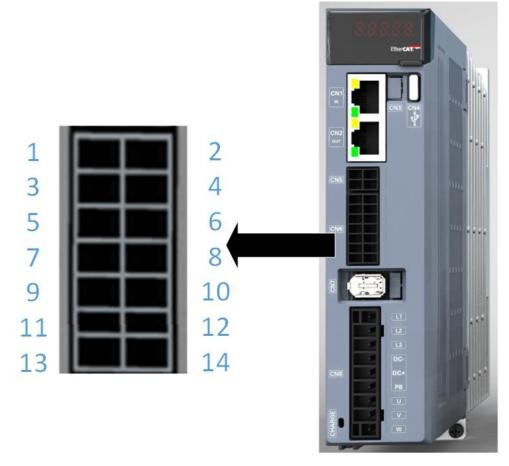


chart0-4 CN5 terminal (STO) wiring diagram


STO Functional Description.

The external power supply for the STO must use a 24V DC supply. The STO function logic is described in the following table.

STO1	STO2	base state	Servo ready signal (RDY)	
status	status	Dase state	Servo ready signal (KD I)	
Low:	Low:	block	Involid output	
Ineffective	Ineffective	DIOCK	Invalid output	
Low:	High:	block	Involid autout	
Ineffective	Effective	DIOCK	Invalid output	
High:	High:	non-	Output valid	
Effective	Effective	blockade	Output valid	
High:	Low:	block	Involid autout	
Effective	Ineffective	DIOCK	Invalid output	

3.5 Description of port CN6

For YSK2-D and YSK2-E

For YSK2-D and YSK2-E

Figure 3.5 Detail view of port CN6

Port CN6 Pin Name.

Terminal Number		instructions	Terminal Number		instructions
1	G24V	24V power ground	2	DIOP	Digital input common
3	+24V	24V power supply positive	4	DI5	Digital input 5
5	DO2-	Digital output 2	6	DI4	Digital input 4

Yasaka YSK2 Servo Design and Maintenance User	's Manual
---	-----------

		negative			
7	DO2+	Digital output 2 positive	8	DI3	Digital input 3
9	DO1-	Digital output 1 negative	10	DI2	Digital input 2
11	DO1+	Digital output 1 positive	12	DI1	Digital input 1
13	BZ+	Positive output of holding brake	14	BZ-	Holding brake output negative

CN6 wiring example.

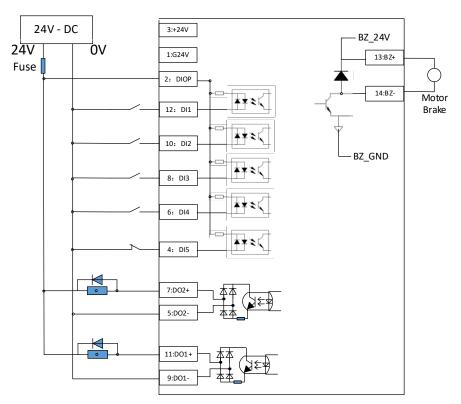


Figure0- 6 CN6 terminal (IO) wiring schematic

For YSK2-A

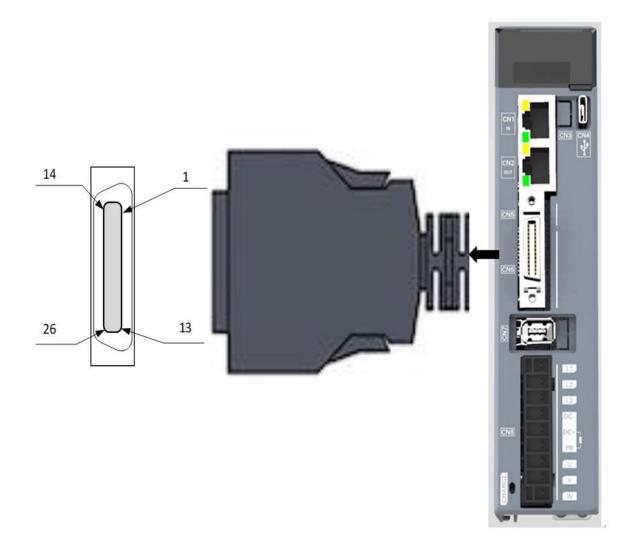


Figure 3.5 Detail view of port CN6

Port CN6 Pin Name.

Pin		Remarks	Pin		Remarks
1	DIOP	Digital input common	14	DI1	Digital input 1
2	DI2	Digital input 2	15	DI3	Digital input 3
3	DI4	Digital input 4	nput 4 16		24V power supply positive
4	DOCOM	Digital output common	17	D01	Digital output 1
5	D02	Digital output 2	18	D03	Digital output 3
6	DI7	Digital output 7	19	G24V	24V power ground
7	OUT_A	Pulse A-phase positive	20	/OUT_A	Pulse A-phase negative
8	OUT_B	Pulse B-phase positive	21	/OUT_B	Pulse B-phase negative
9	OUT_Z	Pulse Z-phase positive	22	/OUT_Z	Pulse Z-phase negative
10	HSIGN	High-speed pulse input/HSIGN	23	/HSIGN	High-speed pulse input/HSIGN

Yasaka YSK2 Servo Design and Maintenance User's Manual

11	HPULSE	High-speed pulse input/HPULSE	24	/HPULSE	High-speed pulse input/HPULSE
12	DI5	Digital input 5(High speed SIGN)	25	DI6	Digital input 6(High speed PLUS)
13	GND	5V power ground	26	OC_Z	Open collector pulse output Z

CN6 wiring example.

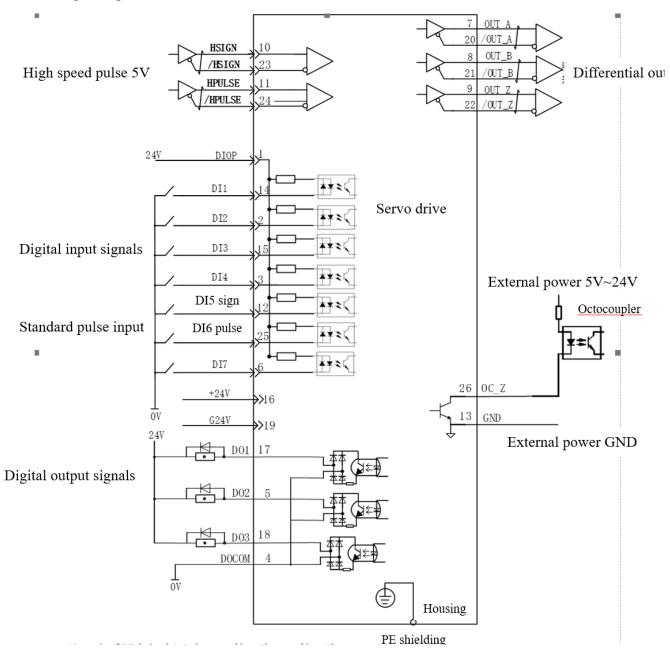


Figure0- 6 CN6 terminal (IO) wiring schematic

3.6 Description of port CN7

This port is used for driver and motor encoder connection, the cables need to be 30cm apart from the main circuit wiring during use.

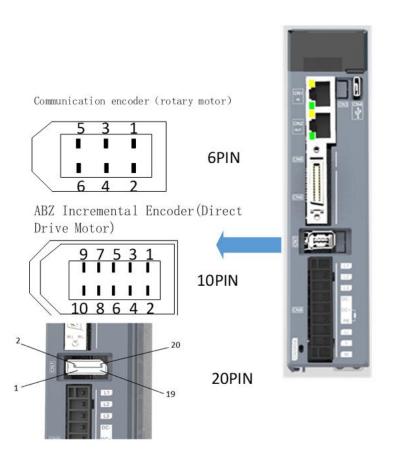


Figure0-7 Detail view of port CN7

CN7 standard 6PIN port pin definition, generally connected to a rotary motor (with communicating encoder).

types	Terminal		instructions
	Number		
	1	VCC	Encoder power supply 5V output
	2	GND	Encoder power ground

Yasaka YSK2 Servo Design and Maintenance User's Manual

Communic	3	NC	-
ation	4	NC	-
encoder	5	+D	Encoder signal: Data input and output
	6	-D	Encoder signal: Data input and output
	-	FG	Shield wire is connected to the metal part of the
			connector housing

CN7 optional 10PIN port pin definition, generally connected to linear motor or DDR motor (with ABZ incremental encoder).

Types	Terminal	instructions			
Types	Number				
ABZ	1	VCC	Encoder power supply 5V output		
	2	GND	Encoder power ground		
	3	Z+	Encoder signal: quadrature pulse Z-phase positive		
	4	Z-	Encoder signal: quadrature pulse Z-phase negative		
	5	A+	Encoder signal: quadrature pulse A-phase positive		
	6	A-	Encoder signal: quadrature pulse A-phase negative		
-l encoders	7	B+	Encoder signal: quadrature pulse B-phase positive		
-1 elicouels	8	B-	Encoder signal: quadrature pulse B-phase negative		
	9	NC	-		
	10	NC	-		
	-	FG	Shield wire is connected to the metal part of the		
			connector		

CN7 optional 20PIN port pin definition, , generally connected to linear motor or DDR motor (Compatible with ABZ incremental encoders with Hall signals):

Types	Terminal Number	instructions					
	1	NC					
	2	NC					
	3	NC					
	4	NC					
ABZ	5	A-	Encoder	signal:	quadrature	pulse	A-phase
incrementa			negative				
-l encoders	6	A+	Encoder	signal:	quadrature	pulse	A-phase
			positive				
	7	B-	Encoder	signal:	quadrature	pulse	B-phase
			negative				
	8	B+	Encoder	signal:	quadrature	pulse	B-phase
			positive				

Yasaka YSK2 Servo Design and Maintenance User's Manual

9	Z-	Encoder signal: quadrature pulse Z-phase
5	L	
		negative
10	Z+	Encoder signal: quadrature pulse Z-phase
		positive
11	GND	Encoder power ground
12	VCC	Encoder power supply 5V output
13	GND	Encoder power ground
14	VCC	Encoder power supply 5V output
15	HALL_V	Hall input V phase
16	HALL_W	Hall input W phase
17	HALL_U	Hall input U phase
18	NC	
19	NC	
20	NC	
	FG	Shield wire is connected to the metal part of the
		connector

3.7 Description of port CN8

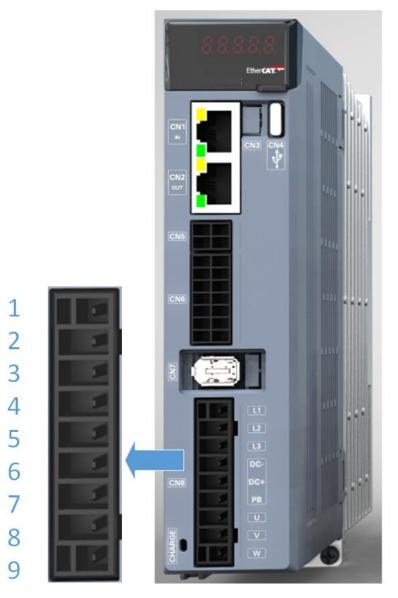
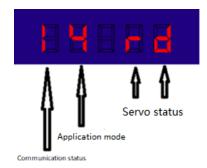
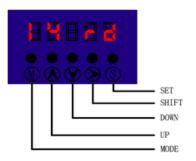


Figure0- 8 Port CN8 detail view


Port CN8 Pin Definition

1	L1	Three-phase input models are connected to 220V AC input, single-	
		phase input models are vacant	
2	L2	Connect 220V AC input	
3	L3	Connect 220V AC input	
4	DC-	Negative bus voltage terminal for common DC bus applications	
5	DC+	Positive bus voltage terminal for common DC bus applications	
6	PB	Braking resistor terminals, the resistor ends are connected to DC+	
		and PB respectively	
7	U	Motor power line U phase	
8	V	Motor power line V phase	
9	W	Motor power line W phase	

Chapter 4: Panel Operation


4.1 YSK2 Servo Panel Display

The panel display has three main sections, from left to right: communication status, application mode, and servo status, which are described in the following.

sports event	instructions		
	1 Network initialization (Init)		
Communication status	2 Network pre-run (Pro-Op)		
Communication status	4 Safe operation of the network (Safe-Op)		
	8 Network Operations (Op)		
	0 No operating mode		
	1 Contour Position Mode (PP)		
	3 Profile velocity mode (PV)		
Annication made	4 Contour Torque Mode (PT)		
Application mode	6 Back to original mode (Home)		
	8 Synchronous cycle position mode (CSP)		
	9 Synchronous cyclic velocity mode (CSV)		
	A Synchronous Periodic Torque Mode (CST)		
	nrd: servo not ready		
	rd: servo ready		
Servo Status	run: enable state		
	A.XX: Warning code		
	E.XX:Fault code		

4.2 YSK2 Key Description

- (1) MODE key: It is generally used to exit the higher level panel display and return to the lower level panel display; if the current is already the initial display panel, the MODE key can be used to enter the higher level panel display.
- (2) SET key: It is enerally used to access the panel display of the memory, or to confirm parameter changes.
- (3) SHIFT key: It is generally used to move the modified digit position. For 32 digits, long press SHIFT to turn the page to display the high digit, and long press again to turn the page to display the sign digit. When zero-level panel, press SHIFT to switch the display of monitoring parameters.
- (4) UP key: Increments the number by multiplying the corresponding permission value by step 1.
- (5) DOWN key: Decrement the number by multiplying the corresponding permission value by step 1.

4.3 Show Description

After power up the panel **D D D D D** prompts Indicates that it is initializing, Thereafter the level 0 panel contents are displayed.

Level 0 panel introduction: when a fault occurs, the panel displays the ball of the the ball of (the corresponding fault code is introduced in the later chapters); when there is a warning, the panel displays

in the press the SET key, no flashing, press the MODE key to enter the level 1 panel; when there is no fault: after the initialization is completed and all settings are normal, the panel displays

The first line of the level 0 panel can monitor up to 12 status parameters, up to 12 in case of a fault or warning and up to 11 in case of normal. When there is a fault or warning, the first one is the fault or warning and the second one is the operational status flag. When normal, the first is the operating status flag. The remaining 10 are set by F11.01~F11.10, the setting value can be any

serial number value except 0 in the F24 group, if set to 0, it means there is no monitoring parameter in the corresponding position, and it will be skipped directly when pressing SHIFT. If F11_01 is set to 1, then F24_01 (actual speed) is monitored. These monitored parameters are toggled by the SHIFT key. If the monitored parameter is a 32-bit parameter, such as F24_17 (feedback pulse counter), it can be displayed by pressing and holding the SHIFT key to turn the page.

During normal operation of the machine, will be displayed to show that the server is working properly.

Level 1 panel shows.

The first line shows the parameter group number, such as F01, after entering, the rightmost bit flashes, indicating that it can be modified, if you need to modify other bits, you can shift them by SHIFT key, press SET key to enter the level 2 panel. Press MODE key to return to level 0 panel.

Level 2 panels show.

The parameters are shown in the following figure.

The display shows the parameter group number and the offset within the group, after entering this interface, the blinking position position indicates that it can be modified, if you need to modify other positions, you can modify them by SHIFT key, press SET key to enter the 3 level panel.

Level 3 panels.

Access to the 3 level panel allows you to debug parameters and adjust different parameters by your desired mode (parameters are described in later chapters).

4.4 Jogging by key operation (JOG)

(1) Before entering the JOG screen

The operating interface of JOG is located at F23.00, the servo drive should be disconnected and enabled at this time. First press the key to find F23.00, press SET to enter the JOG interface, the display will show the point speed setting value (F05.02), each parameter is the factory parameters, the display is as

, the last one will flash, indicating that it can be modified, press

SHIFT to move, press UP and DOWN to add or subtract numbers.

(2) After entering the Jog (JOG) screen

After entering the JOG screen, after pressing the SET button once, the numbers will no longer be flashing, indicating that they can no longer be modified, at which point the pointing function has been activated.

Press and hold the UP key, the motor will rotate at the speed value displayed in the first line; press and hold the DOWN key, the motor will rotate at the speed value displayed in the first line; when the UP key or DOWN key is no longer pressed, the motor will stop rotating, but there is no pointing process at this time, that is, it is still in the speed mode operation state, only the command is 0. Exit Press the MODE key to exit the pointing process.

Chapter 5: Control functions

5.1 Position control mode

Summary.

Position control is performed according to the position command from the host computer (e.g., pulse input, communication give) or the servo's internal multi-stage position command, and the basic functions during position control are explained below.

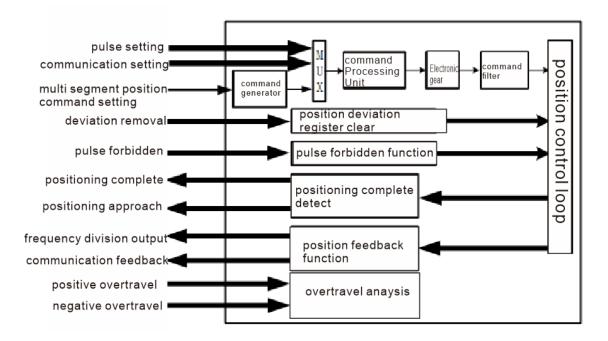


chart0-1 Block diagram of the basic functions of position control

Functional description:

1 Position command processing unit.

The position command processing unit determines the command source and counts the commands, giving the command units required for the current control in real time. There are three sources of position instructions (F01.05): 0-pulse instructions; 1-step amount given; 2-internal multi-stage position instructions.

Among them, when the source of the position command is a pulse command, the pulse command is divided into six forms (F01.07 and F01.08): 0- Direction + pulse, positive logic; 1- Direction + pulse,

negative logic; 2-A(Pulse)+B(sign) two-phase quadrature pulse, quadruple frequency, positive logic; 3-A+B two-phase quadrature pulse, quadruple frequency, negative logic; 4-CW+CCW, positive logic; 5-CW+CCW, negative logic. logic; 5-CW+CCW, negative logic. The user needs to set F01.05 and F01.07 or F01.08 according to the actual command form of the upper unit, and determine whether the wiring method is differential input or open collector (OC) input according to the signal mode of the upper unit. Note: The pulse control function is only supported by the pulse-only or full-featured models.

When the command source selects the step amount to be given, the position amount to be stepped is set by F01.23, and the drive internally interpolates at a very low speed to go through the specified displacement amount. Can be used for manual commissioning.

When the instruction source selects the internal multi-segment position instruction, the 16-segment displacement, running speed and acceleration/deceleration are set by the F10 group function code, and the drive internally performs linear interpolation according to the set parameters to complete the specified trajectory.

Associated parameters.

			0-Pulse command		
F01 05	Location command	1 - Step amount given			
	source	2 - Internal multi-segment position command			
			3 - Reservations		
			0-Direction + Pulse, positive logic. (default value)		
	07	Pulse String Pattern	1-Direction + Pulse, Negative Logic		
			2 - Phase A (Pulse) + Phase B (Sign) quadrature pulse 4x		
F01			frequency, positive logic (A ahead of B is positive)		
101		High-speed burst pattern	3 - Phase A (Pulse) + Phase B (Sign) Quadrature pulse 4x		
	08		frequency, negative logic (B over A is positive)		
			4-CW+CCW, positive logic		
			5-CW+CCW, negative logic		
F01	23	Position stepping amount	-9999 to 9999 command units		
		setting			

When F01.01 is set to 9 (EtherCAT control), the position command is given by the upper controller via communication (EtherCAT), please refer to the corresponding bus control chapter (e.g. chapter 8 EtherCAT bus description) and the standard technical documentation of the communication protocol used.

2 Electronic gears :

The main function of the electronic gear is to multiply the input position command given by the host

computer by a certain fractional ratio to obtain the pulse command in units of the minimum resolution of the encoder required by the position loop controller.

When F01.09 is not 0, position control command = encoder resolution * input command / F01.09 (this parameter is not valid when the motor type is selected as linear motor, it can only be set with electronic gear ratio numerator and denominator, see below for calculation method) ;

When F01.09 is 0, position control command = electronic gear ratio numerator * input command / electronic gear ratio denominator.

The current electronic gear ratio is selected via the DI function GEAR_SEL1 at.

GEAR SEL1 invalid: Electronic gear ratio 1

GEAR_SEL1 is valid: Electronic gear ratio 2.

Associated parameters.

F01	09	Number of unit instructions required for	0Uint/Turn ~ 1073741824 Uint/Turn
101	07	one revolution of the motor (32 bits) $0000070000000000000000000000000000000$	
F04	00	First electron gear molecule (32 bits)	1 to 1073741824
F04	02	Electronic gear denominator (32 bits)	1 to 1073741824
F04	04	Second electron gear molecule (32 bits)	1 to 1073741824

The electronic gear ratio has a wide range of numerator and denominator settings, but when the ratio of the electronic gear ratio exceeds a certain range, an electronic gear setting error E.38 is reported. The electronic gear ratio must satisfy the following range.

Encoder resolution / $1000000 \le$ numerator / denominator \le encoder resolution / 2.5

When communication control is enabled, the electronic gear ratio is selected by the parameter F09.13 (Electronic gear ratio selection for communication control) whether the internal electronic gear ratio (above parameters) or the communication-specific electronic gear ratio parameters are used (e.g. for EtherCAT communication control, the electronic gear ratio can be set with the parameters 6091.01h, 6091.02h).

3 Position command filtering.

The position command filter function must be used to smooth the command after the electronic gear calculation. There are two types of built-in position command filters: a low-pass smoothing filter (IIR), and an average filter (FIR). The larger the filtering time, the better the filtering effect, but the greater the delay in the command response.

Associated parameters.

F02	40	Position command smoothing filtering	0.0ms~6553.5ms
F02	41	Position command averaging filtering	$0.0ms \sim 512.0s$
F02	42	Position command average filtering 2	0.0ms to 512.0ms

4 Pulse divider output function.

This function only exists in the pulse model, the pulse frequency division output function can convert the position of motor rotation into AB phase orthogonal pulse output to the upper computer, the upper computer can carry out position closed loop control or position monitoring according to this feedback. And the motor can output one Z signal pulse for each rotation of the motor. The pulse output source, resolution, phase sequence logic, and Z-signal logic can be set by function code. Associated parameters.

F01	11	Number of pulses output in one revolution of the motor (32 bits)	16PPR ~ 1073741824PPR (Number of corresponding lines by incremental photoelectric encoder)
F01	13	Definition of the positive direction	0:velocity is positive, OA overtakes OB
1 0 1	10	of the pulse output	1:Negative velocity, OA ahead of OB
F01	14	Pulse output OUTZ polarity	0-Z pulses are high when they arrive
101	17	Tuise output 0012 polarity	1-Z pulse is low when it arrives
F01	15	Delta antest for dian all dian	0-Encoder feedback divider output
F01	13	Pulse output function selection	1 - Command synchronization output

5 Pulse deviation zeroing function

This function is used to set the clear condition under which the accumulated pulse deviation in the

internal position controller can be cleared to zero.

Associated parameters.

			0: Servo OFF and clear position deviation pulse in case of fault
F04 1		Position deviation clearance function	1: Position deviation pulse is cleared only in the event of a fault
	10		2:Cleared when the servo is OFF and when a fault occurs, and when
			the DI function (PERR_CLR) is active
			3:Clear only by DI function (PERR_CLR)

6 Pulse input disable function

Use this function to ignore the pulse input signal when required, and the count of the position

command input counter is forced to stop.

Associated parameters.

			0:0.5ms 2 consecutive times in unison
F04	10	Pulse disable input	1:0.5ms 3 consecutive times consistent
F04	12	setting	2:1ms 3 consecutive times consistent
			3:2ms 3 times in a row in unison

7 Positioning completion detection function

The positioning completion and positioning approach are judged by detecting whether the position deviation is within the set range, and the corresponding DO signals COIN and NEAR are output according to the setting (first configure the DO function to the corresponding output pins). Associated parameters.

F04	61	Positioning the	1P ~ 65535P
1'04	01	completed range	
F04	62	Positioning complete Output Settings	 0: Absolute value of position deviation is less than the positioning completion range 1: The absolute value of position deviation is less than the positioning completion range and the position command is 0 2: The absolute value of position deviation is less than the positioning completion range and the filtered position command is 0 3: When condition 0 and the zero speed signal is valid at the same time 4: When condition 1 and the zero speed signal is valid at the same time 5: Condition 2, when the zero speed signal is valid at the same time
F04	63	Positioning complete Hold time	0 to 65535ms (0 - Positioning completion signal is always output as long as the condition is met)
F04	64	Positioning proximity range	1P ~ 65535P

5.2 Speed control mode

Summary.

Speed control is performed according to the speed command from the host computer (e.g. analog input) or the servo's internal speed command, and the following explains the basic functions during speed control

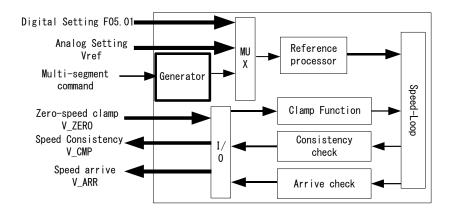


chart0-2 Block diagram of the basic functions of speed control

Functional description.

1 Speed command processing

When the speed source F05.00 is equal to 1, the analog input channel of Vref (default AI1) is first set through F07.07 and F07.17. The analog speed processing section converts the analog voltage given by the host computer to A/D, and the converted digital result will correspond to the specific speed command value according to the set correspondence. At the same time, a digital filter can be set to prevent interference and reduce noise.

When F05.00 equals 0, the speed command give value is set via F05.01.

When F05.00 equals 2, F05.33 to F05.65 set 16-segment internal speed command value and acceleration/deceleration time, and also need to configure DI functions 8, 9, 10 and 11 for multi-segment speed selection.

Associated parameters.

			0:Digital Setting (F05.01)
			1:Vref (default AI1)
			2:Multi-segment command 1 to 16 switching
F05	00	Speed command source	3:Vref and multi-segment command 2 to 16 switching
			4:Communication setting
			5:Vref + digital setting
			6:Multi-segment command 1 to 16 switching + digital setting
F05	01	Speed command setpoint	-9000rpm~9000rpm
F07	00	AI1 minimum input	-10.00V to 10.00V
		AI1 minimum value	-100.0% to 100.0%
F07	01	corresponds to the set	(100% speed corresponds to the speed set in F05.14, 100% torque
		value	corresponds to the torque set in F05.15)
F07	02	AI1 maximum input	-10.00V to 10.00V

		AI1 maximum value	-100.0% to 100.0%
F07	03	corresponds to the set	(100% speed corresponds to the speed set in F05.14, 100% torque
107	05	value	corresponds to the torque set in F05.15)
F07	04	AI1 Zero Point Trim	-500mV~500mV
F07	05	AI1 deadband setting	0.0 to 20.0%
F07	06	AI1 input filtering time	0.0ms~6553.5ms
107	00	All input intering time	0:Vref,
			1:Tref,
F07	07	AI1 function selection	2:VLMT,
			3:TLMTP,
			4:TLMTN,
			5:TFFD
F07	08	Reserved parameters	
F07	09	Reserved parameters	
F07	10	AI2 minimum input	-10.00V to 10.00V
		AI2 minimum value	-100.0% to 100.0%
F07	11	corresponds to the set	(100% speed corresponds to the speed set in F05.14, 100% torque
		value	corresponds to the torque set in F05.15)
F07	12	AI2 maximum input	-10.00V to 10.00V
		AI2 maximum value	-100.0% to 100.0%
F07	13	corresponds to the set	(100% speed corresponds to the speed set in F05.14, 100% torque
		value	corresponds to the torque set in F05.15)
F07	14	AI2 zero point trim	-500mV~500mV
F07	15	AI2 deadband setting	0.0 to 20.0%
F07	16	AI2 input filtering time	0.0ms~6553.5ms
			0:Vref,
			1:Tref,
		AI2 Function Selection	2:VLMT,
F07	17		3:TLMTP,
			4:TLMTN,
			5:TFFD

2 Zero speed clamp function

The speed command can be forced to 0 by using the DI function ZERO_SPD, and the setting

parameter F05.21 determines whether it is necessary to switch to position control mode for locking. Associated parameters.

			0:Invalid
F05	21	Zero speed clamp	1: Speed command forced to 0 when ZERO_SPD is active
		function	2: The speed command is forced to 0 when ZERO_SPD is active,
			when the motor is actually
			Switching to position control when speed falls below F05.22,
			locking at current position

Yasaka YSK2 Servo Design and Maintenance User's Manual

F05	22	Zero Speed	Orpm to 1000rpm
		Clamping	
		Threshold	

3 Speed consistency detection function

When the speed command before acceleration and deceleration processing and the motor speed feedback are within the range specified in F05.70, the output speed is consistent with the V_CMP signal, and there is a 10rpm lag in the actual detection.

F05	70	Speed-consistent signal width	10rpm to 1000rpm
-----	----	----------------------------------	------------------

4 Speed arrival function

The output speed reaches the V_ARR signal when the actual speed reaches above the specified speed value, with a 10rpm lag in actual detection.

Associated parameters.

F05	71	Speed reaches specified	10rpm to 1000rpm
105	/ 1	value	

5 Speed acceleration and deceleration function

There are four sets of acceleration and deceleration times that can be set, with the first set of acceleration and deceleration speeds being used by default. When the internal multi-step speed command function is used, the first to fourth group of acceleration and deceleration times can be selected. When the acceleration/deceleration time is set to 10ms, it means that the acceleration time from 0 to 1000rpm or deceleration time from 1000rpm to 0 is 10ms.

	12	Acceleration time 1	0 ms to 65535ms / 1000rpm
	13	Deceleration time 1	0 ms to 65535ms / 1000rpm
	14	Acceleration time 2	0 ms to 65535ms/ 1000rpm
F05	15	Deceleration time 2	0 ms to 65535ms / 1000rpm
F03	16	Acceleration time 3	0 ms to 65535ms / 1000rpm
	17	Deceleration time 3	0 ms to 65535ms / 1000rpm
	18	Accelerated time 4	0 ms to 65535ms/ 1000rpm
	19	Deceleration time 4	0 ms to 65535ms / 1000rpm

5.3 Torque control mode

Summary.

The torque output from the servo motor is controlled according to the given torque command (analog or internal torque setting), and a speed limiting function must be added for practical applications to prevent flying due to too small a load.

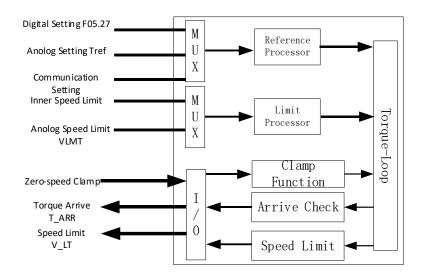


chart0-3 Block diagram of the basic torque command

Functional description.

1 Torque command processing

When F05.24 is equal to 1, the analog input channel of the fixed Tref is first set by F07.07 and F07.17. The analog torque command processing section converts the analog voltage given by the upper computer to A/D, and the converted digital result corresponds to the specific torque command value according to the set correspondence. At the same time, to prevent interference and reduce noise, a digital filter can be set for filtering.

When F05.24 is equal to 0, the torque command is set digitally via F05.27; when F05.24 is equal to 2, the DI function CMD_SEL allows switching between digital and analog settings. Associated parameters.

F05	24	Torque command source	0: Digital Setting (F05.27) 1: Tref 2: Digital setting, TREF switching (CMD_SEL) 3: Communication setting 4: Tref+ digital setting
F05	27	Torque command keypad setpoint	-300.0% to 300.0% (based on rated motor torque)

In this case, the analog-related parameters are the same as in the case of speed control.

2 Speed limitation during torque control

During normal torque control, the speed control circuit is disconnected, so the speed must be limited to prevent accidents. The speed limiting function is to limit the motor rotation speed to the set range. When the motor speed exceeds the speed limit value, the actual acting torque command is no longer equal to the torque command, but to the output of the speed limit regulator. The speed limit value can be set internally via F05.29, F05.30, or via the analog input VLMT. The final speed limit must not exceed the maximum speed of the motor.

Associated parameters.

	28	Speed during torque	0 - Forward and reverse internal speed limits F05.29, F05.30
		control	1-VLMT: Use AI input value as speed limit value
		Limiting source	
E05		selection	
F05	29	Internal positive speed	0rpm ~ 9000rpm
	29	limit	
	20	Internal negative speed	0rpm ~ 9000rpm
	30	limit	

Note: The parameters related to the analog input settings are the same as in the case of speed control.

Capter 6: Application Features

6.1 Motion control functions

6.1.1 Internal multi-segment position command

Summary.

The position control mode also allows the selection of multiple position commands within the drive, allowing the user to easily set the total number of command segments, the operating speed, and the acceleration and deceleration speeds.

Functional description.

The multi-stage position command, like the external pulse command, can receive a deviation clearing signal by the electronic gear and position command filter, and output a positioning completion signal after positioning is completed, and can also be configured with a pulse divider output.

For example, if the number of encoder pulses for a motor rotation-turn is PPR, and the user expects the motor to rotate one revolution when giving UPR user command units, then the electronic gear ratio to be set is: PPR/UPR.

The multi-segment position command can be configured with up to 16 different segments, each with a different running speed and acceleration/deceleration. The user can set up sequential execution, or random segment execution via DI or communication. Relative or absolute instructions can be configured, i.e. whether each segment is an increment relative to the current position or an absolute value relative to the zero point.

For the sequential execution method, the start segment number and the end segment number can be set, so that it can be executed sequentially from the start segment until the end segment; single run or loop run can be selected: in single run, after the end segment is executed, it will not be run again; in loop run, after the end segment is executed, it will be executed from the start segment again until the user terminates the run. In addition, for sequential execution, the waiting time between segments can be set.

The following table explains the relationship between the validity of the DI function and the selection of the multi-segment location (ON: means the corresponding DI function is valid, OFF: means the

45

Execute the Nth	DI function		DI function	DI function
instruction	8/SEL1	DI function 9/SEL2	10/SEL3	11/SEL4
1	OFF	OFF	OFF	OFF
2	ON	OFF	OFF	OFF
3	OFF	ON	OFF	OFF
4	ON	ON	OFF	OFF
5	OFF	OFF	ON	OFF
6	ON	OFF	ON	OFF
7	OFF	ON	ON	OFF
8	ON	ON	ON	OFF
9	OFF	OFF	OFF	ON
10	ON	OFF	OFF	ON
11	OFF	ON	OFF	ON
12	ON	ON	OFF	ON
13	OFF	OFF	ON	ON
14	ON	OFF	ON	ON
15	OFF	ON	ON	ON
16	ON	ON	ON	ON

corresponding DI function is invalid).

Note: When using the multi-segment position command, the internal multi-segment position enable signal (DI function 5) needs to be input via DI after the servo ON to give the position command.

The flow of the multi-segment position command is shown in the following diagram:

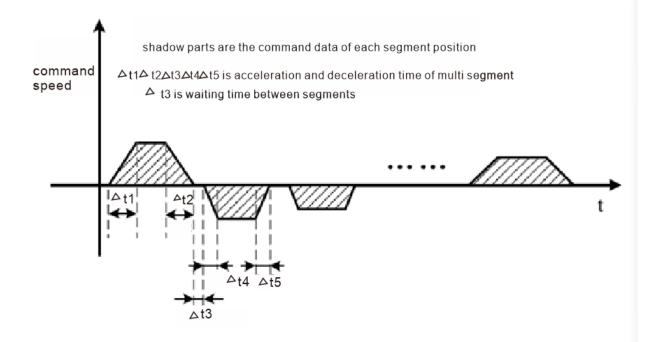


chart0-1 Schematic diagram of multi-segment position command execution

Associated parameters

parameters		name (of a thing)	Parameter Description	
F04	46	Multi-segment position execution method	0: Single operation 1: Cyclic operation 2:DI terminal switching operation 3:Communication switching operation 4:Single continuous operation 5:Cyclic continuous operation	
F04	47	Multi-segment position command type	0:Relative command 1:Absolute command	
F04	48	Multi-segment position internal control of waiting time	0~65535ms	
F04	49	Multi-segment location starting segment serial number	1 ~ (F08-02)	
F04	50	Multi-segment location end segment serial number	(F08-01)~16	
F04	51	Multi-stage position pause and restart Treatment of remaining segments	0-Run the remaining segments 1-Run from the starting segment again	
F10	00	Segment 1 displacement (32 bits)	-1073741824~1073741824	
F10	01	Segment 1 displacement (high 16 bits)		
F10	02	Paragraph 1 maximum speed (32 bits)	1 to 80,000,000	
F10	03	Segment 1 maximum speed (high 16 bits)		
F10	04	Paragraph 1 acceleration multiplier	0% - 300%	
F10	05	Paragraph 1 deceleration multiplier	0% - 300%	
F10	90	Paragraph 16 displacement (32 bits)	-1073741824~1073741824	
F10	91	Segment 16 displacement (high 16 bits)		
F10	92	Paragraph 16 maximum speed (32 bits)	1 to 80,000,000	
F10	93	Paragraph 16 maximum speed (high 16 bits)		
F10	94	Paragraph 16 acceleration multiplier	0% - 300%	
F10	95	Paragraph 16 deceleration multiplier	0% - 300%	

F10.00 to F10.05 are the parameters for the number of position command pulses, running speed, acceleration and deceleration time and wait time after completion for the first segment, and similar for

Yasaka YSK2 Servo Design and Maintenance User's Manual

the remaining segments.

	1
DI function 5	Internal multi-segment position command enable signal, must be configured
DI function 8	
DI function 9	SEL1-SEL4, selects the number of segments of the multi-segment position
DI function 10	command to be executed.
DI function 11	

6.1.2 Intermediate decision length

Summary.

The interrupt length is also an internally generated position command function. In position control mode, a position instruction being executed (whether pulse given, communication given, or multi-segment position instruction) can be interrupted at any moment to go to a user-specified segment of the position instruction, see the figure below.

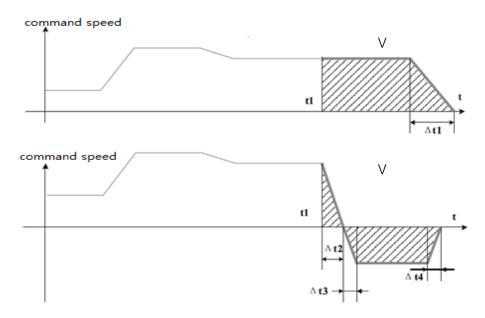


chart0-2 Schematic diagram of the execution of the interrupt-determined-length instruction

Functional description.

Before the moment t1 of the figure, the motor is executing the position command given by the upper computer, the DI signal at the moment t1 triggers the mid-break length, and the thick line indicates that the mid-break length command is being executed. The sum of the areas shaded in the figure is the length of the position command for the mid-break length.

 $\Delta t1$, $\Delta t2$, $\Delta t3$, and $\Delta t4$ are the times of the mid-determined long acceleration process or deceleration process.

To use the mid-break length, the following parameters and DI input functions need to be configured, and two additional DO output functions are available for monitoring the mid-break length process. The number of position commands and acceleration and deceleration times for the interrupted length are

specified by the parameters F04.66, F04.68, F04.70, and F04.71.

Note: If the current speed V1 * $\Delta t1 / 2$ + current position deviation < the interrupted displacement, the motion waveform will be as shown in the upper half of the diagram; otherwise, the motion waveform will be as shown in the lower half of the diagram, and the motor will decelerate to 0 and then reverse. When the set command direction is opposite to the current motion direction, the motor will also move in the reverse direction.

	paramete	151	
			0:Disable the interrupt execution function;
			1:Enable, interrupt on the rising edge of DI signal
			(independent of DI logic setting), and automatically release the
			interrupt lock state
		intermediate	after completion;
504		decision length	2:Enable, interrupt on the rising edge of DI signal (independent of
F04	52	Execution	DI logic setting), and release the interrupt lock state through DI
		settings	signal XINT_ULK after completion;
			3:Enable, interrupt on the falling edge of DI signal, and
			automatically release the interrupt lock state after completion
			4:Enable, interrupt on the falling edge of the DI signal, and unlock
			the interrupt state by DI signal XINT_ULK after completion
			0: Do not
		Interrupting long	follow gear ratio adjustment, interrupt displacement is set to
F04	53	electrons	command unit
		Gear Selection	1: Follow gear ratio adjustment, interrupt displacement is set to
			encoder unit
		Interrupting long	
F04	54	commands	0: follows the current running direction
Г04		Directional	1: determined by the sign of the command value
		Options	
		Interrupting long	
F04	54	commands	0: follows the current running direction
1'04		Directional	1: determined by the sign of the command value
		Options	
		intermediate	
F04	66	decisive long	-1073741824~1073741824
		position	

Associated parameters.

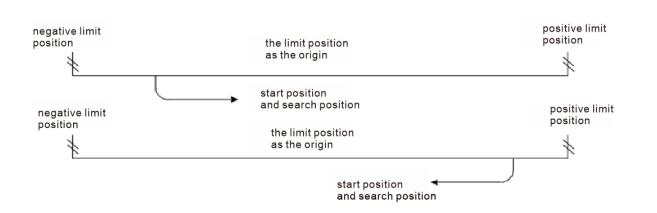
Yasaka YSK2 Servo Design and Maintenance User's Manual

		Shift amount (32	
		bits)	
		intermediate	
F04	68	decision length	1 to 6000 rpm
		Maximum speed	
		intermediate	
F04	70	decision length	0 - 1000ms
		acceleration time	
		intermediate	
F04	71	decision length	0 - 1000ms
		Deceleration time	
		DI1 to DI5	A digital input must be configured to function as an interrupt
F06	01~05	Function	execution trigger signal 34 (DI1 to DI5 can all be configured as
		Definition	interrupt execution trigger signals)

Description of the relevant digital input and output functions.

DI function 34	DI function 34 Interrupting a long execution trigger signal	
DI function 26 Unlock mid-break length (must be set when F04.52 is set to 2 or 4)		
DI function 27 Prohibit the determination of the length in execution, optional		
DO function 14 Output monitoring, mid-break length completion, optional		
DO function 18 Output monitoring, in asserting that a long is being executed, optional		

6.1.3 Return to the origin


Summary.

The servo driver has an internal home return function and supports various home return methods. The servo motor can be used independently to search for the home point, or it can be used in conjunction with the host computer to achieve home point return.

For the case where the limit position is the origin, see Figure 4.6 below, and then, depending on the need, you can choose whether or not to find the Z-pulse signal, which enables a variety of different ways to search for the origin.

In the case of a home position sensor, see Figure 4.7 below, there are several configurations to choose from, and the end result can vary, as the use of a rising or falling edge for the home position sensor signal can lead to a different home position being found. In addition, it is important to check whether the Z-pulse signal is used and the direction of the search for the Z-pulse signal.

When using Z-pulses, different directions of finding the Z-pulse will find different home positions, see Figure 4.8 below.

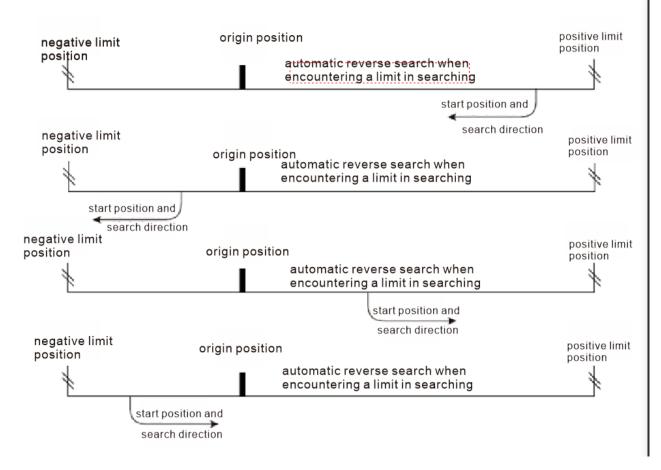


chart0-4 Case with home position sensor

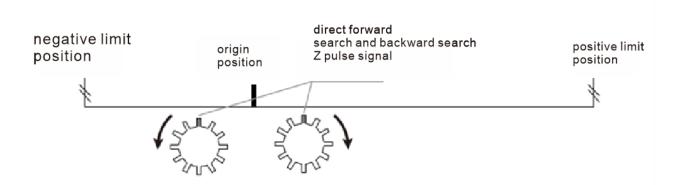


chart0-5 Backward Search or Forward Search Z Pulse Signal

Functional description.

To use the home return function, set the parameters shown in Table 1 and the DIDO function shown in Table 2. Use F11.00 to configure the start method of home return, and use F11.01 to set the way to search for the home position. When searching the origin, the limit position may be encountered, and the alarm stop can be selected when the limit position is encountered, or the automatic direction search can be selected, use F11.02 to configure how the pole position is handled. Use F11.04 and F11.05 to set the high speed search speed and low speed search speed, and use F11.06 to set the acceleration and deceleration time during the search. In addition, there is a time limit for the origin search process, use F11.07 to set the upper time limit, after this time the origin return is not completed will report A.94. Associated parameters.

group number	name (of a thing)	instructions
F11.00	Origin return start method	0:off 1:Start by DI function STHOME 2:Keyboard start 3:Communication activation 4:Start immediately after powering on the first servo ON
F11.01	Return to origin model	 0:Positive rotation search origin, with positive limit as origin 1:Invert the search origin with the negative limit as the origin 2:Forward rotation search origin, using HOME_IN signal OFF→ON as the origin 3:Reverse the search origin, using the HOME_IN signal OFF→ON as the origin 4:Forward search origin, using HOME_IN signal ON→OFF as origin

		 5:Reverse the search origin, using the HOME_IN signal ON→OFF as the origin 6:Positive rotation looks directly for the nearest Z signal as the origin 7:Invert to find the nearest Z signal directly as the origin 8:Directly use the current position as the origin
F11.02	Return of the origin to the time limit position and Z signal settings	 0: automatically reverses when it encounters a limit, returning to find the Z signal. 1: automatically reverses when it encounters a limit and looks directly forward for the Z signal. 2: Automatic reversal of limits encountered, without finding the Z signal. 3: Stops and alarms when a limit is encountered and returns to find the Z signal. 4: encounter a limit stop and alarm, look directly forward for the Z signal. 5: Stops and alarms when a limit is encountered, without looking for the Z signal. Notes: For the handling of encountered limits, such as for regression mode 0 to 1, even if Here it is set to 3, 4 or 5 and does not alarm or stop. For finding the Z signal, if the regression mode is 0 to 1, it is in the limit of encounter after the bit signal; as for regression modes 2 to 5, it is after encountering After the HOME IN signal.
F11.04	High Speed Search Velocity of the origin	After the home return process is started, the search for the home position starts at this speed unless a deceleration signal or home position signal is already present at the start.
F11.05	Low-speed search Velocity of the origin	When searching for the origin, switch to low speed search after hitting a deceleration point, or after hitting the origin position.
F11.06	When searching for the origin of the Acceleration and deceleration time	Set the acceleration and deceleration time in ms for the start and stop of the search home
F11.07	return to the origin process Time limit value	Set a limit time for the origin return process, after which time the origin is not searched, the origin search is stopped and alarm A96

F11.08	Origin Coordinate Offset	Once the home position is finally found, the absolute position is usually cleared to 0. You can also set the absolute position counter to the value of this parameter				
F11.10	mechanical origin	After finally finding the home position, you can again				
111.10	position offset	move the section of displacement set by this parameter				

Related DIDO functions.

DI function 29	Starts the origin regression process, must be configured, can be configured to any DI
Di function 2)	port
DI function 29	Home position sensor access signal, mandatory for F11.02 selections 2, 3, 4, 5, can
DI function 28	be configured to any DI port
D0 function	Mark origin return complete when valid, configurable to any DO port
17	

6.2 Power down protection function

The protection functions of the shutdown include instantaneous power failure protection, fault shutdown protection and over-travel shutdown protection, which are not turned on by default. Users can turn on the corresponding protection function according to their is needs.

6.2.1 Instantaneous power failure protection

When the machine is in normal operation, if a sudden power failure occurs in the factory, after the power failure protection function is turned on, the servo can use the remaining internal power to stop the motor quickly, so that the motor does not stop freely and cause a crash to the mechanism. Instantaneous power failure protection function related parameters F08.00, F08.01.

	stop instantly	Setting range	factory	unit	Mode of entry	R	Relate	d
	without		value		into force	n	nodel	s
F08.00	stopping	0~1	0	1	Effective	Р	S	Т
	Protective				immediately			
	switches							

When this protection function is enabled, if the power supply is restored immediately after a momentary power failure, the previous state before the mains power failure can be restored immediately. 0: not on; 1: on.

	stop instantly	Setting range	factory	unit	Mode of	Related
F08.01	without		value		entry into	models
	stopping				force	

	Deceleration	0 to 10000	20	1ms	Effective	Р	S	Т	
	time				immediately				

After turning on the instantaneous power failure protection, use this power failure deceleration time when stopping. The range is $0 \text{ms} \sim 10000 \text{ms}/1000 \text{rpm}$ This parameter can be set according to the actual needs of the customer, and it is generally recommended that this parameter be set within 30.

6.2.2 Fault shutdown protection

When the drive is running normally, if a sudden failure occurs, after setting the failure stop method, the servo motor can be stopped down quickly to avoid free stopping which will cause crashing the mechanism.

F08.03	No2. Failure Shutdown	Setting range	factory value	unit	Mode of entry into force		Related models	
	method	0 to 2	0	1	Downtime in effect	Р	S	Т

0: Free stop, stay free. After a fault, the motor current shuts off and runs free until it stops.

1: Zero speed stop and remain free. After a Class 2 fault occurs, the motor current continues to be output for a period of time until the motor stops completely, after which the motor remains free.

2: Stops with emergency stop torque and remains free. After a type II fault occurs, the emergency stop is made with the torque set in parameter F08.08. After the stop is completed, the motor remains free.

	emergency	Setting range	unit		Mode of entry into force	Related models		
F08.08	stop torque	0 to 5000	1000	0.1%	Effective immediately	Р	S	Т

 $0.0\% \sim 300.0\%$ (based on rated motor torque)

6.2.3 Over-travel shutdown protection

The over-travel stop method is selected to meet the stopping requirements of different occasions. If a

Yasaka YSK2 Servo Design and Maintenance User's Manual

quick stop is required, it can be set to zero speed stop or emergency stop torque stop.

E00.04	Overtravel	Setting range	factory value	unit	Mode of entry into force	Related models		
F08.04	input setting	0~1	1		Downtime in effect	Р	S	Т

0: DI function 15 (P_OT) positive drive disable, DI function 16 (N_OT) negative drive disable

1: Invalid

	on overtravel	Setting range	factory value	unit	Mode of entry into force		Relate nodel	
F08.05	stopping method	0 to 2	0		Downtime in effect	Р	S	Т

0: Free stop and maintain zero speed. (Motor shaft locked after valid overtravel)

1: Zero speed stop, maintain zero speed. (Motor shaft locked after valid overtravel)

2: Stops with emergency stop torque and remains free. (Positive overtravel active, positive locked,

negative remains free; negative overtravel active, negative locked, positive remains free)

6.2.4 Shutdown protection deceleration time

When the stopping mode is free stop, the motor stops inertially, and the stopping time is independent of the deceleration time setting.

When the stop mode is zero speed stop or emergency stop torque stop, the deceleration time is controlled by F05.23 for non-communication control mode command and by 6085h for EtherCAT communication control.

6.3 Soft limit function

The soft limit function is to meet the needs of different occasions, turn on the soft limit function, when the motor runs beyond the set range, the drive will report an over-range warning, the motor stops running, thus playing a protective role.

Opening the soft limit process :

F08.04 is set to 0 to turn on the overtravel input setting; F08.05 selects the overtravel stop method.

The soft limit function is turned on by setting F08.34: 0: no soft limit detection; 1: soft limit detection starts as soon as power is applied; 2: soft limit detection is done only after the return to home position is completed.

			1			e			
F	08.35	Positive soft limit	Setting range	factory value	unit	Mode of entry into force		Relate nodel	
		(32-bit)	2147483648 to 2147483647	2147483647		Downtime in effect	Р	S	Т

F08.35 sets the value of the positive soft limit, F08.37 sets the value of the negative soft limit

Positive soft limit, effective in position control, speed control and torque control modes. Set value command unit.

F08.37	Soft limit in negative	Setting range	factory value	unit	Mode of entry into force		lelate nodel	
	direction (32-bit)	-2147483648 to 2147483647	-2147483648		Downtime in effect	Р	S	Т

Negative soft limit, effective in position control, speed control and torque control modes. Set value command unit.

When the value of F24.15 (feedback position command unit) exceeds the range set by F08.35 and F08.37 during motor operation, an overtravel warning indication is reported, resulting in a shutdown for protection.

6.4 Absolute value system

The absolute value system, normally switched on, does not clear the motor encoder values after the drive's main and control power is dropped, and continues to be powered by the external battery, maintaining the encoder absolute position data. When re-powered, the drive is able to obtain the absolute motor position information from the encoder and display it in parameters F24.32 (absolute position encoder turns) and F24.34 (absolute position encoder single turn position).

Associated parameters:										_
	F08.24	absolute value System	Setting range	factory value	unit	Mode of entry into force		Related nodels		
		settings	0 to 3	0		Power up	Р	S	Т	

		again.			
--	--	--------	--	--	--

0:Incremental system

1:Absolute value system

2: Absolute system (E. 14 faults need to be cleared manually)

3:- Absolute value system and overflow error reported.

When the absolute value system is required, you need to turn on the absolute value system by setting F08.24 to 1 or 2. When the absolute value system is switched on for the first time and the power is reapplied, fault E.14 (abnormal number of absolute encoder turns) is reported. In this case, set F23.06 to 3 to clear the number of turns, but if F08.24 is set to 2, a separate fault reset is required to reset the E14 fault. If the servo still reports the E.14 fault after performing the above operation, please check as follows.

① Check the encoder wiring for abnormalities and rewire it.

② Check whether the battery is normal, if the voltage is insufficient, please replace the battery.

③ Check if the encoder cable has 6 wires, if it is not 6 wires, this encoder cable may not be connected to the positive and negative battery terminals, replace the cable.

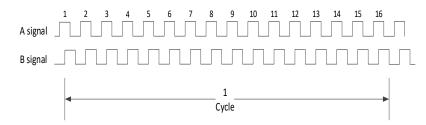
6.5 Pulse output function

This function exists only for pulse models. The driver has three main pulse outputs, A, B and Z. See the following table for details.

Signal	Output Pin No.	Name	Remarks
Name			
OUT_A		Encoder dividing pulse	When the motor rotates, the A-
/OUT_A		output A phase	phase and B-phase pulses are
OUT_B		Encoder dividing pulse	output outward with a 90° phase
/OUT_B		output B phase	difference.
OUT_Z		Encoder dividing pulse	The motor rotates one revolution
/OUT_Z		output Z-phase	and outputs one pulse.

6.5.1 Pulse divider output

The parameters related to pulse divider output are F01.09 (number of pulses output in one revolution


of the motor), F01.13 (definition of positive direction of pulse output), and the following are the details of the parameters.

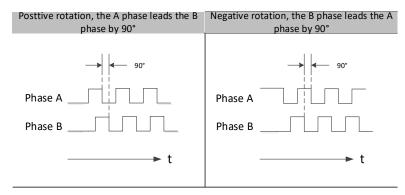
Frequency division output pulse number is set by F01.09

	Number of	Setting range	Factory	Unit	Effective	R	elated	1
	pulses output in		value		method	Ν	Iodels	3
F01.09	one revolution of	$16 \sim 1073741824$	2500	1PPR	Power up			
	the motor (32				again	Р		
	bits)							

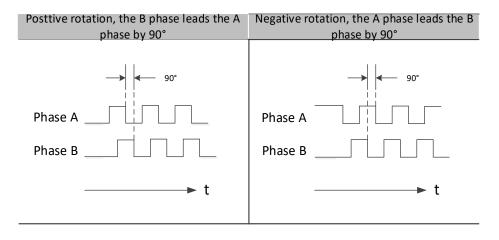
Set the number of OUTA or OUTB pulses output per 1 revolution of the motor. Range: 16PPR $\,\sim\,$

1073741824PPR (Calculate the number of corresponding lines by incremental photoelectric encoder) Output example: When F01.09 = 16, the motor rotates one revolution and 16 pulses are output from phase A and phase B respectively, as shown in the figure below.

(2) The positive direction of the crossover pulse output is set by F01.13


E01.12	Pulse output Definition of	Setting range	Factory value	Unit	Effective method	e Related Models		
F01.13	positive direction	0~1	0		Power up again	Р	S	Т

Sets the phase sequence logic for the pulse output function.


0: when the speed is positive, OA overtakes OB.

1:When the velocity is negative, OA overtakes OB.

(1) When F01.13 = 0, the phase relationship of A/B pulse output is as follows.

(2) When F01.13 = 1, the phase relationship of A/B pulse output is as follows.

6.5.2 Z signal output

By default, the Z-phase output pulse is shown below

Positive rotation, the rising edge of Z is aligned with the rising edge of A	Negative rotation, the rising edge of Z is aligned with the falling edge of A
Phase A	Phase A
Phase B	Phase B
Phase Z	Phase Z
► t	► t

F01.14 can set whether the Z-phase pulse is high or low when it arrives, the default is high; F06.59 can set the width of the Z-phase pulse when it arrives, the default is 0, the width is the same as the width of A.

6.5.3 Pulse synchronization output function

Set F01.15 to 1 to achieve the function of synchronizing multiple driver pulses, when the output of drivers A and B is the same as the input pulse (no need to enable).

Chapter 7: Adjustments

7.1 Gain Adjustment General Description

Summary.

The most important performance indicators of a servo system are: stable, accurate and fast, allowing the motor to track position, speed or torque commands steadily and accurately with as little delay as possible. In order to meet the performance specifications, the gain of the servo drive control loop must be adjusted.

The following are examples.

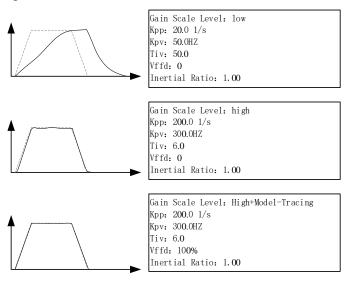


chart0-1 Effect of the same gain on the control performance

After a trial run on the motor to confirm that the drive and motor match correctly, you can debug the servo system control performance through gain adjustment, the general process of manual gain adjustment is shown in the following figure.

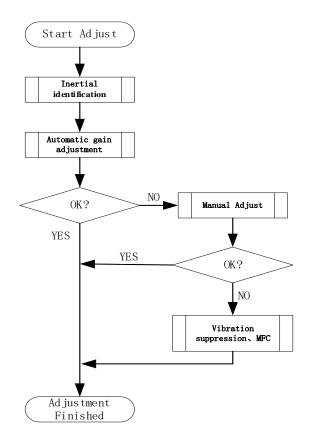


chart0-2 General flow of gain adjustment

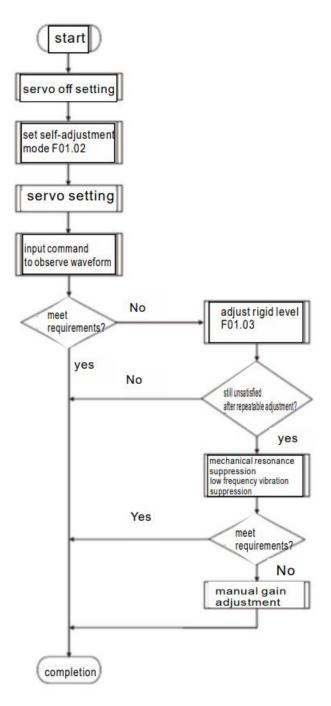
7.2 Automatic gain adjustment

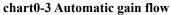
Summary.

Automatic gain adjustment means that the servo driver will automatically generate a set of matching gain parameters through the rigidity level selection function (F01.03) to meet the needs of stability, accuracy and speed.

Details.

Before starting the automatic gain adjustment process, it is important to perform a self-learning of the load parameters (which currently consists mainly of load inertia recognition) or to obtain the relevant load parameters by manual calculation.


The automatic gain adjustment flow is shown in the figure below. There are two main types of realtime self-adjustment modes (F01.02) 1- Standard mode, mainly applicable to speed and torque control; 2- Positioning mode, mainly applicable to position control mode, which is the same as standard mode when in speed control or torque control mode. level 0 has the weakest rigidity and the smallest gain; level 31 corresponds to the strongest rigidity and gain is the greatest. Depending on the type of load, the following empirical values regarding rigidity levels are available for reference.


Class 5 - Class 8: Some mechanical systems with complex transmissions and very low rigidity.

Class 9 - 14: Mechanical systems with low rigidity such as belt drives, cantilevered beam structures, etc.

Class 15 - Class 20: Ball screw, rack and pinion, direct drive systems and other mechanical systems with high rigidity.

Class 21 - 31: Very high rigidity and even direct drive systems for electronic non-standard equipment, semiconductor equipment, etc.

Associated parameters.

group number	name (of a thing)	Setting range
		0:Invalid
F01.02	Real-time self-adjusting mode	1:Standard mode (no gain switching)
		2:Positioning mode (with gain switching)
F01.03	Rigidity level setting	0 to 31
F01.04	inertia ratio	0 to 60.00

Yasaka YSK2 Servo Design and Maintenance User's Manual

function code name (of a thing)		Setting range
F02.00	First position loop gain	1.0/s to 2000.0/s
F02.01	First speed loop gain	1.0Hz to 2000.0Hz
F02.02 First velocity loop integration time		0.15ms to 512.00ms
F02.04	First torque command filtering	0.00ms~100.00ms
F02.05	Second position loop gain	1.0/s to 2000.0/s
F02.06	Second speed loop gain	1.0Hz to 2000.0Hz
F02.07	Second velocity loop integration	0.15ms to 512.00ms
	time	0.15118 to 512.00118
F02.09	Second torque command filtering	0.00ms~100.00ms

Automatically updated parameters: As the rigidity level changes, the servo drive automatically calculates the gain parameters internally, thereby updating the following parameters.

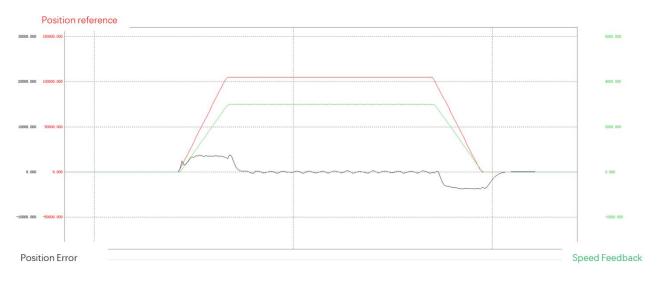
Set fixed values as parameters: the following parameters will be set as fixed values

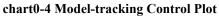
function code	name (of a thing)	setpoint
F02.03	First speed detection filtering	0
F02.08	Second speed detection	0
	filtering	
F02.12	Speed feedforward gain	30.0%
F02.13	Speed feed-forward filtering	0.50ms
	time	
F02.15	Torque feedforward gain	0.0%
F02.16	Torque feed-forward filtering	0.00ms
	time	

Conditionally updated parameters: The following parameters are set to fixed values when the realtime self-tuning mode is the positioning mode, otherwise they remain at their original values.

function code	name (of a thing)	instructions	parameter value
		First gain fixed	
		Second gain fixed	
		Using the DI input (GAIN-SWITCH)	
		Large torque command	
		Not applicable to position control and	
	D '4' (1	fully closed-loop control modes	
F02.18	Position control	Speed command large	
	switching mode	Large location deviation	
		With position command	
		Positioning is not completed is	
		Large actual speed	
		With position command plus actual	
		speed	
F02.19	Position control	$0 \sim 1000.0 ms$	5.0ms

Yasaka YSK2 Servo Design and Maintenance User's Manual


	switching delay		
E02 20	Position control	0 to 20,000	50
F02.20	switching level	0.10.20;000	50
E02.21	Position control	0 to 20 000	33
F02.21	switching hysteresis	0 to 20,000	55
F02.22	Position gain switching	0 1000 0mg	2 2
	time	0 ~ 1000.0ms	3.3ms


7.3 Advanced control functions

7.3.1 Model Tracking Features

Overview.

Model tracking can control the position dynamic following error very well, and the model tracking function can be turned on when there are strict requirements for trajectory control, and the model tracking gain can be set according to the response demand. The larger the model tracking gain is, the faster the response will be. The following figure: the following error fluctuates around 0 in the constant speed section after model tracking is turned on.

Related parameters.

F03.69	Model Tracking Options	Setting range	factory	unit	Mode of	Rela	ted
			value		entry	models	
					into		
					force		
		0 to 9	0		Effective	Р	
					immedia		
					tely		

0: Model tracking is not enabled

1:Enable model 1, external feedforward is invalid
 2:Enable model 1, external feedforward valid
 3:Enable model 2, external feedforward is invalid (reserved)
 4: Enable model 2, external feedforward valid (reserved)

F03.70	Model tracking gain	Setting range	factory value	unit	Mode of entry into		elate Iodel	
		10 to 20,000	500	0.1/s	force Effective immedia tely	Р		

10.0~2000.0 /s

7.3.2 Adaptive filters

Overview.

In actual operation, the drive's internal resonance detection module performs a spectral analysis of the motor feedback, which in turn infers the resonance frequency, and accordingly automatically sets the built-in trap filter parameters to attenuate the vibration near the resonance point. This function is only available in position control and speed control mode, and the motor is in a state of normal rotation without obstacles (not in a state of speed limit, torque limit, travel limit, position deviation counter clear, etc.).

The adaptive filter function may not be effective under the following conditions.

When the resonance point frequency is less than 3 times the velocity response frequency.

When the peak resonance is low, or the gain is so low that the effect of resonance on control

performance is not apparent.

Resonance points greater than 3 or more.

When the motor speed changes sharply due to mechanical non-linearities.

In case of a sharp acceleration command (acceleration and deceleration speed absolute value greater than 30,000rpm/s).

Details.

Set the adaptive filter mode (F03.00) to a value other than 0 or 4, and enter the enable command and control command. The effect of the resonance tuning point will be shown on the motor feedback, and the spectrum analysis module will detect the mechanical resonance point and display it in

F03.29~F03.34, while the parameters of the 3rd trap filter (1, 2) or 4th trap filter (2) will be dynamically updated according to the set number of adaptive filters. In general, if mechanical vibration is detected, F03.00 can be set to 1, and the parameters of the 3rd trap filter will be updated automatically. After the parameters are stable, observe whether the mechanical vibration is effectively suppressed, and if the effect is satisfactory at this time, set F03.00 to 0, and work with fixed parameters. However, since some mechanical systems have more than one resonance point, if there is still a relatively large residual vibration, set F03.00 to 2, then the 4th trap filter parameters will also be updated automatically to attenuate the vibration of another vibration point. If the result is satisfactory, set F03.00 to 0 and work with fixed parameters. If there are still large vibrations, they can be suppressed by manually setting the parameters of the other two trap filters: 1 and 2.

Related parameters.

function	name (of a	Parameter range.
code	thing)	
F03.00	adaptive Filter Mode	 0:Adaptive invalid, 3rd,4th filter works but parameters are unchanged 1:1 adaptive filter valid (3rd filter parameters updated according to adaptive results) 2:2 adaptive filters valid (3rd and 4th filter parameters updated according to adaptive results) 3:Resonant frequency measurement, results are displayed but filter parameters are not updated 4:Clear adaptive results (adaptive is invalid and filters 3 and 4 do not work)
F03.29	Resonance	
	point 1	0~5000Hz
	frequency	
F03.30	Resonance	
	point 1	0 to 20
	frequency width	
F03.31	Resonance	
	point 1	0 to 1000
	amplitude	
F03.32	Resonance	
	point 2	0~5000Hz
	frequency	
F03.33	Resonance	
	point 2	0 to 20
	frequency width	
F03.34	Resonance	0 to 1000

Automatic update parameters.

F03.08	3rd trap frequency	50 to 5000Hz
F03.09	3rd trap width	0 to 12
F03.10	3rd trap depth	0 to 99
F03.11	4th trap frequency	50 to 5000Hz
F03.12	4th trap width	0 to 12
F03.13	4th trap depth	0 to 99

7.4Manual gain adjustment

7.4.1 General description

The YSK2-E Servo Drive can use its own gain adjustment function in most situations, but under certain complex conditions, automatic gain adjustment may not always result in the best performance, and it is necessary to readjust the gain parameters. This chapter will explain the manual gain adjustment method in various control modes.

When adjusting the gain parameter, the response curve of the command can be observed by the background software installed on the computer as a basis for manual adjustment of the gain parameter.

7.4.2 Adjustment of the position mode

For manual adjustment of gain during position mode, refer to the following procedure. Set the correct load inertia value (F01.04), or set it automatically by the load parameter self-learning function (F23.03), or read the F24.07 value in real time while the motor is running and copy it to F01.04 for setting.

Now start to debug the gain parameters: first set the gain parameters to a relatively high rigidity level as possible according to the automatic gain adjustment method, then set the real-time self-tuning mode (F01.02) to 0, and fine-tune the following gain parameters manually according to the following method until the desired performance index is reached.

Note: If you need to use the second group of gain, you can separately debug the dynamic performance during acceleration and deceleration and the static performance after stopping, the second group of gain

function code	name (of a thing)	factory value	Debugging methods	
F02.00 /F02.05	First position loop gain	50.0 1/s	Observe the positioning time. If the positioning time is too long, increase this value, and decrease it. Too large is prone to vibration	
F02.01 /F02.06	First speed loop gain	30.0Hz	If there is no vibration, no noise and no significant overshoot, adjust upwards, otherwise adjust downwards.	
F02.02 /F02.07	First speed credit time	25.00ms	If the value is set lower, the positioning time is reduced, but if it is set too low, vibration may occur. When setting a larger value, it is difficult to converge the position deviation to 0.	
F02.04 /F02.09	First torque command 0.5ms filtering		Try to change this value when vibration occurs. This value is used in conjunction with F02.02, which is positively correlated.	
Speed F02.12 feedforward 30.0% gain		30.0%	Increasing the feedforward gain reduces the position deviation in real time without causing vibration and noise. Uneven input commands can be improved by increasing the feedforward filter time constant F02.13. Enabling velocity feedforward requires setting F02.11 to a non-zero value.	

debugging method is similar to the first group of gain, see0 Chapter.

7.4.3 Speed mode adjustment

The procedure during the speed control mode is similar to the position control mode, except for the position control related parameters F02.00 and F02.05, and the speed feed forward parameters F02.12 and F02.13, which are similar.

7.4.5 Gain switching function

Depending on the internal state or by switching the gain with an external signal, the following effects can be achieved.

1. Suppression of stoppage vibration while maximizing the dynamic response following performance of the servo

2. Increase the gain of the rectification time and shorten the positioning time

3 Gain switching according to external signals

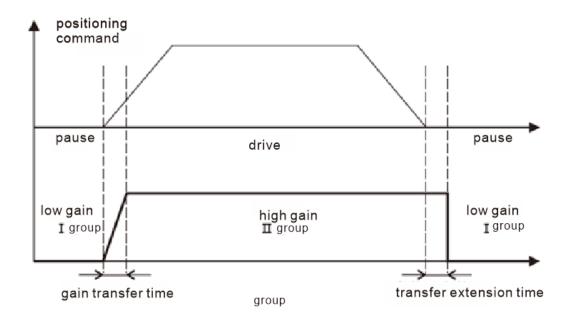


chart0-5 Example of gain switching

The following is an example of how to achieve high response following during operation and low noise and vibration during shutdown.

1. Firstly, do not enable the gain switching function, use group 1 gain, and adjust group 1 gain when there is commanded operation, so that the motor achieves good dynamic stagger performance.

2. Copy group 1 gain parameters to group 2 parameters.

3. Set the gain switching condition, F02.18 can be set to 7 or 10 when position control, while

F02.19~F02.22 can be set according to the need, and the default value can be used.

4. When commanded to stop, reduce the group 1 position loop gain (F02.00) and speed loop gain

(F02.01), and slightly increase the torque command filtering time (F02.04) to reduce stop noise and vibration.

	Gain 2 toggle condition	suita ble	Delayed time	Switching Levels	switching back stall	
edit size	F02.18 F20.23 F02 .27	usef ulne ss patte rn style	time preface chart	F02.19 F02.24 F02.28	F02.20 F02.25 F02.29	F02.21 F02.26 F02.30
0	Gain 1 fixed	PST		not applicable	not applicable	not applicable

Gain switching condition description.

Yasaka YSK2 Servo	Design and	Maintenance	User's Manual

1	Gain 2 fixed	PST		not applicable	not applicable	not applicable
2	Using DI input (GAIN-SWITCH)	PST		not applicable	not applicable	not applicable
3	Large torque command	PST	А	apply	Applicable (0.1 per cent)	Applicable (0.1%)
4	Speed commands vary widely	PS	В	apply	Applicable (10rpm/s)	not applicable
5	Speed command large	PS	С	apply	Applicable (1rpm/s)	Applicable (1rpm/s)
6	Large location deviation	Р	D	apply	Applicable (1 encoder pulse unit)	Applicable (1 encoder pulse unit)
7	With position command	Р	Е	apply	not applicable	not applicable
8	Positioning not completed	Р	F	apply	not applicable	not applicable
9	Large actual speed	Р	С	apply	Applicable (1rpm/s)	Applicable (1rpm/s)
10	There are position commands plus Actual speed	Р	G	apply	Applicable (1rpm/s)	Applicable (1rpm/s)

Timing diagram Please check the following diagram by number, where: 1. When the gain switching condition is: Using DI input (GAIN-SWITCH) only when the function code DI function GAIN-SWITCH switching action selection (F02.17) is set to 1 will group 1 and 2 gain switching be performed, otherwise P/PI switching of speed loop will be performed. 2. Delay time only works when returning from gain 2 to gain 1. 3. When F02.18 is equal to 10, the definition of each parameter is different from other modes.

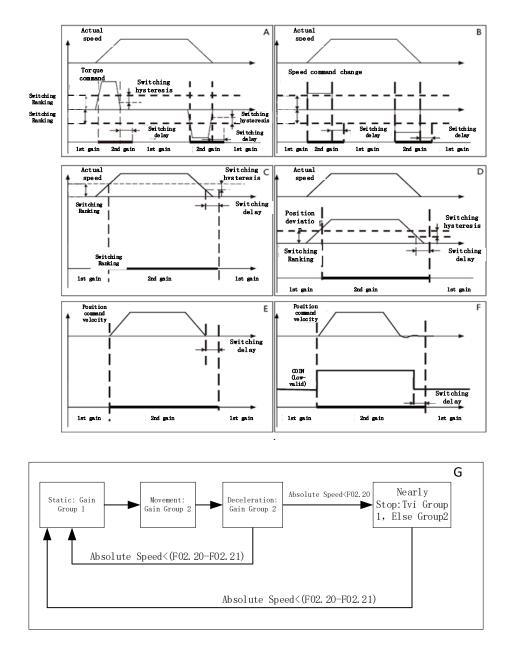


chart0-4 Gain switching timing diagram for various conditions

7.4.6 Feedforward function

For position control, the desired speed control value, i.e., the speed feedforward, can be calculated from the position control command, and the actual speed control command can be output by adding the speed command adjusted according to the feedback. Compared with the feedback-only control system, the real-time position deviation can be reduced and the system response characteristics can be improved. The larger the feedforward gain, the smaller the position deviation will be. Theoretically, when the feedforward gain is equal to 100%, the position deviation is equal to 0. The position deviation follows the following formula.

Position deviation = (position command speed / position loop gain) x (100.0% - velocity feedforward gain).

Similarly, the desired torque control value, i.e., the torque feedforward, can be calculated from the speed control command and added to the torque command adjusted according to the feedback to output the actual torque control command. Compared with a feedback-only control system, the real-time speed deviation can be reduced and the system response characteristics can be improved. In position control, the use of torque feedforward can reduce the position deviation in the acceleration constant segment. When using torque feedforward, make sure that the load inertia parameter (F01.04) is set correctly.

In practice, when the feedforward gain is too large, it may lead to obvious overshoot (position overshoot), then you can reduce vibration and noise by two methods: 1 reduce the speed feedforward gain, 2 increase the torque feedforward gain; it may also cause mechanical vibration machine operation will have a relatively large sound, then you can reduce vibration and noise by two methods: 1 reduce the speed or torque feedforward gain, 2 increase the feedforward filter time constant. Associated parameters.

function code	name (of a thing)	Setting range	minimum unit	Factory Settings
F02.11	Speed feed forward selection	0:No speed feedforward 1:Internal speed feedforward	1	0
F02.12	Speed feedforward gain	0.0% to 100.0%	0.1%	300
F02.13	Speed feed-forward filtering time	0.00ms to 64.00ms	0.01ms	50
F02.14	Torque feedforward selection	0:No torque feedforward 1:Internal torque feedforward 2:Use TFFD as torque feedforward input	1	0
F02.15	Torque feedforward gain	0.0% to 100.0%	0.1%	0
F02.16	Torque feed- forward filtering time	0:No speed feedforward 1:Internal speed feedforward	0.01ms	0

In this case, the torque feedforward can be used as an external feedforward to the analog input, which can be used for the upper computer to calculate the torque feedforward. In this case, the torque feedforward selection (F02.14) should be set to 2, and the input channel of TFFD should be specified in the analog input-related settings, corresponding to the command and voltage.

7.4.7 Mechanical resonance suppression

The mechanical system has a certain resonant frequency, and when the servo gain is increased, it may resonate near the mechanical resonant frequency, making it impossible to continue increasing the gain. There are 2 ways to suppress mechanical resonance.

(1) Torque command filter (F02.04,F02.09,F03.17)

The torque command filter is a digital low-pass filter that suppresses mechanical resonance by setting the filter time constant so that the amplitude of the frequency components near and above the cutoff frequency of the torque command is attenuated.

Filter cut-off frequency fc(Hz) = $1000/(2\pi * \text{ torque command filter time constant ms})$.

(2) Trap filter

The torque command filters are digital band-stop filters, and the YSK2-E Servo Drive has a total of 4 sets of series-connected trap filters to choose from. The 1st and 2nd trap filters are manually set, and the 3rd and 4th trap filters are adaptive filters.

(3) Trap filter.

When the adaptive filter is not enabled (F03.00 is not set to 1 or 2), all 4 trap filters can be adjusted manually. At this time, resonant frequency detection can still be activated by setting adaptive filter mode 3 (F03.00). After the servo is enabled, the resonance point will be calculated based on the spectrum analysis of the feedback signal and displayed in real time in F03.29~F03.34. The resonance point data can also be obtained after the modal analysis of the mechanical system by adding a vibration tester to the mechanical actuating parts if available.

function	name (of a thing) Setting range		minimum unit	factory
code				value
F03.02	1st trap frequency	50 to 5000 Hz	1Hz	5000 Hz
	(manual)			
F03.03	Width of the 1st trap	0 to 12	1	2
F03.04	1st trap depth	0 to 99	1	0
F03.05	2nd trap frequency	50 to 5000 Hz	1Hz	5000 Hz
	(manual)			
F03.06	2nd trap frequency	0 to 12	1	2
F03.07	2nd trap width	0 to 99	1	0

Yasaka YSK2 Servo Design and Maintenance User's Manual

F03.08	2nd trap depth	50 to 5000 Hz	1Hz	5000 Hz
F03.09	3rd trap width	0 to 12	1	2
F03.10	3rd trap depth 0 to 99		1	0
F03.11	4th trap frequency	50 to 5000 Hz	1Hz	5000 Hz
F03.12	4th trap width	0 to 12	1	2
F03.13	4th trap depth	0 to 99	1	0

where the trap frequency is the center frequency F0 of the trap filter; the trap filter width is the trap filter rejection band width coefficient, Kw = (F2-F1)/F0,F2 and F1 are the upper and lower frequencies corresponding to the attenuation-3DB in the amplitude-frequency response characteristics, and the trap filter depth is the trap filter attenuation depth coefficient, which is the amplitude ratio of the output input at the point of the trap center frequency Kd = 100 x (Aout0 / Ain0).

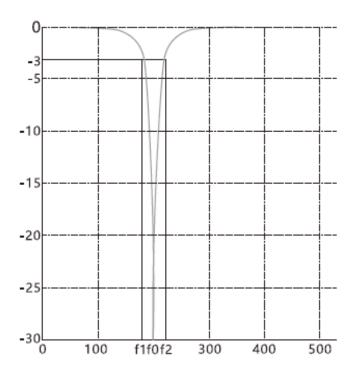


chart0-5 Amplitude and frequency characteristics of the trap filter

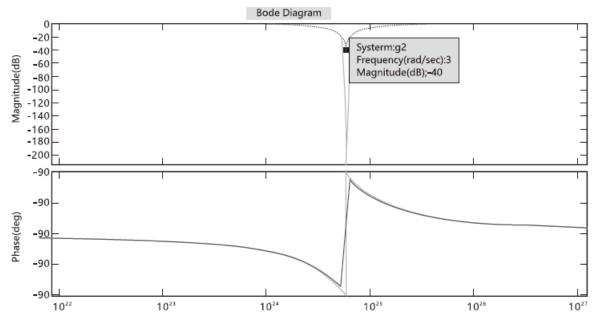


chart0-6 Frequency domain response curves for trap filter depths of 1 (0.01) and 0, respectively

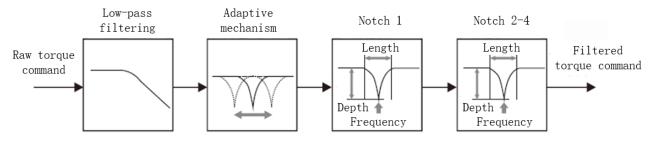


chart0-7 Location of the trap filter in the servo control system

7.4.8 Low Frequency Vibration Suppression

chart0-8 Devices with long ends prone to end vibration

If the end of the mechanical load is long, end vibration tends to occur when positioning stops,

affecting the positioning effect. The frequency of this vibration is generally lower than the mechanical

resonance frequency of the previous section, so it is called low-frequency vibration. The low frequency vibration suppression function can effectively reduce the vibration amplitude and decrease the positioning time.

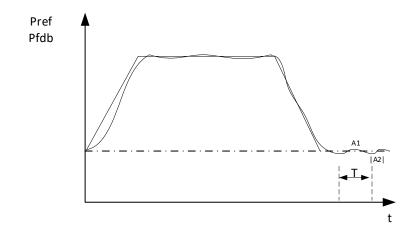


chart0-9 Low frequency vibration waveform during positioning control

If in practical application, it is encountered that there is a long end mechanism on the actuating part and there is a significant oscillation reflected in the position feedback waveform when the position command is stopped and the position deviation (or position feedback) has a periodic oscillation as shown in the figure, then you can follow the steps shown below to calculate the low frequency vibration frequency (F = 1/T) and the attenuation coefficient (attenuation coefficient = A2/A1), and correctly set to the group 1 damping parameters (F03.20, F03.21). Observe the waveform again, and if there is still periodic oscillation, continue to set the group 2 damping parameters as shown in the figure below. After the low frequency damping works, the positioning response waveform will be greatly improved and the positioning rectification time will be significantly shortened.

Associated	parameters.
------------	-------------

function code	name (of a thing)	Setting range	minimum unit	Factory Settings
F03.20	1st damping frequency	0 to 1000	0.1Hz	0
F03.21	1st damping filter setting	0 to 10	0.1	0
F03.22	2nd damping frequency	0 to 1000	0.1Hz	0
F03.23	2nd damping filter setting	0 to 10	0.1	0

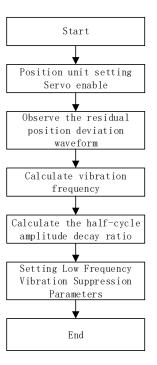


chart0-10 Low Frequency Suppression Function Operation Flow

Chapter 8: MODBUS COMMUNICATION

8.1 MODBUS Communication (Only For YSK2-A)

Using multi-slave communication, the upper controller can change the parameters of multiple servo drives, and the upper controller can observe the waveforms such as position deviation and rotation speed in the state where one and multiple servo drives are wired.

Communication conditions					
Electrical	EIA485				
specifications					
Communication	Asynchronous serial				
method	communication (half				
	duplex)				
Communication	2.4 kbps ~ 115.2 kbps				
speed					
Data Bits	8 bit				
Check digit	0 bit ~ 1 bit				
Stop bit	1 bit ~ 2 bit				
Alarm detection	CRC16-CCITT				
Forwarding	8 bit binary encoding				
data					
Communication	Less than 35 bytes				
data length					

The communication conditions are shown in the table.

8.1.1 Rules for communication read and write parameters

The following numbers are followed by 'h' to indicate hexadecimal numbers

The communication address of the parameter: 8 bits left shift of the classification group number + the offset of the group. For example, for the value of F10.12, the address obtained by rule calculation is 0A0Ch.

(1) Without encryption, all parameters can be read and written.

(2) Some parameters cannot be rewritten when the drive is running, and an error is returned when the rewrite command is entered in communication at this time.

(3) The 32-bit function code must read and write high and low 16 bits at one time, and cannot read and write only high or low 16 bits, i.e., it can only read 32 bits with 03h command and write 32 bits with 10h command.

(4) The user password parameter only supports writing, and always returns 0 when reading, and when the password class parameter is input by communication, i.e., when it is input by 06h or 10h

command, it does not change the password value itself, but only input the password, and the password can only be modified by keyboard operation.

(5) communication write parameters, generally is only rewrite the value in the memory, not write EEPROM, such as rewrite the parameters need to write EEPROM (after power failure can be recovered), then the corresponding address value of the parameters and E000h sum as the parameter address, and then write, for example, rewrite the value of F10.12, the address is 0A0Ch, if after rewriting need to store EEPROM, the address is 0A0Ch + E000h = EA0Ch.

8.1.2 Communication read and write commands

(1) Communication read command 03h of one or more consecutive 16-bit registers

The format of the request frame for the 03h command is shown in the following table (the data in	
the table are all hexadecimal numbers).	

Slave	Modbus	Read	Low 8	Number	Number	CRC	CRC
Address	commands	multiple	bits of the	of	of	check	checkword
		registers	starting	registers	registers	word	high 8 bits
		starting	address of	high 8	low 8	low 8	
		address 8	the	bits	bits	bits	
		bits higher	multiple				
			registers				
			read				
01h	03h	0Ah	04h	00h	01h	C6h	13h

The format of the reply frame for the 03h command is shown in the following table (the data in the table are all hexadecimal numbers).

Slave	Modbus	Number	The	The	CRC	CRC
Address	commands	of bytes	read data	read data	check	checkword
		read	value is 8	value is 8	word low	high 8 bits
			bits	bits	8 bits	
			higher	lower		
01h	03h	02h	00h	0Ah	A2h	78h

(2) Communication write a 16-bit register command 0x06

The format of the request frame for the 06h command is shown in the following table (the data in the table are all hexadecimal numbers).

Slave	Modbus	Write	Write	Write	Write	CRC	CRC
Address	commands	register	register	data	data	check	checkword
		start	start	value 8	value	word	high 8 bits
		address	address	bits	lower 8	low 8	
		8 bits	low 8	higher	bits	bits	
		higher	bits				
01h	06h	0Ah	04h	00h	01h	0Ah	13h

The format of the answer frame for the 06H command is shown in the following table (the data in the table are all hexadecimal numbers).

Slave	Modbus	Write	Write	Write	Write	CRC	CRC
Address	commands	register	register	data	data	check	checkword
		start	start	value 8	value	word	high 8 bits
		address 8	address	bits	lower 8	low 8	
		bits	low 8	higher	bits	bits	
		higher	bits				
01h	06h	0Ah	04h	00h	01h	0Ah	13h

The request and answer frames of the 06h command are identical.

(3) Communication write multiple consecutive 16-bit registers command 10h

The format of the request frame for the 10h command is shown in the following table (the data in the table are all hexadecimal numbers).

01h	Slave Address
10h	Modbus commands
06h	Write multiple registers starting
	address 8 bits higher
00h	Low 8 bits of the starting address of
	the multiple registers written
00h	Number of registers high 8 bits
05h	Number of registers low 8 bits
0Ah	Total number of bytes of data
	written
00	The first write value is 8 bits higher
01	The first write value is 8 bits lower
00	The 2nd write value is 8 bits higher
02	The 2nd write value is 8 bits lower
00	The 3rd write value is 8 bits higher
05	The 3rd write value is 8 bits lower
00	The 4th write value is 8 bits higher
0F	The 4th write value is 8 bits lower
00h	The 5th write value is 8 bits higher
10h	The 5th write value is 8 bits lower
54	CRC check word low 8 bits
65	CRC checkword high 8 bits

The format of the answer frame for the 10H command is shown in the following table (the data in the table are all hexadecimal numbers).

Slave	Modbus	Write	Low	8	Number	Number	CRC	CRC
Address	commands	multiple	bits	of	of	of	check	checkword

		registers	the	registers	registers	word	high 8 bits
		starting	starting	high 8	low 8	low 8	
		address 8	address	bits	bits	bits	
		bits	of the				
		higher	multiple				
			registers				
			written				
01	10	06	00	00	05	00	82

(4) Error response frame

The format of the error response frames for the 03H, 06H, and 10H commands is shown in the following table (the data in the table are all hexadecimal numbers).

Slave	03H/06H/10H	Error	CRC check word	CRC
Address	Command erro	code	low 8 bits	checkword high
	response flag			8 bits
01	83/86/90	XX	CRCL	CRCH

The meaning of error codes is as follows: 01h, command error; 03h, invalid parameter; 04h, CRC checksum error.

For answering invalid parameters, generally the number of registers is 0 for 03h command, or twice the number of registers is not equal to the total number of bytes written for 0x10h command, and a maximum of 125 are allowed when reading and writing multiple registers. In addition, when returning error code 03 (i.e. invalid parameter), refer to the value of F24.70, the meaning is as follows.

16: The total number of parameters in the parameter group is exceeded, or the parameter group number is not defined.

17: The number of parameters to be read is 0.

18: 32-bit function parameters must be read at once the high and low 16 bits, not allowed to read only the low 16 bits or high 16 bits.

19: The written parameters exceed the upper and lower limits.

20: No user password has been entered or the password is invalid.

22: Read-only parameters and reserved parameters are not allowed to be rewritten, and parameters

that can be rewritten only when the machine is stopped cannot be rewritten when it is running, or the parameters cannot be modified by the value of another parameter.

24: Password parameters can only be written individually, not mixed with other parameters.

25: Incorrect user password was entered.

26: The user password was entered incorrectly five times in a row.

