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Preface

Mathematical Olympiads have a tradition longer than one hundred years. The first
mathematical competitions were organized in Eastern Europe (Hungary and Ro-
mania) by the end of the 19th century. In 1959 the first International Mathemati-
cal Olympiad was held in Romania. Seven countries, with a total of 52 students,
attended that contest. In 2010, the IMO was held in Kazakhstan. The number of
participating countries was 97, and the number of students 517.

Obviously, the number of young students interested in mathematics and math-
ematical competitions is nowadays greater than ever. It is sufficient to visit some
mathematical forums on the net to see that there are tens of thousands registered
users and millions of posts.

When we were thinking about writing this book, we asked ourselves to whom it
will be addressed. Should it be the beginner student, who is making the first steps
in discovering the beauty of mathematical problems, or, maybe, the more advanced
reader, already trained in competitions. Or, why not, the teacher who wants to use a
good set of problems in helping his/her students prepare for mathematical contests.

We have decided to take the hard way and have in mind all these potential readers.
Thus, we have selected Olympiad problems of various levels of difficulty. Some are
rather easy, but definitely not exercises; some are quite difficult, being a challenge
even for Olympiad experts.

Most of the problems come from various mathematical competitions (the Interna-
tional Mathematical Olympiad, The Tournament of the Towns, national Olympiads,
regional Olympiads). Some problems were created by the authors and some are
folklore.

The problems are grouped in three chapters: Algebra, Geometry and Trigono-
metry, and Number Theory and Combinatorics. This is the way problems are clas-
sified at the International Mathematical Olympiad.

In each chapter, the problems are clustered by topic into self-contained sections.
Each section begins with elementary facts, followed by a number of carefully se-
lected problems and an extensive discussion of their solutions. At the end of each
section the reader will find a number of proposed problems, whose complete solu-
tions are presented in the second part of the book.
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vi Preface

We encourage the beginning reader to carefully examine the problems solved at
the beginning of each section and try to solve the proposed problems before ex-
amining the solutions provided at the end of the book. As for the advanced reader,
our advice is to try finding alternative solutions and generalizations of the proposed
problems.

In the second edition of the book, we added two new sections in Chaps. 1 and 3,
and more than 60 new problems with complete solutions.

Titu Andreescu
Bogdan Enescu

University of Texas at Dallas
“B.P. Hasdeu” National College
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Part I
Problems





Chapter 1
Algebra

1.1 An Algebraic Identity

A very useful algebraic identity is derived by considering the following problem.

Problem 1.1 Factor a3 + b3 + c3 − 3abc.

Solution Let P denote the polynomial with roots a, b, c:

P(X) = X3 − (a + b + c)X2 + (ab + bc + ca)X − abc.

Because a, b, c satisfy the equation P(x) = 0, we obtain

a3 − (a + b + c)a2 + (ab + bc + ca)a − abc = 0,

b3 − (a + b + c)b2 + (ab + bc + ca)b − abc = 0,

c3 − (a + b + c)c2 + (ab + bc + ca)c − abc = 0.

Adding up these three equalities yields

a3 + b3 + c3 − (a + b + c)
(
a2 + b2 + c2) + (ab + bc + ca)(a + b + c) − 3abc = 0.

Hence

a3 + b3 + c3 − 3abc = (a + b + c)
(
a2 + b2 + c2 − ab − bc − ca

)
. (1.1)

Note that the above identity leads to the following result: if a + b + c = 0, then
a3 + b3 + c3 = 3abc.

Another way to obtain the identity (1.1) is to consider the determinant:

D =
∣∣∣∣∣
∣

a b c

c a b

b c a

∣∣
∣∣∣
∣
.

T. Andreescu, B. Enescu, Mathematical Olympiad Treasures,
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4 1 Algebra

Expanding D, we obtain

D = a3 + b3 + c3 − 3abc.

On the other hand, adding all columns to the first one gives

D =
∣∣∣∣∣∣

a + b + c b c

a + b + c a b

a + b + c c a

∣∣∣∣∣∣
= (a + b + c)

∣∣∣∣∣∣

1 b c

1 a b

1 c a

∣∣∣∣∣∣

= (a + b + c)
(
a2 + b2 + c2 − ab − bc − ca

)
.

Notice that the expression

a2 + b2 + c2 − ab − bc − ca

can also be written as

1

2

[
(a − b)2 + (b − c)2 + (c − a)2].

We obtain another version of the identity (1.1):

a3 + b3 + c3 − 3abc = 1

2
(a + b + c)

[
(a − b)2 + (b − c)2 + (c − a)2]. (1.2)

This form leads to a short proof of the AM − GM inequality for three variables.
Indeed, from (1.2) it is clear that if a, b, c are positive, then a3 + b3 + c3 ≥ 3abc.
Now, if x, y, z are positive numbers, taking a = 3

√
x, b = 3

√
y and c = 3

√
z yields

x + y + z

3
≥ 3

√
xyz,

with equality if and only if x = y = z.
Finally, let us regard

a2 + b2 + c2 − ab − bc − ca

as a quadratic in a, with parameters b, c. This quadratic has discriminant

Δ = (b + c)2 − 4
(
b2 + c2 − bc

) = −3(b − c)2.

Hence its roots are

a1 = b + c − i(b − c)
√

3

2
= b

1 − i
√

3

2
+ c

1 + i
√

3

2

and

a2 = b + c + i(b − c)
√

3

2
= b

1 + i
√

3

2
+ c

1 − i
√

3

2
.
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Setting ω = −1+i
√

3
2 , one of the primitive cubic roots of the unity, we have ω2 =

−1−i
√

3
2 , hence a1 = −bω − cω2 and a2 = −bω2 − cω.
This gives the factorization

a2 + b2 + c2 − ab − bc − ca = (
a + bω + cω2)(a + bω2 + cω

)
,

which leads to the identity

a3 + b3 + c3 − 3abc = (a + b + c)
(
a + bω + cω2)(a + bω2 + cω

)
. (1.3)

Here are some problems that show how useful the above identities can be.

Problem 1.2 Factor (x − y)3 + (y − z)3 + (z − x)3.

Solution Observe that if a+b+c = 0, then it follows from (1.1) that a3 +b3 +c3 =
3abc. Because

(x − y) + (y − z) + (z − x) = 0,

we obtain the factorization

(x − y)3 + (y − z)3 + (z − x)3 = 3(x − y)(y − z)(z − x).

Problem 1.3 Prove that
3
√

2 + √
5 + 3

√
2 − √

5 is a rational number.

Solution Let x = 3
√

2 + √
5 + 3

√
2 − √

5. We then have

x − 3
√

2 + √
5 − 3

√
2 − √

5 = 0.

As we have seen, a + b + c = 0 implies a3 + b3 + c3 = 3abc, so we obtain

x3 − (
2 + √

5
) − (

2 − √
5
) = 3x

3
√(

2 + √
5
)(

2 − √
5
)
,

or

x3 + 3x − 4 = 0.

Clearly, one of the roots of this equation is x = 1 and the other two roots sat-

isfy the equation x2 + x + 4 = 0, which has no real solutions. Since
3
√

2 + √
5 +

3
√

2 − √
5 is a real root, it follows that

3
√

2 + √
5 + 3

√
2 − √

5 = 1,

which is a rational number.

Next come some proposed problems.
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Problem 1.4 Factor (a + 2b − 3c)3 + (b + 2c − 3a)3 + (c + 2a − 3b)3.

Problem 1.5 Let x, y, z be integers such that

(x − y)2 + (y − z)2 + (z − x)2 = xyz.

Prove that x3 + y3 + z3 is divisible by x + y + z + 6.

Problem 1.6 Let a, b, c be distinct real numbers. Prove that the following equality
cannot hold:

3
√

a − b + 3
√

b − c + 3
√

c − a = 0.

Problem 1.7 Prove that the number

3
√

45 + 29
√

2 + 3
√

45 − 29
√

2

is a rational number.

Problem 1.8 Let a, b, c be rational numbers such that

a + b
3√

2 + c
3√

4 = 0.

Prove that a = b = c = 0.

Problem 1.9 Let r be a real number such that

3
√

r + 1
3
√

r
= 3.

Determine the value of

r3 + 1

r3
.

Problem 1.10 Find the locus of points (x, y) for which

x3 + y3 + 3xy = 1.

Problem 1.11 Let n be a positive integer. Prove that the number

33n(
33n + 1

) + 33n+1 − 1.

is not a prime.

Problem 1.12 Let S be the set of integers x such that x = a3 + b3 + c3 − 3abc, for
some integers a, b, c. Prove that if x, y ∈ S, then xy ∈ S.
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Problem 1.13 Let a, b, c be distinct positive integers and let k be a positive integer
such that

ab + bc + ca ≥ 3k2 − 1.

Prove that

a3 + b3 + c3

3
− abc ≥ 3k.

Problem 1.14 Let a, b, c be the side lengths of a triangle. Prove that

3

√
a3 + b3 + c3 + 3abc

2
≥ max(a, b, c).

Problem 1.15 Find the least real number r such that for each triangle with side
lengths a, b, c,

max(a, b, c)
3
√

a3 + b3 + c3 + 3abc
< r.

Problem 1.16 Find all integers that can be represented as a3 + b3 + c3 − 3abc for
some positive integers a, b, and c.

Problem 1.17 Find all pairs (x, y) of integers such that

xy + x3 + y3

3
= 2007.

Problem 1.18 Let k be an integer and let

n = 3
√

k +
√

k2 − 1 + 3
√

k −
√

k2 − 1 + 1.

Prove that n3 − 3n2 is an integer.

1.2 Cauchy–Schwarz Revisited

Let a1, a2, . . . , an, b1, b2, . . . , bn be nonzero real numbers. Then

(
a2

1 + a2
2 + · · · + a2

n

)(
b2

1 + b2
2 + · · · + b2

n

) ≥ (a1b1 + a2b2 + · · · + anbn)
2 (∗)

with equality if and only if

a1

b1
= a2

b2
= · · · = an

bn

.
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This is the well-known Cauchy–Schwarz inequality. The standard elementary
proof uses the properties of the quadratic function: consider the function

f (x) = (a1 − b1x)2 + (a2 − b2x)2 + · · · + (an − bnx)2.

Clearly, f (x) ≥ 0 for all real x, therefore, being a quadratic function, its discrimi-
nant Δ must be negative or zero. The inequality follows by observing that

Δ = 4(a1b1 + a2b2 + · · · + anbn)
2 − 4

(
a2

1 + a2
2 + · · · + a2

n

)(
b2

1 + b2
2 + · · · + b2

n

)
.

If we have equality in (∗), then Δ = 0 and the equation f (x) = 0 has a real root x0.
But then

(a1 − b1x0)
2 + (a2 − b2x0)

2 + · · · + (an − bnx0)
2 = f (x0) = 0,

so that a1 − b1x0 = a2 − b2x0 = · · · = an − bnx0 = 0 and

a1

b1
= a2

b2
= · · · = an

bn

= x0.

Conversely, if

a1

b1
= a2

b2
= · · · = an

bn

then the equation f (x) = 0 has a real root, so Δ ≥ 0. Since Δ cannot be positive, it
follows that Δ = 0 and we have equality in (∗).

Another proof uses a simple lemma which can also be helpful in proving a large
number of algebraic inequalities:

If a, b, x, y are real numbers and x, y > 0, then the following inequality holds:

a2

x
+ b2

y
≥ (a + b)2

x + y
.

The proof is straightforward. Clearing out denominators yields

a2y(x + y) + b2x(x + y) ≥ (a + b)2xy,

which readily simplifies to the obvious (ay − bx)2 ≥ 0. We see that the equality
holds if and only if ay = bx, that is, if

a

x
= b

y
.

Applying the lemma twice, we can extend the inequality to three pairs of numbers.
Indeed,

a2

x
+ b2

y
+ c2

z
≥ (a + b)2

x + y
+ c2

z
≥ (a + b + c)2

x + y + z
,
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and a simple inductive argument shows that

a2
1

x1
+ a2

2

x2
+ · · · + a2

n

xn

≥ (a1 + a2 + · · · + an)
2

x1 + x2 + · · · + xn

for all real numbers a1, a2, . . . , an and x1, x2, . . . , xn > 0, with equality if and only
if

a1

x1
= a2

x2
= · · · = an

xn

.

Returning to Cauchy–Schwarz, let us use the lemma in the general case:

a2
1 + a2

2 + · · · + a2
n = a2

1b2
1

b2
1

+ a2
2b2

2

b2
2

+ · · · + a2
nb

2
n

b2
n

≥ (a1b1 + a2b2 + · · · + anbn)
2

b2
1 + b2

2 + · · · + b2
n

.

This yields
(
a2

1 + a2
2 + · · · + a2

n

)(
b2

1 + b2
2 + · · · + b2

n

) ≥ (a1b1 + a2b2 + · · · + anbn)
2

and the equality holds if and only if

a1

b1
= a2

b2
= · · · = an

bn

.

Let us see our lemma at work!

Problem 1.19 Let a, b, c be positive real numbers. Prove that

a

b + c
+ b

c + a
+ c

a + b
≥ 3

2
.

Solution Observe that

a

b + c
+ b

c + a
+ c

a + b
= a2

ab + ac
+ b2

bc + ba
+ c2

ca + cb
≥ (a + b + c)2

2(ab + bc + ca)
,

so it suffices to prove

(a + b + c)2

2(ab + bc + ca)
≥ 3

2
.

A short computation shows that this is equivalent to

a2 + b2 + c2 ≥ ab + bc + ca,

which yields

(a − b)2 + (b − c)2 + (c − a)2 ≥ 0.

Problem 1.20 Let a and b be positive real numbers. Prove that

8
(
a4 + b4) ≥ (a + b)4.
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Solution We apply the lemma twice:

a4 + b4 = a4

1
+ b4

1
≥ (a2 + b2)2

2
≥ (

(a+b)2

2 )2

2
= (a + b)4

8
.

Try to use the lemma to prove the following inequalities.

Problem 1.21 Let x, y, z > 0. Prove that

2

x + y
+ 2

y + z
+ 2

z + x
≥ 9

x + y + z
.

Problem 1.22 Let a, b, x, y, z be positive real numbers. Prove that

x

ay + bz
+ y

az + bx
+ z

ax + by
≥ 3

a + b
.

Problem 1.23 Let a, b, c > 0. Prove that

a2 + b2

a + b
+ b2 + c2

b + c
+ a2 + c2

a + c
≥ a + b + c.

Problem 1.24 Let a, b, c be positive numbers such that abc = 1. Prove that

1

a3(b + c)
+ 1

b3(a + c)
+ 1

c3(a + b)
≥ 3

2
.

Problem 1.25 Let x, y, z > 0. Prove that

x

x + 2y + 3z
+ y

y + 2z + 3x
+ z

z + 2x + 3y
≥ 1

2
.

Problem 1.26 Let x, y, z > 0. Prove that

x2

(x + y)(x + z)
+ y2

(y + z)(y + x)
+ z2

(z + x)(z + y)
≥ 3

4
.

Problem 1.27 Let a, b, c, d, e be positive real numbers. Prove that

a

b + c
+ b

c + d
+ c

d + e
+ d

e + a
+ e

a + b
≥ 5

2
.

Problem 1.28 Let a, b, c be positive real numbers such that

ab + bc + ca = 1

3
.

Prove that

a

a2 − bc + 1
+ b

b2 − ca + 1
+ c

c2 − ab + 1
≥ 1

a + b + c
.
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Problem 1.29 Let a, b, c be positive real numbers such that abc = 1. Prove that

a + b + 1

a + b2 + c3 + b + c + 1

b + c2 + a3 + c + a + 1

c + a2 + b3 ≤ (a + 1) (b + 1) (c + 1) + 1

a + b + c
.

Problem 1.30 Let a and b be positive real numbers. Prove that

a3 + b3

a4 + b4 · a + b

a2 + b2 ≥ a4 + b4

a6 + b6 .

Problem 1.31 Let a, b, c be positive real numbers such that ab+bc+ca ≥ 3. Prove
that

a√
a + b

+ b√
b + c

+ c√
c + a

≥ 3√
2
.

Problem 1.32 Let a, b, c be positive real numbers. Prove that

a

b(b + c)2 + b

c(c + a)2 + c

a(a + b)2 ≥ 9

4(ab + bc + ca)
.

Problem 1.33 Let a, b, c be positive real numbers such that

1

a2 + b2 + 1
+ 1

b2 + c2 + 1
+ 1

c2 + a2 + 1
≥ 1.

Prove that

ab + bc + ca ≤ 3.

1.3 Easy Ways Through Absolute Values

Everybody knows that sometimes solving equations or inequalities with absolute
values can be boring. Most of the students facing such problems begin by writing
the absolute values in an explicit manner. Let us consider, for instance, the following
simple equation:

Problem 1.34 Solve the equation |2x − 1| = |x + 3|.

Solution We have

|2x − 1| =
{−2x + 1, x ≤ 1

2 ,

2x − 1, x > 1
2 ,

and |x + 3| =
{−x − 3, x ≤ −3,

x + 3, x > −3.

If x ≤ −3, the equation becomes −2x + 1 = −x − 3; hence x = 4. But 4 > −3,
so we have no solutions in this case. If −3 < x ≤ 1

2 , we obtain −2x + 1 = x + 3, so
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x = − 2
3 ∈ (−3, 1

2 ]. Finally, if x > 1
2 , we obtain x = 4 again. We conclude that the

solutions are x = − 2
3 and x = 4.

Nevertheless, there is an easier way to solve the equation by noticing that |a| =
|b| if and only if a = ±b, so that it is not necessary to write the absolute values in an
explicit form. Here are some properties of the absolute values that might be useful
in solving equations and inequalities:

|ab| = |a||b|,
∣
∣
∣
∣
a

b

∣
∣
∣
∣ = |a|

|b| ,

|a + b| ≤ |a| + |b|,
with equality if and only if ab ≥ 0,

|a − b| ≤ |a| + |b|,
with equality if and only if ab ≤ 0.

The last two inequalities can be written in a general form:

| ± a1 ± a2 ± · · · ± an| ≤ |a1| + |a2| + · · · + |an|.

Problem 1.35 Solve the equation |x − 1| + |x − 4| = 2.

Solution Observe that

|x − 1| + |x − 4| ≥ ∣∣(x − 1) − (x − 4)
∣∣ = |3| = 3 > 2,

hence the equation has no solutions.

Problem 1.36 Solve the equation |x − 1| + |x| + |x + 1| = x + 2.

Solution We have

x + 2 = |x − 1| + |x| + |x + 1| ≥ ∣∣(x − 1) − (x + 1)
∣∣ + |x| = |x| + 2.

On the other hand, clearly x ≤ |x|, thus all inequalities must be equalities: that is
x + 2 = |x| + 2 and

|x − 1| + |x| + |x + 1| = ∣∣(x − 1) − (x + 1)
∣∣ + |x|.

This implies that x ≥ 0 and the expressions x − 1 and x + 1 are of different sign, so
x ∈ [−1,1]. Finally, the solution is x ∈ [0,1].

Problem 1.37 Find the minimum value of the expression:

E(x) = |x − 1| + |x − 2| + · · · + |x − 100|,
where x is a real number.
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Solution Observe that for k = 1,2, . . . ,50, we have

|x − k| + ∣∣x − (101 − k)
∣∣ ≥ 101 − 2k,

with equality if x ∈ [k,101 − k]. Adding these inequalities yields E(x) ≥ 2500, and
the equality holds for all x such that

x ∈
⋂

1≤k≤50

[k,101 − k] = [50,51].

Problem 1.38 Find the values of a for which the equation

(x − 1)2 = |x − a|
has exactly three solutions.

Solution Observe that (x − 1)2 = |x − a| if and only if

x − a = ±(x − 1)2,

that is, if and only if

a = x ± (x − 1)2.

The number of solutions of the equation is equal to the number of intersection points
between the line y = a and the graphs of the functions

f (x) = x + (x − 1)2 = x2 − x + 1

and

g(x) = x − (x − 1)2 = −x2 + 3x − 1.

The graph of f is a parabola with vertex B( 1
2 , 3

4 ) and the graph of g a parabola
with vertex C( 3

2 , 5
4 ). Now, since the equation f (x) = g(x) is a quadratic with one

real root, it follows that the graphs are tangent to each other at point A(1,1). We
deduce that the line y = a intersects the two graphs at three points if and only is it
passes through one of the points A,B,C; that is, if a ∈ { 3

4 ,1, 5
4 }.

Try to use some of the ideas above in solving the following problems:

Problem 1.39 Solve the equation |x − 3| + |x + 1| = 4.

Problem 1.40 Show that the equation |2x − 3| + |x + 1| + |5 − x| = 0.99 has no
solutions.

Problem 1.41 Let a, b > 0. Find the values of m for which the equation

|x − a| + |x − b| + |x + a| + |x + b| = m(a + b)

has at least one real solution.



14 1 Algebra

Problem 1.42 Find all possible values of the expression

E(x, y, z) = |x + y|
|x| + |y| + |y + z|

|y| + |z| + |z + x|
|z| + |x| ,

where x, y, z are nonzero real numbers.

Problem 1.43 Find all positive real numbers x, x1, x2, . . . , xn such that
∣
∣ log(xx1)

∣
∣ + ∣

∣ log(xx2)
∣
∣ + · · · + ∣

∣ log(xxn)
∣
∣

+
∣
∣
∣
∣ log

(
x

x1

)∣
∣
∣
∣ +

∣
∣
∣
∣ log

(
x

x2

)∣
∣
∣
∣ + · · · +

∣
∣
∣
∣ log

(
x

xn

)∣
∣
∣
∣

= | logx1 + logx2 + · · · + logxn|.

Problem 1.44 Prove that for all real numbers a, b, we have

|a + b|
1 + |a + b| ≤ |a|

1 + |a| + |b|
1 + |b| .

Problem 1.45 Let n be an odd positive integer and let x1, x2, . . . , xn be distinct real
numbers. Find all one-to-one functions

f : {x1, x2, . . . , xn} → {x1, x2, . . . , xn}
such that

∣∣f (x1) − x1
∣∣ = ∣∣f (x2) − x2

∣∣ = · · · = ∣∣f (xn) − xn

∣∣.

Problem 1.46 Suppose the sequence a1, a2, . . . , an satisfies the following condi-
tions:

a1 = 0, |a2| = |a1 + 1|, . . . , |an| = |an−1 + 1|.
Prove that

a1 + a2 + · · · + an

n
≥ −1

2
.

Problem 1.47 Find real numbers a, b, c such that

|ax + by + cz| + |bx + cy + az| + |cx + ay + bz| = |x| + |y| + |z|,
for all real numbers x, y, z.

1.4 Parameters

We start with the following problem.
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Problem 1.48 Solve the equation:

x3(x + 1) = 2(x + a)(x + 2a),

where a is a real parameter.

Solution The equation is equivalent to

x4 + x3 − 2x2 − 6ax − 4a2 = 0.

This fourth degree equation is difficult to solve. We might try to factor the left-
hand side, but without some appropriate software, the process would get quite com-
plicated. What if we think of a as the unknown and x as the parameter? In this case,
the equation can be written as a quadratic:

4a2 + 6xa − x4 − x3 + 2x2 = 0,

whose discriminant is

36x2 + 16
(
x4 + x3 − 2x2) = 4x2(2x + 1)2,

fortunately a square. Solving for a, we obtain the solutions a1 = − 1
2x2 − x and

a2 = 1
2x2 − 1

2x, yielding the factorization

4a2 + 6ax − x4 − x3 + 2x2 = 4

(
a + 1

2
x2 + x

)(
a − 1

2
x2 + 1

2
x

)

= −(
x2 + 2x + 2a

)(
x2 − x − 2a

)
.

Finally, we obtain the solutions x1,2 = −1 ± √
1 − 2a, x3,4 = 1

2 ± 1
2

√
1 + 8a.

Problem 1.49 Solve the equation
√

5 − x = 5 − x2.

Solution There is no parameter! Note, however, that we must have x ∈ [−√
5,

√
5],

since the left-hand side is nonnegative. Squaring both sides, we obtain the equation

x4 − 10x2 + x + 20 = 0

and, if we are lucky, we might observe the factorization

(
x2 + x − 5

)(
x2 − x − 4

) = 0.

What if we are not lucky? Well, let us introduce a parameter ourselves: replace 5 by
a, where a > 0:

√
a − x = a − x2. Squaring both sides yields the equation

x4 − 2ax2 + x + a2 − a = 0.
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Consider this as a quadratic in a with x as a parameter:

a2 − (
2x2 + 1

)
a + x4 + x = 0.

The discriminant of the quadratic is

Δ = (2x − 1)2

and thus the roots are a1 = x2 + x and a2 = x2 − x + 1. It follows that

a2 − (
2x2 + 1

)
a + x4 + x = (

a − x2 − x
)(

a − x2 + x − 1
)
.