8.1.3 Virtual IO Control

Communication DIDO reading and writing

Configuration parameters

F09.05 bit1~bit15 Correspond to DI function 1~15

F09.06 bit0~bit15 corresponds to DI function 16~31

F09.07 bit0~bit15 corresponds to DI function 32~47

F09.08 bit0~bit15 corresponds to DI function 48~63

F09.09 bit1~bit15 corresponds to DO function 1~15

F09.10 bit0~bit15 corresponds to DO function 16~31

The value of the corresponding binary bit 0 does not enable communication control; 1 enables communication control

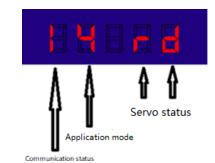
Correspondence address

Address	Description	Properties
0x3707	1	write
0x3707	Virtual DI control, bit1~bit15 corresponds to DI function 1~15,	write
	corresponding bits need to be F09.05 configured to enable,	
	unconfigured bits write 1 invalid	
0x3708	Virtual DI control, bit0~bit15 corresponds to DI function	write
	16~31, corresponding bits need to be F09.06 configured to	
	enable, unconfigured bit write 1 invalid	
0x3709	Virtual DI control, bit0~bit15 corresponds to DI function	write
	32~47, corresponding bits need to be F09.07 configuration	
	enabled, unconfigured bit write 1 invalid	
0x370A	Virtual DI control, bit0~bit15 corresponds to DI function	write
	48~63, corresponding bits need to be F09.08 configured to	
	enable, unconfigured bits write 1 invalid	
0x3788	Virtual DO read, bit1~bit15 corresponds to DO function 1~15,	Read
	corresponding bits need to be F09.09 configured to enable,	
	unconfigured bit output is 0	
0x3789	Virtual DO reading, bit0~bit15 corresponding DO function	Read
	16~31 corresponding bits need to be F09.09 configured to	
0x378A	DI function status address 1, bit1~bit15 corresponds to DI	Read
	function 1~15	
0x378B	DI function status address 1, bit0~bit15 corresponds to DI	Read
	function 16~31	
0x378C	DI function status address 1, bit0~bit15 corresponds to DI	Read
	function 32~47	
0x378A 0x378B	 16~31 corresponding bits need to be F09.09 configured to enable, unconfigured bits output to 0 DI function status address 1, bit1~bit15 corresponds to DI function 1~15 DI function status address 1, bit0~bit15 corresponds to DI function 16~31 DI function status address 1, bit0~bit15 corresponds to DI 	Read Read

0x378D	DI function status address 1, bit0~bit15 corresponds to DI	Read
	function 48~63	
0x378E	DO function status address 1, bit1~bit15 corresponds to DO	Read
	function 1~15	
0x378F	DO function status address 1, bit0~bit15 corresponds to DO	Read
	function 16~31	

Example: DI function 1 servo enable control via communication

- 1. Configure F09.05 = 2 (bit1 = 1) DI function 1 to enable communication control
- 2. Write address 0x3707 bit1 to control servo enable, communication command as follows.
- Tx: 01h 06h 37h 07h 00h 02h B7h BEh //enable servo
- Tx: 01h 06h 37h 07h 00h 00h 36h 7Fh //Break Enable


DO Function 1 Servo ready to read via communication

- 1. Configure F09.09 =2 (bit 1 = 1) DO function 1 read by communication
- Read address 0x3788 bit1 to determine the servo status? The command is as follows. Tx: 01h 03h 37h 88h 00h 01h 0Ah 54h Rx: 01h 03h 02h 00h 02h 39h 85h // bit1 is 1, servo ready

Chapter 9: EtherCAT Bus Description

9.1 YSK2-E Servo Drive Panel Display(Only For YSK2-E)

The panel display is divided into 3 main sections, each representing a different meaning, as detailed in the following table.

sports event	instructions
	1 Network initialization (Init)
	2 Network pre-run (Pro-Op)
Communication status	4 Safe operation of the network (Safe-
	Op)
	8 Network Operations (Op)

0 No operating mode		
1 Contour Position Mode (PP)		
3 Profile velocity mode (PV)		
4 Contour Torque Mode (PT)		
6 Back to original mode (Home)		
8 Synchronous cycle position mode		
(CSP)		
9 Synchronous cyclic velocity mode		
(CSV)		
A Synchronous Periodic Torque Mode		
(CST)		
nrd: servo ready		
rd: servo ready		
run: enable state		
A.XX: Warning code		
E.XX:Fault code		

a table0-1 Panel Display Description

9.2 EtherCAT communication

9.2.1 Support Mode

The YSK2-E drive EtherCAT is based on the CANOpen application layer protocol CiA 402 servo and motion control protocol. Various modes are supported up to CiA 402. The detailed description is shown in the following table.

table0-2 Support modes

CIA402 Control Mode	Does it support
Profile Position Mode (PP)	be
Profile Velocity Mode (PV)	be
Profile Torque Mode (PT)	be
Back to Original Mode (HM)	be
Synchronous Periodic Position Mode (CSP)	be
Synchronous Cycle Velocity mode (CSV)	be
Synchronous Periodic Torque Mode (CST)	be

9.2.2 EtherCAT Frame Structure

EtherCAT is an industrial communication protocol based on Ethernet for real-time control. It only extends the IEEE 802.3 Ethernet specification without any changes to the basic structure, so that data in

standard Ethernet frames can be forwarded. The EtherCAT frame consists of the EtherCAT frame header and more than one EtherCAT sub-message, which is further subdivided into EtherCAT sub-messages. EtherCAT frames with Type=1 of the EtherCAT frame header only are processed according to ESC.

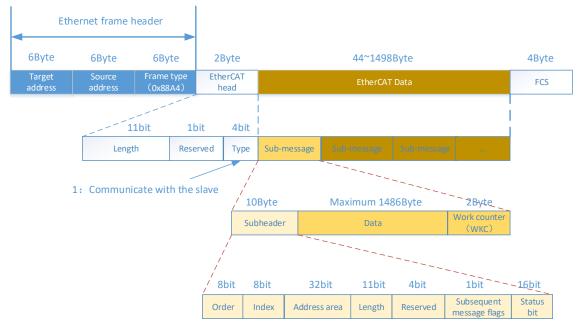


Chart9-1 EtherCAT frame format

9.2.3 EtherCAT State Machine

The migration diagram of the EtherCAT application layer state (ESM state) is shown below

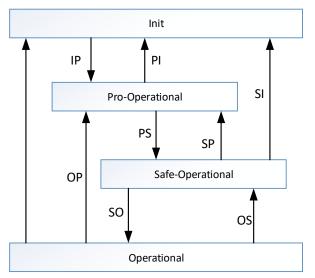


Chart9-2 EtherCAT State Machine

table0-3 Summary Table of EtherCAT State Transitions

statuses	movements	SDO	TxPDO	RXPDO
Initialization (Init)	No communication at application level, slave can only read and	No	No	No
	write ESC chip registers			

IP	The master configures the slave site address registers.	No	No	No
	If mailbox communication is supported, configure mailbox-			
	related registers.			
	If distributed clocking is supported, configure DC-related			
	registers.			
	The master writes to the Status Control Register to request			
	Pre-OP status			
Pre-run (Pro-Op)	Application layer mailbox communication	Yes	No	No
PS	The master uses the mailbox to initialize the process data	Yes	No	No
	mapping.			
	The master configures the SM channel used by the process			
	data.			
	The master configures the FMMU.			
	Master writes to Status Control Register to request Safe-OP			
	status.			
Safe-Op	The application layer supports mailbox communication.	Yes	Yes	No
	There is process data communication, but only read-in data is			
	allowed, no output signals are generated.			
S0	The master sends valid output data.	Yes	Yes	No
	The master writes to the status control register to request Op			
	status.			
Operational (Op)	All inputs and outputs are valid.	Yes	Yes	Yes

9.2.4 Process data

The real-time data transfer based on EtherCAT is carried out via the data exchange of the PDO (Process Data Object), which is available as RxPDO from master to slave and TxPDO from master to master.

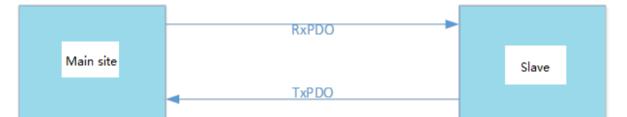


Chart9-3 Simple communication between master and slave stations Table9-4 Default configuration of RxPDO mapping for EtherCAT

PDO		PDO
PDO	mapping pair	Configuration
1 (001	Control word (6040h)	60400010
1600h	Operating mode (6060h)	6060008
(RPDO1)	Target position (607Ah)	607A0020
(9Byte)	Probe function (60B8h)	60B80010

	Control word (6040h)	60400010
	Operating mode (6060h)	60600008
1601h	Target torque (6071h)	60710010
(RPDO2)	Target position (607Ah)	607A0020
(19Byte)	Maximum motor speed (6080h)	60800020
	Probe function (60B8h)	60B80010
	Target speed (60FFh)	60FF0020
	Control word (6040h)	60400010
1(001	Operating mode (6060h)	60600008
1602h	Maximum torque (6072h)	60720010
(RPDO3) (15Byte)	Target position (607Ah)	607A0020
(ISByle)	Probe function (60B8h)	60B80010
	Target speed (60FFh)	60FF0020
	Control word (6040h)	60400010
	Operating mode (6060h)	60600008
1 (02)	Target torque (6071h)	60710010
1603h	Maximum torque (6072h)	60720010
(RPDO4) (21Byte)	Target position (607Ah)	607A0020
(21Dyte)	Maximum motor speed (6080h)	60800020
	Probe function (60B8h)	60B80010
	Target speed (60FFh)	60FF0020
	Control word (6040h)	60400010
	Control mode (6060h)	60600008
	Target torque (6071h)	60710010
	Target position (607Ah)	607A0020
1604h	Maximum profile speed (607Fh)	607F0020
(RPDO5)	Probe function (60B8h)	60B80010
(12Byte)	Forward maximum torque limit (60E0h)	60E00010
	Maximum torque limit in the negative direction (60E1h)	60E10010
	Target speed (60FF)	60FF0020

Table9-5 Default configuration of TxPDO mapping for EtherCAT

PDO		PDO	
PDO	mapping pair	Configuration	
	Error code (603Fh)	603F0010	
1A00h (TXPDO1) (25Byte)	Status word (6041h)	60410010	
	Position feedback (6064h)	60640020	
	Control mode display (6061h)	60610008	
	Probe status (60B9h)	60B90010	
	Probe 1 Rising edge position	60BA0020	

	foodbook (60DAh)	
	feedback (60BAh)	60540020
	Position deviation value (60F4h)	60F40020
	DI input status (60FDh)	60FD0020
	Servo internal error code (213Fh)	213F0010
	Error code (603Fh)	603F0010
	Status word (6041h)	60410010
	Control mode display (6061h)	60610008
	Position feedback (6064h)	60640020
1A01h	Speed feedback value (606Ch)	606C0020
(TXPDO2)	Torque feedback value (6077h)	60770010
(174 D02) (29Byte)	Probe status (60B9h)	60B90010
(2) Dyte)	Probe 1 Rising edge position feedback (60BAh)	60BA0020
	Probe 1 Falling edge position feedback (60BBh)	60BB0020
	DI input status (60FDh)	60FD0020
	Error code (603Fh)	603F0010
	Status word (6041h)	60410010
	Control mode display (6061h)	60610008
	Position feedback (6064h)	60640020
1A02h	Speed feedback value (606Ch)	606C0020
(TXPDO3)	Torque feedback value (6077h)	60770010
(25Byte)	Probe status (60B9h)	60B90010
	Probe 1 Rising edge position feedback (60BAh)	60BA0020
	DI input status (60FDh)	60FD0020
	Error code (603Fh)	603F0010
	Status word (6041h)	60410010
	Control mode display (6061h)	60610008
	Position feedback (6064h)	60640020
1A03h	Speed feedback value (606Ch)	606C0020
(TXPDO4)	Torque feedback value (6077h)	60770010
(25Byte)	Probe status (60B9h)	60B90010
	Probe 1 Rising edge position	60BA0020
	feedback (60BAh)	00BA0020
	DI input status (60FDh)	60FD0020
	Status word (6041h)	60410010
1 4 0 41	Control mode display (6061h)	60610008
1A04h	Position feedback (6064h)	60640020
(TXPDO5)	Speed feedback value (606Ch)	606C0020
(22Byte)	Torque feedback value (6077h)	60770010
	Probe status (60B9h)	60B90010
		1

Probe 1 Rising edge position	60BA0020
feedback (60BAh)	00BA0020
Probe 2 Rising Edge Position	60BC0020
Feedback (60BCh)	00BC0020
Position deviation value (60F4h)	60F40020
Error code (603Fh)	603F0010
DI input status (60FDh)	60FD0020

9.2.5 Mailbox Data

SDO parameters are CoE-defined acyclic data communications where the master implements acyclic data interactions by reading and writing mailbox data. the YSK2-E drive can modify drive parameters via SDO.

9.2.6 distribution clock

The distributed clock enables all EtherCAT devices to use the same system time and thus control the synchronous execution of the individual device tasks. The slave devices can generate synchronization signals based on the synchronized system time. the YSK2-E drives support DC synchronization mode and FreeRun mode. the synchronization period is controlled by SYNC0 and the period range varies depending on the motion mode.

9.3 Introduction to control modes

table0-6Support modes

9.3.1 Servo parameter configuration

When using the YSK2-E Servo Drive, it is sometimes necessary to manually configure the Servo Drive parameters and control mode settings, which can be set by the Servo Drive Operator Panel or the upper computer software Servo Suit, as shown in the following tabletable0-6 The contents are shown in the following table.

parameters	name (of a thing)	Setting range	default value
		0:Position mode	
F01.01 Co	Control mode	1:Speed Mode	0
		2:Torque mode	9
		3:Position mode/velocity mixed mode	

		4:Position Mode/Torque Mixing Mode	
		5:Speed mode/torque mixing mode	
		9:ECAT communication mode	
F09.18	ECAT slave station number	065535	0
		0: ECAT communication write parameters are	
F09.23	ECAT communication write or not	not saved	0
F09.23	to EEPROM	1: ECAT communication write parameters are	0
		saved to EEPROM	

9.3.2 Cyclic Synchronous Position Mode (CSP)

In the cyclic synchronous position mode, the upper controller completes the position command planning, and then sends the planned target position to the servo drive periodically, and the position, speed and torque control is done internally by the servo drive.

Note: 1. other modes cut to CSP mode and need to wait 20m s before performing a position update.

2. Before enabling on CSP mode, please set 607Ah (position command value) to follow 6064h (position feedback value), otherwise please set the first bit from the right of F09.25 to 0 to ensure the safety of machine use.

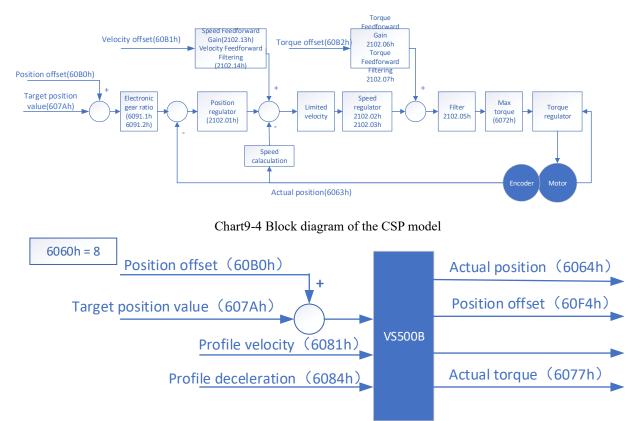


Chart9-5 CPS mode simple input and output

Control word setting for cyclic synchronous position mode (6040h)

The meaning of each bit of the control word (6040h) when the cycle synchronous position mode is selected is shown in a table0-7 shown.

		1	
Bit	name (of a thing)	instructions	
0	Switch on	Must be set to 1 when servo is enabled.	
1	Enable voltage	Must be set to 1 when servo is enabled.	
2	quick stop	Must be set to 1 when servo is enabled, set to 0 for fast shutdown.	
3	Operation enable	Must be set to 1 when servo is enabled.	

a table0-7 CSP mode control word descriptions

4 to 6	CSP model set-aside	not available
	Fault reset	A single fault reset is executed on a $0 \rightarrow 1$ change, and
7		multiple $0 \rightarrow 1$ changes need to be generated if multiple resets
/		are required. At this position 1, other control commands are
		invalid
8	pause (media player) 0: invalid, 1: valid. Stop executing the command when val	
9	CSP model set-aside	not available
10	reserve	
11~15	Manufacturer	not available
11~13	customization	

Status word definition for cyclic synchronous position mode (6041h)

The meaning of each bit of the status word (6041h) when the periodically synchronized position mode is selected is shown in Table 5-29. Where the background is marked in dark color is the status dedicated to the Periodic Synchronous Position mode.

D:4	(-f-4)	instantions	
Bit	name (of a thing)	instructions	
0	Ready to switch on	0: Invalid, 1: Valid. When valid, it means the servo can be	
	Ready to switch on	enabled	
1	0 4 1 1	0: Invalid, 1: Valid. When valid, it means the servo can be	
1	Switched on	enabled	
2	Operation enabled	0: Invalid, 1: Valid. When valid, it means servo is enabled	
3	Servo failure	0: No fault, 1: Fault	
4	X7 1 /2 1 1 1	0: Invalid, 1: Valid. When valid, it means the servo can be	
4	Voltage enabled	enabled	
5	quick stop	0: Quick stop active, 1: Quick stop inactive	
6	Switch on disabled	0: Invalid, 1: Valid. Valid means that servo is not enabled	
7	warning	0: no warning, 1: with warning	
8	Manufacturer	not available	
0	customization		
9	remote control	0: invalid, 1: valid. When valid, it means that the control word	
9	remote control	is in effect	
		60400010h bit 8 (pause) = 0.	
10	Leastion Amircol	0: position not reached, 1: position reached.	
10	Location Arrival	60400010h bit 8 (pause) = 1.	
		0: deceleration in progress, 1: speed is 0	
11	Internal soft limit state	0: soft limit not reached, 1: soft limit reached	
12	Whether to follow the	0: Not following the target position, 1: Already following the	
12	target position	target position	
13	Follow position error	on error 0: No position deviation alarm , 1: Position deviation alarm	

Table9-8 CSP mode status word descriptions

	alarm	occurs
14	Manufacturer	not available
14	customization	
		0: Invalid, 1: Completed back to the original point.
15	Return to home base to	For absolute value systems, F09.17 is set to 1. The value of bit15
15	complete	is stored after a successful return to the home position (power-
		down hold), and setting P23.06 to 7 clears the stored value.

Dictionary objects associated with the cycle synchronization location pattern

index	subindex	name (of a thing)	Type of access	data type	default value
603Fh		error code	ro	unsigned16	0
6040h		control word	rw	unsigned16	0
6041h		status word	ro	unsigned16	0
6060h		Control mode	rw	integer8	0
6061h		Control mode display	ro	integer8	0
6062h		user location instruction	ro	integer32	0
6063h		Motor position feedback	ro	integer32	0
6064h		User Location Feedback	ro	integer32	0
6065h		User Position Deviation Excess Threshold	rw	unsigned32	1,000,000
6067h		Position reaches threshold	rw	unsigned32	100
6068h		Location arrival time	rw	unsigned16	1
606Bh		User speed command value	ro	integer32	0
606Ch		Actual user speed feedback	ro	integer32	0
607A		Target location	rw	integer32	0
607Ch		origin offset	rw	integer32	0
607Dh	01h	Soft limit: minimum position limit	rw	integer32	-2147483648
	02h	Soft limit: maximum position limit	rw	integer32	2147483647
60B0h		Position Offset	rw	integer32	0
60B1h		speed bias	rw	integer32	0
60B2h		Torque bias	rw	integer32	0
60F4h		User position deviation	ro	integer32	0
60FCh		Motor position command feedback	ro	integer32	0

Table9-9 Dictionary objects associated with the schema

A simple example of the use of the cycle synchronization position mode

PDO	name (of a thing)	Value setting (decimal value)
6060h	Control mode	8
	enable	Arbitrary number $\rightarrow 6 \rightarrow 7 \rightarrow 15$ or MC_Power
6040h	Alarm clearing	Arbitrary number \rightarrow 128 (valid on rising edge, clear if possible)
	Axis error reset	The upper computer gives or the PLC gives the command

Yasaka YSK2 Servo Design and Maintenance User's Manual

		MC_Reset
	given position	The upper controller planning gives (including acceleration and
	Siven position	deceleration, etc., mainly as follows)
	Analog speed	The upper computer gives, the PLC gives the command
	control	MC_MoveVelocity
	Relative position	The upper computer gives the PLC the command
607Ah	given	MC_MoveRelative
00/All	Incremental	The upper computer gives, the PLC gives the command
	Position Giving	MC_MoveAdditive
	Absolute position	The upper computer gives, the PLC gives the command
	given	MC_MoveAbsolute
	Shaft deceleration	University in DLC sing and MC Star
	stop	Upper unit give, PLC give command MC_Stop
	Synchronized cycle	Unconfiguration (DC SVN shap)
	time	Upconfiguration (DC-SYN-chro)

9.3.3 Cyclic Synchronous Velocity (CSV) mode

In the cyclic synchronous speed mode, the upper controller sends the calculated target speed to the servo drive in a cyclic synchronous manner, and the speed and torque regulation is performed internally by the servo.

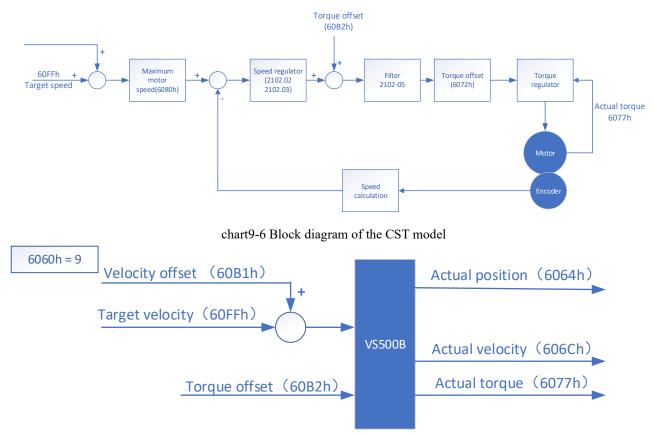


Chart 9-7 CSV mode simple input and output

Description of cycle synchronous speed mode control word (6040h)

	Tuble? To esty mode control word descriptions					
Bit	name (of a thing)	instructions				
0	Switch on	Must be set to 1 when servo is enabled.				
1	Enable voltage	Must be set to 1 when servo is enabled.				
2	quick stop	Must be set to 1 when servo is enabled, set to 0 for fast				
2	quick stop	shutdown.				
3	Operation enable	Must be set to 1 when servo is enabled.				
4 to 6	CSV mode set aside	not available				
		A single fault reset is executed on a $0 \rightarrow 1$ change, and multiple				
7	Fault reset	$0 \rightarrow 1$ changes need to be generated if multiple resets are				
		required. At this position 1, other control commands are invalid				
8	pause (media player)	0: invalid, 1: valid. Stop executing the command when valid				

Table9-10 CSV m	ode control	word descriptions
-----------------	-------------	-------------------

9	CSV mode set aside	not available
10	reserve	not available
11~15	Manufacturer	not available
11~13	customization	

Status word definition for cyclic synchronous velocity mode (6041h)

		1
Bit	name (of a thing)	instructions
0	Ready to switch on	0: Invalid, 1: Valid. When valid, it means the servo can be
0		enabled
1	Switched on	0: Invalid, 1: Valid. When valid, it means the servo can be
1		enabled
2	Operation enabled	0: Invalid, 1: Valid. When valid, it means servo is enabled
3	Servo failure	0: No fault, 1: Fault
4	Voltage enabled	0: Invalid, 1: Valid. When valid, it means the servo can be
4		enabled
5	quick stop	0: Quick stop active, 1: Quick stop inactive
6	Switch on disabled	0: Invalid, 1: Valid. Valid means that servo is not enabled
7	warning	0: no warning, 1: with warning
8	Manufacturer	not available
0	customization	
9	remote control	0: invalid, 1: valid. When valid, it means that the control
9		word is in effect
10	CSV mode set aside	not available
11	Internal soft limit state	0: soft limit not reached, 1: soft limit reached
12	Whether to follow the	0: not following the target speed, 1: has followed the target
12	target speed	speed
13	CSV mode set aside	not available
14 to 15	Manufacturer	not available
14 to 15	customization	

Table9-11 CSV mode status word descriptions

Dictionary objects related to the cyclic synchronous velocity mode

			Type of		
index	subindex	name (of a thing)	access	data type	default value
603Fh		error code	ro	unsigned16	0
6040h		control word	rw	unsigned16	0
6041h		status word	ro	unsigned16	0
6060h		Control mode	rw	integer8	0
6061h		Control mode display	ro	integer8	0
6063h		Motor position feedback	ro	integer32	0

6064h		User Location Feedback	ro	integer32	0
		User speed command			
606Bh		value	ro	integer32	0
		Actual user speed			
606Ch		feedback	ro	integer32	0
606Dh		Speed reaches threshold	rw	unsigned16	100
606Eh		Speed arrival time	rw	unsigned16	1
606Fh		Zero Speed Threshold	rw	unsigned16	10
607Ch		origin offset	rw	integer32	0
		Soft limit: minimum			
607Dh	01h	position limit	rw	integer32	-2147483648
		Soft limit: maximum			
	02h	position limit	rw	integer32	2147483647
607Eh		command polarity	rw	unsigned8	0
6083h		Contour acceleration	rw	unsigned32	100
6084h		Profile deceleration	rw	unsigned32	100
		Velocity encoder factor:			
6094h	01h	molecule	rw	unsigned32	1
		Speed encoder factor:			
	02h	denominator	rw	unsigned32	1
		Maximum profile			
60C5h		acceleration	rw	unsigned32	60,000
		Maximum profile			
60C6h		deceleration	rw	unsigned32	60,000
60B1h		Rotational Speed Bias	rw	unsigned32	0
60B2h		Torque bias	Rw	unsigned32	0
60FFh		Target speed	rw	integer32	0

A simple example of the use of the cycle synchronization speed mode

name (of a thing)	Value setting (decimal value)		
Control mode	9		
enable	Arbitrary number $\rightarrow 6 \rightarrow 7 \rightarrow 15$ or MC_Power		
Alarma alagning	Arbitrary number \rightarrow 128 (valid on rising edge, clear if		
Alarm clearing	possible)		
Axis arror resat	The upper computer gives, the PLC gives the command		
Axis choi leset	MC_Reset		
Civon spood	The upper computer gives, the PLC gives the command		
Given speed	MC_SyncMoveVelocity		
	The upper computer gives, the PLC gives the command		
Shaft deceleration stop	MC_Stop		
Synchronous cycle time (DC-SYN-chro)	Upper computer setting		
	Control mode enable Alarm clearing Axis error reset Given speed Shaft deceleration stop		

9.3.4 Cyclic Synchronous Torque Mode (CST)

In periodic synchronous torque mode, the upper controller sends the calculated target torque to the servo drive in a periodic synchronous manner, and the torque regulation is performed internally by the servo.

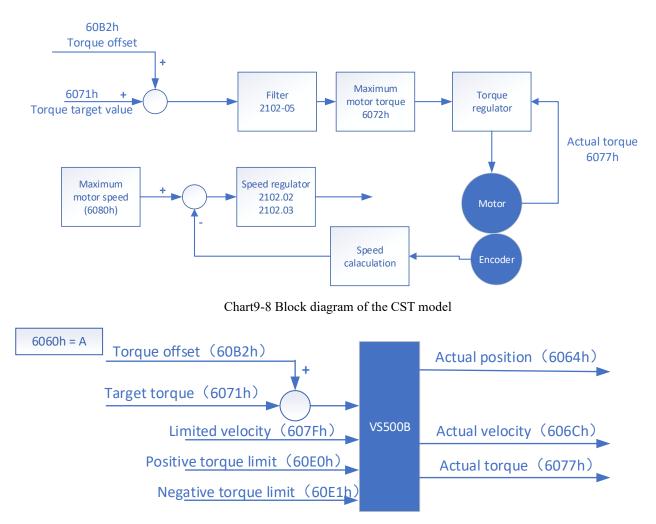


Chart9-9 cst mode simple input and output

Control word setting for cyclic synchronous torque mode (6040h)

Bit	name (of a thing)	instructions
0	Switch on	Must be set to 1 when servo is enabled.
1	Enable voltage	Must be set to 1 when servo is enabled.
2	quick stop	Must be set to 1 when servo is enabled, set to 0 for fast shutdown.
3	Operation enable	Must be set to 1 when servo is enabled.
4 to 6	CST model set-aside	not available
7	Fault reset	A single fault reset is executed at $0 \rightarrow 1$ change, and multiple $0 \rightarrow 1$ changes need

Table 9-12 Description of cst mode control words

		to be generated if multiple resets are required. At this position 1, other control commands are invalid
8	pause (media player)	0: invalid, 1: valid. Stop executing the command when valid
0.10	1 2)	4 111
9~10	CST model set-aside	not available
10	reserve	not available
11~15	Manufacturer	not available
	customization	

Status Word Definition for Periodic Synchronous Torque Mode (6041h)

		*
Bit	name (of a thing)	instructions
0	Ready to switch on	0: Invalid, 1: Valid. When valid, it means the servo can be
0		enabled
1	Switched on	0: Invalid, 1: Valid. When valid, it means the servo can be
1		enabled
2	Operation enabled	0: Invalid, 1: Valid. When valid, it means servo is enabled
3	Servo failure	0: No fault, 1: Fault
4	Voltage enabled	0: Invalid, 1: Valid. When valid, it means the servo can be
4		enabled
5	quick stop	0: Quick stop active, 1: Quick stop inactive
6	Switch on disabled	0: Invalid, 1: Valid. Valid means that servo is not enabled
7	warning	0: no warning, 1: with warning
8	Manufacturer	not available
0	customization	
9	remote control	0: invalid, 1: valid. When valid, it means that the control
9		word is in effect
10	reserve	not available
11	Internal soft limit state	0: soft limit not reached, 1: soft limit reached
12	Whether to follow the	0: Target torque not followed, 1: Target torque followed
12	target torque	
13	CST model set-aside	not available
14 to 15	Manufacturer	not available
14 to 15	customization	

Table9-13 Description of cst mode status words

Periodic synchronous torque mode related dictionary objects

			Туре о	of		
index	subindex	name (of a thing)	access		data type	default value
603Fh		error code	ro		unsigned16	0
6040h		control word	rw		unsigned16	0
6041h		status word	ro		unsigned16	0

6060h		Control mode	rw	integer8	0
6061h	061h Control mode display		ro	integer8	0
		Actual user speed			
606Ch		feedback	ro	integer32	0
6071h		Torque target value	rw	integer16	0
6074h		User-given torque value	ro	integer16	0
6077h		Actual torque feedback	ro	integer16	0
		Soft limit: minimum			
607Dh	01h	position limit	rw	integer32	-2147483648
007Dn		Soft limit: maximum			
	02h	position limit	rw	integer32	2147483647
607Fh		Maximum profile speed	rw	unsigned32	4500
6087h		Torque ramp time	rw	unsigned32	0

Example of simple use of synchronous periodic torque mode

PDO	name (of a thing)	Value setting (decimal value)		
6060h	Control mode	10 (A in hexadecimal)		
6071h		The user gives the PLC give command		
607Fh	Torque/Speed Giving	MC_TorqueControl		
	enable	Arbitrary number $\rightarrow 6 \rightarrow 7 \rightarrow 15/MC_Power$		
6040h		Arbitrary number \rightarrow 128 (valid on rising edge,		
6040n	Alarm clearing	clear if possible)		
	Axis error reset	Upper unit give, PLC give command MC_Reset		
	Cycle synchronization time	I lan on commuter setting		
	Upper computer setting			

9.3.5 Profile Position Mode (PP)

In contour position mode, the drive controls the motor for both absolute position positioning and relative position positioning. The upper controller can set the target position, start speed, stop speed and acceleration (deceleration) speed. The YSK2-E drive produces position commands according to the set parameters. When the contour position mode is enabled, set the object 6060H to 1

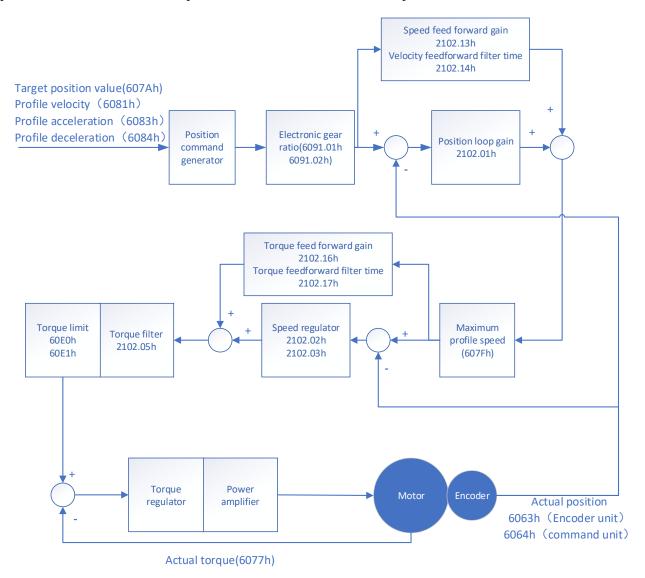


Chart 9-10 Block diagram of contour positions

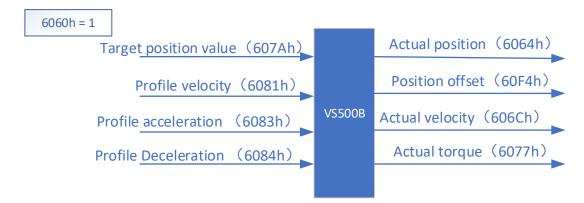


Chart9-11 Contour position simple input and output

Control word setting for profile position mode (6040h)

Bit	name (of a thing)	instructions		
0	Switch on	Must be set to 1 when servo is enabled		
1	Enable voltage	Must be set to 1 when servo is enabled		
2	quick stop	Must be set to 1 when servo is enabled, set to 0 for fast shutdown		
3	Operation enable	Must be set to 1 when servo is enabled		
4	Update location command	Load the next set of position command parameters (including target position or position increment, start speed, run speed, acceleration and deceleration) on a $0 \rightarrow 1$ change		
5	Update Now	0: Wait for the current position instruction to finish before executing a new instruction1: Abort the command being executed and execute the latest position command		
6	Position command type	0: absolute value command, 1: relative position command		
7	Fault reset	A single fault reset is executed on a $0 \rightarrow 1$ change, and multiple $0 \rightarrow 1$ changes need to be generated if multiple resets are required. At this position 1, other control commands are invalid		
8	pause (media player)	0: invalid, 1: valid. Stops execution of command when valid		
9	PP model set aside	not available		
10	reserve	not available		
11~15	Manufacturer customization	not available		

Table0-14 Description of PP mode status words

Status word definition for profile bit mode (6041h)

Bit	name (of a thing)	instructions		
0	Ready to switch on	0: Invalid, 1: Valid. When valid, it means the servo can be enabled		
1	Switched on	0: Invalid, 1: Valid. When valid, it means the servo can be enabled		
2	Operation enabled	0: Invalid, 1: Valid. When valid, it means servo is enabled		
3	Servo failure	0: No fault, 1: Fault		
4	Voltage enabled	0: Invalid, 1: Valid. When valid, it means the servo can be enabled		
5	quick stop	0: Quick stop active, 1: Quick stop inactive		
6	Switch on disabled	0: Invalid, 1: Valid. Valid means that servo is not enabled		
7	warning	0: no warning, 1: with warning		
8	Manufacturer customization	not available		
9	remote control	0: invalid, 1: valid. When valid, it means that the control word is in effect		
10	Location Arrival	 60400010h bit 8 (pause) = 0. 0: position not reached, 1: position reached. 60400010h bit 8 (pause) = 1. 0: deceleration in progress, 1: speed is 0 		
11	Internal soft limit state	0: soft limit not reached, 1: soft limit reached		
12	New position command received status	0: Possibility to update the position command 1: It is not possible to update the location command		
		0: Position deviation value within the gauge setting range or (6065h)		
13	Position deviation error			
13 14	Position deviation error Manufacturer customization	(6065h)		

Object dictionary related to the profile position model

index	subindex	name (of a thing)	Type of access	data type	default value	
603Fh		error code	ro	unsigned16	0	
6040h		control word	rw	unsigned16	0	
6041h		status word	ro	unsigned16	0	
6060h		Control mode	rw	integer8	0	
6061h		Control mode display	ro	integer8	0	
6062h		user location instruction	ro	integer32	0	

Table 9-16 Dictionary of PP schema-related objects

6063h		Motor position feedback	ro	integer32	0
6064h		User Location Feedback	ro	integer32	0
6065h		User Position Deviation Excess Threshold	rw	unsigned32	1,000,000
6067h		Position reaches threshold	rw	unsigned32	100
6068h		Location arrival time	rw	unsigned16	1
606Bh		User speed command value	ro	integer32	0
606Ch		Actual user speed feedback	ro	integer32	0
607Ah		Target position value	rw	integer32	0
607Ch		origin offset	rw	integer32	0
607Dh	01h	Soft limit: minimum position limit	rw	integer32	-2147483648
	02h	Soft limit: maximum position limit	rw	integer32	2147483647
607Eh		command polarity	rw	unsigned8	0
6081h		Contouring speed	rw	unsigned32	100
6083h		Contour acceleration	rw	unsigned32	100
6084h		Profile deceleration	rw	unsigned32	100
6093h	01h	Position factor: molecule	rw	unsigned32	131072
	02h	Position factor: feed constant	rw	unsigned32	10000
60F4h		User position deviation	ro	integer32	0
60FCh		Motor position command feedback	ro	integer32	0

A simple example of the use of contour position mode

PDO	name (of a thing)	Value setting (decimal value)
6060		
h	Control mode	1
607A		
h	given position	user setting
6081	The given velocity under the profile position	
h	ring	-3000~3000
	enable	Arbitrary number $\rightarrow 6 \rightarrow 7 \rightarrow 15/47/79/111$
		Arbitrary number \rightarrow 128 (valid on rising edge, clear if
	Alarm clearing	possible)
6040	Absolute position given (not immediately	
6040 h	updated)	$6 \rightarrow 7 \rightarrow 15 \rightarrow 31$
	Absolute position given (immediate update)	$6 \rightarrow 7 \rightarrow 47 \rightarrow 63$
	Relative position given (not immediately	
	updated)	$6 \rightarrow 7 \rightarrow 79 \rightarrow 95$
	Relative position given (immediate update)	$6 \to 7 \to 111 \to 127$
6083		
h	Contour acceleration	0~1000rpm time: ms
6084	Profile deceleration	1000~0rpm time: ms

h

9.3.6 Profile Velocity Mode (PV)

In profile speed mode, the upper controller sends the target speed, acceleration, and deceleration to the servo driver, which itself plans the speed command curve, and the speed and torque adjustment is performed internally by the servo.

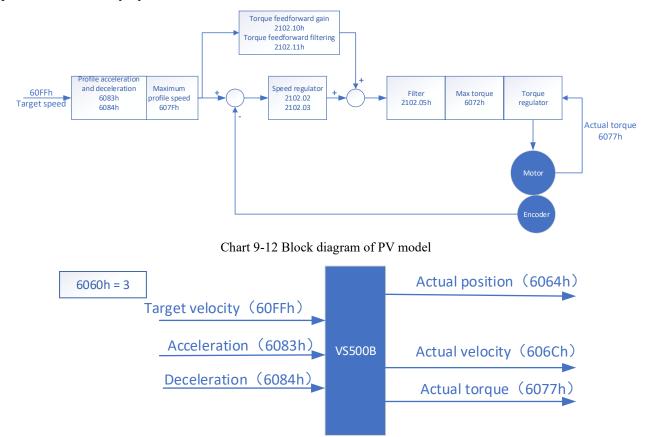


Chart 9-13 PV mode simple input and output

Control word setting for profile speed mode (6040h)

		1	
Bit	name (of a thing)	instructions	
0	Switch on	Must be set to 1 when servo is enabled.	
1	Enable voltage	Must be set to 1 when servo is enabled.	
2	quick stop	Must be set to 1 when servo is enabled, set to 0 for fast	
		shutdown.	
3	Operation enable	Must be set to 1 when servo is enabled.	
4 to 6	PV mode set aside	not available	
7	Fault reset	A single fault reset is executed on a $0 \rightarrow 1$ change, and	
		multiple $0 \rightarrow 1$ changes need to be generated if multiple resets	

Table0-18 PV mode control word descriptions

		are required. At this position 1, other control commands are		
		invalid		
8	pause (media player)	0: invalid, 1: valid. Execute command when invalid, stop		
		when valid		
9	PV mode set aside	not available		
10	reserve	not available		
11~15	Manufacturer	not available		
	customization			

Status word definition for profile speed mode (6041h)

	11	iole 9-19 F v mode status word descriptions		
Bit	name (of a thing)	instructions		
0	Ready to switch on	0: Invalid, 1: Valid. When valid, it means the servo can be		
		enabled		
1	Switched on	0: Invalid, 1: Valid. When valid, it means the servo can be		
		enabled		
2	Operation enabled	0: Invalid, 1: Valid. When valid, it means servo is enabled		
3	Servo failure	0: No fault, 1: Fault		
4	Voltage enabled	0: Invalid, 1: Valid. When valid, it means the servo can be		
		enabled		
5	quick stop	0: Quick stop active, 1: Quick stop inactive		
6	Switch on disabled	0: Invalid, 1: Valid. Valid means that servo is not enabled		
7	warning	0: no warning, 1: with warning		
8	Manufacturer	not available		
	customization			
9	remote control	0: invalid, 1: valid. When valid, it means that the control		
		word is in effect		
10	Speed to	60400010h bit 8 (pause) = 0.		
		0: velocity not reached, 1: velocity reached.		
		60400010h bit 8 (pause) = 1.		
		0: deceleration in progress, 1: speed is 0		
11	Internal soft limit state	0: soft limit not reached, 1: soft limit reached		
12	zero velocity state	0: velocity not equal to 0, 1: velocity equal to 0		
13	PV mode set aside	not available		
14 to 15	Manufacturer	not available		
	customization			

Dictionary of objects related to profile speed patterns

			Туре	of		
index	subindex	name (of a thing)	access		data type	default value
603Fh		error code	ro		unsigned16	0

	I		1	1	1. 1	
6040h		control word	rw	unsigned16	0	
6041h		status word	ro	unsigned16	0	
6060h		Control mode	rw	integer8	0	
6061h		Control mode display	ro	integer8	0	
6063h		Motor position feedback	ro	integer32	0	
6064h		User Location Feedback	ro	integer32	0	
606Bh		User speed command value	ro	integer32	0	
606Ch		Actual user speed feedback	ro	integer32	0	
606Dh		Speed reaches threshold	rw	unsigned16	100	
606Eh		Speed arrival time	rw	unsigned16	1	
606Fh		Zero Speed Threshold	rw	unsigned16	10	
607Ch		origin offset	rw	integer32	0	
		Soft limit: minimum				
	01h	position limit	rw	integer32	-2147483648	
607Dh		Soft limit: maximum				
	02h	position limit	rw	integer32	2147483647	
607Eh		command polarity rw unsigned8 0		0		
6083h		Contour acceleration	rw	unsigned32	100	
6084h		Profile deceleration rw unsigned		unsigned32	100	
		Velocity encoder factor:				
	01h	molecule	rw	unsigned32	1	
6094h		Speed encoder factor:				
	02h	denominator	rw	unsigned32	1	
		Maximum profile				
60C5h		acceleration rw unsigned32 200		200		
		Maximum profile				
60C6h		deceleration	rw	unsigned32	200	
60FFh		Target speed rw integer32 0			0	

Yasaka YSK2 Servo Design and Maintenance User's Manual

A simple example of the use of profile speed mode

PDO	name (of a thing)	Value setting (decimal value)
6060h	Control mode	3
60FFh	Contour speed given	-3000~3000
	enable	Arbitrary number $\rightarrow 6 \rightarrow 7 \rightarrow 15$
6040h		Arbitrary number \rightarrow 128 (valid on rising edge, clear
0040n	Alarm clearing	if possible)
	Motor rotation	Give point speed command after enable
6083h	Contour acceleration	user setting
6084h	Profile deceleration	user setting

9.3.7 Profile Torque Mode (PT)

In profile torque mode, the upper controller sends the target torque 6071h and the torque ramp constant 6087h to the servo driver, which itself plans the torque command curve, and the torque adjustment is performed internally by the servo.

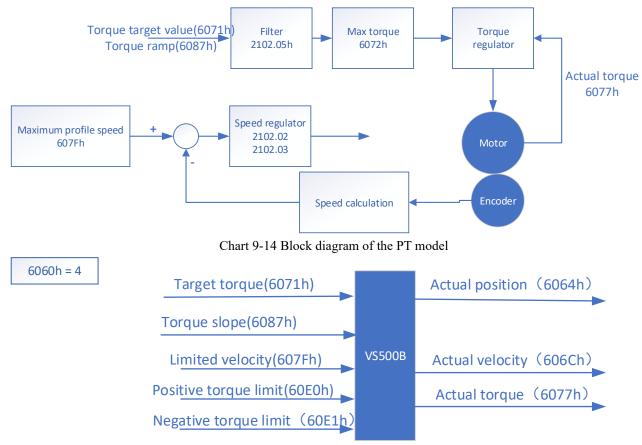


Chart 9-15 PT mode simple input and output

Control word setting for profile torque mode (6040h)

Bit	name (of a thing)	instructions	
0	Switch on	Must be set to 1 when servo is enabled.	
1	Enable voltage	Must be set to 1 when servo is enabled.	
2	quick stop	Must be set to 1 when servo is enabled, set to 0 for fast	
		shutdown.	
3	Operation enable	Must be set to 1 when servo is enabled.	
4 to 6	PT mode reserved	not available	
7	Fault reset	A single fault reset is executed on a $0 \rightarrow 1$ change, and	
		multiple $0 \rightarrow 1$ changes need to be generated if multiple resets	
		are required. At this position 1, other control commands are	
		invalid	
8	pause (media player)	0: invalid, 1: valid. Execute command when invalid, stop	
		when valid	

Table0-20 PT mode control word descriptions

9	PT mode reserved	not available
10	reserve	not available
11~15	Manufacturer	not available
	customization	

Status word definition for profile torque mode (6041h)

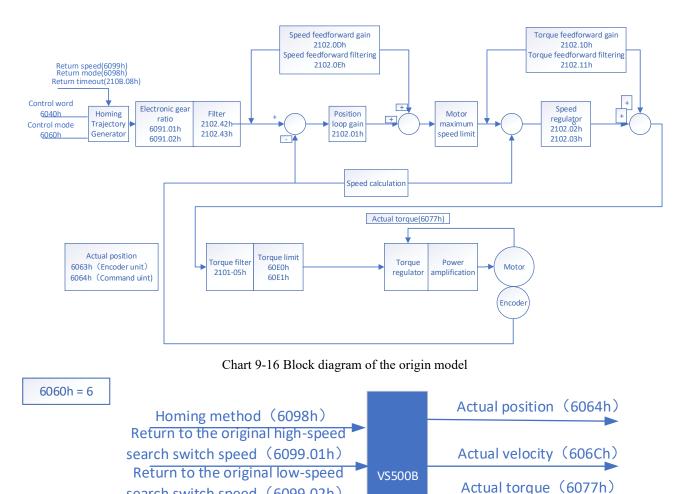
		21 Description of prome position status words
Bit	name (of a thing)	instructions
0	Ready to switch on	0: Invalid, 1: Valid. When valid, it means the servo can be
		enabled
1	Switched on	0: Invalid, 1: Valid. When valid, it means the servo can be
		enabled
2	Operation enabled	0: Invalid, 1: Valid. When valid, it means servo is enabled
3	Servo failure	0: No fault, 1: Fault
4	Voltage enabled	0: Invalid, 1: Valid. When valid, it means the servo can be
		enabled
5	quick stop	0: Quick stop active, 1: Quick stop inactive
6	Switch on disabled	0: Invalid, 1: Valid. Valid means that servo is not enabled
7	warning	0: no warning, 1: with warning
8	Manufacturer	not available
	customization	
9	remote control	0: invalid, 1: valid. When valid, it means that the control
		word is in effect
10	Torque reached	0: Torque not reached , 1: Torque reached
11	Internal soft limit state	0: soft limit not reached, 1: soft limit reached
12, 13	PT mode reserved	not available
14, 15	Manufacturer	not available
	customization	

Table 9-21 Description of profile position status words

Dictionary of objects related to the profile torque model

Table 9-22 Dictionary of PT schema-related objects

			Type of		
index	subindex	name (of a thing)	access	data type	default value
603Fh		error code	ro	unsigned16	0
6040h		control word	rw	unsigned16	0
6041h		status word	ro	unsigned16	0
6060h		Control mode	rw	integer8	0
6061h		Control mode display	ro	integer8	0
606Ch		Actual user speed feedback	ro	integer32	0
6071h		Torque target value	rw	integer16	0


6074h		User-given torque value	ro	integer16	0
6077h		Actual torque feedback ro integer16 0			0
		Soft limit: minimum position			
(07D1	01h	limit	rw	integer32	-2147483648
607Dh		Soft limit: maximum position			
	02h	limit	rw	integer32	2147483647
6080h		Max. motor speed	rw	unsigned32	4500
6087h		Torque ramprwunsigne		unsigned32	0

Example of simple use of profile torque mode

PDO	name (of a thing)	Value setting (decimal value)
6060h	Control mode	4
	Maximum speed limit in profile torque	
607Fh	mode	user setting
6071h	Contour torque given	User-given
	enable	Arbitrary number $\rightarrow 6 \rightarrow 7 \rightarrow 15$
6040h		Arbitrary number \rightarrow 128 (valid on rising edge, clear
00 4 0n	Alarm clearing	if possible)
	Motor rotation	Give command after enable
6087h		User setting (acceleration and deceleration in torque
008/11	Torque ramp	mode)

9.3.8 Back to the original model description (HM)

Depending on the home switch signal, the limit switch signal and the encoder Z signal, the CiA402 protocol defines 31 return modes. To enable this mode, set the object 6060H to 6

sea <u>rch switch speed(6099.02h)</u>	Actual torque(6077h)
Return acceleration (609Ah)	Position offset (60F4h)

Chart 9-17 Back to the original mode simple input and output

Control word setting in home return mode (6040h)

Bit	name (of a thing)	instructions
0	Switch on	Must be set to 1 when servo is enabled.
1	Enable voltage	Must be set to 1 when servo is enabled.
2	quick stop	Must be set to 1 when servo is enabled, set to 0 for fast shutdown.
3	Operation enable	Must be set to 1 when servo is enabled.
4	return to enable	0: Invalid, 1: Valid. When valid, the home return process is started and must
		remain valid throughout the home return, switching to invalid stops the home
		return process
5,6	Origin mode reserved	not available
7	Fault reset	A single fault reset is executed on a $0 \rightarrow 1$ change, and multiple $0 \rightarrow 1$ changes
		need to be generated if multiple resets are required. At this position 1, other
		control commands are invalid
8	pause (media player)	0: Invalid, 1: Valid. Deceleration stops back to the home process when valid.

Table 9-23 Description of Back to Home Mode Control Words

9	Origin mode reserved	not available
10	reserve	not available
11~15	Manufacturer	not available
	customization	

Status word definition for origin regression mode (6041h)

Bit	name (of a thing)	instructions
0	Ready to switch on	0: Invalid, 1: Valid. When valid, it means the servo can be enabled
1	Switched on	0: Invalid, 1: Valid. When valid, it means the servo can be enabled
2	Operation enabled	0: Invalid, 1: Valid. When valid, it means servo is enabled
3	Servo failure	0: No fault, 1: Fault
4	Voltage enabled	0: Invalid, 1: Valid. When valid, it means the servo can be enabled
5	quick stop	0: Quick stop active, 1: Quick stop inactive
6	Switch on disabled	0: Invalid, 1: Valid. Valid means that servo is not enabled
7	warning	0: no warning, 1: with warning
0	Manufacturer	not available
8	customization	
9	remote control	0: invalid, 1: valid. When valid, it means that the control word is in effect
10	Location Arrival	6040h bit 8 (pause) = 0, 0: position not reached, 1: position reached.
10	Location Annvai	6040h bit 8 (pause) = 1, 0: deceleration in progress, 1: speed is 0
11	Internal soft limit state	0: soft limit not reached, 1: soft limit reached
12	Return to the origin to	0: Return to origin incomplete, 1: Return to origin complete
12	complete the output	
13	return error	0: No error, 1: Error occurred at the return point
14	Manufacturer	not available
17	customization	
		0: Invalid, 1: Completed back to the original point.
15	Back to original	For absolute systems: $F08.24 = 1$, $F08.40 = 1$, the value of bit15 is stored after
15	completion	a successful return (power-down hold), setting F23.06 to 7 will clear the
		stored value

Table 9-24 Back to the original mode status word description

Dictionary of objects related to the origin regression pattern

		5	U		
			Type of		
index	subindex	name (of a thing)	access	data type	default value
603Fh		error code	ro	unsigned16	0
6040h		control word	rw	unsigned16	0
6041h		status word	ro	unsigned16	0
6060h		Control mode	rw	integer8	0
6061h		Control mode display	ro	integer8	0

Table 9-25 Back to the original schema-related object dictionary

6062h		user location instruction	ro	integer32	0
6063h		Motor position feedback	ro	integer32	0
6064h		User Location Feedback	ro	integer32	0
		User Position Deviation Excess			
6065h		Threshold	rw	unsigned32	1,000,000
6067h		Position reaches threshold	rw	unsigned32	100
6068h		Location arrival time	rw	unsigned16	1
606Bh		User speed command value	ro	integer32	0
606Ch		Actual user speed feedback	ro	integer32	0
607Ch		origin offset	rw	integer32	0
(07D1	01h	Soft limit: minimum position limit	rw	integer32	-2147483648
607Dh	02h	Soft limit: maximum position limit	rw	integer32	2147483647
6098h		return to original mode	rw	integer8	0
6099h	01h	Search for deceleration point signal			
		speed in return to home mode	rw	unsigned32	100
	0.21	Search for home switch signal speed in			
	02h	return home mode	rw	unsigned32	10
609Ah		return to original acceleration	rw	unsigned32	100

Easy to use tutorial for origin return mode

addres		
s	name (of a thing)	Value setting (decimal value)
60608		
h	Control mode	6
6098h	return to original mode	1~35
6040h	Alarm clearing	Arbitrary number \rightarrow 128 (valid on rising edge)
004011		$6 \rightarrow 7 \rightarrow 15 \rightarrow 31$ (back to the original process to
	return to the original	be always 31)
6099.0	Search for deceleration point signal speed in return	
1h	to home mode	0~3000rpm (default is user unit)
6099.0	Search for home switch signal speed in return home	
2h	mode	0~3000rpm (default is user unit)
609Ah	return to original acceleration	0~1000rpm time: ms (default is user unit)

Introduction to the origin return model

The CiA402 has 31 internally defined return methods (for CANOpen/EtherCAT) astable0-26 described. The following descriptions indicate the home position sensor signal by HSW, the negative limit signal by NL, and the positive limit signal by PL. ON indicates the valid state of the signal and

OFF indicates the invalid state of the signal. OFF \rightarrow ON indicates the jumping edge of the signal from the invalid state to the valid state, and ON \rightarrow OFF indicates the jumping edge of the signal from the valid state to the invalid state. The following describes various home mode operation trajectories and signal state changes respectively, and the meaning of icons in various back home mode diagrams are asChart 9-18 The meaning of the icons in the diagrams of various return home modes is shown.

table0-26Introduction to the Back-to-Home Model

return to original form	instructions		
0	not		
1	Start in the negative direction and switch to low speed when the OFF \rightarrow ON state of NL is encountered in the negative direction, then backtrack to find the nearest Z pulse position as the home position		
2	Start in the forward direction, switch to low speed when the PL's OFF \rightarrow ON state is encountered during forward operation, and then back off to find the nearest Z pulse position as the home position.		
3	If the HSW is invalid at start, run in the positive direction, otherwise run in the negative direction. When running in negative direction, switch to low speed when HSW When the HSW is $ON \rightarrow OFF$, switch to low speed, and then continue to run in the negative direction to find the nearest Z pulse position as the home position.		
4	If the HSW is invalid at start, run in the positive direction, otherwise run in the negative direction. If the HSW is OFF \rightarrow ON when running in the positive direction, switch to low speed. When the HSW is OFF \rightarrow ON, switch to low speed, and then continue to run in the positive direction to find the nearest Z pulse position as the home position.		
5	If the HSW is invalid at the start, run in the negative direction, otherwise run in the positive direction. If the HSW is $ON \rightarrow OFF$ when running in the positive direction, switch to low speed. When the HSW is $ON \rightarrow OFF$, switch to low speed, and then continue to run in the forward direction to find the nearest Z pulse position as the home position.		
6	If the HSW is invalid at start, run in the negative direction, otherwise run in the positive direction. When running in negative direction, switch to low speed when HSW When the HSW is $ON \rightarrow OFF$, switch to low speed, then continue to run in the negative direction to find the nearest Z pulse position as the home position.		
7	If the HSW is invalid at start, run in the positive direction, otherwise run in the negative direction. When running in negative direction, switch to low speed when HSW When the HSW is $ON \rightarrow OFF$, switch to low speed, and then continue to run in the negative direction to find the nearest Z pulse position as the home position.		
8	If the HSW is invalid at start, run in the positive direction, otherwise run in the negative direction. If the HSW is OFF \rightarrow ON when running in the positive direction, switch to low speed. When the HSW OFF \rightarrow ON, switch to low speed, and then continue to run in the positive direction to find the nearest pulse position as the home position.		
9	The start is in the positive direction, regardless of whether the HSW is active or inactive. When running in the negative direction, switch to low speed when the HSW When the HSW is OFF \rightarrow ON, switch to low speed, then continue to run in the negative direction to find the nearest Z pulse position as the home		

	position.
	The start is in the forward direction, regardless of whether the HSW is active or inactive. When running
10	in the forward direction, switch to low speed when the HSW is ON \rightarrow OFF state, switch to low-speed
	operation, and then continue forward operation to find the nearest Z pulse position as the home position.
	If the HSW is invalid at the start, run in the negative direction, otherwise run in the positive direction.
11	If the HSW is $ON \rightarrow OFF$ when running in the positive direction, switch to low speed. When the HSW
	is ON→OFF, switch to low speed, and then continue to run in the forward direction to find the nearest
	Z pulse position as the home position.
	If the HSW is invalid at start, run in the negative direction, otherwise run in the positive direction. When
	running in negative direction, switch to low speed when the HSW If the HSW is $OFF \rightarrow ON$, switch to
12	low speed, and then continue to run in the negative direction to find the nearest Z pulse position as the
	home position.
	The start is in the negative direction, regardless of whether the HSW is active or inactive. When running
13	in the positive direction, switch to low speed when the HSW Then continue to run in the forward
	direction and find the nearest Z pulse position as the home position.
	The start is in the negative direction, regardless of whether the HSW is active or inactive. When running
14	in the negative direction, switch to low speed when the HSW is ON \rightarrow OFF state, then continue to run
	in the negative direction and find the nearest Z pulse position as the home position.
15	retain
16	retain
	Similar to method 1, but instead of finding the Z pulse, the OFF \rightarrow ON state position of NL encountered
17	during negative operation is used as the origin. point
10	Similar to method 2, but instead of looking for a Z pulse, the OFF \rightarrow ON state position of PL is
18	encountered during forward operation as the home position. point
10	Similar to method 3, but instead of finding the Z pulse, the position of the $ON \rightarrow OFF$ state of the HSW
19	encountered during negative operation is used as the home position
•	Similar to method 4, but instead of looking for a Z pulse, the OFF \rightarrow ON state position of the HSW is
20	encountered during forward operation. home position
	Similar to method 5, but instead of looking for a Z pulse, the position of the ON \rightarrow OFF state of the HSW
21	encountered during forward operation is used as the home position
	Similar to method 6, but instead of finding the Z pulse, the OFF-ON state position of the HSW is
22	encountered during negative operation as the home position
	Similar to method 7, but instead of finding the Z pulse, the position of the $ON \rightarrow OFF$ state of the HSW
23	is encountered when running in the negative direction as the origin. as the origin
24	Similar to mode 8, but instead of looking for a Z pulse, the OFF-ON state position of the HSW is
24	encountered as the origin when running in the forward direction. as the origin
25	Similar to method 9, but instead of finding the Z pulse, the OFF-ON state position of the HSW is
	encountered when running in the negative direction as the origin. as the origin
	Similar to method 10, but without the Z pulse, the position of the ON-OFF state of the HSW is
26	encountered when running in the forward direction. as the origin
27	Similar to method 11, but instead of finding the Z pulse, the position of the ON \rightarrow OFF state of the HSW
27	is encountered when running in the forward direction. as the origin
28	Similar to mode 12, but without the Z pulse, the OFF→ON state position of the HSW is encountered

	when running in the negative direction as the origin
29	Similar to method 13, but without the Z pulse, the OFF→ON state position of the HSW is encountered
	when running in the forward direction. as the origin
30	Similar to mode 14, but without the Z pulse, the ON→OFF state position of the HSW is encountered
	when running in the negative direction as the origin
31	retain
32	retain
33	Find the nearest Z pulse position in the negative direction as the origin when starting
34	Find the nearest Z pulse position in the forward direction as the origin when starting
35	With the current position as the origin

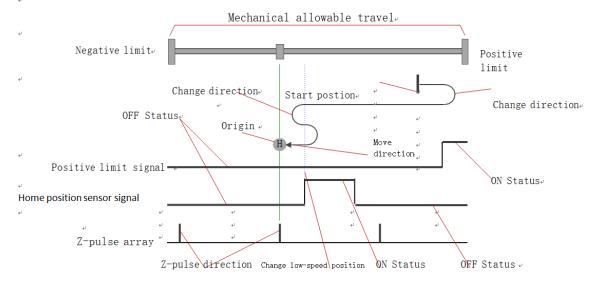
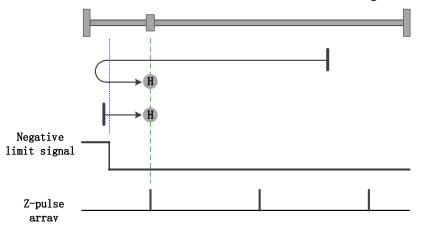


Chart 9-18Back to the original mode various icons meaning

In general, it is recommended that home modes 3 to 6 and 19 to 22 be applied to situations where the OFF/ON state of the HSW splits the entire mechanical allowable travel range into two parts, because these 8 modes stop and alarm whenever NL or PL is encountered, and do not automatically reverse to find the home point.


It is proposed to apply the origin modes 7~14 and 23~30 to the case where the ON state of HSW exactly divides the entire mechanical allowable travel range into three parts, when the ON state interval occupies only a small part of the entire mechanical allowable travel range (i.e., the ON state is a short-time transient).

The above is only a suggestion, not a mandate.

Mode 1, Looking for negative limits and Z pulses

If NL is invalid at the start, run in the negative direction at high speed, slow down and stop after encountering the OFF \rightarrow ON state of NL, and then change to run in the positive direction at low speed.

After running in the positive direction at low speed and encountering the $ON \rightarrow OFF$ state of NL, continue to run in the positive direction to find the nearest Z pulse position as the home position. If NL is valid at the start, run at low speed toward the forward direction. After encountering the $ON \rightarrow OFF$ state of NL while running in the forward direction, continue to search for the nearest Z pulse position in the forward direction as the home position.

As 9-19 shown, See Table 8. Introduction to 26 Return to Original Mode.

Chart 9-19 Origin mode 1 trajectory and signal state

Mode 2, Looking for positive limits and Z pulses

If the PL is invalid at the start, run in the positive direction at high speed, slow down and stop after encountering the OFF \rightarrow ON state of the PL, and then change to run in the negative direction at low speed. After the PL ON \rightarrow OFF state is encountered while running in the negative direction at low speed, continue to search for the nearest Z pulse position in the negative direction as the home position. If PL is valid at the start, run in the negative direction at a low speed. After encountering the ON \rightarrow OFF state of PL while running in the negative direction, continue to search for the nearest Z pulse position in the negative direction as the home position.

As 9-20 shown, See Table 8. Introduction to 26 Return to Original Mode.

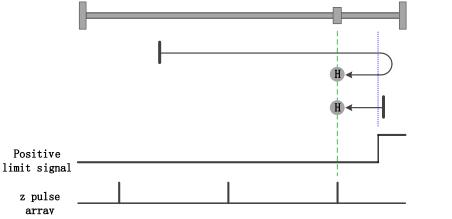


Chart 9-20 Origin mode 2 trajectory and signal state

Mode 3, Finding the ON→OFF position of HSW and Z pulse when running in the negative direction

If the HSW is invalid at the start, it runs in the positive direction at high speed, and then decelerates and stops after encountering the OFF \rightarrow ON state of the HSW in the positive direction, and then changes to low speed and runs in the negative direction. When the HSW ON \rightarrow OFF state is encountered in the negative direction at low speed, it continues to search for the nearest Z pulse position in the negative direction as the home position.

If HSW is active at the start, run at high speed in the negative direction. When the HSW is $ON \rightarrow OFF$ in the negative direction, decelerate and stop, then decelerate and stop again when the HSW is valid at high speed, and then change to low speed and run in the negative direction. After encountering the $ON \rightarrow OFF$ state of HSW in the negative direction at low speed, continue to search for the nearest Z pulse position in the negative direction as the home position.

This mode stops the return to home process and alarms, whether it encounters the ON state of NL or PL.

As 9-21 shown, See Table 8. Introduction to 26 Return to Original Mode.

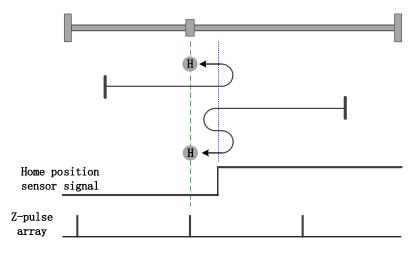


Chart 9-21 Origin mode 3 trajectory and signal state

Mode 4, Finding the OFF→ON position of HSW and Z pulse when running in the forward direction

If the HSW is invalid at the start, run in the forward direction at high speed, slow down and stop after encountering the OFF \rightarrow ON state of HSW in the forward direction, then slow down and stop again after backing up to the invalid HSW position at high speed, and then change to run in the forward direction at low speed. After encountering the OFF \rightarrow ON state of HSW during the low-speed forward operation, continue to find the nearest Z pulse position as the home position in the forward direction.

If HSW is active at the start, run at high speed in the negative direction. When the HSW is $ON \rightarrow OFF$ in the negative direction, decelerate and stop, and then change to low speed to run in the positive direction. When the HSW is $OFF \rightarrow ON$ at low speed in the positive direction, continue to find the nearest Z pulse position in the positive direction as the home position.

This mode stops the return to home process and alarms, whether it encounters the ON state of NL or PL.

As 9-22 shown, See Table 8. Introduction to 26 Return to Original Mode.

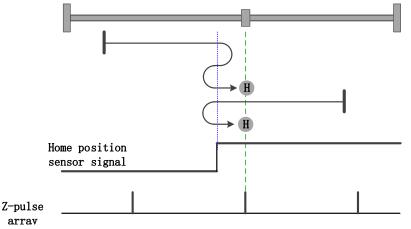


Chart 9-22 Origin mode 4 trajectory and signal state

Mode 5, Finding the ON→OFF position of HSW and Z pulse when running in the forward direction

If the HSW is invalid at the start, run in the negative direction at high speed. When the HSW is $OFF \rightarrow ON$ in the negative direction, decelerate and stop, and then change to low speed to run in the positive direction. When the HSW $ON \rightarrow OFF$ state is encountered in the low-speed forward operation, continue to find the nearest Z pulse position in the positive direction as the home position.

If the HSW is valid at the start, run in the forward direction at high speed, slow down and stop after encountering the $ON \rightarrow OFF$ state of the HSW in the forward direction, then slow down and stop again after retreating to the HSW valid position at high speed, and then change to run in the forward direction at low speed. After encountering the $ON \rightarrow OFF$ state of HSW during the low-speed forward operation, continue to find the nearest Z pulse position as the home position in the forward direction.

This mode stops the return to home process and alarms, whether it encounters the ON state of NL or PL.

As 9-23 shown, See Table 8. Introduction to 26 Return to Original Mode.

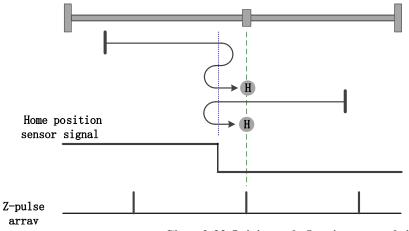


Chart 9-23 Origin mode 5 trajectory and signal shape

Mode 6, Looking for the OFF→ON position of HSW and Z pulse when running in the negative direction

If the HSW is invalid at the start, run in the negative direction at high speed. When the HSW is $OFF \rightarrow ON$ during negative direction operation, decelerate and stop, then decelerate and stop again after retreating to the HSW invalid position at high speed, and then change to low speed to run in the negative direction. After encountering the OFF $\rightarrow ON$ state of HSW in the negative direction at low speed, continue to find the nearest Z pulse position as the home position in the negative direction.

If the HSW is valid at the start, run in the positive direction at high speed, and then slow down and stop after encountering the ON \rightarrow OFF state of the HSW in the positive direction, and then change to low speed and run in the negative direction. When the HSW turns OFF \rightarrow ON in the negative direction at low speed, continue to run in the negative direction and find the nearest Z pulse position as the home position.

This mode stops the return to home process and alarms, whether it encounters the ON state of NL or PL.

AsChart 9-24 shown, See Table 8. Introduction to 26 Return to Original Mode.

Chart 9-24 Origin mode 6 trajectory and signal state

Mode 7, Looking for the $ON \rightarrow OFF$ position and Z pulse of HSW when running in the negative direction, and automatically reversing when positive limit is encountered

If the HSW is invalid at the start and is on the positive side of the home position sensor, run at high speed in the positive direction, slow down and stop when it encounters the ON state of the PL, and then run at high speed in the negative direction. When running in the negative direction, decelerate and stop after encountering the ON \rightarrow OFF state of HSW, then decelerate and stop again after retreating to the HSW valid position at high speed (if the HSW valid interval is narrow, it may enter the HSW invalid position interval on the other side), and then change to run in the negative direction at low speed. After encountering the ON \rightarrow OFF state of HSW while running in the negative direction at low speed, continue to find the nearest Z pulse position in the negative direction as the home position.

If the HSW is invalid at the start and is on the negative side of the home position sensor, run in the positive direction at high speed, slow down and stop after encountering the OFF \rightarrow ON state of the HSW in the positive direction, and then change to low speed and run in the negative direction. After encountering the ON \rightarrow OFF state of HSW in the negative direction at low speed, continue to find the nearest Z pulse position in the negative direction as the home position.

If the HSW is valid at the start, run at high speed in the negative direction. When running in the negative direction, slow down and stop after encountering the $ON \rightarrow OFF$ state of HSW, then slow down and stop again after retreating to the HSW valid position at high speed (if the HSW valid interval is narrow, it may enter the HSW invalid position interval on the other side), and then change to low speed to run in

the negative direction. After encountering the $ON \rightarrow OFF$ state of HSW while running in the negative direction at low speed, continue to find the nearest Z pulse position in the negative direction as the home position.

In this mode, the first time the ON state of PL is encountered towards forward operation is automatically reversed; when the ON state of NL is encountered, or when the ON state of PL is encountered again, the flow back to the home position is stopped and an alarm is sounded.

AsChart 9-25 shown, See Table 8. Introduction to 26 Return to Original Mode.

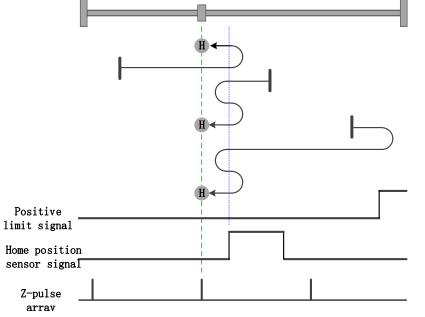


Chart 9-25 Origin mode 7 trajectory and signal state

Mode 8, Find the OFF \rightarrow ON position and Z pulse of HSW when running in the forward direction, and automatically reverse when positive limit is encountered

If the HSW is invalid at the start and is on the positive side of the home position sensor, run in the positive direction at high speed, decelerate and stop when it encounters the ON state of the PL, and then run in the negative direction at high speed. When the negative direction operation encounters the $ON \rightarrow OFF$ state of HSW, decelerate and stop, and then change to the low speed operation towards the positive direction. After encountering the OFF $\rightarrow ON$ state of HSW while running in the positive direction at low speed, continue to search for the nearest Z pulse position as the home position in the positive direction.

If the HSW is invalid at the start and is on the negative side of the home position sensor, run in the

forward direction at high speed, and then slow down and stop after encountering the OFF \rightarrow ON state of the HSW in the forward direction, then slow down and stop again after backing up to the invalid HSW position at high speed, and then change to run in the forward direction at low speed. After encountering the OFF \rightarrow ON state of HSW while running in the forward direction at low speed, continue to search for the nearest Z pulse position in the forward direction as the home position.

If HSW is active at the start, run at high speed in the negative direction. When the HSW is $ON \rightarrow OFF$ in the negative direction, decelerate and stop, and then change to low speed to run in the positive direction. When the HSW $OFF \rightarrow ON$ state is encountered in the low-speed forward operation, continue to search for the nearest Z pulse position in the positive direction as the home position.

In this mode, the first time the ON state of PL is encountered towards forward operation is automatically reversed; when the ON state of NL is encountered, or when the ON state of PL is encountered again, the flow back to the home position is stopped and an alarm is generated.

AsChart 9-26 shown, See Table 8. Introduction to 26 Return to Original Mode.

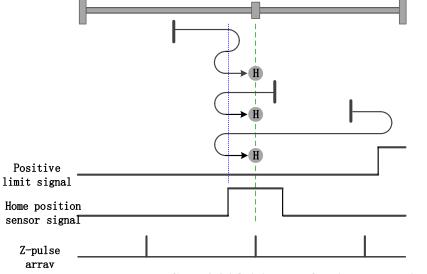


Chart 9-26 Origin mode 8 trajectory and signal state

Mode 9, Looking for the OFF \rightarrow ON position and Z pulse of HSW when running in the negative direction, and automatically reversing when positive limit is encountered

If the HSW is invalid at the start and is on the positive side of the home position sensor, run in the positive direction at high speed, slow down and stop when the PL is ON, and then run in the negative direction at high speed. When the negative direction operation encounters the OFF→ON state of HSW,

decelerate and stop, then decelerate and stop again after retreating to the position where HSW is invalid at high speed, and then change to low speed operation towards the negative direction. After encountering the OFF \rightarrow ON state of HSW while running in the negative direction at low speed, continue to find the nearest Z pulse position in the negative direction as the home position. If the HSW is invalid at the start and is on the negative side of the home position sensor, run in the positive direction at high speed, slow down and stop after encountering the ON \rightarrow OFF state of the HSW in the positive direction, and then change to low speed and run in the negative direction. After encountering the OFF \rightarrow ON state of HSW in the negative direction at low speed, continue to find the nearest Z pulse position in the negative direction as the home position.

If HSW is active at the start, run at high speed in the positive direction. When the HSW $ON \rightarrow OFF$ state is encountered in the positive direction, decelerate and stop, and then change to low speed to run in the negative direction. When the HSW is $OFF \rightarrow ON$ at low speed in negative direction, continue to find the nearest Z pulse position as the home position in negative direction.

In this mode, the first time the ON state of PL is encountered towards forward operation is automatically reversed; when the ON state of NL is encountered, or when the ON state of PL is encountered again, the flow back to the home position is stopped and an alarm is sounded. AsChart 9-27 shown, See Table 8. Introduction to 26 Return to Original Mode.

Chart 9-27 Origin mode 9 trajectory and signal state

Mode 10, Find the $ON \rightarrow OFF$ position and Z pulse of HSW when running in the forward direction, and automatically reverse when positive limit is encountered

If the HSW is invalid at the start and is on the positive side of the home position sensor, run at high speed in the positive direction, decelerate and stop when it encounters the ON state of the PL, and then run at high speed in the negative direction. When the negative direction operation encounters the OFF \rightarrow ON state of HSW, decelerate and stop, and then switch to the low speed operation towards the positive direction. After encountering the ON \rightarrow OFF state of HSW while running in the positive direction at low speed, continue to find the nearest Z pulse position as the home position in the positive direction.

If the HSW is invalid at the start and is on the negative side of the home position sensor, run in the forward direction at high speed, slow down and stop again after encountering the ON \rightarrow OFF state of the HSW in the forward direction, then slow down and stop again after returning to the valid HSW position at high speed (if the valid HSW range is narrow, it may enter the invalid HSW range on the other side), and then change to low speed and run in the forward direction. After that, change to low speed towards forward. After encountering the ON \rightarrow OFF state of HSW during the low-speed forward operation, continue to find the nearest Z pulse position as the home position in the forward direction. If the HSW is valid at the start, run at high speed in the forward direction. When the HSW ON \rightarrow OFF state is encountered during forward operation, decelerate and stop, and then decelerate and stop again after retreating to the HSW valid position at high speed (if the HSW valid interval is narrow, it may enter the HSW invalid position interval on the other side), and then change to low speed to run in the forward direction. After encountering the ON \rightarrow OFF state of HSW while running in the forward direction at high speed (if the HSW valid interval is narrow, it may enter the HSW invalid position interval on the other side), and then change to low speed to run in the forward direction. After encountering the ON \rightarrow OFF state of HSW while running in the forward direction at low speed, continue to find the nearest Z pulse position in the forward direction as the home position.

In this mode, the first time the ON state of PL is encountered towards forward operation is automatically reversed; when the ON state of NL is encountered, or when the ON state of PL is encountered again, the flow back to the home position is stopped and an alarm is sounded.

AsChart 9-28 shown, See Table 8. Introduction to 26 Return to Original Mode.

128

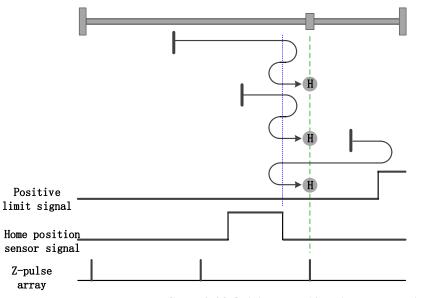


Chart 9-28 Origin mode 10 trajectory and signal state

Mode 11, Find the $ON \rightarrow OFF$ position and Z pulse of HSW when running in the positive direction, and automatically reverse when negative limit is encountered

If the HSW is invalid at the start and is located on the positive side of the home position sensor, run in the negative direction at high speed, slow down and stop after encountering the OFF \rightarrow ON state of the HSW in the negative direction, and then change to low speed and run in the positive direction. After encountering the ON \rightarrow OFF state of HSW at low speed in the positive direction, continue to find the nearest Z pulse position as the home position in the positive direction.

If the HSW is invalid at the start and is on the negative side of the home position sensor, run at high speed in the negative direction, slow down and stop when it encounters the ON state of NL, and then run at high speed in the positive direction. When running in the positive direction, slow down and stop after encountering the $ON \rightarrow OFF$ state of HSW, then slow down and stop again after retreating to the valid HSW position at high speed (if the valid HSW interval is narrow, it may enter the position interval of the invalid HSW on the other side), and then change to run in the positive direction at low speed. After encountering the $ON \rightarrow OFF$ state of HSW while running in the forward direction at low speed, continue to find the nearest Z pulse position in the forward direction as the home position.

If the HSW is valid at the start, run at high speed in the forward direction. When the HSW $ON \rightarrow OFF$ state is encountered during forward operation, decelerate and stop, and then decelerate and stop again after retreating to the HSW valid position at high speed (if the HSW valid interval is narrow, it may

enter the HSW invalid position interval on the other side), and then change to low speed to run in the forward direction. After encountering the $ON \rightarrow OFF$ state of HSW while running in the forward direction at low speed, continue to find the nearest Z pulse position in the forward direction as the home position.

In this mode, operation in the negative direction is automatically reversed the first time the ON state of NL is encountered; when the ON state of PL is encountered, or when the ON state of NL is encountered again, the flow back to the origin is stopped and an alarm is sounded.

AsChart 9-29 shown, See Table 8. Introduction to 26 Return to Original Mode.

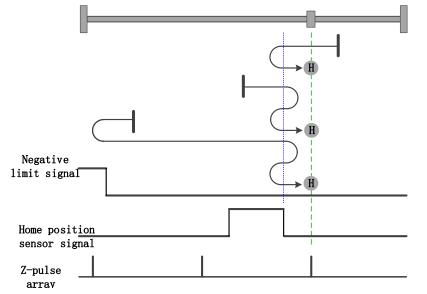


Chart 9-29 Origin mode 11 trajectory and signal state

Mode 12, Find the OFF \rightarrow ON position and Z pulse of HSW when running in the negative direction, and automatically reverse when negative limit is encountered

If the HSW is invalid at the start and is located on the positive side of the home position sensor, run in the negative direction at high speed, slow down and stop after encountering the OFF \rightarrow ON state of the HSW in the negative direction, then slow down and stop again after backing up to the invalid HSW position at high speed, and then change to run in the negative direction at low speed. After encountering the OFF \rightarrow ON state of HSW when running in the negative direction at low speed, continue to find the nearest Z pulse position in the negative direction as the home position.

If the HSW is invalid at the start and is on the negative side of the home position sensor, run at high speed in the negative direction, slow down and stop when it encounters the ON state of NL, and then run at high speed in the positive direction. When it encounters the $ON \rightarrow OFF$ state of HSW while

running in the positive direction, decelerate and stop, and then change to low speed to run in the negative direction. After encountering the OFF \rightarrow ON state of HSW while running in the negative direction at low speed, continue to find the nearest Z pulse position in the negative direction as the home position.

If HSW is active at the start, run at high speed in the positive direction. When the HSW $ON \rightarrow OFF$ state is encountered in the positive direction, decelerate and stop, and then change to low speed to run in the negative direction. When the HSW is $OFF \rightarrow ON$ at low speed in negative direction, continue to find the nearest Z pulse position as the home position in negative direction.

In this mode, operation in the negative direction is automatically reversed the first time the ON state of NL is encountered; when the ON state of PL is encountered, or when the ON state of NL is encountered again, the flow back to the origin is stopped and an alarm is sounded.

Negative limit signal

Home position sensor signal

> Z-pulse arrav

AsChart 9-30 shown, See Table 8. Introduction to 26 Return to Original Mode.

Mode 13, Find the OFF→ON position and Z pulse of HSW when running in the positive direction, and automatically reverse when negative limit is encountered

Chart 9-30 Origin mode 12 trajectory and signal state

If the HSW is invalid at the start and is located on the positive side of the home position sensor, run in the negative direction at high speed, slow down and stop after encountering the $ON \rightarrow OFF$ state of the HSW in the negative direction, and then change to low speed and run in the positive direction. After encountering the OFF \rightarrow ON state of HSW during the low-speed forward operation, continue to find the nearest Z pulse position as the home position in the forward direction.

If the HSW is invalid at the start and is on the negative side of the home position sensor, run in the negative direction at high speed, slow down and stop when it encounters the ON state of NL, and then run in the positive direction at high speed. When it encounters the OFF \rightarrow ON state of HSW during forward operation, it decelerates and stops, and then decelerates and stops again after returning to the position where HSW is invalid at high speed, and then changes to low speed to run in the positive direction at low speed, continue to find the nearest Z pulse position in the forward direction as the home position.

If HSW is active at the start, run at high speed in the negative direction. When the HSW is $ON \rightarrow OFF$ in the negative direction, decelerate and stop, and then change to low speed to run in the positive direction. When the HSW is $OFF \rightarrow ON$ at low speed in the positive direction, continue to find the nearest Z pulse position in the positive direction as the home position.

In this mode, operation in the negative direction is automatically reversed the first time the ON state of NL is encountered; when the ON state of PL is encountered, or when the ON state of NL is encountered again, the flow back to the origin is stopped and an alarm is sounded.

AsChart 9-31 shown, See Table 8. Introduction to 26 Return to Original Mode.

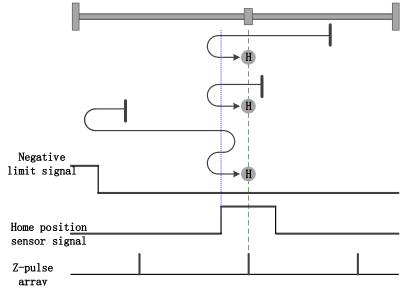
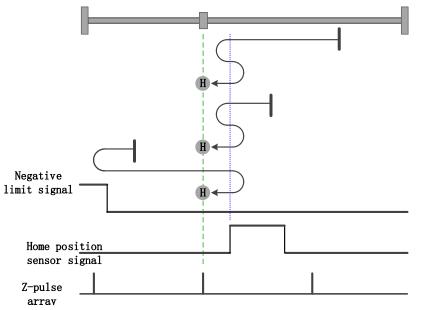


Chart 9-31 Origin mode 13 trajectory and signal state

Mode 14, Find the $ON \rightarrow OFF$ position and Z pulse of HSW when running in the negative direction, and automatically reverse when negative limit is encountered

If the HSW is invalid at the start and is on the positive side of the home position sensor, run at high speed in the negative direction, then slow down and stop after encountering the $ON \rightarrow OFF$ state of the

HSW in the negative direction, then slow down and stop again after returning to the HSW valid position at high speed (if the HSW valid range is narrow, it may enter the HSW invalid range on the other side), then change to low speed and run in the negative direction. After that, change to low speed towards negative direction. After encountering the ON \rightarrow OFF state of HSW when running in the negative direction at low speed, continue to find the nearest Z pulse position in the negative direction as the home position.


If the HSW is invalid at the start and is on the negative side of the home position sensor, run at high speed in the negative direction, slow down and stop when it encounters the ON state of NL, and then run at high speed in the positive direction. When it encounters the OFF \rightarrow ON state of HSW while running in the positive direction, decelerate and stop, and then change to low speed to run in the negative direction. After encountering the ON \rightarrow OFF state of HSW while running in the negative direction at low speed, continue to find the nearest Z pulse position in the negative direction as the home position.

If the HSW is valid at the start, run at high speed in the negative direction. When running in the negative direction, slow down and stop after encountering the $ON \rightarrow OFF$ state of HSW, then slow down and stop again after retreating to the HSW valid position at high speed (if the HSW valid interval is narrow, it may enter the HSW invalid position interval on the other side), and then change to low speed to run in the negative direction. After encountering the $ON \rightarrow OFF$ state of HSW while running in the negative direction at low speed, continue to find the nearest Z pulse position in the negative direction as the home position.

This mode automatically reverses the first time the ON state of NL is encountered when running in the negative direction; when the ON state of PL is encountered, or when the ON state of NL is encountered again, the return home process is stopped and an alarm is generated.

AsChart 9-32 shown, See Table 8. Introduction to 26 Return to Original Mode.

133

Chart 9-32 Origin mode 14 trajectory and signal state

Mode 15, Reserved, please do not set.

Mode 16, Reserved, please do not set.

Mode 17, Finding Negative Limits

If NL is invalid at the start, run in the negative direction at high speed, decelerate and stop when it encounters the OFF \rightarrow ON state of NL, and then change to run in the positive direction at low speed. Decelerate and stop when running at low speed toward positive direction and meet the ON \rightarrow OFF state of NL, and use the stop position as the home position.

If NL is valid at the start, run at low speed toward the forward direction. Decelerate and stop at the $ON \rightarrow OFF$ state of NL encountered in forward operation, using the stop position as the home position.

AsChart 9-33 shown, See Table 8. Introduction to 26 Return to Original Mode.

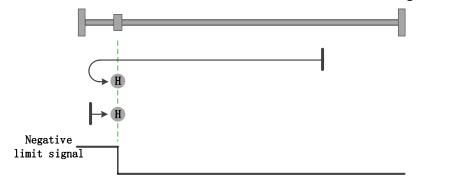
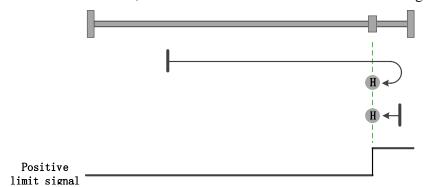



Chart 9-33 Origin mode 17 trajectory and signal state

Mode 18, Finding Positive Limits

If PL is invalid at the start, run in the positive direction at high speed, decelerate and stop when it encounters the OFF \rightarrow ON state of PL, and then change to run in the negative direction at low speed. When the low speed running in the negative direction encounters the ON \rightarrow OFF state of PL, decelerate and stop, and use the stop position as the home position.

If PL is active at the start, run at low speed in the negative direction. When running at low speed in the negative direction, deceleration stops when the $ON \rightarrow OFF$ state of PL is encountered, and the stop position is used as the home position.

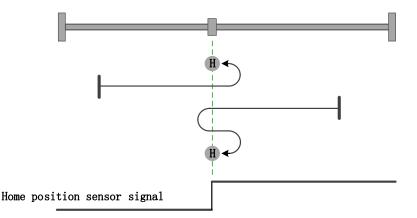
AsChart 9-34 shown, See Table 8. Introduction to 26 Return to Original Mode.

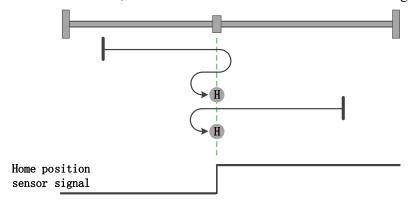
Chart 9-34 Origin mode 18 trajectory and signal state

Mode 19, Find the ON→OFF position of HSW when running in the negative direction

If the HSW is invalid at the start, it runs in the positive direction at high speed, and then decelerates and stops when it encounters the OFF \rightarrow ON state of the HSW in the positive direction, and then changes to low speed and runs in the negative direction. When the HSW ON \rightarrow OFF state is encountered in the negative direction at low speed, decelerate and stop, and use the stop position as the home position.

If HSW is active at the start, it runs in the negative direction at high speed. After decelerating and stopping in the negative direction when the HSW $ON \rightarrow OFF$ state is encountered, then decelerating and stopping again after returning to the HSW valid position at high speed, and then switching to low speed to run in the negative direction. When the negative direction operation at low speed encounters the $ON \rightarrow OFF$ state of HSW, decelerate and stop, using the stop position as the home position. In this mode, whether it encounters the ON state of NL or PL, it is stopped back to the home process and alarmed. AsChart 9-35 shown, See Table 8. Introduction to 26 Return to Original Mode.




Chart 9-35 Origin mode 19 trajectory and signal state

Mode 20, Find the OFF→ON position of HSW when running in the forward direction

If the HSW is invalid at the start, run in the forward direction at high speed, and then decelerate and stop when the HSW OFF \rightarrow ON state is encountered in the forward direction, and then decelerate and stop again when the HSW is invalid at high speed, and then change to low speed and run in the forward direction. When the low-speed forward operation encounters the OFF \rightarrow ON state of HSW, decelerate and stop, and use the stop position as the home position.

If HSW is active at the start, run at high speed in the negative direction. When the HSW $ON \rightarrow OFF$ state is encountered in the negative direction, deceleration is stopped, and then the speed is changed to low speed to run in the positive direction. Decelerate and stop when the low-speed forward operation encounters the OFF $\rightarrow ON$ state of HSW, and use the stop position as the home position.

This mode stops the return to home process and alarms, whether it encounters the ON state of NL or PL.

AsChart 9-36 shown, See Table 8. Introduction to 26 Return to Original Mode.

Chart 9-36 Origin mode 20 trajectory and signal state

Mode 21, Find the ON→OFF position of HSW when running in the forward direction

If the HSW is invalid at the start, run in the negative direction at high speed. After decelerating and stopping when the HSW OFF \rightarrow ON state is encountered in the negative direction, the speed is switched to low speed to run in the positive direction. Decelerate and stop when the low-speed forward operation meets the ON \rightarrow OFF state of HSW, and use the stop position as the home position.

If the HSW is active at the start, it runs in the forward direction at high speed, decelerates and stops when it encounters the $ON \rightarrow OFF$ state of the HSW in the forward direction, then decelerates and stops again when it returns to the active HSW position at high speed, and then changes to low speed to run in the forward direction. When the low-speed forward operation encounters the $ON \rightarrow OFF$ state of HSW, decelerate and stop, and use the stop position as the home position.

This mode stops the return to home process and alarms, whether it encounters the ON state of NL or PL.

AsChart 9-37 shown, See Table 8. Introduction to 26 Return to Original Mode.

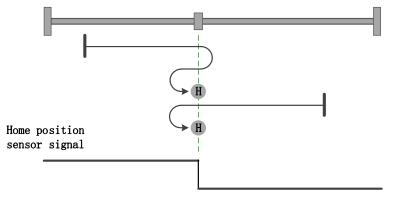


Chart 9-37 Origin mode 21 trajectory and signal state

Mode 22, Looking for the OFF→ON position of HSW when operating in the negative direction

If the HSW is invalid at the start, run in the negative direction at high speed. When the HSW OFF \rightarrow ON state is encountered in the negative direction, deceleration is stopped, and then deceleration is stopped again when the HSW OFF \rightarrow ON state is encountered in the negative direction, and then the HSW OFF \rightarrow ON state is encountered in the negative direction. When the negative direction operation at low speed encounters the OFF \rightarrow ON state of HSW, decelerate and stop, and use the stop position as the home position.

If the HSW is active at the start, it runs in the positive direction at high speed, and then decelerates and stops when it encounters the $ON \rightarrow OFF$ state of the HSW in the positive direction, and then changes to low speed and runs in the negative direction. When the HSW $OFF \rightarrow ON$ state is encountered in the negative direction at low speed, decelerate and stop, and use the stop position as the home position.

This mode stops the return to home process and alarms, whether it encounters the ON state of NL or PL.

AsChart 9-38 shown, See Table 8. Introduction to 26 Return to Original Mode.

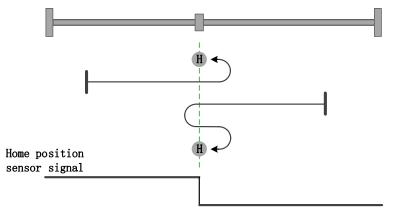


Chart 9-38 Origin mode 22 trajectory and signal state

Mode 23, Looking for the ON→OFF position of HSW when running in the negative direction, and automatically reversing when positive limit is encountered

If the HSW is invalid at the start and is on the positive side of the home position sensor, run at high speed in the positive direction, slow down and stop when it encounters the ON state of the PL, and then run at high speed in the negative direction. In the negative direction, decelerate and stop after encountering the $ON \rightarrow OFF$ state of HSW, then decelerate and stop again after retreating to the valid HSW position at high speed (if the valid HSW interval is narrow, it may enter the position interval of the invalid HSW on the other side), and then change to low speed to run in the negative direction. Decelerate and stop when the low-speed negative operation meets the $ON \rightarrow OFF$ of HSW, using the stop position as the home position.

If the HSW is invalid at the start and is on the negative side of the home position sensor, run at high speed in the positive direction, decelerate and stop when the HSW OFF \rightarrow ON state is encountered in the positive direction, and then change to low speed and run in the negative direction. When the negative direction operation at low speed encounters the ON \rightarrow OFF state of HSW, decelerate and stop, and use

the stop position as the home position.

If the HSW is valid at the start, run at high speed in the negative direction. When running in the negative direction, decelerate and stop after encountering the $ON \rightarrow OFF$ state of HSW, then decelerate and stop again after retreating to the HSW valid position at high speed (if the HSW valid interval is narrow, it may enter the HSW invalid position interval on the other side), and then change to low speed to run in the negative direction. Decelerate and stop when the low-speed negative operation meets the $ON \rightarrow OFF$ of HSW, using the stop position as the home position.

In this mode, the first time the ON state of PL is encountered towards forward operation is automatically reversed; when the ON state of NL is encountered, or when the ON state of PL is encountered again, the flow back to the home position is stopped and an alarm is generated. AsChart 9-39 shown, See Table 8. Introduction to 26 Return to Original Mode.

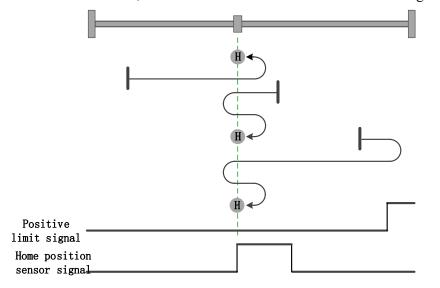


Chart 9-39 Origin mode 23 trajectory and signal state

Mode 24, Looking for the OFF→ON position of HSW when running in the forward direction, and automatically reversing when positive limit is encountered

If the HSW is invalid at the start and is on the positive side of the home position sensor, run in the positive direction at high speed, decelerate and stop when it encounters the ON state of the PL, and then run in the negative direction at high speed. When the negative direction operation encounters the $ON \rightarrow OFF$ state of HSW, decelerate and stop, and then change to the low speed operation towards the positive direction. Decelerate and stop when the low-speed forward operation encounters the OFF $\rightarrow ON$ state of HSW, and use the stop position as the home position.

If the HSW is invalid at the start and is on the negative side of the home position sensor, run in the forward direction at high speed, decelerate and stop when the HSW OFF \rightarrow ON state is encountered in the forward direction, then decelerate and stop again when the HSW is invalid at high speed, and then run in the forward direction at low speed. When the low-speed forward operation encounters the OFF \rightarrow ON state of HSW, decelerate and stop, and use the stop position as the home position.

If HSW is active at the start, run at high speed in the negative direction. When the HSW $ON \rightarrow OFF$ state is encountered in the negative direction, deceleration is stopped, and then the speed is changed to low speed to run in the positive direction. Decelerate and stop when the low-speed forward operation encounters the OFF \rightarrow ON state of HSW, and use the stop position as the home position.

In this mode, the first time the ON state of PL is encountered towards forward operation is automatically reversed; when the ON state of NL is encountered, or when the ON state of PL is encountered again, the flow back to the home position is stopped and an alarm is generated.

AsChart 9-40 shown, See Table 8. Introduction to 26 Return to Original Mode.

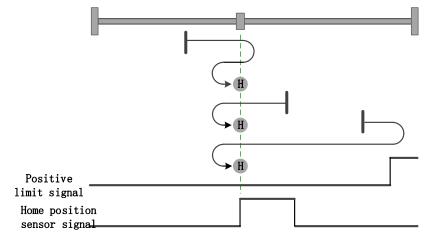


Chart 9-40 Origin mode 24 trajectory and signal state

Mode 25, Looking for the OFF \rightarrow ON position of HSW when running in the negative direction, and automatically reversing when positive limit is encountered

If the HSW is invalid at the start and is on the positive side of the home position sensor, run in the positive direction at high speed, slow down and stop when the PL is ON, and then run in the negative direction at high speed. When the negative direction operation encounters the OFF \rightarrow ON state of HSW, decelerate and stop, then decelerate and stop again after retreating to the invalid HSW position at high speed, and then change to low speed operation towards the negative direction. Decelerate and stop when

the HSW OFF \rightarrow ON state is encountered while running in the negative direction at low speed, and use the stop position as the home position.

If the HSW is invalid at the start and is located on the negative side of the home position sensor, run at high speed in the positive direction, decelerate and stop when the $ON \rightarrow OFF$ state of the HSW is encountered in the positive direction, and then change to low speed and run in the negative direction. When the negative direction operation at low speed encounters the OFF $\rightarrow ON$ state of HSW, decelerate and stop, and use the stop position as the home position.

If HSW is active at the start, run at high speed in the positive direction. When the HSW $ON \rightarrow OFF$ state is encountered during forward operation, deceleration is stopped, and then low speed is switched to negative operation. Decelerate and stop when the HSW $OFF \rightarrow ON$ state is encountered in the negative direction at low speed, and use the stop position as the home position.

In this mode, the first time the ON state of PL is encountered towards forward operation is automatically reversed; when the ON state of NL is encountered, or when the ON state of PL is encountered again, the flow back to the home position is stopped and an alarm is sounded.

AsChart 9-41 shown, See Table 8. Introduction to 26 Return to Original Mode.

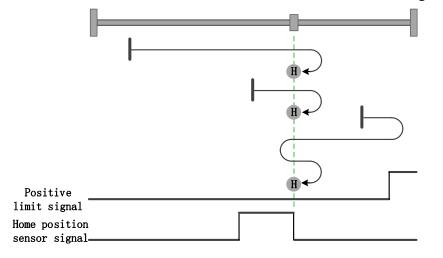


Chart 9-41 Origin mode 25 trajectory and signal state

Mode 26, Finding the ON→OFF position of HSW when running in the forward direction, and automatically reversing when positive limit is encountered

If the HSW is invalid at the start and is on the positive side of the home position sensor, run at high speed in the positive direction, decelerate and stop when it encounters the ON state of the PL, and then run at high speed in the negative direction. When the negative direction operation encounters the $OFF \rightarrow ON$ state of HSW, decelerate and stop, and then switch to the low speed operation towards the positive direction. Decelerate and stop when the low-speed forward operation meets the $ON \rightarrow OFF$ state of HSW, and use the stop position as the home position.

If the HSW is invalid at the start and is on the negative side of the home position sensor, run in the forward direction at high speed, slow down and stop after encountering the $ON \rightarrow OFF$ state of the HSW in the forward direction, then slow down and stop again after returning to the valid HSW position at high speed (if the valid HSW range is narrow, it may enter the invalid HSW range on the other side), and then change to low speed and run in the forward direction. After that, change to low speed towards forward. Decelerate and stop when the low-speed forward operation meets the $ON \rightarrow OFF$ state of HSW, using the stop position as the home position.

If the HSW is valid at the start, run at high speed in the forward direction. After decelerating and stopping when the HSW $ON \rightarrow OFF$ state is encountered during forward operation, decelerate and stop again after retreating to the HSW valid position at high speed (if the HSW valid interval is narrow, it may enter the HSW invalid position interval on the other side), and then change to low speed to run in the forward direction. Decelerate and stop when the low-speed forward operation encounters the $ON \rightarrow OFF$ state of HSW, using the stop position as the home position.

In this mode, the first time the ON state of PL is encountered towards forward operation is automatically reversed; when the ON state of NL is encountered, or when the ON state of PL is encountered again, the flow back to the home position is stopped and an alarm is sounded.

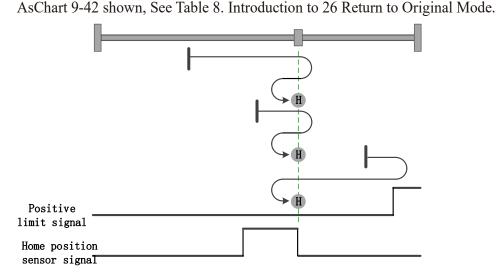


Chart 9-42 Origin mode 26 trajectory and signal state

Mode 27, Find the $ON \rightarrow OFF$ position of HSW when running in the positive direction, and automatically reverse when it meets the negative limit

If the HSW is invalid at the start and is on the positive side of the home position sensor, run at high speed in the negative direction, decelerate and stop when the HSW OFF \rightarrow ON state is encountered in the negative direction, and then change to low speed and run in the positive direction. If the HSW ON \rightarrow OFF state is encountered in low-speed forward operation, decelerate and stop, and use the stop position as the home position.

If the HSW is invalid at the start and is on the negative side of the home position sensor, run at high speed in the negative direction, slow down and stop when it encounters the ON state of NL, and then run at high speed in the positive direction. When running in the positive direction, slow down and stop after encountering the $ON \rightarrow OFF$ state of HSW, then slow down and stop again after retreating to the valid HSW position at high speed (if the valid HSW interval is narrow, it may enter the position interval of the invalid HSW on the other side), and then change to run in the positive direction at low speed. Decelerate and stop when the low-speed forward operation encounters the $ON \rightarrow OFF$ state of HSW, using the stop position as the home position.

If the HSW is valid at the start, run at high speed in the forward direction. After decelerating and stopping when the HSW $ON \rightarrow OFF$ state is encountered during forward operation, decelerate and stop again after retreating to the HSW valid position at high speed (if the HSW valid interval is narrow, it may enter the HSW invalid position interval on the other side), and then change to low speed to run in the forward direction. Decelerate and stop when the low-speed forward operation encounters the $ON \rightarrow OFF$ state of HSW, using the stop position as the home position.

In this mode, operation in the negative direction is automatically reversed the first time the ON state of NL is encountered; when the ON state of PL is encountered, or when the ON state of NL is encountered again, the flow back to the origin is stopped and an alarm is sounded.

AsChart 9-43 shown, See Table 8. Introduction to 26 Return to Original Mode.

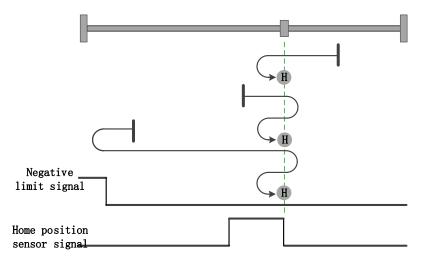
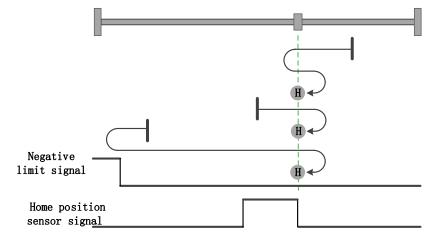


Chart 9-43 Origin mode 27 trajectory and signal state


Mode 28, Looking for the OFF \rightarrow ON position of HSW when running in the negative direction, and automatically reversing when negative limit is encountered

If the HSW is invalid at the start and is located on the positive side of the home position sensor, run in the negative direction at high speed, decelerate and stop when the HSW OFF \rightarrow ON state is encountered in the negative direction, then decelerate and stop again after retracing to the invalid HSW position at high speed, and then change to run in the negative direction at low speed. When the low-speed negative operation encounters the OFF \rightarrow ON state of HSW, decelerate and stop, and use the stop position as the home position.

If the HSW is invalid at the start and is on the negative side of the home position sensor, run at high speed in the negative direction, slow down and stop when it encounters the ON state of NL, and then run at high speed in the positive direction. When it encounters the $ON \rightarrow OFF$ state of HSW while running in the positive direction, decelerate and stop, and then change to low speed to run in the negative direction. Decelerate and stop when the low-speed negative operation encounters the OFF \rightarrow ON state of HSW, and use the stop position as the home position.

If HSW is active at the start, run at high speed in the positive direction. When the HSW $ON \rightarrow OFF$ state is encountered during forward operation, deceleration is stopped, and then low speed is switched to negative operation. Decelerate and stop when the HSW $OFF \rightarrow ON$ state is encountered in the negative direction at low speed, and use the stop position as the home position.

In this mode, operation in the negative direction is automatically reversed the first time the ON state of NL is encountered; when the ON state of PL is encountered, or when the ON state of NL is encountered again, the flow back to the origin is stopped and an alarm is sounded.

AsChart 9-44 shown, See Table 8. Introduction to 26 Return to Original Mode.

Chart 9-44 Origin mode 28 trajectory and signal state

Mode 29, Find the OFF→ON position of HSW when running in the positive direction, and automatically reverse when negative limit is encountered

If the HSW is invalid at the start and is on the positive side of the home position sensor, run at high speed in the negative direction, decelerate and stop when the HSW $ON \rightarrow OFF$ state is encountered in the negative direction, and then change to low speed and run in the positive direction. When the low speed positive operation meets the OFF $\rightarrow ON$ state of HSW, decelerate and stop, and use the stop position as the home position.

If the HSW is invalid at the start and is on the negative side of the home position sensor, run at high speed in the negative direction, slow down and stop when it encounters the ON state of NL, and then run at high speed in the positive direction. When it encounters the OFF \rightarrow ON state of HSW in the forward direction, it decelerates and stops, and then decelerates and stops again when it returns to the position where HSW is invalid at high speed, and then changes to low speed to run in the forward direction. Decelerate and stop when the low-speed forward operation encounters the OFF \rightarrow ON state of HSW, and use the stop position as the home position.

If HSW is active at the start, run at high speed in the negative direction. When the HSW $ON \rightarrow OFF$ state is encountered in the negative direction, deceleration is stopped, and then the speed is changed to low speed to run in the positive direction. Decelerate and stop when the low-speed forward operation encounters the OFF $\rightarrow ON$ state of HSW, and use the stop position as the home position.

145

In this mode, operation in the negative direction is automatically reversed the first time the ON state of NL is encountered; when the ON state of PL is encountered, or when the ON state of NL is encountered again, the flow back to the origin is stopped and an alarm is sounded.

AsChart 9-45 shown, See Table 8. Introduction to 26 Return to Original Mode.

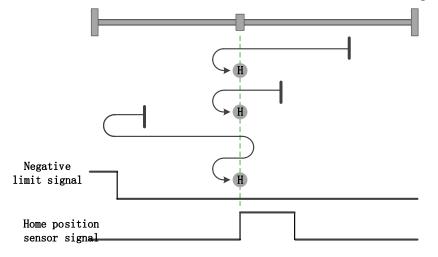


Chart 9-45 Origin mode 29 trajectory and signal state

Mode 30, Find the $ON \rightarrow OFF$ position of HSW when running in the negative direction, and automatically reverse when negative limit is encountered

If the HSW is invalid at the start and is on the positive side of the home position sensor, run at high speed in the negative direction, then slow down and stop after encountering the $ON \rightarrow OFF$ state of the HSW in the negative direction, then slow down and stop again after returning to the HSW valid position at high speed (if the HSW valid range is narrow, it may enter the HSW invalid range on the other side), then change to low speed and run in the negative direction. After that, change to low speed towards negative direction. Decelerate and stop when the low-speed negative operation meets the $ON \rightarrow OFF$ state of HSW, using the stop position as the home position.

If the HSW is invalid at the start and is on the negative side of the home position sensor, run at high speed in the negative direction, slow down and stop when it encounters the ON state of NL, and then run at high speed in the positive direction. When it encounters the OFF \rightarrow ON state of HSW while running in the positive direction, decelerate and stop, and then change to low speed to run in the negative direction. Decelerate and stop when running in the negative direction at low speed and encounter the ON \rightarrow OFF state of HSW, and use the stop position as the home position.

If the HSW is valid at the start, run at high speed in the negative direction. When running in the

negative direction, decelerate and stop after encountering the $ON \rightarrow OFF$ state of HSW, then decelerate and stop again after retreating to the HSW valid position at high speed (if the HSW valid interval is narrow, it may enter the HSW invalid position interval on the other side), and then change to low speed to run in the negative direction. Decelerate and stop when low-speed negative operation encounters the $ON \rightarrow OFF$ state of HSW, using the stop position as the home position.

In this mode, operation in the negative direction is automatically reversed the first time the ON state of NL is encountered; when the ON state of PL is encountered, or when the ON state of NL is encountered again, the flow back to the origin is stopped and an alarm is sounded.

AsChart 9-46 shown, See Table 8. Introduction to 26 Return to Original Mode..

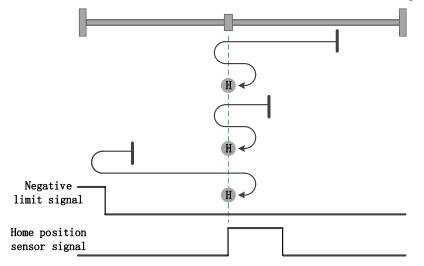
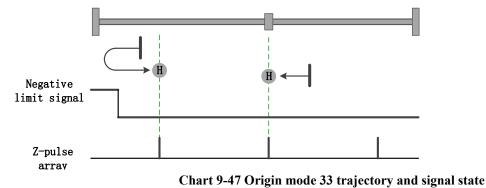


Chart 9-46 Origin mode 30 trajectory and signal state


Mode 31, Reserved, please do not set.

Mode 32, Reserved, please do not set.

Mode 33, Finding the nearest Z pulse during negative operation

Start at low speed towards negative direction to find the nearest Z pulse position as the home position. If running in the negative direction encounters the ON state of NL before finding the Z pulse, slow down and stop, then run in the positive direction to find the nearest Z pulse position as the home position.

In this mode, operation in the negative direction is automatically reversed the first time the ON state of NL is encountered; when the ON state of PL is encountered, or when the ON state of NL is encountered again, the flow back to the origin is stopped and an alarm is sounded.

AsChart 9-47 shown, See Table 8. Introduction to 26 Return to Original Mode.

Mode 34, Finding the nearest Z pulse during forward operation

Start with low speed towards positive direction to find the nearest Z pulse position as the home position. If running in the positive direction encounters the ON state of PL before finding the Z pulse, slow down and stop, then run in the negative direction to find the nearest Z pulse position as the home position.

In this mode, the first time the ON state of PL is encountered towards forward operation is automatically reversed; when the ON state of NL is encountered, or when the ON state of PL is encountered again, the flow back to the home position is stopped and an alarm is sounded. AsChart9-48 shown, See Table 8. Introduction to 26 Return to Original Mode.

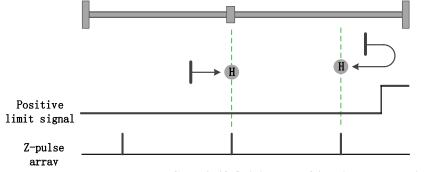
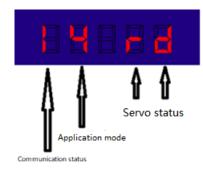



Chart9-48 Origin mode 34 trajectory and signal state

Chapter 10: PROFINET bus description

10.1 YSK2-D Servo Drive Panel Display

The panel display is divided into 3 main sections, each representing a different meaning, as detailed in the following table.

Item	Explanation						
Communication Status	 Initialization state Connection status Operational status 						
Application Mode	 1- AC1 (speed control) 3- AC3 (servo internal position control) 4- AC4 (position control + servo speed control within PLC) 5- AC4+DSC (Dynamic Servo Servo Control) 						
Servo Status	nrd: servo ready rd: servo ready run: enable state A.XX:Warning code E.XX:Fault code						

10.2 PROFINET communication

10.2.1 Support messages

YSK2-D supports AC1, AC4, AC3 and DSC applications. Standard messages and Siemens messages are supported in speed control mode and basic positioner control mode. From the driver's point of view, the process data received is the receive word and the process data to be sent is the send word. The detailed description is shown in the following table.

Message	Maximum number of PZDs (one PZD = one word)				
Standard message 1	2	2			
Standard message 3	5	9			
Standard message 5	9	9			
Siemens Message 102	6	10			

Siemens Message 105	10	10
Standard Message 7	2	2
Standard Message 9	10	5
Siemens Message 111	12	12
Additional message 750	3	1
Remaining messages to be		
developed		

10.2.2 All messages display

Applic																												
ation	1	l					4							3			Additi	ional										
Level																												
report	1	1		2		5	102 105				7	9		1	11	75	0											
Text	1		3		3		5		5		3		3			5	1	.02	1	.05		/	9	-	1	11	15	0
PZD1	STW1	ZSW 1	STW1	ZSW1	STW1	ZSW1	STW1	ZSW1	STW1	ZSW1	STW1	ZSW1	STW1	ZSW 1	STW1	ZSW1	M_AD D1	M_ ACT										
PZD2	NSOL L_A	NIST _A	NSOL	NIST_	NSOL	NIST_	NSOL	NIST_	NSOL	NIST_	SATZ ANW	AKTS ATZ	SATZA NW	AKT SATZ	POS_S TW1	POS_Z SW1	M_LI MIT_PO S											
PZD3			L_B	В	L_B	В	L_B	В	L_B	В			STW2	ZSW 2	POS_S TW2	POS_Z SW2	M_LI MIT_NE G											
PZD4			STW2	ZSW2	STW2	ZSW2	STW2	ZSW2	STW2	ZSW2			MDI_T ARPOS		STW2	ZSW2												
PZD5			G1_S	G1_ZS	G1_S	G1_ZS	MOM	MELD	MOM	MELD				_A	OVER	MELD												
1205			TW	W	TW	W	RED	W	RED	W					RIDE	W												
PZD6				G1_XI ST1	XERR	G1_XI ST1	G1_S TW	G1_ZS W	G1_S TW	G1_ZS W			MDI_V		MDI_T ARPOS	XIST_ A												
PZD7								G1_XI ST1	XERR	G1_XI ST1			ELOCIT Y															
PZD8				G1_XI	KPC	G1_XI							MDI_A CC		MDI_V ELOCIT	XIST_												
PZD9				ST2	in c	ST2		G1_XI		G1_XI			MDI_D EC		Y	В												
PZD1								ST2	KPC	ST2			MDI_M		MDI_A	FAULT												
0													OD		CC	_CODE												
PZD1															MDI_D	WARN												
1															EC	_CODE												
PZD1															USER_	USER_												
2															PZD	PZD												

10.2.3 I/O data signals

Letter Description Receive Word/Send Word	Data Type	Calibration
--	-----------	-------------

	0 (1 11		U1C	
STW1	Control word 1	Receiving Word	U16	
STW2	Control word	Receiving Word	U16	
ZSW1	Status word 1	Send word	U16	
ZSW2	Status word 2	Send word	U16	
NSOLL_A	- setting value A		I16	4000hex≒3000rpm
NSOLL_B	Speed setting value B	Receiving Word	I32	40000000hex≒3000rpm
NIST_A	Actual value of rotation speed A	Send word	I16	4000hex = 3000rpm
NIST_B	Actual value of rotation speed B	Send word	I32	40000000hex≒3000rpm
MOMRED	Torque reduction value	Receiving Word	U16	4000hex = maximum torque
M_ADD1	Torque added value	Send word	I16	4000hex = maximum torque C000hex = Minimum torque
M_LIMIT_ POS	Forward torque limiting	Send word	I16	4000hex = maximum torque
M_LIMIT_ NEG	Negative torque limiting	Send word	I16	C000hex = Minimum torque
MELDW	Message word	Send word	U16	
G1_STW	Encoder 1 control word	Receiving Word	U16	
G1_ZSW	Encoder 1 status word	Send word	U16	
G1_XIST1	Encoder 1 actual position 1	Send word	U32	
G1_XIST2	Encoder 1 actual position 2	Send word	U32	
MELDW	Message word	Send word	U16	
MDI_TAR POS	MDI Location	Receiving Word	I32	1hex≒1 LU
MDI_VEL OCITY	MDI Speed	Receiving Word	I32	1hex≒1000 LU/min
MDI_ACC	MDI acceleration multiplier	Receiving Word	I16	4000hex≒100%
MDI_DEC	MDI deceleration multiplier	Receiving Word	I16	4000hex = $100%$
XIST_A	Position actual value A	Send word	I32	1hex≒1 LU
OVERRID E	Position speed multiplier	Receiving Word	I16	4000hex≒100%
FAULT_C ODE	Fault Code	Send word	U16	
WARN_C ODE	Warning Codes	Send word	U16	
user	User-defined reception word 0- No function 1- Additional torque	Receiving Word	I16	4000hex≒100%
user	User-defined send word 0- No function 1- Actual torque 2- Actual current	Send word	I16	4000hex≒100%

	3- DI Status		

10.3 Parameters and faults

10.3.1 Specialized parameters

The PN bus has two special groups of parameters, 14 communication parameter groups and 15-EPOS parameter groups, as detailed in the following table.

14 gi	oups	- communicatio	n parameter	group				
Func Co		Name	Setting range	Minimum Unit	Factory settings	Effective method	Setting method	Detailed description
F14	0	MAC1	0 ~ 65535	1	2048	Effective immediatel y	Shutdown settings	MAC address first 1, 2 byte
F14	1	MAC2	0 ~ 65535	1	1538	Effective immediatel y	Shutdown settings	MAC address first 3 or 4 byte
F14	2	MAC3	0 ~ 65535	1	272	Effective immediatel y	Shutdown settings	MAC address first 5 or 6 byte
F14	3	MAC4	0 ~ 65535	1	0	Effective immediatel y	Shutdown settings	Not used
F14	4	Equipment name1	0 ~ 65535	1	30774	Effective immediatel y	Shutdown settings	Currently, the device name only supports 8 characters, the servo parameter address needs to be set according to ASCII code, and only lowercase letters, numbers 0-9 and special characters are supported. 1 or 2 byte before the device name
F14	5	Device name2	0 ~ 65535	1	28782	Effective immediatel y	Shutdown settings	3 or 4 byte before the device name
F14	6	Device name3	0 ~ 65535	1	12336	Effective immediatel y	Shutdown settings	5 or 6 byte before the device name
F14	7	Device Name4	0 ~ 65535	1	12331	Effective immediatel y	Shutdown settings	7 or 8 byte before the device name
F14	8	Equipment IPA	0 ~ 65535	1	49320	Effective immediatel y	Shutdown settings	The first 8 bits of the device IP address
F14	9	Equipment IPB	0 ~ 65535	1	88	Effective immediatel y	Shutdown settings	The last 8 bits of the device IP address
F14	10	Equipment Network Mask A	0 ~ 65535	1	65535	Effective immediatel y	Shutdown settings	The first 8 bits of the device network mask
F14	11	Device Network Mask B	0 ~ 65535	1	65280	Effective immediatel y	Shutdown settings	The last 8 bits of the device network mask
F14	12	Network Manager A	0 ~ 65535	1	0	Effective immediatel y	Shutdown settings	The first 8 bits of the device network mask
F14	13	Network Manager B	0 ~ 65535	1	0	Effective immediatel y	Shutdown settings	The last 8 bits of the device network mask
F14	14	Data Writing Switch	0 ~ 65535	1	0	Effective immediatel y	Shutdown settings	Write and read switches for device MAC, IP, and name.

14 groups - communication parameter group

F14	15	922 messages Monitoring	0 ~ 65535	1	0	N/A	Display Parameters	Display the current message number
F14	16	Additional message Monitoring	0 ~ 65535	1	0	N/A	Display Parameters	Display the current additional message number
F14	17	925 Heartbeat Alarm Threshold	0 ~ 65535	1	5	Effective immediatel y	Operation settings	DC Sync Heartbeat Error Threshold
F14	18	944 Fault message counter	0 ~ 65535	1	0	N/A	Display Parameters	Reserved, unrealized
F14	19	947 fault number	0 ~ 65535	1	0	N/A	Display Parameters	Reserved, unrealized
F14	20	Fault serial number	0 ~ 65535	1	0	N/A	Display Parameters	Reserved, unrealized
F14	21	952 Fault status counter	0 ~ 65535	1	0	N/A	Display Parameters	Reserved, unrealized
								The first part of the encoder
F14	22	979_0 Sensor headers (32 bits)	0 ~ 65535	1	0	N/A	Display Parameters	 [0-3] Parameter structure version low (Default value: 2) [4-7] Parameter Structure Version High (Default value: 1) [8-11] Number of sensors Default value (Default value: 1) [12-15] The length of the array corresponding to each sensor (default value: 5)
F14	24	979_1 Sensor type (32 bits)	0 ~ 65535	1	0	N/A	Display Parameters	Encoder type [0] - 0: Rotary encoder [1] 1: Linear encoder [1] - 0: G1_XIST1 relative position 1: G1_XIST1 absolute position [29]- 0:979 The parameter value Gx is static and does not change when switching from the "parking" state to the "normal" state 1: The parameter value of 979 will change when switching from the parked state to the normal state [30]- 0: If the current 979 parameter is invalid (979[1] bit31 = 0), it can take effect in the future (= 1). The change from invalid to valid is only possible. In case the measurement system is working in the "parking" state 1: 979[1] bit31 does not change [31] - 0: 979 Parameter value Gx invalid 1: 979 Parameter value Gx Valid
F14	26	979_2 Sensor resolution (32 bits)	0 ~ 65535	1	0	N/A	Display Parameters	Rotary encoder: Number of pulses per revolution
F14	28	979_3 Sensor G1_XIST1 Factor (32 bits)	0 ~ 65535	1	0	Power up again	Shutdown settings	Number of bits of quadrant information and subdivision in Gx_XIST1
F14	30		0 ~ 65535	1	0	Power up again	Shutdown settings	

		979_4 sensor G1_XIST2 factor (32 bits)						Number of bits of quadrant information and subdivision in Gx_XIST2
F14	32	979_5 sensor multi-turn lap (32	0 ~ 65535	1	0	N/A	Display	0 : Incremental encoder (absolute value readout from G2_XIST2 is not supported)
Г14	52	bits)	0~05555	1	0	N/A	Parameters	1 : Single-turn absolute value
								XXX: Multi-turn absolute value
F14	34	Synchronization cycle	0 ~ 65535	1	0	N/A	Display Parameters	The current DC period is displayed in us
F14	35	FPGA Synchronization Detection Threshold	0 ~ 65535	1	0	Effective immediatel y	Shutdown settings	Reserved, unrealized
		Speed ramp				Effective	Shutdown	0 = Enable local acceleration and deceleration
F14	36	Turn on sign	0~1	1	1	immediatel y	settings	1 = No local acceleration and deceleration on
F14	37	Immediately not immediately Update logo	0 ~ 1	1	0	Effective immediatel y	Shutdown settings	Configuration switch 1
F14	38	RFG deceleration time	0 ~ 2147483647	1	1ms	Effective immediatel y	Shutdown settings	Time spent in acceleration and deceleration from 0-1000RPM
F14	40	Disengage To control servo local acceleration time (32 bits)	0 ~ 2147483647	1	1ms	Effective immediatel y	Shutdown settings	Time spent in acceleration and deceleration from 0-1000RPM
F14	42	Disengage To control servo local deceleration Time (32 bits)	0 ~ 2147483647	1	1ms	Effective immediatel y	Shutdown settings	Time spent in acceleration and deceleration from 0-1000RPM
F14	44	Deceleration time in speed mode (acceleration time in units of 0- 1000RPM: ms)(32 bits)	0 ~ 200000	1	0	Effective immediatel y	Shutdown settings	Speed mode stop deceleration time
F14	46	bit10 Hysteresis judgment value (RPM)	0 ~ 65535	1	1rpm	Effective immediatel y	Shutdown settings	Speed error is within the deviation range, then set ZSW1 bit8
F14	48	Speed error Testing time	0 ~ 65535	1	1ms	Effective immediatel y	Shutdown settings	Feedback speed and command speed over error range set ZSW1 bit8 time setting
F14	49	ARM and 200P Drop detection function Can control the switch	0 ~ 1	1	0	Effective immediatel y	Shutdown settings	ARM chip and 200P connection status detection switch.
F14	50	Is the synchronization period is the current loop multiplier Detection switch	0 ~ 1	1	0	Effective immediatel y	Shutdown settings	Whether DC cycle is current loop multiplier detection switch

15 groups-EPOS parameter group

Function Code	Name	Setting range	Minimum Unit	Factory settings	Effectiv e Mode	Settin g metho d	Detailed description
------------------	------	---------------	-----------------	------------------	-----------------------	---------------------------	----------------------

								1
F15	00	EPOS maximum speed (32-bit)	1 to 80000000	1000LU/min	30,000	Immedi ately Effectiv e	own	Maximum speed of motor speed
F15	02	EPOS maximum acceleration (32 bits)	1 to 200000000	1000lu/S2	5000	Immedi ately Effectiv e	own	Maximum motor acceleration in Epos servo internal positioning mode.
F15	04	EPOS maximum deceleration (32 bits)	1 to 200000000	1000lu/S2	5000	Immedi ately	own	Maximum motor deceleration in Epos servo internal positioning mode.
F15	06	EPOS maximum ramp speed (32 bits)	1 to 200000000	1000lu/S2	5000	Immedi ately	Shutd own	Epos operation mode when encountering a quick stop, deceleration stop, or paused stop ramp.
F15	08	EPOS Position Deviation Excess Threshold (32 bits)	0~2147483647	1	40000	Immedi ately Effectiv e	Shutd own	Enos position deviation threshold
F15	10	EPOS position reaches threshold (32 bits)	0~2147483647	1 (command unit)	10	Immedi ately Effectiv e	Shutd own	Epos position reaches threshold value
F15	12	EPOS location arrival window (32-bit)	0 ~ 100000ms	1	0	Immedi ately Effectiv e	own	Epos position reach threshold window
F15	14	EPOS JOG Speed 1 (32-bit)	-40000000 ~ 40000000	1000LU/MIN	-300	Immedi ately Effectiv e	Operat ion	Enos speed IOG1 speed setting
F15	16	EPOS JOG Speed 2 (32-bit)	-4000000 40000000	1000LU/MIN	300	Immedi ately Effectiv e	Operat ion	Energy and IOG2 sheed setting
F15	18	EPOS JOG Acceleration 1 (32-bit)	1~2000000	1000LU/S2	100	Immedi ately Effectiv e	Operat ion	Acceleration of EposlOG
F15	20	EPOS JOG Deceleration 2 (32-bit)	1~2000000	1000LU/S2	100	Immedi ately Effectiv e	Operat ion	Deceleration of EposJOG
F15	22	EPOS origin regression type	0~35	1	1	Immedi ately Effectiv e	Operat ion	There are 35 ways to find the origin, and there are 35 to choose from
F15	23	EPOS origin regression high- speed speed (32- bit)	0~4000000	1000LU/MIN	5000	Immedi ately Effectiv e	Operat ion	Origin return to high-speed speed
F15	25	EPOS origin regression low speed (32-bit)	0~4000000	1000LU/MIN	300	Immedi ately Effectiv e	Operat ion	Origin return to low speed
F15	27	EPOS home recurrence acceleration/decel eration time (32 bits)	1 to 2000000	1000LU/S2	100	Immedi ately Effectiv e	Operat ion	Acceleration and deceleration of origin regression
F15	29	EPOS origin recurrence relative offset (32 bits)	0~2147483647	1	0	Immedi ately Effectiv e	ion	The relative offset of the coordinates after the origin is restored.

F15	31	EPOS origin recurrence absolute offset (32 bits)	0~2147483647	1	0	Immedi ately Effectiv e	ion	The absolute offset of the mechanical position after the home position is restored.
F15	33	EPOS reference point coordinates (32-bit)	0~2147483647	1	0	Immedi ately Effectiv e	ion	Used when setting the home position directly. The set value is the current coordinate position of the servo.
F15	35	EPOS home recurrence timeout (32 bits)	0 ~ 2147483647ms	1	65535	Immedi ately Effectiv e	ion	The timeout setting of return to home position.
F15	37	EPOS soft limit effective method	0 to 3	1	0	ately	ion Settin	Soft limit effective method 0 = No soft limit on 1 = Immediate opening of the soft limit
F15	38	EPOS soft limit positive limit value (32 bits)	-2147483648 ~ 2147483647	1	214748364 7	Immedi ately Effectiv e	ion	Servo forward maximum position
F15	40	EPOS soft limit negative limit value (32 bits)	-2147483648 ~ 2147483647	1	- 214748364 8	Immedi ately Effectiv e	ion	Servo reverse maximum position limit
F15	42	EPOS electronic gear ratio molecule (32 bits)	1~1073741824	1	131072	Immedi ately Effectiv e	ion	Epos electronic gear ratio molecule
F15	44	EPOS Electronic Gear Score (32- bit)	1~1073741824	1	10000	Immedi ately Effectiv e	ion	Epos Electronic Gear Score
F15	46	111 Message 12 Send down the word	0-65535	1	0	ately	ion Settin	Selects the content of the last word of the 111 message 0 = no content 1=Additional torque 2=Additional speed
F15	47	111 Message 12 Upload on Go to the content	0-65535	1	0	ately	Operat ion Settin	Selects the content of the last word of the 111 message 0 = no content 1 = Actual torque 2 = Actual current value 3 = DI state
F15	48	Modal axis pulse upper limit (64- bit low 32)	1 to 20000000	1000lu/S2	5000	Immedi ately Effectiv e	Shutd own	Upper limit of pulse for modal axis mechanical load
F15	50	Modal axis pulse upper limit (64- bit high 32)	1 to 200000000	1000lu/S2	5000	Immedi ately	Shutd own	Upper limit of pulse for modal axis mechanical load
F15	52	Modulo mode switch	0~1	1	0	Immedi	Shutd	Switch on using modal axis

10.3.2 Reading and modification of device information

10.3.2.1 Reading and writing MAC addresses

Related parameters

F14	00	MAC1	0 ~ 65535	1	2048	Effective immediatel y	Shutdown settings	MAC address first 1, 2 byte
F14	01	MAC2	0 ~ 65535	1	1538	Effective immediatel y	Shutdown settings	MAC address first 3 or 4 byte

F14	02	MAC3	0 ~ 65535	1	272	Effective immediatel y	Shutdown settings	MAC address first 5 or 6 byte
F14	03	MAC4	0 ~ 65535	1	0	Effective immediatel y	Shutdown settings	Not used
F14	14	Data Writing Switch	0 ~ 65535	1	0	Effective immediatel y	Shutdown settings	Write and read switches for device MAC, IP, and name.

Write 0x5000 (corresponding to decimal 20480) to F14.14, and read the device MAC address to F14.00, F14.01, F14.02 when F14.14 changes to 0.

When the network status is 1, change F14.00, F14.01, F14.02 to the desired MAC address, write 0xA55A (corresponding to decimal 42330) to F14.14, and when F14.14 changes to 0, the MAC address information is written to the device

10.3.2.2 Read and write device names

Related parameters

F14	04	Equipment name1	0 ~ 65535	1	30774	Effective immediatel y	Shutdown settings	Currently, the device name only supports 8 characters, the servo parameter address needs to be set according to ASCII code, and only lowercase letters, numbers 0-9 and special characters are supported. 1 or 2 byte before the device name
F14	05	Device name2	0 ~ 65535	1	28782	Effective immediatel y	Shutdown settings	3 or 4 byte before the device name
F14	06	Device name3	0 ~ 65535	1	12336	Effective immediatel y	Shutdown settings	5 or 6 byte before the device name
F14	07	Device Name4	0 ~ 65535	1	12331	Effective immediatel y	Shutdown settings	7 or 8 byte before the device name
F14	14	Data Writing Switch	0 ~ 65535	1	0	Effective immediatel y	Shutdown settings	Write and read switches for device MAC, IP, and name.

Write 0x3000 (corresponding to decimal 12288) to F14.14, and read the device name

information to F14.04, F14.05, F14.06, F14.07 when F14.14 changes to 0.

When the network status is 1, change F14.04, F14.05, F14.06, F14.07 to the desired device name, write 0x4000 (corresponding to decimal 16384) to F14.14, and when F14.14 changes to 0, the device name information is written to the device

10.3.2.3 Reading and writing of device IP information

Related parameters

F14	8	Equipment IPA	0 ~ 65535	1	49320	Effective immediatel y	Shutdown settings	The first 8 bits of the device IP address
-----	---	---------------	-----------	---	-------	------------------------------	-------------------	---

F14	9	Equipment IPB	0 ~ 65535	1	88	Effective immediatel y	Shutdown settings	The last 8 bits of the device IP address
F14	10	Equipment Network Mask A	0 ~ 65535	1	65535	Effective immediatel y	Shutdown settings	The first 8 bits of the device network mask
F14	11	Device Network Mask B	0 ~ 65535	1	65280	Effective immediatel y	Shutdown settings	The last 8 bits of the device network mask
F14	12	Network Manager A	0 ~ 65535	1	0	Effective immediatel y	Shutdown settings	The first 8 bits of the device network mask
F14	13	Network Manager B	0 ~ 65535	1	0	Effective immediatel y	Shutdown settings	The last 8 bits of the device network mask
F14	14	Data Writing Switch	0 ~ 65535	1	0	Effective immediatel y	Shutdown settings	Write and read switches for device MAC, IP, and name.

Write 0x1000 (corresponding to decimal 4096) to F14.14, and read the device IP information to F14.08, F14.09, F14.10, F14.11, F14.12, F14.13 when F14.14 changes to 0.

When the network status is 1, modify F14.08, F14.09, F14.10, F14.11, F14.12, F14.13 to the

desired device IP information, write 0x2000 (corresponding to decimal 8192) to F14.14, and when

F14.14 changes to 0, the device IP information is written to the device

10.3.3 Dedicated faults

Most of the PN bus drive faults are common to the pulse type, see "Chapter 9 Faults and

Warnings" for details, a few faults are PN bus specific faults, see the following table.

Fault Code	Alarm description					
E.55	Offline JOG and inertia identification are not allowed when the bus is started or the PLC is not					
E.33	OFF, please disconnect the network cable or set the PLC to STOP before operation.					
E.56	When the bus is running, it is not allowed to write the device name and IP and MAC, please					
E.30	unplug the network cable or set the PLC to STOP before proceeding.					
E.57	arm and 200P parallel port checksum error					
E.60	Profinet IRT configuration cycles and servo cycles are not divisible					
E.65	DSC function is used incorrectly, DSC function is used in non-IRT mode					

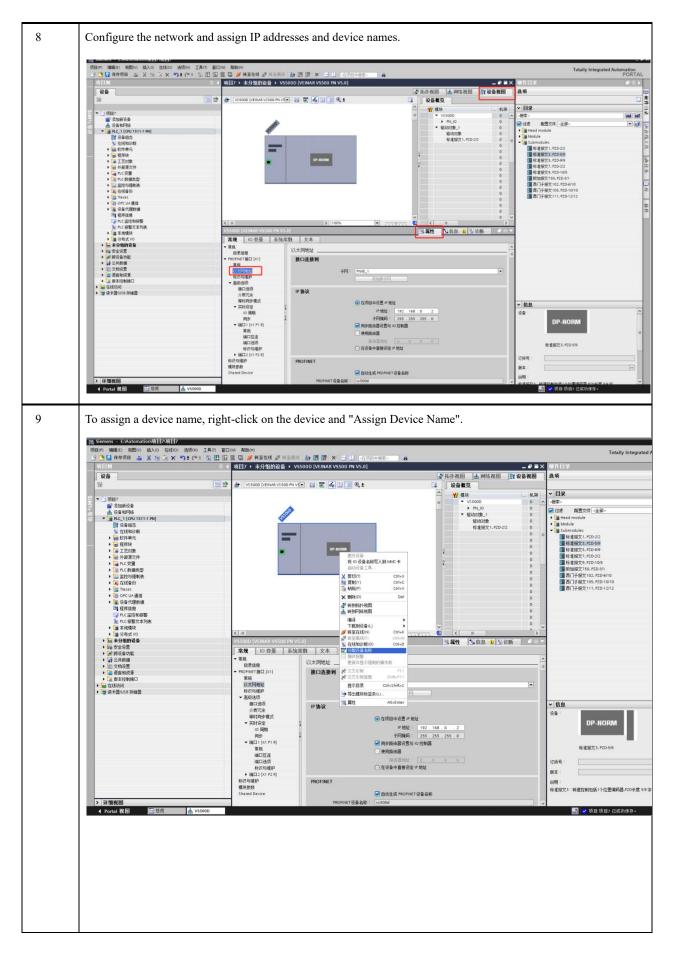
10.4 YSK2-D with Siemens S7-1500 for AC4/DSC synchronous cycle speed mode

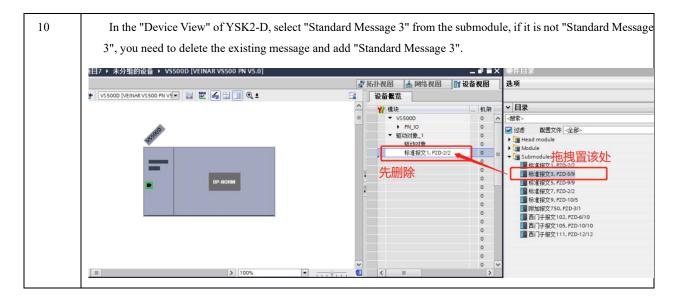
operation

(1) Add the S7-1500 CPU to the project.

To add an S7-1500 CPU to the project, proceed as follows.

Serial number	Description
1.	<image/>
2.	<complex-block>Here, find the PLC type used directly and add it to the project: find the corresponding PLC model on the face of the type. Image: Contract of the type used directly and add it to the project: find the corresponding PLC model on the face of the type. Image: Contract of the type used directly and add it to the project: find the corresponding PLC model on the face of the type. Image: Contract of the type used directly and add it to the project: find the corresponding PLC model on the face of the type. Image: Contract of the type used directly and add it to the project: find the corresponding PLC model on the face of the type. Image: Contract of the type used directly and add it to the project: find the type used to the type. Image: Contract of the type used directly and add it to the project: find the type used to the type. Image: Contract of the type used directly and add it to the project: find the type used to the type. Image: Contract of the type used directly and the type used to the typ</complex-block>


(2) Add the GSD file of YSK2-D to the project, please contact our technical staff to get the GSD file.

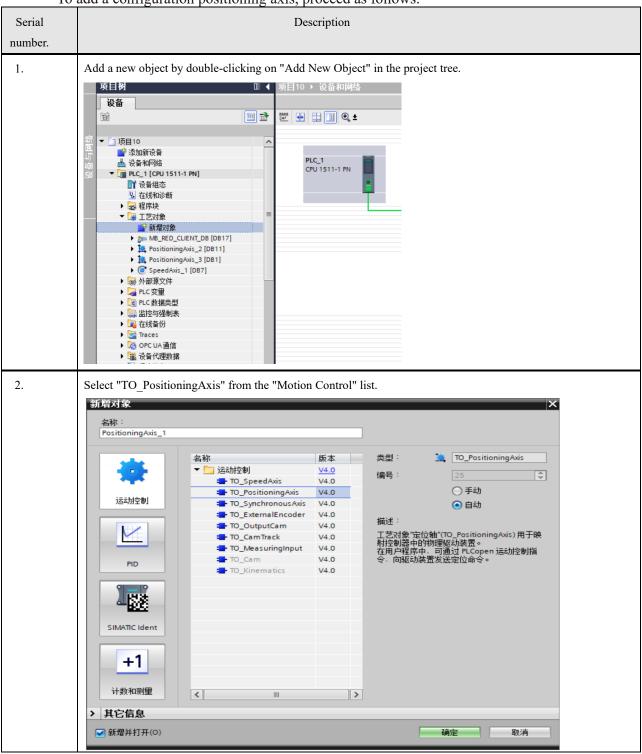

To add YSK2-D to the project, proceed as follows.

Serial number	Description								
1.	Options->Manage General Station Description File (GSD) (D)								
		(S) 包(P) 通用站描述文 Automation I 参考文本(W)	窗口(W) 帮助(H) 线 【CI (GSD) (D)						
2.	Browse the GSD file. Check the corresponding GSD file and click on the "Install" button to install it: 管理通用站描述文件 已安装的 GSD 项目中的 GSD 源路径: E:\Automation\VEINAR								
	导入路径的内容	· 	4.0-4-	法百					
		语言 英语, 中文	状态 已经安装	信息 VS500D 驱					
		XHITX	LIXR	v35000 3 <u>P</u>					
	< III			>					

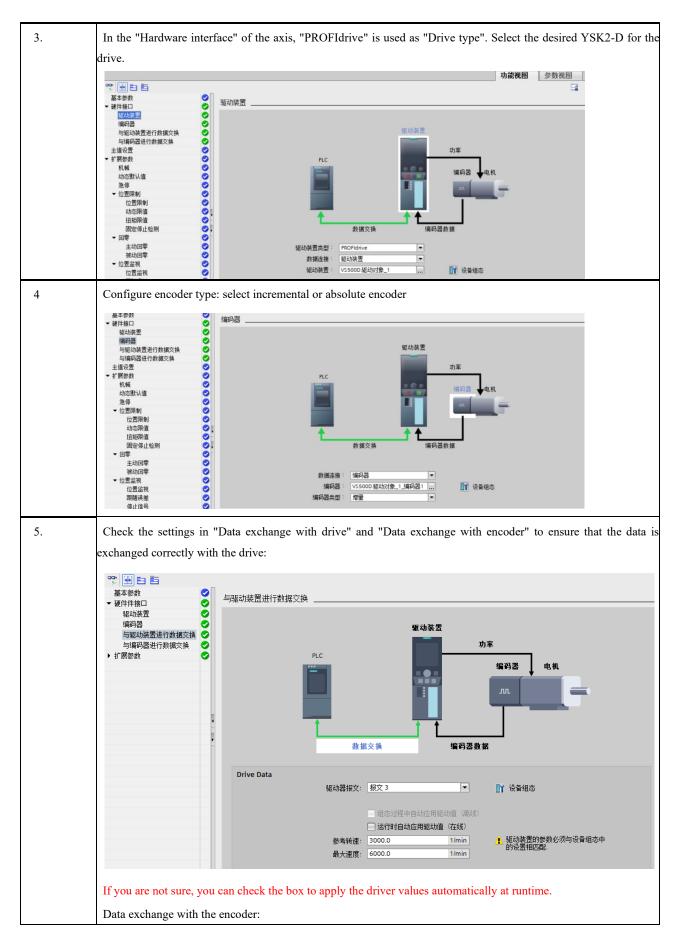
3. Select the Devices and Networks view in the directory tree: 设备 🔲 🛃 ĒŇ 💦 网络 ▼ 🛅 项目10 部軍 ~ 💣 添加新设备 PLC_1 🔓 设备和网络 CPU 151 ▼ 🛅 PLC_1 [CPU 1511-1 PN] 📑 设备组态 ♥ 在线和诊断 🕨 🔜 程序块 🕨 🎑 工艺对象 🕨 🔙 外部源文件 🕨 🛃 PLC 变量 ▶ 📑 PLC 数据类型 🕨 🤜 监控与强制表 4. In the right-hand panel, select the Hardware Catalog option, and then click Other Field Devices. 硬件目录 选项 ▼ 目录 <搜索> iril I itit 配置文件 <全部> 🖌 过滤 • **B** Controllers 🕨 📄 HMI PC systems Drives & starters Network components Detecting & Monitoring Distributed I/O Power supply and distribution Field devices Other field devices Additional Ethernet devices PROFINETIO PROFIBUS DP 5. Other Field Devices -> PROFINET IO -> Driver -> VEINAR -> YSK2-D

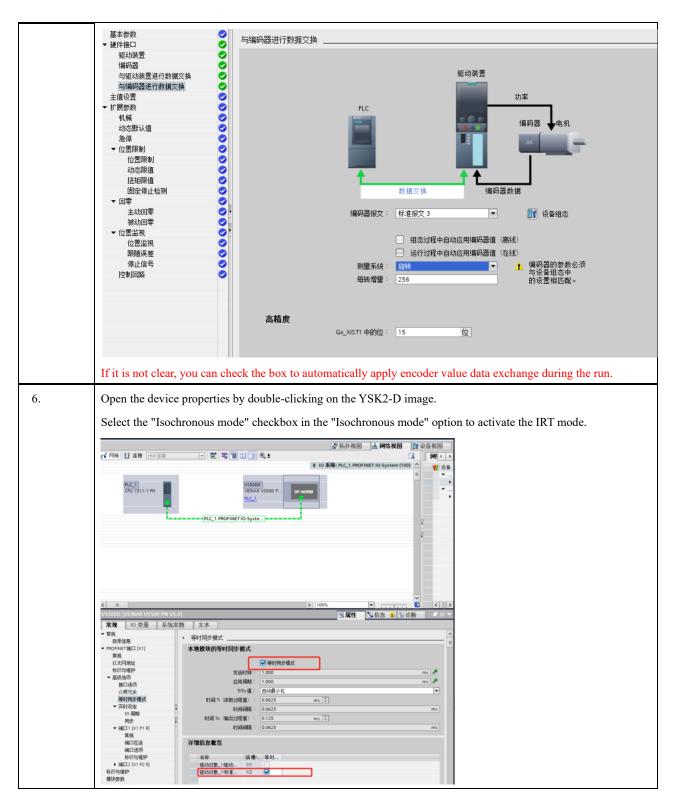
硬件目录 י 🗉 🕨 选项 则件 ▼ 目录 × tini linit <搜索> 🖌 过滤 配置文件 <全部> - 📑 ۷, Controllers 在线工具 🕨 📄 HMI PC systems Drives & starters Network components ٠ Detecting & Monitoring 任务 Distributed I/O Power supply and distribution Field devices Other field devices R Additional Ethernet devices PROFINET IO 🛨 🛅 Drives 놟 SIEMENS AG * VEINAR VS500 VEINAR VS500 PN V5.0 Encoders 🕨 📊 Gateway 6. Double-click on the YSK2-D or drag it to the network view: 项目7 ▶ 设备和网络 _ **=** = × 🛃 拓扑视图 🛛 🚠 网络视图 🛿 设备视图 💦 网络 🔡 连接 🛛 HMI 连接 🔽 🖭 🖫 📰 🛄 🍳 ± ₩ + ^ 🐈 设备 ≡ ▶ PLC_1 CPU 1511-1 PN VS500D VEINAR VS500 P. • <u>未分配</u> 7 In the network view, click on "Unassigned" and select "PLC 1.PROFINET Interface 1". 项目7) 设备和网络 _ **=** = × 🛃 拓扑视图 👗 网络视图 🛿 设备视图 💦 网络 🎦 连接 HMI 连接 🔽 🗒 🖫 🛄 🔍 ± 2 网4 → ^ 🍟 设备 = •) PLC_1 CPU 1511-1 PN VS500D • VEINAR VS500 P 未分 选择 10 控制器 PLC_1.PROFINET接口_1

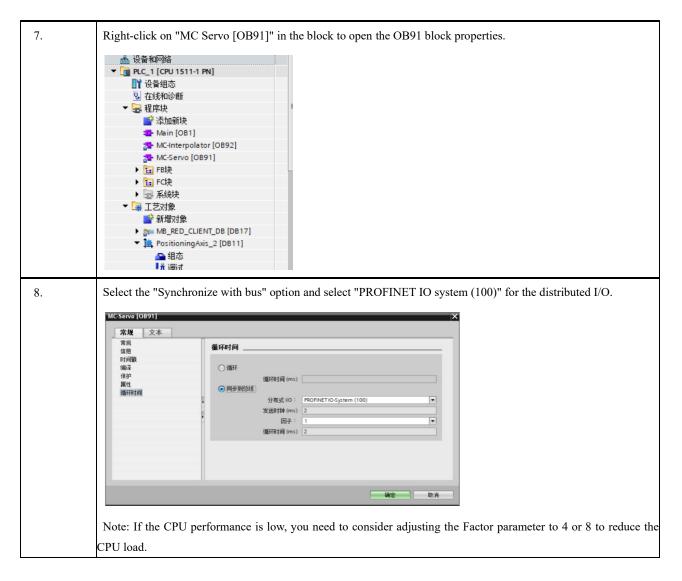
(3) Configure the topology configuration between YSK2-D and S7-1500 CPU.


Note: When using IRT isochronous mode, it is absolutely necessary and important to configure the topology of the device connections!

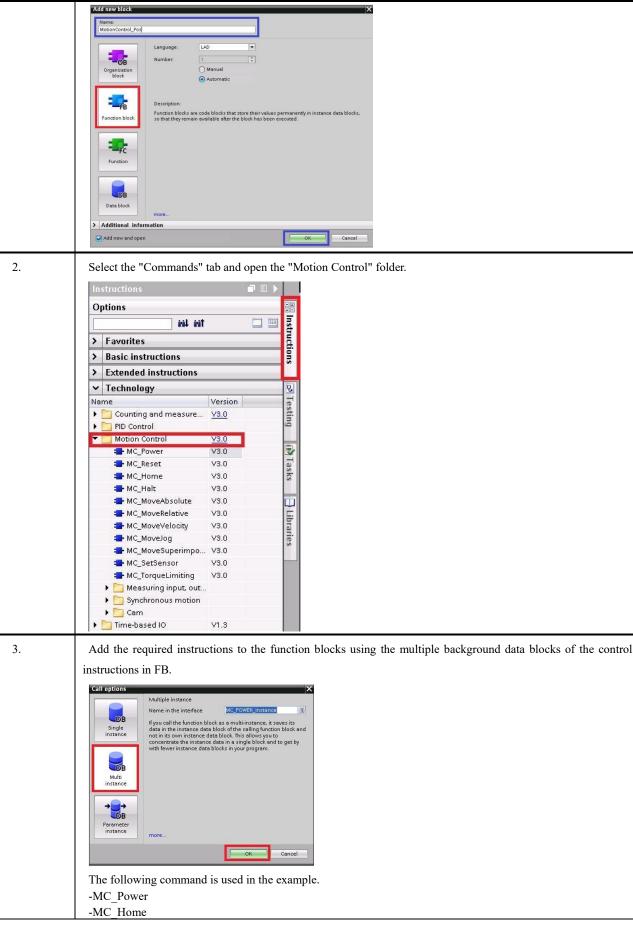
To configure the topology between the YSK2-D and the S7-1500 CPU, proceed as follows.

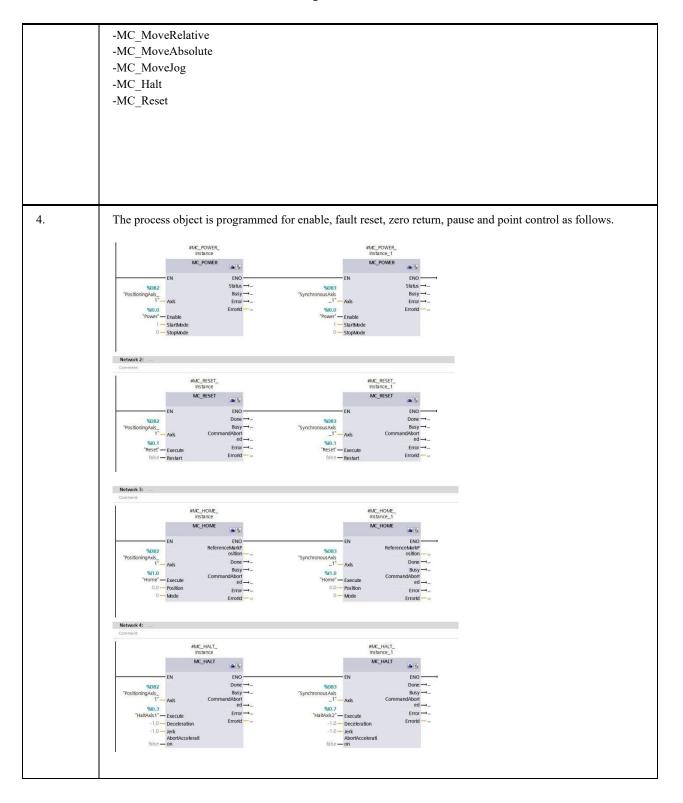

Serial number	Description	
1.	Switch to the "Topology View" tab.	
2.	Configure the topology based on the actual connections via the drag-and-drop func implement IRT). 项目7 · 设备和网络 学 新扑视图 学 新扑视图 VEINAR V5500 P UP-NORM PLC1 VEINAR V5500 P UP-NORM PLC1 Note: The topology configured in the project must be the same as the actual connection	▲ 副 函 条 视图 M 外 観 11 设备 视图 A 外 観 11 设备 视图 A 外 観 1 () 设备 //(() () () () () () () () () () () () ()

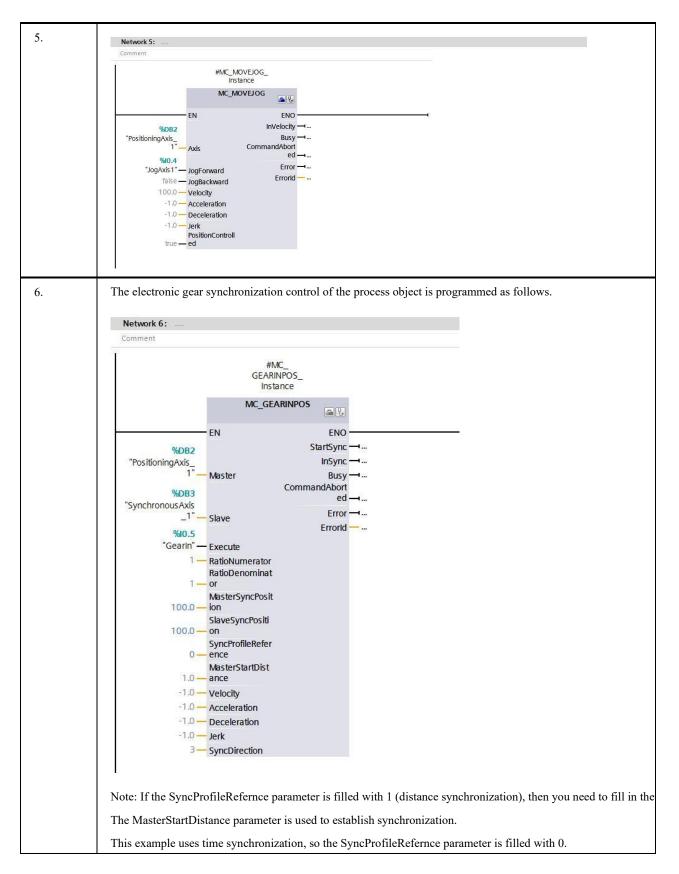

(4) Creation and programming of process objects

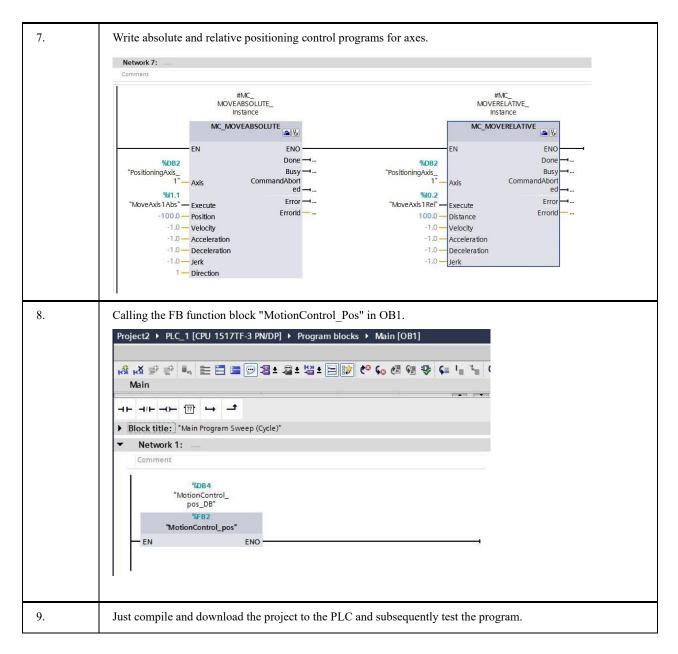

For this application example, two process objects are configured: a "positioning axis" that moves as the master axis and a "synchronization axis" that runs as the slave axis.

To add a configuration positioning axis, proceed as follows.



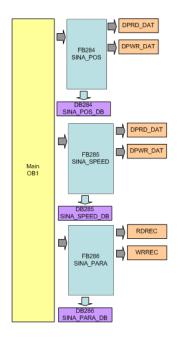



(5) Write the motion control program.


The steps for writing the motion control program are as follows.

Serial number	Description
1.	Add a FB (function block) to the program and name it "MotionControl_Pos".
	Add new device Devices & networks PLC_1 [CPU 1517TF-3 PN/DP] Device configuration Online & diagnostics Program blocks Add new block Main [OB1]

10.5 YSK2-D with Siemens S7-1500 for AC3 basic positioning mode operation


10.5.1 Overview

The S7-1500 can connect to the YSK2-D servo drive via PROFINET communication, and set the control mode of the YSK2-D drive to "Basic Position Control (EPOS)". The PLC can realize EPOS basic positioning control of YSK2-D through 111 messages and function block FB284 in the drive library provided by TIAPortal.

The control system is connected as follows.

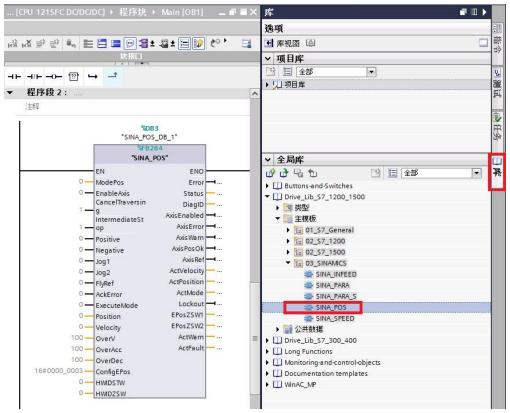
The principle of the PLC call through the drive function block in the library is shown in the following diagram.

Programming in the SIMATIC S7-1500 consists of the following components.

(1) Cyclic data exchange - SINA_POS(FB284), SINA_SPEED(FB285)

This function block enables periodic communication between the PLC and SINAMICS drives for commands and status, such as motor operation commands, position and speed setpoints, etc., or to receive the status and actual speed values of the drives.

(2) Parameter acquisition for acyclic communication – SINA_PARA(FB286):


This function block implements PLC access to the parameters of SINAMICS drives, such as reading or writing data block parameters. After installing StartDrive software, the driver library file will be installed automatically in Protherm software, software download link.

https://support.industry.siemens.com/cs/us/en/view/68034568

10.5.2 SINA_POS(FB284) Function Block Pin Description

The function block FB284 for the S7-1500 and S7-1200 control YSK2-D to implement EPOS basic positioning control is located in the command library as shown in the figure below: the function block can be called in the following OBs.

(1) Recurring tasks: OB1

⁽²⁾ Cyclic interrupt OB: e.g. OB32

This function block cyclically activates the basic positioning process functions in the SINAMICS drive. It should be noted that Siemens standard telegram 111 must be used on the drive side.

The FB284 function block pins are explained in the following table:

Pins	Data Type	Default Value	Description
------	--------------	------------------	-------------

ModePos	INT	0	Operation mode: 1 = Relative positioning 2 = Absolute positioning 3 = Continuous position operation 4 = Zero return operation 5 = Set back to zero position 6 = Run position block 0 to 16 7 = Tap jog 8 = Tap increment (not supported)	
EnableAxis	BOO L	0	Servo run command. 0 = OFF1 1 = ON	
CancelTran sing	BOO L	1	0 = Running task rejected for activation 1 = No rejection	
Intermediat eStop	BOO L	1	Intermediate stops. 0 = Intermediate stopping of running tasks 1 = No stop	
Positive	BOO L	0	Positive Direction	
Negative	BOO L	0	Negative Direction	
Jog1	BOO L	0	Forward pointing (Signal source 1)	
Jog2	BOO L	0	Forward pointing (source 2)	
FlyRef	BOO L	0	0 = Do not select zero return on run $1 = Select zero return on run$	
AckError	BOO L	0	Fault Reset	
ExecuteMo de	BOO L	0	Activate positioning jobs or receive setpoints	
Position	DINT	0[LU]	For operation mode 1 or 2, set position value [LU] For run mode 6, set the block number for the run	
Velocity	DINT	0 [1000LU /min]	Speed setting [1000LU/min] for operation modes 1, 2 and 3	
OverV	INT	100[%]	Speed multiplier in all operating modes 0-199%	
OverAcc	INT	100[%]	Acceleration multiplier in direct setpoint/MDI mode 0-100%	
OverDec	INT	100[%]	Deceleration multiplier in direct setting value/MDI mode 0-100%	
ConfigEPO S	DWO RD	0	This pin can be used to transmit 111 messages in STW1, STW2, EPosSTW1, EPosSTW2 The correspondence of the transmitted bits is shown in the following table: ConfigEPos bit 111 message bits ConfigEPos.% STW1.%X1 X0 ConfigEPos.% STW1.%X2 X1	

ConfigEPos.%	POS_STW2.%
X2	X14
ConfigEPos.%	POS_STW2.%
X3	X15
ConfigEPos.%	POS_STW2.%
X4	X11
ConfigEPos.%	POS_STW2.%
X5	X10
ConfigEPos.%	POS_STW2.%
X6	X2
ConfigEPos.%	STW1.%X13
X7	
ConfigEPos.%	POS_STW1.%
X8	X12
ConfigEPos.%	STW2.%X0
X9	
ConfigEPos.%	STW2.%X1
X10	
ConfigEPos.%	STW2.%X2
X11	
ConfigEPos.%	STW2.%X3
X12	
ConfigEPos.%	STW2.%X4
X13	
ConfigEPos.%	STW2.%X7
X14	
ConfigEPos.%	STW1.%X14
X15	
ConfigEPos.%	STW1.%X15
X16	
ConfigEPos.%	POS_STW1.%
X17	X6
ConfigEPos.%	POS_STW1.%
X18	X7
ConfigEPos.%	POS_STW1.%
X19	X11
ConfigEPos.%	POS_STW1.%
X20	X13
ConfigEPos.%	POS_STW2.%
X21	X3
ConfigEPos.%	POS_STW2.%
X22	X4
ConfigEPos.%	POS_STW2.%
X3	X6
ConfigEPos.%	POS_STW2.%
X24	X7
ConfigEPos.	POS_STW2.%
%X25	X12
ConfigEPos.%	POS_STW2.%
X26	X13
ConfigEPos.%	STW2.%X5
X27	51 W 2.70 A 3
	STWO 04 V6
ConfigEPos.%	STW2.%X6
X28 ConfigEDec %	STWO 0/ VO
ConfigEPos.%	STW2.%X8
X29	
ConfigEPos.%	STW2.%X9

			X30
			Hardware limit enable, zero return switch signals, etc. can be transmitted to the driver in this way. Note: If a variable is assigned to this pin in the program, the driver must ensure that ConfigEPos.%X0 and ConfigEPos.%X1 are both 1 in order to Run.
HWIDST W	HW_ IO	0	Symbol name or HW ID (SetPoint) of SIMATIC S7-1200, S7-1500 setpoint slot
HWIDZS W	HW_ IO	0	Symbol name or SIMATIC S7-1200, S7-1500 actual value slot of HW ID (Actual Value)
Output			
Error	BOO L	0	1 = Error appears
Status	Word	0	Display Status
DiagID	WOR D	0	Extended communication failures
ErrorId	INT	0	Operational mode error/block error.0 = No error1 = Communication activated2 = Incorrect operation mode selected3 = Incorrectly set parameters4 = Invalid run block number5 = Drive fault activation6 = Switch disabled activated7 = Return to zero during run cannot start
AxisEnable d	BOO L	0	Drive is enabled
AxisError	BOO L	0	Drive failure
AxisWarn	BOO L	0	Drive Alarm
AxisPosOk	BOO L	0	The target position of the axis is reached
AxisRef	BOO L	0	Zero return position setting
ActVelocit y	DINT	0	Current speed [40000000h in hexadecimal corresponds to the rated speed of the motor set by F00.15]
ActPosition	DINT	0[LU]	Current position [LU]
ActMode	INT	0	Current active operating mode
EPosZSW1	WOR D	0	Status of EPOS ZSW1
EPosZSW2	WOR D	0	Status of EPOS ZSW2
ActWarn	WOR D	0	Current alarm code
ActFault	WOR D	0	Current fault code

10.5.3 Functional implementation of the SINA_POS function block

10.5.3.1 Overview

The basic positioning (EPOS) of the YSK2-D is a very important function for the position

control of the drive. It can be used for absolute and relative positioning of rotary axes.

In addition, the parameters related to the control mode need to be set in the YSK2-D's backend software to ensure smooth operation of the EPOS function. The closed-loop position controller contains the following components.

• Preparation of actual position values (including evaluation of measurement inputs and finding reference points)

- Position controller (including limits, adaptations, pre-control calculations)
- Monitoring (stationary, positioning and dynamic tracking error monitoring)

The basic position controller can also perform the following functions: mechanical systems.

- Modal axis / linear axis
- Location tracking/restrictions
- Speed Limit
- Software limit switches
- Hardware limit switches
- Position/Static Monitoring
- Dynamic tracking error monitoring

10.5.3.2 SINA_POS (FB284) operating mode

10.5.3.2.1 Operating conditions

(1) Axis is internally set to 1 via the input pin EnableAxis=1 for OFF2 and OFF3. If the axis is ready and driven without fault (AxisErr="0"), the axis is enabled after EnableAxis is set to 1 and the output pin AxisEnabled signal becomes 1.

2 The ModePos input pin is used for operation mode selection. It can be switched in different operation modes, e.g. Continuous operation mode (ModePos=3) can be switched to absolute positioning mode (ModePos=2) during operation.

③ The input signal CancelTransing, IntermediateStop is valid for all operation modes except pointing and must be set to "1 when running EPOS with the following setting instructions.

④ If you set CancelTransing, the axis will stop at the maximum deceleration and discard the work data, and you can switch the operation mode after the axis stops. If you set IntermediateStop=0, the ramp stop will be performed with the current applied deceleration value and no work data will be discarded. The operation mode can be switched after the axis has come to a standstill. The function to return to zero during operation can be selected by FlyRef input in any operation mode.

(5) To activate the hardware limit switch, if a hardware limit switch is used, you need to set the input pin ConfigEPos.%X3 (POS_STW2.15) of the FB284 function block to 1 to activate the hardware

limit function of the YSK2-D. Positive and negative hardware limit switches can be connected to DI1 to DI9 of the YSK2-D driver (default DI6 and DI7)

6 To activate the software limit switch, if the software limit switch is used, you need to set the input pin ConfigEPos.%X2 (POS_STW2.14) of the FB284 function block to 1 to activate the software limit function of the YSK2-D (F15.37). Set F15.37 (soft limit effective mode), F15.38 (negative soft limit position) and F15.40 (positive soft limit position) in the YSK2-D.

10.5.3.2.2 Absolute positioning operation mode

The "absolute positioning" mode of operation can be realized by the drive function "MDI

absolute positioning", which uses the drive's internal position controller to achieve absolute position

control.

Request:

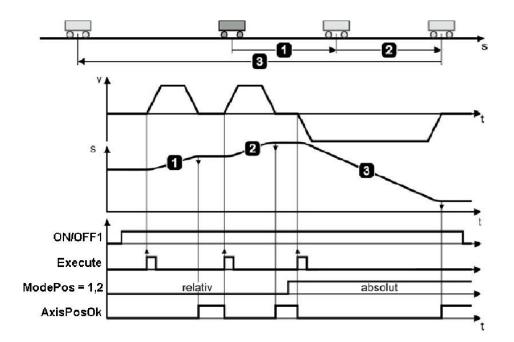
- Operation mode selection ModePos=2
- Axis enableEnableAxis=1
- Axis must be zeroed or encoder calibrated

• If the switching mode is greater than 3, the axis must be stationary and can be switched within the MDI operating mode at any moment (ModePos=1,2,3)

Steps.

• Specify the target position and dynamic response parameters by entering the parameters Position, Velocity

• Specify the speed, plus or minus speed multiplier by entering parameters OverV, OverAcc, OverDec


• The run conditions "CancelTransing" and "IntermediateStop" must be set to "1", and Jog1 and Jog2 must be set to "0". and Negative must be "0".

• The positioning motion is triggered by the rising edge of ExecuteMode, which activates the current state of the command or is monitored by EPosZSW1 and EPosZSW2, and is set to 1 by AxisPosOk when the target position is reached, and the output parameter Error is set to 1 when an error occurs during positioning.

Note: The currently running command can be replaced by a new command via ExecuteMode rising

edge, but only for running modes ModePos1,2,3.

The absolute positioning mode control timing is shown in the following diagram.

Servo-side parameter setting

F15.00	Maximum speed
F15.02	Maximum acceleration
F15.04	Maximum deceleration
F15.08	Excessive deviation
	threshold
F14.10	Position reaches
	threshold

Open modal axis F15.50 = 1 Set F15.48, according to the upper limit of the mechanical load

single turn

There are 3 combinations of modulus in absolute position mode.

- [0] Only if ModePos=2 will operate between 0 and the mechanical maximum.
- [1] When ModePos=2 + Positive=1, Negative =0 will run to absolute positive according to the given position value.

[2] When ModePos=2 + Negative =1, Positive=0 will run in the absolute positive direction according to the given position value.

10.5.3.2.3 Relative positioning operation mode

The "Relative Positioning" mode of operation can be achieved by the drive function "MDI

Relative Positioning", which uses the drive's internal position controller to achieve relative position control.

Request:

Operation mode selection ModePos=1

- The driver's run command EnableAxis=1
- Axis must not be zeroed or encoder not calibrated

• If the switching mode is greater than 3, the axis must be stationary and can be switched at any time within the MDI operating mode (ModePos=1,2,3)

Steps.


• Specify the target position and dynamic response parameters by inputting the parameters Position, Velocity

• The parameters OverV, OverAcc, OverDec are used to specify the speed, the multiplier of acceleration and deceleration, and the running conditions "CancelTransing" and "IntermediateStop" must be set to "1". The running conditions "CancelTransing" and "IntermediateStop" must be set to "1", Jog1 and Jog2 must be set to "0", and the parameters Positive and Negative must be "0".

• The positioning motion is triggered by the rising edge of ExecuteMode, which activates the current state of the command or is monitored by EPosZSW1 and EPosZSW2, and is set to 1 by AxisPosOk when the target position is reached, and the output parameter Error is set to 1 when an error occurs during positioning.

Note: The currently running command can be replaced by a new command via ExecuteMode rising edge, but only

for running modes ModePos 1,2,3.

The relative positioning mode control timings are shown below.

Servo-side parameter setting:

F15.00	Maximum speed
F15.02	Maximum
	acceleration
F15.04	Maximum
	deceleration
F15.08	Excessive deviation
	threshold
F14.10	Position reaches

threshold

Turn on modal axis F15.50 = 1 Set F15.48, according to the upper limit of the mechanical load single turn, there is 1 combination of modal number in relative position mode only when ModePos = 1 axis will run according to the given position.

10.5.3.2.4 Continuous operation mode (Setupmode)

The "continuous run" mode allows the axis position controller to run at a constant speed in

either the forward or reverse direction, which is the drive's "MDI setup" mode of operation. (Modulo

axes are not supported)

Request:

- Operation mode selection ModePos=3
- The driver's run command AxisEnable=1
- Axes do not have to be zeroed or encoders are not calibrated
- If the switching mode is greater than 3, the axis must be stationary and can be switched at any time within the MDI operating mode (ModePos=1,2,3)

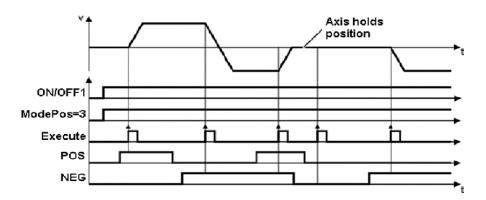
Steps.

• Specify the speed of operation by entering the parameter Velocity

• Specify the speed, plus or minus speed multiplier by entering parameters OverV, OverAcc, OverDec

• The run conditions "CancelTransing" and "IntermediateStop" must be set to "1", Jog1 and Jog2 must be set to "0"

• The direction of operation is determined by Positive and Negative (one of the directions must be 1)


• The positioning motion is triggered by the rising edge of ExecuteMode, the current state of the activation command or monitored by EPosZSW1 and EPosZSW2, and the output parameter Error is set to 1 when the target position is reached by AxisPosOk and when an error occurs during positioning.

Note: The currently running command can be replaced by a new command via ExecuteMode rising edge, but only

for running modes ModePos 1,2,3.

The continuous operation mode control timing is shown below.

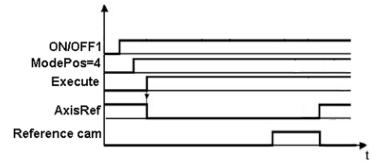
Yasaka YSK2 Servo Design and Maintenance User's Manual

10.5.3.2.5 Back to zero

This function allows the axis to be zeroed along the forward or reverse direction according to

the preset zeroing speed and mode, activating the active zeroing of the drive.

Request:


- Operation mode selection ModePos=4
- The driver's run command EnableAxis=1
- It is necessary to open the servo hard limit and connect the upper limit signal and home signal.
 - Axis stationary

Steps.

- Specify the speed, plus or minus speed multiplier by entering parameters OverV, OverAcc, OverDec
- The run conditions "CancelTransing" and "IntermediateStop" must be set to "1", Jog1 and Jog2 must be set to "0" $\,$
 - The direction of operation is determined by Positive and Negative

• The rising edge of ExecuteMode triggers the return to zero movement, activates the current state of the command or monitors it via EPosZSW1 and EPosZSW2, and terminates the movement via the CancelTransing signal, and sets AxisRef to 1 when the return to zero is completed.

Example control timing diagram

Servo-side parameter setting:

F1 5	22	Origin regression type	0 to 34
F1 5	23	Origin return high-speed speed (32-bit)	0 ~ 4000000
F1 5	25	Home return low speed (32 bit)	0 ~ 4000000
F1 5	27	Home return acceleration and deceleration time (32 bits)	1 to 200000000
F1 5	29	Home Return Relative Offset (32 bits)	-1073741824~1073741824
F1 5	31	Absolute offset of origin regression (32 bits)	-1073741824~1073741824

Yasaka YSK2 Servo Design and Maintenance User's Manual

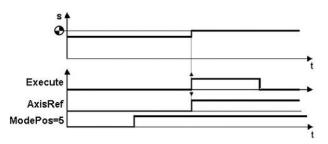
Note: Choose one of relative offset and absolute offset to use, relative offset has value, relative offset is executed. Absolute offset has a value, the absolute offset is executed.

10.5.3.2.6 Setting the zero position

This mode of operation allows the zero position setting of the axis when the axis is in any

position.

Request:


- Operation mode selection ModePos=5
- Axis is in closed loop control and is stationary

Steps.

• Set the zero position of the axis by the rising edge of Execute when the axis is stationary

Note: The zero position can be set using parameter F15.33.

Set the zero return control timing as shown below.

10.5.3.2.7 Run the program block

This block mode of operation is implemented through the driver function "Traversing blocks",

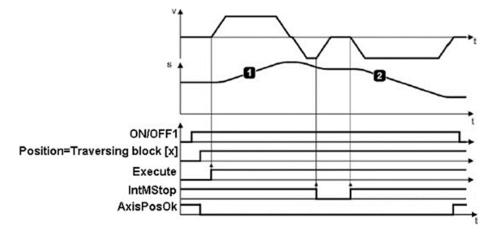
which allows the automatic creation of blocks.

Request:

- Operation mode selection ModePos=6
- The driver's run command AxisEnable=1
- Axis stationary
- Axis must be zeroed or absolute encoder calibrated

Steps.

• The operating mode, target position and dynamic response are set in the run block parameters of the YSK2-D driver, and the OverV parameter for speed is scaled in multiples for the speed settings in the program block.


- The run conditions "CancelTransing" and "IntermediateStop" must be set to "1", Jog1 and Jog2 must be set to "0" $\,$

• The block number is set in the input parameter "Position" and the value should be $0{\sim}16$

• The direction of the motion is determined by the working mode and the settings in the block, independent of the Positive and Negative parameters, which must be set to "0".

• After selecting the block number, the operation is triggered by the rising edge of Execute Mode, which activates the current status of the command or is monitored by EPosZSW1 and EPosZSW2. Busy is set to 1 during the processing of the command by the function block, and Done is set to 1 when the target position is reached, and the output parameter Error is set to 1 when an error occurs during the operation.

An example of running block control timing is shown below.

Note: During runtime, the current run command can be replaced by a new command via "ExecuteMode", but only in the same runtime mode. Modulo axis is not supported

Servo parameter setting, refer to servo 10 groups of parameters

10.5.3.2.8 Jog

The jog mode is implemented by the "Jog" function of the driver.

Request:

- Operation mode selection ModePos=7
- The driver's run command AxisEnable=1
- Axis stationary
- No zero return or absolute encoder calibration required for axes

Steps.

• The speed is set in the YSK2-D, and the OverV parameter for speed is scaled by a factor of one for the speed setting.

• Run conditions "CancelTransing" and "IntermediateStop" are set to "1" by default, independent of the point operation mode.

Note: Jog1 and Jog2 are used to control the pointing operation of EPOS, the direction of motion is determined by

the pointing speed set in YSK2-D driver, the default setting is Jog1 = negative pointing speed, Jog2 = positive pointing speed independent of Positive and Negative parameters, the default setting is "0 ".

• The current status of the activation command or monitored by EPosZSW1 or EPosZSW2, Busy is 1 during the processing of the command, "AxisPosOK" is set to 1 at the end of the point movement (Jog1orJog2 = 0) when the axis is stationary, and the output

parameter "Error" is set to 1 when an error occurs during operation. Error is set to 1.

The point control timing is shown below.

Servo-side parameter setting

Yasaka YSK2 Servo Design and Maintenance User's Manual

F14.16	JOG2 speed
F14.18	JOG maximum acceleration
F15.20	JOG maximum deceleration

10.5.3.2.9 Jog increment (not supported at this time)

The point-action incremental operation mode is implemented by the "Jog" function of the

driver.