Returning to a = 5, we arrive at the desired factorization.
The equations x2 + x − 5 = 0 and x2 − x − 4 = 0 have the solutions x1,2 =

1
2 (−1 ± √

21) and x3,4 = 1
2 (1 ± √

17), respectively. Only two of them belong to the
interval [−√

5,
√

5], and therefore the solutions of the initial equation are 1
2 (−1 +√

21) and 1
2 (1 − √

17).

Here are some suggested problems.

Problem 1.50 Solve the equation

x =
√

a − √
a + x,

where a > 0 is a parameter.

Problem 1.51 Let a be a nonzero real number. Solve the equation

a3x4 + 2a2x2 + x + a + 1 = 0.

Problem 1.52 Let a ∈ (0, 1
4 ). Solve the equation

x2 + 2ax + 1

16
= −a +

√

a2 + x − 1

16
.

Problem 1.53 Find the positive solutions of the following system of equations:
{

a2

x2 − b2

y2 = 8(y4 − x4),

ax − by = x4 − y4

where a, b > 0 are parameters.

Problem 1.54 Let a, b, c > 0. Solve the system of equations
⎧
⎪⎪⎨

⎪⎪⎩

ax − by + 1
xy

= c,

bz − cx + 1
zx

= a,

cy − az + 1
yz

= b.
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Problem 1.55 Solve the equation

x + a3 = 3
√

a − x,

where a is a real parameter.

1.5 Take the Conjugate!

Let a and b be positive numbers. Recall that the AM −GM states that a+b
2 ≥ √

ab.

Can we estimate the difference between the arithmetic and geometric means?

Problem 1.56 Prove that if a ≥ b > 0, then

(a − b)2

8a
≤ a + b

2
− √

ab ≤ (a − b)2

8b
.

Solution By taking the conjugate of the difference above, we obtain

a + b

2
− √

ab = ( a+b
2 )2 − ab

a+b
2 + √

ab
= (a − b)2

2(a + b + 2
√

ab)
.

Now, the conclusion follows by observing that b ≤ √
ab ≤ a, and that

8b ≤ 2
(
a + b + 2

√
ab

) ≤ 8a.

Problem 1.57 Evaluate the integer part of the number

A = 1√
2

+ 1√
3

+ · · · + 1√
10000

.

Solution Observe that

1√
k

= 2√
k + √

k
<

2√
k + √

k − 1
.

Taking the conjugate, we obtain

1√
k

< 2
(√

k − √
k − 1

)
.

Setting k = 2,3, . . . ,10000 and adding up yields

A < 2
(√

10000 − 1
) = 198.

Similarly,

1√
k

= 2√
k + √

k
>

2√
k + 1 + √

k
= 2

(√
k + 1 − √

k
)
,
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hence

A > 2
(√

10001 − √
2
)
> 197.

It follows that the integer part of the number A equals 197.

Problem 1.58 Let n be a positive integer. Prove that �(2+√
3)n	 is an odd number.

Solution Observe that the number

xn = (
2 + √

3
)n + (

2 − √
3
)n

is an even integer. Indeed, x1 = 4, x2 = 14 and

xn+2 = 4xn+1 − xn,

for all n ≥ 1, so the assertion follows inductively. Since 0 < (2−√
3)n < 1, we have

yn = ⌊(
2 + √

3
)n⌋ = xn − 1,

hence yn is odd.

Problem 1.59 Solve the equation
√

1 + mx = x + √
1 − mx,

where m is a real parameter.

Solution We can try squaring both terms, but since it is difficult to control the sign
of the right-hand side, we prefer to write the equation as follows:

√
1 + mx − √

1 − mx = x.

Taking the conjugate yields the equivalent form

2mx√
1 + mx + √

1 − mx
= x.

We obtain x = 0 as solution and, for x 
= 0:

2m = √
1 + mx + √

1 − mx.

Thus m is necessarily positive. We now square and obtain

2m2 − 1 =
√

1 − m2x2.

We obtain another condition for m, that is 2m2 − 1 ≥ 0, and squaring again we
finally obtain the solutions

x = ±2
√

1 − m2,

where m ∈ [ 1√
2
,1].
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Take the conjugate in the following problems:

Problem 1.60 Let a and b be distinct positive numbers and let A = a+b
2 , B = √

ab.
Prove the inequality

B <
(a − b)2

8(A − B)
< A.

Problem 1.61 Let m,n be positive integers with m < n. Find a closed form for the
sum

1√
m + √

m + 1
+ 1√

m + 1 + √
m + 2

+ · · · + 1√
n − 1 + √

n
.

Problem 1.62 For any positive integer n, let

f (n) = 4n + √
4n2 − 1√

2n + 1 + √
2n − 1

.

Evaluate the sum f (1) + f (2) + · · · + f (40).

Problem 1.63 Let a and b be distinct real numbers. Solve the equation

√
x − b2 −

√
x − a2 = a − b.

Problem 1.64 Solve the following equation, where m is a real parameter:

√
x + √

x −
√

x − √
x = m

√
x

x + √
x

.

Problem 1.65 Prove that for every positive integer k, there exists a positive integer
nk such that

(√
3 − √

2
)k = √

nk − √
nk − 1.

Problem 1.66 Let a and b be nonzero integers with |a| ≤ 100, |b| ≤ 100. Prove
that

∣∣a
√

2 + b
√

3
∣∣ ≥ 1

350
.

Problem 1.67 Let n be a positive integer. Prove that

⌊(
1 + √

5

2

)4n−2⌋
− 1

is a perfect square.
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Problem 1.68 Consider the sequence

an =
√

1 +
(

1 + 1

n

)2

+
√

1 +
(

1 − 1

n

)2

, n ≥ 1.

Prove that

1

a1
+ 1

a2
+ · · · + 1

a20

is an integer.

Problem 1.69 Prove that

9999∑

n=1

1

(
√

n + √
n + 1)( 4

√
n + 4

√
n + 1)

= 9.

Problem 1.70 Consider the sequence

an = 2 − 1

n2 +
√

n4 + 1
4

, n ≥ 1.

Prove that
√

a1 + √
a2 + · · · + √

a119

is an integer.

1.6 Inequalities with Convex Functions

A real-valued function f defined on an interval I ⊂ R is called convex if for all
xA,xB ∈ I and for any λ ∈ [0,1] the following inequality holds:

f
(
λxA + (1 − λ)xB

) ≤ λf (xA) + (1 − λ)f (xB).

Although the definition seems complicated, it has a very simple geometrical in-
terpretation. Let us assume that f is a continuous function. Then f is convex on
I if and only if no matter how we choose two points on the function’s graph, the
segment joining these points lies above the graph (see Fig. 1.1).

To see why, let A(xA,yA) and B(xB, yB) be two points on the graph of f ,
with xA < xB , and let M(xM,f (xM)) be an arbitrary point on the graph with xA <

xM < xB . If N(xM,yN) is on the segment AB , it suffices to verify that f (xM) ≤ yN .
If we let

λ = xB − xM

xB − xA

,
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Fig. 1.1

then λ ∈ [0,1] and

xM = λxA + (1 − λ)xB.

Now it is easy to see that

λ = BN

BA
= yB − yN

yB − yA

,

that is,

yN = λyA + (1 − λ)yB = λf (xA) + (1 − λ)f (xB).

Thus the condition f (xM) ≤ yN is equivalent to the convexity condition

f
(
λxA + (1 − λ)xB

) ≤ λf (xA) + (1 − λ)f (xB).

Observe that unless f is linear, the equality holds if and only if xA = xB . Hence,
if f is not linear and xA 
= xB , then the inequality is a strict one.

It can be shown that if f is a convex function on the interval I then for any
x1, x2, . . . , xn ∈ I and any positive numbers λ1, λ2, . . . , λn such that λ1 +λ2 +· · ·+
λn = 1, we have

f (λ1x1 + λ2x2 + · · · + λnxn) ≤ λ1f (x1) + λ2f (x2) + · · · + λnf (xn).

A real-valued function f defined on an interval I ⊂ R is called concave if for all
xA,xB ∈ I and for any λ ∈ [0,1] the following inequality holds:

f
(
λxA + (1 − λ)xB

) ≥ λf (xA) + (1 − λ)f (xB).

Similar inequalities are valid for concave functions, replacing everywhere ≤ by ≥.
It is known that if f is twice differentiable, then f is convex on I if an only if

f ′′ ≥ 0 on I (and concave if f ′′ ≤ 0 on I ).
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Problem 1.71 Let f be a convex function on the interval I ⊂ R. Prove that for any
a < b < c in I , we have

f (a − b + c) ≤ f (a) − f (b) + f (c).

Solution Since b ∈ (a, c), there exists λ such that b = λa + (1 − λ)c (take λ = c−b
c−a

and notice that λ ∈ [0,1]). Since f is convex, we have

f (b) ≤ λf (a) + (1 − λ)f (c).

On the other hand, we can see that

a − b + c = a − (
λa + (1 − λ)c

) + c = (1 − λ)a + λc.

Therefore, by convexity

f (a − b + c) ≤ (1 − λ)f (a) + λf (c).

Adding up the two inequalities, we obtain

f (a − b + c) + f (b) ≤ f (a) + f (c),

the desired result.
A simple induction argument shows that if f is convex and

a1 < a2 < · · · < a2n+1,

then

f (a1 − a2 + a3 − · · · − a2n + a2n+1) ≤ f (a1) − f (a2) + f (a3) − · · · − f (a2n)

+ f (a2n+1).

If f is concave, then the inequality is reversed.

Problem 1.72 Let a, b, c > 0. Prove the inequality

a

b + c
+ b

a + c
+ c

a + b
≥ 3

2
.

Solution This is a classical inequality. Usual solutions use Cauchy–Schwarz in-
equality or simple algebraic inequalities obtained by denoting b + c = x, etc. An-
other proof is given in the section “Cauchy–Schwarz Revisited” of this book.

Set s = a + b + c. Then the inequality becomes

a

s − a
+ b

s − b
+ c

s − c
≥ 3

2
.
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Consider the function f (x) = x
s−x

, defined on (0, s). We have

f ′′(x) = 2s

(s − x)3 > 0,

so that f is convex on (0, s). We then have

f

(
a + b + c

3

)
≤ f (a) + f (b) + f (c)

3
,

which means that

a

s − a
+ b

s − b
+ c

s − c
≥ 3f

(
s

3

)
= 3

s
3

s − s
3

= 3

2
,

as desired.

Problem 1.73 Let f : [1,13] → R be a convex and integrable function. Prove that

∫ 3

1
f (x)dx +

∫ 13

11
f (x)dx ≥

∫ 9

5
f (x)dx.

Solution We have seen that if a < b < c

f (a − b + c) + f (b) ≤ f (a) + f (c).

Let c = a + 10 and b = a + 4. Then

f (a + 6) + f (a + 4) ≤ f (a) + f (a + 10).

If we integrate both sides for a ∈ [1,3], and notice that

∫ 3

1
f (a + 6) da =

∫ 9

7
f (x)dx,

∫ 3

1
f (a + 4) da =

∫ 7

5
f (x)dx,

and
∫ 3

1
f (a + 10) da =

∫ 13

11
f (x)dx,

the result follows.

Proposed problems:

Problem 1.74 Let a, b > 0 and let n be a positive integer. Prove the inequality

an + bn

2
≥

(
a + b

2

)n

.
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Problem 1.75 Prove that

3
√

3 − 3
√

3 + 3
√

3 + 3
√

3 < 2 3
√

3.

Problem 1.76 Prove the AM − GM inequality

x1 + x2 + · · · + xn

n
≥ n

√
x1x2 · · ·xn,

for all x1, x2, . . . , xn > 0.

Problem 1.77 Let a1 < a2 < · · · < a2n+1 be positive real numbers. Prove the in-
equality

n
√

a1 − a2 + a3 − · · · − a2n + a2n+1 ≥ n
√

a1 − n
√

a2 + · · · + n
√

a2n+1.

Problem 1.78 Let x, y, z > 0. Prove that

x

2x + y + z
+ y

x + 2y + z
+ z

x + y + 2z
≤ 3

4
.

Problem 1.79 Prove that if a, b, c, d > 0 and a ≤ 1, a + b ≤ 5, a + b + c ≤ 14,
a + b + c + d ≤ 30, then

√
a + √

b + √
c + √

d ≤ 10.

1.7 Induction at Work

A large number of identities, inequalities etc. can be proved by induction. Some-
times induction is helpful in less obvious situations. We will examine several exam-
ples.

Problem 1.80 Let n be a positive integer. Find the roots of the polynomial

Pn(X) = 1 + X

1! + X(X + 1)

2! + · · · + X(X + 1) · · · (X + n − 1)

n! .

Solution For n = 1, the polynomial P1(X) = 1 + X has the root −1. For n = 2,
P2(X) = 1 + X

1! + X(X+1)
2! = 1

2 (X + 2)(X + 1) has roots −1 and −2. It is natural
to presume that the roots of Pn are −1,−2, . . . ,−n. We prove this assertion by
induction on n. Suppose it holds true for n. Then Pn factors as

Pn(X) = c(X + 1)(X + 2) · · · (X + n),
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the number c being the coefficient of Xn. Checking again the definition of Pn, we
see that c = 1

n! , hence

Pn(X) = 1

n! (X + 1)(X + 2) · · · (X + n).

Now, observe that

Pn+1(X) = Pn(X) + X(X + 1) · · · (X + n)

(n + 1)!
= 1

n! (X + 1)(X + 2) · · · (X + n) + X(X + 1) · · · (X + n)

(n + 1)!
= 1

(n + 1)! (X + 1)(X + 2) · · · (X + n)(n + 1 + X),

hence the roots of Pn+1 are −1,−2, . . . ,−n and −(n + 1).

Problem 1.81 Let n be a positive integer. Prove the inequality
(

1 + 1

13

)(
1 + 1

23

)(
1 + 1

33

)
· · ·

(
1 + 1

n3

)
< 3.

Solution Apparently induction does not work here, since when passing from n to
n + 1, the left-hand side increases while the right-hand side is constant. We can
make induction work by proving a stronger result:

(
1 + 1

13

)(
1 + 1

23

)(
1 + 1

33

)
· · ·

(
1 + 1

n3

)
≤ 3 − 1

n
.

The assertion is clearly true for n = 1. Suppose is true for n and multiply the above
inequality by 1 + 1

(n+1)3 . It suffices to prove that

(
3 − 1

n

)(
1 + 1

(n + 1)3

)
≤ 3 − 1

n + 1
.

The difference
(

3 − 1

n

)(
1 + 1

(n + 1)3

)
− 3 + 1

n + 1

factors as

−n2 − n + 2

n(n + 1)3 ,

hence it is negative. The claim is proved.

Problem 1.82 Let p be a prime number. Prove that for any positive integer a the
number ap − a is divisible by p (Fermat’s little theorem).
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Solution We proceed by induction on a. The statement is true for a = 1, so suppose
it holds true for some a > 1. We want to prove that (a + 1)p − (a + 1) is divisible
by p. The binomial theorem gives

(a + 1)p =
p∑

k=0

(
p

k

)
ap−k,

hence

(a + 1)p − (a + 1) = ap − a +
p−1∑

k=1

(
p

k

)
ap−k.

The conclusion follows from the induction hypothesis and from the fact that the
binomial coefficients

(
p
k

)
for k = 1,2, . . . , p − 1 are divisible by p.

Use induction in solving the following problems.

Problem 1.83 Let n be a positive integer. Prove the inequality

(
1 + 1

2

)(
1 + 1

22

)(
1 + 1

23

)
· · ·

(
1 + 1

2n

)
<

5

2
.

Problem 1.84 Let n be a positive integer. Prove that the number

22n − 1

has at least n distinct prime divisors.

Problem 1.85 Let a and n be positive integers such that a < n!. Prove that a can
be represented as a sum of at most n distinct divisors of n!.

Problem 1.86 Let x1, x2, . . . , xm, y1, y2, . . . , yn be positive integers such that the
sums x1 + x2 + · · · + xm and y1 + y2 + · · · + yn are equal and less than mn. Prove
that in the equality

x1 + x2 + · · · + xm = y1 + y2 + · · · + yn

one can cancel some terms and obtain another equality.

Problem 1.87 The sequence (xn)n≥1 is defined by x1 = 1, x2n = 1 + xn and
x2n+1 = 1

x2n
for all n ≥ 1. Prove that for any positive rational number r there ex-

ists an unique n such that r = xn.

Problem 1.88 Let n be a positive integer and let 0 < a1 < a2 < · · · < an be real
numbers. Prove that at least

(
n+1

2

)
of the sums ±a1 ± a2 ± · · · ± an are distinct.
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Problem 1.89 Prove that for each positive integer n, there are pairwise relatively
prime integers k0, k1, . . . , kn, all strictly greater than 1, such that k0k1 · · ·kn − 1 is
the product of two consecutive integers.

Problem 1.90 Prove that for every positive integer n, the number 33n + 1 is the
product of at least 2n + 1 (not necessarily distinct) primes.

Problem 1.91 Prove that for every positive integer n there exists an n-digit number
divisible by 5n all of whose digits are odd.

1.8 Roots and Coefficients

Let P(X) = a0 + a1X + · · · + anX
n be a polynomial and x1, x2, . . . , xn its roots

(real or complex). It is known that the following equalities hold:

x1 + x2 + · · · + xn = −an−1

an

,

x1x2 + x1x3 + · · · + xn−1xn = an−2

an

,

x1x2x3 + x1x2x4 + · · · + xn−2xn−1xn = −an−3

an

,

...

x1x2 · · ·xn = (−1)n
a0

an

.

These are usually called Viète’s relations.
For instance, for a third degree polynomial

P(X) = a0 + a1X + a2X
2 + a3X

3,

we have

x1 + x2 + x3 = −a2

a3
,

x1x2 + x1x3 + x2x3 = a1

a3
,

x1x2x3 = −a0

a3
.

The Viète’s relations can be very useful in solving problems not necessarily involv-
ing polynomials.

Problem 1.92 Let a, b, c be nonzero real numbers such that

(ab + bc + ca)3 = abc(a + b + c)3.

Prove that a, b, c are terms of a geometric sequence.
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Solution Consider the monic polynomial

P(X) = X3 + mX2 + nX + p,

with roots a, b, c. Then, by Viète’s relations, we have

a + b + c = −m,

ab + bc + ca = n,

abc = −p.

The given equality yields n3 = m3p, hence, if m 
= 0, the equation P(x) = 0 can be
written as

x3 + mx2 + nx + n3

m3 = 0,

or

m3x3 + m4x2 + nm3x + n3 = 0.

It is not difficult to factor the left-hand side:

(mx + n)
(
m2x2 − mnx + n2) + m3x(mx + n)

= (mx + n)
(
m2x2 + (

m3 − mn
)
x + n2).

It follows that one of the roots of P is x1 = − n
m

and the other two satisfy the condi-

tion x2x3 = n2

m2 (Viète’s relations for the second degree polynomial m2X2 + (m3 −
mn)X + n2). We obtained x2

1 = x2x3, thus the roots are the terms of a geometric
sequence. If m = 0 then n = 0 but in this case, the polynomial X3 + p cannot have
three real roots.

Observation Using appropriate software, one can obtain the factorization

(ab + bc + ca)3 − abc(a + b + c)3 = (
a2 − bc

)(
b2 − ac

)(
c2 − ab

)
,

and the conclusion follows.

Problem 1.93 Solve in real numbers the system of equations
⎧
⎪⎨

⎪⎩

x + y + z = 4,

x2 + y2 + z2 = 14,

x3 + y3 + z3 = 34.

Solution Consider the monic polynomial

P(t) = t3 + at2 + bt + c,

with roots x, y, z.
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Because x + y + z = 4, it follows that a = −4, hence

P(t) = t3 − 4t2 + bt + c.

We have

x2 + y2 + z2 = (x + y + z)2 − 2(xy + xz + yz).

It follows that

b = xy + xz + yz = 1.

The numbers x, y, z are the roots of P , thus

x3 − 4x2 + x + c = 0,

y3 − 4y2 + y + c = 0,

z3 − 4z2 + z + c = 0.

Adding these equalities and using the equations of the system, we obtain c = 6,
hence

P(t) = t3 − 4t2 + t + 6.

We observe that t1 = −1 is a root, so P factors as

P(t) = (t + 1)
(
t2 − 5t + 6

)
,

the other two roots being t2 = 2 and t3 = 3. It follows that the solutions of the system
are the triple (−1,2,3) and all of its permutations.

Problem 1.94 Let a and b be two of the roots of the polynomial X4 + X3 − 1.
Prove that ab is a root of the polynomial X6 + X4 + X3 − X2 − 1.

Solution Let c and d be the other two roots of X4 + X3 − 1. The Viète’s relations
yield

a + b + c + d = −1,

ab + ac + ad + bc + bd + cd = 0,

abc + abd + acd + bcd = 0,

abcd = −1.

Write these equalities in terms of s = a + b, s′ = c + d , p = ab and p′ = cd (this is
often useful) to obtain

s + s′ = −1,

p + p′ + ss ′ = 0,
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ps′ + p′s = 0,

pp′ = −1.

Substituting p′ = − 1
p

and s ′ = −1−s in the second and in the third equalities yields

p − 1

p
− s2 − s = 0

and

p(−1 − s) − s

p
= 0.

It follows from the second equality that

s = − p2

p2 + 1
.

Plugging this into the first equality gives

p − 1

p
− p4

(p2 + 1)2 + p2

p2 + 1
= 0.

A short computation shows that this is equivalent to

p6 + p4 + p3 − p2 − 1 = 0,

hence p = ab is a root of the polynomial

X6 + X4 + X3 − X2 − 1.

Here are some suggested problems.

Problem 1.95 Let a, b, c be nonzero real numbers such that a + b + c 
= 0 and

1

a
+ 1

b
+ 1

c
= 1

a + b + c
.

Prove that for all odd integers n

1

an
+ 1

bn
+ 1

cn
= 1

an + bn + cn
.

Problem 1.96 Let a ≤ b ≤ c be real numbers such that

a + b + c = 2

and

ab + bc + ca = 1.
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Prove that

0 ≤ a ≤ 1

3
≤ b ≤ 1 ≤ c ≤ 4

3
.

Problem 1.97 Prove that two of the four roots of the polynomial X4 +12X −5 add
up to 2.

Problem 1.98 Find m and solve the following equation, knowing that its roots form
a geometrical sequence:

X4 − 15X3 + 70X2 − 120X + m = 0.

Problem 1.99 Let x1, x2, . . . , xn be the roots of the polynomial Xn +Xn−1 +· · ·+
X + 1. Prove that

1

1 − x1
+ 1

1 − x2
+ · · · + 1

1 − xn

= n

2
.

Problem 1.100 Let a, b, c be rational numbers and let x1, x2, x3 be the roots of
the polynomial P(X) = X3 + aX2 + bX + c. Prove that if x1

x2
is a rational number,

different from 0 and −1, then x1, x2, x3 are rational numbers.

Problem 1.101 Solve in real numbers the system of equations

⎧
⎪⎨

⎪⎩

x + y + z = 0,

x3 + y3 + z3 = 18,

x7 + y7 + z7 = 2058.

Problem 1.102 Solve in real numbers the system of equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a + b = 8,

ab + c + d = 23,

ad + bc = 28,

cd = 12.

1.9 The Rearrangements Inequality

Let n ≥ 2 be a positive integer and let x1 < x2 < · · · < xn, y1 < y2 < · · · < yn be
two ordered sequences of real numbers. The rearrangements inequality states that
among all the sums of the form

S(σ ) = x1yσ(1) + x2yσ(2) + · · · + xnyσ(n),
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where σ is a permutation of the numbers 1,2, . . . , n, the maximal one is

x1y1 + x2y2 + · · · + xnyn,

and the minimal one is

x1yn + x2yn−1 + · · · + xny1.

Indeed, let σ be a permutation for which S(σ ) is maximal. (Such a permutation
exists, since the number of possible sums is finite.) Suppose, by way of contradic-
tion, that one can find i, j , with 1 ≤ i < j ≤ n, such that σ(i) > σ(j). Now, switch
σ(i) and σ(j) to obtain a new permutation σ ′. More precisely,

σ ′(k) =

⎧
⎪⎨

⎪⎩

σ(k), for k 
= i, j,

σ (j), for k = i,

σ (i), for k = j.

Observe that

S
(
σ ′) − S(σ ) = xiyσ(j) + xjyσ(i) − xiyσ(i) − xjyσ(j)

= (xi − xj )(yσ(j) − yσ(i)) > 0,

since xi < xj and yσ(j) < yσ(i). This implies S(σ ′) > S(σ ), contradicting thus the
maximality of S(σ ).

In a similar manner one can prove that x1yn +x2yn−1 +· · ·+xny1 is the minimal
sum.

Observations

1. If we replace the initial conditions with the less restrictive ones

x1 ≤ x2 ≤ · · · ≤ xn, y1 ≤ y2 ≤ · · · ≤ yn,

the conclusion still holds, only in this case there might exist more than one max-
imal (minimal) sum. Just consider the extreme case x1 = x2 = · · · = xn.

2. If the given sequences have opposite monotonies, then the first sum is minimal
and the second one maximal.

The rearrangements inequality has numerous interesting applications. Let us be-
gin with a very simple one.