Request:

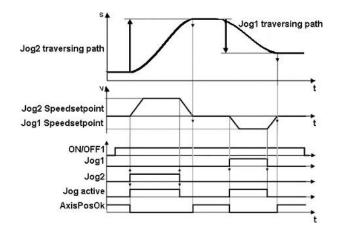
- Operation mode selection ModePos=8.
- The run command of the driver AxisEnable=1.
- Axis at rest.
- Axes do not need to be zeroed or absolute encoder calibrated.

Steps.

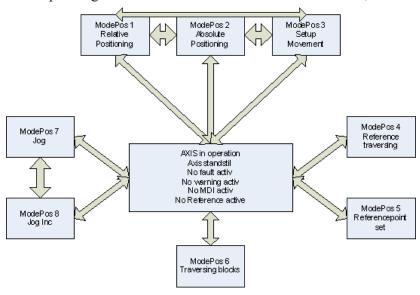
• The point speed is set in the YSK2-D and the OverV parameter of the speed is scaled in multiples for the point speed setting.

• The run conditions "CancelTransing" and "IntermediateStop" are set to "1" by default in relation to the point-action run mode.

Note: Jog1 and Jog2 are used to control the pointing operation of EPOS, the direction of movement is determined


by the pointing speed set in YSK2-D driver, the default setting is Jog1 traversingdistance, Jog2

traversingdistance=1000LU, and the Positive and Negative parameters It has nothing to do with Positive and


Negative parameters, the default setting is "0".

• The current status of the activation command is monitored by EPosZSW1 and EPosZSW2. Busy is set to 1 during the command processing of the function block, and "AxisPosOK" is set to 1 at the end of the jogging (Jog1or Jog2 = 0) and when the axis is stationary.

The incremental point control timing is as follows.

10.5.3.2.10 ModePos value-based operation mode switching instructions

Possible operating mode transitions based on ModePos values, as follows.

10.5.3.3 Introduction of origin return mode

Thirty-one types of return methods are defined internally (for EPOS mode), as table0-26 described. In the following description, HSW indicates the home position sensor signal, NL indicates the negative limit signal, and PL indicates the positive limit signal; ON indicates the valid state of the signal, and OFF indicates the invalid state of the signal; OFF \rightarrow ON indicates the jumping edge of the signal from the invalid state to the valid state, and ON \rightarrow OFF indicates the jumping edge of the signal from the valid state to the invalid state. The following describes the trajectory and signal state change of various home modes respectively, and the meaning of icons in various back home mode diagrams are as followsChart 9-18 The meaning of the icons in the diagrams of various return home

modes is shown.

Table 0-1 Back to the original model introduction

return to original form	instructions
0	not
1	Start in the negative direction and switch to low speed when the OFF \rightarrow ON state of NL is encountered in the negative direction, then backtrack to find the nearest Z pulse position as the home position
	Start in the forward direction, switch to low speed when the PL's OFF \rightarrow ON state is encountered during
2	forward operation, and then back off to find the nearest Z pulse position as the home position.
	If the HSW is invalid at start, run in the positive direction, otherwise run in the negative direction. When
	running in negative direction, switch to low speed when HSW When the HSW is $ON \rightarrow OFF$, switch to
3	low speed, and then continue to run in the negative direction to find the nearest Z pulse position as the home position.
	If the HSW is invalid at start, run in the positive direction, otherwise run in the negative direction. If the
	HSW is OFF \rightarrow ON when running in the positive direction, switch to low speed. When the HSW is
4	$OFF \rightarrow ON$, switch to low speed, and then continue to run in the positive direction to find the nearest Z
	pulse position as the home position.
	If the HSW is invalid at the start, run in the negative direction, otherwise run in the positive direction.
_	If the HSW is $ON \rightarrow OFF$ when running in the positive direction, switch to low speed. When the HSW
5	is ON—OFF, switch to low speed, and then continue to run in the forward direction to find the nearest
	Z pulse position as the home position.
	If the HSW is invalid at start, run in the negative direction, otherwise run in the positive direction. When
6	running in negative direction, switch to low speed when HSW When the HSW is ON \rightarrow OFF, switch to
6	low speed, then continue to run in the negative direction to find the nearest Z pulse position as the home
	position.
	If the HSW is invalid at start, run in the positive direction, otherwise run in the negative direction. When
7	running in negative direction, switch to low speed when HSW When the HSW is ON→OFF, switch to
7	low speed, and then continue to run in the negative direction to find the nearest Z pulse position as the
	home position.
	If the HSW is invalid at start, run in the positive direction, otherwise run in the negative direction. If the
8	HSW is OFF→ON when running in the positive direction, switch to low speed. When the HSW is
0	OFF \rightarrow ON, switch to low speed, and then continue to run in the positive direction to find the nearest Z
	pulse position as the home position.
	The start is in the positive direction, regardless of whether the HSW is active or inactive. When running
9	in the negative direction, switch to low speed when the HSW When the HSW is OFF \rightarrow ON, switch to
9	low speed, then continue to run in the negative direction to find the nearest Z pulse position as the home
	position.
	The start is in the forward direction, regardless of whether the HSW is active or inactive. When running
10	in the forward direction, switch to low speed when the HSW is ON \rightarrow OFF state, switch to low-speed
	operation, and then continue forward operation to find the nearest Z pulse position as the home position.
11	If the HSW is invalid at the start, run in the negative direction, otherwise run in the positive direction.
11	If the HSW is ON→OFF when running in the positive direction, switch to low speed. When the HSW

 Lot - OTFOTF-State of the line operation is used as the home position of the OFFON state position of the ISW is invalid at start, run in the negative direction, otherwise run in the positive direction, switch to low speed when the ISW If the HSW is OFFON, switch to low speed, and then continue to run in the negative direction to find the nearest Z pulse position as the home position. The start is in the negative direction, regardless of whether the HSW is active or inactive. When running in the positive direction, switch to low speed when the HSW the continue to run in the forward direction and find the nearest Z pulse position as the home position. The start is in the negative direction, regardless of whether the HSW is active or inactive. When running in the negative direction and find the nearest Z pulse position as the home position. The start is in the negative direction, regardless of whether the HSW is ACN ->OFF state, then continue to run in the negative direction and find the nearest Z pulse position as the home position. Te tatin retain retain similar to method 1, but instead of finding the Z pulse, the OFF>ON state position of NL encountered during forward operation is used as the home position. Similar to method 3, but instead of looking for a Z pulse, the OFF>ON state position of PL is sneountered during forward operation is used as the home position Similar to method 3, but instead of looking for a Z pulse, the OFF>ON state position of the HSW sneountered during forward operation is used as the home position Similar to method 4, but instead of looking for a Z pulse, the OFF>ON state position of the HSW sneountered during forward operation is used as the home position Similar to method 5, but instead of finding the Z pulse, the OFF>ON state position of the HSW is encountered during forward operation is used as the home position<!--</th--><th></th><th>is ON→OFF, switch to low speed, and then continue to run in the forward direction to find the nearest</th>		is ON→OFF, switch to low speed, and then continue to run in the forward direction to find the nearest
12 If the HSW is invalid at start, run in the negative direction, otherwise run in the positive direction, switch to low speed when the HSW If the HSW is OFF→ON, switch to low speed, and then continue to run in the negative direction to find the nearest Z pulse position as the home position. 13 The start is in the negative direction, regardless of whether the HSW is active or inactive. When running in the positive direction, regardless of whether the HSW is active or inactive. When running in the negative direction, switch to low speed when the HSW is active or inactive. When running in the negative direction, regardless of whether the HSW is active or inactive. When running in the negative direction, switch to low speed when the HSW is oN →OFF state, then continue to run in the negative direction and find the nearest Z pulse position as the home position. 14 In the negative direction and find the nearest Z pulse, position as the home position. 15 retain 16 retain 17 Similar to method 1, but instead of finding the Z pulse, the OFF→ON state position of NL encountered during negative operation is used as the origin. point 18 Similar to method 3, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during forward operation. home position 20 Similar to method 4, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during forward operation is used as the home position 21 Similar to method 3, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during forward operation is used		
 running in negative direction, switch to low speed when the HSW If the HSW is OFF→ON, switch us low speed, and then continue to run in the negative direction to find the nearest Z pulse position as the home position. The start is in the negative direction, regardless of whether the HSW is active or inactive. When running in the positive direction, switch to low speed when the HSW Then continue to run in the forward direction and find the nearest Z pulse position as the home position. The start is in the negative direction, regardless of whether the HSW is active or inactive. When running in the negative direction and find the nearest Z pulse position as the home position. The start is in the negative direction, regardless of whether the HSW is ON →OFF state, then continue to run in the negative direction and find the nearest Z pulse, position as the home position. retain retain Similar to method 1, but instead of finding the Z pulse, the OFF→ON state position of NL encountered during negative operation is used as the origin. point Similar to method 2, but instead of looking for a Z pulse, the OFF→ON state position of PL is encountered during forward operation is used as the home position Similar to method 3, but instead of looking for a Z pulse, the OFF→ON state position of the HSW encountered during forward operation is used as the home position Similar to method 4, but instead of looking for a Z pulse, the OFF→ON state position of the HSW encountered during forward operation is used as the home position Similar to method 5, but instead of looking for a Z pulse, the OFF→ON state position of the HSW encountered during negative operation is used as the home position Similar to method 6, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin. Similar to method 7		
12 tow speed, and then continue to run in the negative direction to find the nearest Z pulse position as the home position. 13 The start is in the negative direction, regardless of whether the HSW is active or inactive. When running direction and find the nearest Z pulse position as the home position. 14 The start is in the negative direction, regardless of whether the HSW is active or inactive. When running in the negative direction, as which to low speed when the HSW is active or inactive. When running in the negative direction and find the nearest Z pulse position as the home position. 15 retain 16 retain 17 Similar to method 1, but instead of finding the Z pulse, the OFF→ON state position of NL encountered during negative operation is used as the origin point 18 Similar to method 2, but instead of looking for a Z pulse, the OFF→ON state position of PL is encountered during forward operation as the home position. 19 Similar to method 3, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during forward operation. home position 20 sencountered during forward operation. home position 21 Similar to method 4, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during forward operation. home position 21 Similar to method 5, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during forward operation as the home position 22 Sim	12	
home position. 13 The start is in the negative direction, regardless of whether the HSW is active or inactive. When running in the positive direction, switch to low speed when the HSW Then continue to run in the forward direction and find the nearest Z pulse position as the home position. 14 The start is in the negative direction, regardless of whether the HSW is active or inactive. When running in the negative direction and find the nearest Z pulse position as the home position. 15 retain 16 retain 17 Similar to method 1, but instead of finding the Z pulse, the OFF→ON state position of NL encountered during negative operation is used as the origin, point 18 neountered during forward operation as the home position. 19 Similar to method 2, but instead of finding the Z pulse, the OFF→ON state position of PL is encountered during negative operation is used as the home position. 20 Similar to method 3, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered during forward operation. Suce as the home position 20 Similar to method 4, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during forward operation is used as the home position 21 Similar to method 5, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered during negative operation as the home position 22 Similar to method 1, but instead of finding the Z pulse,		
 If he start is in the negative direction, regardless of whether the HSW is active or inactive. When running in the positive direction, switch to low speed when the HSW Then continue to run in the forward direction and find the nearest Z pulse position as the home position. If he start is in the negative direction, regardless of whether the HSW is active or inactive. When running in the negative direction, switch to low speed when the HSW is ON →OFF state, then continue to run in the negative direction and find the nearest Z pulse position as the home position. retain retain similar to method 1, but instead of finding the Z pulse, the OFF→ON state position of NL encountered during negative operation is used as the origin, point Similar to method 2, but instead of looking for a Z pulse, the OFF→ON state position of PL is encountered during negative operation as the home position. Similar to method 3, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during negative operation is used as the home position. Similar to method 4, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during negative operation. home position Similar to method 5, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during negative operation is used as the home position Similar to method 5, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered during negative operation as the home position Similar to method 5, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered during negative operation as the home position Similar to method 5, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction, as the origin Similar to method 7, but instead of finding the Z pulse, the OFF→ON state pos		
 in the positive direction, switch to low speed when the HSW Then continue to run in the forward direction and find the nearest Z pulse position as the home position. The start is in the negative direction, regardless of whether the HSW is active or inactive. When running in the negative direction and find the nearest Z pulse position as the home position. retain retain retain similar to method 1, but instead of finding the Z pulse, the OFF→ON state position of NL encountered during negative operation is used as the origin, point similar to method 3, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is necountered during negative operation is used as the home position. similar to method 3, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during negative operation is used as the home position. similar to method 3, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during negative operation. Is used as the home position similar to method 4, but instead of looking for a Z pulse, the POFF→ON state position of the HSW is encountered during forward operation is used as the home position Similar to method 5, but instead of looking for a Z pulse, the POFF→ON state position of the HSW is encountered during forward operation is used as the home position Similar to method 5, but instead of finding the Z pulse, the OFF→ON state position of the HSW is sencountered during negative operation as the home position Similar to method 7, but instead of finding the Z pulse, the POFF→ON state position of the HSW is encountered during negative operation as the home position Similar to method 4, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin. Similar to method 9, but instead of finding the Z pulse, the OF		
direction and find the nearest Z pulse position as the home position. 14 The start is in the negative direction, regardless of whether the HSW is active or inactive. When running in the negative direction, switch to low speed when the HSW is ON →OFF state, then continue to run in the negative direction and find the nearest Z pulse position as the home position. 15 retain 16 retain 17 Similar to method 1, but instead of finding the Z pulse, the OFF→ON state position of NL encountered during negative operation is used as the origin, point 18 Similar to method 2, but instead of finding the Z pulse, the OFF→ON state position of PL is snountered during forward operation as the home position. 19 Similar to method 3, but instead of finding the Z pulse, the OFF→ON state position of the HSW incountered during negative operation is used as the home position 20 Similar to method 4, but instead of looking for a Z pulse, the OFF→ON state position of the HSW incountered during forward operation, home position 21 Similar to method 5, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered during forward operation is used as the home position 22 Similar to method 7, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered during negative operation as the home position 23 Similar to method 7, but instead of	12	
14 The start is in the negative direction, regardless of whether the HSW is active or inactive. When running 14 in the negative direction, switch to low speed when the HSW is ON →OFF state, then continue to run 15 retain 16 retain 17 Similar to method 1, but instead of finding the Z pulse, the OFF→ON state position of NL encountered 17 Similar to method 2, but instead of looking for a Z pulse, the OFF→ON state position of PL is 18 similar to method 3, but instead of looking for a Z pulse, the OFF→ON state position of PL is 19 Similar to method 3, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is 19 Similar to method 3, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is 20 Similar to method 4, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is 21 Similar to method 5, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is 22 Similar to method 6, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is 22 Similar to method 6, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is 23 Similar to method 6, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is 23 Similar to method 7, but instead of finding the Z pulse, the OFF→ON	13	
 in the negative direction, switch to low speed when the HSW is ON →OFF state, then continue to run in the negative direction and find the nearest Z pulse position as the home position. retain retain retain similar to method 1, but instead of finding the Z pulse, the OFF→ON state position of NL encountered during negative operation is used as the origin. point Similar to method 2, but instead of finding the Z pulse, the OFF→ON state position of PL is encountered during forward operation as the home position. point Similar to method 3, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered during negative operation is used as the home position Similar to method 3, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered during forward operation. home position Similar to method 4, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during forward operation. home position Similar to method 5, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered during forward operation is used as the home position Similar to method 7, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin. as the origin Similar to method 9, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin. as the origin Similar to method 9, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction. as the origin Similar to method 9, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction. as the origin Similar to method 10, but without the Z pulse, the OFF→ON state position of th		
in the negative direction and find the nearest Z pulse position as the home position. 15 retain 16 retain 17 Similar to method 1, but instead of finding the Z pulse, the OFF→ON state position of NL encountered during negative operation is used as the origin, point 18 Similar to method 2, but instead of looking for a Z pulse, the OFF→ON state position of PL is encountered during forward operation as the home position. point 19 Similar to method 3, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during negative operation is used as the home position 20 Similar to method 4, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during forward operation. home position 21 Similar to method 5, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during negative operation is used as the home position 22 Similar to method 7, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered during negative operation as the home position 23 Similar to method 7, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin. 24 Similar to method 9, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin 25 Similar to method 10, but without the Z pulse, the OFF→ON sta	14	
15 retain 16 retain 17 Similar to method 1, but instead of finding the Z pulse, the OFF→ON state position of NL encountered during negative operation is used as the origin, point 18 Similar to method 2, but instead of looking for a Z pulse, the OFF→ON state position of PL is encountered during negative operation as the home position point 19 Similar to method 3, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW encountered during forward operation is used as the home position 20 Similar to method 4, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during forward operation. home position 21 Similar to method 5, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during forward operation is used as the home position 22 Similar to method 5, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered during negative operation as the home position 23 Similar to method 7, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin. 24 Similar to method 9, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction. as the origin 25 Similar to method 10, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin	14	
16 retain 17 Similar to method 1, but instead of finding the Z pulse, the OFF→ON state position of NL encountered during negative operation is used as the origin, point 18 Similar to method 2, but instead of looking for a Z pulse, the OFF→ON state position of PL is encountered during forward operation as the home position, point 19 Similar to method 3, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW is encountered during forward operation. home position 20 Similar to method 4, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during forward operation. home position 21 Similar to method 5, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during negative operation is used as the home position 22 Similar to method 6, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered during negative operation as the home position 23 Similar to method 7, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin. 24 Similar to method 7, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin. 25 Similar to method 7, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction. as the origin 26 Similar to method 10, but without th	1.5	
17 Similar to method 1, but instead of finding the Z pulse, the OFF→ON state position of NL encountered during negative operation is used as the origin_point 18 Similar to method 2, but instead of looking for a Z pulse, the OFF→ON state position of PL is encountered during forward operation as the home position point 19 Similar to method 3, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during negative operation is used as the home position 20 Similar to method 4, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during forward operation. home position 21 Similar to method 5, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during forward operation is used as the home position 22 Similar to method 6, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered during negative operation as the home position 23 Similar to method 7, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin. 24 Similar to method 9, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin. 25 Similar to method 10, but without the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 26 Similar to method 10, but without the Z pulse, the position of the ON→OFF state of the HSW		
17 during negative operation is used as the origin. point 18 Similar to method 2, but instead of looking for a Z pulse, the OFF→ON state position of PL is encountered during forward operation as the home position. point 19 Similar to method 3, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW encountered during negative operation is used as the home position 20 Similar to method 4, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during forward operation. home position 21 Similar to method 5, but instead of looking for a Z pulse, the position of the ON→OFF state of the HSW is encountered during forward operation is used as the home position 22 Similar to method 7, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered during negative operation as the home position 23 Similar to method 7, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the negative direction as the origin. as the origin 24 Similar to method 9, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin. 25 Similar to method 9, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin 26 Similar to method 10, but without the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin	16	
18 Similar to method 2, but instead of looking for a Z pulse, the OFF→ON state position of PL is encountered during forward operation as the home position. point 19 Similar to method 3, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW encountered during negative operation is used as the home position 20 Similar to method 5, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during forward operation. home position 21 Similar to method 5, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during forward operation is used as the home position 22 Similar to method 7, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered during negative operation as the home position 23 Similar to method 7, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin. as the origin 24 Similar to method 9, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction. as the origin 25 Similar to method 9, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin 26 Similar to method 10, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin 27 Similar to method 10, but without the Z pulse, the position of the ON→OFF	17	
18 encountered during forward operation as the home position. point 19 Similar to method 3, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW encountered during negative operation is used as the home position 20 Similar to method 4, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during forward operation. home position 21 Similar to method 5, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during forward operation is used as the home position 22 Similar to method 6, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered during negative operation as the home position 23 Similar to method 7, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin, as the origin 24 Similar to method 9, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction, as the origin 25 Similar to method 9, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction, as the origin 26 Similar to method 10, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction, as the origin 27 Similar to method 10, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction, as the origin		
encountered during forward operation as the home position. point 19 Similar to method 3, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW encountered during negative operation is used as the home position 20 Similar to method 4, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during forward operation. home position 21 Similar to method 5, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during forward operation is used as the home position 22 Similar to method 6, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered during negative operation as the home position 23 Similar to method 7, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the negative direction as the origin. as the origin 24 Similar to method 9, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin. as the origin 25 Similar to method 9, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction. as the origin 26 Similar to method 10, but without the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 27 Similar to method 11, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW is encountered when running	18	
19 encountered during negative operation is used as the home position 20 Similar to method 4, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during forward operation. home position 21 Similar to method 5, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during forward operation is used as the home position 22 Similar to method 6, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered during negative operation as the home position 23 Similar to method 7, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the negative direction as the origin. as the origin 24 Similar to method 9, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered as the origin when running in the forward direction. as the origin 25 Similar to method 9, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin 26 Similar to method 10, but without the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 27 Similar to method 11, but without the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 28 Similar to method 13, but without the Z pulse, the OFF→ON state position of the HSW is encountereed when running in the forward direction. as the o		encountered during forward operation as the home position. point
encountered during negative operation is used as the home position 20 Similar to method 4, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered during forward operation. home position 21 Similar to method 5, but instead of looking for a Z pulse, the position of the ON→OFF state of the HSW is encountered during forward operation is used as the home position 22 Similar to method 6, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered during negative operation as the home position 23 Similar to method 7, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the negative direction as the origin. as the origin 24 Similar to method 9, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered as the origin when running in the forward direction. as the origin 25 Similar to method 9, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin 26 Similar to method 10, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin 27 Similar to method 11, but without the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 27 Similar to method 11, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin <th>19</th> <td>Similar to method 3, but instead of finding the Z pulse, the position of the $ON \rightarrow OFF$ state of the HSW</td>	19	Similar to method 3, but instead of finding the Z pulse, the position of the $ON \rightarrow OFF$ state of the HSW
20 encountered during forward operation. home position 21 Similar to method 5, but instead of looking for a Z pulse, the position of the ON→OFF state of the HSW is encountered during forward operation is used as the home position 22 Similar to method 6, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered during negative operation as the home position 23 Similar to method 7, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the negative direction as the origin. as the origin 24 Similar to mode 8, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered as the origin when running in the forward direction. as the origin 25 Similar to method 9, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin. 26 Similar to method 10, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin 27 Similar to method 11, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 28 Similar to method 11, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin 29 Similar to method 13, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin		encountered during negative operation is used as the home position
encountered during forward operation. home position 21 Similar to method 5, but instead of looking for a Z pulse, the position of the ON→OFF state of the HSW encountered during forward operation is used as the home position 22 Similar to method 6, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered during negative operation as the home position 23 Similar to method 7, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the negative direction as the origin. as the origin 24 Similar to mode 8, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered as the origin when running in the forward direction. as the origin 25 Similar to method 9, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin. 26 Similar to method 10, but without the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 27 Similar to method 10, but without the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 28 Similar to method 11, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 28 Similar to method 12, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin	20	Similar to method 4, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is
21 encountered during forward operation is used as the home position 22 Similar to method 6, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered during negative operation as the home position 23 Similar to method 7, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the negative direction as the origin. as the origin 24 Similar to mode 8, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered as the origin when running in the forward direction. as the origin 25 Similar to method 9, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin 26 Similar to method 10, but without the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 27 Similar to method 10, but without the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 28 Similar to method 11, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 28 Similar to method 11, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin 28 Similar to method 13, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the o	20	encountered during forward operation. home position
encountered during forward operation is used as the home position 22 Similar to method 6, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered during negative operation as the home position 23 Similar to method 7, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the negative direction as the origin. as the origin 24 Similar to mode 8, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered as the origin when running in the forward direction. as the origin 25 Similar to method 10, but without the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 26 Similar to method 10, but without the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 27 Similar to method 10, but without the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 28 Similar to method 11, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 28 Similar to method 11, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin 28 Similar to method 13, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin <th>21</th> <th>Similar to method 5, but instead of looking for a Z pulse, the position of the ON→OFF state of the HSW</th>	21	Similar to method 5, but instead of looking for a Z pulse, the position of the ON→OFF state of the HSW
22 encountered during negative operation as the home position 23 Similar to method 7, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the negative direction as the origin. as the origin 24 Similar to mode 8, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered as the origin when running in the forward direction. as the origin 25 Similar to method 10, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin. 26 Similar to method 10, but without the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 27 Similar to method 11, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 28 Similar to method 11, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin 28 Similar to mode 12, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin 29 Similar to method 13, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin 30 Similar to mode 14, but without the Z pulse, the ON→OFF state position of the HSW is encountered when running in the negative direction as the origin	21	encountered during forward operation is used as the home position
encountered during negative operation as the home position 23 Similar to method 7, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the negative direction as the origin. as the origin 24 Similar to mode 8, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered as the origin when running in the forward direction. as the origin 25 Similar to method 9, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin. 26 Similar to method 10, but without the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 27 Similar to method 11, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 28 Similar to method 11, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 28 Similar to method 11, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction as the origin 29 Similar to method 13, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin 30 Similar to mode 14, but without the Z pulse, the ON→OFF state position of the HSW is encountered when running in the negative direction as the origin </th <th>22</th> <td>Similar to method 6, but instead of finding the Z pulse, the OFF→ON state position of the HSW is</td>	22	Similar to method 6, but instead of finding the Z pulse, the OFF→ON state position of the HSW is
 23 is encountered when running in the negative direction as the origin. as the origin 24 Similar to mode 8, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered as the origin when running in the forward direction. as the origin 25 Similar to method 9, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin. 26 Similar to method 10, but without the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 27 Similar to method 11, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 28 Similar to method 12, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin 28 Similar to mode 12, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin 29 Similar to method 13, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin 30 Similar to mode 14, but without the Z pulse, the OFF state position of the HSW is encountered when running in the negative direction as the origin 		encountered during negative operation as the home position
is encountered when running in the negative direction as the origin. as the origin 24 Similar to mode 8, but instead of looking for a Z pulse, the OFF→ON state position of the HSW is encountered as the origin when running in the forward direction. as the origin 25 Similar to method 9, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin. as the origin 26 Similar to method 10, but without the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 27 Similar to method 11, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 28 Similar to method 11, but instead of finding the Z pulse, the position of the HSW is encountered when running in the forward direction. as the origin 29 Similar to mode 12, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin 30 Similar to method 13, but without the Z pulse, the ON→OFF state position of the HSW is encountered when running in the negative direction. as the origin	23	Similar to method 7, but instead of finding the Z pulse, the position of the $ON \rightarrow OFF$ state of the HSW
24 encountered as the origin when running in the forward direction. as the origin 25 Similar to method 9, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin. as the origin 26 Similar to method 10, but without the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 27 Similar to method 11, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 28 Similar to method 12, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction as the origin 28 Similar to mode 12, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin 29 Similar to method 13, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin 30 Similar to mode 14, but without the Z pulse, the ON→OFF state position of the HSW is encountered when running in the negative direction as the origin	23	is encountered when running in the negative direction as the origin. as the origin
encountered as the origin when running in the forward direction. as the origin 25 Similar to method 9, but instead of finding the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin. as the origin 26 Similar to method 10, but without the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 27 Similar to method 11, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 28 Similar to method 12, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction as the origin 28 Similar to mode 12, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin 29 Similar to method 13, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin 30 Similar to mode 14, but without the Z pulse, the ON→OFF state position of the HSW is encountered when running in the negative direction as the origin	24	Similar to mode 8, but instead of looking for a Z pulse, the OFF-ON state position of the HSW is
25 encountered when running in the negative direction as the origin. as the origin 26 Similar to method 10, but without the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 27 Similar to method 11, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 28 Similar to mode 12, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin 29 Similar to method 13, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin 30 Similar to mode 14, but without the Z pulse, the ON→OFF state position of the HSW is encountered when running in the negative direction as the origin	24	encountered as the origin when running in the forward direction. as the origin
26 Similar to method 10, but without the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 27 Similar to method 11, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 28 Similar to mode 12, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin 28 Similar to method 13, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin 29 Similar to method 13, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin 30 Similar to mode 14, but without the Z pulse, the ON→OFF state position of the HSW is encountered when running in the negative direction as the origin	25	Similar to method 9, but instead of finding the Z pulse, the OFF-ON state position of the HSW is
26 encountered when running in the forward direction. as the origin 27 Similar to method 11, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 28 Similar to mode 12, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin 29 Similar to method 13, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin 30 Similar to mode 14, but without the Z pulse, the OFF state position of the HSW is encountered when running in the negative direction as the origin	23	encountered when running in the negative direction as the origin. as the origin
encountered when running in the forward direction. as the origin 27 Similar to method 11, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW is encountered when running in the forward direction. as the origin 28 Similar to mode 12, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin 29 Similar to method 13, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin 30 Similar to mode 14, but without the Z pulse, the OFF state position of the HSW is encountered when running in the negative direction as the origin	26	Similar to method 10, but without the Z pulse, the position of the ON-OFF state of the HSW is
 27 is encountered when running in the forward direction. as the origin 28 Similar to mode 12, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin 29 Similar to method 13, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin 30 Similar to mode 14, but without the Z pulse, the OFF state position of the HSW is encountered when running in the negative direction as the origin 	20	encountered when running in the forward direction. as the origin
is encountered when running in the forward direction. as the origin 28 Similar to mode 12, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the negative direction as the origin 29 Similar to method 13, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin 30 Similar to mode 14, but without the Z pulse, the OFF state position of the HSW is encountered when running in the negative direction as the origin	27	Similar to method 11, but instead of finding the Z pulse, the position of the ON→OFF state of the HSW
28 when running in the negative direction as the origin 29 Similar to method 13, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin 30 Similar to mode 14, but without the Z pulse, the ON→OFF state position of the HSW is encountered when running in the negative direction as the origin	27	is encountered when running in the forward direction. as the origin
when running in the negative direction as the origin 29 Similar to method 13, but without the Z pulse, the OFF→ON state position of the HSW is encountered when running in the forward direction. as the origin 30 Similar to mode 14, but without the Z pulse, the ON→OFF state position of the HSW is encountered when running in the negative direction as the origin	20	Similar to mode 12, but without the Z pulse, the OFF-ON state position of the HSW is encountered
29 when running in the forward direction. as the origin 30 Similar to mode 14, but without the Z pulse, the ON→OFF state position of the HSW is encountered when running in the negative direction as the origin	28	when running in the negative direction as the origin
30 when running in the forward direction. as the origin 30 Similar to mode 14, but without the Z pulse, the ON→OFF state position of the HSW is encountered when running in the negative direction as the origin	20	Similar to method 13, but without the Z pulse, the OFF→ON state position of the HSW is encountered
30 when running in the negative direction as the origin	29	when running in the forward direction. as the origin
when running in the negative direction as the origin	20	Similar to mode 14, but without the Z pulse, the ON→OFF state position of the HSW is encountered
31 retain	30	when running in the negative direction as the origin
	31	retain

32	retain
33	Find the nearest Z pulse position in the negative direction as the origin when starting
34	Find the nearest Z pulse position in the forward direction as the origin when starting
35	With the current position as the origin
ب ب	

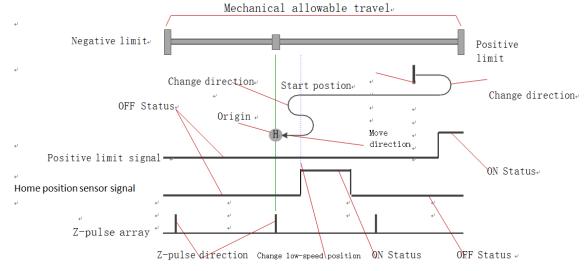
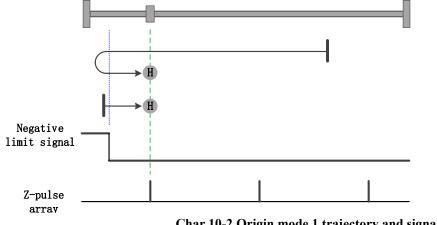


Chart 9-1Back to the original mode various icons meaning


In general, it is recommended that home modes 3 to 6 and 19 to 22 be applied to situations where the OFF/ON state of the HSW splits the entire mechanical allowable travel range into two parts, because these 8 modes stop and alarm whenever NL or PL is encountered, and do not automatically reverse to find the home point.

It is proposed to apply the origin modes 7~14 and 23~30 to the case where the ON state of HSW exactly divides the entire mechanical allowable travel range into three parts, when the ON state interval occupies only a small part of the entire mechanical allowable travel range (i.e., the ON state is a short-time transient).

The above is only a suggestion, not a mandate.

Mode 1, Looking for negative limits and Z pulses

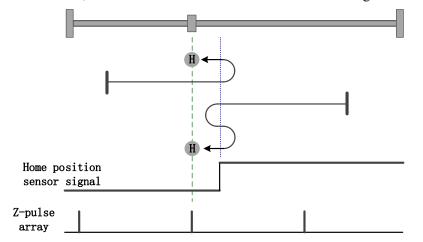
If NL is invalid at the start, run in the negative direction at high speed, slow down and stop after encountering the OFF \rightarrow ON state of NL, and then change to run in the positive direction at low speed. After running in the positive direction at low speed and encountering the ON \rightarrow OFF state of NL, continue to run in the positive direction to find the nearest Z pulse position as the home position. If NL is valid at the start, run at low speed toward the forward direction. After encountering the ON \rightarrow OFF state of NL while running in the forward direction, continue to search for the nearest Z pulse position in 192 the forward direction as the home position.

As 9-19 shown, See Table 8. Introduction to 26 Return to Original Mode.

Mode 2, Looking for positive limits and Z pulses

If the PL is invalid at the start, run in the positive direction at high speed, slow down and stop after encountering the OFF \rightarrow ON state of the PL, and then change to run in the negative direction at low speed. After the PL ON \rightarrow OFF state is encountered while running in the negative direction at low speed, continue to search for the nearest Z pulse position in the negative direction as the home position. If PL is valid at the start, run in the negative direction at a low speed. After encountering the ON \rightarrow OFF state of PL while running in the negative direction, continue to search for the nearest Z pulse position in the negative direction as the home position.

Positive limit signal z pulse arrav Chart 10-3 Origin mode 2 trajectory and signal state


As 10-20 shown, See Table 8. Introduction to 26 Return to Original Mode.

Mode 3, Finding the ON→OFF position of HSW and Z pulse when running in the negative direction

If the HSW is invalid at the start, it runs in the positive direction at high speed, and then decelerates and stops after encountering the OFF \rightarrow ON state of the HSW in the positive direction, and then changes to low speed and runs in the negative direction. When the HSW ON \rightarrow OFF state is encountered in the negative direction at low speed, it continues to search for the nearest Z pulse position in the negative direction as the home position.

If HSW is active at the start, run at high speed in the negative direction. When the HSW is $ON \rightarrow OFF$ in the negative direction, decelerate and stop, then decelerate and stop again when the HSW is valid at high speed, and then change to low speed and run in the negative direction. After encountering the $ON \rightarrow OFF$ state of HSW in the negative direction at low speed, continue to search for the nearest Z pulse position in the negative direction as the home position.

This mode stops the return to home process and alarms, whether it encounters the ON state of NL or PL.

As 9-21 shown, See Table 8. Introduction to 26 Return to Original Mode.

Chart 10-4 Origin mode 3 trajectory and signal state

Mode 4, Finding the OFF→ON position of HSW and Z pulse when running in the forward direction

If the HSW is invalid at the start, run in the forward direction at high speed, slow down and stop after encountering the OFF→ON state of HSW in the forward direction, then slow down and stop again after backing up to the invalid HSW position at high speed, and then change to run in the forward direction at

low speed. After encountering the OFF \rightarrow ON state of HSW during the low-speed forward operation, continue to Find the nearest Z pulse position as the home position in the forward direction.

If HSW is active at the start, run at high speed in the negative direction. When the HSW is $ON \rightarrow OFF$ in the negative direction, decelerate and stop, and then change to low speed to run in the positive direction. When the HSW is $OFF \rightarrow ON$ at low speed in the positive direction, continue to Find the nearest Z pulse position in the positive direction as the home position.

This mode stops the return to home process and alarms, whether it encounters the ON state of NL or PL.

As 10-22 shown, See Table 8. Introduction to 26 Return to Original Mode.

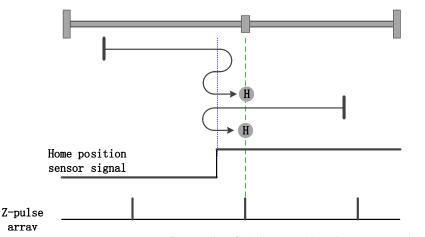


Chart 10-5 Origin mode 4 trajectory and signal state

Mode 5, Finding the ON→OFF position of HSW and Z pulse when running in the forward direction

If the HSW is invalid at the start, run in the negative direction at high speed. When the HSW is $OFF \rightarrow ON$ in the negative direction, decelerate and stop, and then change to low speed to run in the positive direction. When the HSW $ON \rightarrow OFF$ state is encountered in the low-speed forward operation, continue to find the nearest Z pulse position in the positive direction as the home position.

If the HSW is valid at the start, run in the forward direction at high speed, slow down and stop after encountering the ON \rightarrow OFF state of the HSW in the forward direction, then slow down and stop again after retreating to the HSW valid position at high speed, and then change to run in the forward direction at low speed. After encountering the ON \rightarrow OFF state of HSW during the low-speed forward operation, continue to find the nearest Z pulse position as the home position in the forward direction. This mode stops the return to home process and alarms, whether it encounters the ON state of NL or PL.

As 10-23 shown, See Table 8. Introduction to 26 Return to Original Mode.

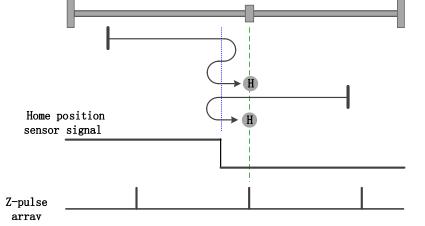


Chart 10-6 Origin mode 5 trajectory and signal shape

Mode 6, Looking for the OFF→ON position of HSW and Z pulse when running in the negative direction

If the HSW is invalid at the start, run in the negative direction at high speed. When the HSW is $OFF \rightarrow ON$ during negative direction operation, decelerate and stop, then decelerate and stop again after retreating to the HSW invalid position at high speed, and then change to low speed to run in the negative direction. After encountering the OFF $\rightarrow ON$ state of HSW in the negative direction at low speed, continue to find the nearest Z pulse position as the home position in the negative direction.

If the HSW is valid at the start, run in the positive direction at high speed, and then slow down and stop after encountering the ON \rightarrow OFF state of the HSW in the positive direction, and then change to low speed and run in the negative direction. When the HSW turns OFF \rightarrow ON in the negative direction at low speed, continue to run in the negative direction and find the nearest Z pulse position as the home position.

This mode stops the return to home process and alarms, whether it encounters the ON state of NL or PL.

As Chart 9-24 shown, See Table 8. Introduction to 26 Return to Original Mode.

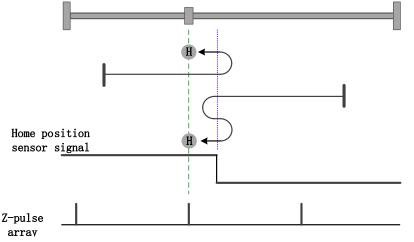


Chart 10-7 Origin mode 6 trajectory and signal state

Mode 7, Looking for the $ON \rightarrow OFF$ position and Z pulse of HSW when running in the negative direction, and automatically reversing when positive limit is encountered

If the HSW is invalid at the start and is on the positive side of the home position sensor, run at high speed in the positive direction, slow down and stop when it encounters the ON state of the PL, and then run at high speed in the negative direction. When running in the negative direction, decelerate and stop after encountering the ON \rightarrow OFF state of HSW, then decelerate and stop again after retreating to the HSW valid position at high speed (if the HSW valid interval is narrow, it may enter the HSW invalid position interval on the other side), and then change to run in the negative direction at low speed. After encountering the ON \rightarrow OFF state of HSW while running in the negative direction at low speed, continue to find the nearest Z pulse position in the negative direction as the home position.

If the HSW is invalid at the start and is on the negative side of the home position sensor, run in the positive direction at high speed, slow down and stop after encountering the OFF \rightarrow ON state of the HSW in the positive direction, and then change to low speed and run in the negative direction. After encountering the ON \rightarrow OFF state of HSW in the negative direction at low speed, continue to find the nearest Z pulse position in the negative direction as the home position.

If the HSW is valid at the start, run at high speed in the negative direction. When running in the negative direction, slow down and stop after encountering the $ON \rightarrow OFF$ state of HSW, then slow down and stop again after retreating to the HSW valid position at high speed (if the HSW valid interval is narrow, it may enter the HSW invalid position interval on the other side), and then change to low speed to run in

the negative direction. After encountering the $ON \rightarrow OFF$ state of HSW while running in the negative direction at low speed, continue to find the nearest Z pulse position in the negative direction as the home position.

In this mode, the first time the ON state of PL is encountered towards forward operation is automatically reversed; when the ON state of NL is encountered, or when the ON state of PL is encountered again, the flow back to the home position is stopped and an alarm is sounded.

As Chart 9-25 shown, See Table 8. Introduction to 26 Return to Original Mode.

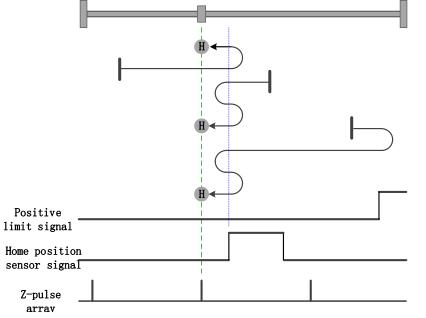


Chart 10-8 Origin mode 7 trajectory and signal state

Mode 8, Find the OFF \rightarrow ON position and Z pulse of HSW when running in the forward direction, and automatically reverse when positive limit is encountered

If the HSW is invalid at the start and is on the positive side of the home position sensor, run in the positive direction at high speed, decelerate and stop when it encounters the ON state of the PL, and then run in the negative direction at high speed. When the negative direction operation encounters the $ON \rightarrow OFF$ state of HSW, decelerate and stop, and then change to the low speed operation towards the positive direction. After encountering the OFF $\rightarrow ON$ state of HSW while running in the positive direction at low speed, continue to search for the nearest Z pulse position as the home position in the positive direction.

If the HSW is invalid at the start and is on the negative side of the home position sensor, run in the

forward direction at high speed, and then slow down and stop after encountering the OFF \rightarrow ON state of the HSW in the forward direction, then slow down and stop again after backing up to the invalid HSW position at high speed, and then change to run in the forward direction at low speed. After encountering the OFF \rightarrow ON state of HSW while running in the forward direction at low speed, continue to search for the nearest Z pulse position in the forward direction as the home position.

If HSW is active at the start, run at high speed in the negative direction. When the HSW is $ON \rightarrow OFF$ in the negative direction, decelerate and stop, and then change to low speed to run in the positive direction. When the HSW $OFF \rightarrow ON$ state is encountered in the low-speed forward operation, continue to search for the nearest Z pulse position in the positive direction as the home position.

In this mode, the first time the ON state of PL is encountered towards forward operation is automatically reversed; when the ON state of NL is encountered, or when the ON state of PL is encountered again, the flow back to the home position is stopped and an alarm is generated.

As Chart 9-26 shown, See Table 8. Introduction to 26 Return to Original Mode.

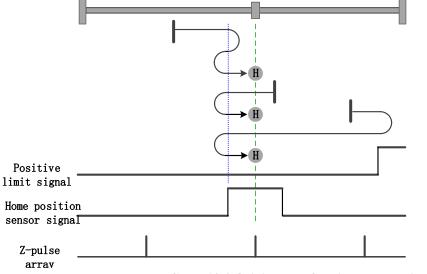


Chart 10-9 Origin mode 8 trajectory and signal state

Mode 9, Looking for the OFF \rightarrow ON position and Z pulse of HSW when running in the negative direction, and automatically reversing when positive limit is encountered

If the HSW is invalid at the start and is on the positive side of the home position sensor, run in the positive direction at high speed, slow down and stop when the PL is ON, and then run in the negative direction at high speed. When the negative direction operation encounters the OFF→ON state of HSW,

decelerate and stop, then decelerate and stop again after retreating to the position where HSW is invalid at high speed, and then change to low speed operation towards the negative direction. After encountering the OFF \rightarrow ON state of HSW while running in the negative direction at low speed, continue to find the nearest Z pulse position in the negative direction as the home position. If the HSW is invalid at the start and is on the negative side of the home position sensor, run in the positive direction at high speed, slow down and stop after encountering the ON \rightarrow OFF state of the HSW in the positive direction, and then change to low speed and run in the negative direction. After encountering the OFF \rightarrow ON state of HSW in the negative direction at low speed, continue to find the nearest Z pulse position in the negative direction as the home position.

If HSW is active at the start, run at high speed in the positive direction. When the HSW $ON \rightarrow OFF$ state is encountered in the positive direction, decelerate and stop, and then change to low speed to run in the negative direction. When the HSW is $OFF \rightarrow ON$ at low speed in negative direction, continue to find the nearest Z pulse position as the home position in negative direction.

In this mode, the first time the ON state of PL is encountered towards forward operation is automatically reversed; when the ON state of NL is encountered, or when the ON state of PL is encountered again, the flow back to the home position is stopped and an alarm is sounded. As Chart 9-27 shown, See Table 8. Introduction to 26 Return to Original Mode.

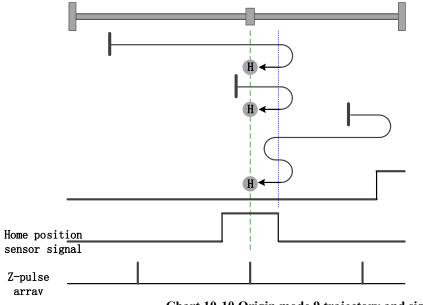


Chart 10-10 Origin mode 9 trajectory and signal state

Mode 10, Find the $ON \rightarrow OFF$ position and Z pulse of HSW when running in the forward direction, and automatically reverse when positive limit is encountered

If the HSW is invalid at the start and is on the positive side of the home position sensor, run at high speed in the positive direction, decelerate and stop when it encounters the ON state of the PL, and then run at high speed in the negative direction. When the negative direction operation encounters the OFF \rightarrow ON state of HSW, decelerate and stop, and then switch to the low speed operation towards the positive direction. After encountering the ON \rightarrow OFF state of HSW while running in the positive direction at low speed, continue to find the nearest Z pulse position as the home position in the positive direction.

If the HSW is invalid at the start and is on the negative side of the home position sensor, run in the forward direction at high speed, slow down and stop again after encountering the ON \rightarrow OFF state of the HSW in the forward direction, then slow down and stop again after returning to the valid HSW position at high speed (if the valid HSW range is narrow, it may enter the invalid HSW range on the other side), and then change to low speed and run in the forward direction. After that, change to low speed towards forward. After encountering the ON \rightarrow OFF state of HSW during the low-speed forward operation, continue to find the nearest Z pulse position as the home position in the forward direction. If the HSW is valid at the start, run at high speed in the forward direction. When the HSW ON \rightarrow OFF state is encountered during forward operation, decelerate and stop, and then decelerate and stop again after retreating to the HSW valid position at high speed (if the HSW valid interval is narrow, it may enter the HSW invalid position interval on the other side), and then change to low speed to run in the forward direction. After encountering the ON \rightarrow OFF state of HSW while running in the forward direction at home position interval is narrow, it may enter the HSW invalid position interval on the other side), and then change to low speed to run in the forward direction. After encountering the ON \rightarrow OFF state of HSW while running in the forward direction at low speed, continue to find the nearest Z pulse position in the forward direction as the home position.

In this mode, the first time the ON state of PL is encountered towards forward operation is automatically reversed; when the ON state of NL is encountered, or when the ON state of PL is encountered again, the flow back to the home position is stopped and an alarm is sounded.

As Chart 9-28 shown, See Table 8. Introduction to 26 Return to Original Mode.

Yasaka YSK2 Servo Design and Maintenance User's Manual

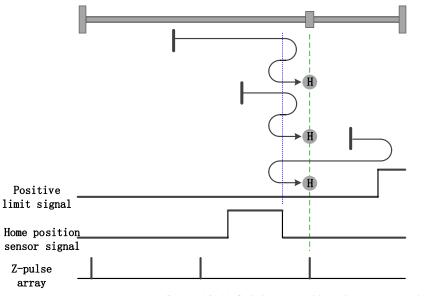


Chart 10-11 Origin mode 10 trajectory and signal state

Mode 11, Find the $ON \rightarrow OFF$ position and Z pulse of HSW when running in the positive direction, and automatically reverse when negative limit is encountered

If the HSW is invalid at the start and is located on the positive side of the home position sensor, run in the negative direction at high speed, slow down and stop after encountering the OFF \rightarrow ON state of the HSW in the negative direction, and then change to low speed and run in the positive direction. After encountering the ON \rightarrow OFF state of HSW at low speed in the positive direction, continue to find the nearest Z pulse position as the home position in the positive direction.

If the HSW is invalid at the start and is on the negative side of the home position sensor, run at high speed in the negative direction, slow down and stop when it encounters the ON state of NL, and then run at high speed in the positive direction. When running in the positive direction, slow down and stop after encountering the $ON \rightarrow OFF$ state of HSW, then slow down and stop again after retreating to the valid HSW position at high speed (if the valid HSW interval is narrow, it may enter the position interval of the invalid HSW on the other side), and then change to run in the positive direction at low speed. After encountering the $ON \rightarrow OFF$ state of HSW while running in the forward direction at low speed, continue to find the nearest Z pulse position in the forward direction as the home position.

If the HSW is valid at the start, run at high speed in the forward direction. When the HSW $ON \rightarrow OFF$ state is encountered during forward operation, decelerate and stop, and then decelerate and stop again after retreating to the HSW valid position at high speed (if the HSW valid interval is narrow, it may

enter the HSW invalid position interval on the other side), and then change to low speed to run in the forward direction. After encountering the $ON \rightarrow OFF$ state of HSW while running in the forward direction at low speed, continue to find the nearest Z pulse position in the forward direction as the home position.

In this mode, operation in the negative direction is automatically reversed the first time the ON state of NL is encountered; when the ON state of PL is encountered, or when the ON state of NL is encountered again, the flow back to the origin is stopped and an alarm is sounded.

AsChart 9-29 shown, See Table 8. Introduction to 26 Return to Original Mode.

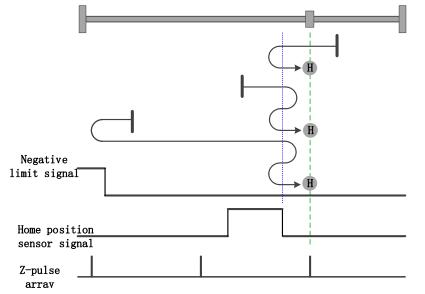


Chart 10-12 Origin mode 11 trajectory and signal state

Mode 12, Find the OFF \rightarrow ON position and Z pulse of HSW when running in the negative direction, and automatically reverse when negative limit is encountered

If the HSW is invalid at the start and is located on the positive side of the home position sensor, run in the negative direction at high speed, slow down and stop after encountering the OFF \rightarrow ON state of the HSW in the negative direction, then slow down and stop again after backing up to the invalid HSW position at high speed, and then change to run in the negative direction at low speed. After encountering the OFF \rightarrow ON state of HSW when running in the negative direction at low speed, continue to find the nearest Z pulse position in the negative direction as the home position.

If the HSW is invalid at the start and is on the negative side of the home position sensor, run at high speed in the negative direction, slow down and stop when it encounters the ON state of NL, and then

run at high speed in the positive direction. When it encounters the ON \rightarrow OFF state of HSW while running in the positive direction, decelerate and stop, and then change to low speed to run in the negative direction. After encountering the OFF \rightarrow ON state of HSW while running in the negative direction at low speed, continue to find the nearest Z pulse position in the negative direction as the home position.

If HSW is active at the start, run at high speed in the positive direction. When the HSW $ON \rightarrow OFF$ state is encountered in the positive direction, decelerate and stop, and then change to low speed to run in the negative direction. When the HSW is $OFF \rightarrow ON$ at low speed in negative direction, continue to find the nearest Z pulse position as the home position in negative direction.

In this mode, operation in the negative direction is automatically reversed the first time the ON state of NL is encountered; when the ON state of PL is encountered, or when the ON state of NL is encountered again, the flow back to the origin is stopped and an alarm is sounded.

AsChart 9-30 shown, See Table 8. Introduction to 26 Return to Original Mode.

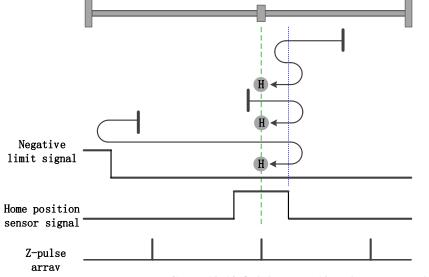


Chart 10-13 Origin mode 12 trajectory and signal state

Mode 13, Find the OFF \rightarrow ON position and Z pulse of HSW when running in the positive direction, and automatically reverse when negative limit is encountered

If the HSW is invalid at the start and is located on the positive side of the home position sensor, run in the negative direction at high speed, slow down and stop after encountering the $ON \rightarrow OFF$ state of the HSW in the negative direction, and then change to low speed and run in the positive direction. After encountering the OFF \rightarrow ON state of HSW during the low-speed forward operation, continue to find the

nearest Z pulse position as the home position in the forward direction.

If the HSW is invalid at the start and is on the negative side of the home position sensor, run in the negative direction at high speed, slow down and stop when it encounters the ON state of NL, and then run in the positive direction at high speed. When it encounters the OFF \rightarrow ON state of HSW during forward operation, it decelerates and stops, and then decelerates and stops again after returning to the position where HSW is invalid at high speed, and then changes to low speed to run in the positive direction at low speed, continue to find the nearest Z pulse position in the forward direction as the home position.

If HSW is active at the start, run at high speed in the negative direction. When the HSW is $ON \rightarrow OFF$ in the negative direction, decelerate and stop, and then change to low speed to run in the positive direction. When the HSW is $OFF \rightarrow ON$ at low speed in the positive direction, continue to find the nearest Z pulse position in the positive direction as the home position.

In this mode, operation in the negative direction is automatically reversed the first time the ON state of NL is encountered; when the ON state of PL is encountered, or when the ON state of NL is encountered again, the flow back to the origin is stopped and an alarm is sounded.

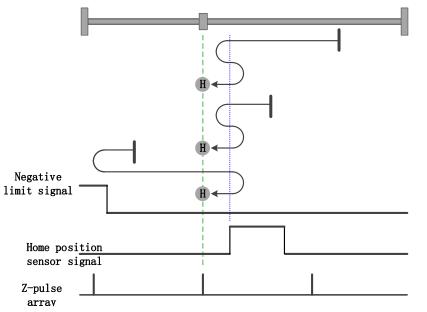
As Chart 9-31 shown, See Table 8. Introduction to 26 Return to Original Mode.



Chart 10-14 Origin mode 13 trajectory and signal state

Mode 14, Find the $ON \rightarrow OFF$ position and Z pulse of HSW when running in the negative direction, and automatically reverse when negative limit is encountered

If the HSW is invalid at the start and is on the positive side of the home position sensor, run at high speed in the negative direction, then slow down and stop after encountering the $ON \rightarrow OFF$ state of the HSW in the negative direction, then slow down and stop again after returning to the HSW valid position at high speed (if the HSW valid range is narrow, it may enter the HSW invalid range on the other side), then change to low speed and run in the negative direction. After that, change to low speed towards negative direction. After encountering the $ON \rightarrow OFF$ state of HSW when running in the negative direction at low speed, continue to find the nearest Z pulse position in the negative direction as the home position.


If the HSW is invalid at the start and is on the negative side of the home position sensor, run at high speed in the negative direction, slow down and stop when it encounters the ON state of NL, and then run at high speed in the positive direction. When it encounters the OFF \rightarrow ON state of HSW while running in the positive direction, decelerate and stop, and then change to low speed to run in the negative direction. After encountering the ON \rightarrow OFF state of HSW while running in the negative direction at low speed, continue to find the nearest Z pulse position in the negative direction as the home position.

If the HSW is valid at the start, run at high speed in the negative direction. When running in the negative direction, slow down and stop after encountering the $ON \rightarrow OFF$ state of HSW, then slow down and stop again after retreating to the HSW valid position at high speed (if the HSW valid interval is narrow, it may enter the HSW invalid position interval on the other side), and then change to low speed to run in the negative direction. After encountering the $ON \rightarrow OFF$ state of HSW while running in the negative direction at low speed, continue to find the nearest Z pulse position in the negative direction as the home position.

This mode automatically reverses the first time the ON state of NL is encountered when running in the negative direction; when the ON state of PL is encountered, or when the ON state of NL is encountered again, the return home process is stopped and an alarm is generated.

AsChart 9-32 shown, See Table 8. Introduction to 26 Return to Original Mode.

206

Chart 10-15 Origin mode 14 trajectory and signal state

Mode 15, Reserved, please do not set.

Mode 16, Reserved, please do not set.

Mode 17, Finding Negative Limits

If NL is invalid at the start, run in the negative direction at high speed, decelerate and stop when it encounters the OFF \rightarrow ON state of NL, and then change to run in the positive direction at low speed. Decelerate and stop when running at low speed toward positive direction and meet the ON \rightarrow OFF state of NL, and use the stop position as the home position.

If NL is valid at the start, run at low speed toward the forward direction. Decelerate and stop at the $ON \rightarrow OFF$ state of NL encountered in forward operation, using the stop position as the home position.

AsChart 9-33 shown, See Table 8. Introduction to 26 Return to Original Mode.

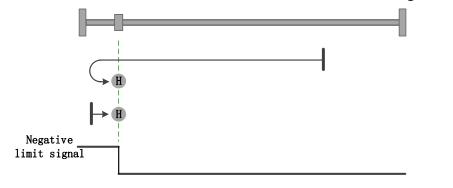
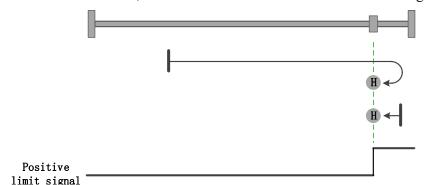



Chart 10-16 Origin mode 17 trajectory and signal state

Mode 18, Finding Positive Limits

If PL is invalid at the start, run in the positive direction at high speed, decelerate and stop when it encounters the OFF \rightarrow ON state of PL, and then change to run in the negative direction at low speed. When the low speed running in the negative direction encounters the ON \rightarrow OFF state of PL, decelerate and stop, and use the stop position as the home position.

If PL is active at the start, run at low speed in the negative direction. When running at low speed in the negative direction, deceleration stops when the $ON \rightarrow OFF$ state of PL is encountered, and the stop position is used as the home position.

AsChart 9-34 shown, See Table 8. Introduction to 26 Return to Original Mode.

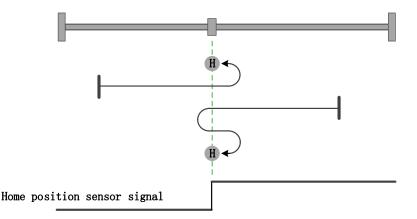
Chart 10-17 Origin mode 18 trajectory and signal state

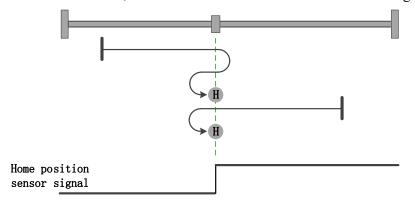
Mode 19, Find the ON→OFF position of HSW when running in the negative direction

If the HSW is invalid at the start, it runs in the positive direction at high speed, and then decelerates and stops when it encounters the OFF \rightarrow ON state of the HSW in the positive direction, and then changes to low speed and runs in the negative direction. When the HSW ON \rightarrow OFF state is encountered in the negative direction at low speed, decelerate and stop, and use the stop position as the home position.

If HSW is active at the start, it runs in the negative direction at high speed. After decelerating and stopping in the negative direction when the HSW $ON \rightarrow OFF$ state is encountered, then decelerating and stopping again after returning to the HSW valid position at high speed, and then switching to low speed to run in the negative direction. When the negative direction operation at low speed encounters the $ON \rightarrow OFF$ state of HSW, decelerate and stop, using the stop position as the home position. In this mode, whether it encounters the ON state of NL or PL, it is stopped back to the home process and alarmed. As Chart 9-35 shown, See Table 8. Introduction to 26 Return to Original Mode.

Yasaka YSK2 Servo Design and Maintenance User's Manual




Chart 10-18 Origin mode 19 trajectory and signal state

Mode 20, Find the OFF→ON position of HSW when running in the forward direction

If the HSW is invalid at the start, run in the forward direction at high speed, and then decelerate and stop when the HSW OFF \rightarrow ON state is encountered in the forward direction, and then decelerate and stop again when the HSW is invalid at high speed, and then change to low speed and run in the forward direction. When the low-speed forward operation encounters the OFF \rightarrow ON state of HSW, decelerate and stop, and use the stop position as the home position.

If HSW is active at the start, run at high speed in the negative direction. When the HSW $ON \rightarrow OFF$ state is encountered in the negative direction, deceleration is stopped, and then the speed is changed to low speed to run in the positive direction. Decelerate and stop when the low-speed forward operation encounters the OFF $\rightarrow ON$ state of HSW, and use the stop position as the home position.

This mode stops the return to home process and alarms, whether it encounters the ON state of NL or PL.

As Chart 9-36 shown, See Table 8. Introduction to 26 Return to Original Mode.

Chart 10-19 Origin mode 20 trajectory and signal state

Mode 21, Find the ON→OFF position of HSW when running in the forward direction

If the HSW is invalid at the start, run in the negative direction at high speed. After decelerating and stopping when the HSW OFF \rightarrow ON state is encountered in the negative direction, the speed is switched to low speed to run in the positive direction. Decelerate and stop when the low-speed forward operation meets the ON \rightarrow OFF state of HSW, and use the stop position as the home position.

If the HSW is active at the start, it runs in the forward direction at high speed, decelerates and stops when it encounters the $ON \rightarrow OFF$ state of the HSW in the forward direction, then decelerates and stops again when it returns to the active HSW position at high speed, and then changes to low speed to run in the forward direction. When the low-speed forward operation encounters the $ON \rightarrow OFF$ state of HSW, decelerate and stop, and use the stop position as the home position.

This mode stops the return to home process and alarms, whether it encounters the ON state of NL or PL.

As 1Chart 9-37 shown, See Table 8. Introduction to 26 Return to Original Mode.

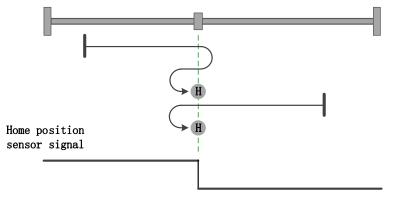


Chart 10-20 Origin mode 21 trajectory and signal state

Mode 22, Looking for the OFF→ON position of HSW when operating in the negative direction

If the HSW is invalid at the start, run in the negative direction at high speed. When the HSW $OFF \rightarrow ON$ state is encountered in the negative direction, deceleration is stopped, and then deceleration is stopped again when the HSW $OFF \rightarrow ON$ state is encountered in the negative direction, and then the HSW $OFF \rightarrow ON$ state is encountered in the negative direction. When the negative direction operation at low speed encounters the $OFF \rightarrow ON$ state of HSW, decelerate and stop, and use the stop position as the home position.

If the HSW is active at the start, it runs in the positive direction at high speed, and then decelerates and stops when it encounters the $ON \rightarrow OFF$ state of the HSW in the positive direction, and then changes to low speed and runs in the negative direction. When the HSW $OFF \rightarrow ON$ state is encountered in the negative direction at low speed, decelerate and stop, and use the stop position as the home position.

This mode stops the return to home process and alarms, whether it encounters the ON state of NL or PL.

AsChart 9-38 shown, See Table 8. Introduction to 26 Return to Original Mode.

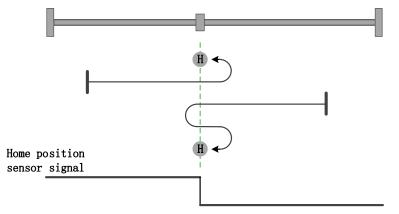


Chart 10-21 Origin mode 22 trajectory and signal state

Mode 23, Looking for the ON→OFF position of HSW when running in the negative direction, and automatically reversing when positive limit is encountered

If the HSW is invalid at the start and is on the positive side of the home position sensor, run at high speed in the positive direction, slow down and stop when it encounters the ON state of the PL, and then run at high speed in the negative direction. In the negative direction, decelerate and stop after encountering the $ON \rightarrow OFF$ state of HSW, then decelerate and stop again after retreating to the valid HSW position at high speed (if the valid HSW interval is narrow, it may enter the position interval of the invalid HSW on the other side), and then change to low speed to run in the negative direction. Decelerate and stop when the low-speed negative operation meets the $ON \rightarrow OFF$ of HSW, using the stop position as the home position.

If the HSW is invalid at the start and is on the negative side of the home position sensor, run at high speed in the positive direction, decelerate and stop when the HSW OFF \rightarrow ON state is encountered in the positive direction, and then change to low speed and run in the negative direction. When the negative direction operation at low speed encounters the ON \rightarrow OFF state of HSW, decelerate and stop, and use

the stop position as the home position.

If the HSW is valid at the start, run at high speed in the negative direction. When running in the negative direction, decelerate and stop after encountering the $ON \rightarrow OFF$ state of HSW, then decelerate and stop again after retreating to the HSW valid position at high speed (if the HSW valid interval is narrow, it may enter the HSW invalid position interval on the other side), and then change to low speed to run in the negative direction. Decelerate and stop when the low-speed negative operation meets the $ON \rightarrow OFF$ of HSW, using the stop position as the home position.

In this mode, the first time the ON state of PL is encountered towards forward operation is automatically reversed; when the ON state of NL is encountered, or when the ON state of PL is encountered again, the flow back to the home position is stopped and an alarm is generated. AsChart 9-39 shown, See Table 8. Introduction to 26 Return to Original Mode.

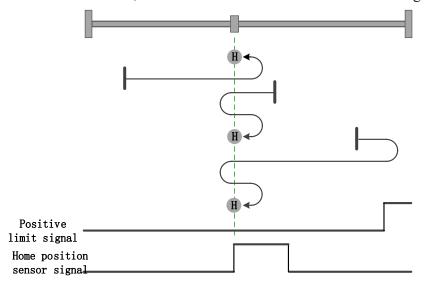


Chart 10-22 Origin mode 23 trajectory and signal state

Mode 24, Looking for the OFF→ON position of HSW when running in the forward direction, and automatically reversing when positive limit is encountered

If the HSW is invalid at the start and is on the positive side of the home position sensor, run in the positive direction at high speed, decelerate and stop when it encounters the ON state of the PL, and then run in the negative direction at high speed. When the negative direction operation encounters the $ON \rightarrow OFF$ state of HSW, decelerate and stop, and then change to the low speed operation towards the positive direction. Decelerate and stop when the low-speed forward operation encounters the OFF $\rightarrow ON$

state of HSW, and use the stop position as the home position.

If the HSW is invalid at the start and is on the negative side of the home position sensor, run in the forward direction at high speed, decelerate and stop when the HSW OFF \rightarrow ON state is encountered in the forward direction, then decelerate and stop again when the HSW is invalid at high speed, and then run in the forward direction at low speed. When the low-speed forward operation encounters the OFF \rightarrow ON state of HSW, decelerate and stop, and use the stop position as the home position.

If HSW is active at the start, run at high speed in the negative direction. When the HSW $ON \rightarrow OFF$ state is encountered in the negative direction, deceleration is stopped, and then the speed is changed to low speed to run in the positive direction. Decelerate and stop when the low-speed forward operation encounters the OFF $\rightarrow ON$ state of HSW, and use the stop position as the home position.

In this mode, the first time the ON state of PL is encountered towards forward operation is automatically reversed; when the ON state of NL is encountered, or when the ON state of PL is encountered again, the flow back to the home position is stopped and an alarm is generated. AsChart 9-40 shown, See Table 8. Introduction to 26 Return to Original Mode.

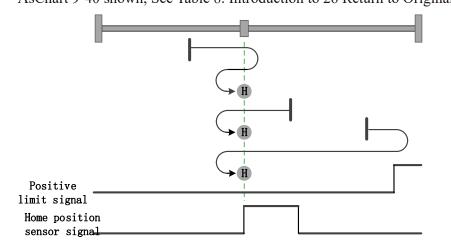


Chart 10-23 Origin mode 24 trajectory and signal state

Mode 25, Looking for the OFF \rightarrow ON position of HSW when running in the negative direction, and automatically reversing when positive limit is encountered

If the HSW is invalid at the start and is on the positive side of the home position sensor, run in the positive direction at high speed, slow down and stop when the PL is ON, and then run in the negative direction at high speed. When the negative direction operation encounters the OFF \rightarrow ON state of HSW, decelerate and stop, then decelerate and stop again after retreating to the invalid HSW position at high

speed, and then change to low speed operation towards the negative direction. Decelerate and stop when the HSW OFF \rightarrow ON state is encountered while running in the negative direction at low speed, and use the stop position as the home position.

If the HSW is invalid at the start and is located on the negative side of the home position sensor, run at high speed in the positive direction, decelerate and stop when the $ON \rightarrow OFF$ state of the HSW is encountered in the positive direction, and then change to low speed and run in the negative direction. When the negative direction operation at low speed encounters the OFF $\rightarrow ON$ state of HSW, decelerate and stop, and use the stop position as the home position.

If HSW is active at the start, run at high speed in the positive direction. When the HSW $ON \rightarrow OFF$ state is encountered during forward operation, deceleration is stopped, and then low speed is switched to negative operation. Decelerate and stop when the HSW $OFF \rightarrow ON$ state is encountered in the negative direction at low speed, and use the stop position as the home position.

In this mode, the first time the ON state of PL is encountered towards forward operation is automatically reversed; when the ON state of NL is encountered, or when the ON state of PL is encountered again, the flow back to the home position is stopped and an alarm is sounded.

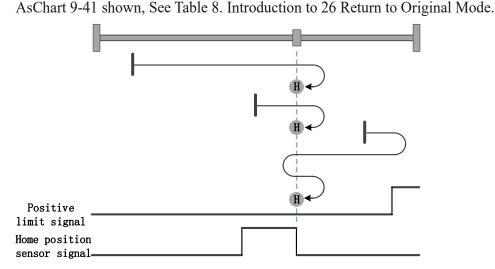


Chart 10-24 Origin mode 25 trajectory and signal state

Mode 26, Finding the ON→OFF position of HSW when running in the forward direction, and automatically reversing when positive limit is encountered

If the HSW is invalid at the start and is on the positive side of the home position sensor, run at high

speed in the positive direction, decelerate and stop when it encounters the ON state of the PL, and then run at high speed in the negative direction. When the negative direction operation encounters the OFF \rightarrow ON state of HSW, decelerate and stop, and then switch to the low speed operation towards the positive direction. Decelerate and stop when the low-speed forward operation meets the ON \rightarrow OFF state of HSW, and use the stop position as the home position.

If the HSW is invalid at the start and is on the negative side of the home position sensor, run in the forward direction at high speed, slow down and stop after encountering the $ON \rightarrow OFF$ state of the HSW in the forward direction, then slow down and stop again after returning to the valid HSW position at high speed (if the valid HSW range is narrow, it may enter the invalid HSW range on the other side), and then change to low speed and run in the forward direction. After that, change to low speed towards forward. Decelerate and stop when the low-speed forward operation meets the $ON \rightarrow OFF$ state of HSW, using the stop position as the home position.

If the HSW is valid at the start, run at high speed in the forward direction. After decelerating and stopping when the HSW $ON \rightarrow OFF$ state is encountered during forward operation, decelerate and stop again after retreating to the HSW valid position at high speed (if the HSW valid interval is narrow, it may enter the HSW invalid position interval on the other side), and then change to low speed to run in the forward direction. Decelerate and stop when the low-speed forward operation encounters the $ON \rightarrow OFF$ state of HSW, using the stop position as the home position.

In this mode, the first time the ON state of PL is encountered towards forward operation is automatically reversed; when the ON state of NL is encountered, or when the ON state of PL is encountered again, the flow back to the home position is stopped and an alarm is sounded. AsChart 9-42 shown, See Table 8. Introduction to 26 Return to Original Mode.

215

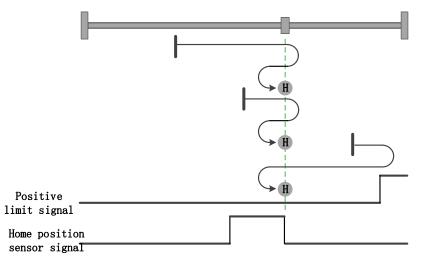


Chart 10-25 Origin mode 26 trajectory and signal state

Mode 27, Find the $ON \rightarrow OFF$ position of HSW when running in the positive direction, and automatically reverse when it meets the negative limit

If the HSW is invalid at the start and is on the positive side of the home position sensor, run at high speed in the negative direction, decelerate and stop when the HSW OFF \rightarrow ON state is encountered in the negative direction, and then change to low speed and run in the positive direction. If the HSW ON \rightarrow OFF state is encountered in low-speed forward operation, decelerate and stop, and use the stop position as the home position.

If the HSW is invalid at the start and is on the negative side of the home position sensor, run at high speed in the negative direction, slow down and stop when it encounters the ON state of NL, and then run at high speed in the positive direction. When running in the positive direction, slow down and stop after encountering the $ON \rightarrow OFF$ state of HSW, then slow down and stop again after retreating to the valid HSW position at high speed (if the valid HSW interval is narrow, it may enter the position interval of the invalid HSW on the other side), and then change to run in the positive direction at low speed. Decelerate and stop when the low-speed forward operation encounters the $ON \rightarrow OFF$ state of HSW, using the stop position as the home position.

If the HSW is valid at the start, run at high speed in the forward direction. After decelerating and stopping when the HSW ON→OFF state is encountered during forward operation, decelerate and stop again after retreating to the HSW valid position at high speed (if the HSW valid interval is narrow, it may enter the HSW invalid position interval on the other side), and then change to low speed to run in

the forward direction. Decelerate and stop when the low-speed forward operation encounters the $ON \rightarrow OFF$ state of HSW, using the stop position as the home position.

In this mode, operation in the negative direction is automatically reversed the first time the ON state of NL is encountered; when the ON state of PL is encountered, or when the ON state of NL is encountered again, the flow back to the origin is stopped and an alarm is sounded.

AsChart 9-43 shown, See Table 8. Introduction to 26 Return to Original Mode.

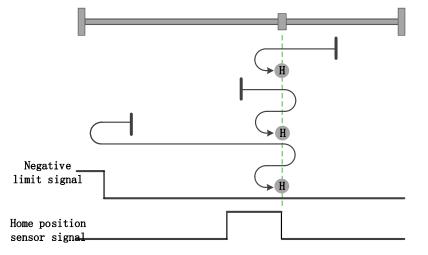


Chart 10-26 Origin mode 27 trajectory and signal state

Mode 28, Looking for the OFF \rightarrow ON position of HSW when running in the negative direction, and automatically reversing when negative limit is encountered

If the HSW is invalid at the start and is located on the positive side of the home position sensor, run in the negative direction at high speed, decelerate and stop when the HSW OFF \rightarrow ON state is encountered in the negative direction, then decelerate and stop again after retracing to the invalid HSW position at high speed, and then change to run in the negative direction at low speed. When the low-speed negative operation encounters the OFF \rightarrow ON state of HSW, decelerate and stop, and use the stop position as the home position.

If the HSW is invalid at the start and is on the negative side of the home position sensor, run at high speed in the negative direction, slow down and stop when it encounters the ON state of NL, and then run at high speed in the positive direction. When it encounters the ON \rightarrow OFF state of HSW while running in the positive direction, decelerate and stop, and then change to low speed to run in the negative direction. Decelerate and stop when the low-speed negative operation encounters the

 $OFF \rightarrow ON$ state of HSW, and use the stop position as the home position.

If HSW is active at the start, run at high speed in the positive direction. When the HSW $ON \rightarrow OFF$ state is encountered during forward operation, deceleration is stopped, and then low speed is switched to negative operation. Decelerate and stop when the HSW $OFF \rightarrow ON$ state is encountered in the negative direction at low speed, and use the stop position as the home position.

In this mode, operation in the negative direction is automatically reversed the first time the ON state of NL is encountered; when the ON state of PL is encountered, or when the ON state of NL is encountered again, the flow back to the origin is stopped and an alarm is sounded.

As Chart 9-44 shown, See Table 8. Introduction to 26 Return to Original Mode.

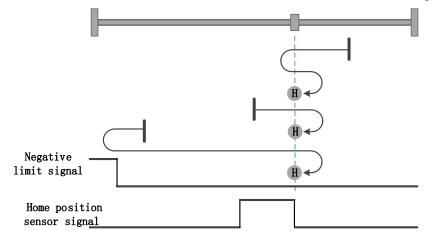


Chart 10-27 Origin mode 28 trajectory and signal state

Mode 29, Find the OFF→ON position of HSW when running in the positive direction, and automatically reverse when negative limit is encountered

If the HSW is invalid at the start and is on the positive side of the home position sensor, run at high speed in the negative direction, decelerate and stop when the HSW $ON \rightarrow OFF$ state is encountered in the negative direction, and then change to low speed and run in the positive direction. When the low speed positive operation meets the OFF $\rightarrow ON$ state of HSW, decelerate and stop, and use the stop position as the home position.

If the HSW is invalid at the start and is on the negative side of the home position sensor, run at high speed in the negative direction, slow down and stop when it encounters the ON state of NL, and then run at high speed in the positive direction. When it encounters the OFF \rightarrow ON state of HSW in the forward direction, it decelerates and stops, and then decelerates and stops again when it returns to the

position where HSW is invalid at high speed, and then changes to low speed to run in the forward direction. Decelerate and stop when the low-speed forward operation encounters the OFF \rightarrow ON state of HSW, and use the stop position as the home position.

If HSW is active at the start, run at high speed in the negative direction. When the HSW $ON \rightarrow OFF$ state is encountered in the negative direction, deceleration is stopped, and then the speed is changed to low speed to run in the positive direction. Decelerate and stop when the low-speed forward operation encounters the OFF $\rightarrow ON$ state of HSW, and use the stop position as the home position.

In this mode, operation in the negative direction is automatically reversed the first time the ON state of NL is encountered; when the ON state of PL is encountered, or when the ON state of NL is encountered again, the flow back to the origin is stopped and an alarm is sounded.

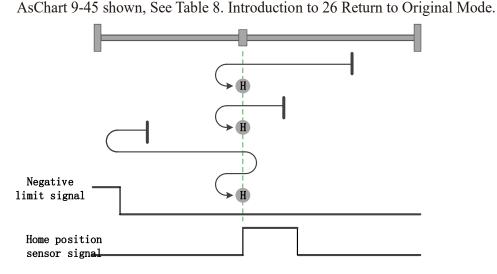


Chart 10-28 Origin mode 29 trajectory and signal state

Mode 30, Find the $ON \rightarrow OFF$ position of HSW when running in the negative direction, and automatically reverse when negative limit is encountered

If the HSW is invalid at the start and is on the positive side of the home position sensor, run at high speed in the negative direction, then slow down and stop after encountering the $ON \rightarrow OFF$ state of the HSW in the negative direction, then slow down and stop again after returning to the HSW valid position at high speed (if the HSW valid range is narrow, it may enter the HSW invalid range on the other side), then change to low speed and run in the negative direction. After that, change to low speed towards negative direction. Decelerate and stop when the low-speed negative operation meets the $ON \rightarrow OFF$

state of HSW, using the stop position as the home position.

If the HSW is invalid at the start and is on the negative side of the home position sensor, run at high speed in the negative direction, slow down and stop when it encounters the ON state of NL, and then run at high speed in the positive direction. When it encounters the OFF \rightarrow ON state of HSW while running in the positive direction, decelerate and stop, and then change to low speed to run in the negative direction. Decelerate and stop when running in the negative direction at low speed and encounter the ON \rightarrow OFF state of HSW, and use the stop position as the home position.

If the HSW is valid at the start, run at high speed in the negative direction. When running in the negative direction, decelerate and stop after encountering the $ON \rightarrow OFF$ state of HSW, then decelerate and stop again after retreating to the HSW valid position at high speed (if the HSW valid interval is narrow, it may enter the HSW invalid position interval on the other side), and then change to low speed to run in the negative direction. Decelerate and stop when low-speed negative operation encounters the $ON \rightarrow OFF$ state of HSW, using the stop position as the home position.

In this mode, operation in the negative direction is automatically reversed the first time the ON state of NL is encountered; when the ON state of PL is encountered, or when the ON state of NL is encountered again, the flow back to the origin is stopped and an alarm is sounded.

AsChart 9-46 shown, See Table 8. Introduction to 26 Return to Original Mode...

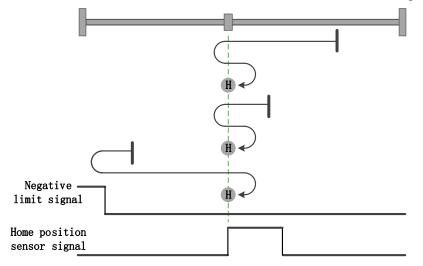


Chart 10-29 Origin mode 30 trajectory and signal state

Mode 31, Reserved, please do not set.

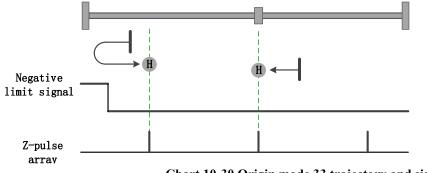
Mode 32, Reserved, please do not set.

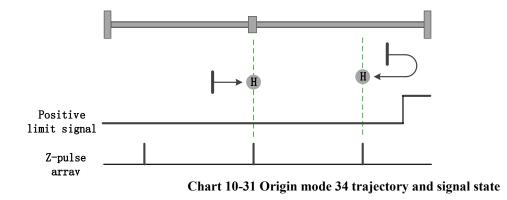
Mode 33, Finding the nearest Z pulse during negative operation

Start at low speed towards negative direction to find the nearest Z pulse position as the home position. If running in the negative direction encounters the ON state of NL before finding the Z pulse, slow down and stop, then run in the positive direction to find the nearest Z pulse position as the home position.

In this mode, operation in the negative direction is automatically reversed the first time the ON state of NL is encountered; when the ON state of PL is encountered, or when the ON state of NL is encountered again, the flow back to the origin is stopped and an alarm is sounded.

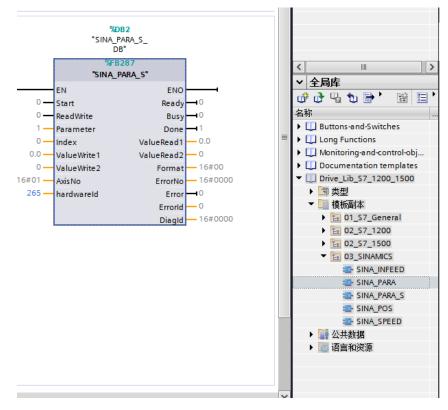
AsChart 9-47 shown, See Table 8. Introduction to 26 Return to Original Mode.




Chart 10-30 Origin mode 33 trajectory and signal state

Mode 34, Finding the nearest Z pulse during forward operation

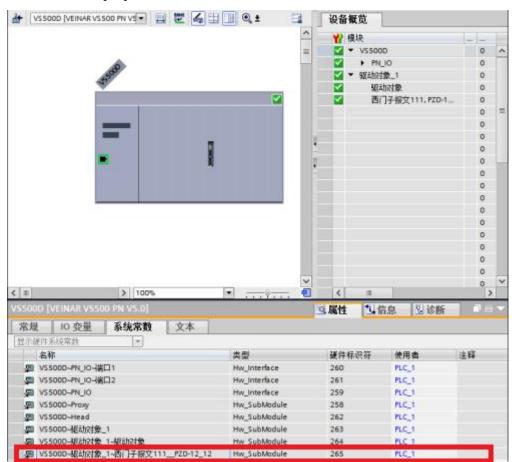
Start with low speed towards positive direction to find the nearest Z pulse position as the home position. If running in the positive direction encounters the ON state of PL before finding the Z pulse, slow down and stop, then run in the negative direction to find the nearest Z pulse position as the home position.


In this mode, the first time the ON state of PL is encountered towards forward operation is automatically reversed; when the ON state of NL is encountered, or when the ON state of PL is encountered again, the flow back to the home position is stopped and an alarm is sounded.

AsChart9-48 shown, See Table 8. Introduction to 26 Return to Original Mode.

10.5.4 Functional implementation of the SINA_PARA_S (FB287) function block

The S7-1500 and other PLCs implement the reading and writing of parameters to the YSK2-D through the control function block FB287. The specific function block locations are shown in the following figure.


SINA_PARA_S(FB287) Function Block Pin Description

The FB287 function block pins are explained in the following table:

Pin	Data Type	Default	Description
		Value	
Input			
Start	BOOL	0	Start job ($0 = no$ job or job canceled; $1 = start$ and
			execute job)
ReadWrite	BOOL	0	Assignment Type
			0 = read, 1 = write
Parameter	INT	1	Parameter number (see below for details on writing
			specific parameters)
Index	INT	0	Parameter Index
ValueWrite1	REAL	0.0	Parameter value (REAL format)
ValueWrite2	DINT	0	Parameter value (DINT format)
AxisNo	INT	1	Axis numbering in multi-axis systems

hardwareID	HW IO	1	Hardware ID of the actual value message slot of the module access point/axis or drive
Output			
Ready	BOOL	0	The block is not performing a read or write operation and is in the ready state
Busy	BOOL	0	1 when the task is being processed, 0 if completed or after failure
Done	BOOL	0	Change to 1 when task execution is completed
ValueRead1	REAL	0.0	Read the value of the parameter (REAL format)
ValueRead2	DINT	0	Read the value of the parameter (DINT format)
ErrorNo	INT	0	Error number for compliance with the PROFIdrive protocol
Error	BOOL	0	Activation group fault, "TURE" - with error; "FALSE" - normal execution
Diagld	INT	0	Error fault code

Before reading, you need to write the hardwareID (hardware identifier) in order to read and write parameters: in the drive configuration, select the drive object message that needs to be read, and find Hardware in the properties

Just enter the hardware identifier in HardwareID.

When you need to read the parameters, you need to convert the servo local parameters to

hexadecimal and then add 0x1000, to write the parameters, as shown below:

(1)F15.16 (JOG pointing 2): 15 converted to hexadecimal is 0x0F, 16 converted to hexadecimal is 0x10, the combination is 0x0F10, then in addition to 0x1000, the final 0x1F10, that is, 0x1F10 is the parameter number of F15.16.

F24.42 (fault code): 24 converted to hexadecimal is 0x18, 42 converted to hexadecimal is 0x2A, 2 the combination is 0x182A, then in addition to 0x1000, the final 0x282A, that is, 0x282A for the F24.42 parameter number.

Note: Servo loc	al all single parameter,	index needs to be	e 0, AxisNo fixed to 1

	•	Input					
	•	Start		Bool	0	FALSE	
	•	Read	Nrite	Bool	0	FALSE	
	•	Paran	neter	UInt	1	0	
ľ	多改	ł					×
•		dal -					
- 3	操作	数:	"SINA_PARA_S_DE	8".Parameter	数据类型:	UInt	
1		值:	282A		格式:	十六进制	-
-						17 00073	
-							
-						确定	取消

Select "Parameter", select "Hex" as the format, and then enter the "Modified Value". Change Start to "TURE" to read.

Chapter 11: Parameter

11.1 Parameter List

Parameter description: The parameters are divided into General parameters and Dedicated parameters

Some parameters only for dedicated model.

- (1) General parameters: General parameters refer to the parameters that can be used in the YSK2 series
- (2) Dedicated parameters: Dedicated parameters refer to parameters that can only be used by specific models in the YSK2 series.

However, there are also some special parameters among the general parameters, which are only used for specific models. Use the following annotations to distinguish.

A: Only for YSK2-A Parameter;

B: Only for YSK2-E Parameter;

D: Only for YSK2-D Parameter.

This manual will be marked after the specific functions in the detailed parameter introduction.

For example : F01.05 exists in general parameter, but its some function only for YSK2-A, so it was marked by "(A)".

F01.05	Location command source	Setting range	factory	unit	Mode of	Mode of Re		ed
			value		entry	n	iode	ls
					into			
					force			
		0 to 3	0		Downtim	Р	S	Т
					e in			
					effect			

0:Pulse command(A)

1:Step amount given

2:Multi-segment position command

3:High-speed pulse command(A)

Related modes: P: Position mode; S: Speed mode; T: Torque mode.

A "•" in the list indicates that it is used in this mode, and a "-" indicates that it is not used in this mode.

Gro	Name	Related Models		
up			dels	_
nu		Р	S	Т
mb				
er				

Gro up	00	Automatic acquisition of motor parameters	•	٠	٠	
F00	01	Motor type selection	٠	٠	٠	
Mo	02	Motor model code (32	٠	٠	٠	
tor		bits)				
par	04	Monitoring Options	٠	٠	٠	

am	05	Component Versions	٠	٠	٠
eter	10	Rated voltage	•	٠	٠
s	11	Power Rating	٠	٠	٠
	12	Rated current	٠	٠	٠
	13	Rated torque	٠	•	٠
	14	Maximum torque	•	•	٠
	15	Rated speed	٠	•	٠
	16	Maximum speed	•	•	٠
	17	Rotational inertia Jm	•	•	٠
	18	Number of motor pole	•	٠	٠
		pairs			
	19	Stator resistance Rs	٠	٠	٠
	20	d-axis inductance Ld	٠	٠	•

		· · · · · ·	1		r –
	21	q-axis inductance Lq	•	•	•
	22	Inverse potential	•	•	•
	24	coefficient (32 bits)	•	•	-
	24	Torque coefficient	•	•	•
	25	Initial position of absolute code disk (32	•	•	•
	27	bits)	_		-
	27	Encoder selection	٠	٠	٠
	29	Encoder resolution (32	•	•	•
	- 21	bits)			
	31	Z rising edge	•	•	•
		corresponding to			
		electrical angle			
	32	Weak magnetic option	٠	٠	٠
	33	Motor code backup (32-	٠	٠	٠
		bit)			
	41	DDL motor pole pitch	٠	٠	٠
		(N-N)			
	42	DDL scale resolution	٠	٠	٠
	43	DDL motor rated current	٠	٠	٠
	44	DDL rated thrust	٠	٠	•
	45	DDL maximum thrust	٠	•	•
		theoretical value			
	46	DDL motor maximum	٠	٠	٠
		speed			
	48	DDL electric motor mass	٠	٠	٠
	49	DDL stator line	•	•	•
		resistance	-	-	-
	50	DDL motor line inductor	•	•	•
	52	DDL inverse potential		-	•
	52	coefficient (32 bits)	l .	آ ا	ا
	54	DDL/DDR motor Z	•	•	•
	54	electric angle	-	–	Ī
	59	DDL/DDR pole finding	-		•
	57	sign	•	•	
	00		•	•	•
		sign Manufacturer Parameters	•	•	
		sign Manufacturer Parameters Control mode selection	•	•	
	00	sign Manufacturer Parameters		•	•
	00	sign Manufacturer Parameters Control mode selection		•	•
	00	sign Manufacturer Parameters Control mode selection Real-time self-adjusting		•	•
	00 01 02	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode	•	٠	•
	00 01 02 03	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting	•	•	•
	00 01 02 03 04	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio	•	•	•
	00 01 02 03 04	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source	•	•	•
	00 01 02 03 04 05 07	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source Pulse string pattern	• • • •	•	•
	00 01 02 03 04 05	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source	•	•	•
	00 01 02 03 04 05 07 08	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source Pulse string pattern High-speed burst pattern	• • • • •	•	•
	00 01 02 03 04 05 07 08	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source Pulse string pattern High-speed burst pattern Number of instructions	• • • • •	•	•
	00 01 02 03 04 05 07 08	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source Pulse string pattern High-speed burst patterm Number of instructions required to rotate the	• • • • •	•	•
	00 01 02 03 04 05 07 08	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source Pulse string pattern High-speed burst pattern Number of instructions required to rotate the motor one revolution (32 bits)	• • • • •	•	•
Gro	00 01 02 03 04 05 07 08 09	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source Pulse string pattern High-speed burst pattern Number of instructions required to rotate the motor one revolution (32	•••••••	•	•
up	00 01 02 03 04 05 07 08 09	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source Pulse string pattern High-speed burst pattern Number of instructions required to rotate the motor one revolution (32 bits) Number of pulse lines	•••••••	•	•
up F01	00 01 02 03 04 05 07 08 09	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source Pulse string pattern High-speed burst pattern Number of instructions required to rotate the motor one revolution (32 bits) Number of pulse lines output in one revolution	•••••••	•	•
up F01 Bas	00 01 02 03 04 05 07 08 09	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source Pulse string pattern High-speed burst pattern Number of instructions required to rotate the motor one revolution (32 bits) Number of pulse lines output in one revolution of rotating motor (32	•••••••	•	•
up F01 Bas ic	00 01 02 03 04 05 07 08 09	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source Pulse string pattern High-speed burst pattern Number of instructions required to rotate the motor one revolution (32 bits) Number of pulse lines output in one revolution of rotating motor (32 bits)	•••••••	•	•
up F01 Bas ic par	00 01 02 03 04 05 07 08 09	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source Pulse string pattern High-speed burst pattern Number of instructions required to rotate the motor one revolution (32 bits) Number of pulse lines output in one revolution of rotating motor (32 bits) Pulse output positive	•••••••	•	•
up F01 Bas ic par am	00 01 02 03 04 05 07 08 09 11 11	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source Pulse string pattern High-speed burst pattern Number of instructions required to rotate the motor one revolution (32 bits) Number of pulse lines output in one revolution of rotating motor (32 bits)	•••••••	•	•
up F01 Bas ic par am eter	00 01 02 03 04 05 07 08 09 11 11 13 14	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source Pulse string pattern High-speed burst pattern Number of instructions required to rotate the motor one revolution (32 bits) Number of pulse lines output in one revolution of rotating motor (32 bits) Pulse output Dzivie direction definition Pulse output OZ polarity	•••••••	•	•
up F01 Bas ic par am	00 01 02 03 04 05 07 08 09 11 11 13 14	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source Pulse string pattern High-speed burst pattern Number of instructions required to rotate the motor one revolution (32 bits) Number of pulse lines output in one revolution of rotating motor (32 bits) Pulse output OZ polarity Pulse output OZ polarity Pulse output function	•••••••	•	•
up F01 Bas ic par am eter	00 01 02 03 04 05 07 08 09 09 11 11 13 14 15	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source Pulse string pattern High-speed burst pattern Number of instructions required to rotate the motor one revolution (32 bits) Number of pulse lines output in one revolution of rotating motor (32 bits) Pulse output positive direction definition Pulse output OZ polarity Pulse output function selection	•••••••	•	
up F01 Bas ic par am eter	00 01 02 03 04 05 07 08 09 09 11 11 13 14 15	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source Pulse string pattern High-speed burst pattern Number of instructions required to rotate the motor one revolution (32 bits) Number of pulse lines output in one revolution of rotating motor (32 bits) Pulse output positive direction definition Pulse output QZ polarity Pulse output function selection Position Deviation	•••••••	•	
up F01 Bas ic par am eter	00 01 02 03 04 05 07 08 09 09 11 11 13 14 15	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source Pulse string pattern High-speed burst pattern Number of instructions required to rotate the motor one revolution (32 bits) Number of pulse lines output in one revolution of rotating motor (32 bits) Pulse output OZ polarity Pulse output Jositive direction definition Pulse output function selection Position Deviation Excess Threshold (32 bits)	•••••••	•	
up F01 Bas ic par am eter	00 01 02 03 04 05 07 08 09 09 11 11 13 14 15 16	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source Pulse string pattern High-speed burst patterm Number of instructions required to rotate the motor one revolution (32 bits) Number of pulse lines output in one revolution of rotating motor (32 bits) Pulse output DZ polarity Pulse output OZ polarity Pulse output J polarity Pulse output function selection Excess Threshold (32 bits)		• • • - - -	
up F01 Bas ic par am eter	00 01 02 03 04 05 07 08 09 09 11 11 13 14 15 16 18	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source Pulse string pattern High-speed burst pattern Number of instructions required to rotate the motor one revolution (32 bits) Number of pulse lines output in one revolution of rotating motor (32 bits) Pulse output positive direction definition Pulse output OZ polarity Pulse output function selection Position Deviation Excess Threshold (32 bits) Braking resistor setting External resistor power		• • • - - -	
up F01 Bas ic par am eter	00 01 02 03 04 05 07 08 09 09 11 11 13 14 15 16 18	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source Pulse string pattern High-speed burst patterm Number of instructions required to rotate the motor one revolution (32 bits) Number of pulse lines output in one revolution of rotating motor (32 bits) Pulse output DZ polarity Pulse output OZ polarity Pulse output J polarity Pulse output function selection Excess Threshold (32 bits)		• • • - - -	
up F01 Bas ic par am eter	00 01 02 03 04 05 07 08 09 09 11 11 13 14 15 16 18 19	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source Pulse string pattern High-speed burst pattern Number of instructions required to rotate the motor one revolution (32 bits) Number of pulse lines output in one revolution of rotating motor (32 bits) Number of pulse lines output in one revolution of rotating motor (32 bits) Pulse output positive direction definition Pulse output function selection Position Deviation Excess Threshold (32 bits) Braking resistor setting External resistor			
up F01 Bas ic par am eter	00 01 02 03 04 05 07 08 09 09 11 11 13 14 15 16 18 19 20	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source Pulse string pattern High-speed burst pattern Number of instructions required to rotate the motor one revolution (32 bits) Number of pulse lines output in one revolution of rotating motor (32 bits) Pulse output positive direction definition Pulse output opositive direction definition Pulse output function selection Position Deviation Excess Threshold (32 bits) Braking resistor setting External resistor resistance value			
up F01 Bas ic par am eter	00 01 02 03 04 05 07 08 09 09 11 11 13 14 15 16 18 19	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source Pulse string pattern High-speed burst patterm Number of instructions required to rotate the motor one revolution (32 bits) Number of pulse lines output in one revolution of rotating motor (32 bits) Pulse output positive direction definition Pulse output OZ polarity Pulse output Joparity Pulse output function selection Excess Threshold (32 bits) Braking resistor setting External resistor power capacity External resistor heating			
up F01 Bas ic par am eter	00 01 02 03 04 05 07 08 09 09 11 11 13 14 15 16 18 19 20	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source Pulse string pattern High-speed burst pattern Number of instructions required to rotate the motor one revolution (32 bits) Number of pulse lines output in one revolution of rotating motor (32 bits) Pulse output positive direction definition Pulse output QZ polarity Pulse output OZ polarity Pulse output function selection Position Deviation External resistor power capacity External resistor heating time constant			
up F01 Bas ic par am eter	00 01 02 03 04 05 07 08 09 09 11 11 13 14 15 16 18 19 20 21 22	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source Pulse string pattern High-speed burst pattern Number of instructions required to rotate the motor one revolution (32 bits) Number of pulse lines output in one revolution of rotating motor (32 bits) Pulse output positive direction definition Pulse output QZ polarity Pulse output function selection Position Deviation External resistor power capacity External resistor heating time constant Braking voltage point			
up F01 Bas ic par am eter	00 01 02 03 04 05 07 08 09 09 11 11 13 14 15 16 18 19 20 21	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source Pulse string pattern High-speed burst pattern Number of instructions required to rotate the motor one revolution (32 bits) Pulse output of pulse lines output in one revolution of rotating motor (32 bits) Pulse output UOZ polarity Pulse output function selection Position Deviation Excess Threshold (32 bits) Braking resistor setting External resistor power capacity External resistor heating time constant Braking voltage point Position stepping			
up F01 Bas ic par am eter	00 01 02 03 04 05 07 08 09 09 11 11 13 14 15 16 18 19 20 21 22 23	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source Pulse string pattern High-speed burst pattern Number of instructions required to rotate the motor one revolution (32 bits) Number of pulse lines output in one revolution of rotating motor (32 bits) Pulse output Dositive direction definition Pulse output OZ polarity Pulse output function selection Position Deviation External resistor setting External resistor heating time constant Braking voltage point Position stepping			
up F01 Bas ic par am eter	00 01 02 03 04 05 07 08 09 09 11 11 13 14 15 16 18 19 20 21 22	sign Manufacturer Parameters Control mode selection Real-time self-adjusting mode Rigidity level setting Inertia ratio Location command source Pulse string pattern High-speed burst pattern Number of instructions required to rotate the motor one revolution (32 bits) Pulse output of pulse lines output in one revolution of rotating motor (32 bits) Pulse output UOZ polarity Pulse output function selection Position Deviation Excess Threshold (32 bits) Braking resistor setting External resistor power capacity External resistor heating time constant Braking voltage point Position stepping			

Gro	00	First position loop gain	٠	-	-
up	01	First speed loop gain	٠	٠	ł
F02	02	First velocity loop	٠	٠	-
Bas		integration time			

ic 03 First speed detection 1 Gai 04 First torque command filtering 05 Second position loop 05 Second speed loop gain 0						
n 04 First borque command filtering 05 Second position loop gain • • 06 Second speed loop gain • • 07 Second velocity loop integration time • • • 08 Second speed detection filtering • • • • 09 Second torque command filtering • • • • • 10 Velocity loop PDFF velocity loop filtering time • • • • • 11 Speed feedforward gain velocity filtering time • • • • • 12 Speed feedforward gain velocity filtering time • • • • • 13 Speed feedforward gain velocity switching action selection • • • • • • 16 Torque feedforward gain velocity switching mode •		03		•	•	٠
up 05 Second position loop gain • - 06 Second speed loop gain • • - 07 Second speed detection filtering • • • 08 Second torque command filtering • • • 09 Second torque command filtering • • • 10 Velocity loop PDFF filtering time • • • 11 Speed feedforward gain filtering time • • • 12 Speed feedforward gain filtering time • • • 14 Torque feedforward gain filtering time • • • 15 Torque feedforward gain filtering time • • • 17 DI function GAIN- switching gation selection switching delay • • • 18 Position control switching hysteresis • • • • 20 Position control switching filtering time • • • • 21 Position control switching fi	n	04		•	٠	•
gain i i 06 Second speed loop gain • - 07 Second velocity loop • - 08 Second speed detection • • 09 Second torque command • • 10 Velocity loop PDFF • • - 11 Speed feedforward gain • - - 12 Speed feedforward gain • - - 13 Speed feedforward gain • • - 14 Torque feedforward gain • • - 15 Torque feedforward gain • • - 16 Torque feedforward gain • • - 17 DI function GAIN- SWITCH switching action selection • • - 18 Position control switching delay • • - 20 Position control switching indee • - - 21 Position gain switching indee • - - 22 Position gain switching indelay • </td <td></td> <td>05</td> <td></td> <td>•</td> <td>-</td> <td>-</td>		05		•	-	-
07 Second velocity loop integration time • • 08 Second speed detection filtering • • 09 Second torque command filtering • • 10 Velocity loop PDFF • • 11 Speed feedforward gain • - 12 Speed feedforward gain • - 13 Speed feedforward gain • - 14 Torque feedforward gain • - 15 Torque feedforward gain • - 16 Torque feedforward gain • - 17 DI function GAIN- SWITCH switching action selection • - 18 Position control switching delay • - 20 Position control switching hysteresis • - 21 Position gain switching time • - 23 Speed control switching delay • - 24 Speed control switching delay • - 25 Speed control switching delay • - 26 Speed control switching delay<	۳P	05		•	-	-
integration time • 08 Second speed detection 09 Second torque command 10 Velocity loop PDFF 11 Speed feedforward gain 12 Speed feedforward gain 13 Speed feedforward gain 14 Torque feedforward gain 15 Torque feedforward gain 16 Torque feedforward gain 17 DI function GAIN- SWITCH switching action selection 18 Position control switching delay 20 Position control switching ince 21 Position gain switching ince 22 Position gain switching ince 23 Speed control switching ince 24 Speed control switching ince 25 Speed control switching ince 26 Speed control switching ince 27 Torque control switching ince 28 Torque control switching ince 29 Speed control switching ince 20 Speed control switching ince 23 Speed control switching ince 24 Speed control switching ince 25 Speed con		06		•	٠	-
08 Second speed detection filtering • • 09 Second torque command filtering • • 10 Velocity loop PDFF factor • • 11 Speed feedforward selection • • 12 Speed feedforward gain • - 13 Speed feedforward gain • • 14 Torque feedforward gain • • 15 Torque feedforward gain • • 16 Torque feedforward gain • • 17 DI function GAIN- SWITCH switching action selection • • 18 Position control switching heel • • 20 Position control switching level • • 21 Position control switching hysteresis • • 22 Speed control switching mode • • • 23 Speed control switching level • • • 24 Speed control switching back lag • • • 27 Torque control switching mode • • •		07		٠	٠	-
filtering • 09 Second torque command filtering • 10 Velocity loop PDFF 11 Speed feedforward • - 12 Speed feed-forward • - 13 Speed feed-forward • - 13 Speed feed-forward • - 14 Torque feedforward • - 15 Torque feed-forward • - 16 Torque feed-forward • - 17 DI function GAIN- SWITCH switching • - 18 Position control • • - 20 Position control • • - 21 Position control • • - 22 Position control • • - 23 Speed control switching - • - - 24 Speed control switching - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
filtering i 10 Velocity loop PDFF • 11 Speed feedforward gain • 12 Speed feedforward gain • 13 Speed feedforward gain • 14 Torque feedforward gain • 15 Torque feedforward gain • 16 Torque feedforward gain • 17 DI function GAIN-SWITCH switching mode • 19 Position control switching level • 20 Position control switching level • 21 Position control switching level • 21 Position control switching ime • 23 Speed control switching ime • 24 Speed control switching imode • 27 Torque control switching imode • 28 Torque control switching imode • 29 Torque control switching imode • 20 Speed control switching imode • 21 Position gain switching imode • 22 Speed control switching imode • 23 </td <td></td> <td>08</td> <td></td> <td>•</td> <td>•</td> <td>•</td>		08		•	•	•
10 Velocity loop PDFF • • - 11 Speed feedforward • - - 12 Speed feedforward • - - 13 Speed feedforward • - - 14 Torque feedforward • • - 15 Torque feedforward • • - 16 Torque feedforward • • - 17 DI function GAIN- • • - 18 Position control • • - - 20 Position control • • - - 21 Position control • • - - 21 Position control • • - - 23 Speed control switching - • - - - - 24 Speed control switching - • - <td< td=""><td></td><td>09</td><td>•</td><td>٠</td><td>٠</td><td>٠</td></td<>		09	•	٠	٠	٠
factor - 11 Speed feedforward gain - 12 Speed feed-forward gain - 13 Speed feed-forward gain - 14 Torque feedforward gain - 15 Torque feedforward gain - 16 Torque feedforward gain - 17 DI function GAIN-SWITCH switching action selection - 18 Position control switching delay - 20 Position control switching level - 21 Position control switching hysteresis - 22 Position gain switching imme - - 23 Speed control switching aclay - - 24 Speed control switching aclay - - 25 Speed control switching aclay - - 26 Speed control switching aclay - - 27 Torque control switching aclay - - 26 Speed control switching aclay - - 27 Torque control switching aclay - - 30 Torque control switchi		10	v	-		
selection - - 12 Speed feed-forward gain - - 13 Speed feed-forward gain - - 14 Torque feedforward gain • - 15 Torque feed-forward gain • - 16 Torque feed-forward gain • • 17 DI function GAIN-SWITCH switching mode • - 18 Position control switching delay • - 20 Position control switching hysteresis • - 21 Position control switching hysteresis • - 22 Position gain switching ime • - 23 Speed control switching ime • - 24 Speed control switching ime • - 25 Speed control switching ime - - 26 Speed control switching ime - - 27 Torque control switching ime - - 26 Speed control switching ime - - 27 Torque control switching ime - - <td></td> <td>10</td> <td>2 1</td> <td>•</td> <td>•</td> <td>-</td>		10	2 1	•	•	-
12 Speed feed-forward gain - - 13 Speed feed-forward filtering time - - 14 Torque feedforward gain • - 15 Torque feed-forward gain • - 16 Torque feed-forward gain • - 17 DI function GAIN-SWITCH switching action selection • - 18 Position control switching mode • - 19 Position control switching level • - 20 Position control switching level • - 21 Position control switching level • - 23 Speed control switching imode • - 24 Speed control switching imode - - 25 Speed control switching imode - - 26 Speed control switching imode - - 27 Torque control switching imode - - 26 Speed control switching imode - - 27 Torque control switching imode - - 28 Torque co		11	Speed feedforward	٠	-	-
13 Speed feed-forward • - - 14 Torque feedforward • • - 15 Torque feedforward • • - 16 Torque feed-forward • • - 17 DI function GAIN- • • - 18 Position control • • - - 18 Position control • • - - 20 Position control • • - - 21 Position control • • - - 21 Position control • • - - 23 Speed control switching • • - - - 23 Speed control switching - • - - - - 24 Speed control switching - - • - - - - - - -			selection			
filtering time - 14 Torque feedforward gain - 15 Torque feedforward gain - 16 Torque feedforward gain - 17 DI function GAIN-SWITCH switching action selection - 18 Position control switching level - 20 Position control switching level - 21 Position control switching level - 21 Position gain switching imme - 22 Position gain switching imme - 23 Speed control switching imme - 24 Speed control switching imme - 25 Speed control switching imme - 26 Speed control switching imme - 27 Torque control switching imme - 26 Speed control switching imme - 27 Torque control switching imme - 30 Torque control switching imme - 31 Observer cut-off imme - 32 Observer cut-off imme - 33 Observer coefficient of imme -				•	-	-
14 Torque feedforward gain • • 15 Torque feedforward gain • • 16 Torque feed-forward filtering time • • 17 DI function GAIN-SWITCH switching action selection • • 18 Position control switching mode • • • 19 Position control switching level • • • 20 Position control switching hysteresis • • • 21 Position gain switching time • • • 22 Position gain switching time • • • • 23 Speed control switching ande • • • • 24 Speed control switching ande • • • • 25 Speed control switching ande • • • • 26 Speed control switching ande • • • • 26 Speed control switching ande • • • • 27 Torque control switching ande • • •<		13		٠	-	-
selection • - 15 Torque feed-forward gain • • 16 Torque feed-forward filtering time • • 17 DI function GAIN-SWITCH switching action selection • • 18 Position control switching mode • • • 19 Position control switching level • • • 20 Position control switching level • • • 21 Position control switching level • • • 22 Position gain switching mode • • • 23 Speed control switching mode • • • 24 Speed control switching mode • • • 25 Speed control switching mode • • • 26 Speed control switching mode • • • 27 Torque control switching mode • • • 28 Torque control switching level • • • 30 Torque control switching level • •						
15 Torque feed-forward gain • • 16 Torque feed-forward filtering time • • 17 DI function GAIN-SWITCH switching action selection • • 18 Position control switching mode • • • 19 Position control switching level • • • • 20 Position control switching level • • • • • 21 Position control switching itme • • • • • • 21 Position gain switching itme • • • • • • 23 Speed control switching itme • • • • • • 24 Speed control switching itevel •		14		•	•	-
16 Torque feed-forward • • • 17 DI function GAIN- SWITCH switching • • 18 Position control • • • • 18 Position control • • • • 19 Position control • • • • 20 Position control • • • • 21 Position control • • • • 21 Position control • • • • 23 Speed control switching • • • • • 23 Speed control switching - • • • • 24 Speed control switching - • • • • • 26 Speed control switching - • • • • • • • • • • • • • • <td></td> <td>15</td> <td></td> <td>-</td> <td>-</td> <td></td>		15		-	-	
filtering time i 17 DI function GAIN-SWITCH switching action selection 18 Position control switching mode 19 Position control switching delay 20 Position control switching level 21 Position control switching level 21 Position control switching hysteresis 22 Position gain switching imme 23 Speed control switching delay 24 Speed control switching imme 25 Speed control switching ilevel 26 Speed control switching ilevel 27 Torque control switching ilevel 28 Torque control switching ilevel 30 Torque control switching ilevel 30 Torque control switching ilevel 31 Observer Enable 32 Observer cut-off ilequency 33 Observer coefficient of inertia 38 Current response trim inertia 38 Current response trim inertia 34 Observer coefficient of inertia 34 Observer coefficient of inertia 34 Observer coefficient of inertia 38 Curren					-	-
SWITCH switching 18 Position control switching mode • • 19 Position control 20 Position control switching delay • • 20 Position control switching level • • 21 Position control switching hysteresis • • 22 Position gain switching • 23 Speed control switching • 24 Speed control switching - 25 Speed control switching - 26 Speed control switching - 27 Torque control - 26 Speed control switching - - 27 Torque control - - 28 Torque control - - 30 Torque control - - 31 Observer cut-off • • 32 Observer cut-off		16		•	•	-
action selection • 18 Position control 19 Position control 20 Position control 21 Position control 22 Position control 24 Position gain switching • 23 Speed control switching - 24 Speed control switching - 25 Speed control switching - 26 Speed control switching - 27 Torque control 28 Torque control - 29 Torque control - 30 Torque control - 30 Torque control - 31 Observer cut-off • 33 Observer phase • • 38 Current response trim • • • 38 Current response trim • • • 39 Tostion command - -		17	DI function GAIN-	٠	٠	-
18 Position control • • - 19 Position control • • - 20 Position control • • - 20 Position control • • - 21 Position control • • - 21 Position control • • - 22 Position gain switching • • - 23 Speed control switching - • - 24 Speed control switching - • - 25 Speed control switching - • - 26 Speed control switching - • - 27 Torque control - • • 28 Torque control - - • 30 Torque control - - • 31 Observer cut-off • • • 32 Observer			SWITCH switching			
switching mode 19 Position control 20 Position control 21 Position control 21 Position control 21 Position control 21 Position control 22 Position gain switching 23 Speed control switching - 23 Speed control switching - 24 Speed control switching - 25 Speed control switching - 26 Speed control switching - 27 Torque control - 26 Speed control switching - - 27 Torque control - - 28 Torque control - - 29 Torque control - - 30 Torque control - - 31 Observer phase • • 33 Observer phase • • 3						
19 Position control switching delay 20 Position control switching level 21 Position control switching hysteresis 22 Position gain switching itime 23 Speed control switching regime 24 Speed control switching regime 25 Speed control switching relevel 26 Speed control switching relevel 26 Speed control switching relevel 26 Speed control switching relevel 27 Torque control switching relevel 28 Torque control switching relevel 29 Torque control switching relevel 30 Torque control switching hysteresis 31 Observer cut-off requency 33 Observer phase releven 34 Observer cut-off requency 33 Observer coefficient of requency 34 Position command releven 34 Position command releven 41		18		٠	٠	-
switching delay 20 Position control switching level 21 Position control switching hysteresis 22 Position gain switching image 23 Speed control switching image 24 Speed control switching image 25 Speed control switching image 26 Speed control switching image 27 Torque control switching image 28 Torque control switching image 29 Torque control switching image 29 Torque control switching image 30 Torque control switching image 30 Torque control switching image 31 Observer cut-off image 32 Observer cut-off image 33 Observer phase image 34 Observer coefficient of imertia 38 Current response trim image 38 Current response trim image 40 Position command image 41 Position command image 42 Position command image		10		-	-	
20 Position control switching level 21 Position control switching hysteresis 22 Position gain switching itime 23 Speed control switching itime 23 Speed control switching itime 24 Speed control switching itevel 25 Speed control switching itevel 26 Speed control switching itevel 27 Torque control switching itevel 28 Torque control switching itevel 29 Torque control switching itevel 30 Torque control switching itevel 30 Torque control switching itevel 30 Torque control switching hysteresis 31 Observer cut-off ifequency 33 Observer phase compensation time 34 Observer coefficient of inertia 38 Current response trim inertia 38 Current response trim inertia 31 Position command smoothing filtering 34 Observer coefficient of inertia		19		•	•	-
switching level 21 Position control switching hysteresis 22 Position gain switching imme 23 Speed control switching imme 23 Speed control switching imme 24 Speed control switching imme 25 Speed control switching imme 26 Speed control switching imme 27 Torque control switching imme 28 Torque control switching imme 29 Torque control switching imme 29 Torque control switching imme 30 Torque control switching imme 30 Torque control switching imme 31 Observer Enable 32 Observer cut-off imme 33 Observer phase imme 34 Observer coefficient of imme 38 Current response trim imme 40 Position command imme 41 Position command imme 42 Position command imme		20		•	•	-
21 Position control switching hysteresis 22 Position gain switching itime 23 Speed control switching itime 23 Speed control switching itime 24 Speed control switching itime 25 Speed control switching itevel 26 Speed control switching itevel 27 Torque control switching itevel 28 Torque control switching itevel 29 Torque control switching itevel 30 Torque control switching itevel 31 Observer full 32 Observer cut-off ifequency 33 Observer coefficient of inertia 38 Current response trim inertia 38 Current response trim inertia 34 Position command inertia 41 Position command inertia 42 Position command inertia		20		_	-	
22 Position gain switching time • • - 23 Speed control switching mode - • - 24 Speed control switching delay - • - 25 Speed control switching level - • - 26 Speed control switching back lag - • - 27 Torque control switching node - - • 28 Torque control switching level - - • 30 Torque control switching level - - • 30 Torque control switching hysteresis - - • 31 Observer cut-off frequency • • • 33 Observer coefficient of inertia • • • 34 Observer coefficient of inertia • • • 38 Current response trim factor • • • 40 Position command smoothing filtering • - - 41 Position command average filtering • - - <td></td> <td>21</td> <td></td> <td>٠</td> <td>٠</td> <td>-</td>		21		٠	٠	-
time 23 Speed control switching mode - 24 Speed control switching delay - 25 Speed control switching level - 26 Speed control switching level - 26 Speed control switching level - 27 Torque switching mode - 28 Torque switching delay - 29 Torque switching level - 30 Torque switching hysteresis - 31 Observer Enable • 32 Observer phase compensation time • 33 Observer coefficient of inertia • 38 Current response trim factor • 40 Position command smoothing filtering - 41 Position command average filtering - 42 Position command -						
23 Speed control switching mode - • - 24 Speed control switching delay - • - 25 Speed control switching level - • - 26 Speed control switching back lag - • - 27 Torque switching mode - • - 28 Torque switching level - - • 30 Torque switching level - - • 30 Torque switching hysteresis - - • 31 Observer frequency 0 • • • 33 Observer cut-off inertia • • • • 34 Observer coefficient of inertia • • • • 38 Current response trim factor • • • • • 40 Position command average filtering • - - • • 42 Position command • - - -		22	Position gain switching	٠	٠	-
mode - 24 Speed control switching delay - • - 25 Speed control switching level - • - 26 Speed control switching back lag - • - 27 Torque switching mode - - • 28 Torque switching delay - - • 29 Torque switching level - - • 30 Torque switching level • - • 31 Observer Enable • • • 32 Observer phase compensation time • • • 34 Observer coefficient of inertia • • • 38 Current response trim factor • • • 40 Position command smoothing filtering • - - 41 Position command average filtering • - - 42 Position command - -						
24 Speed control switching delay - • - 25 Speed control switching level - • - 26 Speed control switching back lag - • - 27 Torque switching mode control switching delay - - • 29 Torque switching level control switching level - - • 30 Torque switching hysteresis • - • • 31 Observer Enable • • • • 33 Observer phase compensation time • • • • 34 Observer coefficient of inertia • • • • 38 Current response trim factor • • • • • 40 Position command average filtering • - - - - 42 Position command • - - - -		23		-	٠	-
1 0 25 Speed control switching level - 26 Speed control switching back lag - 27 Torque control switching mode - 28 Torque control switching delay - 29 Torque control switching level - 30 Torque control switching hysteresis - 31 Observer Enable • • 32 Observer cut-off frequency • • 33 Observer phase compensation time • • 34 Observer coefficient of inertia • • 38 Current response trim factor • • 40 Position command smoothing filtering • - 41 Position command average filtering • - 42 Position command • -		24		_	•	-
level - 26 Speed control switching back lag - 27 Torque control switching mode - 28 Torque control switching delay - 29 Torque control switching level - 30 Torque control switching hysteresis - 31 Observer Enable • 32 Observer cut-off frequency • 33 Observer phase compensation time • 34 Observer coefficient of inertia • 38 Current response trim factor • 40 Position command smoothing filtering - 41 Position command average filtering - 42 Position command -		24		_	•	_
26 Speed control switching back lag - • - 27 Torque control switching mode - • • 28 Torque control switching delay - • • 29 Torque control switching level - • • 30 Torque control switching hysteresis - • • 31 Observer Enable • • • 32 Observer phase compensation time • • • 33 Observer coefficient of inertia • • • 38 Current response trim factor • • • 40 Position command sworthing filtering • • • 41 Position command average filtering • • • 42 Position command • • • •		25	Speed control switching	-	٠	-
back lag 27 Torque control switching mode 28 Torque control switching delay 29 Torque control switching level 30 Torque control switching hysteresis 31 Observer Enable 32 Observer phase component of frequency 33 Observer phase component of inertia 34 Observer coefficient of inertia 38 Current response trim factor 40 Position command swerage filtering 41 Position command average filtering 42 Position command		-	level			
27 Torque control switching mode - - • 28 Torque control switching delay - - • 29 Torque control switching level - - • 30 Torque control switching hysteresis - - • 31 Observer Enable • • • 32 Observer cut-off frequency • • • 33 Observer coefficient of inertia • • • 34 Observer coefficient of inertia • • • 38 Current response trim factor • • • 40 Position command swerage filtering • - - 41 Position command swerage filtering • - - 42 Position command to command • - -		26		-	٠	-
switching mode 28 Torque control switching delay 29 Torque control switching level 30 Torque control switching level 30 Torque control switching hysteresis 31 Observer Enable • 32 Observer cut-off frequency 33 Observer phase compensation time 34 Observer coefficient of inertia 38 Current response trim factor 40 Position command smoothing filtering 41 Position command average filtering 42 Position command		a-				
28 Torque control switching delay - - • 29 Torque control switching level - - • 30 Torque control switching hysteresis - - • 31 Observer Enable • • • 32 Observer cut-off frequency • • • 33 Observer phase compensation time • • • 34 Observer coefficient of inertia • • • 38 Current response trim factor • • • 40 Position command smoothing filtering • - - 41 Position command average filtering • - - 42 Position command • - -		27		-	-	•
switching delay 29 Torque control switching level 30 Torque control switching hysteresis 31 Observer Enable • 32 Observer cut-off frequency • 33 Observer phase observer phase observer cut-off frequency • 34 Observer coefficient of inertia • 38 Current response trim factor • 40 Position command smoothing filtering • 41 Position command observer • 42 Position command •		20				
29 Torque control - - • 30 Torque control - - • 31 Observer Enable • • • • 32 Observer cut-off • • • 33 Observer phase • • • 34 Observer coefficient of • • • • 38 Current response trim • • • • 40 Position command • - - 41 Position command • - - 42 Position command • - -		2ð	1	-	-	•
switching level 30 Torque control switching hysteresis 31 Observer Enable • 32 Observer cut-off frequency 33 Observer phase compensation time 34 Observer coefficient of inertia 38 Current response trim factor 40 Position command smoothing filtering 41 Position command average filtering 42 Position command		29		-	-	•
30 Torque control switching hysteresis - - • 31 Observer Enable • • • • 32 Observer cut-off frequency • • • • 33 Observer phase compensation time • • • • • 34 Observer coefficient of inertia • • • • • 38 Current response trim factor • • • • • 40 Position command smoothing filtering • - - - - 41 Position command 4 - - - - - - 42 Position command 5 - - - - - -			•			
switching hysteresis 31 Observer Enable • • 32 Observer cut-off frequency • • 33 Observer phase compensation time • • 34 Observer coefficient of inertia • • 38 Current response trim factor • • 40 Position command smoothing filtering • - 41 Position command average filtering • - 42 Position command • -		30		-	-	٠
32 Observer cut-off • • • 33 Observer phase • • • • 33 Observer phase • • • • • 34 Observer coefficient of • • • • • • 38 Current response trim • • • • • • 40 Position command • - - - - 41 Position command • - - - - 42 Position command • - - -			switching hysteresis			
frequency 33 Observer phase compensation time 34 Observer coefficient of inertia 38 Current response trim factor 40 Position command smoothing filtering 41 Position command average filtering 42 Position command		31	Observer Enable	•	•	•
33 Observer phase compensation time • • • 34 Observer coefficient of inertia • • • • 38 Current response trim factor • • • • • 40 Position command smoothing filtering • - - - 41 Position command average filtering • - - 42 Position command • - -		32	Observer cut-off	٠	٠	٠
compensation time 34 Observer coefficient of inertia 38 Current response trim factor 40 Position command smoothing filtering 41 Position command average filtering 42 Position command				ļ		
34 Observer coefficient of inertia 38 Current response trim factor 40 Position command smoothing filtering 41 Position command average filtering 42 Position command		33	1	•	•	•
inertia 38 Current response trim factor 40 Position command smoothing filtering 41 Position command average filtering 42 Position command		24		-		-
38 Current response trim factor 40 Position command smoothing filtering 41 Position command average filtering 42 Position command •		54		•	•	•
factor 40 Position command smoothing filtering 41 Position command average filtering 42 Position command		38		٠	٠	٠
40 Position command smoothing filtering • - - 41 Position command average filtering • - - 42 Position command • - -						
41Positioncommand•-average filtering42Positioncommand•-		40	Position command	٠	-	-
average filtering 42 Position command •						
42 Position command •		41		•	-	-
		40				
average mitering 2		42		•	-	-
			average mitering 2	I	I	I

Gro	00	Adaptive filter mode	•	•	•
up	01	Adaptive filtered load	٠	٠	٠
F03		mode			
En	02	1st trap frequency	٠	٠	٠
han		(manual)			
ced	03	1st trap width	•	•	٠
Per	04	1st trap depth	•	•	•
for	05	2nd trap frequency	٠	٠	•
ma		(manual)			
nce	06	2nd trap width	•	٠	٠
Gro	07	2nd trap depth	•	•	٠
up	08	3rd trap frequency	•	•	٠

09	3rd trap width	٠	٠	٠
10	3rd trap depth	٠	٠	٠
10	4th trap frequency	•	•	•
12	4th trap width	•	•	•
13	4th trap depth	٠	٠	٠
17	Post Torque Filter	٠	٠	٠
20	1st damping frequency	٠	•	-
	(low frequency vibration			
	control)			
21	1st damping filter setting	٠	٠	-
22	The 2nd damping		•	
22	frequency (low	•	•	-
	1 5 (
	frequency vibration			
	control)			
23	2nd damping filter	٠	•	-
	setting			
29	Resonance point 1	٠	•	٠
	frequency			
30	Resonance point 1	•	•	•
50	frequency width	-	-	-
31		-	-	-
51	From Provide P	•	•	•
	amplitude			
32	Resonance point 2	٠	•	٠
	frequency			
33	Resonance point 2	٠	٠	٠
	frequency width			
34	Resonance point 2	٠	•	•
77	F	۱ آ		ľ
25		-	-	
35	Gravity load	•	•	-
	compensation value			
36	Load compensation	٠	٠	-
	storage options			
37	Positive friction torque	•	•	-
	compensation			
38	Reverse friction torque	•	•	_
50	compensation	•	•	-
20				
39	Viscous friction	٠	٠	-
	compensation			
41	Friction compensation	٠	•	-
	time constant			
42	Friction compensation	•	•	-
	low speed range			
44	Parameter recognition	٠	•	-
	speed value			
45	Parameter recognition	•	•	
75	acceleration time	•	•	-
16	D acceleration time			
46	Parameter identification	•	•	-
	deceleration time	L		
47	Parameter recognition	٠	٠	-
	mode	L		L
48	Angle discrimination	٠	٠	٠
	and pole-seeking			
	currents			
49	Magnetic pole phase	•		
77	finding method			
50	finding method	-	-	-
50	Micro-action phase	•	•	•
	seeking action threshold	L	L	L
51	Micro-motion phase-	•	٠	٠
	seeking stationary			
	threshold			
52	Direct positioning of	٠	٠	٠
	phase angle	-		
54	Closed-loop pre-	-	-	-
54		•	•	•
	positioning phase			
	finding fast and slow			
55	Phase-seeking movable	•	٠	•
	range	L	L	
56	Magnetic pole phase	٠	٠	٠
	seeking line sequence			
	identification switch			
57	Allowable range of	٠	٠	٠
	phase finding error			
58	Finding the threshold of	•	-	-
50				
	the opposite direction			
50	flying car decision			
59	Overspeed	٠	•	•
	determination threshold			
	in phase search	L		
60	Hall U1V0W1	٠	٠	٠
	corresponds to the			
	electrical angle			
61	Hall U1V0W0	٠	٠	٠
	corresponds to the			

	(2	electrical angle	_		
	62	Hall U1V1W0 corresponds to the	•	•	•
		electrical angle			
	63	Hall U0V1W0	٠	٠	٠
		corresponds to the			
	64	electrical angle Hall U0V1W1	•	•	•
	0.	corresponds to the	_	-	-
		electrical angle			
	65	Hall U0V0W1 corresponds to the	•	•	•
		corresponds to the electrical angle			
	66	Mode 3 phase seeking	٠	٠	٠
		current amplitude			
	69	Model Tracking Options	٠	-	-
	70 71	Model tracking gain Model tracking	•	-	-
	/1	compensation factor	•	-	-
	72	Model tracking speed	٠	-	-
		compensation gain			
	73	Model tracking torque	•	-	-
	74	compensation gain 1 Model tracking torque	•	_	-
	74	compensation gain 2	•	_	-
	75	Model anti-resonance	٠	-	-
		frequency			
	76	Model residual vibration	•	-	-
	77	frequency Model delay bandwidth	•	-	-
	,,	parameters	-		
	78	Model delay	٠	-	-
		compensation			
	81	parameters	•		
	01	Second model tracking gain	•	-	-
	82	Second model tracking	٠	-	-
		compensation factor			
	83	Is the model vibration	-	-	-
	84	effective Vibration suppression	•	-	-
	04	frequency point	•	_	-
	85	Vibration suppression	٠	-	-
		compensation factor			
	00	First electron gear	٠	-	-
		molecule (32 bits)			
	02	Electronic gear	•	-	-
	04	denominator (32 bits) Second electron gear	•		
	04	molecule (32 bits)	•	-	-
	06	Pulse output frequency	٠	-	-
		division ratio numerator			
	0.0	(32 bits)			
	08	Pulse output divider than denominator (32 bits)	•	-	-
	10	Position deviation	•	-	-
		clearance function			
	11	Deviation clear input	٠	-	-
Gro	10	setting Pulse disable input	-		
up F04	12	Pulse disable input setting	•	-	-
F04 Pos	13	Electronic gear ratio	•	-	-
itio		switching delay setting	<u> </u>		
n	31	Position comparison	•	-	-
Со	32	output mode Position 1 (32 bits)	•	-	-
nte	34	Position 2 (32 bits)	•	-	-
		Position 3 (32 bits)	•	-	-
	36				
	36 38	Position 4 (32 bits)	٠	-	-
	38 40	Position 4 (32 bits) Signal validity time1	٠	-	-
	38 40 41	Position 4 (32 bits) Signal validity time1 Signal validity time2	•	-	-
	38 40 41 42	Position 4 (32 bits) Signal validity time1 Signal validity time2 Signal validity time3	• •	-	-
	38 40 41 42 43	Position 4 (32 bits) Signal validity time1 Signal validity time2 Signal validity time3 Signal validity time4	• • •		
	38 40 41 42	Position 4 (32 bits) Signal validity time1 Signal validity time2 Signal validity time3	• •		
ntr ol	38 40 41 42 43 44 46	Position 4 (32 bits) Signal validity time1 Signal validity time2 Signal validity time3 Signal validity time4 Display delay Multi-segment position execution method	• • •		
	38 40 41 42 43 44	Position 4 (32 bits) Signal validity time1 Signal validity time2 Signal validity time3 Signal validity time4 Display delay Multi-segment position execution method Multi-segment position	• • •		
	38 40 41 42 43 44 46 47	Position 4 (32 bits) Signal validity time1 Signal validity time2 Signal validity time3 Signal validity time4 Display delay Multi-segment position execution method Multi-segment position command type	• • • • •		-
	38 40 41 42 43 44 46	Position 4 (32 bits) Signal validity time1 Signal validity time2 Signal validity time3 Signal validity time4 Display delay Multi-segment position execution method Multi-segment position	• • • •		-

49	Multi-segment position	٠	-	-
	starting segment serial number			
50	Multi-segment position	٠	-	-
	end segment serial			
	number			
51	Multi-segment position	٠	-	-
	pause and restart			
	remaining segment			
	processing			
52	Interrupt length	٠	-	-
	execution setting			
53	Interrupting long	٠	-	-
	electronic gear selection			
54	Interrupt positioning	•	-	-
	instruction direction			
55	selection	-		
55	Interrupt length setting	•	-	-
30	Clear deviation setting	•	•	•
57	when pulse is disabled Pause selection during	•		•
57	0	•	•	•
58	contour position control	•		•
28	Contour position pause	•	•	•
59	resume selection Motor one circle	•		
59		•	-	-
60	maximum equal fraction			
00	Non-absolute system position feedback	•	•	•
	initialization selection			
61	Positioning completion	•	-	-
01	range	•	-	-
62	Positioning completion	•	_	-
02	output setting	•	-	-
63	Positioning completion	٠	-	-
00	hold time	-		
64	Positioning proximity	٠	-	-
	range	-		
65	Interrupt positioning	٠	-	-
	completion hold time			
66	Interrupt positioning	٠	-	-
	displacement amount			
	(32 bits)			
68	Interrupt positioning	٠	-	-
	maximum speed			
70	Interrupted positioning	٠	-	-
	acceleration time			
71	Interrupt positioning	٠	-	-
	deceleration time			
0.2		r –		
00	Speed command source	-	٠	-
01	Speed command setting	-	•	-
	value			
02	Tap speed setting value	-	٠	-
06	Torque limiting source	٠	٠	-
07	Internal torque limiting	•	•	-
0.0	in forward rotation			
08	Reverse internal torque	•	•	-
0.2	limiting			
09	External torque limiting	•	•	-

01	Speed command setting	-	•	-
	value			
02	Tap speed setting value	-	•	-
06	Torque limiting source	٠	٠	-
07	Internal torque limiting	٠	٠	-
	in forward rotation			
08	Reverse internal torque	٠	٠	-
	limiting			
09	External torque limiting	٠	٠	-
	on the forward side			
10	External torque limiting	٠	٠	-
	on the reverse side			
12	Acceleration time 1	-	٠	•
13	Deceleration time1	-	٠	٠
14	Acceleration time 2	-	٠	٠
15	Deceleration time2	-	٠	٠
16	Acceleration time 3	-	٠	٠
17	Deceleration time3	-	٠	٠
18	Acceleration time 4	-	٠	٠
19	Deceleration time4	-	٠	٠
21	Zero speed clamp	-	•	٠
	function			
22	Zero Speed Clamp	-	٠	٠
	Threshold			
23	Fast deceleration time	٠	٠	٠
24	Torque command source	-	-	٠
27	Torque command	-	-	٠
	keypad setpoint			
28	Speed limit source	-	-	٠
	selection for torque			
	control			
29	Internal positive speed	-	-	٠
	02 06 07 08 09 10 12 13 14 15 16 17 18 19 21 22 23 24 27 28	value 02 Tap speed setting value 06 Torque limiting source 07 Internal torque limiting in forward rotation 08 Reverse internal torque limiting 09 External torque limiting on the forward side 10 External torque limiting on the reverse side 12 Acceleration time 1 13 Deceleration time 2 15 Deceleration time 2 16 Acceleration time 3 17 Deceleration time 4 19 Deceleration time 4 19 Deceleration time 4 21 Zero speed clamp function 22 Zero Speed Clamp Threshold 23 Fast deceleration time 24 Torque command source 27 Torque command source 27 Torque command source 27 Speed limit source selection for torque control	value 02 Tap speed setting value 06 Torque limiting source 07 Internal torque limiting in forward rotation • 08 Reverse internal torque 10 External torque limiting 09 External torque limiting 010 External torque limiting 02 Acceleration time 1 11 Deceleration time 2 12 Acceleration time 2 13 Deceleration time 2 14 Acceleration time 2 15 Deceleration time 3 16 Acceleration time 4 17 Deceleration time 4 18 Acceleration time 4 21 Zero speed clamp function 123 Fast deceleration time 23 Fast deceleration time 23 Fast deceleration time 23 Fast deceleration time 24 Torque command source 27 Torque command source 28 Speed limit source selection for torque control	value - 02 Tap speed setting value - 06 Torque limiting source • 07 Internal torque limiting • in forward rotation • • 08 Reverse internal torque • • 09 External torque limiting on the forward side • • 10 External torque limiting on the reverse side • • 12 Acceleration time 1 - • 13 Deceleration time 2 - • 14 Acceleration time 2 - • 15 Deceleration time 3 - • 16 Acceleration time 4 - • 17 Deceleration time 4 - • 19 Deceleration time 4 - • 21 Zero speed clamp function - • 22 Zero Speed Clamp Threshold - • 23 Fast deceleration time • • 24 Torque command source - - 27 Torque command so

		1		
30	limit Internal negative speed	-	-	•
	limit			
31	Hard limit torque limiting	•	•	•
32	Hard limit torque limit detection time	٠	•	٠
33	Speed command serial	-	•	-
	number selection method			
34	Paragraph 1 speed	-	•	-
35	Paragraph 1 acceleration	-	•	-
36	and deceleration options Paragraph 2 speed	-	•	-
37	Paragraph 2 acceleration	-	•	-
38	and deceleration options Paragraph 3 speed	-	•	-
39	Paragraph 3 acceleration	-	٠	-
40	and deceleration options Paragraph 4 speed	-	•	-
40	Paragraph 4 acceleration	-	•	-
42	and deceleration options			
42 43	Paragraph 5 speed Paragraph 5 acceleration	-	•	-
44	and deceleration options		<u> </u>	
44	Paragraph 6 speed Paragraph 6 acceleration	-	•	-
	and deceleration options			
46	Paragraph 7 speed Paragraph 7 acceleration	-	•	-
	and deceleration options		_	
48	Paragraph 8 speed Paragraph 8 acceleration	-	•	-
72	and deceleration options		•	_
50 51	Paragraph 9 speed Paragraph 9 acceleration	-	•	-
51	and deceleration options	-	•	-
52	Paragraph 10 speed	-	•	-
53	Paragraph 10 acceleration and	-	•	-
54	deceleration options			
54 55	Paragraph 11 speed Paragraph 11	-	•	-
	acceleration and			
56	deceleration options Paragraph 12 speed	-	•	-
57	Paragraph 12	-	٠	-
	acceleration and deceleration options			
58	Paragraph 13 speed	-	٠	-
59	Paragraph 13 acceleration and	-	•	-
	deceleration options			
60 61	Paragraph 14 speed Paragraph 14	-	•	-
01	acceleration and			
62	deceleration options Paragraph 15 speed	-	•	-
63	Paragraph 15	-	•	-
	acceleration and deceleration options			
64	Paragraph 16 speed	-	•	-
65	Paragraph 16 acceleration and	-	•	-
	deceleration options			
70	Speed consistent signal width	-	٠	-
71	Speed reaches specified	•	•	٠
73	value Motor rotation signal	•	•	•
	speed threshold			
74	Zero Speed Signal Output Threshold	•	•	٠
75	Torque reaches specified	٠	٠	٠
76	value Torque arrival detection	•	•	•
	width			

Gro up	00	Number of active DI terminals	•	•	•
F06 Dig	01	DI1 terminal function selection	٠	٠	•

ital	02	DI2 terminal function	•	•	•
Inp	02	selection	•	•	•
uts and	03	DI3 terminal function selection	•	٠	٠
Out put	04	DI4 terminal function selection	•	•	•
s	05	DI5 terminal function selection	•	٠	٠
	11	DI1 terminal logic selection	•	٠	٠
	12	DI2 terminal logic selection	٠	٠	٠
	13	DI3 terminal logic selection	•	٠	٠
	14	DI4 terminal logic selection	•	•	•
	15	DI5 terminal logic selection	•	•	•
	20	Number of effective DO terminals	•	٠	٠
	21	DO1 terminal function selection	•	٠	٠
	22	DO2 terminal function selection	•	٠	٠
	26	DO6 terminal function selection	•	٠	٠
	31	DO1 terminal logic level selection	•	٠	٠
	32	DO2 terminal logic level selection	•	٠	٠
	41	FunIN1 signal unassigned state (HEX) DI1-DI15	•	•	•
	42	FunIN2 signal unassigned status (HEX) DI16-DI31	•	•	•
	43	FunIN3 signal unassigned status (HEX) DI32-DI47	•	٠	٠
	44	FunIN4 signal unassigned status (HEX) DI48-DI63	•	•	•
	53	Servo OFF delay time after brake action at zero speed	•	٠	٠
	54	Speed setting for brake operation in operation	٠	٠	٠
	55	Waiting time for brake action in operation	•	•	•
	56	Dynamic Braking (DB) function selection	•	٠	٠
	59	Z pulse width adjustment	•	٠	٠
	61	General DI filtering options	•	٠	٠
	62	High-speed DI filtering setting	•	٠	٠

	00	AI1 minimum input	•	٠	•
	01	AI1 minimum value	٠	٠	٠
		corresponds to the set			
		value			
	02	AI1 maximum input	٠	٠	٠
	03	AI1 maximum value	٠	٠	٠
Gro		corresponds to the set			
up		value			
F07	04	AI1 zero point trim	٠	٠	•
An	05	AI1 deadband setting	٠	•	•
alo	06	AI1 input filtering time	٠	٠	٠
g	07	AI1 function selection	٠	٠	•
Inp	10	AI2 minimum input	٠	•	•
uts	11	AI2 minimum value	•	٠	٠
and		corresponds to the set			
Out		value			
put	12	AI2 maximum input	٠	٠	•
s	13	AI2 maximum value	٠	٠	•
		corresponds to the set			
		value			
	14	AI2 zero point trim	٠	٠	٠
	15	AI2 deadband setting	٠	٠	•
	16	AI2 input filtering time	٠	٠	٠
	17	AI2 function selection	٠	٠	•

	20	AI set 100% speed	•	٠	•
	21	AI set 100% torque	٠	٠	٠
	30	AO1 signal selection	٠	٠	٠
		(non-standard support)			
	31	AO1 bias amount	٠	٠	٠
		voltage			
	32	AO1 multiplier	٠	٠	٠
	33	AO1 output data setting	٠	٠	٠
	34	AO2 signal selection	•	•	•
	35	(non-standard support) AO2 bias amount	•	•	•
	35	voltage	•	•	•
	36	AO2 multiplier	٠	٠	•
	37	AO2 output data setting	٠	٠	٠
	0.0	• · · · ·			
	00	Instant stop non-stop protection switch	•	•	•
	01	Instant stop non-stop	•	•	•
	01	deceleration time	•	•	•
	02	Servo OFF stop method	٠	٠	٠
	03	No.2 Fault stop mode	٠	٠	٠
		selection			
	04	Overtravel input setting	٠	٠	٠
	05	Stopping method in case	•	٠	•
	06	of overtravel Power input phase loss	•	•	
	00	protection selection		-	•
	07	Power output out-of-	٠	٠	٠
		phase protection options			
	08	Emergency stop torque	٠	٠	•
	09	Flying car protection	٠	٠	•
	10	function	_	-	
	10 11	Overload warning value Motor overload	•	•	•
	11	Motor overload protection factor	•	•	•
	12	Undervoltage protection	•	•	•
		point			
	13	Overspeed fault point	•	٠	•
	14	Maximum pulse input	•	-	-
	15	frequency Short aircuit to ground	-	•	
	15	Short circuit to ground detection protection	•	•	•
		options			
Gro	16	Bus-type encoder	٠	٠	٠
up		interference detection			
F08	17	delay			
Fau lt	17 18	Pulse input filter setting High-speed pulse input	•	-	-
Pro	10	filtering	•	•	•
tect	22	Excessive speed	٠	•	-
ion		deviation threshold			
Gro	23	Torque saturation	٠	٠	٠
up		timeout duration			
	24	Absolute system setting	٠	٠	٠
	26	Stopping method for emergency stop (quick	-	-	-
		stop)			
	27	Stopping method of	-	-	-
		pause			
	28	Software Overcurrent	٠	٠	•
	20	Options	_	-	
	29	Not ready to handle when servo enabled	•	•	•
	30	Mains power failure	•	•	•
		(E.46) detection setting			
	31	Undervoltage (E.23)	٠	٠	٠
	22	detection option			
	32	Undervoltage (E.23) and mains power failure	•	•	•
		(E.46) storage options			
	34	Soft limit detection	٠	٠	•
		setting			
	35	Positive soft limit (32	٠	٠	•
	27	bits)		6	
	37	Negative soft limit (32 bits)	•	٠	•
	39	Fault reset timing	•	•	•
	40	Power failure prompt	•	•	•
		storage function			
	41	Abnormality detection	٠	٠	٠
		switch			

	00	Servo axis address	٠	٠	٠
		number			
	01	Modbus baud rate	٠	٠	٠
	02	Modbus data format	٠	٠	٠
	03	Communication timeout	٠	٠	٠
	04	Communication	٠	٠	٠
		response time delay			
	05	Communication control	٠	٠	٠
		DI enable setting 1			
	06	Communication control	٠	•	٠
		DI enable setting 2			
	07	Communication control	٠	٠	٠
		DI enable setting 3			
	08	Communication control	٠	٠	٠
		DI enable setting 4			
	09	Communication control	•	٠	٠
		DO enable setting 1			
	10	Communication control	٠	٠	٠
Gro		DO enable setting 2			
up	11	Communication setting	٠	٠	٠
F09		command value			
Co		maintenance time			
mm	12	CAN communication	٠	٠	٠
uni		baud rate:			
cati	13	Electronic gear ratio	٠	٠	٠
on		selection during			
con trol	14	communication control			
sett	14	Speed command unit	•	•	•
ing		selection during			
mg	15	communication control Acceleration unit	-	-	-
	15		•	•	•
		selection during communication control			
	16	Bus communication	•		
	10	fault detection options	•	•	•
	17	Absolute system origin	•		•
	1 /	completion flag storage	•	•	•
		selection			
	18	EtherCAT Servo Site	•	•	•
	10	Number	-	-	-
	19	Bus communication	•	•	•
		synchronous phase fine-	-	-	-
		tuning			
	20	Number of synchronous	٠	٠	•
		message loss or	-		
		disconnection detection			
	21	EtherCAT Speed Limit	٠	٠	٠
		Selection			
	-		•	-	

	00	1st segment displacement (32 bits)	•	•	-
	02	Segment 1 maximum speed (32 bits)	•	-	-
	04	Paragraph 1 acceleration multiplier	•	-	-
	05	Paragraph 1 deceleration multiplier	•	-	-
	06	Segment 2 displacement (32 bits)	•	1	-
Gro	08	Segment 2 maximum speed (32 bits)	•	1	-
up F10 Mu	10	Paragraph 2 acceleration multiplier	•	1	-
lti- seg	11	Paragraph 2 deceleration multiplier	•	1	-
nt seg	12	Segment 3 displacement (32 bits)	•	1	-
nt pos itio	14	Paragraph 3 maximum speed (32 bits)	•	•	-
n	16	Paragraph 3 acceleration multiplier	•	•	-
	17	Paragraph 3 deceleration multiplier	•	•	-
	18	Segment 4 displacement (32 bits)	•	•	-
	20	Paragraph 4 maximum speed (32 bits)	•	•	-
	22	Paragraph 4 acceleration multiplier	•	-	-
	23	Paragraph 4 deceleration multiplier	•	-	-

24	Paragraph 5 displacement (32 bits)	•	-	-
26	Paragraph 5 maximum speed (32 bits)	•	-	-
28	Paragraph 5 acceleration multiplier	•	-	-
29	Paragraph 5 deceleration multiplier	•	-	-
30	Paragraph 6 displacement (32 bits)	•	-	-
32	Paragraph 6 maximum speed (32 bits)	•	-	-
34	Paragraph 6 acceleration multiplier	•	-	-
35	Paragraph 6 deceleration	•	-	-
36	multiplier Paragraph 7 disclosurent (22 hits)	•	-	-
38	displacement (32 bits) Paragraph 7 maximum	•	-	-
40	speed (32 bits) Paragraph 7 acceleration	•	-	-
41	multiplier Paragraph 7 deceleration	•	-	-
42	multiplier Paragraph 8	•	-	-
44	displacement (32 bits) Paragraph 8 maximum	•	-	-
46	speed (32 bits) Paragraph 8 acceleration	•	-	-
47	multiplier Paragraph 8 deceleration	•	-	-
48	multiplier Paragraph 9	•	-	-
50	displacement (32 bits) Paragraph 9 maximum	•	-	-
52	speed (32 bits) Paragraph 9 acceleration	•	-	-
53	multiplier Paragraph 9 deceleration	•	-	-
54	multiplier Paragraph 10	•		
56	displacement (32 bits)	•	_	_
	Paragraph 10 maximum speed (32 bits)	_	-	-
58	Paragraph 10 acceleration multiplier	•	-	-
59	Paragraph 10 deceleration multiplier	•	-	-
60	Paragraph 11 displacement (32 bits)	•	-	-
62	Paragraph 11 maximum speed (32 bits)	•	-	-
64	Paragraph 11 acceleration multiplier	•	-	-
65	Paragraph 11 deceleration multiplier	•	-	-
66	Segment 12 displacement (32 bits)	•	-	-
68	Paragraph 12 maximum speed (32 bits)	•	-	-
70	Paragraph 12 acceleration multiplier	•	-	-
71	Paragraph 12 deceleration multiplier	•	-	-
72	Paragraph 13 displacement (32 bits)	•	-	-
74	Paragraph 13 maximum speed (32 bits)	•	-	-
76	Paragraph 13 acceleration multiplier	•	-	-
77	Paragraph 13 deceleration multiplier	•	-	-
78	Paragraph 14	•	-	-
80	displacement (32 bits) Paragraph 14 maximum speed (32 bits)	•	-	-
82	speed (32 bits) Paragraph 14 acceleration multiplier	•	-	-
83	acceleration multiplier Paragraph 14	•	-	-
84	deceleration multiplier Paragraph 15	•	-	-
86	displacement (32 bits) Paragraph 15 maximum	•	-	-

	0.0	speed (32 bits)			
	88	Paragraph 15 acceleration multiplier	•	-	-
	89	Paragraph 15	•	-	-
		deceleration multiplier			
	90	Paragraph 16	•	-	-
	92	displacement (32 bits) Paragraph 16 maximum	•	-	-
	-	speed (32 bits)	Ľ		
	94	Paragraph 16	٠	-	-
	95	acceleration multiplier Paragraph 16	•	<u> </u>	
	95	deceleration multiplier	•	-	
		*			
	00	Origin estime ator	-	1	
	00	Origin return start method	•	-	-
	01	Origin return mode	٠	-	-
	02	Home return time limit	٠	-	-
	04	and Z signal setting	-		
	04	High-speed search speed of the origin	•	-	-
	05	Speed of low-speed	٠	-	-
	0.5	search origin			
	06	Acceleration and deceleration time when	•	-	-
		searching for the origin			
	07	Time limit value of the	٠	-	-
	00	return home process			
	08	Origin coordinate offset (32 bits)	•	-	-
Gro	10	Mechanical home	•	-	-
up	-	position offset (32 bits)			
F11 Ori	12	DI initiates an effective	•	-	-
Ori gin	13	way of origin return Limit detection method	•	•	•
reg	15	when searching for the	Ĺ	<u> </u>	
ress		home position	<u> </u>	<u> </u>	
ion, full	20 22	Second encoder usage	•	-	-
clo	22	External encoder pitch (32 bits)	•	-	-
sed	24	Fully closed-loop	٠	-	-
loo		mixing deviation			
р		oversize threshold (32 bits)			
	26	Mixing deviation count	•	-	-
		setting			
	27	Hybrid vibration	•	-	-
	28	suppression gain Hybrid vibration	•	-	_
	20	suppression time	ľ		
		constant			
	30	Fully closed-loop mixed	•	-	-
		deviation external units (32 bits)			
	32	External units for	•	-	-
		internal encoder count			
	34	values (32 bits) External encoder count	-	<u> </u>	
	54	value (32 bits)		-	-
	-	· · · /	•		
	00	Donal default dimit	-	-	
	00	Panel default display selection	•	•	•
	01	Panel monitoring	•	•	•
		parameter setting 1			
	02	Panel monitoring	•	•	•
Gro	03	Panel monitoring	•	•	•
up E12	05	parameter setting 3	Ľ	Ľ	
F12 Op	04	Panel monitoring	٠	٠	٠
erat	05	parameter setting 4	-	-	
or	05	Panel monitoring parameter setting 5	•	•	•
Pan el	06	Time multiplier for	٠	٠	٠
Sett	<u> </u>	search origin			
ing	07 08	User Password User encrypted lock	•	•	•
s	00	screen time			
	12	Bit width selection for	٠	٠	٠
		position feedback			
		displays (F24.13 and F24.15), the			
	13	DIDO monitoring in	٠	٠	٠

	binary display or hexadecimal display			
14	Manufacturer	•	•	٠
	Parameters			
00	Physical NIC address1	٠	٠	٠
01	Physical NIC address 2	•	٠	•
02 04	Physical NIC address3 The 1st and 2nd	•	•	•
04	characters of the device	•	•	•
	name			
05	The 3rd and 4th characters of the device	•	•	•
	name			
06	The 5th and 6th	٠	٠	٠
	characters of the device			
07	name The accord aighth	-		
07	The seventh and eighth characters of the device	•	•	•
	name			
08	Equipment IPA	٠	٠	٠
09	Equipment IPB	٠	٠	٠
10	Device Network Mask A	٠	٠	٠
11	Device Network Mask B	٠	٠	٠
12 13	Network Manager A Network Manager B	•	•	•
14	Data write switch	•	•	•
15	922 message monitoring	•	•	•
16	Additional message	•	•	•
15	monitoring			
17	925 Heartbeat Alarm	•	٠	٠
18	Threshold 944 Fault message	•	•	•
10	counter	•	•	•
19	947 fault number	٠	٠	٠
20	Fault serial number	٠	٠	٠
21	952 Fault status counter	٠	٠	٠
22	979_0 Sensor head (32	•	٠	٠
24	bits) 979 1 Sensor type (32	•	•	•
24	bits)	•	•	•
26	979 2 Sensor resolution	٠	٠	٠
	(32 bits)			
28	979_3 Sensor	٠	٠	٠
	G1_XIST1 factor (32 bits)			
30	979 4 sensor G1 XIST2	•	•	•
	factor (32 bits)			
32	979_5 sensor multi-turn	٠	٠	٠
2.4	(32 bits)			
34 35	Synchronization cycle	•	•	•
55	FPGA synchronization detection threshold	•	•	•
36	Speed ramp on flag	-	٠	-
	1=not on 0=on			
37	Update Now Switch	٠	-	-
40	Disengage To control servo local acceleration	-	•	-
	time (32 bits)			
42	Disengage To control	-	٠	-
	servo local deceleration			
4.4	time (32 bits)	<u> </u>		
44	Deceleration time in speed mode	-	•	-
	speed mode (acceleration time in			
	units of 0-1000RPM:			
	ms)(32 bits)			
46	bit10 Hysteresis	-	٠	-
47	judgment value (RPM) N4 speed error range	•	-	-
4/	(RPM)	•	•	•
48	Speed error range time	•	٠	٠
	(ms)			
49	ARM and 200P dropout	٠	٠	٠
	detection function			
50	control switch Whether the	•	•	•
20	synchronization period	Ĺ		
	is a current loop			
	multiplier detection			
51	switch Test variables test IRT		•	
J 1	rest variables test INI			

Gro up F14 PN co mm

uni cati on par am eter \mathbf{s}

230

00 Receiving word PZD1 • • •

		mode	1		
		mode			
	00	Maximum speed (32 bits)	•	-	-
	02	Maximum acceleration (32 bits)	•	-	-
	04	Maximum deceleration (32 bits)	٠	-	-
	06	Maximum ramp speed (32 bits)	•	-	-
	08	Position Deviation Excess Threshold (32	•	-	-
	10	bits) Position reach threshold (32 bits)	•	-	-
	12	Location arrival window (32 bits)	•	-	-
	14	JOG Speed 1 (32-bit)	•	•	_
	16	JOG Speed 2 (32-bit)	•	•	-
	18	JOG Speed 2 (32-bit)	•	•	-
	20	acceleration (32 bits)	•	•	
	20	deceleration (32 bits)	•		-
	22	Origin regression type	•	-	-
	22	Origin return high-speed	•	-	-
	25	speed (32-bit) Home return low speed	•		
	25	(32 bit) Home return		_	_
Cro	27	acceleration and	•	-	-
Gro		deceleration time (32	1		
up F15		bits)	1		
PN bas	29	Home Return Relative Offset (32 bits)	•	-	-
ic pos	31	Absolute offset of origin regression (32 bits)	٠	-	-
itio ner	33	Reference coordinate value (32 bits)	•	-	-
sett ing	35	Home return timeout (32 bits)	•	-	-
s	37	Soft limit effective method	•	-	-
	38	Soft limit positive limit value (32 bits)	•	-	-
	40	Soft limit negative limit value (32 bits)	•	-	-
	42	Electronic gear ratio molecule (32 bits)	•	-	-
	44	Electronic gear score denominator (32 bits)	•	-	-
	46	s111 message send content	•	-	-
	47	s111 message upload content	٠	-	-
	48	Low upper limit of modal axis pulse (32 bits)	•	-	-
	50	Upper limit of modal axis pulse height (32	•	-	-
	52	bits)	<u> </u>		
	52 53	Modal axis on switch Non-cyclic data saving	•	-	-
	54	switch Mobile Signal Output	•	-	-
		Threshold	<u> </u>		
	55	Motor 1 turn corresponds to the number of LU (22 bite)	•	-	-
		number of LU (32 bits)	I		

	01	Receiving word PZD2	•	•	•
	02	Receiving word PZD3	•	•	•
	03	Receiving word PZD4	٠	٠	٠
	04	Receiving word PZD5	•	•	•
C	05	Receiving word PZD6	٠	٠	٠
Gro	06	Receiving word PZD7	٠	•	٠
up	07	Receiving word PZD8	•	•	•
F16	08	Receiving word PZD9	٠	•	•
PN	09	Receiving word PZD10	•	•	•
co					
mm	10	Receiving word PZD11	٠	•	٠
	11	Receiving word PZD12	٠	٠	٠
issi	16	Send word PZD1	٠	•	٠
oni	17	Send word PZD2	٠	•	٠
ng					
par	18	Send word PZD3	٠	٠	٠
am	19	Send word PZD4	٠	•	٠
eter	20	Send word PZD5	٠	•	٠
s	21	Send word PZD6	٠	•	٠
5	22	Send word PZD7			
	-		٠	٠	٠
	23	Send word PZD8	٠	٠	٠
	24	Send word PZD9	•	•	٠
	25	Send word PZD10	٠	٠	٠
	26	Send word PZD11	٠	٠	•
	20	Send word PZD12		_	•
	21	Send word PZD12	٠	٠	•
	00	Keyboard JOG trial run	٠	٠	٠
	01	Fault Reset	٠	•	•
	03	Parameter recognition	٠	•	٠
		function			
	05	Automatic calibration of	٠	•	•
	05		-	-	-
	06	analog inputs			-
	06	System initialization	٠	•	٠
Gro		functions			
OIU	08	Communication	•	•	
110	00	Communication	•	•	-
up F22	00	operation command	•	•	-
F23	00		•	•	•
F23 Au	09	operation command input	•	•	•
F23 Au xili		operation command input Communication		_	
F23 Au xili ary	09	operation command input Communication operation status output	•	•	•
F23 Au xili	09	operation command input Communication operation status output Inertia recognition value		_	
F23 Au xili ary	09	operation command input Communication operation status output Inertia recognition value Communication	•	•	•
F23 Au xili ary fun	09	operation command input Communication operation status output Inertia recognition value	•	•	•
F23 Au xili ary fun ctio	09	operation command input Communication operation status output Inertia recognition value Communication	•	•	•
F23 Au xili ary fun ctio	09	operation command input Communication operation status output Inertia recognition value Communication selection multi-segment	•	•	•
F23 Au xili ary fun ctio	09	operation command input Communication operation status output Inertia recognition value Communication selection multi-segment command sequence number	•	•	•
F23 Au xili ary fun ctio	09 10 11	operation command input Communication operation status output Inertia recognition value Communication selection multi-segment command sequence number Communication start	•	•	•
F23 Au xili ary fun ctio	09 10 11 12	operation command input Communication operation status output Inertia recognition value Communication selection multi-segment command sequence number Communication start origin return	•	•	•
F23 Au xili ary fun ctio	09 10 11	operation command input Communication operation status output Inertia recognition value Communication selection multi-segment command sequence number Communication start origin return Linear motor initial	•	•	•
F23 Au xili ary fun ctio	09 10 11 12	operation command input Communication operation status output Inertia recognition value Communication selection multi-segment command sequence number Communication start origin return Linear motor initial communication	•	•	•
F23 Au xili ary fun ctio	09 10 11 12	operation command input Communication operation status output Inertia recognition value Communication selection multi-segment command sequence number Communication start origin return Linear motor initial communication electrical angle	•	•	•
F23 Au xili ary fun ctio	09 10 11 12	operation command input Communication operation status output Inertia recognition value Communication selection multi-segment command sequence number Communication start origin return Linear motor initial communication	•	•	•
F23 Au xili ary fun ctio	09 10 11 12	operation command input Communication operation status output Inertia recognition value Communication selection multi-segment command sequence number Communication start origin return Linear motor initial communication electrical angle	•	•	•
F23 Au xili ary fun ctio	09 10 11 12 13	operation command input Communication operation status output Inertia recognition value Communication selection multi-segment command sequence number Communication start origin return Linear motor initial communication electrical angle identification	•	•	•
F23 Au xili ary fun ctio	09 10 11 12 13	operation command input Communication operation status output Inertia recognition value Communication selection multi-segment command sequence number Communication start origin return Linear motor initial communication electrical angle identification	•	•	• • • •
F23 Au xili ary fun ctio	09 10 11 12 13	operation command input Communication operation status output Inertia recognition value Communication selection multi-segment command sequence number Communication start origin return Linear motor initial communication electrical angle identification	•	•	•
F23 Au xili ary fun ctio	09 10 11 12 13	operation command input Communication operation status output Inertia recognition value Communication selection multi-segment command sequence number Communication start origin return Linear motor initial communication electrical angle identification Servo Status Motor speed feedback	• • •	•	• • • •
F23 Au xili ary fun ctio	09 10 11 12 13 00 01 03	operation command input Communication operation status output Inertia recognition value Communication selection multi-segment command sequence number Communication start origin return Linear motor initial communication electrical angle identification Servo Status Motor speed feedback Motor speed command	• • •	•	• • • •
F23 Au xili ary fun ctio ns	09 10 11 12 13 00 01	operation command input Communication operation status output Inertia recognition value Communication selection multi-segment command sequence number Communication start origin return Linear motor initial communication electrical angle identification Servo Status Motor speed feedback Motor speed command Internal torque	• • • • • • • • • • • • • • • • • • • •	•	• • • •
F23 Au xili ary fun ctio ns Gro	09 10 11 12 13 00 01 03 04	operation command input Communication operation status output Inertia recognition value Communication selection multi-segment command sequence number Communication start origin return Linear motor initial communication electrical angle identification Servo Status Motor speed feedback Motor speed command Internal torque command	• • • • • • • • • • • • • • • • • • • •		• • • • •
F23 Au xili ary fun ctio ns Gro up	09 10 11 12 13 00 01 03 04 05	operation command input Communication operation status output Inertia recognition value Communication selection multi-segment command sequence number Communication start origin return Linear motor initial communication electrical angle identification Servo Status Motor speed feedback Motor speed feedback Motor speed feedback Motor speed command Internal torque command Phase Current RMS	• • • • • • • • • • • • • • • • • • • •		• • • • • •
F23 Au xili ary fun ctio ns Gro up F24	09 10 11 12 13 00 01 03 04 05 06	operation command input Communication operation status output Inertia recognition value Communication selection multi-segment command sequence number Communication start origin return Linear motor initial communication electrical angle identification Servo Status Motor speed feedback Motor speed command Internal torque command Phase Current RMS Bus voltage	• • • • • •		• • • • • • • •
F23 Au xili ary fun ctio ns Gro up F24 Dis	09 10 11 12 13 00 01 03 04 05	operation command input Communication operation status output Inertia recognition value Communication selection multi-segment command sequence number Communication start origin return Linear motor initial communication electrical angle identification Servo Status Motor speed feedback Motor speed command Internal torque command Phase Current RMS Bus voltage Inertia discrimination	• • • • • • • • • • • • • • • • • • • •		• • • • • •
F23 Au xili ary fun ctio ns Gro up F24 Dis pla	09 10 11 12 13 00 01 03 04 05 06 07	operation command input Communication operation status output Inertia recognition value Communication selection multi-segment command sequence number Communication start origin return Linear motor initial communication electrical angle identification Servo Status Motor speed feedback Motor speed command Internal torque command Phase Current RMS Bus voltage Inertia discrimination value	• • • • • • • • • • • • • • •		• • • • • • • • • • • • • •
F23 Au xili ary fun ctio ns Gro up F24 Dis pla y	09 10 11 12 13 00 01 03 04 05 06	operation command input Communication operation status output Inertia recognition value Communication selection multi-segment communication start origin return Communication start origin return Linear motor initial communication electrical angle identification Servo Status Motor speed feedback Motor speed feedback Motor speed feedback Motor speed command Internal torque command Phase Current RMS Bus voltage Inertia discrimination value	• • • • • •		• • • • • • • •
F23 Au xili ary fun ctio ns Gro up F24 Dis pla y par	09 10 11 12 13 00 01 03 04 05 06 07 08	operation command input Communication operation status output Inertia recognition value Communication selection multi-segment command sequence number Communication start origin return Linear motor initial communication electrical angle identification Servo Status Motor speed feedback Motor speed feedback Motor speed command Internal torque command Phase Current RMS Bus voltage Inertia discrimination value Input position command corresponds to speed	• • • • • • • • • • • • • • •		• • • • • • • • • • • • • •
F23 Au xili ary fun ctio ns Gro up F24 Dis pla y par am	09 10 11 12 13 00 01 03 04 05 06 07 08 09	operation command input Communication operation status output Inertia recognition value Communication selection multi-segment communication start origin return Communication start origin return Linear motor initial communication electrical angle identification Servo Status Motor speed feedback Motor speed feedback Motor speed feedback Motor speed command Internal torque command Phase Current RMS Bus voltage Inertia discrimination value	• • • • • • • • • • • • • • •		• • • • • • • • • • • • • •
F23 Au xili ary fun ctio ns Gro up F24 Dis pla y par	09 10 11 12 13 00 01 03 04 05 06 07 08	operation command input Communication operation status output Inertia recognition value Communication selection multi-segment command sequence number Communication start origin return Linear motor initial communication electrical angle identification Servo Status Motor speed feedback Motor speed feedback Motor speed command Internal torque command Phase Current RMS Bus voltage Inertia discrimination value Input position command corresponds to speed	• • • • • • • • • • • • •		- - - - -
F23 Au xili ary fun ctio ns Gro up F24 Dis pla y par am	09 10 11 12 13 00 01 03 04 05 06 07 08 09	operation command input Communication operation status output Inertia recognition value Communication selection multi-segment command sequence number Communication start origin return Linear motor initial communication electrical angle identification Servo Status Motor speed feedback Motor speed feedback Motor speed command Internal torque command Phase Current RMS Bus voltage Inertia discrimination value Input position command corresponds to speed Electric angle	• • • • • • • • • • • • • • • • • • •		- - - - - -
F23 Au xili ary fun ctio ns Gro up F24 Dis pla y par am eter	09 10 11 12 13 00 01 03 04 05 06 07 08 09 10	operation command input Communication operation status output Inertia recognition value Communication selection multi-segment command sequence number Communication start origin return Linear motor initial communication electrical angle identification Servo Status Motor speed feedback Motor speed feedback Motor speed feedback Motor speed feedback Motor speed command Internal torque command Phase Current RMS Bus voltage Inertia discrimination value Input position command corresponds to speed Electric angle	• • • • • • • • • • • • • • • • • • •		

	command unit (32 bits)			
1'	7 Position deviation pulse	•	•	•
	unit (32 bits)			
19		٠	٠	٠
2	unit (32 bits) Digital input signal	•	•	•
2	monitoring	•	•	•
2	B Digital output signal	٠	٠	٠
	monitoring			
24		٠	٠	٠
2:	5 Total power-up time (32 bits)	•	•	•
2		٠	•	•
	value			
2	8	٠	•	•
2	value	-	-	-
	8	•	•	•
3	<u> </u>	•	•	•
5	value	•	•	•
32	2 Number of absolute	٠	٠	٠
	position encoder turns			
34	(32 bits) 4 Absolute position	-	-	-
5,	encoder single-turn	•	•	•
	position (32 bits)			
30	5 Load factor	٠	٠	٠
3'	7 Regenerative load factor	٠	٠	٠
3		٠	٠	٠
3		٠	٠	٠
4	-	٠	٠	٠
4		•	•	•
4		•	•	•
4		•	•	•
4		•	•	•
	fault			
4		•	٠	٠
4	1	•	٠	٠
49	fault Output terminal status at	•	•	•
ч.	fault	•	•	•
50	Product Series Code	٠	٠	٠
52	2 Internal warning codes	٠	٠	٠
5.		٠	٠	٠
54	current segment number Custom Edition Series	-	-	-
5,	No.	•	•	•
5:		٠	٠	٠
	counter high 32 bits (32			
	bits)			
5'	1	•	•	•
6	high 32 bits (32 bits) Analog mode feedback	•	•	•
	count display (32-bit)			
62		٠	٠	٠
6.		•	•	•
64	number Network status display			
6	12	•	•	•
6		•	•	•
6		٠	٠	٠
6		٠	٠	٠

Feedback position pulse unit (32 bits)

• • •

position • •

13

15 Feedback

11.2 Genernal Parameters

Group F00 Motor parameters

F00.00	Automatic acquisition of motor parameters	Setting range	factory value	unit	Mode of entry into		Related models	
					force			
		0 to 3	0		Power	Р	S	Т
					up again.			

0:Manual, manually set the motor parameters model and parameters

1:Automatic, all parameters from motor memory

2:Automatic, all get motor parameters from motor memory

F00.01	Motor type selection	Setting range	factory	unit	Mode of	Mode of Relate		ed
			value		entry	n	ıode	els
					into			
					force			
		0~1	0		Power	Р	S	Т
					up again.			

0:Rotary motor

1:Linear motor

F00.02	Motor model code (32	Setting range	factory	unit	Mode of	Related		ed
	digits)		value		entry	models		els
					into			
					force			
		0 to 2147483647	65535		Power	Р	S	Т
					up again.			

0 to 2147483647

F00.04	Monitoring Options	Setting range	factory	unit	Mode of	Related
			value		entry	models
					into	

			force			
	0 to 63	0	 Downtim	Р	S	Т
			e in			
			effect			

F00.05	Component Versions	Setting range	factory	unit	Mode of	e of Relat		ed
			value		entry	models		ls
					into			
					force			
		0~65535	0		Downtim	Р	S	Т
					e in			
					effect			

F00.06	Motor memory code (32 bits)	Setting range	factory value	unit	Mode of entry into		Related models	
					force			
		0 to 2147483647	0		Power	Р	S	Т
					up again.			

F00.10	Rated voltage	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	model		ls
					into			
					force			
		1 to 1000	220		Power	Р	S	Т
					up again.			

1 to 1000V

F00.11	rating	Setting range	factory	unit	Mode of	R	elat	ed
			value		entry	n	models	
					into			
					force			
		1 to 65535	75	0.01	Power	Р	S	Т
					up again.			

 $0.01 KW \sim 655.35 KW$

F00.12	Rated current	Setting range	factory value	unit	Mode of entry into force		elato 10de	
		1 to 10,000	430	0.01A	Power	Р	S	Т
		1 to 10,000	450	0.0171	up again.	1	5	ļ

 $0.01A \sim 100.00A$

F00.13	Rated torque	Setting range	factory value	unit	Mode of entry		Relate model	
			, and c		into		lout	15
					force			
		10 to 65535	240	0.01Nm	Power	Р	S	Т
					up again.			

 $0.10Nm \sim 655.35Nm$

F00.14	Maximum torque	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	n	iode	ls
					into			
					force			
		10 to 65535	720	0.01Nm	Power	Р	S	Т
					up again.			

 $0.10Nm \sim 655.35Nm$

F00.15	Rated speed	Setting range	factory	unit	Mode of	R	elat	ed
			value		entry	models		ls
					into	mouch		
					force			
		1 to 9000	3000	1rpm	Power	Р	S	Т
					up again.			

1rpm to 9000rpm

F00.16	Maximum speed	Setting range	factory	unit	Mode of	R	elat	ed
			value		entry	n	ıode	ls
					into			
					force			
		1 to 9000	5000	1rpm	Power	Р	S	Т
					up again.			

1rpm to 9000rpm

F00.17	Rotational inertia Jm	Setting range	factory value	unit	Mode of entry into force		elato 10de	
		1 to 10,000	130	0.01 kg c	Power	Р	S	Т
				m	up again.			

0.01kgc m² ~ 100.00kgc m²

F00.18	Number of motor pole	Setting range	factory	unit	Mode of	R	elat	ed
	pairs		value		entry	n	ıode	ls
					into			
					force			
		1 to 50	4	1 pair of	Power	Р	S	Т
				poles	up again.			

1 to 50 pairs of poles

F00.19	Stator resistance Rs	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	n	ıode	ls
					into			
					force			
		1 to 65535	500	0.001Ω	Power	Р	S	Т
					up again.			

 $0.001\Omega\sim 65.535\Omega$

F00.20	d-axis inductance Ld	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	n	ıode	ls
					into			
					force			
		1 to 65535	387	0.01mH	Power	Р	S	Т
					up again.			

 $0.01 mH \sim 655.35 mH$

F00.21	q-axis inductance Lq	Setting range	factory	unit	Mode of	Relate model		ed
			value		entry	n	ıode	ls
					into			
					force			
		1 to 65535	327	0.01mH	Power	Р	S	Т
					up again.			

F00.22	Inverse potential factor (32 bits)	Setting range	factory value	unit	Mode of entry into		elato 10de	
					force			
		1 to 1,000,000	3330	0.01mV/	Power	Р	S	Т
				rpm	up again.			

 $0.01mV/rpm \sim 10000.00mV/rpm$

F00.2	24 Torque coefficient	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	m	node	ls
					into			
					force			
		0~65535	610	0.001N-	Power	Р	S	Т
				m/A	up again.			

0.001N-m/A to 65.35N-m/A

F00.25	Initial position of the	Setting range	factory	unit	Mode of	R	elat	ed
	absolute code disk (32 bits)		value		entry	n	ıode	els
					into			
					force			
		0~1073741824	0		Power	Р	S	Т
					up again.			

 $0 \sim 1073741824$

F00.27	Encoder selection	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	n	iode	ls
					into			
					force			
		0 to 9	5		Power	Р	S	Т
					up again.			

0:Incremental quadrature pulse encoder

1:17bit asynchronous serial bus encoder

3:23-bit custom protocol encoder

4:20-bit custom protocol encoder

5:23 Bit Asynchronous Serial Bus Encoder

9:Full data BISS-C bus encoder

F00.29 Encoder resolution (32 bit	Setting range	factory	unit	Mode of	Related
-----------------------------------	---------------	---------	------	---------	---------

		value		entry	m	node	ls
				into			
				force			
	1 to 1073741824	131072	1PPR	Power	Р	S	Т
				up again.			

 $1PPR \sim 1073741824PPR$ (Incremental type optical encoder corresponds to the number of lines X4, bus type corresponds to the number of resolutions)

F00.31	Z rising edge corresponds to the electrical angle	Setting range	factory value	unit	Mode of entry into		elato node	
					force			
		0 to 3600	0	0.1°	Power	Р	S	Т
					up again.			

 $0.0^{\circ} \sim 360.0^{\circ}$

F00.32	Weak magnetic coefficient	Setting range	factory	unit	Mode of	R	elat	ed
			value		entry	n	ıode	ls
					into			
					force			
		0 to 160	0		Power	Р	S	Т
					up again.			

0 to 20

F00.33	Motor code backup (32-	Setting range	factory	unit	Mode of	R	elate	ed
	bit)		value		entry	n	node	ls
					into			
					force			
		0 to 2147483647	0		Display	Р	S	Т
					only			

Backup motor model code for comparison

F00.41	DDL Motor Pole Pitch (N-	Setting range	factory	unit	Mode of	R	elat	ed
	N)		value		entry	n	10de	ls
					into			
					force			
		1 to 32767	1000	0.01mm	Power	Р	S	Т
					up again.			

0.01 to 327.67 mm

F00.42	DDL scale resolution	Setting range	factory value	unit	Mode of entry into force		elato 10de	
		1 to 32767	100	0.01um	Power	Р	S	Т
					up again.			

0.01 to 327.67 um

F00.43	DDL motor current rating	Setting range	factory	unit	Mode of	R	elat	ed
			value		entry	n	iode	els
					into			
					force			
		1 to 10,000	100	0.01A	Power	Р	S	Т
					up again.			

 $0.01A \sim 100.00A$

F00.44	DDL rated thrust	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	models		ls
					into			
					force			
		1 to 30,000	800	0.1N	Power	Р	S	Т
					up again.			

0.1 to 3000.0 N

F00.45	DDL maximum thrust	Setting range	factory	unit	Mode of	R	elate	ed
	theoretical value		value		entry	models		ls
					into			
					force			
		1 to 60,000	3200	0.1N	Power	Р	S	Т
					up again.			

0.1 to 6000.0 N

F00.46	DDL motor maximum	Setting range	factory	unit	Mode of	R	elate	ed
	speed		value		entry	models		ls
					into			
					force			
		1 to 30,000	3000	1mm/s	Power	Р	S	Т
					up again.			

 $0 \sim 30{,}000 mm/s$

F00.48	DDL electric motor mass	Setting range	factory value	unit	Mode of entry into		Related models	
					force			
		1 to 30,000	50	0.01 kg	Power	Р	S	Т
					up again.			

0.01 to 300.00 kg

F00.49	DDL Stator Line	Setting range	factory	unit	Mode of	R	elate	ed
	Resistance		value		entry	n	model	
					into			
					force			
		1 to 65535	10000	0.001	Power	Р	S	Т
				Ohm	up again.			

 $0.001\Omega\sim 65.535\Omega$

F00.50	DDL motor wire inductor	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	n	10de	ls
					into			
					force			
		1 to 65535	1000	0.01mH	Power	Р	S	Т
					up again.			

 $0.01 mH \sim 655.35 mH$

F00.52	DDL inverse potential	Setting range	factory	unit	Mode of	R	elate	ed
	coefficient (32 bits)		value		entry	n	ıode	ls
					into			
					force			
		1 to 500000	4000	0.01V/m	Power	Р	S	Т
				ps	up again.			

 $\overline{0.01 \text{ V/mps}} \sim 5000.00 \text{ V/mps}$

F00.54	DDL/DDR motor Z-	Setting range	factory	unit	Mode of	R	elat	ed
	electric angle		value		entry	n	ıode	els
					into			
					force			
		0 to 3600	0	0.1°	Power	Р	S	Т
					up again.			