Problem 1.103 Let a, b, c be real numbers. Prove that

a2 + b2 + c2 ≥ ab + bc + ca.
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Solution For symmetry reasons, we can assume that a ≤ b ≤ c. Consider the or-
dered sequences x1 ≤ x2 ≤ x3 and y1 ≤ y2 ≤ y3, with x1 = y1 = a, x2 = y2 = b,
and x3 = y3 = c. The rearrangements inequality then gives

x1y1 + x2y2 + x3y3 ≥ x1y2 + x2y3 + x3y1,

which is exactly what we wanted to prove.

Observations In a similar way we can prove the following more general result.
Given the real numbers x1, x2, . . . , xn, we have

x2
1 + x2

2 + · · · + x2
n ≥ x1xσ(1) + x2xσ(2) + · · · + xnxσ(n),

where σ is an arbitrary permutation of the numbers 1,2, . . . , n.

Problem 1.104 Let a, b, c be positive real numbers. Prove that

a3 + b3 + c3 ≥ 3abc.

Solution Although this inequality follows directly from the identity we presented
in the first chapter of this book, we will give another proof using rearrangements.

Obviously, we can assume with no loss of generality that a ≤ b ≤ c, which also
implies a2 ≤ b2 ≤ c2. Therefore,

a3 + b3 + c3 = a · a2 + b · b2 + c · c2 ≥ a · b2 + b · c2 + c · a2.

Now, observe that a ≤ b ≤ c implies bc ≥ ca ≥ ab, as well. Consequently,

3abc = a · (bc) + b · (ca) + c · (ab)

≤ a · (ca) + b · (ab) + c · (bc)

= a · b2 + b · c2 + c · a2.

We have thus obtained

a3 + b3 + c3 ≥ ab2 + bc2 + ca2 ≥ 3abc,

as desired.

The rearrangements inequality can also be helpful in proving other classical
inequalities. Check the following two problems to see alternative proofs of the
AM − GM and Cauchy–Schwarz inequalities.

Problem 1.105 Let a1, a2, . . . , an be positive real numbers. Prove that

a1 + a2 + · · · + an

n
≥ n

√
a1a2 · · ·an.
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Solution Denote by G the geometric mean of the given numbers and consider the
sequences

x1 = a1

G
, x2 = a1a2

G2 , . . . , xn−1 = a1a2 · · ·an−1

Gn−1 , xn = a1a2 · · ·an

Gn
= 1,

y1 = G

a1
, y2 = G2

a1a2
, . . . , yn−1 = Gn−1

a1a2 · · ·an−1
, yn = Gn

a1a2 · · ·an

= 1.

Obviously, if we arrange the xi ’s in order:

xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(n),

then

yσ(1) ≥ yσ(2) ≥ · · · ≥ yσ(n),

and hence the sum

xσ(1)yσ(1) + xσ(2)yσ(2) + · · · + xσ(n)yσ(n) = n

is minimal. But then

n ≤ x1yn + x2y1 + x3y2 + · · · + xnyn−1 = a1

G
+ a2

G
+ · · · + an

G
.

Clearly, this is equivalent to

a1 + a2 + · · · + an

n
≥ G,

that is, the AM − GM inequality.

Problem 1.106 Let a1, a2, . . . , an, and b1, b2, . . . , bn be real numbers. Prove that

(
a2

1 + a2
2 + · · · + a2

n

)(
b2

1 + b2
2 + · · · + b2

n

) ≥ (a1b1 + a2b2 + · · · + anbn)
2.

Solution Set

A =
√

a2
1 + a2

2 + · · · + a2
n, B =

√
b2

1 + b2
2 + · · · + b2

n,

and

x1 = a1

A
, x2 = a2

A
, . . . , xn = an

A
, xn+1 = b1

B
, xn+2 = b2

B
, . . . ,

x2n = bn

B
.

(We discarded the obvious case when all ai ’s or all bi’s equal zero.)
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We have
2n∑

k=1

x2
k ≥

2n∑

k=1

xkxσ(k),

for any permutation σ . (See the observation at the end of the solution of Prob-
lem 1.103.) In particular,

2 =
2n∑

k=1

x2
k ≥ x1xn+1 + x2xn+2 + · · · + xnx2n + xn+1x1 + · · · + x2nxn

= 2
a1b1 + a2b2 + · · · + anbn

AB
.

It follows that

AB ≥ a1b1 + a2b2 + · · · + anbn.

Taking instead

xn+1 = −b1

B
, xn+2 = −b2

B
, . . . , x2n = −bn

B
,

we obtain in a similar way

AB ≥ −(a1b1 + a2b2 + · · · + anbn),

hence

AB ≥ |a1b1 + a2b2 + · · · + anbn|.
Squaring the latter gives the Cauchy–Schwarz inequality.

Finally, solving the following old IMO problem is not difficult if one uses rear-
rangements.

Problem 1.107 Let a1, a2, . . . , an be distinct positive integers. Prove that

n∑

k=1

ak

k2 ≥
n∑

k=1

1

k
.

Solution Rearrange the ai ’s in increasing order, as b1 < b2 < · · · < bn. The rear-
rangements inequality yields

n∑

k=1

ak

k2 ≥
n∑

k=1

bk

k2 ,

since
1

12
>

1

22
> · · · > 1

n2
.
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On the other hand, it is not difficult to see that bk ≥ k, for all k, hence

n∑

k=1

bk

k2 ≥
n∑

k=1

k

k2 =
n∑

k=1

1

k
.

Now, rearrange some terms to solve the following problems.

Problem 1.108 Let a, b, c be positive real numbers. Prove the inequality

a

b + c
+ b

c + a
+ c

a + b
≥ 3

2
.

Problem 1.109 Let a, b, c be positive real numbers. Prove the inequality

a3

b2 + c2
+ b3

c2 + a2
+ c3

a2 + b2
≥ a + b + c

2
.

Problem 1.110 Let a, b, c be positive real numbers. Prove that

a + b + c ≤ a2 + b2

2c
+ b2 + c2

2a
+ c2 + a2

2b
≤ a3

bc
+ b3

ca
+ c3

ab
.

Problem 1.111 Let a, b, c be positive real numbers. Prove the inequality

a2b(b − c)

a + b
+ b2c(c − a)

b + c
+ c2a(a − b)

c + a
≥ 0.

Problem 1.112 Let a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn be two ordered
sequences of real numbers. Prove Chebyshev’s inequality

a1 + a2 + · · · + an

n
· b1 + b2 + · · · + bn

n
≤ a1b1 + a2b2 + · · · + anbn

n
.

Problem 1.113 Let a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn be two ordered
sequences of positive real numbers. Prove that

(a1 + b1)(a2 + b2) · · · (an + bn) ≤ (a1 + bσ(1))(a2 + bσ(2)) · · · (an + bσ(n)),

for any permutation σ .



Chapter 2
Geometry and Trigonometry

2.1 Geometric Inequalities

One of the most basic geometric inequalities is the triangle inequality: in every
triangle, the length of one side is less than the sum of the two other sides’ lengths.
More generally, for any three points A,B,C one has

AC + BC ≥ AB

with equality if and only if C lies on the line segment AB . Many interesting prob-
lems can be solved using this simple idea.

Problem 2.1 Let ABCD be a convex quadrilateral and let M,N be the midpoints
of AD and BC , respectively. Prove that

MN = AB + CD

2

if and only if AB is parallel to CD.

Solution Let P be the midpoint of the diagonal AC (see Fig. 2.1). Then MP and
PN are parallel to CD and AB , respectively. Moreover, we have MP = CD

2 and
PN = AB

2 . Applying the triangle inequality to �MNP gives

AB

2
+ CD

2
= PN + MP ≥ MN.

The equality occurs if and only if P lies on the line segment MN ; that is, if the lines
MP,PN and MN coincide. Since MP ‖ CD and NP ‖ AB , the latter holds true
if and only if AB and CD are parallel.

T. Andreescu, B. Enescu, Mathematical Olympiad Treasures,
DOI 10.1007/978-0-8176-8253-8_2, © Springer Science+Business Media, LLC 2011
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Fig. 2.1

Problem 2.2 Let D be the midpoint of the side BC of triangle ABC. Prove that

AD <
AB + AC

2
.

Solution Let the point A′ be such that D is the midpoint of AA′. Thus, the quadri-
lateral ABA′C is a parallelogram and AD = AA′

2 . In triangle ABA′, we have
AA′ < AB + BA′. The conclusion follows observing that BA′ = AC.

Problem 2.3 Let M be a point inside the triangle ABC. Prove that

AB + AC > MB + MC.

Solution Let N be the point at which BM intersects AC. Then we successively
have

AB + AC = AB + AN + NC > BN + NC = BM + MN + NC > BM + MC.

Problem 2.4 Let A,B,C and D be four points in space, not in the same plane.
Prove that

AC · BD < AB · CD + AD · BC.

Solution Consider a sphere which passes through the points B,C and D and inter-
sects the segments AB , AC and AD at the points B ′,C′ and D′. The intersection of
the sphere and the plane (ABC) is a circle, thus the quadrilateral BB ′C ′C is cyclic.
It follows that triangles ABC and AC ′B ′ are similar; hence

AB ′

AC
= AC ′

AB
= B ′C′

BC
.

We obtain

B ′C′ = BC · AB ′

AC
.
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Analogously, triangles ABD and AD′B ′ are similar, so that

B ′D′ = BD · AB ′

AD
.

We deduce that

B ′C ′

B ′D′ = BC · AD

AC · BD
.

In a similar way, we obtain

C′D′

B ′D′ = AB · CD

AC · BD
.

But in triangle A′B ′C′ we have B ′C′ + C ′D′ > B ′D′, and therefore it follows that

BC · AD

AC · BD
+ AB · CD

AC · BD
> 1,

so that AC · BD < AB · CD + AD · BC.

Observation If A,B,C,D are coplanar points, then one can prove that

AC · BD ≤ AB · CD + AD · BC,

with equality if and only if ABCD is a cyclic quadrilateral. The proof is similar, but
instead of constructing the sphere, one uses inversion.

Here are some proposed problems.

Problem 2.5 Let ABCD be a convex quadrilateral. Prove that

max(AB + CD,AD + BC) < AC + BD < AB + BC + CD + DA.

Problem 2.6 Let M be the midpoint of segment AB . Prove that if O is an arbitrary
point, then

|OA − OB| ≤ 2OM.

Problem 2.7 Prove that in an arbitrary triangle, the sum of the lengths of the alti-
tudes is less than the triangle’s perimeter.

Problem 2.8 Denote by P the perimeter of triangle ABC. If M is a point in the
interior of the triangle, prove that

1

2
P < MA + MB + MC < P.
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Problem 2.9 Prove that if A′,B ′ and C ′ are the midpoints of the sides BC, CA,
and AB , respectively, then

3

4
P < AA′ + BB ′ + CC′ < P.

Problem 2.10 In the convex quadrilateral ABCD, we have

AB + BD ≤ AC + CD.

Prove that AB < AC.

Problem 2.11 Consider n red and n blue points in the plane, no three of them being
collinear. Prove that one can connect each red point to a blue one with a segment
such that no two segments intersect.

Problem 2.12 Let n be an odd positive integer. On some field, n gunmen are placed
such that all pairwise distances between them are different. At a signal, every gun-
man takes out his gun and shoots the closest gunman. Prove that:

(a) at least one gunman survives;
(b) no gunman is shot more than five times;
(c) the trajectories of the bullets do not intersect.

Problem 2.13 Prove that the medians of a given triangle can form a triangle.

Problem 2.14 Let A and B be two points situated on the same side of a line XY .
Find the position of a point M on the line such that the sum AM + MB is minimal.

Problem 2.15 Let ABC be an acute triangle. Find the positions of the points
M,N,P on the sides BC,CA,AB , respectively, such that the perimeter of the tri-
angle MNP is minimal.

Problem 2.16 Seven real numbers are given in the interval (1,13). Prove that at
least three of them are the lengths of a triangle’s sides.

2.2 An Interesting Locus

Let us consider a triangle ABC and let D be the midpoint of segment BC. It is not
difficult to see that

[ABD] = [ACD].
Moreover, for each point M on the line AD we have

[ABM] = [ACM].
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Fig. 2.2

Fig. 2.3

We want to determine the locus of points M such that [ABM] = [ACM]. The
triangles ABM and ACM have the common side AM ; hence their areas are equal
if and only if the distances from B and C to AM are equal.

It is not difficult to see that this happens in two situations: AM passes through the
midpoint of BC or AM is parallel to BC (see Fig. 2.2). We derive that the locus of
points M in the interior of triangle ABC for which [ABM] = [ACM] is the median
AD.

Now, let us translate the sides AB and AC to A′B and A′′C and ask a similar
question. Find the locus of points M such that

[
A′BM

] = [
A′′CM

]

(see Fig. 2.3).
Let us rephrase this.

Problem 2.17 Given the quadrilateral ABCD such that AB and CD are not paral-
lel, find the locus of points M inside ABCD for which [ABM] = [CDM].

Solution We apply other translations. Denote by T the point of intersection of the
lines AB and CD. We translate the segment AB to T X and the segment CD to
T Y . It is not difficult to see that [ABM] = [T XM] and [CDM] = [T YM], hence
M lies on the median of triangle T XY .

We deduce that the desired locus is a segment: the part of the median of T XY

lying inside the quadrilateral ABCD (Fig. 2.4).
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Fig. 2.4

Fig. 2.5

Problem 2.18 Prove that in a trapezoid the midpoints of parallel sides, the point of
intersection of the diagonals and the point of intersection of the non-parallel sides
are collinear.

Solution This is an immediate application of the above property. We have (with the
notations in Fig. 2.5)

[ABP ] = [CDP ], [ABR] = [CDR],
hence R and P lie on the line through the intersection S of AB and CD found in
Problem 2.17. All we have to do is to prove that [ABQ] = [CDQ].

But

[ABQ] + [BQC] = [ABC] = [DBC] = [CDQ] + [BQC],
and we are done.

Problem 2.19 Suppose we are given a positive number k and a quadrilateral
ABCD in which AB and CD are not parallel. Find the locus of points M inside
ABCD for which [ABM] + [CDM] = k.
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Fig. 2.6

Solution Using the construction from Problem 2.17, we obtain

[ABM] + [CDM] = [T XMY ] = [T XY ] + [XMY ].
Since X and Y are fixed points, it follows that [XMY ] is a constant; therefore the
point M lies on a parallel to the line XY . According to the value of k, the locus is
either a segment (or a point) or it is the empty set.

Observation If M lies on this parallel, but in the exterior of the quadrilateral, it
is not difficult to see that in this case we either have [ABM] − [CDM] = k, or
[CDM] − [ABM] = k.

Problem 2.20 A circle with center O is inscribed in the convex quadrilateral
ABCD. If M and N are the midpoints of the diagonals AC and BD, prove that
points O,M , and N are collinear.

Solution Since a circle is inscribed in quadrilateral ABCD (Fig. 2.6), we know that

AB + CD = AD + BC.

Multiplying the equality by r/2, where r is the radius of the circle, we obtain

[OAB] + [OCD] = [OAD] + [OBC].
Thus

[OAB] + [OCD] = 1

2
[ABCD].

On the other hand,

[NAB] + [NCD] = 1

2
[ABD] + 1

2
[BCD] = 1

2
[ABCD].

Similarly,

[MAB] + [MCD] = 1

2
[ABCD].
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It follows that O , M and N belong to the locus of the points X such that

[XAB] + [XCD] = 1

2
[ABCD],

and they lie on the same segment if the opposite sides of ABCD are not parallel. If
AB is parallel to CD or AD is parallel to BC, the result is trivial.

Let us investigate the following problems:

Problem 2.21 Find the locus of points M in plane of triangle ABC such that
[ABM] = 2[ACM].

Problem 2.22 Let D be a point on the side BC of triangle ABC and let M be a
point on AD. Prove that

[ABM]
[ACM] = BD

CD
.

Deduce Ceva’s theorem: if the segments AD, BE and CF are concurrent then

BD

CD
· CE

AE
· AF

BF
= 1.

Problem 2.23 Let ABCD be a convex quadrilateral and let M be a point in its
interior such that

[MAB] = [MBC] = [MCD] = [MDA].
Prove that one of the diagonals of ABCD passes through the midpoint of the other
diagonal.

Problem 2.24 Let ABCD be a convex quadrilateral. Find the locus of points M in
its interior such that

[MAB] = 2[MCD].

Problem 2.25 Let ABCD be a convex quadrilateral and let k > 0 be a real number.
Find the locus of points M in its interior such that

[MAB] + 2[MCD] = k.

Problem 2.26 Let d, d ′ be two non-parallel lines in the plane and let k > 0. Find
the locus of points the sum of whose distances to d and d ′ is equal to k.

Problem 2.27 Let ABCD be a convex quadrilateral and let E and F be the points
of intersections of the lines AB,CD and AD,BC, respectively. Prove that the mid-
points of the segments AC, BD, and EF are collinear.
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Fig. 2.7

Fig. 2.8

Problem 2.28 In the interior of a quadrilateral ABCD, consider a variable point P .
Prove that if the sum of distances from P to the sides is constant, then ABCD is a
parallelogram.

2.3 Cyclic Quads

A convex quadrilateral is called cyclic if its vertices lie on a circle. It is not difficult
to see that a necessary and sufficient condition for this is that the sum of the opposite
angles of the quadrilateral be equal to 180◦ (Fig. 2.7).

As a special case, if two opposite angles of the quadrilateral are right angles,
then the quadrilateral is cyclic and the diagonal which splits the quadrilateral into
two right triangles is a diameter of the circumscribed circle.

Another necessary and sufficient condition is that the angle between one side and
a diagonal be equal to the angle between the opposite side and the other diagonal
(Fig. 2.8).

Problem 2.29 Let ABCD be a cyclic quadrilateral. Recall that the incenter of a tri-
angle is the intersection of the angles’ bisectors. Prove that the incenters of triangles
ABC,BCD,CDA and DAB are the vertices of a rectangle.
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Fig. 2.9

Solution The incenter of a triangle is the intersection of the angle’s bisectors. Let
K,L,M and N be the four incenters (Fig. 2.9). We then have

∠AKB = 180◦ − ∠BAC/2 − ∠ABC/2 = 90◦ + ∠ACB/2.

Similarly,

∠ANB = 90◦ + ∠ADB/2.

But since ABCD is cyclic, we have ∠ACB = ∠ADB , hence ∠AKB = ∠ANB .
This means that the quadrilateral ANKB is also cyclic, so

∠NKB = 180◦ − ∠BAN = 180◦ − ∠A/2.

In the same manner we obtain

∠BKL = 180◦ − ∠C/2,

hence

∠NKL = 360◦ − (∠NKB + ∠BKL) = (∠A + ∠C)/2 = 180◦/2 = 90◦.

Analogously, we prove that the other three angles of KLMN are right angles.

Problem 2.30 In the triangle ABC, the altitude, angle bisector and median from C

divide the angle ∠C into four equal angles. Find the angles of the triangle.

Solution No cyclic quads in the text (Fig. 2.10)! However, a solution using some
trigonometry is at hand: with usual notations, from the angle bisector’s theorem, we
have

AE

EB
= AC

CB
= b

a
,
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Fig. 2.10

so that
AE

AB
= b

a + b

and

AE = bc

a + b
.

Also,

FB

FE
= BC

CE
= a

b
.

But

FB = c

2
, FE = AF − AE = c

2
− bc

a + b
= c(a − b)

2(a + b)
,

so that we obtain
c
2

c(a−b)
2(a+b)

= a

b
,

which is equivalent to

a + b

a − b
= a

b
,

or b2 + 2ab − a2 = 0. We get the quadratic equation

(
b

a

)2

+ 2
b

a
− 1 = 0,

from which we deduce that
b

a
= √

2 − 1.

On the other hand, using the formula for the length of an angle bisector we have

b = CE = 2ab

a + b
cos

∠C

2
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Fig. 2.11

hence

cos
∠C

2
= a + b

2a
= 1

2
+ 1

2

b

a
= 1

2
+ 1

2

(√
2 − 1

) =
√

2

2
.

We conclude that ∠C
2 = 45◦, so ∠C = 90◦, ∠A = 67.5◦ and ∠B = 22.5◦.

Now, let us try a purely geometric approach. Let D,E and F on AB be the feet
of the altitude, angle bisector and median (Fig. 2.11).

Drop a perpendicular from E to BC in the point M and let N be the intersection
between MD and AC.

The quadrilateral CDEM is cyclic, since

∠CDE = ∠CME = 90◦.

Then

∠CMD = ∠CED = ∠CAD.

It follows that triangles CMN and CAB are similar.
This implies that CD is the median from C in triangle CMN , hence AMEN is

a parallelogram (MN and AE have the same midpoint).
Finally, AN ‖ ME and since ME ⊥ BC, it follows that AC ⊥ BC.
We conclude that ∠C = 90◦, ∠A = 67.5◦ and ∠B = 22.5◦.

Observation Another proof using cyclic quads follows from the lemma below:

Lemma Let ABC be a triangle inscribed in the circle centered at O such that
the angles ∠B and ∠C are acute. If H is its orthocenter, then ∠BAH = ∠CAO

(Fig. 2.12).

Proof Let A′ be the point on the circumcircle such that AA′ is a diameter. Then
ABA′C is cyclic, hence ∠ABC = ∠AA′C. It follows that their complementary
angles ∠BAH and ∠CAA′ are equal as well. �
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Fig. 2.12

Fig. 2.13

Returning to our problem, note that from the statement it follows that the angles
A and B are acute. The orthocenter of the triangle ABC lies on the altitude CD.
Because ∠ACD = ∠BCF , it follows from the lemma that the circumcenter of the
triangle ABC lies on the line CF . On the other hand, the circumcenter lies on the
perpendicular bisector of the segment AB . We deduce that the circumcenter is the
point F , hence ∠C = 90◦.

Problem 2.31 Let E and F be two points on the sides BC and CD of the square
ABCD, such that ∠EAF = 45◦. Let M and N be the intersections of the diagonal
BD with AE and AF , respectively. Let P be the intersection of MF and NE. Prove
that AP is perpendicular to EF (Fig. 2.13).

Solution First, observe that ∠NBE = 45◦, so ABEN is cyclic. This implies that

∠AEN = ∠ABN = 45◦,
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so that triangle ANE is a right isosceles triangle. It follows that EN is perpendicular
to AF . Similarly, FM is perpendicular to AE, so P is the orthocenter of triangle
AEF . The conclusion is obvious.

Look for the cyclic quads in the following problems.

Problem 2.32 Let D,E, and F be the feet of the altitudes of the triangle ABC.
Prove that the altitudes of ABC are the angle bisectors of the triangle DEF .

Problem 2.33 Let ABCD be a convex quadrilateral. Prove that AB · CD + AD ·
BC = AC · BD if and only if ABCD is cyclic.

Problem 2.34 Let A′, B ′, and C′ be points in the interior of the sides BC, CA,
and AB of the triangle ABC. Prove that the circumcircles of the triangles AB ′C′,
BA′C′, and CA′B ′ have a common point.

Problem 2.35 Let ABCD be a cyclic quadrilateral. Prove that the orthocenters of
the triangles ABC,BCD,CDA and DAB are the vertices of a quadrilateral con-
gruent to ABCD and prove that the centroids of the same triangles are the vertices
of a cyclic quadrilateral.

Problem 2.36 Let K,L,M,N be the midpoints of the sides AB,BC,CD,DA,
respectively, of a cyclic quadrilateral ABCD. Prove that the orthocenters of the
triangles AKN,BKL,CLM,DMN are the vertices of a parallelogram.

Problem 2.37 Prove that the perpendiculars dropped from the midpoints of the
sides of a convex quadrilateral to the opposite sides are concurrent.

Problem 2.38 In the convex quadrilateral ABCD the diagonals AC and BD inter-
sect at O and are perpendicular. Prove that projections of O on the quadrilateral’s
sides are the vertices of a cyclic quadrilateral.

2.4 Equiangular Polygons

We call a convex polygon equiangular if its angles are congruent. Thus, an equian-
gular triangle is an equilateral one, an equiangular quadrilateral is a rectangle (or a
square). One interesting property of the equiangular polygons is stated in the fol-
lowing problem.

Problem 2.39 Let P be a variable point in the interior or on the sides of an equian-
gular polygon. Prove that the sum of distances from P to the polygon’s sides is
constant.
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Fig. 2.14

Fig. 2.15

Solution It is not difficult to see that the statement is true for regular polygons.
Indeed, connect P to the polygon’s vertices and write its area as a sum of areas of
the triangles thus obtained (see Fig. 2.14 in the case of a pentagon).

If the polygon’s sides have length a and the distances from P to the sides are
d1, d2, . . . , dn, respectively, then the area A of the polygon equals 1

2

∑n
k=1 adk hence

d1 + d2 + · · · + dn = 2A
a

is constant.
Now, if the polygon is an arbitrary equiangular one, we can always “expand” it

to a regular polygon, adding thus to the sum of distances a constant value (the sum
of distances between parallel sides) as seen in Fig. 2.15.

The converse of the above property is true in the case of a triangle. Indeed, if P

is a variable point in the interior or on the sides of triangle ABC and the sum of
distances from P to triangle’s sides is constant, then ABC is an equilateral triangle.
We can see this if we move P to A, P to B and P to C and observe that triangle’s
altitudes must have the same length. It is not difficult to see that this happens if and
only if ABC is equilateral.

The converse is not true for a quadrilateral, because a parallelogram has this
property and (unless it is a rectangle) it is not an equiangular polygon.

Problem 2.40 Let a1, a2, . . . , an be positive real numbers and let ε be the primitive
nth root of the unity ε = cos 2π

n
+ i sin 2π

n
. Prove that if the sides of an equiangular
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Fig. 2.16

polygon have lengths a1, a2, . . . , an (in counter-clockwise order) then

a1 + a2ε + a3ε
2 + · · · + anε

n−1 = 0.

Solution We draw a picture for the case n = 6 (the general case is essentially the
same).

Consider the polygon’s sides as vectors, oriented clockwise (see Fig. 2.16). Then
the sum of the vectors equals zero. Now, translate all vectors such that they have the
same origin O . If we look at the complex numbers corresponding to their extrem-
ities, choosing a1 on the positive real axis, we see that these are a1, a2ε, a3ε

2, . . . ,
and anε

n−1, respectively. Since the sum of the vectors equals zero, we deduce that
a1 + a2ε + a3ε

2 + · · · + anε
n−1 = 0.

Observation The converse of the statement is generally not true. For instance, if
a, b, c, d are the side lengths of a quadrilateral and a + bi + ci2 + di3 = 0, then
(a −c)+ i(b−d) = 0; this equality is fulfilled if the quadrilateral is a parallelogram
(and not necessarily an equiangular quadrilateral, that is, a rectangle). However,
from the solution we see that if a1, a2, . . . , an are positive numbers and a1 + a2ε +
a3ε

2 + · · · + anε
n−1 = 0, then there exists an equiangular polygon with sides of

lengths a1, a2, . . . , an.
It is worth mentioning that in the case n = 3, there exists another neces-

sary and sufficient condition: if a, b, c are the complex numbers corresponding to
the (distinct) points A,B,C, then the triangle ABC is equilateral if and only if
a + bε + cε2 = 0, where ε is one of the (non-real) cubic roots of the unity.

Problem 2.41 Prove that if an equiangular hexagon have side lengths a1, . . . , a6 (in
this order) then a1 − a4 = a5 − a2 = a3 − a6.
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Fig. 2.17

Solution Choose three non-adjacent vertices of the hexagon and draw parallels to
the sides through them, as in Fig. 2.17. Suppose that the parallels mutually intersect
at the points K,L,M .

Thus, the hexagon is partitioned into three parallelograms and a triangle. Since
the hexagon is equiangular, triangle KLM is equilateral. Finally, observe that
LM = a1 − a4, KL = a5 − a2 and MK = a3 − a6.

Another solution is possible using the preceding problem. Let ε = cos 2π
6 +

i sin 2π
6 be a primitive sixth root of unity. Then

a1 + a2ε + a3ε
2 + a4ε

3 + a5ε
4 + a6ε

5 = 0.

But ε3 = cosπ + i sinπ = −1, so ε4 = −ε and ε5 = −ε2. We deduce that

(a1 − a4) + (a2 − a5)ε + (a3 − a6)ε
2 = 0.

On the other hand, since ε3 = −1 (and ε 
= −1) we see that ε2 − ε + 1 = 0. Thus,
ε is a common root of the equations (a1 − a4) + (a2 − a5)z + (a3 − a6)z

2 = 0 and
z2 − z + 1 = 0, both with real coefficients. Since ε /∈ R, it follows that the two
equations share another common root ε, so the coefficients of the two equations
must be proportional; that is, (a1 − a4) = −(a2 − a5) = (a3 − a6), as desired.

Try the following problems.

Problem 2.42 Let ABCDE be an equiangular pentagon whose side lengths are
rational numbers. Prove that the pentagon is regular.

Problem 2.43 Prove that p is a prime number if and only if every equiangular
polygon with p sides of rational lengths is regular.

Problem 2.44 An equiangular polygon with an odd number of sides is inscribed in
a circle. Prove that the polygon is regular.
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Fig. 2.18

Problem 2.45 Let a1, a2, . . . , an be the side lengths of an equiangular polygon.
Prove that if a1 ≥ a2 ≥ · · · ≥ an, then the polygon is regular.

Problem 2.46 The side lengths of an equiangular octagon are rational numbers.
Prove that the octagon has a symmetry center.

2.5 More on Equilateral Triangles

One of the most beautiful problems in geometry is the following one.

Problem 2.47 In the exterior of triangle ABC three equilateral triangles ABC′,
BCA′ and CAB ′ are constructed. Prove that the centroids of these triangles are the
vertices of an equilateral triangle.

Solution It is said that the problem was discovered by Napoleon. We do not know
the proof that he gave to this statement, but surely it was different from the following
one. We use complex numbers. Note that if triangle ABC is equilateral and oriented
counter-clockwise and its vertices correspond to the complex numbers a, b, c, then

a + bε + cε2 = 0, (∗)

where ε = −1+i
√

3
2 is the cube root of unity which represents a 120◦ counter-

clockwise rotation. The converse is also true: suppose (∗) holds. Notice that
1+ ε + ε2 = 0. Thus ε2 = −1− ε and we obtain ε(b− c) = (c−a). Hence segment
CA is obtained from segment BC by a 120◦ counter-clockwise rotation.

Similarly AB is obtained from CA by a 120◦ counter-clockwise rotation and
hence ABC is equilateral and oriented counter-clockwise. Now, let us return to
Napoleon’s problem.

Assume the triangle ABC is oriented counter-clockwise as in Fig. 2.18. Since
A′CB , B ′AC and C′BA are oriented counter-clockwise and are equilateral, we
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have

a′ + cε + bε2 = 0, b′ + aε + cε2 = 0, c′ + bε + aε2 = 0,

respectively. The complex numbers corresponding to the centroids of triangles
A′BC, AB ′C and ABC ′ are

a′′ = 1

3

(
a′ + b + c

)
,

b′′ = 1

3

(
a + b′ + c

)

and

c′′ = 1

3

(
a + b + c′),

respectively.
We have to check that a′′ + b′′ε + c′′ε2 = 0. Observe that

a′′ = 1

3

(−cε − bε2 + b + c
) = 1

3

(
b
(
1 − ε2) + c(1 − ε)

)
,

b′′ε = 1

3

(
a − aε − cε2 + c

)
ε = 1

3

(
a
(
ε − ε2) + c(ε − 1)

)
,

c′′ε2 = 1

3

(
a + b − bε − aε2)ε2 = 1

3

(
a
(
ε2 − ε

) + b
(
ε2 − 1

))
.

Adding up the three equalities gives the desired result.

The reader who wants a “proof without words” for Napoleon’s problem should
carefully examine Fig. 2.19 (which may also be of some interest to carpet
manufacturers. . .).

Problem 2.48 In the exterior of the acute triangle ABC, three equilateral triangles
ABC′, BCA′ and CAB ′ are constructed. Prove that the segments AA′,BB ′ and
CC ′ are concurrent. Also, prove that the circumcircles of the equilateral triangles
pass through the same point (Fig. 2.20).

Solution We start with another problem: find the point T in the interior of triangle
ABC for which the sum T A+T B +T C is minimal. Rotate clockwise the points A

and T around C with 60◦, to B ′ and T ′, respectively (see Fig. 2.21). Then B ′T ′ =
AT and since triangle CT T ′ is equilateral, T T ′ = T C.

We deduce that the sum T A + T B + T C is equal to BT + T T ′ + T ′B ′, and the
latter is minimal when the points B,T ,T ′ and B ′ are collinear. Thus, the point T for
which the sum T A+T B +T C is minimal lies on BB ′. Similarly, we can prove that
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Fig. 2.19

Fig. 2.20

T lies on AA′ and CC′, so the three segments are concurrent. Also (see Fig. 2.22)
notice that we have

∠AT C = ∠CT ′B ′ = 180◦ − ∠CT ′T = 120◦

and

∠BT C = 180◦ − ∠CT T ′ = 120◦.
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Fig. 2.21

Fig. 2.22

We deduce that the point T is the point in the interior of the triangle with the property
that

∠AT B = ∠BT C = ∠CT A = 120◦

(this point is called Toricelli’s point). In this case the quadrilaterals AT CB′,
AT BC′ and BCT A′ are cyclic, so the circumcircles of the equilateral triangles
pass through T .

Here are some more problems.

Problem 2.49 Let M be a point in the interior of the equilateral triangle ABC and
let A′,B ′,C′ be its projections onto the sides BC,CA and AB , respectively.

Prove that the sum of lengths of the inradii of triangles MAC ′,MBA′ and MCB ′
equals the sum of lengths of the inradii of triangles MAB ′,MBC′ and MCA′
(Fig. 2.23).

Problem 2.50 Let I be the incenter of triangle ABC. It is known that for every
point M ∈ (AB), one can find the points N ∈ (BC) and P ∈ (AC) such that I is the
centroid of triangle MNP . Prove that ABC is an equilateral triangle.

Problem 2.51 Let ABC be an acute triangle. The interior bisectors of the angles
∠B and ∠C meet the opposite sides in the points L and M , respectively. Prove that
there exists a point K in the interior of the side BC such that triangle KLM is
equilateral if and only if ∠A = 60◦.
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Fig. 2.23

Problem 2.52 Let P1P2 . . . Pn be a convex polygon with the following property:
for any two vertices Pi and Pj , there exists a vertex Pk such that ∠PiPkPj = 60◦.
Prove that the polygon is an equilateral triangle.

Problem 2.53 From a point on the circumcircle of an equilateral triangle ABC

parallels to the sides BC,CA and AB are drawn, intersecting the sides CA,AB and
BC at the points M,N,P , respectively. Prove that the points M,N,P are collinear.

Problem 2.54 Let P be a point on the circumcircle of an equilateral triangle ABC.
Prove that the projections of any point Q on the lines PA,PB and PC are the
vertices of an equilateral triangle.

2.6 The “Carpets” Theorem

We start with a textbook problem.

Problem 2.55 Let M and N be the midpoints of the sides AB and BC of the square
ABCD. Let P = AN ∩ DM , Q = AN ∩ CM and R = CM ∩ DN .

Prove the equality

[AMP ] + [BMQN] + [CNR] = [DPQR].
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Fig. 2.24

Solution Let us try brute force (Fig. 2.24). Assume with no loss of generality that
the square’s area equals 1. Since the figure is symmetric with respect to BD, it
suffices to prove that

[AMP ] + [BMQ] = [DPQ].
The triangles AQD and NQB are similar, so

AQ

QN
= AD

BN
= 2.

It follows that

[AQB] = 2

3
[ABN ] = 1

6

and then

[BMQ] = 1

12
.

Let N ′ = AN ∩ CD. Then triangles AMP and N ′DP are also similar and

PM

PD
= AM

DN ′ = 1

4
.

Consequently,

[AMP ] = 1

5
[AMD] = 1

20
.

Finally, it is easy to see that

PQ

AD
= 4

15
,

and

[PQD] = 4

15
[AND] = 2

15
.
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Fig. 2.25

Fig. 2.26

Now,

1

12
+ 1

20
= 2

15

and we are done.

However, this is an inelegant solution. Fortunately, there exists a much simpler
one, with no computations and that works for arbitrary points M and N on the
respective sides!

First, let us see the “carpets” theorem. Suppose that the floor of a rectangular
room is completely covered by a collection of nonoverlapping carpets. If we move
one of the carpets, then clearly the overlapping area is equal to the uncovered area
of the floor (see Fig. 2.25).

Of course, the shape of the room or the shape of the carpets are irrelevant.
Now, let us return to Problem 2.55, taking M and N at arbitrary positions:
The “room” is ABCD and the “carpets” are triangles ADN and CDM

(Fig. 2.26). Since

[ADN ] = [CDM] = 1

2
[ABCD],

the two carpets would completely cover the room if they did not overlap. Hence the
area of the overlapping surface, that is, [DPQR], equals the area of the uncovered
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Fig. 2.27

Fig. 2.28

surface, i.e.

[AMP ] + [BMQN] + [CNR].
Arrange some carpets to solve the following problems.

Problem 2.56 Let ABCD be a parallelogram. The points M,N and P are chosen
on the segments BD, BC and CD, respectively, such that CNMP is a parallelo-
gram. Let E = AN ∩ BD and F = AP ∩ BD. Prove that

[AEF ] = [DFP ] + [BEN].

Problem 2.57 Consider the quadrilateral ABCD. The points M,N,P and Q are
the midpoints of the sides AB,BC,CD and DA (Fig. 2.27).

Let X = AP ∩BQ, Y = BQ∩CM , Z = CM ∩DN and T = DN ∩AP . Prove
that

[XYZT ] = [AQX] + [BMY ] + [CNZ] + [DPT ].

Problem 2.58 Through the vertices of the smaller base AB of the trapezoid ABCD

two parallel lines are drawn, intersecting the segment CD. These lines and the trape-
zoid’s diagonals divide it into seven triangles and a pentagon (see Fig. 2.28).

Show that the area of the pentagon equals the sum of areas of the three triangles
sharing a common side with the trapezoid.
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Fig. 2.29

Problem 2.59 Let M be a point in the interior of triangle ABC. Three lines are
drawn through M , parallel to triangle’s sides, determining three trapezoids. One
draws a diagonal in each trapezoid such that they have no common endpoints, di-
viding thus ABC into seven parts, four of them being triangles (see Fig. 2.29).

Prove that the area of one of the four triangles equals the sum of the areas of the
other three.

2.7 Quadrilaterals with an Inscribed Circle

Everybody knows that in any triangle one can inscribe a circle whose center is at
the intersection point of the angles’ bisectors.

What can we say about a quadrilateral? If there exists a circle touching all the
quadrilateral’s sides, then its center is equidistant from them, hence it lies on all four
angle bisectors. We deduce that a necessary and sufficient condition for the existence
of an inscribed circle is that the quadrilateral’s angle bisectors are concurrent (in
fact, this works for arbitrary convex polygons).

This does not happen in every quadrilateral. We can always draw a circle tangent
to three of the four sides (its center being the point of intersection of two of the
bisectors) (Fig. 2.30).

If three of the four angle bisectors meet at one point, it is easy to see that the
fourth one will also pass through that point and that a circle can be inscribed in the
quadrilateral.

Another necessary and sufficient condition for the existence of an inscribed circle
in a quadrilateral is given by the following theorem, due to Pithot.

Theorem Let ABCD be a convex quadrilateral. There exists a circle inscribed in
ABCD if and only if:

AB + CD = AD + BC.

Proof Suppose there exists a circle inscribed in the quadrilateral, touching the sides
AB,BC,CD and DA at the points K,L,M,N , respectively. Then, since the tan-
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Fig. 2.30

Fig. 2.31

gents from a point to a circle have equal lengths, we have AK = AN,BK =
BL,CM = CL and DM = DN (Fig. 2.31).

If we add up these equalities, we obtain the desired result. �

Conversely, suppose AB + CD = AD + BC. Draw a circle tangent to AB,BC

and CD. If the circle is not tangent to AD, draw from A the tangent to the circle
and let E be the point of intersection with CD. Suppose, for instance, that E lies in
the interior of CD (Fig. 2.32).

Since the circle is inscribed in the quadrilateral ABCE, we have AB + CE =
AE+BC. On the other hand, from the hypothesis, we have AB +CD = AD+BC,
or AB + CE + ED = AD + BC. From these, we derive ED + AE = AD, which
is impossible. It follows that the circle is also tangent to AD, hence it is inscribed
in ABCD.

If E lies outside the line segment CD, the proof is almost identical.
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Fig. 2.32

Fig. 2.33

Another nice proof of the converse is the following: if AB = AD then BC = CD

and the conclusion is immediate. Suppose, with no loss of generality, that AB <

AD, and let X ∈ AD be such that AB = AX. Let Y ∈ CD be such that DX = DY .
Since AB + CD = AD + BC, it follows that CY = BC (Fig. 2.33).

Thus, the triangles ABX,DXY and CYB are isosceles, so the perpendicular
bisectors of the sides BX,XY and YB of triangle BXY are also the angle bisectors
of ∠A,∠D, and ∠C of the quadrilateral. Since the perpendicular bisectors of the
sides of a triangle are concurrent, we obtain the desired conclusion.

Problem 2.60 Prove that if in the quadrilateral ABCD is inscribed a circle with
center O , then the sum of the angles ∠AOB and ∠COD equals 180◦.

Problem 2.61 Let ABCD be a quadrilateral with an inscribed circle. Prove that the
circles inscribed in triangles ABC and ADC are tangent to each other.

Problem 2.62 Let ABCD be a convex quadrilateral. Suppose that the lines AB and
CD intersect at E and the lines AD and BC intersect at F , such that the points E

and F lie on opposite sides of the line AC. Prove that the following statements are
equivalent:
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Fig. 2.34

(i) a circle is inscribed in ABCD;
(ii) BE + BF = DE + DF ;

(iii) AE − AF = CE − CF .

Problem 2.63 Let ABCD be a convex quadrilateral. Suppose that the lines AB

and CD intersect at E and the lines AD and BC intersect at F . Let M and N be
two arbitrary points on the line segments AB and BC, respectively. The line EN

intersects AF and MF at P and R. The line MF intersects CE at Q. Prove that if
the quadrilaterals AMRP and CNRQ have inscribed circles, then ABCD has an
inscribed circle (Fig. 2.34).

Problem 2.64 The points A1,A2,C1 and C2 are chosen in the interior of the sides
CD,BC,AB and AD of the convex quadrilateral ABCD. Denote by M the point
of intersection of the lines AA2 and CC1 and by N the point of intersection of
the lines AA1 and CC2. Prove that if one can inscribe circles in three of the four
quadrilaterals ABCD,A2BC1M,AMCN and A1NC2D, then a circle can be also
inscribed in the fourth one.

Problem 2.65 A line cuts a quadrilateral with an inscribed circle into two polygons
with equal areas and equal perimeters. Prove that the line passes through the center
of the inscribed circle.

Problem 2.66 In the convex quadrilateral ABCD we have ∠B = ∠C = 120◦, and

AB2 + BC2 + CD2 = AD2.

Prove that ABCD has an inscribed circle.

Problem 2.67 Let ABCD be a quadrilateral circumscribed about a circle, whose
interior and exterior angles are at least 60◦. Prove that

1

3

∣∣AB3 − AD3
∣∣ ≤ ∣∣BC3 − CD3

∣∣ ≤ 3
∣∣AB3 − AD3

∣∣.

When does equality hold?
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2.8 Dr. Trig Learns Complex Numbers

It is known that every complex number z = a + bi can be written in the form

z = r(cos θ + i sin θ),

where r = √
a2 + b2 is the absolute value of z and θ is its argument. For instance,

i = cos π
2 + i sin π

2 , 1 + i =
√

2
2 (cos π

4 + i sin π
4 ), etc. Also, if z = r(cos θ + i sin θ),

then a simple inductive argument proves that

zn = rn(cosnθ + i sinnθ)

(known as de Moivre’s formula).
Now, if z = cos θ + i sin θ (that is, its absolute value equals 1) then

1

z
= 1

cos θ + i sin θ
= cos θ − i sin θ

cos2 θ + sin2 θ
= cos θ − i sin θ.

We obtain the useful formulas

cos θ = 1

2

(
z + 1

z

)
, sin θ = 1

2i

(
z − 1

z

)
.

Moreover, using de Moivre’s formula, we have

cosnθ = 1

2

(
zn + 1

zn

)
, sinnθ = 1

2i

(
zn − 1

zn

)
.

These formulas may be very useful in solving a lot of Dr. Trig’s problems. We might
even forget some of his formulas. For instance, we have

cos 2θ = 1

2

(
z2 + 1

z2

)
= 1

2

(
z + 1

z

)2

− 1 = 2

[
1

2

(
z + 1

z

)]2

− 1 = 2 cos2 θ − 1.

Also

[
1

2

(
z + 1

z

)]3

= 1

8

(
z3 + 3z + 3

z
+ 1

z3

)
= 1

8

(
z3 + 1

z3

)
+ 3

8

(
z + 1

z

)
.

We deduce

cos3 θ = 1

4
cos 3θ + 3

4
cos θ,

a formula sometimes written as

cos 3θ = 4 cos3 θ − 3 cos θ.

Now, let us put some of this at work.
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Problem 2.68 Let a, b, c be real numbers such that

cosa + cosb + cos c = sina + sinb + sin c = 0.

Prove that

cos 2a + cos 2b + cos 2c = sin 2a + sin 2b + sin 2c = 0.

Solution Let x = cosa + i sina, y = cosb + i sinb and z = cos c + i sin c. From
the hypothesis we have

x + y + z = 0,

and also

1

x
+ 1

y
+ 1

z
= (cosa − i sina) + (cosb − i sinb) + (cos c − i sin c) = 0.

It follows that xy + xz + yz = 0 so

x2 + y2 + z2 = (x + y + z)2 − 2(xy + xz + yz) = 0.

But then

cos 2a + cos 2b + cos 2c + i(sin 2a + sin 2b + sin 2c) = 0,

and we are done.

Problem 2.69 Prove the equality

cos
π

7
+ cos

3π

7
+ cos

5π

7
= 1

2
.

Solution Let

z = cos
π

7
+ i sin

π

7
.

Then z7 = cosπ + i sinπ = −1, hence z7 + 1 = 0. On the other hand, we have

cos
π

7
+ cos

3π

7
+ cos

5π

7
= 1

2

(
z + 1

z

)
+ 1

2

(
z3 + 1

z3

)
+ 1

2

(
z5 + 1

z5

)

= z10 + z8 + z6 + z4 + z2 + 1

2z5
.

Since z7 + 1 = 0, we have z10 = −z3 and z8 = −z. It follows that

z10 + z8 + z6 + z4 + z2 + 1

= z6 + z4 − z3 + z2 − z + 1

= z6 − z5 + z4 − z3 + z2 − z + 1 + z5 = z7 + 1

z + 1
+ z5 = z5,
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hence

cos
π

7
+ cos

3π

7
+ cos

5π

7
= z5

2z5 = 1

2
.

Problem 2.70 Find a closed form for the sum

Sn = sina + sin 2a + · · · + sinna.

Solution Let us ask for more: we will find a closed form for both Sn and

Cn = cosa + cos 2a + · · · + cosna.

Let z = cosa + i sina. Then

Cn + iSn = z + z2 + · · · + zn = z
zn − 1

z − 1
.

Since cosx − 1 = −2 sin2 x
2 and sinx = 2 sin x

2 cos x
2 , we obtain

zn − 1

z − 1
= cosna + i sinna − 1

cosa + i sina − 1
= −2 sin2 na

2 + 2i sin na
2 cos na

2

−2 sin2 a
2 + 2i sin a

2 cos a
2

= sin na
2

sin a
2

(
cos na

2 + i sin na
2

cos a
2 + i sin a

2

)
= sin na

2

sin a
2

(
cos

(n − 1)a

2
+ i sin

(n − 1)a

2

)
.

Thus

Cn + iSn = (cosa + i sina)
sin na

2

sin a
2

(
cos

(n − 1)a

2
+ i sin

(n − 1)a

2

)

= sin na
2

sin a
2

(
cos

(n + 1)a

2
+ i sin

(n + 1)a

2

)
.

Finally

Sn = sin na
2 sin (n+1)a

2

sin a
2

, Cn = sin na
2 cos (n+1)a

2

sin a
2

.

Now, help Dr. Trig to solve the following problems.

Problem 2.71 Let a, b, c be real numbers such that

cosa + cosb + cos c = sina + sinb + sin c = 0.

Prove that

cos(a + b + c) = 1

3
(cos 3a + cos 3b + cos 3c),
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sin(a + b + c) = 1

3
(sin 3a + sin 3b + sin 3c).

Problem 2.72 Find the value of the product cos 20◦ cos 40◦ cos 80◦.

Problem 2.73 Prove that

1

cos 6◦ + 1

sin 24◦ + 1

sin 48◦ = 1

sin 12◦ .

Problem 2.74 Prove that

cos
2π

7
+ cos

4π

7
+ cos

6π

7
+ 1

2
= 0.

Problem 2.75 Prove the equality

sin
π

n
sin

2π

n
· · · sin

(n − 1)π

n
=

√
n

2n−1 .

Problem 2.76 Solve the equation

sinx + sin 2x + sin 3x = cosx + cos 2x + cos 3x.

Problem 2.77 Prove that

cos
π

5
= 1 + √

5

4
.





Chapter 3
Number Theory and Combinatorics

3.1 Arrays of Numbers

Many Olympiad problems refer to arrays of numbers. Let us start with some exam-
ples.