F00.59	DDL/DDR pole finding	Setting range	factory	unit	Mode of	R	elate	ed
	sign		value		entry	model		ls
					into			
					force			
		0~1	0		Downtim	Р	S	Т
					e in			
					effect			

0:not found

1:Already corrected

F00.60	Straight axis current loop proportional gain 1	Setting range	factory value	unit	Mode of entry	Relate mode		
	Proportional game 1				into			
					force			
		1 to 5000	900		Effective	Р	S	Т
					immedia			
					tely			

F00.61	Straight axis current loop	Setting range	factory	unit	Mode of		elat	
	proportional gain 2		value		entry	model		ls
					into			
					force			
		1 to 5000	700		Effective	Р	S	Т
					immedia			
					tely			

F00.62	Cross-axis current loop proportional gain 1	Setting range	factory value	unit	Mode of entry		elato 10de	
					into			
					force			
		1 to 5000	900		Effective	Р	S	Т
					immedia			
					tely			

F00.63	Cross-axis current loop proportional gain 2	Setting range	factory value	unit	Mode of entry into				Related models	
		1 to 5000	400		force Effective immedia tely	Р	S	Т		

F00.64	Current loop integration	Setting range	factory	unit	Mode of	R	elate	ed
	gain 1		value		entry	n	node	ls
					into			
					force			
		1 to 3000	2000		Effective	Р	S	Т
					immedia			
					tely			

F00.65	Current loop integration	Setting range	factory	unit	Mode of	R	elat	ed
	gain 2		value		entry	n	ıode	ls
					into			
					force			
		1 to 3000	2000		Effective	Р	S	Т
					immedia			
					tely			

F00.66	Counter-potential	Setting range	factory	unit	Mode of	R	elate	ed
	compensation factor		value		entry	n	node	ls
					into			
					force			
		0 to 2000	1000		Effective	Р	S	Т
					immedia			
					tely			

F00.67	Straight axis voltage	Setting range	factory	unit	Mode of	Related
	compensation factor		value		entry	models
					into	
					force	

			-	-	-	-	
	0 to 2000	1000		Effective	Р	S	Т
				immedia			
				tely			

F00.68	Cross-axis voltage	Setting range	factory	unit	Mode of	R	elate	ed
	compensation factor		value		entry	m	ode	ls
					into			
					force			
		0 to 2000	500		Effective	Р	S	Т
					immedia			
					tely			

Group F01 Basic parameters

F01.00	Manufacturer Parameters	Setting range	factory value	unit	Mode of entry into		elato 10de	
					force			
		0~65535	1		Display	Р	S	Т
					only			

 $0 \sim 65535$

F01.01	Control mode selection	Setting range	factory value	unit	Mode of entry		elato ode	
					into			
					force			
		0 to 9	9		Downtim	Р	S	Т
					e in			
					effect			

YSK2-D: 0:Position mode

1:Speed Mode

2:Torque mode

YSK2-A: 0: Position mode

1: Speed Mode

2: Torque mode

3:Position mode/velocity mixing mode

4 : Position Mode/Torque Mixing Mode

5:Speed mode/torque mixing mode

YSK2-E: 0:Position mode

- 1:Speed Mode
- 2:Torque mode
- 3:Position mode/velocity mixed mode

3:Position mode/velocity mixed mode

4:Position Mode/Torque Mixing Mode

5:Speed mode/torque mixing mode

8: Communication control

4:Position Mode/Torque Mixing Mode

5:Speed mode/torque mixing mode

9: Communication control

F01.02	Real-time self-adjusting	Setting range	factory	unit	Mode of	Related
	mode		value		entry	models
					into	
					force	

	0 to 3	1	 Effective	Р	S	Т
			immedia			
			tely			

0:Invalid

1:Standard mode (no gain switching)

2:Positioning mode (with gain switching)

3:Dynamic testing of load characteristics without setting parameters

F01.03	Rigidity level setting	Setting range	factory value	unit	Mode of entry into		elato 10de	
					force			
		0 to 31	12		Effective	Р	S	Т
					immedia			
					tely			

0 to 31

F01.04	inertia ratio	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	m	iode	ls
					into			
					force			
		0 to 6000	100	0.01	Effective	Р	S	Т
					immedia			
					tely			

0 to 60.00

F01.05	Location command source	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	n	iode	ls
					into			
					force			
		0 to 3	0		Downtim	Р	S	Т
					e in			
					effect			

0:Pulse command(A)

1:Step amount given

2:Multi-segment position command

3:High-speed pulse command(A)

F01.07	Pulse String Pattern	Setting range	factory	unit	Mode of	Related
			value		entry	models

			into		
			force		
	0 to 5	0	 Power	Р	
			up again.		

0:Direction + Pulse, positive logic. (default value) (A)

1:Direction + Pulse, Negative Logic(A)

2:A-phase(Pulse)+B-phase(sign) quadrature pulse, 4 times frequency, positive logic(A)

3:A-phase + B-phase quadrature pulse, 4x frequency, negative logic(A)

4:CW+CCW, positive logic(A)

5:CW+CCW, negative logic(A)

F01.08	High-speed burst pattern	Setting range	factory value	unit	Mode of entry into		elated odels	
					force			
		0 to 5	0		Power	Р		
					up again.			

0:Direction + Pulse, positive logic. (default value) (A)

1:Direction + Pulse, Negative Logic (A)

2:A-phase(Pulse)+B-phase(sign) quadrature pulse, 4 times frequency, positive logic (A)

3:A-phase + B-phase quadrature pulse, 4x frequency, negative logic (A)

4:CW+CCW, positive logic (A)

5:CW+CCW, negative logic (A)

F01.09	Number of instructions required to rotate the motor one revolution (32 bits)	Setting range	factory value	unit	Mode of entry into force		elate 10del	
		0 to 2147483647	10000	1Unit	Power up again.	Р		

0 Unit/Turn ~ 1073741824 Unit/Turn

F01.11	Number of pulse lines	Setting range	factory	unit	Mode of	Re	elated
	output in one revolution of		value		entry	m	odels
	the rotating motor (32				into		
	bits)				force		
		16 to 2147483647	2500	1PPR	Power	Р	
					up again.		

16PPR ~ 1073741824PPR (Number of corresponding lines by incremental optical encoder)

F01.13	Definition of the positive direction of the pulse	Setting range	factory value	unit	Mode of entry		elato 10de	
	output				into			
					force			
		0~1	0		Power	Р	S	Т
					up again.			

0:velocity is positive, OA overtakes OB

1:Negative velocity, OA ahead of OB

F01.14	Pulse output OZ polarity	Setting range	factory	unit	Mode of	Re	lated	d
			value		entry	m	odels	5
					into			
					force			
		0 to 3	0		Power	Р		
					up again.			

0:High level when Z pulse is coming

1:Low level when Z pulse impulse comes

2:High precision Z pulse, high level when Z pulse comes

3:High precision Z pulse, low level when Z pulse is coming

F01.15	Pulse output function	Setting range	factory	unit	Mode of	R	elate	d
	selection		value		entry	m	odel	s
					into			
					force			
		0 to 3	0		Power	Р		
					up again.			

0:Encoder crossover output

1:Pulse command synchronous output

2:Pulse command interpolation output (Gantry synchronization)

3:External encoder pulse synchronization output

F01.16	Position Deviation Excess	Setting range	factory	unit	Mode of	R	elat	ed
	Threshold (32 bits)		value		entry	n	ıode	ls
					into			
					force			
		1 to 2147483647	1000000	1P	Effective	Р	S	Т
					immedia			
					tely			

 $1P\sim1073741824P$

F01.18	Energy brake setting	Setting range	factory value	unit	Mode of entry into force		elate 10de	
		0 to 2	1		Effective	Р	S	Т
					immedia			
					tely			

0:Use built-in energy resistor (100s)

1: Use external energy resistors and natural cooling (150s) or forced air cooling (200s)

F01.19	External resistor power	Setting range	factory	unit	Mode of	R	elate	ed
	capacity		value		entry	n	ıode	ls
					into			
					force			
		1 to 65535	100	1W	Effective	Р	S	Т
					immedia			
					tely			

1W to 65535W

F01.20	External resistor	Setting range	factory	unit	Mode of	R	elat	ed
	resistance value		value		entry	n	10de	ls
					into			
					force			
		1 to 1000	100	1Ω	Effective	Р	S	Т
					immedia			
					tely			

User settable

 $1\Omega \sim 1000\Omega$

F	01.21	External resistor heating	Setting range	factory	unit	Mode of	R	elate	ed
		time constant		value		entry	n	ıode	ls
						into			
						force			
			1 to 30,000	2000	0.1s	Effective	Р	S	Т
						immedia			
						tely			

Automatic system setting, user adjustable

 $0.1s \sim 3000.0s$

in	entry into force		1	m	ode	els	
ieo	Effective	'e	Р	,	S	Т	1
m	immedia	a					
te	tely						

0V to 1000V (default is usually sufficient)

F01.23	Position step amount	Setting range	factory	unit	Mode of	R	elate	ed
	setting		value		entry	n	iode	ls
					into			
					force			
		-9999 to 9999	50		Effective	Р		
					immedia			
					tely			

-9999 to 9999 command units

F01.30	Definition of positive	Setting range	factory	unit	Mode of	R	elate	ed
	direction of motor rotation		value		entry	m	iode	ls
					into			
					force			
		0~1	0		Power	Р	S	Т
					up again.			

0:Same as the default direction of the motor

1:Opposite to the default direction of the motor

Group F02 Basic Gain Group

F02.00	First position loop gain	Setting range	factory value	unit	Mode of entry		elate odel	
					into			
					force			
		10 to 20,000	400	0.1/s	Effective	Р		
					immedia			
					tely			

1.0/s to 2000.0/s

F02.01	First speed loop gain	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	n	iode	ls
					into			
					force			
		10 to 20,000	200	0.1HZ	Effective	Р	S	
					immedia			
					tely			

 $1.0 Hz \sim 2000.0 Hz$

F02.02	First velocity loop	Setting range	factory	unit	Mode of	R	elate	ed
	integration time		value		entry	m	nodel	s
					into			
					force			
		15 to 51200	3000	0.01ms	Effective	Р	S	
					immedia			
					tely			

 $0.15ms \sim 512.00ms$

F02.03	First speed detection	Setting range	factory	unit	Mode of	R	elat	ed
	filtering		value		entry	n	ıode	ls
					into			
					force			
		0 to 15	0		Effective	Р	S	Т
					immedia			
					tely			

Sets the filtering level for speed detection. 0 to 15 The higher the value, the better the vibration suppression, but it will reduce the response bandwidth.

F02.04	First torque command filtering	Setting range	factory value	unit	Mode of entry		elato 10de	
			,		into			
					force			
		0 to 10000	100	0.01ms	Effective	Р	S	Т
					immedia			
					tely			

 $0.00ms \sim 100.00ms$

F02.05	Second position loop gain	Setting range	factory	unit	Mode of	R	elated
			value		entry	m	odels
					into		
					force		
		10 to 20,000	400	0.1/s	Effective	Р	
					immedia		
					tely		

1.0/s to 2000.0/s

F02.06	Second speed loop gain	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	m	ode	ls
					into			
					force			
		10 to 20,000	200	0.1HZ	Effective	Р	S	
					immedia			
					tely			

 $1.0 Hz \sim 2000.0 Hz$

F02.07	Second velocity loop	Setting range	factory	unit	Mode of	R	elate	ed
	integration time		value		entry	m	lode	ls
					into			
					force			
		15 to 51200	3000	0.01ms	Effective	Р	S	
					immedia			
					tely			

 $0.15ms \sim 512.00ms$

F02.08	Second speed detection	Setting range	factory	unit	Mode of	R	elate	ed
	filtering		value		entry	n	iode	ls
					into			
					force			
		0 to 15	0		Effective	Р	S	Т
					immedia			
					tely			

Sets the filtering level for speed detection.

0 to 15

The higher the value, the better the vibration suppression, but it will reduce the response bandwidth.

F02.09	Second torque command	Setting range	factory	unit	Mode of	R	elat	ed
	filtering		value		entry	n	node	ls
					into			
					force			
		0 to 10000	100	0.01ms	Effective	Р	S	Т
					immedia			
					tely			

 $0.00ms \sim 100.00ms$

F02.10	Velocity loop PDFF factor	Setting range	factory	unit	Mode of		elate	
			value		entry into	п	node	15
					force			
		0 to 1000	1000	0.1%	Effective	Р	S	
					immedia			
					tely			

0 to 100.0%

F02.11	Speed Feedforward	Setting range	factory	unit	Mode of	Related	d
	Selection		value		entry	models	5
					into		
					force		
		0~1	0		Downtim	Р	
					e in		
					effect		

0:No speed feed forward

1:Internal speed feedforward

F02.12	Speed feedforward gain	Setting range	factory value	unit	Mode of entry into force		elate 10de	
		0~1500	300	0.1%	Effective	Р		
					immedia			
					tely			

0.0% to 100.0%

F02.13	Speed feed-forward	Setting range	factory	unit	Mode of	R	elate	ed
	filtering time		value		entry	m	node	s
					into			
					force			
		0 to 6400	50	0.01ms	Effective	Р		
					immedia			
					tely			

 $0.00ms \sim 64.00ms$

F02.14	Torque feedforward	Setting range	factory	unit	Mode of	R	elat	ed
	selection		value		entry	n	10de	ls
					into			
					force			
		0 to 2	0		Downtim	Р	S	
					e in			
					effect			

0:No torque feedforward

1:Internal torque feedforward

2:Use TFFD as a torque feedforward input

F02.15	Torque feedforward gain	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	n	nodel	s
					into			
					force			
		0 to 1000	0	0.1%	Effective	Р	S	
					immedia			
					tely			

0.0% to 100.0%

F02.16	Torque feed-forward	Setting range	factory	unit	Mode of	Related
	filtering time		value		entry	models

				into force			
	0 to 6400	0	0.01ms	Effective	Р	S	
				immedia			
				tely			

 $0.00ms \sim 64.00ms$

F02.17	DI function GAIN- SWITCH switching action selection	Setting range	factory value	unit	Mode of entry into		elate 10de	
					force			
		0~1	0		Effective	Р	S	
					immedia			
					tely			

0:Speed loop regulator P(1)/PI(0) switch, gain fixed to the first group 1:First gain (0), second gain (1) switching

F02.18	Position control switching	Setting range	factory	unit	Mode of	R	elate	ed
	mode		value		entry	m	node	ls
					into			
					force			
		0 to 10	0		Effective	Р	S	
					immedia			
					tely			

0:First gain fixed

1:Second gain fixed

2: Using DI input (GAIN-SWITCH)

3:Large torque command

4:Large variation in speed command

5:Large speed command

6:Large position deviation (P)

7:With position command (P)

8: Positioning not completed (P)

9:Large actual speed (P)

10:With position command plus actual speed (P)

F02.19	Position control switching delay	Setting range	factory value	unit	Mode of entry into force		elate Iodel	
		0 to 1000	50	0.1ms	Effective	Р	S	

		immedia		
		tely		

 $0 \sim 100.0 ms$

F02.20	Position control switching	Setting range	factory	unit	Mode of	R	elate	ed
	level		value		entry	m	ode	ls
					into			
					force			
		0 to 20,000	50		Effective	Р	S	
					immedia			
					tely			

0 to 20000 (units - according to gain switching mode description)

I	F 02.21	Position control switching hysteresis	Setting range	factory value	unit	Mode of entry		elate 10de	
						into force			
			0 to 20,000	33		Effective	Р	S	
						immedia			
						tely			

0 to 20000 (units - according to gain switching mode description)

F02.22	Position gain switching	Setting range	factory	unit	Mode of	R	elated	d
	time		value		entry	n	odels	5
					into			
					force			
		0 to 10000	33	0.1ms	Effective	Р	S	
					immedia			
					tely			

 $0 \sim 1000.0 ms$

F02.23	Speed control switching	Setting range	factory	unit	Mode of	Related
	mode		value		entry	models
					into	
					force	
		0 to 5	0		Effective	S
					immedia	
					tely	

0:First gain fixed 1:Second gain fixed 2: Using DI input (GAIN-SWITCH)3:Large torque command4:Large variation in speed command5:Large speed command

F02.24	Speed Control Switching	Setting range	factory	unit	Mode of	Related
	Delay		value		entry	models
					into	
					force	
		0 to 1000	0	0.1ms	Effective	S
					immedia	
					tely	

 $0 \sim 100.0 ms$

F02.25	Speed control switching	Setting range	factory	unit	Mode of	Related	i
	level		value		entry	models	
					into		
					force		
		0 to 20,000	0		Effective	S	
					immedia		
					tely		

0 to 20000 (units - according to gain switching mode description)

F02.26	Speed control switching	Setting range	factory	unit	Mode of	Relat	ed
	back lag		value		entry	mode	els
					into		
					force		
		0 to 20,000	0		Effective	S	
					immedia		
					tely		

0 to 20000 (units - according to gain switching mode description)

F02.27	Torque control switching	Setting range	factory	unit	Mode of	Related
	mode		value		entry	models
					into	
					force	
		0 to 3	0		Effective	Т
					immedia	
					tely	

0:First gain fixed

1:Second gain fixed2: Using DI input (GAIN-SWITCH)3:Large torque command

F02.28	Torque control switching	Setting range	factory	unit	Mode of	Relate	ed
	delay		value		entry	model	ls
					into		
					force		
		0 to 1000	0	0.1ms	Effective		Т
					immedia		
					tely		

 $0 \sim 100.0 ms$

F02.29	Torque control switching	Setting range	factory	unit	Mode of	Related
	level		value		entry	models
					into	
					force	
		0 to 20,000	0		Effective	Т
					immedia	
					tely	

0 to 20000 (units - according to gain switching mode description)

F02.30	Torque control switching	Setting range	factory	unit	Mode of	Relate	d
	hysteresis		value		entry	model	s
					into		
					force		
		0 to 20,000	0		Effective		Т
					immedia		
					tely		

0 to 20000 (units - according to gain switching mode description)

F02.31	Observer enabled	Setting range	factory	unit	Mode of	R	elat	ed
			value		entry	n	node	els
					into			
					force			
		0 to 2	0		Downtim	Р	S	Т
					e in			
					effect			

0:Not enabled 1:Debugging

2:Enable

F02.32	Observer cut-off	Setting range	factory	unit	Mode of	R	elate	ed
	frequency		value		entry	n	ıode	ls
					into			
					force			
		0 to 500	100	1Hz	Downtim	Р	S	Т
					e in			
					effect			

 $0\sim 500 HZ$

F02.33	Observer phase	Setting range	factory	unit	Mode of	R	elat	ed
	compensation time		value		entry	n	ıode	ls
					into			
					force			
		0 to 10000	0	0.01ms	Effective	Р	S	Т
					immedia			
					tely			

 $0.00 \sim 100.00 ms$

F02.34	Observer coefficient of	Setting range	factory	unit	Mode of	R	Relate model	
	inertia		value		entry	models		ls
					into			
					force			
		0 to 10000	1000		Downtim	Р	S	Т
					e in			
					effect			

0 to 10000

F02.38	Current response trim	Setting range	factory	unit	Mode of	R	elate	ed
	factor		value		entry	n	node	ls
					into			
					force			
		0 to 1200	600		Downtim	Р	S	Т
					e in			
					effect			

0 to 1200 (valid for all motors)

F02.40 Position command	Setting range	factory	unit	Mode of	Related	
-------------------------	---------------	---------	------	---------	---------	--

smoothing filtering		value		entry into	mod	els
				force		
	0~65535	0	0.1ms	Effective	Р	
				immedia		
				tely		

 $0.0ms \sim 6553.5ms$

F02.41	Position command	Setting range	factory	unit	Mode of	Relate	ed
	averaging filtering		value		entry	mode	ls
					into		
					force		
		0 to 5120	0	0.1ms	Effective	Р	
					immedia		
					tely		

 $0.0ms \sim 512.0ms$

F02.42	Position command average	Setting range	factory	unit	Mode of	R	elate	ed
	filtering 2		value		entry	m	node	s
					into			
					force			
		0 to 5120	0	0.1ms	Effective	Р		
					immedia			
					tely			

 $0.0 \text{ms} \sim 512.0 \text{ms}$

Group F03 Enhanced Performance Group

F03.00	Adaptive filter mode	Setting range	factory value	unit	Mode of entry		elat node	
					into			
					force			
		0 to 4	0		Effective	Р	S	Т
					immedia			
					tely			

0:Adaptive invalid, 3rd,4th filter works but parameters are unchanged

1:1 adaptive filter valid (3rd filter parameters updated according to adaptive results)

2:2 adaptive filters valid (3rd and 4th filter parameters updated according to adaptive results)

3:Resonant frequency measurement, results are displayed but filter parameters are not updated

4:Clear adaptive results (adaptive is invalid and filters 3 and 4 do not work)

F03.01	Adaptive filtered load	Setting range	factory	unit	Mode of	R	elat	ed
	mode		value		entry	n	10de	els
					into			
					force			
		0~1	0		Effective	Р	S	Т
					immedia			
					tely			

0: Highly rigid load 1:Low rigid load

F03.02	1st trap frequency	Setting range	factory	unit	Mode of	R	elate	ed
	(manual)		value		entry	n	ıode	ls
					into			
					force			
		50 to 5000	5000	1Hz	Effective	Р	S	Т
					immedia			
					tely			

 $50\sim 5000 Hz$

F03.03	Width of the 1st trap	Setting range	factory	unit	Mode of	Related
			value		entry	models

			into force			
	0 to 12	2	 Effective	Р	S	Т
			immedia			
			tely			

F03.04	1st trap depth	Setting range	factory	unit	Mode of	R	elat	ed
			value		entry	m	ıode	els
					into			
					force			
		0 to 99	0		Effective	Р	S	Т
					immedia			
					tely			

0 to 99

F03.05	2nd trap frequency	Setting range	factory	unit	Mode of	R	elate	ed
	(manual)		value		entry	n	ıode	ls
					into			
					force			
		50 to 5000	5000	1Hz	Effective	Р	S	Т
					immedia			
					tely			

 $50\sim 5000 Hz$

F03.06	2nd trap width	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	n	ıode	ls
					into			
					force			
		0 to 12	2		Effective	Р	S	Т
					immedia			
					tely			

0 to 12

F03.07	2nd trap depth	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	n	iode	ls
					into			
					force			
		0 to 99	0		Effective	Р	S	Т
					immedia			

		tely		
0 . 00				

F03.08	3rd trap frequency	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	m	ıode	ls
					into			
					force			
		50 to 5000	5000	1Hz	Effective	Р	S	Т
					immedia			
					tely			

 $50\sim 5000 Hz$

F03.09	3rd trap width	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	model		ls
					into			
					force			
		0 to 12	2		Effective	Р	S	Т
					immedia			
					tely			

0 to 12

F03.10	3rd trap depth	Setting range	factory	unit	Mode of	R	Relate model	
			value		entry	mode		ls
					into			
					force			
		0 to 99	0		Effective	Р	S	Т
					immedia			
					tely			

0 to 99

F03.11	4th trap frequency	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	mode		ls
					into			
					force			
		50 to 5000	5000	1Hz	Effective	Р	S	Т
					immedia			
					tely			

 $50\sim 5000 Hz$

F03.12	4th trap width	Setting range	factory value	unit	Mode of entry into force		elato 10de	
		0 to 12	2		Effective	Р	S	Т
					immedia			
					tely			

F03.13	4th trap depth	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	n	model	
					into			
					force			
		0 to 99	0		Effective	Р	S	Т
					immedia			
					tely			

0 to 99

F03.17	Post Torque Filter	Setting range	factory	unit	Mode of	R	elat	ed
			value		entry	n	ıode	els
					into			
					force			
		0 to 10000	5	0.01ms	Effective	Р	S	Т
					immedia			
					tely			

F03.20	1st damping frequency	Setting range	factory	unit	Mode of	R	elat	ed
	(low frequency vibration		value		entry	n	ıode	ls
	control)				into			
					force			
		0 to 1000	0	0.1Hz	Effective	Р	S	
					immedia			
					tely			

 $10.0 HZ \sim 100.0 HZ$

F03.21	1st damping filter setting	Setting range	factory	unit	Mode of	Related
			value		entry	models
					into	
					force	

0 to 10	0	0.1	Effective	Р	S	
			immedia			
			tely			

 $0 \sim 1.0$

F03.22	2nd damping frequency	Setting range	factory	unit	Mode of	R	elate	d
	(low frequency vibration		value		entry	m	nodel	s
	control)				into			
					force			
		0 to 1000	0	0.1Hz	Effective	Р	S	
					immedia			
					tely			

 $10 HZ \sim 100 HZ$

F03.23	2nd damping filter setting	Setting range	factory value	unit	Mode of entry		elate ode	
					into force			
		0 to 10	0	0.1	Effective immedia	Р	S	
					tely			

 $0 \sim 1.0$

F03.29	Resonance point 1	Setting range	factory	unit	Mode of		elate	
	frequency		value		entry into	п	iode	15
					force			
		0 to 5000	5000	1Hz	Display	Р	S	Т
					only			

 $0\sim 5000 Hz$

F03.30	Resonance point 1	Setting range	factory	unit	Mode of	R	elat	ed
	frequency width		value		entry	n	node	els
					into			
					force			
		0 to 20	2		Display	Р	S	Т
					only			

0 to 20

F03.31	Resonance point 1 amplitude	Setting range	factory value	unit	Mode of entry into force		elate 10de	
		0 to 1000	0		Display	Р	S	Т
					only			

F03.32	Resonance point 2	Setting range	factory	unit	Mode of	R	elate	ed
	frequency		value		entry into	n	node	ls
					force			
		0 to 5000	5000	1Hz	Display	Р	S	Т
					only			

 $0\sim 5000 Hz$

F03.33	Resonance point 2 frequency width	Setting range	factory value	unit	Mode of entry		Related models	
					into force			
		0 to 20	2		Display	Р	S	Т
					only			

0 to 20

F03.34	Resonance point 2	Setting range	factory	unit	Mode of	R	elat	ed
	amplitude		value		entry	n	ıode	ls
					into			
					force			
		0 to 1000	0		Display	Р	S	Т
					only			

0 to 1000

F03.35	Gravity load	Setting range	factory	unit	Mode of	R	elate	d
	compensation value		value		entry	n	nodel	.S
					into			
					force			
		-100 to 100	0	1%	Effective	Р	S	
					immedia			
					tely			

Compensation of gravity load, setting range -100% to 100%

F03.36	Load Compensation Storage Options	Setting range	factory value	unit	Mode of entry		elate 10de	
					into			
					force			
		0 to 2	2		Effective	Р	S	
					immedia			
					tely			

0:Auto update, power down storage

1:Automatic update, power down to restore the initial value

2:No automatic update

F03.37	Positive friction torque	Setting range	factory	unit	Mode of	R	elate	ed
	compensation		value		entry	m	lode	ls
					into			
					force			
		-3000 to 3000	0	0.1%	Effective	Р	S	
					immedia			
					tely			

0.1% of torque units (-300.0 to 300.0)

F03.38	Reverse friction torque	Setting range	factory	unit	Mode of	R	elate	ed
	compensation		value		entry	n	ıode	ls
					into			
					force			
		-3000 to 3000	0	0.1%	Effective	Р	S	
					immedia			
					tely			

0.1% of torque units (-300.0 to 300.0)

F03.39	Viscous friction	Setting range	factory	unit	Mode of	R	elate	ed
	compensation		value		entry	m	nodel	ls
					into			
					force			
		-3000 to 3000	0	0.1%	Effective	Р	S	
					immedia			
					tely			

0.1% of torque units (-300.0 to 300.0)

F03.41	Friction compensation time constant	Setting range	factory value	unit	Mode of entry into		elate nodel	
					force			
		0 to 10000	0	0.1ms	Effective	Р	S	
					immedia			
					tely			

0.1ms unit (0 to 1000.0ms)

F03.42	Friction compensation low	Setting range	factory	unit	Mode of	R	elate	ed
	speed range		value		entry	n	node	ls
					into			
					force			
		0 to 500	1	1rpm	Effective	Р	S	
					immedia			
					tely			

0 to 500rpm

F03.43	Slot torque compensation	Setting range	factory	unit	Mode of	R	elat	ed
	options		value		entry	n	ıode	ls
					into			
					force			
		0~1	0		Effective	Р	S	
					immedia			
					tely			

F03.44	Parameter recognition speed value	Setting range	factory value	unit	Mode of entry		elate 10de	
					into			
					force			
		100 to 1000	500		Downtim	Р	S	
					e in			
					effect			

100 to 1000rpm

F03.45	Parameter identification	Setting range	factory	unit	Mode of	Related
	acceleration time		value		entry	models
					into	
					force	

50 to 10000	100	 Downtim	Р	S	
		e in			
		effect			

50 to 10000ms

F03.46	Parameter identification	Setting range	factory	unit	Mode of	R	elate	d
	deceleration time		value		entry	m	odel	s
					into			
					force			
		50 to 10000	100		Downtim	Р	S	
					e in			
					effect			

50 to 10000ms

F03.47	Parameter recognition mode	Setting range	factory value	unit	Mode of entry into		elate odel	
		0~1	0		force Downtim e in effect	Р	S	

0: no automatic updating of inertia in case of automatic adjustment.

1:Automatic update of inertia during automatic adjustment

F03.48	Angular discrimination	Setting range	factory	unit	Mode of	R	elate	ed
	and pole-seeking phase		value		entry	m	ode	ls
	currents				into			
					force			
		0 to 2000	500	0.1%	Downtim	Р	S	Т
					e in			
					effect			

0 to 200.0%

F03.49	Magnetic pole phase	Setting range	factory	unit	Mode of	R	elate	ed
	finding method		value		entry	n	ıode	ls
					into			
					force			
		0~1	1		Downtim	Р	S	Т
					e in			
					effect			

0:Direct Positioning Phase Finding

1:Micro-motion phase search

2:Closed loop direct positioning phase finding

3:Quasi-static current injection phase finding

F03.50	Micro-motion phase seeking action threshold	Setting range	factory value	unit	Mode of entry		elato 10de	
	_				into			
					force			
		1 to 10,000	100		Downtim	Р	S	Т
					e in			
					effect			

1 to 10000 (10000 corresponds to 1 turn or 1 pair of poles)

F03.51	Micro-motion phase- seeking stationary threshold	Setting range	factory value	unit	Mode of entry into		elato 10de	
					force			
		1 to 10,000	10		Downtim	Р	S	Т
					e in			
					effect			

1 to 10000 (10000 corresponds to 1 turn or 1 pair of poles)

F03.52	Direct positioning of phase angle	Setting range	factory value	unit	Mode of entry		elato 10de	
	0				into			
					force			
		0~360	0	1°	Downtim	Р	S	Т
					e in			
					effect			

 $0 \sim 360$ degrees

F03.54	Closed-loop pre-	Setting range	factory	unit	Mode of	R	elat	ed
	positioning phase finding		value		entry	n	ıode	ls
	fast and slow				into			
					force			
		0 to 100	0		Downtim	Р	S	Т
					e in			
					effect			

0 to 100 (the higher the value, the faster it is)

F03.55	Phase-seeking movable	Setting range	factory	unit	Mode of	R	elate	ed
	range		value		entry	n	node	ls
					into			
					force			
		0 to 1000	100	0.01	Downtim	Р	S	Т
					e in			
					effect			

0.01: 10.00 turns (pitch)

F03.56	Magnetic pole phase seeking line sequence identification switch	Setting range	factory value	unit	Mode of entry into force		Relate model		Relate model	
		0~1	0		Downtim e in effect	Р	S	Т		

0:No identification of motor power line UVW phase sequence 1:Identify motor power line UVW phase sequence

F03.57	Allowable range of phase	Setting range	factory	unit	Mode of	R	elat	ed
	finding error		value		entry	n	node	els
					into			
					force			
		0 to 45	20	1°	Downtim	Р	S	Т
					e in			
					effect			

0 to 45 degrees

F03.58	Finding the opposite	Setting range	factory	unit	Mode of	R	elate	ed
	direction of the flying car		value		entry	n	iode	ls
	determination threshold				into			
					force			
		0 to 100	0		Downtim	Р	S	Т
					e in			
					effect			

0 to 100 (100 corresponds to the rated speed of the motor)

threshold in phase finding		value	entry into	n	node	ls
			force			
	0 to 150	0	 Downtim	Р	S	Т
			e in			
			effect			

0 to 150 (100 corresponds to the rated speed of the motor)

F03.60	Hall U1V0W1 corresponds	Setting range	factory	unit	Mode of	R	elat	ed
	to the electrical angle		value		entry	n	10de	ls
					into			
					force			
		0 to 360	30	1°	Downtim	Р	S	Т
					e in			
					effect			

 $0 \sim 360$ degrees

F03.61	Hall U1V0W0	Setting range	factory	unit	Mode of	R	elate	ed
	Corresponding electrical		value		entry	n	ıode	ls
	angle				into			
					force			
		0 to 360	90	1°	Downtim	Р	S	Т
					e in			
					effect			

 $0 \sim 360 \text{ degrees}$

F03.62	Hall U1V1W0 corresponds	Setting range	factory	unit	Mode of	R	elate	ed
	to the electrical angle		value		entry	n	ıode	ls
					into			
					force			
		0 to 360	150	1°	Downtim	Р	S	Т
					e in			
					effect			

 $0 \sim 360 \text{ degrees}$

F03.63	Hall U0V1W0 Corresponding electrical angle	Setting range	factory value	unit	Mode of entry into force		elate 10de	
		0~360	210	1°	Downtim	Р	S	Т

		e in		
		effect		

 $0 \sim 360$ degrees

F03.64	Hall U0V1W1 corresponds	Setting range	factory	unit	Mode of	R	elate	ed
	to the electrical angle		value		entry	m	node	ls
					into			
					force			
		0~360	270	1°	Downtim	Р	S	Т
					e in			
					effect			

 $0 \sim 360$ degrees

F03.65	Hall U0V0W1	Setting range	factory	unit	Mode of	R	elate	ed
	Corresponding electrical		value		entry	n	node	ls
	angle				into			
					force			
		0~360	330	1°	Downtim	Р	S	Т
					e in			
					effect			

 $0 \sim 360 \text{ degrees}$

F03.66	Mode 3 phase seeking current amplitude	Setting range	factory value	unit	Mode of entry		elato 10de	
	·····				into			10
					force			
		0 to 100	50	1%	Downtim	Р	S	Т
					e in			
					effect			

0 to 100%

F03.69	Model Tracking Options	Setting range	factory	unit	Mode of	R	elated	d
			value		entry	m	odels	s
					into			
					force			
		0 to 9	0		Effective	Р		
					immedia			
					tely			

0: Model tracking is not enabled

1:Enable model 1, external feedforward is invalid

2:Enable model 1, external feedforward valid3:Enable model 2, external feedforward is invalid4:Enable model 2, external feedforward valid

F03.70	Model tracking gain	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	m	ode	ls
					into			
					force			
		10 to 20,000	500	0.1/s	Effective	Р		
					immedia			
					tely			

 $1.0\sim 2000.0\;/S$

F03.71	Model tracking	Setting range	factory	unit	Mode of	Related
	compensation factor		value		entry	models
					into	
					force	
		500 to 2000	1000	0.1%	Effective	Р
					immedia	
					tely	

50.0 to 200.0%

F03.72	Model tracking speed	Setting range	factory	unit	Mode of	R	elated
	compensation gain		value		entry	m	odels
					into		
					force		
		0 to 2000	1000	0.1%	Effective	Р	
					immedia		
					tely		

0.0 to 200.0%

F03.73	Model tracking torque	Setting range	factory	unit	Mode of	Re	elated
	compensation gain 1		value		entry	m	odels
					into		
					force		
		0 to 10000	1000	0.1%	Effective	Р	
					immedia		
					tely		

0.0 to 1000.0%

F03.74	Model tracking torque compensation gain 2	Setting range	factory value	unit	Mode of entry into force		elated 10dels	
		0 to 10000	1000	0.1%	Effective immedia tely	Р		

0.0 to 1000.0%

F03.75	Model anti-resonance	Setting range	factory	unit	Mode of	Rela	ted
	frequency		value		entry	mod	lels
					into		
					force		
		10 to 2000	500	0.1HZ	Effective	Р	
					immedia		
					tely		

 $1.0\sim 200.0 HZ$

F03.76	Model residual vibration	Setting range	factory	unit	Mode of	Re	elate	d
	frequency		value		entry	m	odel	s
					into			
					force			
		10 to 2000	700	0.1HZ	Effective	Р		
					immedia			
					tely			

 $1.0\sim 200.0 HZ$

F03.77	Model delay bandwidth	Setting range	factory	unit	Mode of	Related
	parameters		value		entry	models
					into	
					force	
		0 to 30,000	4500	0.1HZ	Effective	Р
					immedia	
					tely	

 $0\sim 3000.0 HZ$

F03.78	Model delay compensation	Setting range	factory	unit	Mode of	Related
	parameters		value		entry	models
					into	

			force		
	500 to 1500	800	 Effective	Р	
			immedia		
			tely		

F03.81	Second model tracking	Setting range	factory	unit	Mode of	Re	elated	I
	gain		value		entry	m	odels	}
					into			
					force			
		10 to 20,000	500	0.1/s	Effective	Р		
					immedia			
					tely			

 $1.0\sim 2000.0\;/S$

F03.82	Second model tracking	Setting range	factory	unit	Mode of	Rela	ted
	compensation factor		value		entry	mod	lels
					into		
					force		
		500 to 2000	1000	0.1%	Effective	Р	
					immedia		
					tely		

50.0 to 200.0%

F03.83	Is low frequency vibration	Setting range	factory	unit	Mode of	Related
	suppression effective		value		entry	models
					into	
					force	
		0~1	0		Effective	
					immedia	
					tely	

0:Invalid

1:Effective

F03.84	Vibration suppression	Setting range	factory	unit	Mode of	R	elate	d
	frequency point		value		entry	m	odel	S
					into			
					force			
		10 to 2000	800	0.1HZ	Effective	Р		
					immedia			

		tely		
$1.0 \sim 200.0 HZ$				

F03.85	Vibration suppression	Setting range	factory	unit	Mode of	R	elate	ed
	compensation factor		value		entry	n	ode	s
					into			
					force			
		10 to 1000	100	1%	Effective	Р		
					immedia			
					tely			

10% to 1000%

Group F04 Position Control

F04.00	First electron gear molecule (32 bits)	Setting range	factory value	unit	Mode of entry into	Rela moc	
					force		
		1 to 1073741824	1		Effective	Р	
					immedia		
					tely		

1 to 1073741824

F04.02	Electronic gear	Setting range	factory	unit	Mode of	Re	elate	d
	denominator (32 bits)		value		entry	m	odel	s
					into			
					force			
		1 to 1073741824	1		Effective	Р		
					immedia			
					tely			

1 to 1073741824

F04.04	Second electron gear	Setting range	factory	unit	Mode of	Re	elated
	molecule (32 bits)		value		entry	m	odels
					into		
					force		
		1 to 1073741824	1		Effective	Р	
					immedia		
					tely		

1 to 1073741824

F04.06	Pulse output frequency division ratio numerator (32 bits)	Setting range	factory value	unit	Mode of entry into force	Rela mod	
		1 to 1073741824	1		Effective	Р	

		immedia		
		tely		

F04.08	Pulse output divider than	Setting range	factory	unit	Mode of	Relate	ed
	denominator (32 bits)		value		entry	model	ls
					into		
					force		
		1 to 1073741824	1		Effective	P	
					immedia		
					tely		

1 to 1073741824

F04.10	Position deviation	Setting range	factory	unit	Mode of	Rel	ated	
	clearance function		value		entry	mo	dels	
					into			
					force			
		0 to 3	0		Effective	Р		
					immedia			
					tely			

0: Servo OFF and clear position deviation pulse in case of fault

1: Position deviation pulse is cleared only in case of a fault

2:Cleared when the servo is OFF and when a fault occurs, and when the DI function (PERR_CLR) is

active

3:Clear only by DI function (PERR_CLR)

F04.11	Deviation clear input	Setting range	factory	unit	Mode of	R	elate	ed
	setting		value		entry into	m	nodel	s
					force			
		0 ~ 1	0		Power	Р		
					up again.			

0:Level valid

1:Valid at the edge

F04.12	Pulse disable input setting	Setting range	factory	unit	Mode of	Re	late	d
			value		entry	ma	odel	S
					into			
					force			
		0 to 3	0		Power	Р		

		un again		1
		up agam.		1
				-

0:0.5ms 2 consecutive times in unison

1:0.5ms 3 consecutive times consistent

2:1ms 3 consecutive times consistent

3:2ms 3 times in a row in unison

F04.13	Electronic gear ratio	Setting range	factory	unit	Mode of	R	elate	ed
	switching delay setting		value		entry	n	node	ls
					into			
					force			
		0~1	0		Downtim	Р		
					e in			
					effect			

0:Position command pulse is 0 for 10ms and then switch 1:Real-time switching

F04.31	Position comparison	Setting range	factory	unit	Mode of	R	elated	d
	output mode		value		entry	m	odels	5
					into			
					force			
		0000H to 0003H	0		Downtim	Р		
					e in			
					effect			

0:No position comparison function is enabled

1:Positive trigger.

2:reverse trigger.

3:Two-way trigger.

F04.32	Position 1 (32 bits)	Setting range	factory	unit	Mode of	Related
			value		entry	models
					into	
					force	
		-1073741824 ~	0		Effective	Р
		1073741824			immedia	
					tely	

 $\textbf{-1073741824} \sim 1073741824$

F04.34	Position 2 (32 bits)	Setting range	factory	unit	Mode of	Related
			value		entry	models
					into	

			force		
	-1073741824 ~	0	 Effective	Р	
	1073741824		immedia		
			tely		

$-1073741824 \sim 1073741824$

F04.36	Position 3 (32 bits)	Setting range	factory value	unit	Mode of entry		elated 10dels	
					into			
					force			
		-1073741824~	0		Effective	Р		
		1073741824			immedia			
					tely			

 $-1073741824 \sim 1073741824$

F04.38	Position 4 (32 bits)	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	m	node	ls
					into			
					force			
		-1073741824 ~	0		Effective	Р		
		1073741824			immedia			
					tely			

$-1073741824 \sim 1073741824$

F04.40	Signal validity time1	Setting range	factory	unit	Mode of	Re	elated
			value		entry	m	odels
					into		
					force		
		0~65535	0	1ms	Effective	Р	
					immedia		
					tely		

The time to output a valid signal 0 to 65535ms after reaching the 1st position

F04.41	Signal validity time2	Setting range	factory	unit	Mode of	Related
			value		entry	models
					into	
					force	
		0 ~ 65535	0	1ms	Effective	Р
					immedia	
					tely	

The time to output a valid signal 0 to 65536ms after reaching the 1st position

F04.42	Signal validity time3	Setting range	factory	unit	Mode of	Relat	ed
			value		entry	mode	els
					into		
					force		
		0~65535	0	1ms	Effective	Р	
					immedia		
					tely		

The time to output a valid signal 0 to 65537ms after reaching the 1st position

F04.43	Signal validity time4	Setting range	factory	unit	Mode of	Related
			value		entry	models
					into	
					force	
		0~65535	0	1ms	Effective	Р
					immedia	
					tely	

The time to output a valid signal 0 to 65538ms after reaching the 1st position

F04.44	Display delay	Setting range	factory value	unit	Mode of entry into	Related models
					force	
		0 ~ 65535	0	1ms	Effective	Р
					immedia	
					tely	

 $0\sim 65535 ms$

F04.46	Multi-segment position	Setting range	factory	unit	Mode of	Re	elated
	execution method		value		entry	m	odels
					into		
					force		
		0 to 5	0		Downtim	Р	
					e in		
					effect		

0:Single run

1:Cycle run

2:DI terminal switching operation

3:Communication switching operation

4: Single continuous run

5:Continuous cycle operation

F04.47	Multi-segment position command type	Setting range	factory value	unit	Mode of entry into		elate odel	
					force			
		0~1	0		Downtim	Р		
					e in			
					effect			

0:Relative command

1:Absolute command

F04.48	Multi-segment position	Setting range	factory	unit	Mode of	Related
	internal control of waiting		value		entry	models
	time				into	
					force	
		0~65535	10	1ms	Downtim	Р
					e in	
					effect	

 $0\sim 65535 ms$

F04.49	Multi-segment location starting segment serial	Setting range	factory value	unit	Mode of entry		elated 10dels	
	number				into			
					force			
		1 to 16	1		Effective	Р		
					immedia			
					tely			

1 to (F08:02)

F04.50	Multi-segment location	Setting range	factory	unit	Mode of	Rel	ated
	end segment serial number		value		entry	mo	dels
					into		
					force		
		1 to 16	2		Effective	Р	
					immedia		
					tely		

(F08:01) - 16

F04.51	Multi-segment position pause and restart remaining segment	Setting range	factory value	unit	Mode of entry into		elate odel	
	handling				force			
		0~1	1		Effective	Р		
					immedia			
					tely			

0: Run the remaining segments

1: Run again from the start segment

F04.52	Interrupt length execution	Setting range	factory	unit	Mode of	Rela	ated
	setting		value		entry	mo	dels
					into		
					force		
		0 to 4	0		Downtim	Р	
					e in		
					effect		

0: disables the interrupt execution function.

1: enabled to interrupt on the rising edge of the DI signal and to automatically unlock the interrupt state after completion.

2: enabled, interrupting on the rising edge of the DI signal and unlocking the interrupt state after completion by means of the DI signal XINT_ULK.

3: enabled, interrupting on the falling edge of the DI signal and automatically unlocking the interrupt state upon completion.

4:Enable, interrupt on falling edge of DI signal, unlock interrupt state by DI signal XINT_ULK after completion

F04.53	Interrupting long	Setting range	factory	unit	Mode of	Relat	ed
	electronic gear selection		value		entry	mode	ls
					into		
					force		
		0000H to FFFFH	0		Downtim	Р	
					e in		
					effect		

0: Does not follow gear ratio adjustment

1:Follow gear ratio adjustment

F04.54	Interrupt positioning	Setting range	factory	unit	Mode of	Related
	instruction direction		value		entry	models
	selection				into	

			force		
	0000H to FFFFH	0	 Downtim	Р	
			e in		
			effect		

0:Follow the current running direction

1:Determined by the sign of the command value

F04.55	Interrupt length setting	Setting range	factory	unit	Mode of	Rel	ated
			value		entry	mo	dels
					into		
					force		
		0 to 16	16		Downtim	Р	
					e in		
					effect		

Interrupt length setting

0 - Medium asserts that the long instruction is the first segment of a multi-segment instruction;

1 to 16 - Medium asserted long instruction as multi-segment instruction paragraph X

F04.56	Clear deviation setting	Setting range	factory	unit	Mode of	R	elat	ed
	when pulse is disabled		value		entry	n	node	els
					into			
					force			
		0~1	0		Effective	Р	S	Т
					immedia			
					tely			

0:No automatic deviation clearing when pulse is disabled

1:Deviation is automatically cleared when pulse is disabled

F04.57	Pause selection during contour position control	Setting range	factory value	unit	Mode of entry into		elato node	
					force			
		0~1	0		Effective immedia	Р	S	Т
					tely			

0:No pause function is enabled

1:Enable the pause function

F04.58	Contour position pause	Setting range	factory	unit	Mode of	Related
	resume selection		value		entry	models

			into			
			force			
	0~1	0	 Effective	Р	S	Т
			immedia			
			tely			

0: No deviation cleared

1: Removal of deviations

F04.59	Motor one turn maximum	Setting range	factory	unit	Mode of	R	elate	ed
	isochronous fraction		value		entry	m	iode	ls
					into			
					force			
		0 to 99	0		Effective	Р		
					immedia			
					tely			

Divide a circle of corresponding pulses into 0 to 99 parts

F04.60	Non-absolute system	Setting range	factory	unit	Mode of	R	elat	ed
	position feedback		value		entry	n	iode	ls
	initialization selection				into			
					force			
		0~1	0		Power	Р	S	Т
					up again.			

0: initialized to 0.

1: Initialized to the value before power failure (requires power failure storage to be enabled, i.e., F1213

set to 1)

F04.61	Positioning the completed	Setting range	factory	unit	Mode of	Relat	ted
	range		value		entry	mod	els
					into		
					force		
		1 to 65535	100	1P	Effective	Р	
					immedia		
					tely		

1P to 65535P

F04.62	Positioning completion	Setting range	factory	unit	Mode of	Related
	output setting		value		entry	models
					into	
					force	

	0 to 5	0	 Effective	Р	
			immedia		
			tely		1

0: Absolute value of position deviation is less than the positioning completion range

1: The absolute value of position deviation is less than the positioning completion range and the position command is 0

2:The absolute value of position deviation is less than the positioning completion range and the filtered position command is 0

3:When condition 0 and the zero speed signal is valid at the same time

4:When condition 1 and the zero speed signal is valid at the same time

5:Condition 2, when the zero speed signal is valid at the same time

F04.63	Positioning completion	Setting range	factory	unit	Mode of	R	elated
	hold time		value		entry	m	odels
					into		
					force		
		0 ~ 65535	0	1ms	Effective	Р	
					immedia		
					tely		

0 to 65535ms (0 - Positioning completion signal is output as long as the condition is met)

F04.64	Positioning proximity	Setting range	factory	unit	Mode of	Related
	range		value		entry	models
					into	
					force	
		1 to 65535	65535	1P	Effective	Р
					immedia	
					tely	

1P to 65535P

F04.65	Interrupt positioning	Setting range	factory	unit	Mode of	Rel	ated
	completion hold time		value		entry	mo	dels
					into		
					force		
		0 ~ 65535	0	1ms	Effective	Р	
					immedia		
					tely		

0 to 65535ms (0 - Positioning completion signal is output as long as the condition is met)

displacement amount (32		value	entry	m	node	S
bits)			into			
			force			
	-1073741824 ~	10000	 Effective	Р		
	1073741824		immedia			
			tely			

 $-1073741824 \sim 1073741824$

F04.68	Maximum speed of	Setting range	factory	unit	Mode of	R	elate	ed
	interrupt positioning		value		entry	n	node	s
					into			
					force			
		1 to 6000	100		Effective	Р		
					immedia			
					tely			

1 to 6000 rpm

F04.70	Interrupted positioning	Setting range	factory	unit	Mode of	Rel	ated
	acceleration time		value		entry	mo	dels
					into		
					force		
		0 to 300	20	1ms	Effective	Р	
					immedia		
					tely		

0 - 1000ms

F04.71	Interrupt positioning	Setting range	factory	unit	Mode of	Relate	ed
	deceleration time		value		entry	model	ls
					into		
					force		
		0 to 300	20	1ms	Effective	Р	
					immedia		
					tely		

0 - 1000ms

F04.72	Modal lower limit (32 bits)	Setting range	factory value	unit	Mode of entry into		late odel	
					force			
		0 to 2147483647	0		Power	Р		

		up again.		

F04.74	Modal upper limit (32 bits)	Setting range	factory	unit	Mode of	Related
			value		entry	models
					into	
					force	
		0 to 2147483647	0		Downtim	
					e in	
					effect	

Group F05 Speed-torque control

F05.00	Speed command source	Setting range	factory value	unit	Mode of entry into force	Relate model
		0 to 6	0		Downtim	S
					e in	
					effect	

0: Digital given (F05.01)

1:Vref (default AI1)

2:Multi-segment command 1 to 16 switching

3:Vref and multi-segment command 2 to 16 switching

4:Communication given

5:Vref+numeric setting

6: Multi-segment command 1 to 16 switching + digital setting

F05.01	Speed command setpoint	Setting range	factory	unit	Mode of	Related
			value		entry	models
					into	
					force	
		-9000 to 9000	300	1rpm	Effective	S
					immedia	
					tely	

 $-9000 rpm \sim 9000 rpm$

F05.02	Tap speed setting value	Setting range	factory	unit	Mode of	Related
			value		entry	models
					into	
					force	
		0 to 3000	300	1rpm	Effective	S
					immedia	
					tely	

 $0rpm \sim 3000rpm$

F05.06Source of torque limitationSetting rangefactoryunitMode ofRelation
--

value	entry into force	n	node	els
0	 Effective	Р	S	
	immedia			
	tely			

0:Forward and reverse internal torque limit (default)

1: Forward and reverse external torque limiting (selected using P_CL, N_CL)

2:TLMTP as forward and reverse torque limiting

3:TLMTP, TLMTN positive and negative limits

F05.07	Internal torque limitation	Setting range	factory	unit	Mode of	Re	elate	ed
	in forward rotation		value		entry	m	ode	ls
					into			
					force			
		0 to 5000	3000	0.1%	Effective	Р	S	
					immedia			
					tely			

 $0.0\% \sim 500.0\%$ (based on rated motor torque)

F05.08	Reverse internal torque	Setting range	factory	unit	Mode of	R	elate	ed
	limiting		value		entry	n	lode	s
					into			
					force			
		0 to 5000	3000	0.1%	Effective	Р	S	
					immedia			
					tely			

 $0.0\%\sim 500.0\%$ (based on rated motor torque)

F05.09	External torque limiting	Setting range	factory	unit	Mode of	Relate mode P S		d
	on the forward side		value		entry	n	odel	S
					into			
					force			
		0 to 5000	3000	0.1%	Effective	Р	S	
					immedia			
					tely			

 $0.0\% \sim 500.0\%$ (based on rated motor torque)

F05.10	External torque limiting	Setting range	factory	unit	Mode of	Related
	on the reverse side		value		entry	models

				into			
				force			
	0 to 5000	3000	0.1%	Effective	Р	S	
				immedia			
				tely			

 $0.0\%\sim 500.0\%$ (based on rated motor torque)

F05.12	Acceleration time 1	Setting range	factory	unit	Mode of	Relat	ed
			value		entry	mode	els
					into		
					force		
		0~65535	10	1ms	Effective	S	Т
					immedia		
					tely		

 $0ms \sim 65535ms/1000rpm$

F05.13	Deceleration time 1	Setting range	factory	unit	Mode of	Rel	ate	ed
			value		entry	mo	del	s
					into			
					force			
		0~65535	10	1ms	Effective		S	Т
					immedia			
					tely			

 $0ms \sim 65535ms/1000rpm$

F05.14	Acceleration time 2	Setting range	factory	unit	Mode of	Rel	ate	ed
			value		entry	mo	del	ls
					into			
					force			
		0~65535	0	1ms	Effective		5	Т
					immedia			
					tely			

 $0ms \sim 65535ms/1000rpm$

F05.15	Deceleration time 2	Setting range	factory	unit	Mode of	Re	late	ed
			value		entry	ma	ode	ls
					into			
					force			
		0~65535	0	1ms	Effective		S	Т
					immedia			

					r	 r
				tely		
0	((1000				 ·

 $0ms \sim 65535ms/1000rpm$

F05.16	Acceleration time 3	Setting range	factory	unit	Mode of	Rela	ted
			value		entry	mod	els
					into		
					force		
		0~65535	0	1ms	Effective	S	Т
					immedia		
					tely		

 $0ms \sim 65535ms/1000rpm$

F05.17	Deceleration time 3	Setting range	factory	unit	Mode of	Rela	ted	I
			value		entry	mod	lels	
					into			
					force			
		0~65535	0	1ms	Effective	S		Т
					immedia			
					tely			

 $0ms \sim 65535ms/1000rpm$

F05.18	Accelerated time 4	Setting range	factory	unit	Mode of	Re	late	ed
			value		entry	ma	ode	ls
					into			
					force			
		0~65535	0	1ms	Effective		S	Т
					immedia			
					tely			

 $0ms \sim 65535ms/1000rpm$

F05.19	Deceleration time 4	Setting range	factory	unit	Mode of	Re	late	ed
			value		entry	mo	ode	ls
					into			
					force			
		0~65535	0	1ms	Effective		S	Т
					immedia			
					tely			

 $0ms \sim 65535ms/1000rpm$

F05.21	Zero speed clamp function	Setting range	factory value	unit	Mode of entry into	Rel mo		
					force			
		0 to 2	0		Effective		5	Т
					immedia			
					tely			

0:Invalid

1:Speed command forced to 0 when ZERO_SPD is active

2:When ZERO_SPD is valid, the speed command is forced to 0. When the actual speed of the motor is lower than F05.22, it switches to position control and locks at the current position

F05.22	Zero Speed Clamping	Setting range	factory	unit	Mode of	Re	late	ed
	Threshold		value		entry	ma	ode	ls
					into			
					force			
		0 to 1000	10	1rpm	Effective		S	Т
					immedia			
					tely			

 $0rpm \sim 1000rpm$

F05.23	Fast deceleration time	Setting range	factory value	unit	Mode of entry		elato 10de	
					into			
					force			
		0 to 9999	5	1ms	Downtim	Р	S	Т
					e in			
					effect			

 $0ms \sim 9999ms$

F05.24	Torque command source	Setting range	factory	unit	Mode of	Related
			value		entry	models
					into	
					force	
		0 to 4	0		Downtim	Т
					e in	
					effect	

0: Number given (F05.27)

1:Tref

2:Digital setting, Tref switching (CMD_SEL)

3:Communication given

4:Tref+Number setting

F05.27	Torque command keypad	Setting range	factory	unit	Mode of	Relate	ed
	setpoint		value		entry	mode	ls
					into		
					force		
		-3000 to 3000	0	0.1%	Effective		Т
					immedia		
					tely		

-300.0% to 300.0% (based on rated motor torque)

F05.28	Speed limit source selection for torque control	Setting range	factory value	unit	Mode of entry	Related models
	selection for torque control		Varue		into	mouchs
					force	
		0~1	0		Effective	Т
					immedia	
					tely	

0: Forward and reverse internal speed limit F05.29, F05.30 1:VLMT

F05.29	Internal positive speed	Setting range	factory	unit	Mode of	Related
	limit		value		entry	models
					into	
					force	
		0 to 9000	3000		Effective	Т
					immedia	
					tely	

 $0rpm \sim 9000rpm$

F05.30	Internal negative speed	Setting range	factory	unit	Mode of	Related
	limit		value		entry	models
					into	
					force	
		0 to 9000	3000		Effective	Т
					immedia	
					tely	

 $0rpm \sim 9000rpm$

F05.31	Hard limit torque limiting	Setting range	factory value	unit	Mode of entry into force		elato 10de	
		0 to 4000	3000	0.1%	Effective immedia	Р	S	Т
					tely			

Torque limit value when hard limit is touched, -300.0% to 300.0% (based on motor rated torque)

F05.32	Hard limit torque limit	Setting range	factory	unit	Mode of	R	elate	ed
	detection time		value		entry	n	iode	ls
					into			
					force			
		0 to 2000	100		Effective	Р	S	Т
					immedia			
					tely			

Torque limit detection time when a hard limit is touched, 0ms to 2000ms

F05.33	Speed command serial	Setting range	factory	unit	Mode of	Relate	ed
	number selection method		value		entry	model	ls
					into		
					force		
		0~1	0		Downtim	S	
					e in		
					effect		

0:DI terminal selection

1: Communication options

F05.34	Paragraph 1 speed	Setting range	factory	unit	Mode of	Related
			value		entry	models
					into	
					force	
		-9000 to 9000	0	1rpm	Effective	S
					immedia	
					tely	

 $-9000 rpm \sim 9000 rpm$

F05.35	Paragraph 1 acceleration	Setting range	factory	unit	Mode of	Related
	and deceleration options		value		entry	models
					into	

		force		
0 to 3	0	 Effective	S	
		immedia		
		tely		

F05.36	Paragraph 2 speed	Setting range	factory	unit	Mode of	Related
			value		entry	models
					into	
					force	
		-9000 to 9000	0	1rpm	Effective	S
					immedia	
					tely	

 $-9000 rpm \sim 9000 rpm$

F05.37	Paragraph 2 acceleration	Setting range	factory	unit	Mode of	Relate	ed
	and deceleration options		value		entry	model	s
					into		
					force		
		0 to 3	0		Effective	S	
					immedia		
					tely		

0 to 3 (0: 1st acceleration/deceleration)

F05.38	Paragraph 3 speed	Setting range	factory	unit	Mode of	Related
			value		entry	models
					into	
					force	
		-9000 to 9000	0	1rpm	Effective	S
					immedia	
					tely	

-9000rpm ~ 9000rpm

F05.39	Paragraph 3 acceleration	Setting range	factory	unit	Mode of	Related
	and deceleration options		value		entry	models
					into	
					force	
		0 to 3	0		Effective	S
					immedia	
					tely	

F05.40	Paragraph 4 speed	Setting range	factory	unit	Mode of	Related
			value		entry	models
					into	
					force	
		-9000 to 9000	0	1rpm	Effective	S
					immedia	
					tely	

 $-9000 rpm \sim 9000 rpm$

F05.41	Paragraph 4 acceleration	Setting range	factory	unit	Mode of	Related
	and deceleration options		value		entry	models
					into	
					force	
		0 to 3	0		Effective	S
					immedia	
					tely	

0 to 3 (0: 1st acceleration/deceleration)

F05.42	Paragraph 5 speed	Setting range	factory	unit	Mode of	Related
			value		entry	models
					into	
					force	
		-9000 to 9000	0	1rpm	Effective	S
					immedia	
					tely	

 $-9000 rpm \sim 9000 rpm$

F05.43	Paragraph 5 acceleration and deceleration options	Setting range	factory value	unit	Mode of entry	Related models
					into	
					force	
		0 to 3	0		Effective	S
					immedia	
					tely	

0 to 3 (0: 1st acceleration/deceleration)

F05.44 Paragraph 6 speed Setting range factory	unit	Mode of	Related
--	------	---------	---------

		value		entry into force	mode	els
	-9000 to 9000	0	1rpm	Effective	S	
				immedia		
				tely		

 $\textbf{-9000rpm} \sim 9000rpm$

F05.45	Paragraph 6 acceleration	Setting range	factory	unit	Mode of	Relate	ed
	and deceleration options		value		entry	model	s
					into		
					force		
		0 to 3	0		Effective	S	
					immedia		
					tely		

0 to 3 (0: 1st acceleration/deceleration)

F05.46	Paragraph 7 speed	Setting range	factory	unit	Mode of	Relat	ed
			value		entry	mode	els
					into		
					force		
		-9000 to 9000	0	1rpm	Effective	S	
					immedia		
					tely		

-9000rpm ~ 9000rpm

F05.47	Paragraph 7 acceleration	Setting range	factory	unit	Mode of	Relat	ted
	and deceleration options		value		entry	mode	els
					into		
					force		
		0 to 3	0		Effective	S	
					immedia		
					tely		

0 to 3 (0: 1st acceleration/deceleration)

F05.48	Paragraph 8 speed	Setting range	factory value	unit	Mode of entry into	Relate model	
					force		
		-9000 to 9000	0	1rpm	Effective	S	

		immedia		
		tely		

 $-9000 rpm \sim 9000 rpm$

F05.49	Paragraph 8 acceleration	Setting range	factory	unit	Mode of	Related
	and deceleration options		value		entry	models
					into	
					force	
		0 to 3	0		Effective	S
					immedia	
					tely	

0 to 3 (0: 1st acceleration/deceleration)

F05.50	Paragraph 9 speed	Setting range	factory value	unit	Mode of entry	Related models
					into	
					force	
		-9000 to 9000	0	1rpm	Effective	S
					immedia	
					tely	

-9000rpm ~ 9000rpm

F05.51	Paragraph 9 acceleration and deceleration options	Setting range	factory value	unit	Mode of entry into force	Relat mode	
		0 to 3	0		Effective	S	
					immedia		
					tely		

0 to 3 (0: 1st acceleration/deceleration)

F05.52	Paragraph 10 speed	Setting range	factory	unit	Mode of	Related
			value		entry	models
					into	
					force	
		-9000 to 9000	0	1rpm	Effective	S
					immedia	
					tely	

 $-9000 rpm \sim 9000 rpm$

F05.53	Paragraph 10 acceleration and deceleration options	Setting range	factory value	unit	Mode of entry into force	Relat mode	
		0 to 3	0		Effective	S	
					immedia		
					tely		

F05.54	Paragraph 11 speed	Setting range	factory	unit	Mode of	Related
			value		entry	models
					into	
					force	
		-9000 to 9000	0	1rpm	Effective	S
					immedia	
					tely	

 $-9000 rpm \sim 9000 rpm$

F05.55	Paragraph 11 acceleration and deceleration options	Setting range	factory value	unit	Mode of entry	Relate model	
	und decereration options		vuitae		into	mouer	
					force		
		0 to 3	0		Effective	S	
					immedia		
					tely		

0 to 3 (0: 1st acceleration/deceleration)

F05.56	Paragraph 12 speed	Setting range	factory	unit	Mode of	Related
			value		entry	models
					into	
					force	
		-9000 to 9000	0	1rpm	Effective	S
					immedia	
					tely	

 $\textbf{-9000rpm} \sim 9000rpm$

F05.57	Paragraph 12 acceleration	Setting range	factory	unit	Mode of	Related
	and deceleration options		value		entry	models
					into	

		force		
0 to 3	0	 Effective	S	
		immedia		
		tely		

F05.58	Paragraph 13 speed	Setting range	factory	unit	Mode of	Related
			value		entry	models
					into	
					force	
		-9000 to 9000	0	1rpm	Effective	S
					immedia	
					tely	

 $-9000 rpm \sim 9000 rpm$

F05.59	Paragraph 13 acceleration	Setting range	factory	unit	Mode of	Relate	d
	and deceleration options		value		entry	model	s
					into		
					force		
		0 to 3	0		Effective	S	
					immedia		
					tely		

0 to 3 (0: 1st acceleration/deceleration)

F05.60	Paragraph 14 speed	Setting range	factory	unit	Mode of	Related
			value		entry	models
					into	
					force	
		-9000 to 9000	0	1rpm	Effective	S
					immedia	
					tely	

-9000rpm ~ 9000rpm

F05.61	Paragraph 14 acceleration	Setting range	factory	unit	Mode of	Related
	and deceleration options		value		entry	models
					into	
					force	
		0 to 3	0		Effective	S
					immedia	
					tely	

F05.62	Paragraph 15 speed	Setting range	factory	unit	Mode of	Relate	ed
			value		entry	mode	ls
					into		
					force		
		-9000 to 9000	0	1rpm	Effective	S	
					immedia		
					tely		

 $-9000 rpm \sim 9000 rpm$

F05.63	Paragraph 15 acceleration	Setting range	factory	unit	Mode of	Related
	and deceleration options		value		entry	models
					into	
					force	
		0 to 3	0		Effective	S
					immedia	
					tely	

0 to 3 (0: 1st acceleration/deceleration)

F05.64	Paragraph 16 speed	Setting range	factory	unit	Mode of	Related
			value		entry	models
					into	
					force	
		-9000 to 9000	0	1rpm	Effective	S
					immedia	
					tely	

 $-9000 rpm \sim 9000 rpm$

F05.65	Paragraph 16 acceleration and deceleration options	Setting range	factory value	unit	Mode of entry	Related models
					into	
					force	
		0 to 3	0		Effective	S
					immedia	
					tely	

0 to 3 (0: 1st acceleration/deceleration)

F05.70 Speed-consistent signal Setting range	factory	unit	Mode of	Related	
--	---------	------	---------	---------	--

width		value		entry	mod	els
				into		
				force		
	10 to 1000	50	1rpm	Effective	S	
				immedia		
				tely		

 $10 rpm \sim 1000 rpm$

F05.71	Speed reaches specified	Setting range	factory	unit	Mode of	R	elate	ed
	value		value		entry	m	iode	ls
					into			
					force			
		10 to 9000	100	1rpm	Effective	Р	S	Т
					immedia			
					tely			

10rpm to 9000rpm

F05.73	Motor rotation signal	Setting range	factory	unit	Mode of	R	elate	ed
	speed threshold		value		entry	n	iode	ls
					into			
					force			
		0 to 1000	20	1rpm	Effective	Р	S	Т
					immedia			
					tely			

 $0rpm \sim 1000rpm$

F05.74	Zero Speed Signal Output	Setting range	factory	unit	Mode of	R	elate	ed
	Threshold		value		entry	n	ıode	ls
					into			
					force			
		0 to 1000	60	1rpm	Effective	Р	S	Т
					immedia			
					tely			

0 to 1000rpm, after the actual speed falls below this threshold, DO function 6 is effective

F05.75	Torque reaches specified value	Setting range	factory value	unit	Mode of entry into force		elato 10de	
		0 to 3000	1000	0.1%	Effective	Р	S	Т

		immedia	
		tely	

 $0.0\%\sim 300.0\%$ (based on rated motor torque)

F05.76	Torque arrival detection	Setting range	factory	unit	Mode of	R	elate	ed
	width		value		entry	n	node	ls
					into			
					force			
		0 to 3000	200	0.1%	Effective	Р	S	Т
					immedia			
					tely			

 $0.0\% \sim 300.0\%$ (based on rated motor torque)

Group F06 Digital Inputs and Outputs

F06.00	Number of active DI	Setting range	factory	unit	Mode of	R	elat	ed
	terminals		value		entry	n	node	ls
					into			
					force			
		0~65535	5		Display	Р	S	Т
					only			

 $0\sim 65535$

F06.01	DI1 terminal function	Setting range	factory	unit	Mode of	R	elate	ed
	selection		value		entry	n	node	ls
					into			
					force			
		0 to 63	1		Downtim	Р	S	Т
					e in			
					effect			

Input function code: 0 to 63

0:No definition

1 to 63: Reference digital input (DI) function definition table

F06.02	DI2 terminal function	Setting range	factory	unit	Mode of	R	elat	ed
	selection		value		entry	m	iode	els
					into			
					force			
		0 to 63	2		Downtim	Р	S	Т
					e in			
					effect			

Input function code: 0 to 63

0:No definition

1 to 63: Reference digital input (DI) function definition table

F06.03	DI3 terminal function	Setting range	factory	unit	Mode of	Related
	selection		value		entry	models
					into	
					force	

	0 to 63	0	 Downtim	Р	S	Т
			e in			
			effect			

Input function code: 0 to 63

0:No definition

1 to 63: Reference digital input (DI) function definition table

F06.04	DI4 terminal function	Setting range	factory	unit	Mode of	R	elat	ed
	selection		value		entry	n	iode	ls
					into			
					force			
		0 to 63	15		Downtim	Р	S	Т
					e in			
					effect			

Input function code: 0 to 63

0:No definition

1 to 63: Reference digital input (DI) function definition table

F06.05	DI5 terminal function	Setting range	factory	unit	Mode of	R	elate	ed
	selection		value		entry	n	node	ls
					into			
					force			
		0 to 63	16		Downtim	Р	S	Т
					e in			
					effect			

Input function code: 0 to 63

0:No definition

1 to 63: Reference digital input (DI) function definition table

F06.11	DI1 terminal logic	Setting range	factory	unit	Mode of	Related models		ed
	selection		value		entry	n	ıode	els
					into			
					force			
		0~1	0		Downtim	Р	S	Т
					e in			
					effect			

Input polarity setting: 0 to 1

0: active low (closed)

1: Active high (open)

F06.12	DI2 terminal logic selection	Setting range	factory value	unit	Mode of entry into force		elato 10de	
		0~1	0		Downtim	Р	S	Т
					e in			ĺ
					effect			

Input polarity setting: 0 to 1

0: active low (closed)

1: Active high (open)

F06.13	DI3 terminal logic	Setting range	factory	unit	Mode of	R	elato	ed
	selection		value		entry	m	ode	ls
					into			
					force			
		0~1	0		Downtim	Р	S	Т
					e in			
					effect			

Input polarity: 0 to 1

0: active low (closed)

1: Active high (open)

F06.14	DI4 terminal logic	Setting range	factory	unit	Mode of	R	elate	ed
	selection		value		entry	n	node	ls
					into			
					force			
		0~1	0		Downtim	Р	S	Т
					e in			
					effect			

Input polarity: 0 to 1

0: active low (closed)

1: Active high (open)

F06.15	DI5 terminal logic	Setting range	factory	unit	Mode of	R	elate	ed
	selection		value		entry	n	ıode	ls
					into			
					force			
		0~1	0		Downtim	Р	S	Т
					e in			
					effect			

Input polarity setting: 0 to 1

0: active low (closed) 1: Active high (open)

F06.20	Number of effective DO terminals	Setting range	factory value	unit	Mode of entry into		Relate model	
					force			
		0 ~ 65535	2		Display	Р	S	Т
					only			

 $0\sim 65535$

F06.21	DO1 terminal function selection	Setting range	factory value	unit	Mode of entry		Related models	
					into			
					force			
		0 to 31	0		Downtim	Р	S	Т
					e in			
					effect			

Output function code: 1 to 31

0:No definition

1 to 31: Reference Digital Output (DO) Function Definition Table

F06.22	DO2 terminal function	Setting range	factory	unit	Mode of	R	elat	ed
	selection		value		entry	m	node	ls
					into			
					force			
		0 to 31	0		Downtim	Р	S	Т
					e in			
					effect			

Output function code: 1 to 31

0:No definition

1 to 31: Reference Digital Output (DO) Function Definition Table

F06.26	DO6 terminal function	Setting range	factory	unit	Mode of	R	elate	ed
	selection		value		entry	m	node	ls
					into			
					force			
		0 to 31	16		Effective	Р	S	Т
					immedia			
					tely			

Output function code: 1 to 31 0:No definition 1 to 31: Reference Digital Output (DO) Function Definition Table

F06.31	DO1 terminal logic level selection	Setting range	factory value	unit	Mode of entry		elato 10de	
					into			
					force			
		0~1	0		Downtim	Р	S	Т
					e in			
					effect			

Output polarity setting: 0 to 1

0: On when active (normally open contact)

1: Non-conducting when active (normally closed contact)

F06.32	DO2 terminal logic level	Setting range	factory	unit	Mode of	R	elate	ed
	selection		value		entry	n	ıode	ls
					into			
					force			
		0~1	0		Downtim	Р	S	Т
					e in			
					effect			

Output polarity setting: 0 to 1

0: On when active (normally open contact)

1: Non-conducting when active (normally closed contact)

F06.41	FunIN1 signal unassigned	Setting range	factory	unit	Mode of	R	elat	ed
	state (HEX) DI1-DI15		value		entry	n	ıode	ls
					into			
					force			
		0000H to FFFFH	0		Power	Р	S	Т
					up again.			

Setting range (hexadecimal number) 0x0 to 0xFFFF.

Bit0: Reserved

Bit1: corresponds to DI function 1.

Bit2: corresponds to DI function 2.

.....

Bit15: corresponds to DI function 15

F06.42FunIN2 signal unassignedSetting rangefactoryunitMode ofRelated
--

status (HEX) DI16-DI31		value	entry	n	node	ls
			into			
			force			
	0000H to FFFFH	0	 Power	Р	S	Т
			up again.			

Setting range (hexadecimal number) 0x0 to 0xFFFF.

Bit0: corresponds to DI function 16.

Bit1: corresponds to DI function 17.

.....

Bit15: Corresponds to DI function 31

F06.43	FunIN3 signal unassigned state (HEX) DI32-DI47	Setting range	factory value	unit	Mode of entry into		elato node	
					force			
		0000H to FFFFH	0		Power	Р	S	Т
					up again.			

Setting range (hexadecimal number) 0x0 to 0xFFFF.

Bit0: Reserved

Bit1: corresponds to DI function 32.

Bit2: corresponds to DI function 33.

.....

Bit15: Corresponds to DI function 47

F06.44	FunIN4 signal unassigned state (HEX) DI48-DI63	Setting range	factory value	unit	Mode of entry into force		elat 10de	
		0000H to FFFFH	0		Power up again.	Р	S	Т

Setting range (hexadecimal number) 0x0 to 0xFFFF.

Bit0: corresponds to DI function 48.

Bit1: corresponds to DI function 49.

.....

Bit15: Corresponds to DI function 63

F06.53	Servo OFF delay time after brake action at zero speed	Setting range	factory value	unit	Mode of entry into		elate Iode	
					force			
		0 to 9999	10	1ms	Effective	Р	S	Т

		immedia		
		tely		

 $0ms \sim 9999ms$

F06.54	Speed setting for brake	Setting range	factory	unit	Mode of	R	elate	ed
	operation in operation		value		entry	n	ıode	ls
					into			
					force			
		0 to 3000	100	1rpm	Effective	Р	S	Т
					immedia			
					tely			

 $0rpm \sim 3000rpm$

F06.5	5 Waiting time for brake action in operation	Setting range	factory value	unit	Mode of entry		elato 10de	
					into			
					force			
		0 to 9999	10	1ms	Effective	Р	S	Т
					immedia			
					tely			

 $0ms \sim 9999ms$

F06.56	Dynamic Braking (DB)	Setting range	factory	unit	Mode of	R	elate	ed
	Function Selection		value		entry	n	node	ls
					into			
					force			
		0 to 3	0		Effective	Р	S	Т
					immedia			
					tely			

0:Free stop process does not enable DB, free state does not enable DB

1:Free stop process enables DB, free state does not enable DB

2:Free stop process does not enable DB, free state enables DB

3:Free stop process enable DB, free state enable DB

F06.59	Z pulse width adjustment	Setting range	factory	unit	Mode of	R	elat	ed
			value		entry	n	iode	ls
					into			
					force			
		0 to 100	0		Power	Р	S	Т
					up again.			

F06.61	General DI filtering	Setting range	factory	unit	Mode of	R	elat	ed
	options		value		entry	n	node	ls
					into			
					force			
		0 to 10000	500	1us	Power	Р	S	Т
					up again.			

0 to 10000

F06.62	High-speed DI filtering settings	Setting range	factory value	unit	Mode of entry into		elato node	
					force			
		0 to 10000	50	1us	Power	Р	S	Т
					up again.			

 $0 \sim 10000 us$

(Available only for the following DI terminals: DI7, DI8, DI9)

Group F07 Analog Inputs and Outputs

F07.00	AI1 minimum input	Setting range	factory value	unit	Mode of entry		elato 10de	
					into			
					force			
		-1000 to 1000	-1000	0.01V	Effective	Р	S	Т
					immedia			
					tely			

-10.00V to 10.00V

F07.01	AI1 minimum value	Setting range	factory	unit	Mode of	R	elat	ed
	corresponds to the set		value		entry	m	ode	els
	value				into			
					force			
		-1000 to 1000	-1000	0.1%	Effective	Р	S	Т
					immedia			
					tely			

-100.0% to 100.0%

(100% speed corresponds to the speed set in F05.14, 100% torque corresponds to the torque set in F05.15)

F07.02	AI1 maximum input	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	n	node	els
					into			
					force			
		-1000 to 1000	1000	0.01V	Effective	Р	S	Т
					immedia			
					tely			

-10.00V to 10.00V

F07.03	AI1 maximum value	Setting range	factory	unit	Mode of	R	elat	ed
	corresponds to the set		value		entry	n	ıode	ls
	value				into			
					force			
		-1000 to 1000	1000	0.1%	Effective	Р	S	Т
					immedia			

-100.0% to 100.0%

(100% speed corresponds to the speed set in F05.14, 100% torque corresponds to the torque set in F05.15)

F07.04	AI1 Zero Point Trim	Setting range	factory	unit	Mode of	R	elat	ed
			value		entry	m	ıode	ls
					into			
					force			
		-500 to 500	0	1mV	Effective	Р	S	Т
					immedia			
					tely			

 $-500 mV \sim 500 mV$

ſ	F07.05	AI1 deadband setting	Setting range	factory	unit	Mode of	R	elate	ed
				value		entry	n	model	
						into			
						force			
			0 to 200	0	0.1%	Effective	Р	S	Т
						immedia			
						tely			

0.0 to 20.0%

F07.06	AI1 input filtering time	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	mode		ls
					into			
					force			
		0~65535	20	0.1ms	Effective	Р	S	Т
					immedia			
					tely			

 $0.0ms \sim 6553.5ms$

F07.07	AI1 function selection	Setting range	factory	unit	Mode of	R	elat	ed
			value		entry	n	ıode	els
					into			
					force			
		0 to 5	0		Effective	Р	S	Т
					immedia			
					tely			

0:Vref,speed command

1:Tref, torque command

2:VLMT, speed limit3:TLMTP, positive torque limiting4:TLMTN, torque negative limit5:TFFD, Torque Feed Forward

F07.10	AI2 minimum input	Setting range	factory value	unit	Mode of entry		Relate model	
					into			
					force			
		-1000 to 1000	-1000	0.01V	Effective	Р	S	Т
					immedia			
					tely			

-10.00V to 10.00V

F07.11	AI2 minimum value corresponds to the set	Setting range	factory value	unit	Mode of entry		elate 10de	
	value				into			
					force			
		-1000 to 1000	-1000	0.1%	Effective	Р	S	Т
					immedia			
					tely			

-100.0% to 100.0%

(100% speed corresponds to the speed set in F05.14, 100% torque corresponds to the torque set in F05.15)

F07.12	AI2 maximum input	Setting range	factory	unit	Mode of	R	Related models	
			value		entry	model		ls
					into			
					force			
		-1000 to 1000	1000	0.01V	Effective	Р	S	Т
					immedia			
					tely			

-10.00V to $10.00\mathrm{V}$

F07.13	AI2 maximum value	Setting range	factory	unit	Mode of	R	elate	ed
	corresponds to the set		value		entry	n	node	ls
	value				into			
					force			
		-1000 to 1000	1000	0.1%	Effective	Р	S	Т
					immedia			
					tely			

-100.0% to 100.0%

(100% speed corresponds to the speed set in F05.14, 100% torque corresponds to the torque set in F05.15)

F07.14	AI2 Zero Point Trim	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	m	node	ls
					into			
					force			
		-500 to 500	0	1mV	Effective	Р	S	Т
					immedia			
					tely			

 $\text{-}500mV \sim 500mV$

F07.15	AI2 deadband setting	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	model		ls
					into			
					force			
		0 to 200	0	0.1%	Effective	Р	S	Т
					immedia			
					tely			

0.0 to 20.0%

F07.16	AI2 input filtering time	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	model		ls
					into			
					force			
		0 ~ 65535	20	0.1ms	Effective	Р	S	Т
					immedia			
					tely			

 $0.0ms \sim 6553.5ms$

F07.17	AI2 Function Selection	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	m	node	ls
					into			
					force			
		0 to 5	3		Effective	Р	S	Т
					immedia			
					tely			

0:Vref,speed command 1:Tref, torque command 2:VLMT, speed limit 3:TLMTP, positive torque limiting4:TLMTN, torque negative limit5:TFFD, Torque Feed Forward

F07.20	AI set 100% speed	Setting range	factory	unit	Mode of	R	elat	ed
			value		entry	n	ıode	ls
					into			
					force			
		0 to 9000	3000	1rpm	Effective	Р	S	Т
					immedia			
					tely			

0 to 9000rpm

F07.21	AI sets 100% torque	Setting range	factory	unit	Mode of	Re	elate	ed
			value		entry	m	ode	ls
					into			
					force			
		0 to 500	100	0.01	Effective	Р	S	Т
					immedia			
					tely			

 $0\sim 5.00$ times the rated torque of the motor

F07.30	AO1 signal selection (non-	Setting range	factory	unit	Mode of	R	elate	ed
	standard support)		value		entry	n	node	ls
					into			
					force			
		0 to 13	0		Effective	Р	S	Т
					immedia			
					tely			

0:Motor speed (1V/1000rpm) default

1:Speed command (1V/1000rpm)

2: Torque command (1V/100%)

3: Position deviation (0.05V/1 command unit)

4: Position amplifier deviation (after electronic gearing) (0.05V/encoder unit)

5: Position command speed (1V/1000 rpm)

6:Positioning completion command (completed:5V, incomplete:0V)

7: Speed feedforward (1V/1000rpm)

8: Torque feedforward (1V/100%)

9: Load factor (1V/100%)

10: Regenerative load factor (1V/100%)

11:Driver temperature (0.1V/1°C)

12:AI1 (1V/1V) 13:AI2 (1V/1V)

F07.31	AO1 bias quantity voltage	Setting range	factory value	unit	Mode of entry	Relate mode		
			value		into		iouc	15
					force			
		-10000 to 10000	0	1mV	Effective	Р	S	Т
					immedia			
					tely			

 $10000 mV \sim 10000 mV$

F07.32	AO1 multiplier	Setting range	factory	unit	Mode of	Relate mode		ed
			value		entry	m	node	ls
					into			
					force			
		-9999 to 9999	100	0.01	Effective	Р	S	Т
					immedia			
					tely			

-99.99 to 99.99

F07.33	AO1 output data setting	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	n	node	ls
					into			
					force			
		0~1	0		Effective	Р	S	Т
					immedia			
					tely			

0: Signed data output, -10V to +10V.

1: Absolute value data output, 0 to 10V

F07.34	AO2 signal selection (non-	Setting range	factory	unit	Mode of	R	elat	ed
	standard support)		value		entry	n	ıode	els
					into			
					force			
		0 to 13	0		Effective	Р	S	Т
					immedia			
					tely			

0:Motor speed (1V/1000rpm) default

1:Speed command (1V/1000rpm)

2: Torque command (1V/100%)

3: Position deviation (0.05V/1 command unit)

4: Position amplifier deviation (after electronic gearing) (0.05V/encoder unit)

5: Position command speed (1V/1000 rpm)

6:Positioning completion command (completed:5V, incomplete:0V)

7: Speed feedforward (1V/1000rpm)

8: Torque feedforward (1V/100%)

9: Load factor (1V/100%)

10: Regenerative load factor (1V/100%)

11:Driver temperature ($0.1V/1^{\circ}C$)

12:AI1 (1V/1V)

13:AI2 (1V/1V)

F07.35	AO2 bias volume voltage	Setting range	factory	unit	Mode of	Relate mode		ed
			value		entry	m	node	ls
					into			
					force			
		-10000 to 10000	0	1mV	Effective	Р	S	Т
					immedia			
					tely			

 $\text{-}10000 mV \sim 10000 mV$

F07.36	AO2 multiplier	Setting range	factory	unit	Mode of	R	Related	
			value		entry	mode		ls
					into			
					force			
		-9999 to 9999	100	0.01	Effective	Р	S	Т
					immedia			
					tely			

-99.99 to 99.99

F07.37	AO2 output data setting	Setting range	factory value	unit	Mode of entry	Relate mode		
					into			
					force			
		0~1	0		Effective	Р	S	Т
					immedia			
					tely			

0: Signed data output, -10V to +10V.

1: Absolute value data output, 0 to 10V

Group F08 Fault Protection Group

F08.00	Momentary stop non-stop protection switch	Setting range	factory value	unit	Mode of entry into force		elato 10de	
		0~1	0		Effective	Р	S	Т
					immedia			
					tely			

0:Not on

1:Open

F08.01	Instant stop non-stop	Setting range	factory	unit	Mode of	R	elate	ed
	deceleration time		value		entry	n	iode	ls
					into			
					force			
		0 to 10000	20	1ms	Effective	Р	S	Т
					immedia			
					tely			

 $0ms \sim 10000ms/1000rpm$

F08.02	Servo OFF stop method	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	n	ıode	ls
					into			
					force			
		0 to 2	0		Downtim	Р	S	Т
					e in			
					effect			

0:Free run stop, stay free

1:Zero speed stop, stay free

2:Stop with emergency stop torque, keep free

F08.03	No.2 Fault Stop Method	Setting range	factory	unit	Mode of	Related
	Selection		value		entry	models
					into	
					force	

		<u> </u>			G	m
	0 to 2	0	 Downtim	Р	S	Т
			e in			
			effect			

0:Free to stop and stay free

1:Zero speed stop, stay free

2:Stop with emergency stop torque, keep free

F08.04	Overtravel input setting	Setting range	factory	unit	Mode of	R	elat	ed
			value		entry	m	ıode	ls
					into			
					force			
		0~1	1		Downtim	Р	S	Т
					e in			
					effect			

0:P_OT positive drive disable, N_OT negative drive disable 1:Invalid

F08.05	Stopping method in case of	Setting range	factory	unit	Mode of	R	elate	ed
	overtravel		value		entry	n	ıode	ls
					into			
					force			
		0 to 2	0		Downtim	Р	S	Т
					e in			
					effect			

0:Free run stop, stay free

1:Zero speed run stop, keep free

2:Stop with emergency stop torque, keep free

F08.06	Power input out-of-phase	Setting range	factory	unit	Mode of		elate	
	protection selection		value		entry	n	iode	ls
					into			
					force			
		0~1	0		Effective	Р	S	Т
					immedia			
					tely			

0:Enables protection

1: Prohibition of protection

F08.07	Power output out-of-phase	Setting range	factory	unit	Mode of	Related
	protection options		value		entry	models

			into			
			force			
	0~1	0	 Effective	Р	S	Т
			immedia			
			tely			

0:Enables protection

1: Prohibition of protection

F08.08	Emergency stop torque	Setting range	factory	unit	Mode of	R	elat	ed
			value		entry	m	ode	els
					into			
					force			
		0 to 5000	3000	0.1%	Effective	Р	S	Т
					immedia			
					tely			

 $0.0\% \sim 300.0\%$ (based on rated motor torque)

F08.09	Flying car protection	Setting range	factory	unit	Mode of	R	elat	ed
	function		value		entry	n	ıode	ls
					into			
					force			
		0~1	0		Effective	Р	S	Т
					immedia			
					tely			

0:Turn off protection

1:Turn on protection

F08.10	Overload warning value	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	n	ıode	ls
					into			
					force			
		1 to 100	100	1%	Effective	Р	S	Т
					immedia			
					tely			

1% to 100%

F08.11	Motor overload protection	Setting range	factory	unit	Mode of	Related
	factor		value		entry	models
					into	
					force	

10 to 300	100	1%	Effective	Р	S	Т
			immedia			
			tely			

10% to 300%

F08.12	Undervoltage protection	Setting range	factory	unit	Mode of	R	elate	ed
	point		value		entry	m	node	ls
					into			
					force			
		50 to 130	100	1%	Effective	Р	S	Т
					immedia			
					tely			

50% to 100% (100% corresponds to the default undervoltage point)

F08.13	Overspeed fault point	Setting range	factory value	unit	Mode of entry into		elato 10de	
					force			
		50 to 120	120	1%	Effective	Р	S	Т
					immedia			
					tely			

50% to 120% (100% corresponds to the maximum motor speed)

F08.14	Maximum pulse input	Setting range	factory	unit	Mode of	R	elated
	frequency		value		entry	m	odels
					into		
					force		
		10 to 9000	500	1KHZ	Downtim	Р	
					e in		
					effect		

10 to 9000K

F08.15	Short circuit to ground	Setting range	factory	unit	Mode of	R	elate	ed
	detection protection		value		entry	n	node	ls
	options				into			
					force			
		0~1	0		Effective	Р	S	Т
					immedia			
					tely			

0:Detection enable (default)

1:Prohibition of detection

F08.16	Bus-type encoder	Setting range	factory	unit	Mode of	R	elate	ed
	interference detection		value		entry	n	ıode	ls
	delay				into			
					force			
		0 to 99	0		Effective	Р	S	Т
					immedia			
					tely			

0 to 99

F08.17	Pulse input filter setting	Setting range	factory value	unit	Mode of entry into force	Rela moo	ated dels
		0 to 500	40		Power	Р	
					up again.		

0 to 500 (in 10ns)

Below 250KHZ, the recommended value is 40; $250K \sim 500K$, the recommended value is 20; $500K \sim 1M$, the recommended value is 10;

1M or more recommended value 5;

Above 2M set to 0.

F08.18	High-speed pulse input filtering	Setting range	factory value	unit	Mode of entry into		elato node	
					force			
		0 to 500	40		Power	Р	S	Т
					up again.			