Problem 3.1 The numbers 1,2, . . . , n2 are arranged in an n×n array in the follow-
ing way:

1 2 3 . . . n

n + 1 n + 2 n + 3 . . . 2n
...

...

n2 − n + 1 n2 − n + 2 n2 − n + 3 . . . n2

Pick n numbers from the array such that any two numbers are in different rows and
different columns. Find the sum of these numbers.

Solution If we denote by aij the number in the ith row and j th column then

aij = (i − 1)n + j

for all i, j = 1,2, . . . , n. Because any two numbers are in different rows and differ-
ent columns, it follows that from each row and each column exactly one number
is chosen. Let a1j1 , a2j2 , . . . , anjn be the chosen numbers, where j1, j2, . . . , jn is a
permutation of indices 1,2, . . . , n. We have

n∑

k=1

akjk
=

n∑

k=1

(
(k − 1)n + jk

) = n

n∑

k=1

(k − 1) +
n∑

k=1

jk.

But
n∑

k=1

jk = n(n + 1)

2
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since j1, j2, . . . , jn is a permutation of indices 1,2, . . . , n. It follows that

n∑

k=1

akjk
= n(n2 + 1)

2
.

Problem 3.2 The entries of an n × n array of numbers are denoted by xij , with
1 ≤ i, j ≤ n. For all i, j, k, 1 ≤ i, j, k ≤ n the following equality holds

xij + xjk + xki = 0.

Prove that there exist numbers t1, t2, . . . , tn such that

xij = ti − tj

for all i, j , 1 ≤ i, j ≤ n.

Solution Setting i = j = k in the given condition yields 3xii = 0, hence xii = 0 for
all i, 1 ≤ i ≤ n. For k = j we obtain

xij + xjj + xji = 0,

hence xij = −xji , for all i, j . Now fix i and j and add up the equalities

xij + xjk + xki = 0

for k = 1,2, . . . , n. It follows that

nxij +
n∑

k=1

xjk +
n∑

k=1

xki = 0

or

nxij +
n∑

k=1

xjk −
n∑

k=1

xik = 0.

If we define

ti = 1

n

n∑

k=1

xik,

we obtain

xij = ti − tj ,

for all i, j , as desired.
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Problem 3.3 Prove that among any 10 entries of the table

0 1 2 3 . . . 9
9 0 1 2 . . . 8
8 9 0 1 . . . 7
...

1 2 3 4 . . . 0

situated in different rows and different columns, at least two are equal.

Solution Denote by aij the entries of the table, 1 ≤ i, j ≤ 10 and observe that aij =
ahk if and only if i − j ≡ h − k (mod 10). Let aiji

, i = 1,2, . . . ,10 be 10 entries
situated in different rows and different columns. If these entries are all different,
then the differences i − ji give distinct residues mod 10, hence

10∑

i=1

(i − ji) ≡ 0 + 1 + · · · + 9 ≡ 5 (mod 10).

On the other hand, since j1, j2, . . . , j10 is a permutation of the indices 1,2, . . . ,10,
we have

10∑

i=1

(i − ji) =
10∑

i=1

i −
10∑

i=1

ji = 0,

hence 0 ≡ 5 (mod 10), a contradiction.

Here are some proposed problems.

Problem 3.4 Prove that the sum of any n entries of the table

1 1
2

1
3 . . . 1

n

1
2

1
3

1
4 . . . 1

n+1

...

1
n

1
n+1

1
n+2 . . . 1

2n−1

situated in different rows and different columns is not less than 1.

Problem 3.5 The entries of an n × n array of numbers are denoted by aij , 1≤ i,

j ≤ n. The sum of any n entries situated on different rows and different columns is
the same. Prove that there exist numbers x1, x2, . . . , xn and y1, y2, . . . , yn, such that

aij = xi + yj ,

for all i, j .
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Problem 3.6 In an n × n array of numbers all rows are different (two rows are
different if they differ in at least one entry). Prove that there is a column which can
be deleted in such a way that the remaining rows are still different.

Problem 3.7 The positive integers from 1 to n2 (n ≥ 2) are placed arbitrarily on
squares of an n × n chessboard. Prove that there exist two adjacent squares (having
a common vertex or a common side) such that the difference of the numbers placed
on them is not less than n + 1.

Problem 3.8 A positive integer is written in each square of an n2 ×n2 chess board.
The difference between the numbers in any two adjacent squares (sharing an edge) is
less than or equal to n. Prove that at least �n

2 �+ 1 squares contain the same number.

Problem 3.9 The numbers 1,2, . . . ,100 are arranged in the squares of an 10 × 10
table in the following way: the numbers 1, . . . ,10 are in the bottom row in increasing
order, numbers 11, . . . ,20 are in the next row in increasing order, and so on. One can
choose any number and two of its neighbors in two opposite directions (horizontal,
vertical, or diagonal). Then either the number is increased by 2 and its neighbors are
decreased by 1, or the number is decreased by 2 and its neighbors are increased by 1.
After several such operations the table again contains all the numbers 1,2, . . . ,100.
Prove that they are in the original order.

Problem 3.10 Prove that one cannot arrange the numbers from 1 to 81 in a 9 × 9
table such that for each i, 1 ≤ i ≤ 9 the product of the numbers in row i equals the
product of the numbers in column i.

Problem 3.11 The entries of a matrix are integers. Adding an integer to all entries
on a row or on a column is called an operation. It is given that for infinitely many
integers N one can obtain, after a finite number of operations, a table with all entries
divisible by N . Prove that one can obtain, after a finite number of operations, the
zero matrix.

3.2 Functions Defined on Sets of Points

Several Olympiad problems deal with functions defined on certain sets of points.
These problems are interesting in that they combine both geometrical and algebraic
ideas.

Problem 3.12 Let n > 2 be an integer and f : P → R a function defined on the set
of points in the plane, with the property that for any regular n-gon A1A2 . . .An,

f (A1) + f (A2) + · · · + f (An) = 0.

Prove that f is the zero function.
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Solution Let A be an arbitrary point. Consider a regular n-gon AA1A2 . . .An−1.
Let k be an integer, 0 ≤ k ≤ n − 1. A rotation with center A of angle 2kπ

n
sends

the polygon AA1A2 . . .An−1 to Ak0Ak1 . . .Ak,n−1, where Ak0 = A and Aki is the
image of Ai , for all i = 1,2, . . . , n − 1.

From the condition of the statement, we have

n−1∑

k=0

n−1∑

i=0

f (Aki) = 0.

Observe that in the sum the number f (A) appears n times, therefore

nf (A) +
n−1∑

k=0

n−1∑

i=1

f (Aki) = 0.

On the other hand, we have

n−1∑

k=0

n−1∑

i=1

f (Aki) =
n−1∑

i=1

n−1∑

k=0

f (Aki) = 0,

since the polygons A0iA1i . . .An−1,i are all regular n-gons. From the two equalities
above we deduce f (A) = 0, hence f is the zero function.

Problem 3.13 Let n ≥ 4 be an integer and let p ≥ 2n − 3 be a prime number.
Let S be a set of n points in the plane, no three of which are collinear, and let
f : S → {0,1, . . . , p − 1} be a function such that

1. there exists a unique point A ∈ S such that f (A) = 0;
2. if C(X,Y,Z) is the circle determined by the distinct points X,Y,Z ∈ S, then

∑

P∈S∩C(X,Y,Z)

f (P ) ≡ 0 (modp).

Prove that all points of S lie on a circle.

Solution Suppose there exist points B and C such that no other point of S lies on
C(A,B,C). We have

f (B) + f (C) ≡ 0 (modp),

so, if f (B) = i 
= 0, then f (C) = p − i. Let

σ =
∑

X∈S

f (X).

If a number of b circles pass through A,B and other points of S and a number of
c circles pass through A,C and other points of S, applying the condition from the
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Fig. 3.1

hypothesis to all these circles, we obtain

σ + (b − 1)i ≡ 0 (modp),

σ + (c − 1)(p − i) ≡ 0 (modp),

hence

b + −2 ≡ 0 (modp).

Since 1 ≤ b, c ≤ n − 2, we have 2 ≤ b + c ≤ 2n − 4 < p, hence b = c = 1, which is
a contradiction.

It follows that for any points B,C ∈ S, there exists at least one more point of S

lying on C(A,B,C). This implies the fact that all the points of S lie on a circle.
Indeed, consider an inversion I of pole A. The set of points S − {A} is transformed
into the set of points I (S −{A}) = N and the circles C(A,X,Y ), with X,Y ∈ S are
transformed into lines IXIY through points of N . The above condition then reduces
to the following: for any two points IX, IY of N , there exists at least one other point
of N lying on the line IXIY . We can prove that all points of N are collinear, whence
the points of S lie on a circle.

Indeed, suppose the points are not collinear and choose points A,B,C such that
the distance from C to the line AB is minimal. Let C ′ be the projection of C on the
line AB . From the hypothesis it follows that there exists another point D ∈ N on
the line AB . The point C′ divides the line AB into two half lines and at least two of
the points A,B,D lie in one of these half lines. Suppose these points are B and D

located as in Fig. 3.1.
If B′′ is a point on CD such that BB ′′ is parallel to CC′ and B ′ is the projection

of B on CD, it is not difficult to see that BB ′ < BB ′′ < CC′, contradicting the
minimality of CC ′.

Here are more examples.

Problem 3.14 Let D be the union of n ≥ 1 concentric circles in the plane. Suppose
that the function f : D → D satisfies

d
(
f (A),f (B)

) ≥ d(A,B)

for every A,B ∈ D (d(M,N) is the distance between the points M and N).
Prove that

d
(
f (A),f (B)

) = d(A,B)

for every A,B ∈ D.
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Problem 3.15 Let S be a set of n ≥ 4 points in the plane, such that no three of them
are collinear and not all of them lie on a circle. Find all functions f : S → R with
the property that for any circle C containing at least three points of S,

∑

P∈C∩S

f (P ) = 0.

Problem 3.16 Let P be the set of all points in the plane and L be the set of all lines
of the plane. Find, with proof, whether there exists a bijective function f : P → L

such that for any three collinear points A,B,C, the lines f (A),f (B) and f (C) are
either parallel or concurrent.

Problem 3.17 Let S be the set of interior points of a sphere and C be the set of
interior points of a circle. Find, with proof, whether there exists a function f : S →
C such that d(A,B) ≤ d(f (A),f (B)), for any points A,B ∈ S.

Problem 3.18 Let S be the set of all polygons in the plane. Prove that there exists
a function f : S → (0,+∞) such that

1. f (P ) < 1, for any P ∈ S;
2. If P1,P2 ∈ S have disjoint interiors and P1 ∪P2 ∈ S, then f (P1 ∪P2) = f (P1)+

f (P2).

3.3 Count Twice!

Many interesting results can be obtained by counting the elements of a set in two
different ways. Moreover, counting twice can be a good problem solving strategy.
Let us consider the following examples.

Problem 3.19 In how many ways can a committee of k persons with a chairman be
chosen from a set of n people?

Solution We can choose the k members of the committee in
(
n
k

)
ways and then

the chairman in k ways, so that the answer is k
(
n
k

)
. On the other hand, we can first

choose the chairman (this can be done in n ways) and next the rest of k −1 members
from the remaining n − 1 persons, leading to a total of n

(
n−1
k−1

)
possibilities. Thus,

we obtain the following identity:

k

(
n

k

)
= n

(
n − 1

k − 1

)
.

Problem 3.20 Consider a finite sequence of real numbers the sum of any 7 consec-
utive terms is negative and the sum of any 11 consecutive terms is positive. Find the
greatest number of terms of such a sequence.
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Solution It is not difficult to see that such a sequence cannot have 77 or more terms.
For that, we add up in two ways the first 77 terms, obtaining a contradiction:

(x1 + x2 + · · · + x7) + (x8 + x9 + · · · + x14) + · · · + (x71 + x72 + · · · + x77) < 0,

(x1 + x2 + · · · + x11) + (x12 + x13 + · · · + x22) + · · ·
+ (x67 + x68 + · · · + x77) > 0.

In fact, the number of terms is much less. The sequence cannot contain more than
16 terms. To prove that, we refine our double counting technique.

Suppose the sequence has at least 17 terms. We can arrange them in a 7 × 11
table as follows:

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x1 x2 . . . x10 x11
x2 x3 . . . x11 x12
...

...
...

...

x6 x7 . . . x15 x16
x7 x8 . . . x16 x17

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Now, add up all the entries in two ways: by rows and by columns. We again reach a
contradiction.

Finally, there is an example of such a sequence with 16 terms:

5,5,−13,5,5,5,−13,5,5,−13,5,5,5,−13,5,5.

Problem 3.21 Prove the equality

∑

d|n
ϕ(d) = n,

where ϕ denotes Euler’s totient function.

Solution The Euler’s totient function ϕ(n) denotes the number of positive integers
less than or equal to n and relatively prime to n, that is, the number of elements of
the set

{
k
∣∣1 ≤ k ≤ n, and gcd(k, n) = 1

}
.

If the prime decomposition of the positive integer n is

n = p
a1
1 p

a2
2 . . . p

ak

k ,

then

ϕ(n) = n

(
1 − 1

p1

)(
1 − 1

p2

)
· · ·

(
1 − 1

pk

)
,

and, using this formula, a computational proof of our assertion is possible.
However, we will present a simpler proof, based on counting arguments.
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Consider the fractions

1

n
,

2

n
,

3

n
, . . . ,

n − 1

n
,
n

n
.

Obviously, there are n such fractions (this is not a silly observation; just the first
way to count them).

Now, consider the same fractions in their lowest terms. Obviously, their denom-
inators are divisors of n. How many of them have still the denominator equal to n?
Clearly, those whose numerator was relatively prime to n, that is, ϕ(n). How many
have now the denominator equal to some d , where d is a divisor of n? In every such
fraction, the numerator has to be less than or equal to d and relatively prime to d ,
hence there are ϕ(d) such fractions. We thus obtained

∑

d|n
ϕ (d) = n,

as desired.

Try counting twice in the following problems.

Problem 3.22 Find how many committees with a chairman can be chosen from a
set of n persons. Derive the identity

(
n

1

)
+ 2

(
n

2

)
+ 3

(
n

3

)
+ · · · + n

(
n

n

)
= n2n−1.

Problem 3.23 In how many ways can one choose k balls from a set containing n−1
red balls and a blue one? Derive the identity

(
n

k

)
=

(
n − 1

k

)
+

(
n − 1

k − 1

)
.

Problem 3.24 Let S be a set of n persons such that:

(i) any person is acquainted to exactly k other persons in S;
(ii) any two persons that are acquainted have exactly l common acquaintances in S;

(iii) any two persons that are not acquainted have exactly m common acquaintances
in S.

Prove that

m(n − k) − k(k − l) + k − m = 0.

Problem 3.25 Let n be an odd integer greater than 1 and let c1, c2, . . . , cn be inte-
gers. For each permutation a = (a1, a2, . . . , an) of {1,2, . . . , n}, define

S(a) =
n∑

i=1

ciai.
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Prove that there exist permutations a 
= b of {1,2, . . . , n} such that n! is a divisor of
S(a) − S(b).

Problem 3.26 Let a1 ≤ a2 ≤ · · · ≤ an = m be positive integers. Denote by bk the
number of those ai for which ai ≥ k. Prove that

a1 + a2 + · · · + an = b1 + b2 + · · · + bm.

Problem 3.27 In how many ways can one fill a m × n table with ±1 such that the
product of the entries in each row and each column equals −1?

Problem 3.28 Let n be a positive integer. Prove that

n∑

k=0

(
n

k

)(
n + k

k

)
=

n∑

k=0

2k

(
n

k

)2

.

Problem 3.29 Prove that

12 + 22 + · · · + n2 =
(

n + 1
2

)
+ 2

(
n + 1

3

)
.

Problem 3.30 Let n and k be positive integers and let S be a set of n points in the
plane such that

(a) no three points of S are collinear, and
(b) for every point P of S there are at least k points of S equidistant from P .

Prove that

k <
1

2
+ √

2 · n.

Problem 3.31 Prove that

τ(1) + τ(2) + · · · + τ(n) =
⌊

n

1

⌋
+

⌊
n

2

⌋
+ · · · +

⌊
n

n

⌋
,

where τ(k) denotes the number of divisors of the positive integer k.

Problem 3.32 Prove that

σ(1) + σ(2) + · · · + σ(n) =
⌊

n

1

⌋
+ 2

⌊
n

2

⌋
+ · · · + n

⌊
n

n

⌋
,

where σ(k) denotes the sum of divisors of the positive integer k.

Problem 3.33 Prove that

ϕ(1)

⌊
n

1

⌋
+ ϕ(2)

⌊
n

2

⌋
+ · · · + ϕ(n)

⌊
n

n

⌋
= n(n + 1)

2
,

where ϕ denotes Euler’s totient function.
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3.4 Sequences of Integers

Sequences of integers are a favorite of Olympiad problem writers, since such se-
quences involve several different mathematical concepts, including, for example,
algebraic techniques, recursive relations, divisibility and primality.

Problem 3.34 Consider the sequence (an)n≥1 defined by a1 = a2 = 1, a3 = 199
and

an+1 = 1989 + anan−1

an−2

for all n ≥ 3. Prove that all the terms of the sequence are positive integers.

Solution We have

an+1an−2 = 1989 + anan−1.

Replacing n by n − 1 yields

anan−3 = 1989 + an−1an−2

and we obtain

an+1an−2 − anan−1 = anan−3 − an−1an−2.

This is equivalent to

an−2(an+1 + an−1) = an(an−1 + an−3)

or
an+1 + an−1

an

= an−1 + an−3

an−2

for all n ≥ 4. If n is even, we obtain

an+1 + an−1

an

= an−1 + an−3

an−2
= · · · = a3 + a1

a2
= 200,

while if n is odd,

an+1 + an−1

an

= an−1 + an−3

an−2
= · · · = a4 + a2

a3
= 11.

It follows that

an+1 =
{

200an − an−1, if n is even;

11an − an−1, if n is odd.

An inductive argument shows that all an are positive integers.
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Problem 3.35 Let a, b, c be positive real numbers. The sequence (an)n≥1 is defined
by a1 = a, a2 = b and

an+1 = a2
n + c

an−1

for all n ≥ 2. Prove that the terms of the sequence are all positive integers if and

only if a, b and a2+b2+c
ab

are positive integers.

Solution Clearly, all the terms of the sequence are positive numbers. Write the
recursive relation as

an+1an−1 = a2
n + c.

Replacing n by n − 1 yields

anan−2 = a2
n−1 + c,

and by subtracting the two equalities we deduce

an−1(an+1 + an−1) = an(an + an−2).

Therefore
an+1 + an−1

an

= an + an−2

an−1

for all n ≥ 3. It follows that the sequence bn = an+1+an−1
an

is constant, say bn = k, for
all n ≥ 2. Then the sequence (an) satisfies the recursive relation

an+1 = kan − an−1

for all n ≥ 2 and since a3 = b2+c
a

= kb − a, we derive that

k = a2 + b2 + c

ab
.

Now, if a, b and k are positive integers, it follows inductively that an is a positive
integer for all n ≥ 1. Conversely, suppose that an is a positive integer for all n ≥ 1.
Then a, b are positive integers and k = a3+a

b
is a rational number. Let k = p

q
, where

p and q are relatively prime positive integers. We want to prove that q = 1. Suppose
that q > 1. From the recursive relation we obtain

q(an+1 + an−1) = pan,

and hence q divides an for all n ≥ 2. We prove by induction on s that qs divides an

for all n ≥ s + 1. We have seen that this is true for s = 1. Suppose qs−1 divides an

for all n ≥ s. We have

an+2 = p

q
an+1 − an,
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which is equivalent to
an+2

qs−1
= p

an+1

qs
− an

qs−1
.

If n ≥ s, then qs−1 divides an and an+2, hence qs divides an+1. It follows that qs

divides an for all n ≥ s + 1. Finally, we have

as+2 = a2
s+1 + c

as

or

c = asas+2 − a2
s ,

which implies that c is divisible by q2(s−1) for all s ≥ 1. Because c > 0, this is a
contradiction.

Problem 3.36 Consider the sequence (an)n≥0 given by the following relation:
a0 = 4, a1 = 22, and for all n ≥ 2,

an = 6an−1 − an−2.

Prove that there exist sequences of positive integers (xn)n≥0, (yn)n≥0 such that

an = y2
n + 7

xn − yn

,

for all n ≥ 0.

Solution Observe that an is an even positive integer for all n and that the sequence
(an)n≥0 is increasing. The last assertion follows inductively if we write the recursive
relation under the form

an − an−1 = 5(an−1 − an−2) + 4an−2.

Define

xn = an + an−1

2
, yn = an − an−1

2
with x0 = 3, y0 = 1. Observe that

xn = 3xn−1 + 4yn−1

and

yn = 2xn−1 + 3yn−1.

We have an = xn + yn, hence it is sufficient to prove that

xn + yn = y2
n + 7

xn − yn
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or

x2
n = 2y2

n + 7

for all n. We use induction. The equality is true for n = 0. Suppose that x2
n−1 =

2y2
n−1 + 7. Then

x2
n − 2y2

n − 7 = (3xn−1 + 4yn−1)
2 − 2(2xn−1 + 3yn−1)

2 − 7

= x2
n−1 − 2y2

n−1 − 7 = 0,

which proves our claim.

Try your hand at the following problems.

Problem 3.37 Prove that there exist sequences of odd positive integers (xn)n≥3,

(yn)n≥3 such that

7x2
n + y2

n = 2n

for all n ≥ 3.

Problem 3.38 Let x1 = x2 = 1, x3 = 4 and

xn+3 = 2xn+2 + 2xn+1 − xn

for all n ≥ 1. Prove that xn is a square for all n ≥ 1.

Problem 3.39 The sequence (an)n≥0 is defined by a0 = a1 = 1 and

an+1 = 14an − an−1

for all n ≥ 1. Prove that the number 2an − 1 is a square for all n ≥ 0.

Problem 3.40 The sequence (xn)n≥1 is defined by x1 = 0 and

xn+1 = 5xn +
√

24x2
n + 1

for all n ≥ 1. Prove that all xn are positive integers.

Problem 3.41 Let (an)n≥1 be an increasing sequence of positive integers such that

1. a2n = an + n for all n ≥ 1;
2. if an is a prime, then n is a prime.

Prove that an = n, for all n ≥ 1.

Problem 3.42 Let a0 = a1 = 1 and an+1 = 2an −an−1 +2, for all n ≥ 1. Prove that

an2+1 = an+1an,

for all n ≥ 0.
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Problem 3.43 Let a0 = 1 and an+1 = a0 · · ·an + 4, for all n ≥ 0. Prove that

an − √
an+1 = 2,

for all n ≥ 1.

Problem 3.44 The sequence (xn)n≥1 is defined by x1 = 1, x2 = 3 and xn+2 =
6xn+1 − xn, for all n ≥ 1. Prove that xn + (−1)n is a perfect square, for all n ≥ 1.

Problem 3.45 Let (an)n≥1 be a sequence of non-negative integers such that an ≥
a2n + a2n+1, for all n ≥ 1. Prove that for any positive integer N we can find N

consecutive terms of the sequence, all equal to zero.

3.5 Equations with Infinitely Many Solutions

In this section we have selected several Diophantine equations having an infinite
number of solutions.

Problem 3.46 Find integer solutions for the equation

4x2 + 9y2 = 72z2.

Solution We first notice that x must be divisible by 3 and that y is an even integer.
Setting x = 3u and y = 2v yields

36u2 + 36v2 = 72z2

or

2z2 = u2 + v2.

We deduce that u,v have the same parity, so that u + v and u − v are even integers.
It follows that

z2 =
(

u + v

2

)2

+
(

u − v

2

)2

.

This is the well-known Pythagorean equation, whose solutions are

z = k
(
m2 + n2),

u + v

2
= 2kmn,

u − v

2
= k

(
m2 − n2),

yielding

x = 3k
(
2mn + m2 − n2), y = 2k

(
2mn − m2 + n2), z = k

(
m2 + n2).
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Problem 3.47 Prove that the equation

x2 + (x + 1)2 = y2

has infinitely many solutions in positive integers.

Solution Observe that x = 3, y = 5 is a solution. We define the sequences
(xn)n≥1, (yn)n≥1 by

xn+1 = 3xn + 2yn + 1,

yn+1 = 4xn + 3yn + 2,

with x1 = 3 and y1 = 5. Suppose that (xn, yn) is a solution of the equation. We claim
that (xn+1, yn+1) is also a solution and since the sequences are clearly increasing,
the equation has infinitely many solutions.

Indeed, we have

x2
n+1 + (xn+1 + 1)2 = (3xn + 2yn + 1)2 + (3xn + 2yn + 2)2.

Using the equality

x2
n + (xn + 1)2 = y2

n

yields

(3xn + 2yn + 1)2 + (3xn + 2yn + 2)2 = (4xn + 3yn + 2)2

and hence

x2
n+1 + (xn+1 + 1)2 = y2

n+1,

thus proving the claim.

Here are some proposed problems.

Problem 3.48 Find all triples of integers (x, y, z) such that

x2 + xy = y2 + xz.

Problem 3.49 Let n be an integer number. Prove that the equation

x2 + y2 = n + z2

has infinitely many integer solutions.

Problem 3.50 Let m be a positive integer. Find all pairs of integers (x, y) such that

x2(x2 + y
) = ym+1.
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Problem 3.51 Let m be a positive integer. Find all pairs of integers (x, y) such that

x2(x2 + y2) = ym+1.

Problem 3.52 Find all non-negative integers a, b, c, d,n such that

a2 + b2 + c2 + d2 = 7 · 4n.

Problem 3.53 Show that there are infinitely many systems of positive integers
(x, y, z, t) which have no common divisor greater than 1 and such that

x3 + y3 + z2 = t4.

Problem 3.54 Let k ≥ 6 be an integer number. Prove that the system of equations

{
x1 + x2 + · · · + xk−1 = xk,

x3
1 + x3

2 + · · · + x3
k−1 = xk,

has infinitely many integral solutions.

Problem 3.55 Solve in integers the equation

x2 + y2 = (x − y)3 .

Problem 3.56 Let a and b be positive integers. Prove that if the equation

ax2 − by2 = 1

has a solution in positive integers, then it has infinitely many solutions.

Problem 3.57 Prove that the equation

x + 1

y
+ y + 1

x
= 4

has infinitely many solutions in positive integers.

Problem 3.58 Prove that the equation

x3 + y3 − 2z3 = 6(x + y + 2z)

has infinitely many solutions in positive integers.
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3.6 Equations with No Solutions

One of the most famous problems in number theory is Fermat’s Last Theorem. The
theorem states that for n ≥ 3, the equation

xn + yn = zn

has no non-zero integer solutions. Hundreds of articles and books were written about
this theorem, which was finally proved by Andrew Wiles in 1994.

For our purposes, however, we will consider much simpler Diophantine equa-
tions with no solutions.

Problem 3.59 Prove that the equation

x3 + y3 + z3 = 2002

has no solutions in integers.

Solution We first notice that a cube of an integer is congruent to either 0,1 or
−1 (mod 9). Then the sum of two cubes can be congruent to 0,1,−1,2 or −2
and the sum of three cubes to 0,1,−1,2,−2,3 or −3. Since 2002 is congruent to
4 (mod 9) the equation has no solutions.

Problem 3.60 Prove that the equation

4x3 − 7y3 = 2003

has no solutions in integers.

Solution Because 2003 = 1 + 7 · 286, the equation is equivalent to

4x3 − 1 = 7
(
y3 + 286

)
.

Notice that if x is an integer, then x3 ≡ 0, 1 or 6 (mod 7), so that 4x3 ≡ 0, 4 or
3 (mod 7). We conclude that 4x3 − 1 is not divisible by 7, hence the equation has
no integer solutions.

Problem 3.61 Prove that the equation

x3 + y4 = 7

has no solution in integers.

Solution The residues of a cube modulo 13 are 0,1,5,8 or 12 while the residues of
a fourth power are 0,1,3 or 9 modulo 13. This leads us to conclude that the equation
x3 + y4 ≡ 7 (mod 13) cannot hold.
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Here are some proposed problems.

Problem 3.62 Prove that the equation

4xy − x − y = z2

has no positive integer solutions.

Problem 3.63 Prove that the equation

6
(
6a2 + 3b2 + c2) = 5d2

has no solution in non-zero integers.

Problem 3.64 Prove that the system of equations

{
x2 + 6y2 = z2,

6x2 + y2 = t2

has no positive integer solutions.

Problem 3.65 Let k and n be positive integers, with n > 2. Prove that the equation

xn − yn = 2k

has no positive integer solutions.

Problem 3.66 Prove that the equation

x2000 − 1

x − 1
= y2

has no positive integer solutions.

Problem 3.67 Prove that the equation

4
(
x4

1 + x4
2 + · · · + x4

14

) = 7
(
x3

1 + x3
2 + · · · + x3

14

)

has no solution in positive integers.

Problem 3.68 Prove that the equation

x2 + y2 + z2 = 20112011 + 2012

has no solution in integers.
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Problem 3.69 Prove that the system

x6 + x3 + x3y + y = 147157,

x3 + x3y + y2 + y + z9 = 157147

has no solution in integers x, y, and z.

Problem 3.70 Prove that the equation

x5 + y5 + 1 = (x + 2)5 + (y − 3)5

has no solution in integers.

Problem 3.71 Prove that the equation

x5 = y2 + 4

has no solution in integers.

Problem 3.72 Prove that the equation

x3 − 3xy2 + y3 = 2891

has no solution in integers.

3.7 Powers of 2

Many problems deal in one way or another with powers of two and related ideas
like binary representation and divisibility.

Problem 3.73 Prove that the numbers Fn = 22n + 1, n = 0,1,2, . . . , are pairwise
coprime.

Solution Let m > n and d = gcd(Fm,Fn). Now, Fm − 2 = 22m − 1 = (22n+1
)2m−n−1

− 1 is divisible by 22n+1 − 1, since xk − 1 is always divisible by x − 1. But 22n+1 −
1 = (22n −1)(22n +1) = (22n −1)Fn, hence Fn divides Fm −2. We deduce that d is
a divisor of 2 and, since all Fn are odd numbers, d must be equal to 1, thus proving
the claim. Observe that the above property incidentally also proves that there exist
infinitely many prime numbers.

Problem 3.74 The sequence (an)n≥1 satisfies a1 = 2, a2 = 3 and, for each n ≥ 2,
either an+1 = 2an−1 or an+1 = 3an − 2an−1. Prove that no integer between 1600
and 2000 can be a term of the sequence.
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Solution Clearly, the sequence is not uniquely determined by the above conditions.
A short analysis shows that the first 6 terms could be

(a) 2,3,4,6,8,12;
(b) 2,3,4,6,10,12;
(c) 2,3,4,6,10,18;
(d) 2,3,5,6,10,12;
(e) 2,3,5,6,10,18;
(f) 2,3,5,6,8,12;
(g) 2,3,5,9,10,18;
(h) 2,3,5,9,10,12;
(i) 2,3,5,9,17,18;
(j) 2,3,5,9,17,33;

The key observation is that each of the numbers 2,3,4,5,6,8,9,10,12,17,18
and 33 can be written as a sum of two powers of 2 (or, equivalently, that their binary
representation contains exactly two 1’s). Thus, we may conjecture that an = 2xn +
2yn , for some integers xn, yn and try induction. Unfortunately, the attempt fails
unless we observe something more. Let us take, for instance, the case (h) and write
the terms as sums of powers of 2: 2 = 20 +20, 3 = 20 +21, 5 = 20 +22, 9 = 20 +23,
10 = 21 + 23, 12 = 22 + 23. If you do not see the pattern, let us take case (c): 2 =
20 + 20, 3 = 20 + 21, 4 = 21 + 21, 6 = 21 + 22, 10 = 21 + 23, 18 = 21 + 24.

We can see that at each step, exactly one of the numbers xn and yn increases with
one unit. Now, we can state a stronger induction hypothesis which is easier to prove
(this is not uncommon!): for each n, an = 2xn + 2yn , with xn ≤ xn+1, yn ≤ yn+1 and
xn + yn + 1 = xn+1 + yn+1. This obviously holds for n = 1,2. Suppose it holds for
all k ≤ n and look at an+1.

If an+1 = 2an−1, then

an+1 = 2
(
2xn−1 + 2yn−1

) = 2xn−1+1 + 2yn−1+1.

If xn = xn−1 + 1, yn = yn−1, then let xn+1 = xn and yn+1 = yn + 1. We obtain
an+1 = 2xn+1 + 2yn+1 . If xn = xn−1, yn = yn−1 + 1, then let xn+1 = xn + 1 and
yn+1 = yn. Also, we get an+1 = 2xn+1 + 2yn+1 .

If an+1 = 3an − 2an−1, then

an+1 = 3
(
2xn + 2yn

) − 2
(
2xn−1 + 2yn−1

)
.

If xn = xn−1 + 1, yn = yn−1, then

an+1 = 3
(
2xn−1+1 + 2yn−1

) − 2
(
2xn−1 + 2yn−1

) = 2xn−1+2 + 2yn−1 ,

so that if we take xn+1 = xn + 1 and yn+1 = yn, we obtain an+1 = 2xn+1 + 2yn+1 .
The case xn = xn−1, yn = yn−1 + 1 is similar thus our assertion is proved.

Finally, we notice that the binary representations of the numbers 1600 and 2000
are 11001000000 and 11111010000, respectively. Clearly, no number between them
has a binary representation with only two 1’s. In fact, we can replace 1600 and 2000
with 1537 and 2047.
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Here are some proposed problems:

Problem 3.75 Let n be a positive integer such that 2n + 1 is a prime number. Prove
that n = 2k , for some integer k.

Problem 3.76 Let n be a positive integer such that 2n − 1 is a prime number. Prove
that n is a prime number.

Problem 3.77 Prove that the number 21992 − 1 can be written as a product of 6
integers greater than 2248.

Problem 3.78 Determine the remainder of 32n − 1 when divided by 2n+3.

Problem 3.79 Prove that for each n, there exists a number An, divisible by 2n,
whose decimal representation contains n digits, each of them equal to 1 or 2.

Problem 3.80 Using only the digits 1 and 2, suppose we write down numbers with
2n digits such that the digits of every two of them differ in at least 2n−1 places.
Prove that no more than 2n+1 such numbers exist.

Problem 3.81 Does there exist a natural number N which is a power of 2 whose
digits (in the decimal representation) can be permuted to form a different power
of 2?

Problem 3.82 For a positive integer N , let s(N) the sum of its digits, in the decimal
representation. Prove that there are infinitely many n for which s(2n) > s(2n+1).

Problem 3.83 Find all integers of the form 2n (where n is a natural number) with
the property that deleting the first digit of its decimal representation again yields a
power of 2.

Problem 3.84 Let a0 = 0, a1 = 1 and, for n ≥ 2, an = 2an−1 + an−2. Prove that an

is divisible by 2k if and only if n is divisible by 2k .

Problem 3.85 If A = {a1, a2, . . . , ap} is a set of real numbers such that a1 > a2 >

· · · > ap , we define

s(A) =
p∑

k=1

(−1)k−1ak.

Let M be a set of n positive integers. Prove that
∑

A⊆M s(A) is divisible by 2n−1.

Problem 3.86 Find all positive integers a, b, such that the product
(
a + b2)(b + a2)

is a power of 2.
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Problem 3.87 Let f (x) = 4x + 6x + 9x . Prove that if m and n are positive integers,
then f (2m) divides f (2n) whenever m ≤ n.

Problem 3.88 Show that, for any fixed integer n ≥ 1, the sequence

2,22,222
,2222

, . . . (modn)

is eventually constant.

3.8 Progressions

We call a sequence (an)n≥1of real numbers an arithmetical progression (sequence)
if there exists a real number r such that

an+1 = an + r,

for every n ≥ 1. Then r is called the common difference of the sequence and the
terms of the progression are uniquely determined by a1 and r . It is easy to see that

an = a1 + (n − 1)r,

for every n ≥ 1 and that

Sn = a1 + a2 + · · · + an = a1 + an

2
· n.

Also, notice that for every n ≥ 2,

an = an−1 + an+1

2
.

A sequence (bn)n≥1 of non-zero real numbers is called a geometrical sequence (pro-
gression) if there exists q 
= 0 such that for every n ≥ 1,

bn+1 = bn · q.

Here, q is called the common ratio of the progression.
We have bn = b1 · qn−1 and

b1 + b2 + · · · + bn = b1
qn − 1

q − 1
,

for every n ≥ 1, if q 
= 1.
We will focus on integer progressions.

Problem 3.89 Prove that if an arithmetical progression of positive integers contains
a square, then it contains infinitely many squares.
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Solution Assume with no loss of generality that the first term is a square, say a2,
and let r be the common difference. Hence the progression is

a2, a2 + r, a2 + 2r, . . . .

Eventually we get to

a2 + (2a + r)r = (a + r)2.

By repeating the argument we can find infinitely many squares among the progres-
sion’s terms.

Problem 3.90 Prove that one can eliminate some terms of an arithmetical progres-
sion of positive integers in such a way that the remaining terms form a geometric
progression.

Solution Let a be the first term and r the common difference of the arithmetical
progression. Thus the progression is given by

a, a + r, a + 2r, . . . .

One of the terms is

a + ar = a(1 + r).

Another one is

a + (2a + ar)r = a(1 + r)2.

It is not difficult to see that all numbers of the form a(1 + r)n, n ≥ 1 are terms of a
geometrical progression.

Problem 3.91 The set of positive integers is partitioned into several arithmetical
progressions. Prove that in at least one of them the first term is divisible by the
common difference.

Solution Let ai, ri , i = 1,2, . . . , n be the first terms and the common differences of
the progressions. Consider the number

r = r1r2 . . . rn.

This number must belong to one of the progressions, thus, for some i and k we have

r1r2 . . . rn = ai + kri.

It follows that ai is divisible by ri .

Try to solve the following problems.
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Problem 3.92 Partition the set of positive integers into two subsets such that neither
of them contains a non-constant arithmetical progression.

Problem 3.93 Prove that among the terms of the progression 3,7,11, . . . there are
infinitely many prime numbers.

Problem 3.94 Does there exist an (infinite) non-constant arithmetical progression
whose terms are all prime numbers?

Problem 3.95 Consider an arithmetical progression of positive integers. Prove that
one can find infinitely many terms the sum of whose decimal digits is the same.

Problem 3.96 The set of positive integers is partitioned into n arithmetical progres-
sions, with common differences r1, r2, . . . , rn. Prove that

1

r1
+ 1

r2
+ · · · + 1

rn
= 1.

Problem 3.97 Prove that for every positive integer n one can find n integers in
arithmetical progression, all of them nontrivial powers of some integers, but one
cannot find an infinite sequence with this property.

Problem 3.98 Prove that for any integer n, n ≥ 3, there exist n positive integers in
arithmetical progression a1, a2, . . . , an and n positive integers in geometric progres-
sion b1, b2, . . . , bn, such that

b1 < a1 < b2 < a2 < · · · < bn < an.

Problem 3.99 Let (an)n≥1 be an arithmetic sequence such that a2
1 , a2

2 , and a2
3 are

also terms of the sequence. Prove that the terms of this sequence are all integers.

Problem 3.100 Let A = {1, 1
2 , 1

3 , 1
4 , . . .}. Prove that for every positive integer n ≥ 3

the set A contains a non-constant arithmetic sequence of length n, but it does not
contain an infinite non-constant arithmetic sequence.

Problem 3.101 Let n be a positive integer and let x1 ≤ x2 ≤ · · · ≤ xn be real num-
bers. Prove that

(
n∑

i,j=1

|xi − xj |
)2

≤ 2(n2 − 1)

3

n∑

i,j=1

(xi − xj )
2.

Show that the equality holds if and only if x1, . . . , xn is an arithmetic sequence.
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3.9 The Marriage Lemma

A number of n boys and n girls are attending a party. Each boy is acquainted with
some of the girls. Under which conditions is it possible that at some dance each
of the boys dances with a girl of his acquaintance? (We will call this a matching
between the boys and the girls.)

Clearly, first of all, each boy must be acquainted with at least one girl. This is not
sufficient, though, since there might exist two boys acquainted with only one girl,
the same for both of them. Therefore we derive another necessary condition: for any
pair of boys, the set of girls acquainted with at least one of them must have at least
two elements. Furthermore, for any set of three boys, the set of girls acquainted with
at least one of them must have at least three elements.

Let us state now what seems to be a reasonable necessary condition: there exists
a matching between the two sets if and only if for every k, 1 ≤ k ≤ n, and every set
of k boys, the set of girls acquainted with at least one of them must have at least k

elements.
It turns out that this condition is also a sufficient one, as proved by the British

mathematician Philip Hall in 1935. We will call this Hall’s condition.
The proof goes by induction on n. If n = 1 there is nothing to prove. Assume the

assertion true for all k ≤ n and consider a set of n+1 boys and n+1 girls satisfying
Hall’s condition. We distinguish two cases.

Case 1. If any k ≤ n boys are acquainted with at least k + 1 girls then choose
one of the boys and let him dance with any of the girls of his acquaintance. Clearly,
the Hall’s condition is fulfilled by the remaining boys and girls and the induction
hypothesis applies.

Case 2. If there exist a set B of k ≤ n boys who are acquainted with exactly k

girls, then these boys can be paired with those girls. We claim that Hall’s condition
is still fulfilled by the remaining boys and girls, thus they can also be paired. Indeed,
let X be set of x ≤ n − k + 1 boys. If the set of girls acquainted to these boys has
less than x elements, then the set of girls acquainted to the boys in the set X ∪ B

has less than x + k elements. But the set X ∪ B has exactly x + k elements. This
contradicts the assumption that Hall’s condition is fulfilled by the initial set of boys
and girls.

The lemma still works if the number of girls is greater than the number of boys.
Just add a necessary number of boys who know all girls to even them up.

Let us apply the lemma in solving some problems.

Problem 3.102 Two square sheets have areas equal to 2003. Each of the sheets is
arbitrarily divided into 2003 non-overlapping polygons, besides, each of the poly-
gons has an unitary area. Afterward, one overlays the sheets, and it is asked to prove
that the obtained double layer can be punctured 2003 times, so that each of the 4006
polygons gets punctured precisely once.

Solution Consider the polygons painted blue on one sheet and red on the other
one. The boys will be the blue polygons while the girls the red ones. Now, a boy is
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acquainted to a girl if the blue and red polygons overlap. Clearly, it suffices to check
that Hall’s condition is fulfilled to obtain the desired conclusion.

Suppose, by way of contradiction, that Hall’s condition is violated. Then we can
find k blue polygons such that the corresponding red ones are at most k − 1. This
leads to a contradiction if we look at the areas. The area of the union of the blue k

polygons equals k, and this cannot be covered with less than k red polygons.

Problem 3.103 Some pieces are placed on an 8×8 table. There are exactly 4 pieces
in each row and each column of the board. Show that there are 8 pieces among those
pieces such that no two of them are in the same row or column.

Solution Let us examine a possible example of such a table:

g1 g2 g3 g4 g5 g6 g7 g8
b1 � � � �
b2 � � � �
b3 � � � �
b4 � � � �
b5 � � � �
b6 � � � �
b7 � � � �
b8 � � � �

Surely, the alert reader can see (looking at the notations) who are the boys and
girls.

Indeed, the boys are the rows of the table, while the girls are the columns. A boy
bi is acquainted with the girl gj iff there is a piece at the intersection of the ith
row with the j th column. For instance, in the previous example, the first boy b1 is
acquainted with the girls g1, g4, g6, and g8, etc. All we have to do is to prove that
there exists a matching between the rows and the columns, hence we must show that
Hall’s condition holds.

Consider a set of k rows, 1 ≤ k ≤ 8, and observe that they are acquainted with
4k (not necessarily distinct) columns, since in each row there are 4 pieces. But a
column may appear at most 4 times, since in each column there are 4 pieces, as
well. Therefore, the number of distinct columns corresponding to the chosen k rows
is at least 4k/4 = k, hence Hall’s condition is fulfilled.

Observation A similar argument can be used to prove a more general statement. If
every boy is acquainted to exactly m girls, and every girl is acquainted with exactly
m boys, then Hall’s condition is fulfilled and there is a matching between the boys
and the girls.

Now, find the boys and the girls in the following proposed problems.

Problem 3.104 A deck of cards is arranged, face up, in a 4 × 13 array. Prove that
one can pick a card from each column in such a way as to get one card of each
denomination.
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Problem 3.105 An n×n table is filled with 0 and 1 so that if we chose randomly n

cells (no two of them in the same row or column) then at least one contains 1. Prove
that we can find i rows and j columns so that i + j ≥ n + 1 and their intersection
contains only 1’s.

Problem 3.106 Let X be a finite set and let
⊔n

i=1 Xi = ⊔n
j=1 Yj be two disjoint de-

compositions with all sets Xi ’s and Yj ’s having the same size. Prove that there exist
distinct elements x1, x2, . . . , xn which are in different sets in both decompositions.

Problem 3.107 A set P consists of 2005 distinct prime numbers. Let A be the set
of all possible products of 1002 elements of P , and B be the set of all products of
1003 elements of P . Prove the existence of a one-to-one correspondence f from A

to B with the property that a divides f (a) for all a ∈ A.

Problem 3.108 The entries of a n×n table are non-negative real numbers such that
the numbers in each row and column add up to 1. Prove that one can pick n numbers
from distinct rows and columns which are positive.

Problem 3.109 There are b boys and g girls present at a party, where b and g are
positive integers satisfying g ≥ 2b−1. Each boy invites a girl for a dance (of course,
two different boys must always invite two different girls). Prove that this can be done
in such a way that every boy is either dancing with a girl he knows or all the girls he
knows are not dancing.

Problem 3.110 A m × n array is filled with the numbers 1,2, . . . , n, each used
exactly m times. Show that one can always permute the numbers within columns to
arrange that each row contains every number 1,2, . . . , n exactly once.

Problem 3.111 Some of the AwesomeMath students went on a trip to the beach.
There were provided n buses of equal capacities for both the trip to the beach and
the ride home, one student in each seat, and there were not enough seats in n − 1
buses to fit each student. Every student who left in a bus came back in a bus, but not
necessarily the same one.

Prove that there are n students such that any two were on different busses on both
rides.
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Chapter 4
Algebra

4.1 An Algebraic Identity

Problem 1.4 Factor (a + 2b − 3c)3 + (b + 2c − 3a)3 + (c + 2a − 3b)3.

Solution Observe that (a + 2b− 3c)+ (b +2c − 3a)+ (c +2a −3b) = 0. Because
x + y + z = 0 implies x3 + y3 + z3 = 3xyz, we obtain

(a + 2b − 3c)3 + (b + 2c − 3a)3 + (c + 2a − 3b)3

= 3(a + 2b − 3c)(b + 2c − 3a)(c + 2a − 3b).

Problem 1.5 Let x, y, z be integers such that

(x − y)2 + (y − z)2 + (z − x)2 = xyz.

Prove that x3 + y3 + z3 is divisible by x + y + z + 6.

Solution We first notice that at least one of x, y, z is even. Indeed, if x, y, z are all
odd, the left-hand side of the given equality is even while the right-hand side is odd,
a contradiction. Because

x3 + y3 + z3 − 3xyz = (x + y + z)
(
x2 + y2 + z2 − xy − yz − zx

)
,

and

x2 + y2 + z2 − xy − yz − zx

= 1

2

(
(x − y)2 + (y − z)2 + (z − x)2) = xyz

2

we obtain

x3 + y3 + z3 − 3xyz = (x + y + z)
xyz

2
,
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hence

x3 + y3 + z3 = xyz

2
(x + y + z + 6),

and since xyz
2 is an integer, the conclusion follows.

Problem 1.6 Let a, b, c be distinct real numbers. Prove that the following equality
cannot hold:

3
√

a − b + 3
√

b − c + 3
√

c − a = 0

Solution Suppose 3
√

a − b + 3
√

b − c + 3
√

c − a = 0. Then

(a − b) + (b − c) + (c − a) = 3 3
√

(a − b)(b − c)(c − a).

This implies

(a − b)(b − c)(c − a) = 0,

which contradicts the hypothesis that a, b, c are distinct.

Problem 1.7 Prove that the number

3
√

45 + 29
√

2 + 3
√

45 − 29
√

2

is a rational number.

Solution Let a = 3
√

45 + 29
√

2 + 3
√

45 − 29
√

2. Because

a − 3
√

45 + 29
√

2 − 3
√

45 − 29
√

2 = 0,

we have

a3 − (
45 + 29

√
2
) − (

45 − 29
√

2
) = 3a

3
√(

45 + 29
√

2
)(

45 − 29
√

2
)
,

which is equivalent to

a3 − 21a − 90 = 0,

or

(a − 6)
(
a2 + 6a + 15

) = 0.

The equation a2 + 6a + 15 = 0 has no real roots; hence

3
√

45 + 29
√

2 + 3
√

45 − 29
√

2 = 6,

a rational number.
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Problem 1.8 Let a, b, c be rational numbers such that

a + b
3
√

2 + c
3
√

4 = 0.

Prove that a = b = c = 0.

Solution Notice first that we can assume that a, b, c are integers, otherwise we can
multiply the equality by the least common multiple of the denominators. Next, if
a, b, c are not equal to 0, we can assume that they are not all even; if they were, we
could simplify the equation by dividing both sides by the greatest common power
of two.

We have seen that x + y + z = 0 implies

x3 + y3 + z3 = 3xyz.

Taking x = a, y = b
3
√

2 and z = c
3
√

4 yields

a3 + 2b3 + 4c3 = 6abc,

thus a must be even, say a = 2a1. Plugging this in the above equality yields

8a3
1 + 2b3 + 4c3 = 12a1bc,

or

4a3
1 + b3 + 2c3 = 6a1bc,

hence b is also even.
By similar arguments, c is also even; which is a contradiction.