0 to 500 (in 10ns)

Below 250KHZ, recommended value 40; 250K to 500K, recommended value 20; 500K to 1M, recommended value 10.

Recommended value of 5 over 1M. Set to 0 above 2M.

F08.22	Excessive speed deviation threshold	Setting range	factory value	unit	Mode of entry into		elate 10de	
					force			
		0 to 10000	0	1rpm	Effective	Р	S	

		immedia		
		tely		

 $0 \sim 10000 rpm$

F08.23	Torque saturation timeout	Setting range	factory	unit	Mode of	R	elate	ed
	duration		value		entry	m	ode	ls
					into			
					force			
		0 to 30,000	0	1ms	Effective	Р	S	Т
					immedia			
					tely			

 $0\sim 30000 ms$

F08.24	Absolute system settings	Setting range	factory value	unit	Mode of entry into force		elato 10de	
		0 to 3	0		Power	Р	S	Т
					up again.			

0:Incremental system

1:Absolute value system

2: Absolute system (E14 fault needs to be cleared manually)

3:- Absolute value system and overflow error reported

F08.26	Stopping method for	Setting range	factory	unit	Mode of	Related
	emergency stop (quick		value		entry	models
	stop)				into	
					force	
		0 to 7	1		Downtim	
					e in	
					effect	

0 to 7

F08.27	Stopping method of	Setting range	factory	unit	Mode of	Related
	suspension		value		entry	models
					into	
					force	
		0~1	1		Downtim	
					e in	
					effect	

F08.28	Software Overcurrent Options	Setting range	factory value	unit	Mode of entry	f Rela mod		
					into force			
		0~1	0		Power	Р	S	Т
					up again.			

0:Not prohibited

1:Disable

F08.29	Not ready to handle when servo enabled	Setting range	factory value	unit	Mode of entry		elato 10de	
					into			
					force			
		0 to 2	0		Effective	Р	S	Т
					immedia			
					tely			

0: No faults or warnings are reported.

1: Report warning AL.085.

2:Error Er.030 reported.

F08.30	Mains power failure (E.46)	Setting range	factory	unit	Mode of	R	elat	ed
	detection setting		value		entry	mode		ls
					into			
					force			
		0 to 2	0		Effective	Р	S	Т
					immedia			
					tely			

0: Fault E.46 is detected and can be reset automatically

1:No fault detection E.46

2:Fault E.46 detected but not automatically reset

F08.31	Undervoltage (E.23)	Setting range	factory	unit	Mode of	R	Related	
	detection option		value		entry	mode		ls
					into			
					force			
		0 to 2	0		Effective	Р	S	Т
					immedia			
					tely			

0: Fault E.23 is detected and can be reset automatically

1: No fault detection E.23

2: Fault E.23 detected but not automatically reset

F08.32	Undervoltage (E.23) and mains power failure (E.46)	Setting range	factory value	unit	Mode of entry	Relat mode		
	storage options				into			
					force			
		0~1	0		Effective	Р	S	Т
					immedia			
					tely			

0:means no storage

1:indicates storage

F08.34	Soft limit detection setting	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	mode		ls
					into			
					force			
		0 to 2	0		Effective	Р	S	Т
					immedia			
					tely			

0: no detection of soft limits.

1: Start detecting soft limits upon power-up.

2:The soft limit is detected only after the return to the home position is completed.

F08.35	Positive soft limit (32 bits)	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	mode		ls
					into			
					force			
		-2147483648 to	21474836		Downtim	Р	S	Т
		2147483647	47		e in			
					effect			

Positive soft limit, active in all control modes.

F08.37	Negative soft limit (32 bits)	Setting range	factory	unit	Mode of	R	Related	
			value		entry	models		ls
					into			
					force			
		-2147483648 to	-		Downtim	Р	S	Т
		2147483647	21474836		e in			

					48	effect		
 NT	0.11	11	. 1	1			 	

Negative soft limit, active in all control modes.

F08.39	Fault reset timing	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	mode		ls
					into			
					force			
		0~1	0		Effective	Р	S	Т
					immedia			
					tely			

0:SON can be reset when valid

1:Non-resettable when SON is active

F08.40	Power failure prompt	Setting range	factory	unit	Mode of	R	elate	ed
	storage function		value		entry	mode		ls
					into			
					force			
		0~1	0		Effective	Р	S	Т
					immedia			
					tely			

0:Not on

1:Open

F08.41	Abnormality detection switch	Setting range	factory value	unit	Mode of entry	Relat mode		
					into force			
		0 ~ 1	0		Power	Р	S	Т
					up again.			

0:Not on

1:Open

F08.42	Pause detection method	Setting range	factory	unit	Mode of	Related models
			value		entry into	models
					force	
		0~1	0		Effective	
					immedia	
					tely	

F08.43	Contour position pre-start deviation check	Setting range	factory value	unit	Mode of entry	Related models
					into force	
		0 ~ 1	0		Effective	
					immedia	
					tely	

F08.44	转矩保护值	Setting range	factory	Unit	Mode of		elate	
			value		entry into	m	ode	ls
					force			
		0 ~ 1	0		Power	Ρ	S	Т
					on again			

0.0%~300.0% (Based on motor rated torque)

F08.45	Torque protection fault	Setting range	factory	Unit	Mode of	R	elat	ed
	time		value		entry	n	node	ls
					into			
					force			
		0 ~ 1	0		Power	Ρ	S	Т
					on again			

0~60000ms

0- Not valid, non-zero value - When the torque feedback reaches the torque protection value and the time reaches the set value, the fault E.72 will be triggered

Group F09 Communication control setting

F09.00	Servo axis address number	Setting range	factory value	unit	Mode of entry into		elat node	
					force			
		1 - 247	1		Effective	Р	S	Т
					immedia			
					tely			

1 to 247, 0 is the broadcast address. Used for communication, supports Modbus, CANOpen, etc. (A)

F09.01	Modbus baud rate	Setting range	factory value	unit	Mode of entry into force		elato 10de	
		0 to 6	2		Effective	Р	S	Т
					immedia tely			

0:2400(A) 1:4800(A) 2:9600(A) 3:19200(A) 4:38400(A) 5:57600(A) 6:115200(A)

F09.02	Modbus data format	Setting range	factory	unit	Mode of		Relater model P S	
			value		entry	n	iode	ls
					into			
					force			
		0 to 3	0		Effective	Р	S	Т
					immedia			
					tely			

0:No checksum, 2 stop bits(A)

1:Even parity, 1 stop bit(A)

2:Odd parity, 1 stop bit(A)

3:No checksum, 1 stop bit(A)

F09.03	Communication timeout	Setting range	factory value	unit	Mode of entry		elat 10de	
					into			
					force			
		0 to 9999	0	1ms	Effective	Р	S	Т
					immedia			
					tely			

Monitor the communication bus for data within the set time(A)

F09.04	Communication response	Setting range	factory	unit	Mode of	R	elate	ed
	time delay		value		entry	m	node	ls
					into			
					force			
		0 to 9999	0	1ms	Effective	Р	S	Т
					immedia			
					tely			

Receive data and then delay for a set time before answering(A)

F09.05	Communication control DI	Setting range	factory	unit	Mode of	R	elate	ed
	enable setting 1		value		entry	n	ıode	ls
					into			
					force			
		0000H to FFFFH	0		Downtim	Р	S	Т
					e in			
					effect			

This parameter is displayed in hexadecimal form on the panel, where each binary bit represents a DI function, BIT0 is reserved, BIT1 to BIT15 correspond to DI functions 1 to 15 respectively. the value of the binary bit indicates whether the corresponding DI function is enabled for communication control:

0: not enabled. (A)

1:Enable(A)

F09.06	Communication control DI	Setting range	factory	unit	Mode of	R	elate	ed
	enable setting 2		value		entry	n	ıode	ls
					into			
					force			
		0000H to FFFFH	0		Downtim	Р	S	Т
					e in			
					effect			

This parameter is displayed in hexadecimal form on the panel, where each binary bit represents a DI

function, BIT0 to BIT15 correspond to DI functions 16 to 31 respectively. the value of the binary bit indicates whether the corresponding DI function is enabled for communication control:

0: not enabled. (A) 1:Enable(A)

F09.07	Communication control DI	Setting range	factory	unit	Mode of	R	elate	ed
	enable setting 3		value		entry	m	ode	ls
					into			
					force			
		0000H to FFFFH	0		Downtim	Р	S	Т
					e in			
					effect			

This parameter is displayed in hexadecimal form on the panel, where each binary bit represents a DI function, BIT0 to BIT15 correspond to DI functions 32 to 47 respectively. the value of the binary bit indicates whether the corresponding DI function is enabled for communication control:

0: not enabled. (A) 1:Enable(A)

F09.08	Communication control DI	Setting range	factory	unit	Mode of	R	elat	ed
	enable setting 4		value		entry	n	node	ls
					into			
					force			
		0000H to FFFFH	0		Downtim	Р	S	Т
					e in			
					effect			

This parameter is displayed in hexadecimal form on the panel, where each binary bit represents a DI function, BIT0 to BIT15 correspond to DI functions 48 to 63 respectively. the value of the binary bit indicates whether the corresponding DI function is enabled for communication control:

0: not enabled. (A)

1:Enable(A)

F09.09	Communication control	Setting range	factory	unit	Mode of	R	elate	ed
	DO enable setting 1		value		entry	n	node	ls
					into			
					force			
		0000H to FFFFH	0		Downtim	Р	S	Т
					e in			
					effect			

This parameter is displayed in hexadecimal form on the panel, where each binary bit represents a DO function, BIT0 is reserved, BIT1 to BIT15 correspond to DO functions 1 to 15 respectively. the value of the binary bits indicates whether the corresponding DO function is enabled for communication output:

0: not enabled. (A) 1:Enable(A)

F09.10	Communication control DO enable setting 2	Setting range	factory value	unit	Mode of entry		elato node	
					into			
					force			
		0000H to FFFFH	0		Downtim	Р	S	Т
					e in			
					effect			

This parameter is displayed in hexadecimal form on the panel, where each binary bit represents a DO function, BIT0 to BIT15 correspond to DO functions 16 to 31 respectively. the value of the binary bit indicates whether the corresponding DO function is enabled for communication output:

0: not enabled(A).

1:Enable(A)

F09.11	Communication setting command value	Setting range	factory value	unit	Mode of entry	Related models P S		
	maintenance time				into			
					force			
		0 to 60	5		Effective	Р	S	Т
					immedia			
					tely			

The time to maintain the status quo when the communication is disconnected after the command value is written, can be set from 0 to 60 in seconds, and the setting of 0 means 0.5 seconds. (A)

F09.12	CAN communication baud	Setting range	factory	unit	Mode of	R	elate	ed
	rate:		value		entry	model		ls
					into			
					force			
		0 to 7	5		Downtim	Р	S	Т
					e in			
					effect			

0: 20k(A)

- 1: 50k(A)
- 2: 100k(A)
- 3: 125k(A)
- 4: 250k(A)
- 5: 500k<mark>(A)</mark>
- 6: 800k(A)
- 7: 1M(A)

F09.13	Electronic gear ratio selection during	Setting range	factory value	unit	Mode of entry		Related models	
	communication control				into forma			
					force			
		0 ~ 1	1		Downtim	Р	S	Т
					e in			
					effect			

0: Use servo internal electronic gear ratio (B/D)

1: Use of communication-specific (608Fh/6091h/6092h) electronic gear ratios(B/D)

F09.14	Speed command unit selection during communication control	Setting range	factory value	unit	Mode of entry into force		elato 10de	
		0~1	1		Downtim e in	Р	S	Т
					effect			

0:rpm (B/D)

1:Instruction/second(B/D)

F09.15	Acceleration unit selection	Setting range	factory	unit	Mode of	R	elate	ed
	during communication		value		entry	n	node	els
	control				into			
					force			
		0~1	1		Downtim	Р	S	Т
					e in			
					effect			

0: 0RPM-1000RPM acceleration time ms(B/D)

1:Instruction/s^2. (B/D)

F09.16	Bus communication fault	Setting range	factory	unit	Mode of	R	elate	ed
	detection options		value		entry	model		ls
					into			
					force			
		0~1	0		Downtim	Р	S	Т
					e in			
					effect			

0:Disable 1:Open.

F09.17	Absolute system origin completion flag storage selection	Setting range	factory value	unit	Mode of entry into	Related models P S 7		
		0~1	0		force Downtim	Р	S	Т
					e in			
					effect			

0:No storage

1:Storage

F09.18	EtherCAT Servo Site No.	Setting range	factory value	unit	Mode of entry into force		elat 10de	
		0 ~ 65535	0		Power	Р	S	Т
					up again.			

0:-65535<mark>(B)</mark>

0:Address written by the upper computer to ground in ESC EPROM

The address determines the slave ALIAS address;

For other values, the slave ALIAS address is determined by F09:18 Settlement.

ALIAS ground when the upper unit uses automatic incremental addressing Address Ignore.

F09.19	Bus communication synchronous phase	Setting range	factory value	unit	Mode of entry		elato 10de	
	trimming				into			
					force			
		-20 to 20	0		Effective	Р	S	Т
					immedia			
					tely			

For CAN, EtherCAT, Profinet, fine-tuned synchronous jitter delay (-20 to 20) (B/D)

F09.20	Number of synchronous message loss or disconnection detection	Setting range	factory value	unit	Mode of entry into		Related models	
					force			
		0 to 300	12		Effective	Р	S	Т
					immedia			

		toly		1
		tery		

0: -300. (B/D)

Number of EtherCAT or Profinet disconnect detections, loss of synchronization data

When the number of times reaches this value, A.77 fault is reported

F09.21	EtherCAT Speed Limit	Setting range	factory	unit	Mode of	R	elate	ed
	Selection		value		entry	m	ode	ls
					into			
					force			
		0000H to 0001H	1		Downtim	Р	S	Т
					e in			
					effect			

0:The maximum speed in CSP mode is determined by the maximum speed of the motor.

Degree limit, exceeding the maximum speed will report a 78(B)

Command anomaly failure.

1:The maximum speed is limited by 6080 without reporting a fault.

Be careful that the command does not exceed the maximum limit that may

It will cause a positioning error(B)

F09.22	ECAT CSP BIT10	Setting range	factory	unit	Mode of	R	elat	ed
			value		entry	n	ıode	ls
					into			
					force			
		0000H to 0001H	0		Downtim	Р	S	Т
					e in			
					effect			

F09.23	ECAT 603Fh display	Setting range	factory	unit	Mode of	R	elate	ed
	format		value		entry	n	ıode	ls
					into			
					force			
		0000H to 0001H	0		Downtim	Р	S	Т
					e in			
					effect			

F09.24	ECAT Sync Offset Setting	Setting range	factory	unit	Mode of	Related
			value		entry	models
					into	

			force		
	0000H to 000FH	0	 Power	Р	
			up again.		

F09.25	ECAT limit alignment	Setting range	factory	unit	Mode of	Related	d
	setting		value		entry	models	5
					into		
					force		
		0000H to 0001H	1		Power	Р	
					up again.		

F09.26	ECAT Modal Feedback	Setting range	factory	unit	Mode of	R	elate	ed
	Setting		value		entry	m	node	ls
					into			
					force			
		0000H to 0001H	0		Effective	Р	S	Т
					immedia			
					tely			

F09.27	ECAT Probe	Setting range	factory	unit	Mode of	R	elate	ed
	Configuration		value		entry	n	ıode	ls
					into			
					force			
		0000H to 0001H	0		Effective	Р	S	Т
					immedia			
					tely			

F09.28	ECAT overflow error	Setting range	factory	unit	Mode of	R	elate	ed
	setting		value		entry	n	ıode	ls
					into			
					force			
		0~1	0		Power	Р	S	Т
					up again.			

F09.29	ECAT Synchronization Settings	Setting range	factory value	unit	Mode of entry into force		elato node	
		0~1	0		Power	Р	S	Т
					up again.			

Group F10 Multi-segment position

F10.00	Segment 1 displacement (32 bits)	Setting range	factory value	unit	Mode of entry into		elate Iodel	
					force			
		-1073741824 ~	10000		Effective	Р		
		1073741824			immedia			
					tely			

 $-1073741824 \sim 1073741824$

F10.02	Maximum velocity in	Setting range	factory	unit	Mode of	Rela	ted
	paragraph 1		value		entry	mod	els
					into		
					force		
		1 to 1073741824	200		Effective	Р	
					immedia		
					tely		

YSK2-A/YSK2-E:Setting range 1-6000;Unit:rpm;

YSK2-D:Setting range 1-1073741824;Unit:LU/min.

F10.04	Paragraph 1 acceleration	Setting range	factory	unit	Mode of	Relat	ted
	multiplier		value		entry	mod	els
					into		
					force		
		0~65535	10		Effective	Р	
					immedia		
					tely		

F10.05	Paragraph 1 deceleration multiplier	Setting range	factory value	unit	Mode of entry into force		elate odel	
		0~65535	10		Effective	Р		

		immedia		
		tely		

F10.06	Segment 2 displacement	Setting range	factory	unit	Mode of	R	elated	l
	(32 bits)		value		entry	m	odels	
					into			
					force			
		-1073741824 ~	10000		Effective	Р		
		1073741824			immedia			
					tely			

 $-1073741824 \sim 1073741824$

F10.08	Paragraph 2 maximum speed	Setting range	factory value	unit	Mode of entry into		elate 10de	
					force			
		1 to 1073741824	200		Effective	Р		
					immedia			
					tely			

YSK2-A/YSK2-E:Setting range 1-6000;Unit:rpm;

YSK2-D:Setting range 1-1073741824;Unit:LU/min.

F10.10	Paragraph 2 acceleration	Setting range	factory	unit	Mode of	R	elated	
	multiplier		value		entry	m	odels	
					into			
					force			
		0 ~ 65535	10		Effective	Р		
					immedia			
					tely			

F10.11	Segment 2 deceleration	Setting range	factory	unit	Mode of	Related
	multiplier		value		entry	models
					into	
					force	
		0 ~ 65535	10		Effective	Р
					immedia	
					tely	

F10.12	Paragraph 3 displacement	Setting range	factory	unit	Mode of	R	elate	d
	(32 bits)		value		entry	m	odel	S
					into			
					force			
		-1073741824 ~	10000		Effective	Р		
		1073741824			immedia			
					tely			

 $-1073741824 \sim 1073741824$

F10.14	Paragraph 3 maximum	Setting range	factory	unit	Mode of	Related
	speed		value		entry	models
					into	
					force	
		1 to 1073741824	200		Effective	Р
					immedia	
					tely	

YSK2-A/YSK2-E:Setting range 1-6000;Unit:rpm;

YSK2-D:Setting range 1-1073741824;Unit:LU/min.

F10.16	Paragraph 3 acceleration	Setting range	factory	unit	Mode of	Related
	multiplier		value		entry	models
					into	
					force	
		0~65535	10		Effective	Р
					immedia	
					tely	

 $0\sim 65535\ ms$

F10.17	Paragraph 3 deceleration multiplier	Setting range	factory value	unit	Mode of entry	Related models
					into	
					force	
		0~65535	10		Effective	Р
					immedia	
					tely	

F10.18	Paragraph 4 displacement (32 bits)	Setting range	factory value	-			elate 10de	
		-1073741824 ~	10000		Effective	Р		
		1073741824			immedia tely			

 $-1073741824 \sim 1073741824$

F10.20	Paragraph 4 maximum	Setting range	factory	unit	Mode of	R	elate	d
	speed		value		entry	m	ode	ls
					into			
					force			
		1 to 1073741824	200		Effective	Р		
					immedia			
					tely			

YSK2-A/YSK2-E:Setting range 1-6000;Unit:rpm;

YSK2-D:Setting range 1-1073741824;Unit:LU/min.

F10.22	Paragraph 4 acceleration	Setting range	factory	unit	Mode of	R	elate	ed
	multiplier		value		entry	n	node	ls
					into			
					force			
		0~65535	10		Effective	Р		
					immedia			
					tely			

0 to 65535 ms

F10.23	Paragraph 4 deceleration multiplier	Setting range	factory value	unit	Mode of entry into		lated	
		0~65535	10		force Effective	Р		_
					immedia			
					tely			

0 to 65535 ms

F10.24	Paragraph 5 displacement	Setting range	factory	unit	Mode of	Related
	(32 bits)		value		entry	models
					into	

			force		
	-1073741824 ~	10000	 Effective	Р	
	1073741824		immedia		
			tely		

 $\textbf{-1073741824} \sim 1073741824$

F10.26	Paragraph 5 maximum	Setting range	factory	unit	Mode of	R	elate	ed
	speed		value		entry	m	lode	ls
					into			
					force			
		1 to 1073741824	200		Effective	Р		
					immedia			
					tely			

YSK2-A/YSK2-E:Setting range 1-6000;Unit:rpm;

YSK2-D:Setting range 1-1073741824;Unit:LU/min.

F10.28	Paragraph 5 acceleration multiplier	Setting range	factory value	unit	Mode of entry	Related models	
					into		
					force		
		0~65535	10		Effective	P	
					immedia		
					tely		

 $0\sim 65535\ ms$

F10.29	Paragraph 5 deceleration	Setting range	factory	unit	Mode of	Re	elate	d
	multiplier		value		entry	m	odel	S
					into			
					force			
		0 ~ 65535	10		Effective	Р		
					immedia			
					tely			

 $0 \sim 65535 \text{ ms}$

F10.30	Paragraph 6 displacement	Setting range	factory	unit	Mode of	R	elate	ed
	(32 bits)		value		entry	n	node	ls
					into			
					force			
		-1073741824 ~	10000		Effective	Р		
		1073741824			immedia			

		tely		
$-1073741824 \sim 1073741824$				

F10.32	Paragraph 6 maximum	Setting range	factory	unit	Mode of	R	elate	ed
	speed		value		entry	models		ls
					into			
					force			
		1 to 1073741824	200		Effective	Р		
					immedia			
					tely			

YSK2-D:Setting range 1-1073741824;Unit:LU/min.

F10.34	Paragraph 6 acceleration multiplier	Setting range	factory value	unit	Mode of entry into		Related models	
					force			
		0 ~ 65535	10		Effective	Р		
					immedia			
					tely			

 $0\sim 65535\ ms$

F10.35	Paragraph 6 deceleration multiplier	Setting range	factory value	unit	Mode of entry	Related models
					into	
					force	
		0~65535	10		Effective	Р
					immedia	
					tely	

 $0\sim 65535\ ms$

F10.36	Paragraph 7 displacement	Setting range	factory	unit	Mode of	Related
	(32 bits)		value		entry	models
					into	
					force	
		-1073741824 ~	10000		Effective	Р
		1073741824			immedia	
					tely	

 $\textbf{-1073741824} \sim 1073741824$

F10.38	Paragraph 7 maximum speed	Setting range	factory value	unit	Mode of entry	Relat mod	
					into		
					force		
		1 to 1073741824	200		Effective	Р	
					immedia		
					tely		

YSK2-D:Setting range 1-1073741824;Unit:LU/min.

F10.40	Paragraph 7 acceleration	Setting range	factory	unit	Mode of	Re	lated
	multiplier		value		entry	mo	odels
					into		
					force		
		0 ~ 65535	10		Effective	Р	
					immedia		
					tely		

 $0\sim 65535\ ms$

F10.41	Paragraph 7 deceleration	Setting range	factory	unit	Mode of	Related
	multiplier		value		entry	models
					into	
					force	
		0 ~ 65535	10		Effective	Р
					immedia	
					tely	

 $0\sim 65535\ ms$

F10.42	Paragraph 8 displacement	Setting range	factory	unit	Mode of	Related	
	(32 bits)		value		entry	models	
					into		
					force		
		-1073741824 ~	10000		Effective	Р	
		1073741824			immedia		
					tely		

 $\textbf{-1073741824} \sim 1073741824$

speed		value	entry	mo	dels
			into		
			force		
	1 to 1073741824	200	 Effective	Р	
			immedia		
			tely		

YSK2-D:Setting range 1-1073741824;Unit:LU/min.

F10.46	Paragraph 8 acceleration multiplier	Setting range	factory value	unit	Mode of entry		Relate mode	
					into			
					force			
		0~65535	10		Effective	Р		
					immedia			
					tely			

 $0 \sim 65535 \text{ ms}$

F10.47	Paragraph 8 deceleration	Setting range	factory	unit	Mode of	Re	elate	ed
	multiplier		value		entry	models		s
					into			
					force			
		0~65535	10		Effective	Р		
					immedia			
					tely			

 $0\sim 65535\ ms$

F10.48	Paragraph 9 displacement	Setting range	factory	unit	Mode of	Re	lateo	d
	(32 bits)		value		entry	mo	odels	5
					into			
					force			
		-1073741824 ~	10000		Effective	Р		
		1073741824			immedia			
					tely			

 $-1073741824 \sim 1073741824$

F10.50	Paragraph 9 maximum speed	Setting range	factory value	unit	Mode of entry into force		elate ode	
		1 to 1073741824	200		Effective	Р		

		immedia		
		tely		

YSK2-D:Setting range 1-1073741824;Unit:LU/min.

F10.52	Paragraph 9 acceleration	Setting range	factory	unit	Mode of	Relat	ed
	multiplier		value		entry	mode	els
					into		
					force		
		0~65535	10		Effective	Р	
					immedia		
					tely		

 $0\sim 65535\ ms$

F10.53	Paragraph 9 deceleration	Setting range	factory	unit	Mode of	Related
	multiplier		value		entry	models
					into	
					force	
		0~65535	10		Effective	P
					immedia	
					tely	

 $0\sim 65535\ ms$

F10.54	Paragraph 10	Setting range	factory	unit	Mode of	Related
	displacement (32 bits)		value		entry	models
					into	
					force	
		-1073741824 ~	10000		Effective	Р
		1073741824			immedia	
					tely	

 $\textbf{-1073741824} \sim 1073741824$

F10.56	Maximum speed in	Setting range	factory	unit	Mode of	R	elated	l
	paragraph 10		value		entry	m	odels	
					into			
					force			
		1 to 1073741824	200		Effective	Р		
					immedia			
					tely			

YSK2-A/YSK2-E:Setting range 1-6000;Unit:rpm;

YSK2-D:Setting range 1-1073741824;Unit:LU/min.

F10.58	Paragraph 10 acceleration multiplier	Setting range	factory value	unit	Mode of entry		elate 10del	
	-				into			
					force			
		0 ~ 65535	10		Effective	Р		
					immedia			
					tely			

F10.59	Paragraph 10 deceleration multiplier	Setting range	factory value	unit	Mode of entry	Related models
					into	
					force	
		0 ~ 1073741824	10		Effective	P
					immedia	
					tely	

 $0\sim 65535\ ms$

F10.60	Paragraph 11	Setting range	factory	unit	Mode of	Related
	displacement (32 bits)		value		entry	models
					into	
					force	
		-1073741824 ~	10000		Effective	Р
		1073741824			immedia	
					tely	

 $-1073741824 \sim 1073741824$

F10.62	Paragraph 11 maximum speed	Setting range	factory value	unit	Mode of entry into force	Relat mode	
		1 to 1073741824	200		Effective immedia tely	Р	

YSK2-A/YSK2-E:Setting range 1-6000;Unit:rpm;

YSK2-D:Setting range 1-1073741824;Unit:LU/min.

F10.64	Paragraph 11 acceleration multiplier	Setting range	factory value	unit	Mode of entry into		elate nodels	
					force			
		0~65535	10		Effective	Р		
					immedia			
					tely			

F10.65	Paragraph 11 deceleration	Setting range	factory	unit	Mode of	Re	late	d
	multiplier		value		entry	mo	odel	s
					into			
					force			
		0~65535	10		Effective	Р		
					immedia			
					tely			

 $0\sim 65535\ ms$

F10.66	Paragraph 12	Setting range	factory	unit	Mode of	Re	late	ed
	displacement (32 bits)		value		entry	m	odel	s
					into			
					force			
		-1073741824 ~	10000		Effective	Р		
		1073741824			immedia			
					tely			

 $-1073741824 \sim 1073741824$

F10.68	Maximum speed in paragraph 12	Setting range	factory value	unit	Mode of entry into	Related models
		1 to 1073741824	200		force Effective immedia tely	Р

YSK2-A/YSK2-E:Setting range 1-6000;Unit:rpm;

YSK2-D:Setting range 1-1073741824;Unit:LU/min.

F10.70	Paragraph 12 acceleration	Setting range	factory	unit	Mode of	Related
	multiplier		value		entry	models

			into force		
	0~65535	10	 Effective	Р	
			immedia		
			tely		

F10.71	Paragraph 12 deceleration multiplier	Setting range	factory value	unit	Mode of entry		elate 10de	
	munipher		value		into	11	iouc	15
					force			
		0 ~ 65535	10		Effective	Р		
					immedia			
					tely			

 $0\sim 65535\ ms$

F10.72	Paragraph 13	Setting range	factory	unit	Mode of	Re	ate	d
	displacement (32 bits)		value		entry	mo	del	S
					into			
					force			
		-1073741824 ~	10000		Effective	Р		
		1073741824			immedia			
					tely			

 $-1073741824 \sim 1073741824$

F10.74	Paragraph 13 maximum	Setting range	factory	unit	Mode of	Re	elate	ed
	speed		value		entry	m	ode	s
					into			
					force			
		1 to 1073741824	200		Effective	Р		
					immedia			
					tely			

YSK2-A/YSK2-E:Setting range 1-6000;Unit:rpm; YSK2-D:Setting range 1-1073741824;Unit:LU/min.

F10.76	Paragraph 13 acceleration multiplier	Setting range	factory value	unit	Mode of entry into force		elate ode	
		0~65535	10		Effective	Р		

		immedia		
		tely		

F10.77	Paragraph 13 deceleration	Setting range	factory	unit	Mode of	Re	lated
	multiplier		value		entry	m	odels
					into		
					force		
		0 ~ 65535	10		Effective	Р	
					immedia		
					tely		

 $0\sim 65535\ ms$

F10.78	Paragraph 14	Setting range	factory	unit	Mode of	Re	lated
	displacement (32 bits)		value		entry	mo	odels
					into		
					force		
		-1073741824 ~	10000		Effective	Р	
		1073741824			immedia		
					tely		

 $\textbf{-1073741824} \sim 1073741824$

F10.80	Paragraph 14 maximum speed	Setting range	factory value	unit	Mode of entry into		elate 10del	
					force			
		1 to 1073741824	200		Effective	Р		
					immedia			
					tely			

YSK2-A/YSK2-E:Setting range 1-6000;Unit:rpm; YSK2-D:Setting range 1-1073741824;Unit:LU/min.

F10.82	Paragraph 14 acceleration	Setting range	factory	unit	Mode of	Related	I
	multiplier		value		entry	models	i
					into		
					force		
		0 ~ 65535	10		Effective	Р	
					immedia		
					tely		

F10.83	Paragraph 14 deceleration multiplier	Setting range	factory value	unit	Mode of entry		elate odel	
					into			
					force			
		0~65535	10		Effective	Р		
					immedia			
					tely			

F10.84	Paragraph 15	Setting range	factory	unit	Mode of	R	elate	ed
	displacement (32 bits)		value		entry	m	ode	s
					into			
					force			
		-1073741824 ~	10000		Effective	Р		
		1073741824			immedia			
					tely			

 $-1073741824 \sim 1073741824$

F10.86	Paragraph 15 maximum	Setting range	factory	unit	Mode of	Related	d
	speed		value		entry	models	5
					into		
					force		
		1 to 1073741824	200		Effective	Р	
					immedia		
					tely		

YSK2-A/YSK2-E:Setting range 1-6000;Unit:rpm;

YSK2-D:Setting range 1-1073741824;Unit:LU/min.

F10.88	Paragraph 15 acceleration	Setting range	factory	unit	Mode of	Related
	multiplier		value		entry	models
					into	
					force	
		0 ~ 65535	10		Effective	Р
					immedia	
					tely	

F10.89 Paragraph 15 decelerati	n Setting range	factory	unit	Mode of	Related
--------------------------------	-----------------	---------	------	---------	---------

multiplier		value	entry	mod	els
			into		
			force		
	0 ~ 65535	10	 Effective	Р	
			immedia		
			tely		

F10.90	Paragraph 16	Setting range	factory	unit	Mode of	Relate	ed
	displacement (32 bits)		value		entry	mode	ls
					into		
					force		
		-1073741824 ~	10000		Effective	Р	
		1073741824			immedia		
					tely		

 $-1073741824 \sim 1073741824$

F10.92	Paragraph 16 maximum	Setting range	factory	unit	Mode of	R	elate	ed
	speed		value		entry	m	iode	ls
					into			
					force			
		1 to 1073741824	200		Effective	Р		
					immedia			
					tely			

YSK2-A/YSK2-E:Setting range 1-6000;Unit:rpm;

YSK2-D:Setting range 1-1073741824;Unit:LU/min.

F10.94	Paragraph 16 acceleration	Setting range	factory	unit	Mode of	R	elate	ed
	multiplier		value		entry	n	ode	ls
					into			
					force			
		0~65535	10		Effective	Р		
					immedia			
					tely			

 $0 \sim 65535 \text{ ms}$

F10.95	Paragraph 16 deceleration	Setting range	factory	unit	Mode of	Related
	multiplier		value		entry	models
					into	
					force	

0~65535	10	 Effective	Р	
		immedia		
		tely		

Group F11 Origin regression, full closed loop

F11.00	Origin return start method	Setting range	factory value	unit	Mode of entry		elate odel	
	Inctitud		value		into	- 111	Juci	13
					force			
		0 to 4	0		Downtim	Р		
					e in			
					effect			

0:off

1:Start by DI function STHOME

2:Keyboard start

3:Communication activation

4:Start immediately after powering on the first servo ON

F11.01	Return to origin model	Setting range	factory value	unit	Mode of entry		elateo odels	
					into force			
		0 to 8	2		Downtim	P		
					e in			
					effect			

0:Positive rotation search origin, with positive limit as origin

1:Invert the search origin with the negative limit as the origin

2:Forward rotation search origin, using HOME_IN signal OFF→ON as the origin

3:Reverse the search origin, using the HOME_IN signal OFF→ON as the origin

4:Forward search origin, using HOME_IN signal ON→OFF as origin

5:Reverse the search origin, using the HOME_IN signal ON→OFF as the origin

6:Positive rotation looks directly for the nearest Z signal as the origin

7:Invert to find the nearest Z signal directly as the origin

8:Directly use the current position as the origin

F11.02	Home return time limit and Z signal setting	Setting range	factory value	unit	Mode of entry into force	Relate mode	
		0 to 5	2		Downtim	P	

			e in		
			effect		

0: automatically reverses when it encounters a limit, returning to find the Z signal.

1: automatically reverses when it encounters a limit and looks directly forward for the Z signal.

2: Automatic reversal of limits encountered, without finding the Z signal.

3: Stops and alarms when a limit is encountered and returns to find the Z signal.

4: encounter a limit stop and alarm, look directly forward for the Z signal.

5: Stops and alarms when a limit is encountered, without looking for the Z signal.

Note:For the handling of encountered limits, such as regression mode 0 to 1, no alarm or stop will be made even if 3, 4 or 5 is set here.

For the Z signal, if the regression mode is 0 to 1, it is after the limit signal is encountered; if the regression mode is 2 to 5, it is after the HOME_IN signal is encountered.

F11.04	High-speed search speed	Setting range	factory	unit	Mode of	Re	elate	d
	of the origin		value		entry	m	odel	S
					into			
					force			
		1 to 3000	500	1rpm	Effective	Р		
					immedia			
					tely			

1 to 3000rpm

F11.05	Speed of low-speed search	Setting range	factory	unit	Mode of	Related
	origin		value		entry	models
					into	
					force	
		1 to 300	50	1rpm	Effective	P
					immedia	
					tely	

1 to 300rpm

F11.06	Acceleration and	Setting range	factory	unit	Mode of	Relate	ed
	deceleration times when		value		entry	mode	ls
	searching for the origin				into		
					force		
		1 to 10,000	500	1ms	Effective	Р	
					immedia		
					tely		

1 to 10000ms

F11.07	Time limit value for the return to home process	Setting range	factory value	unit	Mode of entry into force		elate Iode	
		1 to 65535	60,000	1ms	Effective	Р		
					immedia			
					tely			

1 to 65535ms

F11.08	Origin coordinate offset	Setting range	factory	unit	Mode of	R	elate	ed
	(32 bits)		value		entry	m	odel	s
					into			
					force			
		-1073741824 ~	0		Effective	Р		
		1073741824			immedia			
					tely			

 $-1073741824 \sim 1073741824$

F11.10	Mechanical Home Position	Setting range	factory	unit	Mode of	R	elate	ed
	Offset (32 bits)		value		entry	n	10de	ls
					into			
					force			
		-1073741824 ~	0		Effective	Р		
		1073741824			immedia			
					tely			

 $-1073741824 \sim 1073741824$

F11.12	DI initiates an effective way of returning to the point of origin	Setting range	factory value	unit	Mode of entry into	Rela mod	
					force		
		0~1	0		Effective	Р	
					immedia		
					tely		

0:Level valid

1: falling edge active

F11.13	Limit detection method	Setting range	factory	unit	Mode of	Related
	when searching for the		value		entry	models
	home position				into	

			force			
	0 to 2	0	 Effective	Р	S	Т
			immedia			
			tely			

0: Detected by DI functions 15 and 16

1:Torque limiting detection by hard limit

2:DI function or hard limit torque limit detection

F11.14	Edge start back to original	Setting range	factory	unit	Mode of	R	elated	h
	completion signal hold		value		entry	m	odels	5
	time				into			
					force			
		0 ~ 65535	0		Effective	Р		
					immedia			
					tely			

F11.20	Second encoder usage	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	m	ode	ls
					into			
					force			
		0 to 2	0		Power	Р		
					up again.			

0: No external encoder is used for position feedback

1:Use external encoder as position feedback, external encoder count increases when motor direction CCW 2:Use external encoder as position feedback, external encoder count increases when motor direction CW

F11.22	External encoder pitch (32	Setting range	factory	unit	Mode of	Re	elate	d
	bits)		value		entry	m	odel	s
					into			
					force			
		0~1073741824	10000		Downtim	Р		
					e in			
					effect			

Set the number of feedback pulses from the external encoder for one revolution of the motor $0\sim 1073741824$

F11.24	Fully Closed Loop Mixing	Setting range	factory	unit	Mode of	Related
	Deviation Excess		value		entry	models
	Threshold (32 bits)				into	

			force		
	$0 \sim 1073741824$	0	 Effective	Р	
			immedia		
			tely		

 $0 \sim 1073741824$

F11.26	Mixing deviation count	Setting range	factory	unit	Mode of	Re	elated
	setting		value		entry	m	odels
					into		
					force		
		0 to 100	0	0.01	Downtim	Р	
					e in		
					effect		

0 to 100%

F11.27	Hybrid vibration	Setting range	factory	unit	Mode of	R	elated
	suppression gain		value		entry	m	odels
					into		
					force		
		0 to 30,000	400	0.1/s	Effective	Р	
					immedia		
					tely		

1.0 to 3000.0 /s

F11.28	Mixing vibration	Setting range	factory	unit	Mode of	Related	
	suppression time constant		value		entry	models	
					into		
					force		
		0 to 30,000	0	0.1ms	Effective	Р	
					immedia		
					tely		

 $0.0\sim 3000.0ms$

F11.30	Fully closed-loop mixed	Setting range	factory	unit	Mode of	R	elated
	deviation external units		value		entry	m	odels
	(32 bits)				into		
					force		
		-1073741824 ~	0		Display	Р	
		1073741824			only		

 $-1073741824 \sim 1073741824$

F11.32	External units for internal encoder count values (32 bits)	Setting range	factory value	unit	Mode of entry into	Rela mod	
		-1073741824 ~	0		force Display	Р	
		1073741824			only		

 $-1073741824 \sim 1073741824$

F11.34	External encoder count value (32 bits)	Setting range	factory value	unit	Mode of entry into	Related models	
					force		
		-1073741824 ~	0		Display	Р	
		1073741824			only		

-1073741824 ~ 1073741824

Group F12 Operator Panel Settings

F12.00	Panel default display selection	Setting range	factory value	unit	Mode of entry into	Related models		
					force			
		0 ~ 65535	0		Effective	Р	S	Т
					immedia			
					tely			

0:Servo system status F2400

1:F1201 selected state parameter

2:F1202 selected state parameters

3:F1203 selected state parameters

4:F1204 selected state parameters

5:F1205 selected state parameters

F12.01	Panel monitoring	Setting range	factory	unit	Mode of	Related		ed
	parameter setting 1		value		entry	models		ls
					into			
					force			
		0 to 69	1		Effective	Р	S	Т
					immedia			
					tely			

0 to 69,

Parameters of group F24 except F2400 can be displayed directly in the panel. No display if set to 0

F12.02	Panel monitoring	Setting range	factory	unit	Mode of	Related		ed
	parameter setting 2		value		entry	models		ls
					into			
					force			
		0 to 69	5		Effective	Р	S	Т
					immedia			
					tely			

0 to 69, same as F1201

parameter setting 3		value	entry into	model		ls
			force			
	0 to 69	6	 Effective	Р	S	Т
			immedia			
			tely			

0 to 69, same as F1201

F12.04	Panel monitoring	Setting range	factory	unit	Mode of	R	elat	ed
	parameter setting 4		value		entry	n	ıode	ls
					into			
					force			
		0 to 69	21		Effective	Р	S	Т
					immedia			
					tely			

0 to 69, same as F1201

F12.05	Panel monitoring	Setting range	factory	unit	Mode of	R	elate	ed
	parameter setting 5		value		entry	m	iode	ls
					into			
					force			
		0 to 69	23		Effective	Р	S	Т
					immedia			
					tely			

0 to 69, same as F1201

F12.06	Time multiplier for search	Setting range	factory	unit	Mode of	R	elate	ed
	origin		value		entry	n	node	ls
					into			
					force			
		0 ~ 65535	0		Effective	Р	S	Т
					immedia			
					tely			

0 to 15

F12.07	user password	Setting range	factory value	unit	Mode of entry into force		elate 10de	
		0 ~ 65535	0		Effective	Р	S	Т

		immedia		
		tely		

 $0\sim 65535$

F12.08	User encrypted lock screen	Setting range	factory	unit	Mode of	R	elate	ed
	time		value		entry	m	ode	ls
					into			
					force			
		1 to 30	5	1	Effective	Р	S	Т
				minute.	immedia			
					tely			

1 to 30 minutes

F12.12	bit-width selection for the position feedback display (F24.13 and F24.15), the	Setting range	factory value	unit	Mode of entry into		elato 10de	
		0 ~ 1	0		force Power up again.	Р	S	Т

0: The counter is 32 bits.

1: The counter is 64 bits, the high 32 bits are displayed in (F2456, F2458)

F12.13	DIDO monitors whether to display in binary or	Setting range	factory value	unit	Mode of entry		elato 10de	
	hexadecimal				into			
					force			
		0~1	0		Effective	Р	S	Т
					immedia			
					tely			

0: Displayed in binary

1:Display in hexadecimal

F12.14	Manufacturer Parameters	Setting range	factory value	unit	Mode of entry into		elato 10de	
					force			
		0 ~ 65535	0		Display	Р	S	Т
					only			

Group F23 Auxiliary functions

F23.00	Keyboard JOG trial run	Setting range	factory value	unit	Mode of entry		elato 10de	
					into force			
		0 to 2000	0		Downtim	Р	S	Т
					e in			
					effect			

 $0 \sim Rated speed$

F23.01	Fault reset	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	n	iode	ls
					into			
					force			
		0 to 9	0		Downtim	Р	S	Т
					e in			
					effect			

0:No operation

1:Fault reset

F23.03	Parameter recognition	Setting range	factory	unit	Mode of	R	elate	ed
	function		value		entry	m	iode	ls
					into			
					force			
		0 to 99	0		Downtim	Р	S	Т
					e in			
					effect			

0:No operation

1:Start-up positive inertia identification

2:Start reversal inertia identification

3: Reservations

4: Reservations

5:Start initial angle recognition

analog inputs		value	entry into	n	node	ls
			force			
	0 to 2	0	 Downtim	Р	S	Т
			e in			
			effect			

0: No operation

1: AI1 adjustment

2: AI2 adjustment

F23.06	System initialization	Setting range	factory	unit	Mode of	R	elat	ed
	functions		value		entry	n	ıode	ls
					into			
					force			
		0 to 9	0		Power	Р	S	Т
					up again.			

0:No operation

1:Restore factory settings (without factory parameters and motor parameters)

2:Clear fault records

7:Absolute encoder reset

F23.08	Communication operation	Setting range	factory	unit	Mode of	R	elate	ed
	command input		value		entry	m	iode	ls
					into			
					force			
		0~65535	0		Effective	Р	S	Т
					immedia			
					tely			

0: No operation or stop operation

1 to 3000, Pointing speed, rpm

1102H-Communications Pointing Forward

1103H-Communications point reversal

1300H-Starting forward inertia identification

1301H-Start reversal inertia identification

1302H-Storage of identified inertia values

1500H-Start initial angle identification

F23.09	Communication operation	Setting range	factory	unit	Mode of	Related
	status output		value		entry	models
					into	
					force	

	0~65535	0	 Display	D	c	т
	0~05555	U	 Display	r	Э	1
			only			

 $0\sim 65535$

For communication reading

0:Identification still in progress,

1: Identify process faults,

2: Identification completed,

3:Identification parameters are stored

F23.10	inertia recognition value	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry	m	iode	ls
					into			
					force			
		0~65535	0	0.01	Effective	Р	S	Т
					immedia			
					tely			

 $0 \sim 65535$

F23.11	Communication selection	Setting range	factory	unit	Mode of	R	elate	ed
	multi-segment command		value		entry	n	node	ls
	sequence number				into			
					force			
		0 to 16	0		Effective	Р	S	
					immedia			
					tely			

0 to 16

F23.12	Communications initiate return to the point of origin	Setting range	factory value	unit	Mode of entry into force		elate odel	
		0 to 9	0		Effective	Р		
					immedia			
					tely			

0:No operation

1:Initiate origin return

F23.13	Linear motor initial	Setting range	factory	unit	Mode of	Related
	communication electrical		value		entry	models
	angle identification				into	

			force			
	0~1	0	 Downtim	Р	S	Т
			e in			
			effect			

Group F24 Display parameters

F24.00	Servo Status	Setting range	factory	unit	Mode of		elate	
			value		entry into	n	node	ls
					force			
		$0 \sim 65535$	0		Display	Р	S	Т
					only			

Displays the status of the drive in real time.

The following flags are present: rdy, run, E01 (fault), A81 (warning)

F24.01	Motor speed feedback	Setting range	factory value	unit	Mode of entry into force		elate	
		-9000 to 9000	0	1rpm	Display	Р	S	Т
					only			

Real-time display of motor speed in 1rpm or 1mm/s

F24.03	Motor speed command	Setting range	factory value	unit	Mode of entry into force		elate	
		-9000 to 9000	0	1 rpm	Display only	Р	S	Т

Real-time display of the current speed command in 1rpm or 1mm/s

F24.04	Internal torque command	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry into	n	node	ls
					force			
		-5000 to 5000	0	0.1%	Display	Р	S	Т
					only			

Real-time display of the internal torque command in 0.1%, i.e. as a percentage of the corresponding rated torque.

F24.05	Phase Current RMS	Setting range	factory	unit	Mode of	R	Related models P S	
			value		entry into	n	node	ls
					force			
		0~65535	0	0.01A	Display	Р	S	Т
					only			

Real-time display of U-phase current RMS value in 0.01A

F24.06	Busbar voltage	Setting range	factory value	unit	Mode of entry into force		elate nodel	
		0~65535	0	0.1V	Display	Р	S	Т
					only			

Real-time display of busbar voltage values in 0.1V

F24.07	Inertia discrimination value	Setting range	factory value	unit	Mode of entry into force		elate	
		0~65535	0	0.01 kg c	Display	Р	S	Т
				m	only			

0.01kgc m² ~ 655.35kgc m²

F24.08	Input position command corresponds to speed	Setting range	factory value	unit	Mode of entry into force		elate odel	
		-9000 to 9000	0	1 rpm	Display only	Р	S	Т

Real-time display of the speed corresponding to the input position command in 1rpm or 1mm/s

F24.09	electric angle	Setting range	factory value	unit	Mode of entry into force		elate ode	
		0~65535	0	0.1°	Display only	Р	S	Т

Real-time display of electrical angle values in 0.1°

F24.10	Mechanical angle	Setting range	factory value	unit	Mode of entry into force		elate node	
		0~65535	0	0.1°	Display only	Р	S	Т

Real-time display of the angle value of the motor axis in 0.1°

F24.11	Input instruction counter (32	Setting range	factory	unit	Mode of	Related
	bits)		value		entry into	models

				force			
	-1073741824 ~	0	1Unit	Display	Р	S	Т
	1073741824			only			

Real-time display of the total number of input command pulses, in command units. The range of the displayed value is:- $1073741824 \sim 1073741824$

F24.13	Feedback position pulse unit	Setting range	factory	unit	Mode of	R	elate	ed
	(32 bits)		value		entry into	n	node	ls
					force			
		-1073741824 ~	0	1P	Display	Р	S	Т
		1073741824			only			

Real-time display of the absolute value of the position feedback in units of the minimum encoder resolution.

The range of the displayed value is:- $1073741824 \sim 1073741824$

F24.15	Feedback position command	Setting range	factory	unit	Mode of	R	elate	ed
	unit (32 bits)		value		entry into	n	node	ls
					force			
		-1073741824 ~	0	1Unit	Display	Р	S	Т
		1073741824			only			

Real-time display of the absolute position absolute value in command units.

The range of the displayed value is:- $1073741824 \sim 1073741824$

F24.17	Position deviation pulse units (32 bits)	Setting range	factory value	unit	Mode of entry into force		elate	
		-1073741824 ~	0	1P	Display	Р	S	Т
		1073741824			only			

Real-time display of position deviation values in units of the minimum encoder resolution. The range of the displayed value is:- $1073741824 \sim 1073741824$

F24.19	Position deviation order	Setting range	factory	unit	Mode of	R	elate	ed
	units (32 bits)		value		entry into	n	node	ls
					force			
		-1073741824 ~	0	1Unit	Display	Р	S	Т
		1073741824			only			

Position deviation is displayed in real time as command units.

F24.21	Digital input signal	Setting range	factory	unit	Mode of	Related	
--------	----------------------	---------------	---------	------	---------	---------	--

monitoring		value	entry into force	n		
	0 to 31	0	 Display only	Р	S	Т

The status of DI1 to DI9 is displayed in real time.

When the third bit from the right of F07.21 is 0, the upper half of the digital tube is displayed when the current DI port is high, and when it is low, the lower half is displayed, from right to left, DI1 to DI9 in that order.

When the third bit from the right of F07.21 is 1, a binary 1 is used when it is high, and a binary 0 is used when it is low, and binary bits BIT0 to BIT8 are used for DI1 to DI9, respectively.

F24.23	Digital output signal monitoring	Setting range	factory value	unit	Mode of entry into force		elate node	
		0 to 63	0		Display only	Р	S	Т

The status of DO1 to DO9 is displayed in real time.

When the third bit from the right of F07.21 is 0, the upper half of the digital tube is displayed when the current DO port is output high, and the lower half is displayed when it is output low, from right to left, in the order of DO1 to DO9.

When the third bit from the right of F07.21 is 1, binary 1 is used for outputting high level, and binary 0 is used for outputting low level, and binary bits BIT0 to BIT8 are used for DO1 to DO9, respectively.

F24.24	Encoder Status	Setting range	factory value	unit	Mode of entry into force		elate node	
		0~65535	0		Display only	Р	S	Т

Encoder Status

F24.25	Total power-up time (32 bits)	Setting range	factory value	unit	Mode of entry into force		elate nodel	
		0 to 2147483647	0	0.1s	Display only	Р	S	Т

Real-time display of the drive's cumulative total power-up time value. The range of displayed values is:0.0:214748364.7s

F24.27	AI1 voltage correction value	Setting range	factory	unit	Mode of	Related
			value		entry into	models
					force	

	-32768 to 32767	0	1mV	Display	Р	S	Т
				only			

The voltage value of AI1 is displayed in real time and has been calibrated.

F24.28	AI2 voltage correction value	Setting range	factory value	unit	Mode of entry into force		elate	
		-32768 to 32767	0	1mV	Display	Р	S	Т
					only			

The voltage value of AI2 is displayed in real time and has been corrected.

F24.29	AI1 voltage raw value	Setting range	factory value	unit	Mode of entry into force		elate	
		-32768 to 32767	0	1mV	Display only	Р	S	Т

Real-time display of the raw voltage value of AI1, not yet calibrated

F24.30	AI2 voltage raw value	Setting range	factory value	unit	Mode of entry into force		elate	
		-32768 to 32767	0	1mV	Display	Р	S	Т
					only			

Real-time display of the raw voltage value of AI2, not yet calibrated

F24.31	Module temperature value	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry into	n	node	ls
					force			
		0~65535	0	1°C	Display	Р	S	Т
					only			

Real-time display of module temperature values

F24.32	Number of absolute position	Setting range	factory	unit	Mode of	R	elate	ed
	encoder turns (32 bits)		value		entry into	n	node	ls
					force			
		-1073741824 ~	0		Display	Р	S	Т
		1073741824			only			

Record the number of revolutions made in absolute position

F24.34	Absolute position encoder single-turn position (32 bits)	Setting range	factory value	unit	Mode of entry into force		elate	
		-1073741824 ~	0	1Unit	Display	Р	S	Т
		1073741824			only			

Record the number of encoder pulses for less than one revolution in absolute position

F24.36	load factor	Setting range	factory value	unit	Mode of entry into force	Relate model		
		0 to 500	0	1%	Display only	Р	S	Т

F24.37	Regenerative load factor	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry into	n	node	ls
					force			
		0 to 500	0	1%	Display	Р	S	Т
					only			

F24.38	Version number 1	Setting range	factory value	unit	Mode of entry into force		elate	
		0~65535	0	0.01	Display only	Р	S	Т

Show software version number

-

_

F24.39	Version number 2	Setting range	factory value	unit	Mode of entry into		elate node	
					force			
		0~65535	0	0.01	Display	Р	S	Т
					only			

Show software version number

F24.40	Version number 3	Setting range	factory	unit	Mode of	Related
			value		entry into	models
					force	

	$0 \sim 65535$	0	0.01	Display	Р	S	Т
				only			

Show software version number

F24.41	Display of fault records	Setting range	factory value	unit	Mode of entry into force		elate	
		0 to 9	0		Effective	Р	S	Т
					immediat			
					ely			

Can be set to 0 to 9 to view 10 fault records. When there is a current fault, set to 0 to display the current fault record; when there is no current fault, display the last 10 fault records.

0: Current fault species

1: Previous 1 failure

2: First 2 failures

.....

9: First 9 breakdowns

F24.42	fault code	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry into	n	node	ls
					force			
		0~65535	0		Display	Р	S	Т
					only			

Fault codes, please refer to the list of alarm codes for the meaning of the corresponding values

F24.43	Fault timestamp (32-bit)	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry into	n	node	ls
					force			
		0 to 2147483647	0	0.1s	Display	Р	S	Т
					only			

The cumulative value of the total power-up time when a fault occurs.

F24.45	Current speed at failure	Setting range	factory value	unit	Mode of entry into force		elate node	
		-9000 to 9000	0	1 rpm	Display only	Р	S	Т

Motor speed at the time of failure

F24.46	Instantaneous current at fault	Setting range	factory value	unit	Mode of entry into		elate	
					force			
		0~65535	0	0.01A	Display	Р	S	Т
					only			

Instantaneous value of the phase current at the time of the fault

F24.47	Busbar voltage at fault	Setting range	factory value	unit	Mode of entry into force		elate node	
		0~65535	0	0.1V	Display	Р	S	Т
					only			

Busbar voltage value in case of fault

F24.48	Input terminal status at fault	Setting range	factory value	unit	Mode of entry into force		elate node	
		0 to 511	0		Display only	Р	S	Т

The status of DI1 to DI9 when a fault occurs. When the current DI port is high, the upper half of the digital tube is displayed, and when it is low, the lower half is displayed.

F24.49	Output terminal status at fault	Setting range	factory value	unit	Mode of entry into force		elate node	
		0 to 511	0		Display only	Р	S	Т

The status of DO1 to DO9 when a fault occurs. When the current DO port is high, the upper half of the digital tube is displayed, and when it is low, the lower half is displayed.

F24.50	Product Series Code	Setting range	factory value	unit	Mode of entry into force		elate node	
		0~65535	0		Display only	Р	S	Т

Show custom series number

F24.52	Internal warning codes	Setting range	factory	unit	Mode of	Related
			value		entry into	models

			force			
	0~65535	0	 Display	Р	S	Т
			only			

Real-time display of internal warning codes

F24.53	Internal instruction current segment number	Setting range	factory value	unit	Mode of entry into force		elate iode	
		0 to 99	0		Display only	Р	S	Т

Displays the serial number of the currently executing segment of the internal multi-segment position instruction

F24.54	Custom Edition Series No.	Setting range	factory value	unit	Mode of entry into force		elate node	
		0~65535	0		Display only	Р	S	Т

Custom Edition Series No.

F24.55	Absolute position counter high 32 bits (32 bits)	Setting range	factory value	unit	Mode of entry into force		elate	
		-1073741824 ~	0		Display	Р	S	Т
		1073741824			only			

When bit 4 of F07.19 is 1, the absolute position is 64 bits counted, and it is shown here in the high 32 bits, in instruction units.

F24.57	Feedback pulse counter high	Setting range	factory	unit	Mode of	R	elate	ed
	32 bits (32 bits)		value		entry into	n	node	ls
					force			
		-1073741824 ~	0		Display	Р	S	Т
		1073741824			only			

When bit 4 of F07.19 is 1, the feedback pulses are counted using 64 bits, and it is shown here in the high 32 bits, in encoder units

F24.60	Analog mode feedback	Setting range	factory	unit	Mode of	Related
	count display (32-bit)		value		entry into	models
					force	

	-1073741824 ~	0	 Display	Р	S	Т
	1073741824		only			

F24.62	Protocol Stack Version	Setting range	factory value	unit	Mode of entry into force		elate node	
		0~65535	0		Display only	Р	S	Т

F24.63	Profidrive version number	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry into	n	node	ls
					force			
		0~65535	0		Display	Р	S	Т
					only			

-

-

-

_

-

F24.64	Network Status Display	Setting range	factory value	unit	Mode of entry into force		elate node	
		0~65535	0		Display only	Р	S	Т

F24.65 MAC address display 1 Setting range Mode of Related factory unit value entry into models force 0~65535 P S T 0 Display --only

F24.66	MAC address display 2	Setting range	factory	unit	Mode of	R	elate	ed
			value		entry into	n	node	ls
					force			
		0~65535	0		Display	Р	S	Т
					only			

F24.67	MAC address display 3	Setting range	factory value	unit	Mode of entry into force		elate	
		0~65535	0		Display only	Р	S	Т

-

-

F24.68	MAC address display 4	Setting range	factory value	unit	Mode of entry into		elate node	
		0~65535	0		force Display only	Р	S	Т

11.3 Detailed description of the object dictionary for YSK2-E

Object 213Ah :Absolut	Object 213Ah :Absolute position encoder turns 32bit							
Object I	Description	Object entry description						
properties	happen to	properties	happen to					
index	213A _h	subindex	$00_{\rm h}$					
name (of a thing)	Absolute position encoder single-turn position 32bit	Access Properties	ro					
data structure	Variable	PDO Mapping Type	TPDO					
data type	Integer32	Data range	-2147483648~2147483647					
operating mode	ALL	default value	0					
Reflects the number of real absolute position encoder turns, same as servo parameter F24.32								

Object 213Bh :Absolut	Object 213Bh :Absolute position encoder single-turn position 32bit							
Object I	Description	Object entry description						
properties	happen to	properties	happen to					
index	213B _h	subindex	$00_{\rm h}$					
name (of a thing)	Absolute position encoder single-turn position 32bit	Access Properties	го					
data structure	Variable	PDO Mapping Type	TPDO					
data type	Integer32	Data range	-2147483648~2147483647					
operating mode	ALL	default value	0					
Reflects the real absolute position encoder single-turn position, same as servo parameter F24.34								

Object	Description	Object e	entry description
properties	happen to	properties	happen to
index	213C _h	subindex	$00_{\rm h}$
name (of a thing)	Absolute encoder position (low 32bit)	Access Properties	ro
data structure	Variable	PDO Mapping Type	TPDO
data type	Integer32	Data range	-2147483648~2147483647
operating mode	ALL	default value	0

Object 213Dh : Absolute encoder position (high 32bit)							
Object Description Object entry description							
properties	happen to	properties	happen to				
index	213D _h	subindex	$00_{\rm h}$				
name (of a thing)	Absolute encoder position	Access Properties	ro				

	(high 32bit)					
data structure	Variable	PDO Mapping Type	TPDO			
data type	Integer32	Data range	-2147483648~2147483647			
operating mode	ALL	default value	0			
Reflects real absolute encoder position (high 32bit))						

Object 213F _h :Servo internal error code						
Object Description		Object entry description				
properties	happen to	properties	happen to			
index	$213F_{h}$	subindex	$00_{\rm h}$			
name (of a thing)	error code	Access Properties	ro			
data structure	Variable	PDO Mapping Type	TPDO			
data type	unsigned16	Data range	0~65535			
operating mode	ALL	default value	0			
Displays the servo drive error co	ode to match the numeric value	of the panel display error code				

Object De	escription	Object entr	y description
properties	happen to	properties	happen to
index	2141 _h	subindex	$00_{\rm h}$
name (of a thing)	Analog input 1	Access Properties	ro
data structure	Variable	PDO Mapping Type	TPDO
data type	Integer16	Data range	-32768~32767
operating mode		default value	0

Object 2142 _h :Analog input 2						
Object De	escription	Object entry description				
properties	happen to	properties	happen to			
index	2142 _h	subindex	$00_{\rm h}$			
name (of a thing)	Analog input 2	Access Properties	ro			
data structure	Variable	PDO Mapping Type	TPDO			
data type	Integer16	Data range	-32768~32767			
operating mode default value 0						
Displays the value of servo ana	log channel 2, same as servo par	ameter F24.28				

Object 603Fh :Error code						
Object D	escription	Object entry	description			
properties	happen to	properties	happen to			
index	603F _h	subindex	$00_{\rm h}$			
name (of a thing)	error code	Access Properties	ro			
data structure	Variable	PDO Mapping Type	TPDO			
data type	unsigned16	Data range	0~65535			

operating mode	ALL	default value	0
CiA protocol fault code display	ed		

Note: This is not a servo internal fault alarm code, servo fault alarm code see 213Fh

Object Description		Object entry description			
	properties	happen to	properties	happen to	
	index	6040_{h}	subindex	00 _h	
na	ame (of a thing)	control word	Access Properties	rw	
	data structure	Variable	PDO Mapping Type	RPDO	
	data type	unsigned16	Data range	0~65535	
0	perating mode	ALL	default value	0	
sed to	enable, clear alarms, start	the given command in each m	node, etc.		
bit	meaning				
0	Servo ready.	0: Invalid 1: Valid			
1	Turn on the main circuit power	0: Invalid 1: Valid	0: Invalid 1: Valid		
2	quick stop	1: Invalid 0: Valid			
3	Servo operation	0: Invalid 1: Valid			
4~6	Related to the operation control mode				
7	Fault reset	Bit7 rising edge active When Bit7 is held to 1, othe invalid	er control commands are		
8	pause (media player)	0: Invalid 1: Valid			
9~15	retain				

correctly

Object 6	041h :status wor	ď			
	Object De	scription		Object entry d	lescription
pı	roperties	happen to		properties	happen to
	index	6041 _h		subindex	$00_{\rm h}$
name	(of a thing)	status word		Access Properties	го
data	a structure	Variable		PDO Mapping Type	TPDO
d	ata type	unsigned16		Data range	0~65535
oper	operating mode ALL			default value	0
				· · · · · ·	
bit	meaning	meaning			
0	Servo ready.		0: Invalid 1: Valid		
1	Servo operation c	Servo operation can be turned on		id 1: Valid	

2	Servo operation status	0: Inval	lid 1: Valid		
3	Servo failure	0: Inval	0: Invalid 1: Valid		
4	Turn on main circuit voltage	0: Inval	0: Invalid 1: Valid		
5	quick stop	1: Inval	lid 0: Valid		
6	Servo not operational	0: Inval	lid 1: Valid		
7	warning	0: Inval	lid 1: Valid		
8	Manufacturer customization	retain			
9	remote control	0: Inval	lid 1: Valid		
10	Target arrival (related to operational control mode)	0: Inval	lid 1: Valid		
11	Internal software limits	0: Inval	id 1: Valid		
12	Related to the operation control mode				
13	Related to the operation control mode				
14	Manufacturer customization	retain			
15	Back to original completion	0: Invalid 1: Valid Absolute system, F08.240= 1, back to home will store bit15 set to (power down hold), F23.06= 7 clear back to original BIT15 stat bit			
he followi	ng are the basic status words (X is denoted	as any val	lue)		
The initia	lization failure status should read (Not r	eady to	Servo start failure (Switch on disable).		
switch).			XXXX XXXX X1XX 0000		
XXXX XX	XXX X0XX 0000				
Servo read	ly (Ready to switch on).		Servo start (Switch on).		
XXXX XX	XXX X01X 0001	XXXX XXXX X01X 0011			
Servo ope	ration enable.	Quick stop active.			
XXXX XX	XXX X01X 0111		XXXX XXXX X00X 0111		
The status	of the servo fault should be (Fault).		Fault reaction active (FRA).		
			XXXX XXXX X0XX 1111		

Object 605A _h :Quick stop method selection						
Object D	Object Description		v description			
properties	happen to	properties	happen to			
index	605A _h	subindex	$00_{\rm h}$			
name (of a thing)	Quick Stop Method Selection	Access Properties	rw			
data structure	data structure Variable		NO			
data type	Integer16	Data range	0~7			
operating mode	erating mode ALL default value 1					
When control word 6040hbit2	=0, the fast stop method is determi	ned by 605Ah				
setpoint Shutdown metho	Shutdown method					
0 Free to stop and	Free to stop and stay free					
1 Decelerate and st	op at 6084h deceleration time to n	naintain free				

2	Decelerate and stop at 6085h deceleration time, keep free				
3	Decelerate and stop at 6085h deceleration time, keep free				
4	Not defined, cannot be set				
5	Decelerate to stop at 6084h deceleration time and hold position lock				
6	Decelerate to stop at 6085h deceleration time and hold position lock				
7	Decelerate to stop at 6085h deceleration time and hold position lock				
Note: 605	ote: 605A h set to 0, the stop will be affected by the P06.26 parameter: if hair.26 set to 0, the emergency stop mode is free stop				
if	if F08.26 set to 1 or 2, the emergency stop will be decelerated to stop according to 6084h, after stopping both remain free				
60	5A h is set to any of 1, 2, 3, 5, 6, 7 and ALL mode for emergency stop as described in the table above				

Object 605Bh :Motor deceleration stop method						
Object Description			Object entry description			
proper	ties	happen to	properties	happen to		
inde	х	605D _h	subindex	$00_{\rm h}$		
name (of a	a thing)	Motor deceleration stop method	Access Properties	rw		
data stru	cture	Variable	PDO Mapping Type	NO		
data ty	/pe	Integer16	Data range	0~1		
operating	mode	ALL	default value	1		
setpoint	Shutdown n	nethod				
0	Press P06.2	6 to set the shutdown mode				
1	Deceleration	n stop by 6084h				
ALL mode OFF	ALL mode OFF shutdown, (1) If 605B = 0, shutdown as set in F08.26					
Free stop when $F08.26 = 0$.						
When $F08.26 = 1$, decelerate to stop at 6084h.						
When $F08.26 = 2$, decelerate to stop by 6085						
(2) If 605B =	1, then decelera	ate and stop at 6084h				

Object 605Dh :Pause method selection					
	Object D	escription	Object entry description		
proper	properties happen to		properties	happen to	
inde	x	605D _h	subindex	$00_{\rm h}$	
name (of a	a thing)	Pause method selection	Access Properties	rw	
data stru	icture	Variable	PDO Mapping Type	NO	
data ty	ype	Integer16	Data range	-32768~32767	
operating	operating mode ALL		default value	1	
When the contro	ol word 6040hb	it8 pause function is active, the pa	ause effect is determined by 605Dh		
setpoint	Shutdown m	nethod			
0	Not supported, cannot be set				
1	Press 6084h deceleration time to decelerate, then hold position lock				
2	Press 6085h deceleration time to slow down, then hold position lock				
Note: 605D h is	set to 1 or 2 and	d ALL mode is paused in the mar	mer described in the table above.		

ject 606	0h :Control n	lode			
	Object De	escription		Object entry of	lescription
prop	oerties	happe	n to	properties	happen to
in	dex	606	0 _h	subindex	$00_{\rm h}$
name (o	of a thing)	Control	mode	Access Properties	rw
data s	tructure	Varia	ble	PDO Mapping Type	RPDO
data	ı type	integ	er8	Data range	0~10
operati	ng mode	AL	L	default value	0
elect the con	trol mode to run			·	
setpoint	meaning				
0	retain				
1	Profile Position Mode (PP)		Reference0	Chapter	
2	speed mode		No support		
3	Profile Velocity Mode (PV)		Reference0 Chapter		
4	Profile Torque Mode (PT)		Reference0	Chapter	
5	retain				
6	Back to Original Mode (HM)		Reference0	Chapter	
7	Interpolation (IP)	Position Mode			
8	Cyclic Synchronous Position Mode (CSP)		Reference0	Chapter	
9	Cycle Synchronous Bit Velocity Mode (CSV)		Reference0	Chapter	
10	Cyclic Synch Mode (CST)	ronous Torque	Reference0	Chapter	

Object 6061h :Control mode display						
	Object Description			Object entry description		
prope	erties	happe	n to	properties	happen to	
ind	lex	606	1 _h	subindex	00 _h	
name (of	f a thing)	Control mod	le display	Access Properties	ro	
data str	ructure	Varia	ble	PDO Mapping Type	TPDO	
data	type	integ	er8	Data range	0~10	
operatin	operating mode ALI		Ĺ	default value	0	
Displays the co	ontrol mode in w	hich the servo is ru	unning	·		
numerical	meaning					
value						
0	retain					
1	Profile Positio	n Mode (PP)	Reference0	Chapter		
2	2 speed mode		No support			
3	Profile Velocity Mode (PV)		Reference0	Chapter		
4	Profile Torque Mode (PT)		Reference0	Chapter		
5	retain					

6	Back to Original Mode (HM)	Reference0 Chapter
7	Interpolation Position Mode	
/	(IP)	
8	Cyclic Synchronous Position	Reference0 Chapter
8	Mode (CSP)	
9	Cycle Synchronous Bit	Reference0 Chapter
9	Velocity Mode (CSV)	
10	Cyclic Synchronous Torque	Reference0 Chapter
10	Mode (CST)	

Object 6062h :user location command					
Object D	escription	Object entry description			
properties	happen to	properties	happen to		
index	6062 _h	subindex	00 _h		
name (of a thing)	user location instruction	Access Properties	ro		
data structure	Variable	PDO Mapping Type	TPDO		
data type	Integer32	Data range	-2147483648~2147483647		
operating mode PC default value 0					
Real-time display of position commands (user units)					

Object 1	Description	Object entry description	
properties	happen to	properties	happen to
index	6063 _h	subindex	$00_{\rm h}$
name (of a thing)	Motor position feedback	Access Properties	ro
data structure	Variable	PDO Mapping Type	TPDO
data type	Integer32	Data range	-2147483648~2147483647
operating mode	ALL	default value	0

Real-time display of absolute motor position feedback, in line with F24.13 (encoder units)

Object 6064h :User Location Feedback					
Object D	Description	Object entry description			
properties	happen to	properties	happen to		
index	6064 _h	subindex	$00_{\rm h}$		
name (of a thing)	User Location Feedback	Access Properties	ro		
data structure	Variable	PDO Mapping Type	TPDO		
data type	Integer32	Data range	-2147483648~2147483647		
operating mode	ALL	default value	0		
Reflects real-time user absolute position feedback, consistent with F24.15 (command units)					

Object 6065 _h :User position deviation too large threshold				
Object Description	Object entry description			

properties	happen to	properties	happen to	
index	6065 _h	subindex	$00_{\rm h}$	
nome (of a thing)	User Position Deviation	A access Dreen articles		
name (of a thing)	Excess Threshold	Access Properties	ľW	
data structure	Variable	PDO Mapping Type	RPDO	
data type	unsigned32	Data range	0~4294967295	
operating mode	PP/CSP/HM	default value	100000000	
If the difference between user position command 6062h and user position feedback 6064h exceeds ±6065h, a position deviation				

fault occurs Err.043

Object 6066h :Position deviation time window					
Object I	Object Description		description		
properties	properties happen to		happen to		
index	6066 _h	subindex	$00_{\rm h}$		
name (of a thing)	Position deviation time window	Access Properties	rw		
data structure	Variable	PDO Mapping Type	RPDO		
data type	Unsigned16	Data range	0~65535		
operating mode	PP/CSP/HM	default value	0		
If the value of 60F4h exceeds the 6065h setting range and the duration is greater than the 6066h setting, bit 13 of the 6041h status					

word will be set to 1.

Object 6067 _h :Position reached threshold			
Object E	Description	Object entry	description
properties	happen to	properties	happen to
index	6067 _h	subindex	$00_{\rm h}$
name (of a thing)	Position reaches threshold	Access Properties	rw
data structure	Variable	PDO Mapping Type	RPDO
data type	unsigned32	Data range	0~4294967295
operating mode	PP/CSP/HM	default value	100000000

In position mode, the difference between the user position command 6062h and the actual user position feedback 6064h is within

 $\pm 6067h$, and the position is considered to be reached when the time reaches 6068h, bit10=1 of status word 6041h

Position mode, this flag bit is meaningful when servo enable is active; otherwise, it is meaningless

Note: The position arrival threshold is the smaller of the F04.61 and 6067h values, and the positioning completion output is also related to F04.62

Object 6068h :Position arrival time window			
Object E	Description	Object entry	v description
properties	happen to	properties	happen to
index	$6068_{\rm h}$	subindex	$00_{\rm h}$
name (of a thing)	Location arrival time	Access Properties	rw
data structure	Variable	PDO Mapping Type	RPDO
data type	Unsigned16	Data range	0~65535

operating mode	PP/CSP/HM	default value	0
In position mode, the difference between the user position command 6062h and the actual user position feedback 6064h is within			
\pm 6067h, the position is consider	red to be reached, and after the 60	068h set time delay, the status wor	d 6041h bit10 is output as 1

Object 606B _h :User speed command value			
Object D	Description	Object e	ntry description
properties	happen to	properties	happen to
index	606B _h	subindex	$00_{\rm h}$
name (of a thing)	User speed command value	Access Properties	ro
data structure	Variable	PDO Mapping Type	TPDO
data type	integer 32	Data range	-2147483648~2147483647
operating mode	PV/CSV	default value	0
Reflects the user's actual spee	d command, consistent with F24.0	3 if converted to RPM units	

bject 606Ch :Actual user speed feedback			
Object]	Description	Object e	entry description
properties	happen to	properties	happen to
index	606C _h	subindex	$00_{\rm h}$
name (of a thing)	Actual user speed feedback	Access Properties	ro
data structure	Variable	PDO Mapping Type	TPDO
data type	integer 32	Data range	-2147483648~2147483647
operating mode	ALL	default value	0

Object 606Dh :Speed reaches threshold					
Object D	escription	Object er	ntry description		
properties	happen to	properties	happen to		
index	606D _h	subindex	$00_{\rm h}$		
name (of a thing)	Speed reaches threshold	Access Properties	ľW		
data structure	Variable	PDO Mapping Type	RPDO		
data type	Unsigned16	Data range	0~65535		
operating mode PV/CSV default value 65535					
If the difference between the ta	arget speed 60FFh and the actual	user speed 606Ch is within ±	606Dh, and the time reaches 606Eh,		
the speed is considered to be re-	eached, bit 10 of status word 604	h = 1, and the DO output is v	alid.		
Profile speed mode and synch	ronous cycle speed mode, this fl	ag bit is meaningful when se	rvo enable is active, otherwise it is		

meaningless

Object 606E _h :velocity arrival time window				
Object D	escription	Object e	entry description	
properties	happen to	properties	happen to	
index	$606E_{h}$	subindex	$00_{\rm h}$	
name (of a thing)	Speed arrival time	Access Properties	rw	

data structure	Variable	PDO Mapping Type	RPDO
data type	Unsigned16	Data range	0~65535
operating mode	PV/CSV	default value	0
If the difference between the target speed 60FFh and the actual user speed 606Ch is within ±606Dh, and the time reaches 606Eh,			
the speed is considered to be reached, bit 10 of status word $6041h = 1$, and the DO output is valid.			
This flag bit is meaningful when servo enable is active in profile speed mode and synchronous cycle speed mode, otherwise it is			
meaningless			

Object D	escription	Object entry	description
properties	happen to	properties	happen to
index	606F _h	subindex	$00_{\rm h}$
name (of a thing)	Zero Speed Threshold	Access Properties	rw
data structure	Variable	PDO Mapping Type	RPDO
data type	Unsigned16	Data range	0~65535
operating mode	PV	default value	65535

Contour speed mode, this flag bit has meaning; otherwise it has no meaning. This flag bit is not related to servo enable or not

Object 6071h :Torque target value			
Object De	escription	Object ent	ry description
properties	happen to	properties	happen to
index	6071 _h	subindex	$00_{\rm h}$
name (of a thing)	Torque target value	Access Properties	ľW
data structure	Variable	PDO Mapping Type	RPDO
data type	integer16	Data range	-5000~5000
operating mode	PT/CST	default value	0
Torque giving in PT/CST mode	, in 0.1%		
100.0% Corresponds to 1 times	the rated torque of the motor		

Object D	escription	Object entry	description
properties	happen to	properties	happen to
index	6072 _h	subindex	$00_{\rm h}$
name (of a thing)	Maximum torque	Access Properties	rw
data structure	Variable	PDO Mapping Type	RPDO
data type	unsigned16	Data range	0~5000
operating mode	ALL	default value	5000

Object 6074h :User-given torque value	
Object Description	Object entry description

properties	happen to	properties	happen to
index	6074_{h}	subindex	$00_{\rm h}$
name (of a thing)	User-given torque value	Access Properties	ro
data structure	Variable	PDO Mapping Type	RPDO
data type	integer16	Data range	-5000~5000
operating mode	ALL	default value	0
Real-time display of the international	al given torque value in 0.1% in s	ervo operation	
100.0% Corresponds to 1 times	s the rated torque of the motor		

Object 6077h :Actual to	orque feedback			
Object D	escription	Object e	entry description	
properties	happen to	properties	happen to	
index	6077 _h	subindex	$00_{\rm h}$	
name (of a thing)	Actual torque feedback	Access Properties	ro	
data structure	Variable	PDO Mapping Type	TPDO	
data type	integer16	Data range	-5000~5000	
operating mode	ALL	default value	0	
Real-time display of servo inte	rnal torque feedback			

100.0% corresponds to 1 times the rated torque of the motor and should be consistent with F24.04. Unit 0.1%

Object 6078h :Actual cu	irrent value			
Object De	escription	Object er	entry description	
properties	happen to	properties	happen to	
index	6078_{h}	subindex	$00_{\rm h}$	
name (of a thing)	Actual current value	Access Properties	ro	
data structure	Variable	PDO Mapping Type	TPDO	
data type	integer16	Data range	-32768~32767	
operating mode	ALL	default value	0	
Real-time display of actual cur	rent value (in 0.1% of nominal va	alue)		

Object 6079h :DC bus	voltage value			
Object D	Description	Object er	entry description	
properties	happen to	properties	happen to	
index	6079 _h	subindex	$00_{\rm h}$	
name (of a thing)	DC bus voltage value	Access Properties	ro	
data structure	Variable	PDO Mapping Type	TPDO	
data type	Unsigned32	Data range	0~4294967295	
operating mode	ALL	default value	0	
Display bus voltage (unit: 1m	v), should be consistent with F24.	06 bus voltage value		

Object 607A _h :Target position value	
Object Description	Object entry description

properties	happen to	properties	happen to
index	607A _h	subindex	$00_{\rm h}$
name (of a thing)	Target position value	Access Properties	rw
data structure	Variable	PDO Mapping Type	RPDO
data type	Integer32	Data range	-2147483648~2147483647
operating mode	PP/CSP	default value	0
Setting the servo target position	n in profile position mode and sy	nchronous cycle position mod	le
Contour position mode: if run	ning absolute command, user ab	solute position $6064h = 607$	Ah when positioning is complete; if

running relative command, user displacement increment = 607Ah when positioning is complete

Object 607Ch :home of	fset			
Object D	escription	Object e	Object entry description	
properties	happen to	properties	happen to	
index	607C _h	subindex	$00_{\rm h}$	
name (of a thing)	origin offset	Access Properties	rw	
data structure	Variable	PDO Mapping Type	RPDO	
data type	Integer32	Data range	-2147483648~2147483647	
operating mode	HM	default value	0	

1. After the home point is back to zero, the motor stop position is the mechanical home point. By setting 607Ch, the relationship between mechanical home point and mechanical zero can be set: mechanical home point = mechanical zero + 607C (home point offset) When 607C=0, the mechanical home point and mechanical zero coincide

2. Home bias effective condition: power-on operation, home return operation completed, bit15=1 of status word 6041h

3. In home return to zero mode, the upper computer should first select the home return to zero mode (6098h), and set the return to zero speed (6099-1h 6099-2h), return to zero acceleration (609Ah), after giving the home return to zero trigger signal, the servo will automatically find the mechanical home point according to the setting, and complete the relative position relationship between the mechanical home point and the mechanical zero point setting.

For example: by returning to zero mode 35, with the current position as the mechanical origin, after triggering the origin back to zero, the user's current position 6064h = 607Ch, the motor shaft is not rotating

Machine Home: A fixed position on the machine, corresponding to the home switch, limit switch, motor Z signal, etc.

Mechanical zero point: absolute 0 position on the machine

Object 607Dh :Soft lim	it		
Object D	escription	Object of	entry description
properties	happen to	properties	happen to
index	607D _h	subindex	$00_{\rm h}$
name (of a thing)	Number of soft limit subindexes	Access Properties	Rw
data structure	/	PDO Mapping Type	RPDO
data type	Unsigned8	Data range	0~512
operating mode	ALL	default value	2
When the position feedback re	aches the internal soft limit, it wi	ll stop at the limit value reach	ed, and the servo reports an overtravel
warning (AL.087 or AL.088)	with bit15=1 in status word 6041	h, which means the soft limi	t is in effect. At this point, inputting a
reverse motion command will	take the servo out of the position	overrun state and clear bit15	to zero

In torque mode and speed mod	de, the soft limit function is cons	trained by F08.04, when F08.	04=1, the soft limit is not valid. Turn
on the soft limit F08.04=0, F0	8.34=1 or 2 according to the follo	owing.	
Object D	escription	Object e	ntry description
properties	happen to	properties	happen to
index	607D _h	Subindex.	01_{h}
name (of a thing)	Minimum Software Location Limits	Access Properties	Rw
data structure	/	PDO Mapping Type	RPDO
data type	Integer32	Data range	-2147483648~2147483647
operating mode	ALL	default value	-2147483648

Soft limit function: F08.34

0: No software limit on

1: Soft limit function is turned on when the drive is powered up

2: Turn on the software limit function after the drive home return

Set the minimum value of the software absolute position limit, when -2147483648 means no limit in the negative direction

Minimum absolute software position limit = (607D-01h)

properties	happen to	properties	happen to
index	607D _h	Subindex.	$02_{\rm h}$
name (of a thing)	Maximum Software Location Limits	Access Properties	Rw
data structure	/	PDO Mapping Type	RPDO
data type	Integer32	Data range	-2147483648~2147483647
operating mode	ALL	default value	2147483647

Soft limit function: F08.34

0: No software limit on

1: Soft limit function is turned on when the drive is powered up

2: Turn on the software limit function after the drive home return.

Set the minimum value of the software absolute position limit, when it is 2147483647, it means no limit in positive direction

Maximum software absolute position limit = (607D-02h)

Object 607Er	Instruction	on polarity		
	Object De	escription	Object e	ntry description
properti	ies	happen to	properties	happen to
index	<u> </u>	$607 E_h$	subindex	$00_{\rm h}$
name (of a	thing)	command polarity	Access Properties	rw
data struc	cture	Variable	PDO Mapping Type	RPDO
data tyj	pe	Unsigned8	Data range	0~1
operating	mode		default value	0
1 Set the polarity	of torque bit c	command, position command an	d speed command, when using	g, the polarity of speed, position and
torque should be	all 0 (Bit5~7 a	ll 0) or 224 ((Bit5~7 all 1), afte	r setting 607Eh, the servo need	ls to be re-powered to take effect.
Bit	meaning			
0	retain			

Γ	1	retain
	2	retain
	3	retain
	4	retain
	5	Put the torque command 6071h/60B2h x (-1)
	6	Put the speed command 60FFh/60B1h x (-1)
	7	Put position command 607Ah/60B0h x (-1)

Object 607Fh :Maximum speed limit				
Object Description		Object entry description		
properties	happen to	properties	happen to	
index	607F _h	subindex	$00_{\rm h}$	
name (of a thing)	Maximum profile speed	Access Properties	rw	
data structure	Variable	PDO Mapping Type	TPDO	
data type	Unsigned32	Data range	0~4294967295	
operating mode	PP/PV/PT/CSV/CST	default value	13107200	
Maximum speed limit in PP/P	V/PT/CSV/CST mode, in comma	nd units/S		

 $\rm PP/PV/CSV$ mode, maximum speed limit is the lesser of 607Fh or 6080h

PT/CST mode, maximum speed limit is the lesser of 607Fh, 6080h, internal speed limit (F05.29,F05.30)

Object 6080h :Max. motor speed				
Object Description Object entry description		ntry description		
properties	happen to	properties	happen to	
index	$6080_{\rm h}$	subindex	00 _h	
name (of a thing)	Max. motor speed	Access Properties	rw	
data structure	Variable	PDO Mapping Type	TPDO	
data type	Unsigned32	Data range	0~4294967295	
operating mode	ALL	default value	5000	

6080h sets the maximum motor speed to protect the motor, valid in all modes: in Rpm/min

1. In speed mode, the maximum speed limit is the lesser of 607Fh or 6080h

2. In torque mode, the maximum speed limit is the lesser of 607Fh, 6080h, or internal speed limit (F05.29,F05.30)

3. In position mode, the maximum speed limit of PP mode is the smaller of 607Fh and 6080h

The maximum speed limit in CSP mode is based on 6080h, and the servo internal function code F09.21 selects whether to set the 6080h limit or not.

1) CSP mode, when F09.21=0, 6080h does not do speed limit, exceeding the maximum speed will report Err.78 command exception fault

2) CSP mode, when F09.21 = 1, the motor runs at the maximum speed according to the 6080h setting

Object 6081h :Profile speed			
Object Description		Object entry description	
properties	happen to	properties	happen to
index	6081 _h	subindex	$00_{\rm h}$

name (of a thing)	Contouring speed	Access Properties	rW
data structure	Variable	PDO Mapping Type	RPDO
data type	Unsigned32	Data range	0~4294967295
operating mode	РР	default value	0
Velocity in profile position mo	de when the displacement comma	and is run at constant speed, u	unit: user command unit/S
The actual speed of 6081h oper	ration is limited by the smaller of	607F and 6080	

Object 6083 _h :Profile a	cceleration		
Object Description		Object entry description	
properties	happen to	properties	happen to
index	6083 _h	subindex	$00_{\rm h}$
name (of a thing)	Contour acceleration	Access Properties	rw
data structure	Variable	PDO Mapping Type	RPDO
data type	Unsigned32	Data range	0~4294967295
operating mode	PP/PV	default value	13107200

Operation panel F09.15 allows you to set the acceleration units.

When 0.

The meaning of the profile position mode is the acceleration in rpm/ms of the position given command corresponding to the motor acceleration from 0 rpm to 1000 rpm.

The meaning of the profile speed mode is the acceleration in rpm/ms of the speed command as the motor accelerates from 0 rpm to 1000 rpm.

When 1: for user command unit/S²

Object 6084h :Profile deceleration				
Object Description		Object entry description		
properties	happen to	properties	happen to	
index	6084 _h	subindex	$00_{\rm h}$	
name (of a thing)	Profile deceleration	Access Properties	rw	
data structure	Variable	PDO Mapping Type	RPDO	
data type	Unsigned32	Data range	0~4294967295	
operating mode	ALL	default value	131072000	

1. Operation panel F09.15 allows you to set the acceleration units.

When 0: the meaning of the profile position mode is the acceleration in rpm/ms of the position given command corresponding to the deceleration of the motor from 1000 rpm to 0 rpm.

The meaning of the profile speed mode is the deceleration rate in rpm/ms of the speed command as the motor decelerates from 1000 rpm to 0 rpm.

When 1: for user command units / s2

2. In ALL mode operation, perform quick stop: set 605A=1 or 5, emergency stop both by 6084h for deceleration stop

3. Pause in ALL mode operation: set 605D=1, pause both by 6084h for deceleration stop

4. OFF stop in ALL mode operation: When F08.02=0, it is free stop; when F08.02=1 or 2, it is deceleration stop by 6084h

Object 6085_h :Fast stop deceleration

Object D	escription	Object e	ntry description
properties	happen to	properties	happen to
index	6085 _h	subindex	00_{h}
name (of a thing)	Quick stop deceleration	Access Properties	rw
data structure	Variable	PDO Mapping Type	RPDO
data type	Unsigned32	Data range	0~4294967295
operating mode	ALL	default value	4294967295

1.F09.15 can set the acceleration unit.