Problem 1.9 Let r be a real number such that

3
√

r + 1
3
√

r
= 3.

Determine the value of

r3 + 1

r3 .

Solution From 3
√

r + 1
3√r

− 3 = 0, we obtain

r + 1

r
− 27 = 3 3

√
r

1
3
√

r
(−3) = −9.

Therefore,

r + 1

r
− 18 = 0.
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It follows that

r3 + 1

r3
− 183 = 3r

1

r
(−18) = −54.

Finally,

r3 + 1

r3 = 183 − 54 = 5778.

Problem 1.10 Find the locus of points (x, y) for which

x3 + y3 + 3xy = 1.

Solution Observe that the given equality is equivalent to

x3 + y3 + (−1)3 − 3xy(−1) = 0,

which can be written as

(x + y − 1)
(
x2 + y2 − xy + x + y + 1

) = 0.

Note that we can write the second factor more conveniently:

x2 + y2 − xy + x + y + 1 = 1

2

[
(x − y)2 + (x + 1)2 + (y + 1)2],

it follows that the locus consists of the line x + y − 1 = 0 and the point (−1,−1).

Problem 1.11 Let n be a positive integer. Prove that the number

33n(
33n + 1

) + 33n+1 − 1,

is not a prime.

Solution Observe that

33n(
33n + 1

) + 33n+1 − 1 = a3 + b3 + c3 − 3abc,

where a = 33n−1
, b = 93n−1

and c = −1. Thus, the number factors as

(
33n−1 + 93n−1 − 1

)(
93n−1 + 813n−1 + 1 − 273n−1 + 33n−1 + 93n−1)

.

Problem 1.12 Let S be the set of integers x such that x = a3 + b3 + c3 − 3abc, for
some integers a, b, c. Prove that if x, y ∈ S, then xy ∈ S.

Solution We have seen that

a3 + b3 + c3 − 3abc = (a + b + c)
(
a + bω + cω2)(a + bω2 + cω

)
,



4.1 An Algebraic Identity 105

where ω = −1+i
√

3
2 is one of the primitive cubic roots of unity. Let the polynomial

P(X) = a + bX + cX2. We obtain

a3 + b3 + c3 − 3abc = P(1)P (ω)P
(
ω2).

We observe that x ∈ S if and only if there exists a polynomial P with integer coef-
ficients and degree at most 2 such that

x = P(1)P (ω)P
(
ω2).

Now, let x, y ∈ S, and let P and Q be polynomials with integer coefficients, of
degree at most 2 such that x = P(1)P (ω)P (ω2) and y = Q(1)Q(ω)Q(ω2). Then
xy = R(1)R(ω)R(ω2), where R(X) = P(X)Q(X) is a polynomial of degree at
most 4. If we divide R by X3 − 1, we obtain a remainder R1(X), with integer
coefficients and degree at most 2 (this follows from the division algorithm). Thus

R(X) = (
X3 − 1

)
C(X) + R1(X)

for some polynomial C(X).
But then R(1) = R1(1), R(ω) = R1(ω), and R(ω2) = R1(ω

2), since 1,ω and ω2

are the roots of X3 − 1.
It follows that xy = R1(1)R1(ω)R1(ω

2), where R1 is a polynomial with integer
coefficients, of degree at most 2, hence xy ∈ S.

Observation Another proof can be given if we recall that

a3 + b3 + c3 − 3abc =
∣∣∣∣∣∣

a b c

c a b

b c a

∣∣∣∣∣∣
.

Let

x =
∣∣∣∣∣∣

a b c

c a b

b c a

∣∣∣∣∣∣
and y =

∣
∣∣∣∣∣∣

a′ b′ c′

c′ a′ b′

b′ c′ a′

∣
∣∣∣∣∣∣
,

where a, b, c, a′, b′, c′ are integers. Then

xy =

∣∣∣
∣∣∣
∣

aa′ + bc′ + cb′ ab′ + ba′ + cc′ ac′ + bb′ + ca′

ac′ + bb′ + ca′ aa′ + bc′ + cb′ ab′ + ba′ + cc′

ab′ + ba′ + cc′ ac′ + bb′ + ca′ aa′ + bc′ + cb′

∣∣∣
∣∣∣∣
∈ S.

Problem 1.13 Let a, b, c be distinct positive integers and let k be a positive integer
such that

ab + bc + ca ≥ 3k2 − 1.
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Prove that

a3 + b3 + c3

3
− abc ≥ 3k.

Solution The desired inequality is equivalent to

a3 + b3 + c3 − 3abc ≥ 9k.

Assume, with no loss of generality, that a > b > c. Then a − b ≥ 1, b − c ≥ 1 and
a − c ≥ 2. It follows that

a2 + b2 + c2 − ab − bc − ac

= 1

2

(
(a − b)2 + (b − c)2 + (a − c)2) ≥ 1

2
(1 + 1 + 4) = 3.

We obtain

a3 + b3 + c3 − 3abc = (a + b + c)
(
a2 + b2 + c2 − ab − bc − ac

)

≥ 3(a + b + c),

so it suffices to prove that

3(a + b + c) ≥ 9k,

or

a + b + c ≥ 3k.

But

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac

= a2 + b2 + c2 − ab − bc − ac + 3(ab + bc + ac)

≥ 3 + 3
(
3k2 − 1

) = 9k2,

and the conclusion follows.

Problem 1.14 Let a, b, and c be the side lengths of a triangle. Prove that

3

√
a3 + b3 + c3 + 3abc

2
≥ max(a, b, c).

Solution Assume, with no loss of generality, that a ≥ b ≥ c. We have to prove that

3

√
a3 + b3 + c3 + 3abc

2
≥ a,
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which is equivalent to

−a3 + b3 + c3 + 3abc ≥ 0.

Since

−a3 + b3 + c3 + 3abc = (−a)3 + b3 + c3 − 3(−a)bc,

the latter expression factors into

1

2
(−a + b + c)

(
(a + b)2 + (a + c)2 + (b − c)2).

The conclusion now follows from the triangle inequality: namely, b + c > a in any
triangle.

Problem 1.15 Find the least real number r such that for each triangle with side
lengths a, b, c,

max(a, b, c)
3
√

a3 + b3 + c3 + 3abc
< r.

Solution Plugging a = b = n > 1 and c = 1 yields

n
3
√

2n3 + 3n2 + 1
< r.

Since

lim
n→∞

n
3
√

2n3 + 3n2 + 1
= lim

n→∞
1

3
√

2 + 3
n

+ 1
n3

= 1
3
√

2
,

it follows that r ≥ 1
3√2

. We will show that

max(a, b, c)
3
√

a3 + b3 + c3 + 3abc
<

1
3
√

2

holds for each triangle. Indeed, with no loss of generality we can assume that a =
max(a, b, c). Then, the latter is equivalent to

−a3 + b3 + c3 + 3abc > 0,

which factors as

(−a + b + c)
(
(a + b)2 + (a + c)2 + (b − c)2) > 0,

obviously true.

Problem 1.16 Find all integers that can be represented as a3 + b3 + c3 − 3abc for
some positive integers a, b, and c.
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Solution Call an integer nice if it can be represented as a3 + b3 + c3 − 3abc for
some positive integers a, b, c. Assume without loss of generality that b = a + x and
c = a + x + y, for some nonnegative integers x, y. Therefore,

a3 + b3 + c3 − 3abc = (3a + 2x + y)
(
x2 + xy + y2).

For x = y = 0 it follows that 0 is nice. If x and y are not both 0, then

(3a + 2x + y)
(
x2 + xy + y2) ≥ 3a + 1,

hence 1,2 and 3 are not nice. We claim that if a nice integer is divisible by 3, then
it is divisible by 9. Indeed, we have

0 ≡ (3a + 2x + y)
(
x2 + xy + y2) ≡ (y − x)·(x − y)2 ≡ (y − x)3 (mod 3),

hence x ≡ y (mod 3). Therefore

3a + 2x + y ≡ x2 + xy + y2 ≡ 0 (mod 3)

and it follows that

(3a + 2x + y)
(
x2 + xy + y2) ≡ 0 (mod 9).

However, 9 itself is not nice, since

(3a + 2x + y)
(
x2 + xy + y2) ≥ (3a + 3)3 > 9.

Finally, let us proceed to find which integers are nice. Taking x = 0, y = 1 it
follows that any positive integer of the form 3a + 1 is nice. Taking x = 1, y = 0
it follows that any positive integer of the form 3a + 2 is nice. Taking x = y = 1
it follows that any positive integer of the form 9(a + 1) is nice. From these we
conclude that all the nice integers are 0, any positive integer greater than 3 of the
form 3a + 1 or 3a + 2, and the integers greater than 9 of the form 9a.

Problem 1.17 Find all pairs (x, y) of integers such that

xy + x3 + y3

3
= 2007.

Solution Rewrite the equation as

x3 + y3 − 1 + 3xy = 6020.

Factoring both sides yields

(x + y − 1)
(
x2 + y2 + 1 + x + y − xy

) = 22 · 5 · 7 · 43.
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Since x2 + y2 + 1 + x + y − xy = (x + y − 1)2 + 3x + 3y − 3xy, taking the above
equality mod 3, we deduce that

x + y − 1 ≡ 2 (mod 3).

Also, x + y − 1 is less than x2 + y2 + 1 + x + y − xy, so the possible candidates
for x + y − 1 are 2, 5, 14, 20 and 35.

By inspection, we obtain x + y − 1 = 20 and, finally, (x, y) = (18,3) or (x, y) =
(3,18).

Problem 1.18 Let k be an integer and let

n = 3
√

k +
√

k2 − 1 + 3
√

k −
√

k2 − 1 + 1.

Prove that n3 − 3n2 is an integer.

Solution Let a = 3
√

k + √
k2 − 1, b = 3

√
k − √

k2 − 1, and c = 1−n. Then a +b+
c = 0, therefore

a3 + b3 + c3 = 3abc.

Since ab = 1, this is equivalent to

2k + (1 − n)3 = 3(1 − n),

or

n3 − 3n2 = 2k − 2,

obviously an integer number.

4.2 Cauchy–Schwarz Revisited

Problem 1.21 Let x, y, z > 0. Prove that

2

x + y
+ 2

y + z
+ 2

z + x
≥ 9

x + y + z
.

Solution Writing the left-hand side as

(
√

2)2

x + y
+ (

√
2)2

y + z
+ (

√
2)2

z + x
,

and using the lemma in p. 8, we deduce that

(
√

2)2

x + y
+ (

√
2)2

y + z
+ (

√
2)2

z + x
≥ (3

√
2)2

2(x + y + z)
= 9

x + y + z
.

Equality occurs when x = y = z.
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Problem 1.22 Let a, b, x, y, z be positive real numbers. Prove that

x

ay + bz
+ y

az + bx
+ z

ax + by
≥ 3

a + b
.

Solution We have

x

ay + bz
+ y

az + bx
+ z

ax + by
= x2

axy + bxz
+ y2

ayz + bxy
+ z2

axz + byz

≥ (x + y + z)2

(a + b)(xy + xz + yz)
≥ 3

a + b
.

Problem 1.23 Let a, b, c > 0. Prove that

a2 + b2

a + b
+ b2 + c2

b + c
+ a2 + c2

a + c
≥ a + b + c.

Solution We write the left-hand side as

a2

a + b
+ b2

b + c
+ c2

a + c
+ b2

a + b
+ c2

b + c
+ a2

a + c
.

Applying the same lemma, we find that this expression is greater than or equal to

(2a + 2b + 2c)2

4(a + b + c)
= a + b + c.

Problem 1.24 Let a, b, c be positive numbers such that abc = 1. Prove that

1

a3(b + c)
+ 1

b3(a + c)
+ 1

c3(a + b)
≥ 3

2
.

Solution We see that

1

a3(b + c)
+ 1

b3(a + c)
+ 1

c3(a + b)
=

1
a2

ab + ac
+

1
b2

ab + bc
+

1
c2

ac + bc

≥ ( 1
a

+ 1
b

+ 1
c
)2

2(ab + bc + ac)
.

The last inequality comes from the lemma.
Because abc = 1, it follows that

(
1

a
+ 1

b
+ 1

c

)2

= (ab + bc + ca)2

(abc)2 = (ab + bc + ca)2.

Hence

1

a3(b + c)
+ 1

b3(a + c)
+ 1

c3(a + b)
≥ (ab + bc + ca)

2
≥ 3 3

√
(abc)2

2
= 3

2
.
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Problem 1.25 Let x, y, z > 0. Prove that

x

x + 2y + 3z
+ y

y + 2z + 3x
+ z

z + 2x + 3y
≥ 1

2
.

Solution We write the left-hand side as

x2

x2 + 2xy + 3xz
+ y2

y2 + 2yz + 3xy
+ z2

z2 + 2xz + 3yz

and apply the lemma. This yields

x

x + 2y + 3z
+ y

y + 2z + 3x
+ z

z + 2x + 3y
≥ (x + y + z)2

x2 + y2 + z2 + 5(xy + xz + yz)
.

Now it suffices to prove that

(x + y + z)2

x2 + y2 + z2 + 5(xy + xz + yz)
≥ 1

2
,

but this is equivalent to

x2 + y2 + z2 ≥ xy + xz + yz,

proved in Problem 1.19.

Problem 1.26 Let x, y, z > 0. Prove that

x2

(x + y)(x + z)
+ y2

(y + z)(y + x)
+ z2

(z + x)(z + y)
≥ 3

4
.

Solution We apply the lemma again to obtain

x2

(x + y)(x + z)
+ y2

(y + z)(y + x)
+ z2

(z + x)(z + y)

≥ (x + y + z)2

x2 + y2 + z2 + 3(xy + xz + yz)
.

The inequality

(x + y + z)2

x2 + y2 + z2 + 3(xy + xz + yz)
≥ 3

4

is equivalent to

x2 + y2 + z2 ≥ xy + xz + yz.
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Problem 1.27 Let a, b, c, d, e be positive real numbers. Prove that

a

b + c
+ b

c + d
+ c

d + e
+ d

e + a
+ e

a + b
≥ 5

2
.

Solution We have

a

b + c
+ b

c + d
+ c

d + e
+ d

e + a
+ e

a + b

= a2

ab + ac
+ b2

bc + bd
+ c2

cd + ce
+ d2

de + ad
+ e2

ae + be

≥ (a + b + c + d + e)2
∑

ab
.

Because

(a + b + c + d + e)2 =
∑

a2 + 2
∑

ab,

we have to prove that

2
∑

a2 + 4
∑

ab ≥ 5
∑

ab,

which is equivalent to

2
∑

a2 ≥
∑

ab.

The last inequality follows from
∑

(a − b)2 ≥ 0.

Problem 1.28 Let a, b, c be positive real numbers such that

ab + bc + ca = 1

3
.

Prove that

a

a2 − bc + 1
+ b

b2 − ca + 1
+ c

c2 − ab + 1
≥ 1

a + b + c
.

Solution We apply our lemma:

∑ a

a2 − bc + 1
=

∑ a2

a3 − abc + a
≥ (a + b + c)2

∑
a3 + ∑

a − 3abc
.

Because

∑
a3 − 3abc = (a + b + c)

(∑
a2 −

∑
ab

)
= (a + b + c)

(∑
a2 − 1

3

)
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it follows that

(a + b + c)2
∑

a3 + ∑
a − 3abc

=
∑

a2 + 2
∑

ab

(a + b + c)(
∑

a2 − 1
3 + 1)

=
∑

a2 + 2
3

(a + b + c)(
∑

a2 + 2
3 )

= 1

a + b + c
,

as desired.

Problem 1.29 Let a, b, c be positive real numbers such that abc = 1. Prove that

a + b + 1

a + b2 + c3 + b + c + 1

b + c2 + a3 + c + a + 1

c + a2 + b3 ≤ (a + 1) (b + 1) (c + 1) + 1

a + b + c
.

Solution We have

a + b2 + c3 = a2

a
+ b2

1
+ c2

ab
≥ (a + b + c)2

a + 1 + ab
,

thus

a + b + 1

a + b2 + c3
≤ (a + b + 1)(a + 1 + ab)

(a + b + c)2
.

Now, write the similar two inequalities and add them all up. We only have to check
that

∑
(a + b + 1)(a + 1 + ab) = (a + b + c)

(
(a + 1)(b + 1)(c + 1) + 1

)
,

which is trivial.

Problem 1.30 Let a and b be positive real numbers. Prove that

a3 + b3

a4 + b4 · a + b

a2 + b2 ≥ a4 + b4

a6 + b6 .

Solution The inequality rewrites as

(a + b)
(
a3 + b3)(a6 + b6) ≥ (

a2 + b2)(a4 + b4)2
.

Observe that

a3 + b3 = a4

a
+ b4

b
≥ (a2 + b2)2

a + b
,

hence

(a + b)
(
a3 + b3) ≥ (

a2 + b2)2
.
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Similarly,

a6 + b6 = a8

a2 + b8

b2 ≥ (a4 + b4)2

a2 + b2 .

Multiplying out the last two inequalities yields the result.

Problem 1.31 Let a, b, c be positive real numbers such that ab+bc+ca ≥ 3. Prove
that

a√
a + b

+ b√
b + c

+ c√
c + a

≥ 3√
2
.

Solution We have

a√
a + b

+ b√
b + c

+ c√
c + a

= a2

a
√

a + b
+ b2

b
√

b + c
+ c2

c
√

c + a
,

so our lemma yields

a√
a + b

+ b√
b + c

+ c√
c + a

≥ (a + b + c)2

a
√

a + b + b
√

b + c + c
√

c + a
.

On the other hand, applying again the lemma,

∑
a(a + b) =

∑ a2(a + b)

a
≥ (a

√
a + b + b

√
b + c + c

√
c + a)2

a + b + c
,

hence

(a + b + c)2

a
√

a + b + b
√

b + c + c
√

c + a
≥ (a + b + c)

3
2√

a2 + b2 + c2 + ab + bc + ca
.

The inequality

(a + b + c)
3
2√

a2 + b2 + c2 + ab + bc + ca
≥ 3√

2

is equivalent to

2(a + b + c)3 ≥ 9
(
a2 + b2 + c2 + ab + bc + ca

)
,

which can be written as

2(a + b + c)3 − 9(a + b + c)2 + 9(ab + bc + ca) ≥ 0.

Since ab + bc + ca ≥ 3, it suffices to show that

2(a + b + c)3 − 9(a + b + c)2 + 27 ≥ 0.
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Denote a + b + c = s. Then

2s3 − 9s2 + 27 = (s − 3)2(2s + 3) ≥ 0,

as desired.

Problem 1.32 Let a, b, c be positive real numbers. Prove that

a

b(b + c)2
+ b

c(c + a)2
+ c

a(a + b)2
≥ 9

4(ab + bc + ca)
.

Solution Observe that

a

b(b + c)2
=

a2

(b+c)2

ab
.

Writing the similar two equalities and using the lemma yield

a

b(b + c)2 + b

c(c + a)2 + c

a(a + b)2 ≥ ( a
b+c

+ b
c+a

+ c
a+b

)2

ab + bc + ca
.

We know (see Problem 1.19 of Sect. 1.2) that

a

b + c
+ b

c + a
+ c

a + b
≥ 3

2
,

hence

( a
b+c

+ b
c+a

+ c
a+b

)2

ab + bc + ca
≥ 9

4(ab + bc + ca)
.

Problem 1.33 Let a, b, c be positive real numbers such that

1

a2 + b2 + 1
+ 1

b2 + c2 + 1
+ 1

c2 + a2 + 1
≥ 1.

Prove that

ab + bc + ca ≤ 3.

Solution We have

a2 + b2 + 1 = a2

1
+ b2

1
+ c2

c2
≥ (a + b + c)2

2 + c2
,

so

1

a2 + b2 + 1
≤ 2 + c2

(a + b + c)2
.
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The similar two inequalities and the hypothesis imply

6 + a2 + b2 + c2

(a + b + c)2
≥ 1,

which quickly simplifies to

ab + bc + ca ≤ 3.

4.3 Easy Ways Through Absolute Values

Problem 1.39 Solve the equation |x − 3| + |x + 1| = 4.

Solution Using the inequality |a| + |b| ≥ |a − b|, we obtain

|x − 3| + |x + 1| ≥ ∣
∣x − 3 − (x + 1)

∣
∣ = 4.

Equality occurs when (x − 3)(x + 1) ≤ 0; that is, when x ∈ [−1,3].

Problem 1.40 Show that the equation |2x − 3| + |x + 1| + |5 − x| = 0.99 has no
solutions.

Solution We use the inequality

| ± a1 ± a2 ± · · · ± an| ≤ |a1| + |a2| + · · · + |an|,
which is valid for all numbers a1, a2, . . . , an. This yields

0.99 = |2x − 3| + |x + 1| + |5 − x| ≥ ∣∣(2x − 3) − (x + 1) + (5 − x)
∣∣ = 1,

which is impossible. It follows that the given equation has no solutions.

Problem 1.41 Let a, b > 0. Find the values of m for which the equation

|x − a| + |x − b| + |x + a| + |x + b| = m(a + b)

has at least one real solution.

Solution Suppose the equation has at least one real solution x. Then

m(a + b) = |x − a| + |x + b| + |x − b| + |x + a|
≥ ∣∣(x − a) − (x + b)

∣∣ + ∣∣(x − b) − (x + a)
∣∣ = 2(a + b),

and since a + b > 0, it follows that m ≥ 2. Conversely, if we assume that m ≥ 2,
then the equation has at least one real solution. Indeed, define

f (x) = |x − a| + |x − b| + |x + a| + |x + b|.
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We observe that f (0) = 2(a + b) ≤ m(a + b), and f (ma + mb) = 4m(a + b) >

m(a + b). The existence of a value x such that f (x) = m(a + b) follows from the
fact that f is continuous.

Problem 1.42 Find all possible values of the expression

E(x, y, z) = |x + y|
|x| + |y| + |y + z|

|y| + |z| + |z + x|
|z| + |x| ,

where x, y, z are nonzero real numbers.

Solution Two of the three numbers, say x and y, must have the same sign; therefore
|x + y| = |x| + |y|. It follows that

E(x, y, z) = 1 + |y + z|
|y| + |z| + |z + x|

|z| + |x| ≥ 1.

On the other hand,

E(x, y, z) = |x + y|
|x| + |y| + |y + z|

|y| + |z| + |z + x|
|z| + |x| ≤ 1 + 1 + 1 = 3.

We show that the set of values of E(x, y, z) is the interval [1,3]. Indeed,
E(1,1,−1) = 1 and E(1,1,1) = 3, and for each m ∈ (1,3), we take x = 1,
y = z = m−3

m+1 . A short computation shows that in this case, E(x, y, z) = m.

Problem 1.43 Find all positive real numbers x, x1, x2, . . . , xn such that
∣∣ log(xx1)

∣∣ + ∣∣ log(xx2)
∣∣ + · · · + ∣∣ log(xxn)

∣∣

+
∣
∣∣∣ log

(
x

x1

)∣
∣∣∣ +

∣
∣∣∣ log

(
x

x2

)∣
∣∣∣ + · · · +

∣
∣∣∣ log

(
x

xn

)∣
∣∣∣

= | logx1 + logx2 + · · · + logxn|.

Solution Observe that

∣∣ log(xx1)
∣∣ +

∣∣∣∣ log

(
x

x1

)∣∣∣∣ ≥
∣∣∣∣ log(xx1) − log

(
x

x1

)∣∣∣∣ = ∣∣ logx2
1

∣∣ = 2| logx1|.

It follows that the left-hand side of the equality is greater than or equal to

2
(| logx1| + | logx2| + · · · + | logxn|

)
.

However, the right-hand side is less than or equal to

| logx1| + | logx2| + · · · + | logxn|.
Thus, equality cannot hold unless

| logx1| = | logx2| = · · · = | logxn| = 0,

hence x1 = x2 = · · · = xn = 1. It is not difficult to see that x = 1 as well.
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Problem 1.44 Prove that for all real numbers a, b, we have

|a + b|
1 + |a + b| ≤ |a|

1 + |a| + |b|
1 + |b| .

Solution If a and b have the same sign, then |a + b| = |a| + |b|, and we obtain

|a + b|
1 + |a + b| = |a| + |b|

1 + |a| + |b| = |a|
1 + |a| + |b| + |b|

1 + |a| + |b|
≤ |a|

1 + |a| + |b|
1 + |b| .

Suppose a and b have opposite signs; assume |a| ≥ |b|. Then |a + b| ≤ |a|, and

|a + b|
1 + |a + b| ≤ |a|

1 + |a| ≤ |a|
1 + |a| + |b|

1 + |b| .

Alternatively, we might notice that the function f (x) = x
1+x

= 1 − 1
1+x

is in-
creasing for x > 0, and since |a + b| ≤ |a| + |b|, we have

|a + b|
1 + |a + b| ≤ |a| + |b|

1 + |a| + |b| = |a|
1 + |a| + |b| + |b|

1 + |a| + |b|
≤ |a|

1 + |a| + |b|
1 + |b| .