When 0: In rpm/ms, the deceleration rate of the motor when decelerating from 1000rpm to 0rpm when the 605Ah speed is stopped When 1: for user command units / s_2

2. Quick stop in ALL mode operation: set 605A=2,3,6,7 any one, emergency stop will be decelerated by 6085h setting value

3. Pause during ALL mode operation: set 605D=2, pause both at 6085h setting for deceleration stop

Object Description		Object entr	y description
properties	happen to	properties	happen to
index	$6087_{\rm h}$	subindex	$00_{\rm h}$
name (of a thing)	Torque ramp	Access Properties	rw
data structure	Variable	PDO Mapping Type	RPDO
data type	Unsigned32	Data range	0~4294967295
operating mode	PT/CST	default value	1000

ect 608Fh : Positio	n encoder resolution		
Object	Description	Object entr	y description
properties	happen to	properties	happen to
index	608F _h	subindex	$00_{\rm h}$
name (of a thing)	Position encoder resolution	Access Properties	Ro
data structure	/	PDO Mapping Type	TPDO
data type	Unsigned8	Data range	0~2
operating mode	ALL	default value	2
properties	happen to	properties	happen to
index	608F _h	subindex	01 _h
name (of a thing)	Motor encoder resolution	Access Properties	Rw
data structure	/	PDO Mapping Type	RPDO
data type	Unsigned32	Data range	1~4294967295
operating mode	ALL	default value	131072
properties	happen to	properties	happen to
index	608F _h	subindex	02 _h
name (of a thing)	Motor resolution	Access Properties	Rw

	corresponds to the number of revolutions of the motor		
	revolutions of the motor		
data structure	/	PDO Mapping Type	RPDO
data type	Unsigned32	Data range	1~4294967295
operating mode	ALL	default value	1
Interaction with 6091h and 6	092h constitutes the electronic	gear ratio, refer to 6091h e	lectronic gear ratio for the specific
relationship.			

	c gear ratio		
Object De	escription	Object e	entry description
properties	happen to	properties	happen to
index	6091 _h	subindex	$00_{\rm h}$
name (of a thing)	Number of electronic gear ratio indexes	Access Properties	Rw
data structure	/	PDO Mapping Type	RPDO
data type	Unsigned8	Data range	0~512
operating mode	ALL	default value	2
properties	happen to	properties	happen to
index	6091 _h	subindex	01 _h
name (of a thing)	Electronic gear ratio: molecular	Access Properties	Rw
data structure	/	PDO Mapping Type	RPDO
data type	Unsigned32	Data range	1~4294967295
operating mode	ALL	default value	1
properties	happen to	properties	happen to
index	6091 _h	subindex	02 _h
name (of a thing)	Electronic gear ratio: denominator	Access Properties	Rw
data structure	/	PDO Mapping Type	RPDO
data type	Unsigned32	Data range	1~4294967295
operating mode	ALL	default value	1
	$0.8Fh* 6091h/6092h = \frac{608Fh}{608Fh} : 0.25$	6092h : 01(上位: 6092h : 02(驱动轴)	旋转圈数)

consistent with the command, F09.14 determines the unit of speed, 0: RPM, 1: user command/s,by 6091h,6092h determines the

unit of speed

The YSK2-E servo drive offers 2 electronic gear ratio schemes, one with the default parameters inside the YSK2-E servo and the other with the 608Fh/ 6091h/ 6092h scheme enabled, both of which are switched via F09.13.

When F09.13 is set to 0, 608Fh/ 6091h/ 6092h is not enabled . In this case, F01.09 and F04.00/F04.02 are active.

When F09.13 is set to 1, 608Fh/ 6091h/ 6092h is enabled. at this point, F01.09 and F04.00/F04.02 do not work.

Allowable range for gear ratio setting: encoder resolution/10000000 \leq gear ratio \leq encoder resolution/2.5

The final e-gear ratio can be confirmed as follows: F24.70 is set to 3, F24.71 and F24.72 show the low 16 bits and high 16 bits of the numerator of the final servo gear ratio, respectively, and F24.73 and F24.74 show the low 16 bits and high 16 bits of the denominator of the final servo gear ratio, respectively

Object Description		Object entry description	
properties	happen to	properties	happen to
index	6092 _h	subindex	$00_{\rm h}$
name (of a thing)	Number of sub-indexes	Access Properties	Rw
data structure	/	PDO Mapping Type	RPDO
data type	Unsigned8	Data range	0~512
operating mode	ALL	default value	2
properties	happen to	properties	happen to
index	6092 _h	subindex	01 _h
name (of a thing)	Give in constants: molecule	Access Properties	Rw
data structure	/	PDO Mapping Type	RPDO
data type	Unsigned32	Data range	1~4294967295
operating mode	ALL	default value	131072 (17bit encoder)
properties	happen to	properties	happen to
index	6092 _h	subindex	02 _h
name (of a thing)	Give in constants: denominator	Access Properties	Rw
data structure	/	PDO Mapping Type	RPDO
data type	Unsigned32	Data range	1~4294967295
operating mode	ALL	default value	1

Object 6093h :position factor			
Object Description		Object entry description	
properties	happen to	properties	happen to
index	6093 _h	subindex	$00_{\rm h}$
name (of a thing)	Number of sub-indexes	Access Properties	Rw
data structure	/	PDO Mapping Type	RPDO

data type	Unsigned8	Data range	0~512
operating mode	ALL	default value	2
properties	happen to	properties	happen to
index	6093 _h	subindex	01 _h
name (of a thing)	Position factor: molecule	Access Properties	Rw
data structure	/	PDO Mapping Type	RPDO
data type	Unsigned32	Data range	1~4294967295
operating mode	ALL	default value	1
properties	happen to	properties	happen to
index	6092 _h	subindex	$02_{\rm h}$
name (of a thing)	Position factor: denominator	Access Properties	Rw
data structure	/	PDO Mapping Type	RPDO
data type	Unsigned32	Data range	1~4294967295
operating mode	ALL	default value	1
Reserved parameters			

Object Description		Object entry description	
properties	happen to	properties	happen to
index	6094 _h	subindex	$00_{\rm h}$
name (of a thing)	Number of sub-indexes	Access Properties	Rw
data structure	/	PDO Mapping Type	RPDO
data type	Unsigned8	Data range	0~512
operating mode	ALL	default value	2
properties	happen to	properties	happen to
index	6094 _h	subindex	01 _h
name (of a thing)	Velocity encoder factor: molecule	Access Properties	Rw
data structure	/	PDO Mapping Type	RPDO
data type	Unsigned32	Data range	1~4294967295
operating mode	ALL	default value	1
properties	happen to	properties	happen to
index	6094 _h	subindex	02 _h
name (of a thing)	Speed encoder factor: denominator	Access Properties	Rw
data structure	/	PDO Mapping Type	RPDO
data type	Unsigned32	Data range	1~4294967295
operating mode	ALL	default value	1

Object Description		Object entry description	
properties	happen to	properties	happen to
index	6095 _h	subindex	$00_{\rm h}$
name (of a thing)	Number of sub-indexes	Access Properties	Rw
data structure	/	PDO Mapping Type	RPDO
data type	Unsigned8	Data range	0~512
operating mode	ALL	default value	2
properties	happen to	properties	happen to
index	6095 _h	subindex	01 _h
name (of a thing)	Velocity factor: molecule	Access Properties	Rw
data structure	/	PDO Mapping Type	RPDO
data type	Unsigned32	Data range	1~4294967295
operating mode	ALL	default value	1
properties	happen to	properties	happen to
index	6095 _h	subindex	$02_{\rm h}$
name (of a thing)	Speed factor: denominator	Access Properties	Rw
data structure	/	PDO Mapping Type	RPDO
data type	Unsigned32	Data range	1~4294967295
operating mode	ALL	default value	1

ject 6097h :acceleration factor			
Object Description		Object entry description	
properties	happen to	properties	happen to
index	6095 _h	subindex	$00_{\rm h}$
name (of a thing)	Number of sub-indexes	Access Properties	Rw
data structure	/	PDO Mapping Type	RPDO
data type	Unsigned8	Data range	0~512
operating mode	ALL	default value	2
properties	happen to	properties	happen to
index	6095 _h	subindex	01 _h
name (of a thing)	Acceleration factor: molecular	Access Properties	Rw
data structure	/	PDO Mapping Type	RPDO
data type	Unsigned32	Data range	1~4294967295
operating mode	ALL	default value	1
properties	happen to	properties	happen to

index	6092 _h	subindex	02 _h
name (of a thing)	Acceleration factor: denominator	Access Properties	Rw
data structure	/	PDO Mapping Type	RPDO
data type	Unsigned32	Data range	1~4294967295
operating mode	ALL	default value	1
Reserved parameters	·	· · · ·	

Object 6098h :Back to	original mode		
Object D	Object Description Object entry descri		ntry description
properties	happen to	properties	happen to
index	6098 _h	subindex	$00_{\rm h}$
name (of a thing)	return to original mode	Access Properties	rw
data structure	Variable	PDO Mapping Type	RPDO
data type	Integer8	Data range	0~35
operating mode	HM	default value	0
Thirty-one return methods a	are specified based on the home	e switch signal, limit switch	signal, encoder Z signal, etc. See

specifically0 Return to home mode

ect 6099h :Back to	o original speed		
Object Description		Object entry description	
properties	happen to	properties	happen to
index	6099 _h	subindex	$00_{\rm h}$
	Number of sub-indexes	Access	Rw
name (of a thing)	Number of sub-indexes	Properties	KW
1-4		PDO Mapping	RPDO
data structure	1	Туре	RPDO
data type	Unsigned8	Data range	0~512
operating mode	HM	default value	2
properties	happen to	properties	happen to
index	6099 _h	subindex	01 _h
	Search for deceleration point signal	Access	P
name (of a thing)	speed in return to home mode	Properties	Rw
1	,	PDO Mapping	BBBO
data structure	/	Туре	RPDO
data type	Unsigned32	Data range	1~4294967295
operating mode	НМ	default value	218453
properties	happen to	properties	happen to
index	6099 _h	subindex	02 _h
	Search for home switch signal speed	Access	~
name (of a thing)	in return home mode	Properties	Rw

data structure	/	PDO Mapping Type	RPDO
data type	Unsigned32	Data range	1~4294967295
operating mode	HM	default value	21845
F09.14 allows you to set the sp	eed unit type, when 1 the speed unit is use	er command/S, when	0 it is rpm.

2 speeds during return to home mode, 6099.01h speed can be set to a higher value for fast pre-determination and 6099.02h can be set to a lower speed for precise positioning

Object 609A_h :Back to original acceleration

Object Description		Object entry description	
properties	happen to	properties	happen to
index	609A _h	subindex	$00_{\rm h}$
name (of a thing)	return to original acceleration	Access Properties	Rw
data structure	Variable	PDO Mapping Type	RPDO
data type	unsigned32	Data range	0~4294967295
operating mode	HM	default value	1310720

F09.15 allows you to set the speed unit type, when it is 1 the speed unit is user command/S, when it is 0 it is rpm.

Set acceleration and deceleration in home return to zero mode

When F09.15 = 0, the meaning is the acceleration time of the motor when accelerating from 0rpm to 1000rpm, ms

Object 60B0h : Position	Offset		
Object Description		Object entry description	
properties	happen to	properties	happen to
index	$60 \mathrm{B0}_{\mathrm{h}}$	subindex	00 _h
name (of a thing)	position offset	Access Properties	Rw
data structure	Variable	PDO Mapping Type	RPDO
data type	Integer32	Data range	-2147483648~2147483647
operating mode	CSP	default value	0
Sat the position offect in synchr	onous avala position mode some	a target position = 607 Ab + 6	OP0h

Set the position offset in synchronous cycle position mode, servo target position = 607Ah + 60B0h

set		
Object Description Object entry description		ntry description
happen to	properties	happen to
$60B1_h$	subindex	$00_{\rm h}$
speed offset	Access Properties	Rw
Variable	PDO Mapping Type	RPDO
Integer32	Data range	-2147483648~2147483647
CSV	default value	0
	ption happen to 60B1 _h speed offset Variable Integer32	ptionObject ehappen toproperties60B1hsubindexspeed offsetAccess PropertiesVariablePDO Mapping TypeInteger32Data range

Object 60B2h : Torque Offset

Object Description		Object entry description	
properties	happen to	properties	happen to
index	60B2 _h	subindex	$00_{\rm h}$
name (of a thing)	Torque Shift	Access Properties	Rw
data structure	Variable	PDO Mapping Type	RPDO
data type	Integer32	Data range	-32768~32767
operating mode	CSP/CSV/CST	default value	0

Object 60B8h :P	robe function		
	Object Description	Object e	entry description
properties	happen to	properties	happen to
index	$60B8_{h}$	subindex	$00_{\rm h}$
name (of a thing)	Probe Function	Access Properties	Rw
data structure	Variable	PDO Mapping Type	RPDO
data type	Unsigned16	Data range	0~65535
operating mode	/	default value	0

The servo internal parameter F09.27 allows you to select the probe function type, corresponding to the 60B9h probe function status word

Some of the DI signals and Z signals are too narrow, and the servo does not ensure that it can capture all rising and falling edge signals. So please note when using.

1. In the case of the same probe, try to avoid using both rising and falling edges

2. When using the Z signal, only the rising edge, not the falling edge, can be used

Bit	ins	tructions
Bit	F09.27 = 0	F09.27 = 1
	Probe 1 enable	Probe 1 enable
0	0: Does not enable the probe 1	0: Does not enable the probe 1
	1: Enabling Probe 1	1: Enabling Probe 1
	Probe 1 trigger mode	Probe 1 trigger mode
1	0: Single trigger	0: Single trigger
	1: Continuous trigger	1: Continuous trigger
	Probe 1 trigger signal selection	Probe 1 trigger signal selection
2	0: DI4 trigger	0: DI4 trigger
	1: Z-signal trigger	1: Z-signal trigger
3	retain	retain
	Probe 1 rising edge latch	Probe 1 rising edge latch
4	0: Probe 1 rising edge latch is not used	0: Probe 1 rising edge latch is not used
	1: Use probe 1 rising edge latch	1: Use probe 1 rising edge latch
	Probe 1 falling edge latch	Probe 1 falling edge latch
5	0: Probe 1 falling edge latch is not used	0: Probe 1 falling edge latch is not used
	1: Use Probe 1 falling edge latch	1: Use Probe 1 falling edge latch
6~7	retain	retain

	Probe 2 enable	Probe 2 enable
8	0: Does not enable the probe 2	0: Does not enable the probe 2
	1: Enabling Probe 2	1: Enabling Probe 2
	Probe 2 trigger mode	Probe 2 trigger mode
9	0: Single trigger	0: Single trigger
	1: Continuous trigger	1: Continuous trigger
	Probe 2 trigger signal selection	Probe 2 trigger signal selection
10	0: DI5 trigger	0: DI5 trigger
	1: Z-signal trigger	1: Z-signal trigger
11	retain	retain
	Probe 2 rising edge latch	Probe 2 rising edge latch
12	0: Probe 2 rising edge latch is not used	0: Probe 2 rising edge latch is not used
	1: Use Probe 2 rising edge latch	1: Use Probe 2 rising edge latch
	Probe 2 falling edge latch	Probe 2 falling edge latch
13	0: Probe 2 falling edge latch is not used	0: Probe 2 falling edge latch is not used
	1: Use Probe 2 falling edge latch	1: Use Probe 2 falling edge latch
14~15	retain	retain

Object 60B9h :Probe status word				
Ob	oject Description	Object e	entry description	
properties	happen to	properties	happen to	
index	60B9 _h	subindex	$00_{\rm h}$	
name (of a thing)	Probe Status Word	Access Properties	Ro	
data structure	Variable	PDO Mapping Type	TPDO	
data type	Unsigned16	Data range	0~65535	
operating mode	/	default value	0	

unction					
	instructions				
Bit	F09.27 = 0			F09.27 =0	
	Probe 1	enable		Probe 1 enabl	e
0	0: Does not er	hable the probe 1		0: Does not enable	the probe 1
	1: Enabling P	robe 1		1: Enabling Probe	l
	Probe 1 rising	edge latch		Probe 1 rising edge	latch
1	0: Probe 1 ri	sing edge latch not executed 1: 1	Probe 1	0: Probe 1 rising e	dge latch not executed 1: Probe
	rising edge lat	tch executed		rising edge latch ex	recuted
	Probe 1 fallin	g edge latch		Probe 1 falling edg	e latch
2	0: Probe 1 fal	ling edge latch not performed		0: Probe 1 falling e	dge latch not performed
	1: Probe 1 fal	ling edge latching has been execut	ed	1: Probe 1 falling e	dge latching has been executed
3~5	retain			retain	
	Probe 1 trigge	er signal selection			
6	0: DI4 trigger			retain	
	1: Z-signal tri	gger			
	Probe 1 trigge	ers DI level selection			
7	0: DI4 low lev	vel trigger		retain	
	1: DI4 high le	vel trigger			
	Probe 2 enabl	e		Probe 2 enable	
8	0: Does not er	hable the probe 2		0: Does not enable the probe 2	
	1: Enabling P	robe 2		1: Enabling Probe 2	
	Probe 2 rising	edge latch		Probe 2 rising edge	latch
9	0: Probe 2 risi	ing edge latch not performed		0: Probe 2 rising edge latch not performed	
	1: Probe 2 risi	ng edge latching has been execute	ed	1: Probe 2 rising edge latching has been executed	
	Probe 2 falling	g edge latch		Probe 2 falling edge latch	
10	0: Probe 2 fal	ling edge latch not performed		0: Probe 2 falling e	dge latch not performed
	1: Probe 2 fal	ling edge latching has been execut	ed	1: Probe 2 falling edge latching has been executed	
11~13	retain			retain	
14	Probe 2 trigge	er signal selection		retain	
17	0: DI5 trigger	1: Z signal trigger		Touin	
15	Probe 2 trigge	er DI level selection		ratain	
15	0: DI5 low lev	vel trigger 1: DI5 high level trigger	r	retain	
bject 60B	Ah :Probe 1	rising edge position feedba	ack		
	Object D	escription		Object e	entry description
prop	erties	happen to		properties	happen to
inc	lex	60BA _h		subindex	$00_{\rm h}$
name (or	f a thing)	Probe 1 rising edge position	Acc	cess Properties	Ro

Access Properties

PDO Mapping Type

Data range

default value

feedback Variable

Integer32

/

Ro

TPDO

-2147483648~2147483647

0

name (of a thing)

data structure

data type

operating mode

The servo internal parameter F09.27 allows you to select the probe status word type, corresponding to the 60B8h probe function

Record the position command when the rising edge of Probe 1 is active (command unit, 6062h)

Object Description		back Object entry description	
properties	properties happen to propertie		happen to
index	60BB _h	subindex	$00_{\rm h}$
name (of a thing)	Probe 1 falling edge position feedback	Access Properties	Ro
data structure	Variable	PDO Mapping Type	TPDO
data type	Integer32	Data range	-2147483648~2147483647
operating mode	/	default value	0

Object 60BC _h :Probe 2 rising edge position feedback			
Object Description		Object entry description	
properties	happen to	properties	happen to
index	60BC _h	subindex	$00_{\rm h}$
name (of a thing)	Probe 2 rising edge position feedback	Access Properties	Ro
data structure	Variable	PDO Mapping Type	TPDO
data type	Integer32	Data range	-2147483648~2147483647
operating mode	/	default value	0
Record the position command	when the rising edge of Probe 2 is	s active (command unit, 6062	h)

Object	60BDh	:Probe 2	2 falling	edge	position	feedback
Object			1	cuge	position	recubach

Object 60BDh :Probe 2 falling edge position feedback				
Object Description		Object entry description		
properties	happen to	properties	happen to	
index	$60 BD_h$	subindex	$00_{\rm h}$	
name (of a thing)	Probe 2 falling edge position feedback	Access Properties	Ro	
data structure	Variable	PDO Mapping Type	TPDO	
data type	Integer32	Data range	-2147483648~2147483647	
operating mode	/	default value	0	

Object 60C0h :Interpolation submodular selection				
Object D	escription	Object e	ntry description	
properties	happen to	properties	happen to	
index	60C0 _h	subindex	$00_{\rm h}$	
name (of a thing)	Interpolation submodule selection	Access Properties	Rw	

data structure	Variable	PDO Mapping Type	RPDO		
data type	Integer16	Data range	-32768~32767		
operating mode	IP	default value	0		
Interpolation curve selection in	position interpolation mode				
assign a value to	Interpolation mode				
-32768~-1	Manufacturer's definition, not yet available				
0	linear interpolation				
1~32767	retain				

Objec	Objec	t entry description		
properties	happen to	properties	happen to	
index	60C1 _h	subindex	$00_{\rm h}$	
name (of a thing)	Number of sub-indexes	Access	Rw	
name (or a thing)	Number of sub-mackes	Properties	Kw	
data structure	1	PDO Mapping	RPDO	
data structure		Туре	KPDO	
data type Unsigned8		Data range	0~512	
operating mode	IP	default value	1	
properties	happen to	properties	happen to	
index	60C1 _h	subindex	01_{h}	
		Access	P	
name (of a thing)	Interpolation displacement	Properties	Rw	
1		PDO Mapping	RPDO	
data structure	/	Туре		
data type	Integer32	Data range	-2147483648~2147483647	
operating mode	IP	default value	0	

Interpolation position mode position command, interpolation displacement is absolute displacement command, each time the synchronization cycle comes, the upper computer sends a displacement command to the slave. Unit:p/s

Object 60C2 _h :interpolation period				
Objec	Object Description		et entry description	
properties	happen to	properties	happen to	
index	6099 _h	subindex	$00_{\rm h}$	
name (of a thing)	Number of sub-indexes	Access Properties	Rw	
data structure	/	PDO Mapping Type	RPDO	
data type	Unsigned8	Data range	0~512	
operating mode	IP	default value	2	

properties	happen to	properties	happen to		
index	60C2 _h	60C2 _h subindex			
	The table is the	Access	P		
name (of a thing)	Interpolation time units	Properties	Rw		
data structure	1	PDO Mapping	RPDO		
data structure	1	Туре	RPDO		
data type	Unsigned8	Data range	0~512		
operating mode	operating mode IP default value				
Set the interpolation period in in	nterpolation position mode (unit: ms) f the interpolation cycle, which is the	actual interpolation cycle tin	ne parameter (ms)		
Set the interpolation period in in		actual interpolation cycle tin	ne parameter (ms) happen to		
Set the interpolation period in in 50C2.01h is the time constant o	f the interpolation cycle, which is the				
Set the interpolation period in in 50C2.01h is the time constant o properties index	f the interpolation cycle, which is the happen to 60C2 _h	properties	happen to 02 _h		
Set the interpolation period in in 50C2.01h is the time constant o properties	f the interpolation cycle, which is the happen to	properties subindex	happen to		
Set the interpolation period in in 50C2.01h is the time constant o properties index name (of a thing)	f the interpolation cycle, which is the happen to 60C2 _h	properties subindex Access	happen to 02 _h Rw		
Set the interpolation period in in 50C2.01h is the time constant o properties index	f the interpolation cycle, which is the happen to 60C2 _h	properties subindex Access Properties	happen to 02 _h		
Set the interpolation period in in 50C2.01h is the time constant o properties index name (of a thing)	f the interpolation cycle, which is the happen to 60C2 _h	properties subindex Access Properties PDO Mapping	happen to 02 _h Rw		

Object 60C5h :Maximum profile acceleration				
Object Description		Object entry description		
properties	happen to	properties	happen to	
index	60C5 _h	subindex	$00_{\rm h}$	
name (of a thing)	Maximum profile acceleration	Access Properties	Rw	
data structure	Variable	PDO Mapping Type	RPDO	
data type	Unsigned32	Data range	0~4294967295	
operating mode	PP/PV/HM	default value	100000000	

F09.15 allows you to set the acceleration units that

When 0: Acceleration of the displacement command acceleration segment in contour position/contour velocity mode. The meaning is to set the maximum allowable acceleration of the acceleration segment in the contour position mode, contour velocity mode, and home return to zero mode, limited to 6083h.

Meaning is the maximum acceleration in rpm/ms as the motor accelerates from 0rpm to 1000rpm

When 1: is the user command unit/S^ $\,$

Object 60C6h :Maximum profile deceleration				
Object Description		Object e	ntry description	
properties	happen to	properties	happen to	
index	60C6 _h	subindex	$00_{\rm h}$	
name (of a thing)	Maximum profile deceleration	Access Properties	Rw	

data structure	Variable	PDO Mapping Type	RPDO
data type	Unsigned32	Data range	0~4294967295
operating mode	PP/PV/HM	default value	100000000
F09.15 allows you to set the acceleration units that			

When 0: Deceleration speed of displacement command deceleration segment in contour position/contour velocity mode. The meaning is to set the maximum allowable deceleration speed of the acceleration segment in the contour position mode, contour velocity mode, and home return to zero mode, limited to 6084h.

Meaning is the maximum deceleration in rpm/ms as the motor decelerates from 1000 rpm to 0 rpm

When 1: for user command unit/S²

Object 60E0h :Forward maximum torque limit				
Object D	escription	Object er	ntry description	
properties	happen to	properties	happen to	
index	60E0 _h	subindex	$00_{\rm h}$	
name (of a thing)	Forward maximum torque limit	Access Properties	Rw	
data structure	Variable	PDO Mapping Type	RPDO	
data type	Unsigned16	Data range	0~65535	
operating mode	ALL	default value	10000	
Limits the maximum forward	Limits the maximum forward torque limit of the servo in 0.1%.			

Object 60E1 ^h :Maximum torque limit in the negative direction			
Object Description		Object entry description	
properties	happen to	properties happen to	
index	60E1h	subindex	$00_{\rm h}$
name (of a thing)	Maximum torque limit in the negative direction	Access Properties	Rw
data structure	Variable	PDO Mapping Type	RPDO
data type	Unsigned16	Data range	0~65535
operating mode	ALL	default value	10000

Object 60F2h :Positioning option code			
Object Description		Object e	entry description
properties	happen to	properties	happen to
index	60F2 _h	subindex	$00_{\rm h}$
name (of a thing)	Positioning option code	Access Properties	Rw
data structure	Variable	PDO Mapping Type	RPDO
data type	Unsigned16	Data range	0~65535
operating mode	PP/IP	default value	0
Reserved functions			

Object I	Description	Object er	ntry description
properties	happen to	properties happen to	
index	$60F4_h$	subindex	$00_{\rm h}$
name (of a thing)	User position deviation	Access Properties	Ro
data structure	Variable	PDO Mapping Type	TPDO
data type	Integer32	Data range	-2147483648~2147483647
operating mode	PP/HM/CSP	default value	0

bject 60F8h :max slippage				
Object De	escription	Object e	ntry description	
properties	happen to	properties happen to		
index	$60F8_h$	subindex	$00_{\rm h}$	
name (of a thing)	Maximum sliding	Access Properties	Ro	
data structure	Variable	PDO Mapping Type	RPDO	
data type	Integer32	Data range	-2147483648~2147483647	
operating mode	PV	default value	100000000	

Object 60FC _h :Motor	position command feedba	ck	
Object I	Description	Object entr	y description
properties	happen to	properties	happen to
index	60FC _h	subindex	$00_{\rm h}$
name (of a thing)	Motor position command feedback	Access Properties	Ro
data structure	Variable	PDO Mapping Type	TPDO
data type	Integer32	Data range	0~4294967295
operating mode	PP/HM/CSP	default value	0
Reflects real-time motor posi-	tion commands	· ·	
User position command (606	$(6093h) \times position factor (6093h) = mc$	tor position command 60FCh (er	ncoder unit)

Object 60FDh :DI input status				
Object D	Object Description		Deject entry description	
properties	happen to	properties	happen to	
index	60FD _h	subindex	00 _h	
name (of a thing)	DI input status	Access	Ro	
name (or a timig)	name (of a thing) DI input status	Properties	KU	
data structure	Variable	PDO Mapping	TPDO	
	variable	Туре	1100	
data type	Unsigned32	Data range	0~4294967295	
operating mode		ALL default value	33488899	
operating mode	ALL		(1 1111 1111 0000 0000 0000 0011)	

Display of DI input	status
Bit	meaning
0	Negative limit switch (DI function code 16 of the driver, defaults to 1 when no level is entered)
1	Positive limit switch (DI function code 15 of the drive, defaults to 1 when no level is entered)
2	Home switch (DI function code 28 of the driver, defaults to 0 when no level is entered)
3~9	Reserved (default is low, i.e., 0)
10	Z pulse (no setting required)
11	External DI input 1: Probe function 1 (DI function code 39)
12	External DI input 2: Probe function 2 (DI function code 40)
13	Emergency stop (DI function code 30)
16	Corresponds to DI1 (F06.01) terminal logic and function selection, defaults to 1 when no level is input
17	Corresponds to DI2 (F06.02) terminal logic and function selection, defaults to 1 when no level is input
18	Corresponds to DI3 (F06.03) terminal logic and function selection, defaults to 1 when no level is input
19	Corresponds to DI4 (F06.04) terminal logic and function selection, defaults to 1 when no level is input
20	Corresponds to DI5 (F06.05) terminal logic and function selection, defaults to 1 when no level is entered
21~31	Reserved (default is low, i.e., 0)

bject 60FE _h :Force D	O output		
Objec	t Description	Object e	entry description
properties	happen to	properties	happen to
index	60FE _h	subindex	$00_{\rm h}$
name (of a thing)	Number of sub-indexes	Access	Rw
data structure	1	Properties PDO Mapping Type	RPDO
data type	Unsigned8	Data range	0~512
operating mode	ALL	default value	2
properties	happen to	properties	happen to
index	60FE _h	subindex	01 _h
name (of a thing)	Forced DO output status	Access Properties	Rw
data structure	/	PDO Mapping Type	RPDO
data type	Unsigned32	Data range	0~4294967295
operating mode	ALL	default value	0
properties	happen to	properties	happen to
index	60FE _h	subindex	02 _h
name (of a thing)	bit shield	Access Properties	Rw
data structure	/	PDO Mapping Type	RPDO

data type	Unsigned32	Data range	0~4294967295				
operating mode	ALL	default value	0				
This function can force DO output, YSK2-E EtherCAT servo supports DO1~DO9							
Bit	meaning						
0	retain	retain					
1~15	retain						
16~24	Forced DO output						
1. Steps for using the me	thod: e.g. forced DO1~DO2 output fun	ction					
Enable the forced DO1~DO2 function, set 60FEh-02h=196608 (11 0000 0000 0000 0000)							
Forced output DO1~E	O2 is valid, set 60FEh-01h=196608 (1	1 0000 0000 0000 0000)					

Object 60FFh : Target Sp	oeed								
Object De	scription	Object e	ntry description						
properties	happen to	properties	happen to						
index	60FF _h	subindex	$00_{\rm h}$						
name (of a thing)	Target speed	Access Properties	ľW						
data structure	Variable	PDO Mapping Type	RPDO						
data type	Integer32	Data range	-2147483648~2147483647						
operating mode	PV/CSV	default value	0						
User speed command in set prof	User speed command in set profile speed/synchronous cycle speed mode								

ject 65	02h :Support	servo operatio	on mode		
	Object D	escription		Object entr	ry description
pro	perties	happer	n to	properties	happen to
iı	ndex	6502	2 _h	subindex	$00_{\rm h}$
name (of a thing)	Supports serve mod	1	Access Properties	го
data	structure	Varial	ble	PDO Mapping Type	TPDO
dat	a type	Unsign	ed32	Data range	0~4294967295
operat	ing mode	ALI	Ĺ	default value	1005
plays the	servo operation m	odes supported by	the drive		
Bit	meaning				
0	Profile Positio	n Mode (PP)	Support, re:	fer to0 Section	
1	speed mode		No support		
2	Profile Velocit	y Mode (PV)	support, ref	er to0 Section	
3	Profile Torque	Mode (PT)	support, ref	er to0 Section	
4	retain				
5	Back to Origin	nal Mode (HM)	support, ref	er to0 Section	
6	Interpolation (IP)	Position Mode			
7	Cyclic Synch Mode (CSP)	ronous Position	support, ref	er to0 Section	

8	Cycle Synchronous Bit Velocity Mode (CSV)	Support, refer to0 Section	
9	Cyclic Synchronous Torque Mode (CST)	Support, refer to0 Section	
10~31	retain		

11.4 Dedicated parameters for Profinet servo

Group F14 PN communication parameters

]	F14.00	Physical NIC address1	Setting range	Factory	Unit	Effective	R	elate	ed
				value		method	Ν	1ode	ls
			$0000H \sim FFFFH$	2048		Downtim	Р	S	Т
						e			
						effective			

0~65535

F14.01	Physical NIC address 2	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	M	Models	
		$0000H \sim FFFFH$	1538		Downtim	Р	S	Т
					e			
					effective			

0~65535

F14.02	Physical NIC address3	Setting range	Factory	Unit	Effective	R	Related	
			value		method	Ν	Models	
		$0000H \sim FFFFH$	0		Downtim	Р	S	Т
					e			
					effective			

 $0\sim 65535$

F14.04	The 1st and 2nd characters	Setting range	Factory	Unit	Effective	R	Related	
	of the device name		value		method	Ν	Models	
		$0000H \sim FFFFH$	22099		Downtim	Р	S	Т
					e			
					effective			

0~65535

F14.05	The 3rd and 4th characters	Setting range	Factory	Unit	Effective	R	elate	ed
	of the device name		value		method	Ν	Models	
		$0000H \sim FFFFH$	13616		Downtim	Р	S	Т
					e			

		effective		
0~65535				

F14.06	The 5th and 6th characters	Setting range	Factory	Unit	Effective	R	elate	ed
	of the device name		value		method	Ν	lode	ls
		$0000H \sim FFFFH$	12356		Downtim	Р	S	Т
					e			
					effective			

F14.07	The seventh and eighth	Setting range	Factory	Unit	Effective	R	elate	ed
	characters of the device		value		method	Ν	lode	ls
	name	$0000H \sim FFFFH$	12337		Downtim	Р	S	Т
					e			
					effective			

 $0\sim 65535$

F14.08	Equipment IPA	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	Model		ls
		$0000H \sim FFFFH$	49320		Downtim	Р	S	Т
					e			
					effective			

 $0\sim 65535$

F14.09	Equipment IPB	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	Mode		ls
		$0000H \sim FFFFH$	88		Downtim	Р	S	Т
					e			
					effective			

0~65535

F14.10	Device Network Mask A	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	Model		ls
		$0000H \sim FFFFH$	65535		Downtim	Р	S	Т
					e			
					effective			

F14.11	Device Network Mask B	Setting range	Factory	Unit	Effective		elate	
			value		method	N	lode	ls
		$0000H \sim FFFFH$	65280		Downtim	Р	S	Т
					e			
					effective			

F14.12	Network Manager A	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	Ν	lode	ls
		$0000H \sim FFFFH$	0		Downtim	Р	S	Т
					e			
					effective			

0~65535

ſ	F14.13	Network Manager B	Setting range	Factory	Unit	Effective	R	elate	ed
				value		method	Μ	lode	ls
			$0000H \sim FFFFH$	0		Downtim	Р	S	Т
						e			
						effective			

0~65535

F14.14	Data write switch	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	Ν	1ode	ls
		$0000H \sim FFFFH$	0		Downtim	Р	S	Т
					e			
					effective			

 $0\sim 65535$

F14.15	922 message monitoring	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	Ν	Model	
		0~65535	0		Display	Р	S	Т
					only			

 $0\sim 65535$

F14.16	Additional message	Setting range	Factory	Unit	Effective	R	elate	ed
	monitoring		value		method	Ν	Model	
		0~65535	0		Display	Р	S	Т
					only			

0~65535

F14.17	925 Heartbeat Alarm	Setting range	Factory	Unit	Effective	R	elate	ed
	Threshold		value		method	N	lode	ls
		0~65535	5		Effective	Р	S	Т
					immediat			
					ely			

F14.18	944 Fault message counter	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	Ν	Mode	
		0~65535	0		Display	Р	S	Т
					only			

 $0 \sim 65535$

F14.	19 947 fault number	Setting range	Factory	Unit	Effective	Relate Model		ed
			value		method	Μ	r	
		0~65535	0		Display	Р	S	Т
					only			

 $0 \sim 65535$

F14.20	Fault serial number	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	Ν	Model	
		0~65535	0		Display	Р	S	Т
					only			

 $0\sim 65535$

F14.21	952 Fault status counter	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	Ν	Model	
		0~65535	0		Display	Р	S	Т
					only			

0~65535

F14.22	979_0 Sensor head (32 bits)	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	Mode		ls
		$0 \sim 2147483647$	0		Display	Р	S	Т
					only			

F14.24	979_1 Sensor type (32 bits)	Setting range	Factory	Unit	Effective	Related Model		ed
			value		method	Μ		
		$0 \sim 2147483647$	0		Display	Model P S		Т
					only			

F14.26	979_2 Sensor resolution (32	Setting range	Factory	Unit	Effective	Related Models		ed
	bits)		value		method	Model		ls
		0~2147483647	0		Display	Р	S	Т
					only			

 $0\sim 2147483647$

F14.28	979_3 Sensor G1_XIST1	Setting range	Factory	Unit	Effective	R	elate	ed
	factor (32 bits)		value		method	Mode		ls
		0~2147483647	15		Power up	Р	S	Т
					again			

 $0\sim 2147483647$

F14.30	979_4 sensor G1_XIST2	Setting range	Factory	Unit	Effective	R	elate	ed
	factor (32 bits)		value		method	N	Mode	
		$0 \sim 2147483647$	15		Power up	Р	S	Т
					again			

 $0 \sim 2147483647$

F14.32	979_5 sensor multi-turn (32	Setting range	Factory	Unit	Effective	R	elate	ed
	bits)		value		method	Mode		ls
		0~2147483647	0		Downtim	Р	S	Т
					e			
					effective			

 $0\sim 2147483647$

F14.34	Synchronization cycle	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	Ν	Model	
		0~65535	0		Display	Р	S	Т
					only			

0~65535

F14.35	FPGA synchronization detection threshold	Setting range	Factory value	Unit	Effective method		elate Iode	
		0~65535	0		Downtim	Р	S	Т
					e			
					effective			

F14.36	Speed ramp on flag 1=not	Setting range	Factory	Unit	Effective	Rela	ited
	on 0=on		value		method	Moo	lels
		0~65535	1		Downtim	S	
					e		
					effective		

 $0 \sim 1$

F14.37	Update Now Switch	Setting range	Factory	Unit	Effective	Relate	ed
			value		method	Mode	ls
		0~65535	0		Downtim	Р	
					e		
					effective		

0~1

F14.40	Disengage To control servo	Setting range	Factory	Unit	Effective	Re	elated	d
	local acceleration time (32		value		method	M	odels	s
	bits)	$0 \sim 200000$	10		Effective		S	
					immediat			
					ely			

 $0\sim 2147483647$

F14.42	Disengage To control servo	Setting range	Factory	Unit	Effective	Relate	ed
	local deceleration time (32		value		method	Mode	ls
	bits)	$0 \sim 200000$	10		Effective	S	
					immediat		
					ely		

F14.44	Deceleration time in speed	Setting range	Factory	Unit	Effective	R	elate	d
	mode (acceleration time in		value		method	Μ	Iode	s
	units of 0-1000RPM:	$0 \sim 200000$	0		Downtim		S	
	ms)(32 bits)				e			

		effective		
0~200000				

F14.46	bit10 Hysteresis judgment	Setting range	Factory	Unit	Effective	Re	elate	d
	value (RPM)		value		method	М	[odel	ls
		0~3000	300	0.1	Downtim		S	
					e			
					effective			

F14.47	N4 speed error range (RPM)	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	Ν	lode	ls
		0~65535	5		Downtim	Р	S	Т
					e			
					effective			

 $0\sim 65535$

Γ	F14.48	Speed error range time (ms)	Setting range	Factory	Unit	Effective	R	elate	ed
				value		method	Ν	1ode	ls
			0~65535	5		Downtim	Р	S	Т
						e			
						effective			

 $1 \sim 65535$

F14.49	ARM and 200P dropout	Setting range	Factory	Unit	Effective	R	elate	ed
	detection function control		value		method	Ν	lode	ls
	switch	0 ~ 1	0		Downtim	Р	S	Т
					e			
					effective			

F14.50	Whether the	Setting range	Factory	Unit	Effective	R	elate	ed
	synchronization period is a		value		method	Ν	1ode	ls
	current loop multiplier	0 ~ 1	0		Downtim	Р	S	Т
	detection switch				e			
					effective			

F14.51	Test variables test IRT mode	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	M	lode	ls
		$0 \sim 2$	0		Downtim	Р	S	Т
					e			
					effective			

Group F15 PN basic positioner settings

F15.00	Maximum speed (32 bits)	Setting range	Factory	Unit	Effective	Relat	ed
			value		method	Mode	els
		1 to 80000000	50000000	1LU/min	Downtim	Р	
					e		
					effective		

1 to 8000000

F15.02	Maximum acceleration (32	Setting range	Factory	Unit	Effective	Rela	ited
	bits)		value		method	Mod	lels
		1 to 20000000	5,000,000	1LU/min	Downtim	Р	
				/s	e		
					effective		

1 to 20000000

F15.04	Maximum deceleration (32	Setting range	Factory	Unit	Effective	Rel	ated
	bits)		value		method	Мо	dels
		1 to 20000000	5,000,000	1LU/min	Downtim	Р	
				/s	e		
					effective		

1 to 20000000

F15.06	Maximum ramp speed (32	Setting range	Factory	Unit	Effective	R	elate	ed
	bits)		value		method	M	lode	ls
		1 to 20000000	5,000,000	1LU/min	Downtim	Р		
				/s	e			
					effective			

1 to 20000000

F15.08	Position Deviation Excess	Setting range	Factory	Unit	Effective	Relat	ed
	Threshold (32 bits)		value		method	Mode	els
		0~2147483647	40000		Downtim	Р	
					e		
					effective		

F15.10 Po	osition reach threshold (32	Setting range	Factory	Unit	Effective	Related
-----------	-----------------------------	---------------	---------	------	-----------	---------

bits)		value	method	Mo	odels	
	$0 \sim 2147483647$	100	 Downtim	Р		
			e			
			effective			

F15.12	Location arrival window (32	Setting range	Factory	Unit	Effective	Re	lated	d
	bits)		value		method	Mo	odels	s
		0 ~ 100000	0		Downtim	Р		
					e			
					effective			

 $0 \sim 100000 ms$

F15.14	JOG Speed 1 (32-bit)	Setting range	Factory	Unit	Effective	Re	elate	ed
			value		method	Μ	ode	ls
		-40000000 ~ 40000000	-300000	1LU/min	Effective	Р	S	
					immediat			
					ely			

 $\textbf{-40000000} \sim 40000000$

F15.16	JOG Speed 2 (32-bit)	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	Ν	lode	ls
		-40000000 ~ 40000000	300000	1LU/min	Effective	Р	S	
					immediat			
					ely			

 $-40000000 \sim 40000000$

F15.18	JOG maximum acceleration	Setting range	Factory	Unit	Effective	R	Related Models P S	
	(32 bits)		value		method	Ν	lode	ls
		$1 \sim 1073741824$	100000	1LU/min	Effective	Р	S	
				/s	immediat			
					ely			

F15.20	JOG maximum deceleration	Setting range	Factory	Unit	Effective	R	elate	ed
	(32 bits)		value		method	Ν	lode	ls
		$1 \sim 1073741824$	100000	1LU/min	Effective	Р	S	
				/s	immediat			
					ely			

F	15.22	Origin regression type	Setting range	Factory	Unit	Effective	Re	elate	d
				value		method	Μ	[ode]	ls
			0~35	1		Effective	Р		
						immediat			
						ely			

0 to 34

F15.23	Origin return high-speed	Setting range	Factory	Unit	Effective	R	elate	ed
	speed (32-bit)		value		method	N	lode	ls
		$0 \sim 40000000$	5,000,000	1LU/min	Effective	Р		
					immediat			
					ely			

 $0 \sim 40000000$

F15.25	Home return low speed (32	Setting range	Factory	Unit	Effective	R	elate	ed
	bit)		value		method	N	lode	ls
		$0 \sim 40000000$	30,000	1LU/min	Effective	Р		
					immediat			
					ely			

 $0\sim 40000000$

F15.27	Home return acceleration	Setting range	Factory	Unit	Effective	Relat	ted
	and deceleration time (32		value		method	Mod	els
	bits)	$0 \sim 200000000$	100000	1LU/min	Effective	Р	
				/s	immediat		
					ely		

1 to 20000000

F15.29	Home Return Relative	Setting range	Factory	Unit	Effective	R	elate	ed
	Offset (32 bits)		value		method	Μ	lode	ls
		-1073741824 ~	0		Effective	Р		
		1073741824			immediat			
					ely			

 $\textbf{-1073741824} \sim 1073741824$

F15.31 A	Absolute offset of origin	Setting range	Factory	Unit	Effective	Related
----------	---------------------------	---------------	---------	------	-----------	---------

regression (32 bits)		value	method	Mode		S
	-1073741824 ~	0	 Effective	Р		
	1073741824		immediat			
			ely			

 $-1073741824 \sim 1073741824$

F15.33	Reference coordinate value	Setting range	Factory	Unit	Effective	R	elate	ed
	(32 bits)		value		method	Μ	lode	ls
		-1073741824 ~	0		Effective	Р		
		1073741824			immediat			
					ely			

 $-1073741824 \sim 1073741824$

F15.35	Home return timeout (32	Setting range	Factory	Unit	Effective	R	elate	ed
	bits)		value		method	M	lode	ls
		0~2147483647	60,000	1ms	Effective	Р		
					immediat			
					ely			

 $0\sim2147483647ms$

F15.37	Soft limit effective method	Setting range	Factory	Unit	Effective	Re	lated	Ĺ
			value		method	Mo	odels	,
		0 to 3	0		Effective	Р		
					immediat			
					ely			

0 to 3

F15.38	Soft limit positive limit	Setting range	Factory	Unit	Effective	Rela	ted
	value (32 bits)		value		method	Mod	els
		-2147483648 ~	21474836		Effective	Р	
		2147483647	47		immediat		
					ely		

 $-1073741824 \sim 1073741824$

F15.40	Soft limit negative limit value (32 bits)	Setting range	Factory value	Unit	Effective method		elate odel	
		2147492649				D	oue	
		-2147483648 ~	-		Effective	Р		
		2147483647	21474836		immediat			
			48		ely			

$-1073741824 \sim 1073741824$

F15.42	Electronic gear ratio	Setting range	Factory	Unit	Effective	Relat	ed
	molecule (32 bits)		value		method	Mode	els
		$1 \sim 1073741824$	1		Effective	Р	
					immediat		
					ely		

 $1 \sim 1073741824$

F15.44	Electronic gear score	Setting range	Factory	Unit	Effective	Rela	ted
	denominator (32 bits)		value		method	Mod	els
		1~1073741824	1		Effective	Р	
					immediat		
					ely		

 $1 \sim 1073741824$

F15.46	s111 message send content	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	Μ	lode	ls
		0 to 3	0		Downtim	Р		
					e			
					effective			

0 to 3

F15.47	s111 message upload	Setting range	Factory	Unit	Effective	R	elate	ed
	content		value		method	М	[ode]	ls
		0 to 3	0		Downtim	Р		
					e			
					effective			

0 to 3

F15.48	Low upper limit of modal	Setting range	Factory	Unit	Effective	Rela	ted
	axis pulse (32 bits)		value		method	Mod	els
		$0 \sim 1073741824$	36000		Downtim	Р	
					e		
					effective		

F15.50	Upper limit of modal axis	Setting range	Factory	Unit	Effective	Related	
--------	---------------------------	---------------	---------	------	-----------	---------	--

pulse height (32 bits)		value	method	Μ	[ode	ls
	$0 \sim 1073741824$	0	 Downtim	Р		
			e			
			effective			

F15.52	Modal axis on switch	Setting range	Factory	Unit	Effective	Rela	ated
			value		method	Moo	lels
		0 ~ 1	0		Downtim	Р	
					e		
					effective		

 $0 \sim 1$

F15.53	Non-cyclic data saving	Setting range	Factory	Unit	Effective	Rel	ated
	switch		value		method	Мо	dels
		0 ~ 1	1		Downtim	Р	
					e		
					effective		

0~1

F15.54	Mobile Signal Output	Setting range	Factory	Unit	Effective	Rela	ted
	Threshold		value		method	Mod	els
		0~6000	3		Effective	Р	
					immediat		
					ely		

F15.55	Motor 1 turn corresponds to	Setting range	Factory	Unit	Effective	Rel	ateo	d
	the number of LU (32 bits)		value		method	Mo	del	s
		0~1073741824	10000		Effective	Р		
					immediat			
					ely			

Group F16 PN commissioning parameters

F16.00	Receiving word PZD1	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	Ν	lode	ls
		$0000H \sim FFFFH$	0		Display	Р	S	Т
					only			

0~65535

F16.01	Receiving word PZD2	Setting range	Factory	Unit	Effective	Re	elate	ed
			value		method	М	ode	ls
		$0000H \sim FFFFH$	0		Display	Р	S	Т
					only			

0~65535

]	F16.02	Receiving word PZD3	Setting range	Factory	Unit	Effective	R	elate	ed
				value		method	Ν	Iode	ls
			$0000H \sim FFFFH$	0		Display	Р	S	Т
						only			

0~65535

F16.03	Receiving word PZD4	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	N	lode	ls
		$0000H \sim FFFFH$	0		Display	Р	S	Т
					only			

 $0\sim 65535$

F16.04	Receiving word PZD5	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	Ν	lode	ls
		$0000H \sim FFFFH$	0		Display	Р	S	Т
					only			

 $0\sim 65535$

F16.05	Receiving word PZD6	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	N	lode	ls
		$0000H \sim FFFFH$	0		Display	Р	S	Т
					only			

F16.06	Receiving word PZD7	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	М	[ode	ls
		$0000 H \sim FFFFH$	0		Display	Р	S	Т
					only			

F16.07	Receiving word PZD8	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	Ν	lode	ls
		$0000H \sim FFFFH$	0		Display	Р	S	Т
					only			

 $0\sim 65535$

F16.0	8 Receiving word PZD9	Setting range	Factory	Unit	Effective	Re	elate	ed :
			value		method	M	ode	ls
		$0000H \sim FFFFH$	0		Display	Р	S	Т
					only			

0~65535

F16.09	Receiving word PZD10	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	N	lode	ls
		$0000H \sim FFFFH$	0		Display	Р	S	Т
					only			

0~65535

F16.10	Receiving word PZD11	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	Ν	1ode	ls
		$0000 H \sim FFFFH$	0		Display	Р	S	Т
					only			

0~65535

F16.	1 Receiving word PZD12	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	Ν	lode	ls
		$0000H \sim FFFFH$	0		Display	Р	S	Т
					only			

F16.16 Send word PZD1	Setting range	Factory	Unit	Effective	Related
-----------------------	---------------	---------	------	-----------	---------

	value	method	N	lode	ls
$0000H \sim FFFFH$	0	 Display	Р	S	Т
		only			

0~65535

F16.17	Send word PZD2	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	Ν	lode	ls
		$0000 H \sim FFFFH$	0		Display	Р	S	Т
					only			

 $0\sim 65535$

F16.18	Send word PZD3	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	Ν	lode	ls
		$0000H \sim FFFFH$	0		Display	Р	S	Т
					only			

 $0 \sim 65535$

F16.19	Send word PZD4	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	Ν	lode	ls
		$0000H \sim FFFFH$	0		Display	Р	S	Т
					only			

0~65535

F16.20	Send word PZD5	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	Ν	1ode	ls
		$0000H \sim FFFFH$	0		Display	Р	S	Т
					only			

 $0\sim 65535$

F16.21	Send word PZD6	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	Ν	lode	ls
		$0000H \sim FFFFH$	0		Display	Р	S	Т
					only			

F16.22	Send word PZD7	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	Ν	1ode	ls
		$0000H \sim FFFFH$	0		Display	Р	S	Т

	only	
--	------	--

F16.23	Send word PZD8	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	Ν	1ode	ls
		$0000H \sim FFFFH$	0		Display	Р	S	Т
					only			

0~65535

F16.24	Send word PZD9	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	N	lode	ls
		$0000 H \sim FFFFH$	0		Display	Р	S	Т
					only			

0~65535

F16.25	Send word PZD10	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	Ν	lode	ls
		$0000H \sim FFFFH$	0		Display	Р	S	Т
					only			

 $0\sim 65535$

F16.26	Send word PZD11	Setting range	Factory	Unit	Effective	R	elate	ed
			value		method	Ν	lode	ls
		$0000H \sim FFFFH$	0		Display	Р	S	Т
					only			

 $0\sim 65535$

F16.27	Send word PZD12	Setting range	Factory	Unit	Effective	Related		
			value		method	Models		
		$0000H \sim FFFFH$	0		Display	Р	S	Т
					only			

11.5 Digital Input (DI) Function Definition Table

setpoint	symbolic	name (of a thing)	instructions		
1	S_ON	Servo Enable	Invalid - Servo motor enable disable		
			Valid - Servo motor power-up enable		
2	ERR_RST	Alarm reset	According to the alarm type, the servo is able to continue to		
			work after some alarms are reset. This function is along valid		
			level, when set terminal is level valid, also only valid when		
			along change is detected.		
3	MODE_SE	Mode switching	Switching between speed, position and torque according to		
	L	selection	the selected control mode $(3, 4, 5)$		
4	PERR_CLR	Deviation clearance	Invalid - no action		
			Effective - Clears the pulse deviation.		
5	PSEC_EN	Internal multi-segment	Invalid - ignore internal multi-segment instructions.		
		position enable signal	Effective - start internal multi-segment		
8	MI_SEL1	Switching 16-segment	Selection of 16 position or speed commands for execution via		
		operation commands	DI terminal		
9	MI_SEL2	Switching 16 run			
		commands			
10	MI_SEL3	Switching 16 run			
		commands			
11	MI_SEL4	Switching 16 run			
		commands			
13	ZERO_SPD	Zero speed clamp	Valid - Enables the zero fix function.		
		function	Invalid - Zero fix function is disabled.		
14	INHIBIT	Pulse Prohibition	valid - command pulse input is disabled.		
			Invalid - Allow command pulse input.		
15	P_OT	forward overtravel	When the mechanical movement exceeds the moveable range		
			limit switch operates and enters the overtravel protection		
			function.		
			Valid - forward overtravel, forward drive disabled		
			Invalid - normal range, positive drive allowed		
16	N_OT	negative overtravel	When the mechanical movement exceeds the moveable range		
			limit switch operates and enters the overtravel protection		
			function.		
			Valid - negative overtravel, positive drive disabled		
			Invalid - normal range, positive drive allowed		
17	P_CL	Positive external	Effective - External torque limiting is effective		
		torque limiting	Invalid - external torque limiting is invalid		
18	N_CL	Negative external	Effective - External torque limiting is effective		
10		torque limiting	Invalid - external torque limiting is invalid		
19	P_JOG	forward-pointing	Valid - input according to the given command		
• •			Invalid - Run command stops input		
20	N_JOG	Negative point	Valid - reverse input as per the given command		
		movement	Invalid - Run command stops input		
21	GEAR_SE	Electronic Gear	GEAR_SEL1 invalid - electronic gear ratio 1		

setpoint	symbolic	name (of a thing)	instructions
	L1	Selection	GEAR SEL1 valid - electronic gear ratio 2
23	POS DIR	Position command	Invalid - no commutation.
		reverse	Effective - Commutation
24	SPD_DIR	Speed command	Invalid - no commutation
		reverse	Effective - Commutation
25	TOQ_DIR	Torque command	Invalid - no commutation; Valid - commutation
		reverse	
26	XINT_ULK	Unlock interrupt	Invalid - no effect ;
		positioning	Valid - When parameter F04.52 is set to 2 or 4, the position
			instruction interrupt execution lock state is released
27	XINT_OFF	Prohibit execution of	Invalid - no effect.
		interrupt positioning	Valid - When parameter F04.52 is not set to 0, this DI can be
			used to disable the interrupt positioning function at any time
			after interrupt execution is enabled.
28	HOME_IN	Home position signal	Can be used as home position signal or deceleration position
			signal
29	STHOME	Initiate origin return	Begin execution of origin return
		process	
30	ESTOP	emergency stop	Invalid - no effect
21			Valid - go to emergency stop
31	STEP	Position stepping	Valid - instructions for executing the amount of the instruction
		enable	step.
22	EODCE E	E	Invalid-command is zero, position state Invalid - no effect
32	FORCE_E RR	Forced failsafe input	Valid - go to fault state
34		Interment negitioning	Invalid - go to fault state
54	XINT_TRI G	Interrupt positioning execution trigger	Valid - When the value of parameter F04.52 is not 0, the
	U	signal	position instruction is triggered to interrupt the execution
		Signal	process
35	INPOS HA	Pause to generate	null and void: no effect.
50	LT	internal position	Effective: deceleration and suspension of execution of
		commands	internal multi-segment position and interrupt positioning
36	AI_OFF	Disable analog input	null and void: no effect.
	_		Valid: Analog input disabled
37	ENC_SEN	SEN enables absolute	Invalid - no effect ;
		position data	Valid - OAOBOZ sends absolute position data, servo cannot
		transmission	be enabled at this time
38	Z_DETEC	Encoder Z-pulse	
		detection input	
39	EX_LATC	External latch input 1	
	H1		
40	EX_LATC	External latch input 2	

setpoint	symbolic	name (of a thing)	instructions
	H2		
41	SIGN	Pulse input direction	
42	PLUS	Number of pulse inputs	

11.6 Digital Output (DO) Function Definition Table

setpoint	symbolic	name (of a thing)	instructions
1	RDY	Servo ready.	The servo state is ready to receive the S_ON valid signal.
			Effective - Servo ready
			Invalid - Servo not ready
2	ERR	Fault output signal	Status valid when fault is detected
3	WARN	Warning output signal	Warning output signal active (on)
4	COIN	Positioning complete	For position control, the position deviation pulse is valid
			when it reaches within the positioning completion range
			F06.50
5	TGON	Motor rotation output	When the speed of the servo motor is higher than the speed
		signal	threshold
			Valid - Motor rotation signal is valid
			Invalid - Motor rotation signal is invalid
6	V_ZERO	zero-speed signal	The signal that is output when the servo motor stops rotating.
			Effective motor speed is zero
			Invalid motor speed is not zero
7	V_CMP	speed consistency	For speed control, the absolute value of the difference
			between the servo motor speed and the speed command is less
			than the F06.46 Speed Consistency Signal Width is valid.
8	NEAR	Positioning proximity	For position control, the position deviation pulse is valid
		signals	when it reaches the set value of the positioning proximity
			signal amplitude F06.52
9	T_LT	Torque limiting signal	Confirmation signal for torque limiting
			Effective - Motor torque limited
			Invalid - motor torque is not limited
10	V_LT	Rotational speed limit	Acknowledgement signal for speed limitation during torque
		signal	
			Effective - motor speed limited
11			Ineffective - motor speed not limited
11	T_ARR	Torque reaches	The output signal is valid when the torque command value is $1000000000000000000000000000000000000$
		specified range	detected to reach the value set in F06.57, the permissible variation maps is determined by $E06.58$
12	V ADD	Speed feedback	variation range is determined by F06.58
12	V_ARR	1	The output signal is valid when the speed feedback value is detected at the value set in F06.47, allowing a variation range
		1	of +/- F06.48
14	XINT DO	range Interrupt positioning	Output when the position instruction interrupt execution is
14	NE	complete	complete
17	HOME	Return of origin	
1/		completed	
		completed	

setpoint	symbolic	name (of a thing)	instructions
18	XINT_WO	Interrupt to locate	Flag interrupt positioning is executing
	RK	ongoing execution	
19	PCOM1	Comparison of trigger	Trigger signal output when position 1 reaches the
		signals in position 1	corresponding range
20	PCOM2	Comparison of trigger	Trigger signal output when position 2 reaches the
		signals in position 2	corresponding range
21	PCOM3	Comparison of trigger	Trigger signal output when position 3 reaches the
		signals at position 3	corresponding range
22	PCOM4	Comparison of trigger	Trigger signal output when position 4 reaches the
		signals in position 4	corresponding range
23	HALTING	Halting valid	Servo is on halt status.

Chapter 12: Faults and Warnings

12.1 List of fault and warning codes

Alarm Codes	name (of a thing) stoppi	stopping	Can it be	Alarm
Alarin Coues	name (or a timig)	method	reset?	records
E.01	Model setting fault	immediate	non-resettable	No records
E.01		stop	non-resettable	kept
E.02	Product Matching Failure	immediate	non-resettable	No records
E.02		stop	non-resettable	kept
E.03	System parameter anomaly	immediate	non-resettable	No records
1.00	system parameter anomaly s	stop	non resettable	kept
E.04	Fault in parameter storage	immediate	non-resettable	No records
		stop		kept
E.05	FPGA Failure	immediate	non-resettable	No records
		stop		kept
E.06	Program anomalies	immediate	non-resettable	No records
		stop		kept
E.07	Encoder initialization failed stop	immediate	non-resettable	Storage
		-		records
E.08	Short circuit to ground detection fault immediate stop	immediate	non-resettable	Storage
		-		records
E.09	Overcurrent fault 1	immediate	non-resettable	Storage
		stop		records
E.10	Overcurrent fault 2	configurable	resettable	Storage
				records
E.11	Current sampling faults	immediate	non-resettable	Storage
	- mont camping range	stop		records
E.12	Hardware initialization failure	immediate	non-resettable	Storage
		stop		records
E.13	Program Run Error	immediate	non-resettable	Storage
		stop		records
E.14	Abnormal absolute encoder turns	immediate	resettable	Storage
2.17		stop	105011010	records
	Pulse encoder disconnection fault, or			Storage
E.15	absolute encoder communication	configurable	resettable	records
	abnormality			1000145
E.16	Encoder data anomaly	configurable	resettable	Storage
12.10	Encoder data anomary	configuratio		records

The fault codes are described in the following table.

		stopping	Can it be	Alarm
Alarm Codes	name (of a thing)	method	reset?	records
E.17	Abnormally low encoder battery voltage	immediate	resettable	Storage
		stop		records
E.18	Excessive speed deviation	configurable	resettable	Storage
				records
E.19	Torque saturation timeout	configurable	resettable	Storage records
				Storage
E.20	Control of electrical undervoltage	configurable	resettable	records
				Storage
E.21	flying car trouble	configurable	resettable	records
		immediate		Storage
E.22	overvoltage	stop	resettable	records
		-		Not stored by
E.23	undervoltage	deceleration	resettable	default,
		stop		optional
E 24		immediate		Storage
E.24	AI sampling voltage is too large	stop	resettable	records
E.25	overspeed	immediate		Storage
E.25		stop	resettable	records
E.26	Electrical angle recognition failure	immediate	resettable	No records
E.20		stop		kept
E.27	Inertia recognition failure fault	immediate	resettable	No records
1.27		stop		kept
E.28	DI terminal parameter setting fault	immediate	resettable	No records
		stop		kept
E.29	DO terminal parameter setting fault	immediate	resettable	No records
	1 0	stop		kept
E.30	Invalid servo ON command fault	configurable	resettable	No records
		_		kept
E.31	Excessive mixing deviation fault	immediate	resettable	Storage
		stop		records
E.32	Crossover pulse output overspeed	configurable	resettable	Storage records
				Storage
E.33	Excessive position deviation fault	configurable	resettable	records
				Storage
E.34	Main circuit input is out of phase	configurable	resettable	records
				Storage
E.35	Driver output out of phase	configurable	resettable	records
			resettable	Storage
E.37	Motor overload	configurable		records
E.38	Electronic gear setting error	configurable	resettable	No records

Alarm Codes	name (of a thing)	stopping	Can it be	Alarm
	nume (or a timig)	method	reset?	records
				kept
E 20	Radiator overheating	C 11		Storage
E.39		configurable	resettable	records
E 40		C 11		Storage
E.40	Pulse input abnormality	configurable	resettable	records
5.44	Excessive deviation from fully closed-loop	<i>σ</i> 11		Storage
E.41	position	configurable	resettable	records
5.44		deceleration		Storage
E.44	User-forced failure	stop	resettable	records
		~		Storage
E.45	Absolute position reset fault	configurable	resettable	records
				Not stored by
E.46	Mains power failure	deceleration	resettable	default,
	1	stop		optional
		deceleration		Storage
E.47	DB brake overload	stop	resettable	records
	First start after writing in a custom version	immediate		No records
E.50	of the program	stop	non-resettable	
	Offline JOG and inertia recognition are not	stop	e resettable	kept
E.55	allowed when the bus is started or the PLC	configurable		Storage
E.33		configurable	resettable	records
	is not OFF			<u> </u>
	Device name and IP and MAC are not	~ 11		Storage
E.56	allowed to be written while the bus is	configurable	resettable	records
	running			
E.57	MCU and 200P parallel port error	deceleration	n resettable	Storage
	1 1	stop		records
E.58	External overspeed	immediate	resettable	Storage
2.00		stop		records
E.59	Excessive mixing deviation	configurable	resettable	Storage
1.07		configuration	resettable	records
E.60	Profinet IRT configuration cycles and	configurable	resettable	Storage
E.00	servo cycles are not divisible	configuration	resettable	records
E.61	MAC address loss correction exists	aanfigurahla	resettable	Storage
E.01	MAC address loss correction exists	configurable		records
E ()	Symphronization failure	000 fi 2000-1-1-	magattabl-	Storage
E.62	Synchronization failure	configurable	resettable	records
Б ()		~ i		Storage
E.63	CANOpen track buffer underflow	configurable	resettable	records
				Storage
E.64	CANOpen track buffer overflow	configurable	resettable	records
	DSC function is not allowed in non-IRT	1		Storage
E.65		configurable	resettable	
	mode			records

Alarm Codes	name (of a thing)	stopping	Can it be	Alarm
Alar III Coucs		method	reset?	records
E.66	EtherCAT synchronization failure	configurable	resettable	Storage records
E.67	Synchronization clock error	configurable	resettable	Storage records
E.68	command exception	configurable	resettable	Storage
E.69	Pattern error	configurable	resettable	Storage records
E.70	Slave initialization failed	configurable	non-resettable	Storage records
E.71	Program version exception	immediate stop	non-resettable	No records kept
E.72	Torque exceeds set value	configurable	resettable	Storage records
A.80	Abnormal STO wiring during servo enable or in servo enable	non-stop	resettable	No records kept
A.81	Undervoltage warning	non-stop	resettable	No records kept
A.82	Motor overload warning	non-stop	resettable	Storage records
A.84	Parameter changes requiring reapplication of power	non-stop	resettable	No records kept
A.85	Servo not ready	non-stop	resettable	No records kept
A.86	Write E2PROM frequent operation warning	non-stop	resettable	No records kept
A.87	Positive overtravel warning alert	non-stop	resettable	No records kept
A.88	Negative overtravel warning alert	non-stop	resettable	No records kept
A.89	Position command over speed	non-stop	resettable	No records kept
A.90	Absolute encoder angle initialization warning	non-stop	resettable	Storage records
A.91	Energy consumption brake overload	non-stop	resettable	Storage records
A.92	External regenerative drain resistance too small	non-stop	resettable	No records kept
A.93	emergency stop	deceleration stop	resettable	No records kept
A.94	Origin return error	deceleration stop	resettable	No records kept

Alarm Codes	name (of a thing)	stopping method	Can it be reset?	Alarm records
A.95	Encoder battery undervoltage	non-stop	resettable	No records kept
A.96	AD sampling not completed	non-stop	resettable	No records kept
A.97	Limit alignment	non-stop	resettable	No records kept

Early Warning Code	name (of a thing)	Can it be reset?	Alarm records
A.80	Abnormal STO wiring during servo enable or in servo enable	resettable	No records kept
A.81	Undervoltage warning	resettable	No records kept
A.82	Motor overload warning	resettable	Storage records
A.84	Parameter changes requiring reapplication of power	resettable	No records kept
A.85	Servo not ready	resettable	No records kept
A.86	Write E2PROM frequent operation warning	resettable	No records kept
A.87	Positive overtravel warning alert	resettable	No records kept
A.88	Negative overtravel warning alert	resettable	No records kept
A.89	Position command over speed	resettable	No records kept
A.90	Absolute encoder angle initialization warning	resettable	Storage records
A.91	Energy consumption brake overload	resettable	Storage records
A.92	External brake drain resistor too small	resettable	No records kept
A.93	emergency stop	resettable	No records kept
A.94	Origin return error	resettable	No records kept
A.95	Encoder battery undervoltage	resettable	No records kept
A.96	AD sampling not completed	resettable	No records kept
A.97	Limit alignment	resettable	No records kept
A.98	Abnormal low-speed pulse DI configuration	resettable	No records kept

The early warning codes are described in the following table.

Fault codes and names	reason	Treatment measures
E.01. Model setting fault	 the encoder connection cable is damaged or loosely connected. Invalid motor model or drive model 	 check whether the encoder wiring is normal and ensure that it is firmly wired. Replace with a valid motor model or drive model
E.02. Product Matching Failure	 the encoder connection cable is damaged or loosely connected. Use of unsupported external interfaces such as encoders. Mismatch between motor model and drive model power. Non-existent product model codes 	 check whether the encoder wiring is good. Replacement of mismatched products. Select the correct encoder type or replace the drive with another type; for example, the power level of the set motor model is greater than the power level of the drive, or the power level of the set motor model is more than two levels different than the power level of the drive will report this fault
E.03. System parameter anomaly	 Control of transient drops in supply voltage. After upgrading the driver software, the range of some parameters has been changed, resulting in the previously stored parameters exceeding the upper and lower limits 	 ensure that the supply voltage is within specification and restore the factory parameters (F23.06 set to 1). If you have upgraded the software, please restore the factory parameters first
E.04. Fault in parameter storage	 Too frequent reading and writing of parameters. Failure of parameter storage equipment. Unstable control power supply. Driver failure 	1 The upper unit modifies parameters and writes to the EEPROM too frequently by communication. Check the communication program for instructions to modify parameters and write to the EEPROM too

Fault codes and names	reason	Treatment measures
		frequently. 2 Check the control electrical wiring while ensuring that the control supply voltage is within specification
E.05. FPGA Failure	Software version anomaly	Check if the software version matches
E.06. Program anomalies	 Abnormal system parameters. Driver internal failure 	EEPROM failure, restore factory parameters (F23.06 set to 1), re- power
E.07. Encoder initialization failed	Abnormal encoder signal detected at power-up	Check encoder wiring, or replace encoder cable
E.08. Short circuit to ground detection fault	 incorrect UVW wiring. Damage to the motor. Driver failure 	 detect whether the cable UVW is shorted to ground, if so replace the cable. test the motor line resistance and resistance to ground is normal, such as abnormal replacement of the motor
E.09. Overcurrent fault 1	 command input and turn-on servo synchronization or command input too fast. the external braking resistor is too small or short-circuited. Poor motor cable contact. Grounding of motor cables. short-circuiting of the motor UVW cable. Burned out motors. Software detects power transistor overcurrent 	 Check that the encoder and power wires are wired correctly between the motor drives. measure whether the resistance value of the braking resistor meets the specification, and reselect a reasonable braking resistor according to the manual. Check the cable connectors for looseness and ensure that they are tight. check the insulation resistance between the motor UVW line and the motor ground wire Replace the motor if the insulation is poor. check whether the motor cable connection UVW is short-circuited and connect the motor cable correctly.

Fault codes and	reason	Treatment measures
names E.10. Overcurrent fault 2	 command input and turn-on servo synchronization or command input too fast. the external braking resistor is too small or short-circuited. Poor motor cable contact. Grounding of motor cables. short-circuiting of the motor UVW cable. Burned out motors. Software detects power transistor overcurrent 	 6, check whether the resistance value between the cables of the motor is the same, different then replace the motor. 7、 Reduce the load. Upgrade drive, motor capacity, extend acceleration and deceleration time 1 Check that the encoder and power wires are wired correctly between the motor drives. 2. measure whether the resistance value of the braking resistor meets the specification, and reselect a reasonable braking resistor according to the manual. 3. Check the cable connectors for looseness and ensure that they are tight. 4. check the insulation resistance between the motor UVW line and the motor ground wire Replace the motor if the insulation is poor. 5. check whether the resistance value between the cables of the motor is the same, different then replace the motor. 7、 Reduce the load. Upgrade drive,
		motor capacity, extend acceleration and deceleration time
E.11. Current sampling faults	Drive internal current sampling fault	Contact the manufacturer or distributor to replace the servo drive
E.12. Hardware initialization failure	1 Servo Drive hardware initialization detection abnormal	1. Check the external environment, temperature, humidity, and electromagnetic environment is

Fault codes and	reason	Treatment measures
names		
		normal 2. Contact the manufacturer or distributor to replace the drive
E.13. Program Run Error	Drive internal abnormality, or firmware update abnormality	 Contact the manufacturer or distributor to confirm that the drive version and firmware version match; Replace the drive with a new one
E.14. Abnormal absolute encoder turns	 Incremental encoders. 1. abnormal Z signal reception, poor Z signal line wiring or encoder failure resulting in loss of Z signal. Absolute encoders. 2. Insufficient battery power for absolute encoders. 3. parameter F08.24 = 1 (set to absolute system), no encoder initialization operation is performed. 4. During drive power failure, the encoder motor end wiring is unplugged 	 manually rotate the motor shaft, if the fault is still reported, check the encoder wiring, rewire or replace the cable, or replace the encoder and reapply power. need to determine whether the battery is normal, if the battery voltage is insufficient, please replace the battery. initialize F23.06 = 7 turns and reapply power. Turn F23.06 = 7 initialize turns and reapply power
E.15. Pulse encoder disconnection fault, or absolute encoder communication abnormality	 Disconnection of communicating encoders. The encoder is not earthed. Communication verification exception 	 check the encoder wiring, or replace the encoder cable. Check whether the encoder is well grounded
E.16. Encoder data anomaly	 broken wire or poor contact of the serial encoder. Serial encoder storage data read/write abnormality 	Check wiring, or replace encoder cable
E.17. Abnormally low encoder battery voltage	Abnormal encoder battery voltage	Replace the encoder battery and reset the multi-turn value
E.18. Excessive speed deviation	The absolute difference between the speed command and the actual measured speed exceeds the	 Increase the setting of F08.22. extend the acceleration and deceleration times of internal

Fault codes and	reason	Treatment measures
names	threshold value set in F08.22	position commands or adjust the gain to improve the response of the system.
		3. Set the speed deviation excessive threshold function to invalid, i.e. F08.22 = 0
E.19. Torque saturation timeout	The torque is saturated for a long time and the duration exceeds the threshold value set in F08.23	 Increase the setting time of parameter F08.23. Check if UVW is disconnected
E.20. Control of electrical undervoltage	Poor control electrical input wiring, or input power failure	 Check the input power and wiring Replacement of the drive
E.21. flying car trouble	The motor flies out of speed due to wiring and other errors that cause the control circuit to diverge	 Check UVW and encoder wiring check the drive, motor, if necessary, please replace, and contact the manufacturer to test
E.22. overvoltage	 The supply voltage exceeds the permissible range, AC 280V. disconnection of the braking resistor and mismatch of the braking resistor, resulting in the inability to absorb regenerative energy. The load inertia exceeds the permissible range. Driver damage 	 Enter the correct voltage range. Check whether the external resistor has been connected. Measure whether the resistance of the external resistor has been disconnected to ensure that the wiring is correct, and if the resistor has been burned, recommend replacing it with a more powerful external resistor (contact the manufacturer for advice). extend the acceleration and deceleration time, or according to the load inertia to re-select the appropriate drive and motor
E.23. undervoltage	 A drop in the supply voltage. The occurrence of a transient power failure. the undervoltage protection point (F08.12) is set too high. Driver damage 	 To increase the voltage capacity of the power supply and ensure its stability. Check whether the undervoltage protection point (F08.12) setting is high if the power supply voltage is

Fault codes and	reason	Treatment measures
names	(Note: This fault does not store records by default and can be set to store or not via F08.32)	normal
E.24. AI sampling voltage is too large	 incorrect AI wiring. High external input voltage 	Connect the AI input correctly and set the input voltage to within $\pm 10V$
E.25. overspeed	 the speed command exceeds the maximum speed setting. UVW phase sequence error. Significant overshoot of the velocity response. Driver failure 	 Speed reduction instructions. Check that the UVW phase sequence is correct. adjusting the speed loop gain to reduce overshoot. Drive replacement
E.26. Electrical angle recognition failure	 Too large a load or inertia. The encoder wiring is wrong 	 reducing the load or increasing the current loop gain. Replacement of encoder cable
E.27. Inertia recognition failure fault	 the load or inertia is so large that the motor cannot operate according to the specified curve. Other failures in the identification process lead to termination of identification 	 reducing the load or increasing the current loop gain. Ensure that the identification process is normal
E.28. DI terminal parameter setting fault	 different physical DI terminals are repeatedly assigned the same DI function. Physical DI terminals and communication-controlled DI functions are assigned simultaneously 	 the case where the same function is configured to more than one physical DI terminal in F06.01 to F06.09. The functions assigned in F06.01 to F06.09 are enabled at the same time as the corresponding binary bits in F09.05 to F09.08, please refer to the usage of F09.05 to F09.08; Reassign DI function
E.29. DO terminal parameter setting fault	Different DOs are repeatedly assigned the same output	If the same function is configured to multiple DOs in F06.21 to F06.29, reassign the DO function.
E.30. Invalid servo ON command fault	After executing the auxiliary function to energize the motor, the servo ON command is still entered from the upper computer	Changing improper handling practices

Fault codes and names	reason	Treatment measures
E.31. Excessive mixing deviation fault	Inconsistent internal and external feedback during gantry synchronization or full closed loop	 Check if the mixing deviation over threshold is too small Check whether the internal and external feedback directions and units are consistent Check if the wiring is correct Replace the driver, or external sensor
E.32. Crossover pulse output overspeed	Exceeds the upper limit of pulse output allowed by the hardware	Change the crossover output setting function code so that the entire speed at which the servo is operating Within the range, the crossover output pulse frequency will not exceed the limit
E.33. Excessive position deviation fault	 UVW wiring of the servo motor. low servo drive gain. The high frequency of the position command pulse. Excessive acceleration of position commands. The position deviation exceeds the value set for the position deviation too large fault (F01.16) by too small a value. Servo driver/motor failure 	 confirm the wiring of the main motor circuit cables and rewire them. Confirm whether the servo drive gain is too low and increase the gain. attempt to reduce the command frequency before running a reduced position command frequency, command acceleration or adjusting the electronic gear ratio. lowering the command acceleration and then running to join the position command acceleration and deceleration time parameters and other smoothing functions. Confirm that the position deviation fault value (F01.16) is appropriate and set the (F01.16) value correctly. Background check the running graphics, if the input does not feedback, please replace the servo

Fault codes and	reason	Treatment measures
names	Teason	
E.34. Main circuit input is out of phase	 poor contact of the three-phase input cable. phase failure, that is, in the main power ON state, R / S / T phase of a phase voltage is too low state for more than 1 second 	 drive 1. Check whether the cable of the three-phase power input is firmly connected (pay attention to safety and do not operate with electricity). 2. Measure the voltage of each phase of the three-phase power supply to ensure that the input power supply is three-phase balanced or that the input power supply voltage meets specifications
E.35.	1. poor wiring of the motor UVW.	
Driver output out of phase	2. The motor is damaged and there is a broken circuit	 Check UVW wiring. Replacement of servo motor
E.37. Motor overload	 Operation with load exceeds the drive inverse time curve for the following reasons. 1. bad or loose connection of the motor UVW line or encoder line. 2, motor blocking or driven by external forces, such as mechanical jamming, collision, gravity or other external forces dragging, or mechanical brakes (holding brakes) run without opening. 3、 When wiring multiple drives, mistakenly connect other same motor UVW line and encoder line to different drives. 4. Excessive load and small drive or motor selection. 5. Possible missing phase or wrong phase sequence connection. 6、 Driver or motor damage 	 confirm that there are no problems with the motor UVW line and encoder wiring. Confirm that the motor is not blocked or driven by external forces and that the mechanical brake (holding brake) has been opened. confirm that there is no cross- wiring of multiple drives and motors, i.e. no one motor UVW line and encoder line is connected to a different drive. extend acceleration and deceleration times and reselect the appropriate drive or motor. check whether the UVW of the motor output is connected wrongly and whether it is shorted to ground. Replacement of drive or motor
E.38. Electronic gear setting error	Electronic gear ratio exceeds specification range [encoder resolution / 10000000, encoder resolution / 2.5]	Set the correct gear ratio range
E.39.	1. Damage to the fan.	1. whether the fan runs during

Fault codes and	reason	Treatment measures
names		Treatment measures
Radiator	2. High ambient temperatures.	operation, replace the fan or drive.
overheating	3. Reset of the overload fault by	2. measuring the ambient
	switching off the power supply after	temperature to improve the cooling
	an overload and continuing several	conditions of the servo drive and
	times.	reduce the ambient temperature.
	4. the installation direction of the	3, check the fault record, whether
	servo drive and the unreasonable	there is a reported overload fault,
	interval with other servo drives.	change the fault reset method, wait
	5. Servo drive failure.	30s after the overload and then
	6. Driver or motor damage	reset. Drive, motor selection power
		is too small, improve the drive,
		motor capacity, increase
		acceleration and deceleration time,
		reduce the load.
		4. confirm the setting status of the
		servo drive and install it according
		to the installation standards of the
		servo drive.
		5、Restart after 5 minutes of power
		failure, if the fault is still reported
		after restart, please replace the
		servo driver.
		1. Change the maximum
		permissible frequency, parameter
		F08.14.
F 40	1. the input frequency is greater	2, the background software to check
E.40. Pulse input	than the maximum frequency	whether the command is abnormal,
Pulse input abnormality	setting for the pulse input.	check the line grounding, ensure
abilormanty	2. The input pulse is disturbed	that the line is reliably grounded,
		signal using twisted shielded wire,
		input line and power line separate
		wiring
		1. confirm that the external encoder
F 41		cable is connected correctly and
E.41.	1. External encoder anomalies.	replace the external encoder.
Excessive deviation	2. The relevant settings are too	2、The deviation of the full closed
from fully closed-	conservative	loop is too large, the protection
loop position		function is set wrongly confirm the
		setting of relevant parameters reset

Fault codes and names	reason	Treatment measures
		the relevant parameters
E.44. User-forced failure	Forced into fault state via DI function 32 (FORCE_ERR)	Normal DI function input, with DI function 32 configured and input active. Disconnecting the input will clear the fault
E.45. Absolute position reset fault	Absolute position encoder absolute position reset fault	Contact the manufacturer for technical support
E.46. Mains power failure	Power outage or abnormal main power line.	Check the input mains power supply for momentary power failure and increase the power supply voltage capacity.
E.47. DB brake overload	DB brakes frequently	Check the cause of frequent DB braking or switch off the function related to DB deceleration stop F06.56
E.50.		
First start after writing in a custom version of the	First start after downloading a custom program to a drive that already has a standard program	Restore factory values for loading custom parameters
program		
E.55. Offline JOG and inertia recognition are not allowed when the bus is started or the PLC is not OFF	Offline JOG and inertia recognition are not allowed when the bus is started or the PLC is not OFF	Check the wiring and reconnect.
E.56. Device name and IP and MAC are not allowed to be written while the bus is running	Device name and IP and MAC are not allowed to be written while the bus is running	NMT node reset, do not stop or reset the CAN node when the servo is ON
E.57. MCU and 200P parallel port error	MCU and 200P parallel port error	Repower, if it still does not work, replace the drive
E.58. External overspeed	1. the speed command exceeds the maximum speed setting.	 Speed reduction instructions. Check that the UVW phase

Fault codes and names	reason	Treatment measures
E.59. Excessive mixing deviation	 UVW phase sequence error. Significant overshoot of the velocity response. Driver failure External encoder disconnection. Damage to the external encoder. Equipment transmission failure 	 sequence is correct. 3. adjusting the speed loop gain to reduce overshoot. 4. Drive replacement 1. check or replace the external encoder and wiring. 2. Check or replace the external encoder and wiring. 3. Check the mechanical drive part and repair the mechanical part
E.60. Profinet IRT configuration cycles and servo cycles are not divisible	Profinet IRT configuration cycles and servo cycles are not divisible	Adjusting the IRT cycle
E.61. MAC address loss correction exists	MAC address loss correction exists	Check if node is online, NMT node reset
E.62. Synchronization failure	Synchronization with the host computer fails in CANOpen IP mode	NMT node reset, or 6040 sends a fault reset command
E.63. CANOpen track buffer underflow	Synchronous clock lost more than 2 times in CANOpen IP or CSP mode	Check the communication line for interference and confirm that the upper unit is operating properly. NMT node reset, or 6040 sends a fault reset command
E.64. CANOpen track buffer overflow	The synchronization clock is too fast in CANOpen IP or CSP mode, or the actual clock frequency does not match the configured value	Check the communication line for interference, confirm that the host computer is operating normally, and confirm that the clock frequency is consistent with the configured value. the NMT node resets, or the 6040 sends a fault reset command
E.65. DSC function is not allowed in non-IRT mode	DSC function is used in non-IRT mode	Configure IRT mode, then use DSC
E.66. EtherCAT	EtherCAT synchronization failure	NMT node reset, or 6040 sends a fault reset command

Fault codes and names	reason	Treatment measures
synchronization failure		
E.67. Synchronization clock error	Maximum number of consecutive communication losses over the set value	Please check if the network cable is plugged in tightly, or replace the shielded network cable, try to set a large F09.20
E.68. command exception	CSP mode operation speed command exceeds motor maximum speed	NMT node reset, or 6040 sends a fault reset command
E.69. Pattern error	Servo enable, 6060h for unsupported control modes style	NMT node reset, or 6040 sends a fault reset command
E.70. Slave initialization failed	EtherCAT slave initialization failed	Try re-flashing the XML configuration file, and then re- powering
E.71 Program version exception	Program version does not match hardware	Burn the corresponding version of the program or contact the manufacture
E.72 Torque exceeds set value	The torque exceeds the set value and reaches the set time	 Check whether the values of F08.44 and F08.45 are within a reasonable range Check whether there is a stall

12.3 Reasons for early warning and measures to address them

Warning codes and names	reason	Treatment measures
A.80. Abnormal STO wiring during servo enable or in servo enable	STO switch operation, or abnormal STO wiring	 check that the STO switch is working. Check the wiring
A.81. Undervoltage warning	Warning status of the output when the bus voltage is low	 Check that the input mains power is normal. Lower the undervoltage detection point parameter F08.12
A.82. Motor overload warning A.84. Parameter changes requiring reapplication of	 Operation with load exceeds the drive inverse time curve for the following reasons. 1. bad or loose connection of the motor UVW line or encoder line. 2, motor blocking or driven by external forces, such as mechanical jamming, collision, gravity or other external forces dragging, or mechanical brakes (holding brakes) run without opening. 3、 When wiring multiple drives, mistakenly connect other same motor UVW line and encoder line to different drives. 4. Excessive load and small drive or motor selection. 5. Possible missing phase or wrong phase sequence connection. 6、 Driver or motor damage 	 confirm that there are no problems with the motor UVW line and encoder wiring. Confirm that the motor is not blocked or driven by external forces and that the mechanical brake (holding brake) has been opened. confirm that there is no cross- wiring of multiple drives and motors, i.e. no one motor UVW line and encoder line is connected to a different drive. extend acceleration and deceleration times and reselect the appropriate drive or motor. check whether the UVW of the motor output is connected wrongly and whether it is shorted to ground. Replacement of drive or motor
power A.85.	Servo ON when servo is not ready	Give enable again when servo

Source not needed		READY is detected
Servo not ready A.86.		
A.80. Write E2PROM	Dragment or evented E2DDOM	Reduce the frequency of EEPROM
	Program operates E2PROM	write operations, you can switch to communication write commands
frequent operation	abnormally often	
warning		that do not store EEPROM
	1. Pot and Not are valid at the same	The positive limit switch is
A.87.	time and do not normally appear	triggered to check the operating
Positive overtravel	together on the workbench.	mode, give a negative command or
warning alert	2, Servo axes in a certain direction	manually turn the motor, leave the
8	in the overtravel state, can	positive limit and the warning will
	automatically lift	be cleared automatically
	1. Pot and Not are valid at the same	The negative limit switch is
A.88.	time and do not normally appear	triggered to check the operating
Negative overtravel	together on the workbench.	mode, give a positive command or
warning alert	2, Servo axes in a certain direction	manually turn the motor, leave the
warning alert	in the overtravel state, can	positive limit and it will
	automatically lift	automatically clear the warning
A.89.	1. the electronic gear ratio is set too	1. Reduction of the set electronic
A.89. Position command	-	gear ratio.
	large.	2、Reducing the input pulse
over speed	2. The pulse frequency is too high	frequency
A.90.	Excessive deviation (greater than	
Absolute encoder	7.2 degrees electrical angle)	Douloos the motor
angle initialization	warning when reinitializing encoder	Replace the motor
warning	angle	
	Energy consumption brake power	
	overload	1. check whether the braking
	1. incorrectly wired or poorly	resistor wiring is normal.
	contacted braking resistors.	2. check that the built-in resistor is
	2. The use of built-in resistors is	wired properly.
	likely to result in the disconnection	3. Increasing the capacity of the
A.91.	of default short wires.	braking resistor.
Energy	3. Insufficient capacity of the	4. Reduction of braking resistor
consumption brake	braking resistor.	resistance.
overload	4. excessive resistance of the	5. Reduction of the voltage value of
	braking resistor leading to	the input.
	prolonged braking.	6. Setting the appropriate
	5. The input voltage exceeds that	parameters according to
	specified.	specifications.
	6. incorrect setting of braking	7、Replacement of servo driver
	resistor resistance, capacity, or	
	resision resistance, capacity, or	

	heating time constants.	
	7、Servo drive failure	
A.92. External regenerative drain resistance too small	 the external regenerative drain resistance is less than the minimum value required by the driver. Incorrect parameter setting 	 Configure the power of the external regenerative drain resistor according to specifications. Check whether the parameters F01.18~F01.21 are correct
A.93. emergency stop	Emergency stop triggered	Normal DI function input, with DI function 30 configured and input valid. Disconnect the input to disarm the warning
A.94. Origin return error	 the time taken to search for the origin exceeds the set value of F11.07. the F11.02 parameter is set to 3, 4 or 5 and the limit is encountered. When not using the limit as the origin, the limit is touched twice 	 Increase the F11.07 setting. back to the origin of the search speed is too fast, reduce the speed back to the origin of the search F11.04, F11.05
A.95. Encoder battery under voltage	Encoder battery voltage detection warning	Check and replace the encoder battery
A.96. AD sampling not completed		
A.97. Limit alignment A.98	Limit encountered during operation in synchronous cycle position mode bit, resulting in position feedback and instructions not being aligned Corresponding pulse DI is not configured	Sending a reverse command to exit the limit zone will automatically clear the warning (an Full precaution, no manual rotation of the motor) Configure DI5 to 41, Configure DI6 to 42.