Problem 1.45 Let n be an odd positive integer and let x1, x2, . . . , xn be distinct real
numbers. Find all one-to-one functions

f : {x1, x2, . . . , xn} → {x1, x2, . . . , xn}
such that

∣∣f (x1) − x1
∣∣ = ∣∣f (x2) − x2

∣∣ = · · · = ∣∣f (xn) − xn

∣∣.

Solution Let f be a function with the stated property and let

a = ∣∣f (x1) − x1
∣∣ = ∣∣f (x2) − x2

∣∣ = · · · = ∣∣f (xn) − xn

∣∣.

Then for each k, 1 ≤ k ≤ n, we have

f (xk) = xk + εka,

with either εk = 1 or εk = −1. Adding these equalities yields

n∑

k=1

f (xk) =
n∑

k=1

xk + a

n∑

k=1

εk.



4.3 Easy Ways Through Absolute Values 119

Because f is a one-to-one function,
∑n

k=1 f (xk) = ∑n
k=1 xk , and, consequently,

a
∑n

k=1 εk = 0. But the sum of an odd number of odd integers cannot be equal to
zero, so

∑n
k=1 εk 
= 0. It follows that a = 0 and f (xk) = xk for all k.

Problem 1.46 Suppose the sequence a1, a2, . . . , an satisfies the following condi-
tions:

a1 = 0, |a2| = |a1 + 1|, . . . , |an| = |an−1 + 1|.
Prove that

a1 + a2 + · · · + an

n
≥ −1

2
.

Solution Define an+1 as follows: an+1 = |an + 1|. The statements |x| = |y| and
x2 = y2 are equivalent; hence

a2
2 = a2

1 + 2a1 + 1,

a2
3 = a2

2 + 2a2 + 1,

...

a2
n = a2

n−1 + 2an−1 + 1,

a2
n+1 = a2

n + 2an + 1.

Adding all these equalities gives

a2
n+1 = 2(a1 + a2 + · · · + an) + n,

so that

2(a1 + a2 + · · · + an) + n ≥ 0,

and the result follows.

Problem 1.47 Find real numbers a, b, c such that

|ax + by + cz| + |bx + cy + az| + |cx + ay + bz| = |x| + |y| + |z|,
for all real numbers x, y, z.

Solution Plugging x = y = z = 1 in the given equality yields

|a + b + c| = 1.

For x = 1 and y = z = 0, we obtain

|a| + |b| + |c| = 1.

Since |a + b + c| = |a| + |b| + |c|, we deduce that a, b and c have the same sign.
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Now, let x = 1, y = −1 and c = 0. It follows that

|a − b| + |b − c| + |c − a| = 2.

But |a − b| ≤ |a| + |b|, with equality if and only if a and b have opposite signs or if
one of them is zero. Writing the analogous inequalities, we obtain

2 = |a − b| + |b − c| + |c − a| ≤ 2
(|a| + |b| + |c|) = 2.

Thus in each pair (a, b), (b, c), (c, a), one of the numbers must be zero, and we
conclude that the required triples (a, b, c) are (1,0,0), (0,1,0), (0,0,1), (−1,0,0),
(0,−1,0), (0,0,−1).

4.4 Parameters

Problem 1.50 Solve the equation

x =
√

a − √
a + x,

where a > 0 is a parameter.

Solution We must have x ≥ 0, a + x ≥ 0 and a − √
a + x ≥ 0. Squaring both sides

and rearranging yields

x2 = a − √
a + x,

or
√

a + x = a − x2.

It follows that a − x2 ≥ 0, and thus

a + x = (
a − x2)2

,

which is equivalent to the fourth degree equation

P(x) = 0,

where

P(x) = x4 − 2ax2 − x + a2 − a.

Let us consider a as the unknown and x as the parameter. Then we obtain a quadratic
equation in a as follows:

a2 − (
2x2 + 1

)
a + x4 − x = 0.
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Its discriminant is Δ = (2x2 + 1)2 − 4(x4 − x) = (2x + 1)2; hence the roots are
a1 = x2 − x and a2 = x2 + x + 1. This leads to the factorization of P as

P(x) = (
x2 − x − a

)(
x2 + x + 1 − a

)
.

The positive root of the equation x2 − x − a = 0 does not satisfy the condition
a − x2 ≥ 0, since a − x2 = −x. The roots of the equation x2 + x + 1 − a = 0 are
x1 = (−1 +√

4a − 3)/2 and x2 = (−1 −√
4a − 3)/2. Only x1 can be nonnegative,

and this happens if and only if a ≥ 1.

Problem 1.51 Let a be a nonzero real number. Solve the equation

a3x4 + 2a2x2 + x + a + 1 = 0.

Solution Multiplying the equation by a and setting t = ax yields

t4 + 2at2 + t + a2 + a = 0.

Considering a as the variable, we obtain the quadratic

a2 + (
2t2 + 1

)
a + t4 + t = 0.

This is very similar to the equation in the previous problem. We obtain the equations
t2 + t + a = 0 and t2 − t + 1 + a = 0. If a ≤ 1

4 , then the first of these two equa-
tions has solutions x = t

a
= 1

2a
(−1 ± √

(1 − 4a)), and if a ≤ − 3
4 , then the second

equation has solutions x = 1
a
( 1

2 ± 1
2

√
(−3 − 4a)).

Problem 1.52 Let a ∈ (0, 1
4 ). Solve the equation

x2 + 2ax + 1

16
= −a +

√

a2 + x − 1

16
.

Solution We write the equation as

x2 + 2ax + a + 1

16
=

√

a2 + x − 1

16
,

and square both sides. Rearranging the terms yields

x4 + 4ax3 +
(

4a2 + 2a + 1

8

)
x2 +

(
4a2 + a

4
− 1

)
x + a

8
+ 17

256
= 0.

As before, considering x as a parameter and a as an unknown, we obtain

4a2x(x + 1) + 1

8
a(2x + 1)

(
16x2 + 1

) + x4 + 1

8
x2 − x + 17

256
= 0.
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The discriminant of the equation equals

(
16x2 + 32x − 1

8

)2

,

and the procedure is identical to that of the previous problem.

Observation Another approach is possible. Suppose we view a as the fixed pa-
rameter and x as the variable. If we consider the function f : [−a, +∞) →
[−a2 + 1

16 ,+∞), f (x) = x2 + 2ax + 1
16 , it is not difficult to see that the inverse of

f is given by f −1(x) = −a +
√

a2 + x − 1
16 ; hence the equation

f (x) = f −1(x),

is equivalent to

f
(
f (x)

) = x.

We claim that if x0 is a solution of this equation, then f (x0) = x0. Indeed, since f

is increasing, if f (x0) < x0, then x0 = f (f (x0)) < f (x0) < x0, and if f (x0) > x0,
then x0 = f (f (x0)) > f (x0) > x0. In both cases we reach a contradiction. The
conclusion is that the initial equation is equivalent to

x2 + 2ax + 1

16
= x,

which is a straightforward quadratic equation.

Problem 1.53 Find the positive solutions of the following system of equations:
{

a2

x2 − b2

y2 = 8(y4 − x4),

ax − by = x4 − y4

where a, b > 0 are parameters.

Solution We solve the system for a, b instead of x, y. Multiplying the first equation
by x4 yields

a2x2 = b2x4

y2
+ 8x4(y4 − x4),

and from the second equation we deduce

a2x2 = (
by + x4 − y4)2 = b2y2 + 2by

(
x4 − y4) + (

x4 − y4)2
.

It follows that

b2(x4 − y4)

y2
− 2by

(
x4 − y4) − (

x4 − y4)(9x4 − y4) = 0.



4.4 Parameters 123

If x = y, from the original system we obtain a = b.
If x 
= y, we can divide by x4 − y4 to obtain a quadratic equation in b:

b2 − 2by3 − y2(9x4 − y4) = 0.

The solutions are y3 + 3x2y and y3 − 3x2y. If b = y3 − 3x2y, the second equation
gives a = x3 − 3xy2. Because a, b > 0, it follows that x2 > 3y2 and y2 > 3x2 >

9y2; this is a contradiction. Thus b = y3 +3x2y and a = x3 +3xy2. We observe that
a +b = (x +y)3 and a −b = (x −y)3; hence x +y = 3

√
a + b and x −y = 3

√
a − b,

yielding

(x, y) =
( 3

√
a + b + 3

√
a − b

2
,

3
√

a + b − 3
√

a − b

2

)
.

Problem 1.54 Let a, b, c > 0. Solve the system of equations

⎧
⎪⎨

⎪⎩

ax − by + 1
xy

= c,

bz − cx + 1
zx

= a,

cy − az + 1
yz

= b.

Solution Considering a, b, c as unknowns, we have a linear system of equations.
Multiply the first equation successively by x and y and substitute cx in the second
equation and cy in the last one. We obtain

{
a(x2 + 1) − b(xy + z) = 1

xz
− 1

y
, (i)

a(xy − z) − b(y2 + 1) = − 1
x

− 1
yz

. (ii)

Now multiply equation (i) by y2 + 1, and equation (ii) by −(xy + z), and add them
up. It follows that

a
(
x2 + y2 + z2 + 1

) = x2 + y2 + z2 + 1

xz
,

yielding a = 1
xz

. Analogously, we obtain b = 1
yz

and c = 1
xy

. Hence abc = 1
(xyz)2 ,

so xyz = ± 1√
abc

. The solutions of the system are

(
b√
abc

,
a√
abc

,
c√
abc

)
,

( −b√
abc

,
−a√
abc

,
−c√
abc

)
.

Problem 1.55 Solve the equation

x + a3 = 3
√

a − x,

where a is a real parameter.
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Solution Write the equation in the equivalent form

3
√

3
√

a − x − x = a.

If we consider a as a variable and define the function f (a) = 3
√

a − x, we see that
the equation can be written as

f
(
f (a)

) = a,

and since f is an increasing function, this is equivalent to

f (a) = a

(see the observation in the solution of Problem 1.52). It is not difficult now to obtain
the solution x = a − a3.

4.5 Take the Conjugate!

Problem 1.60 Let a and b be distinct positive numbers and let A = a+b
2 , B = √

ab.
Prove the inequality

B <
(a − b)2

8(A − B)
< A.

Solution Observe that

(a − b)2

8(A − B)
= (a − b)2(A + B)

8(A2 − B2)

and

A2 − B2 = a2 + b2 + 2ab

4
− ab = a2 + b2 − 2ab

4
= (a − b)2

4
.

It follows that

(a − b)2

8(A − B)
= A + B

2
,

and since A > B , we have

B <
A + B

2
< A,

as desired.

Problem 1.61 Let m,n be positive integers with m < n. Find a closed form for the
sum

1√
m + √

m + 1
+ 1√

m + 1 + √
m + 2

+ · · · + 1√
n − 1 + √

n
.
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Solution By taking the conjugate for each term of the sum, we obtain

√
m + 1 − √

m

m + 1 − m
+

√
m + 2 − √

m + 1

m + 2 − m − 1
+ · · · +

√
n − √

n − 1

n − n + 1

= √
m + 1 − √

m + √
m + 2 − √

m + 1 + · · · + √
n − √

n − 1 = √
n − √

m.

Problem 1.62 For any positive integer n, let

f (n) = 4n + √
4n2 − 1√

2n + 1 + √
2n − 1

.

Evaluate the sum f (1) + f (2) + · · · + f (40).

Solution Let x = √
2n + 1 and y = √

2n − 1. Then x2 + y2 = 4n, xy = √
4n2 − 1

and x2 − y2 = 2. Hence

f (n) = x2 + y2 + xy

x + y
= x3 − y3

x2 − y2
= 1

2

(√
(2n + 1)3 −

√
(2n − 1)3

)
.

Adding up the equalities for n = 1,2, . . . ,40 yields

f (1) + f (2) + · · · + f (40) = 1

2

(√
813 −

√
13

) = 364.

Problem 1.63 Let a and b be distinct real numbers. Solve the equation

√
x − b2 −

√
x − a2 = a − b.

Solution We must have x ≥ a2 and x ≥ b2. Squaring both sides leads to rather
complicated computations. We take the conjugate instead, which gives

a2 − b2

√
x − b2 + √

x − a2
= a − b

and we obtain the equivalent form

√
x − b2 +

√
x − a2 = a + b.

Adding this to the original equation yields

√
x − b2 = a,

and the solution is

x =
√

a2 + b2.

The conditions x ≥ a2 and x ≥ b2 are clearly satisfied.
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Problem 1.64 Solve the following equation, where m is a real parameter:

√
x + √

x −
√

x − √
x = m

√
x

x + √
x

.

Solution We first notice that x must be a positive number. By taking the conjugate
on the left-hand side, we obtain

2
√

x
√

x + √
x + √

x − √
x

= m
√

x
√

x + √
x

,

so m must be a positive number, as well. Simplifying by
√

x yields the equivalent
equation

(2 − m)

√
x + √

x = m

√
x − √

x.

It follows that 2 − m ≥ 0, and then

(2 − m)2(x + √
x
) = m2(x − √

x
)

or

(2 − m)2(√x + 1
) = m2(√x − 1

)
.

We obtain

√
x = m2 − 2m + 2

2(m − 1)
;

therefore m > 1 and the solution of the equation is

x = (m2 − 2m + 2)2

4(m − 1)2 ,

for 1 < m ≤ 2.

Problem 1.65 Prove that for every positive integer k, there exists a positive integer
nk such that (

√
3 − √

2)k = √
nk − √

nk − 1.

Solution If we take the conjugate in the above equality, we obtain

1

(
√

3 + √
2)k

= 1√
nk + √

nk − 1
,

and hence
(√

3 + √
2
)k = √

nk + √
nk − 1.

We deduce that
√

nk = 1

2

((√
3 − √

2
)k + (√

3 + √
2
)k)
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and thus

nk = 1

4

((
5 − 2

√
6
)k + (

5 + 2
√

6
)k + 2

)
.

All we have to do now is to prove that the number in the right-hand side is an integer.
Setting xk = (5 − 2

√
6)k + (5 + 2

√
6)k , we observe that the sequence (xk)k≥1

satisfies the recursive relation:

xk+2 = 10xk+1 − xk

for all k ≥ 0 (more generally, if xk = ak + bk , then xk+2 = (a + b)xk+1 − abxk ,
for all k). Since x0 = 2 and x1 = 10, it follows that xk is an integer for all
k ≥ 0. Moreover, using the recursive relation, we can prove inductively that xk ≡
2 (mod 4) for all k. Indeed, this holds for k = 0 and k = 1. Assuming that
xk ≡ 2 (mod 4) and xk+1 ≡ 2 (mod 4), it follows that xk+2 ≡ 10 · 2 − 2 ≡
2 (mod 4).

We conclude that nk = 1
4 (xk + 2) is an integer as claimed. Finally, it is not diffi-

cult to check that nk indeed satisfies the given equation.

Problem 1.66 Let a and b be nonzero integers with |a| ≤ 100, |b| ≤ 100. Prove
that

∣∣a
√

2 + b
√

3
∣∣ ≥ 1

350
.

Solution We take the conjugate:

∣∣a
√

2 + b
√

3
∣∣ = |2a2 − 3b2|

|a√
2 − b

√
3| ,

and observe that 2a2 − 3b2 
= 0; if it were 0,
√

3
2 would be a rational number, a con-

tradiction. Because 2a2 − 3b2 is an integer, it follows that |2a2 − 3b2| ≥ 1. On the
other hand, we have

∣∣a
√

2 − b
√

3
∣∣ ≤ |a|√2 + |b|√3 ≤ 100

(√
2 + √

3
)
< 350.

It follows that

∣∣a
√

2 + b
√

3
∣∣ = |2a2 − 3b2|

|a√
2 − b

√
3| ≥ 1

350
.

Problem 1.67 Let n be a positive integer. Prove that

⌊(
1 + √

5

2

)4n−2⌋
− 1

is a perfect square.
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Solution Let

xn =
(

1 + √
5

2

)4n−2

+
(

1 − √
5

2

)4n−2

.

Observe that

xn = 4

6 + 2
√

5

(
7 + 3

√
5

2

)n

+ 4

6 − 2
√

5

(
7 − 3

√
5

2

)n

,

and hence xn satisfies the recursive relation

xn+1 = 7xn − xn−1,

with x0 = x1 = 3. It follows that xn is a positive integer for all n ≥ 0. Because

0 <

(
1 − √

5

2

)4n−2

< 1,

we deduce that
⌊(

1 + √
5

2

)4n−2⌋
− 1 = xn − 2.

But

xn − 2 =
(

1 + √
5

2

)2n−1

+
(

1 − √
5

2

)2n−1)2

and a similar argument shows that

(
1 + √

5

2

)2n−1

+
(

1 − √
5

2

)2n−1

is a positive integer for all n ≥ 0. The claim is proved.

Problem 1.68 Consider the sequence

an =
√

1 +
(

1 + 1

n

)2

+
√

1 +
(

1 − 1

n

)2

, n ≥ 1.

Prove that

1

a1
+ 1

a2
+ · · · + 1

a20

is an integer.
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Solution Taking the conjugate, we have

1

an

= n

4

(√

1 +
(

1 + 1

n

)2

−
√

1 +
(

1 − 1

n

)2
)

= 1

4

(√
2n2 + 2n + 1 −

√
2n2 − 2n + 1

)
.

Observe that

2(n + 1)2 − 2(n + 1) + 1 = 2n2 + 2n + 1,

hence the sum telescopes and we have

1

a1
+ · · · + 1

a20
= 1

4

(√
5 − √

1 + √
13 − √

5 + · · · + √
841 − √

761
)

= 1

4
(29 − 1) = 7.

Problem 1.69 Prove that

9999∑

n=1

1

(
√

n + √
n + 1)( 4

√
n + 4

√
n + 1)

= 9.

Solution Observe that

1

(
√

n + √
n + 1)( 4

√
n + 4

√
n + 1)

= (
√

n + 1 − √
n)(

4
√

n + 1 − 4
√

n)

(n + 1 − n)(
√

n + 1 − √
n)

= 4
√

n + 1 − 4
√

n.

Thus, the sum telescopes:

9999∑

n=1

1

(
√

n + √
n + 1)

(
4
√

n + 4
√

n + 1
) =

9999∑

n=1

( 4
√

n + 1 − 4
√

n
)

= 4√10000 − 4
√

1

= 9.

Problem 1.70 Consider the sequence

an = 2 − 1

n2 +
√

n4 + 1
4

, n ≥ 1.
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Prove that
√

a1 + √
a2 + · · · + √

a119

is an integer.

Solution We have

an = 2 −
n2 −

√
n4 + 1

4

− 1
4

= 2 + 4n2 − 2
√

4n4 + 1.

But

4n4 + 1 = 4n4 + 4n2 + 1 − 4n2

= (
2n2 + 1

)2 − 4n2

= (
2n2 + 2n + 1

)(
2n2 − 2n + 1

)
,

and

2 + 4n2 = (
2n2 + 2n + 1

) + (
2n2 − 2n + 1

)
.

Therefore,

2 + 4n2 − 2
√

4n4 + 1 = (√
2n2 + 2n + 1 −

√
2n2 − 2n + 1

)2
,

and
√

an =
√

2n2 + 2n + 1 −
√

2n2 − 2n + 1.

Again, since

2(n + 1)2 − 2(n + 1) + 1 = 2n2 + 2n + 1,

the sum telescopes and we obtain

√
a1 + √

a2 + · · · + √
a119 =

√
2 · 1192 + 2 · 119 + 1 −

√
2 · 12 − 2 · 1 + 1

= 169 − 1 = 168,

an integer number.

4.6 Inequalities with Convex Functions

Problem 1.74 Let a, b > 0 and let n be a positive integer. Prove the inequality

an + bn

2
≥

(
a + b

2

)n

.
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Solution We can try induction on n. The assertion holds for n = 1 and, assuming it
holds for n, multiply both sides by a+b

2 . It follows that

(an + bn)(a + b)

4
≥

(
a + b

2

)n+1

,

and therefore it is sufficient to prove that

an+1 + bn+1

2
≥ (an + bn)(a + b)

4
.

A short computation shows that this is equivalent to

(a − b)
(
an − bn

) ≥ 0,

which is true since a − b and an − bn have the same sign.
A shorter solution uses convex functions. Consider n ≥ 2 and let f : (0,+∞) →

(0,+∞); f (x) = xn. Because f ′′(x) = n(n − 1)xn−2 > 0, f is convex; thus for all
a, b > 0 we have

f (a) + f (b)

2
≥ f

(
a + b

2

)
.

This is exactly the inequality we had to prove.

Problem 1.75 Prove that

3
√

3 − 3√3 + 3
√

3 + 3√3 < 2 3√3.

Solution Consider the function f (x) = 3
√

x. It is not difficult to see that f is con-
cave on the interval (0,+∞) and it is not linear. Then, for any two distinct numbers
a, b > 0 we have

f (a) + f (b)

2
< f

(
a + b

2

)
.

If we take a = 3 − 3
√

3 and b = 3 + 3
√

3, we obtain the desired result.

Problem 1.76 Prove the AM − GM inequality

x1 + x2 + · · · + xn

n
≥ n

√
x1x2 · · ·xn,

for all x1, x2, . . . , xn > 0.

Solution There are many proofs of the AM − GM inequality. One of them uses
convexity. Consider the function f : (0,+∞) → (0,+∞), f (x) = logx. This is a
concave function, so we have the inequality

f (x1) + f (x2) + · · · + f (xn)

n
≤ f

(
x1 + x2 + · · · + xn

n

)
,
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for all x1, x2, . . . , xn > 0. Using the properties of the logarithmic function, we obtain

logx1 + logx2 + · · · + logxn

n
= log(x1x2 · · ·xn)

n

= log(x1x2 · · ·xn)
1
n

= log n
√

x1x2 · · ·xn,

and hence

log n
√

x1x2 · · ·xn ≤ log
x1 + x2 + · · · + xn

n
.

Because f is increasing, this is equivalent to the AM − GM inequality.

Problem 1.77 Let a1 < a2 < · · · < a2n+1 be positive real numbers. Prove the in-
equality

n
√

a1 − a2 + a3 − · · · − a2n + a2n+1 ≥ n
√

a1 − n
√

a2 + · · · + n
√

a2n+1.

Solution We will prove inductively a stronger statement. Let m ≥ 2 and n ≥ 1 be
integers. Then the following inequality holds for any positive real numbers a1 <

a2 < · · · < a2n+1:

m
√

a1 − a2 + a3 − · · · − a2n + a2n+1 ≥ m
√

a1 − m
√

a2 + · · · + m
√

a2n+1.

Now, we fix m and prove the assertion by induction on n. For n = 1 we have to
prove that

m
√

a1 − a2 + a3 ≥ m
√

a1 − m
√

a2 + m
√

a3,

for all 0 < a1 < a2 < a3. This follows from problem 1, for the concave function
f : (0,+∞) → (0,+∞), f (x) = m

√
x. Suppose the inequality holds for n and let

0 < a1 < a2 < · · · < a2n+1 < a2n+2 < a2n+3. Then, from the induction hypothesis,
we have

m
√

a1 − a2 + · · · + a2n+1 − a2n+2 + a2n+3

≥ m
√

a1 − m
√

a2 + · · · + m
√

a2n+1 − a2n+2 + a2n+3,

since a1 < a2 < · · · < a2n < a2n+1 − a2n+2 + a2n+3. But

m
√

a2n+1 − a2n+2 + a2n+3 ≥ m
√

a2n+1 − m
√

a2n+2 + m
√

a2n+3,

and the result follows.

Problem 1.78 Let x, y, z > 0. Prove that

x

2x + y + z
+ y

x + 2y + z
+ z

x + y + 2z
≤ 3

4
.
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Solution Let s = x + y + z. The inequality becomes

x

s + x
+ y

s + y
+ z

s + z
≤ 3

4
.

Consider the function f : (0,+∞) → (0,+∞) defined by

f (t) = t

s + t
.

We see that

f ′′(x) = − 2s

(s + t)3
< 0,

for all t > 0, so f is concave. It follows that

f (x) + f (y) + f (z)

3
≤ f

(
x + y + z

3

)
.

But

f

(
x + y + z

3

)
= f

(
s

3

)
=

s
3

s + s
3

= 1

4
,

and thus

f (x) + f (y) + f (z) ≤ 3

4
,

as desired.

Problem 1.79 Prove that if a, b, c, d > 0 and a ≤ 1, a + b ≤ 5, a + b + c ≤ 14,
a + b + c + d ≤ 30, then

√
a + √

b + √
c + √

d ≤ 10.

Solution The function f : (0,+∞) → (0,+∞), defined by f (x) = √
x, is con-

cave, and therefore, for any positive real numbers λ1, λ2, . . . , λn such that λ1 +
λ2 + · · · + λn = 1, we have

λ1f (x1) + λ2f (x2) + · · · + λnf (xn) ≤ f (λ1x1 + λ2x2 + · · · + λnxn).

Now, take n = 4 and λ1 = 1
10 , λ2 = 2

10 , λ3 = 3
10 , λ4 = 4

10 . It follows that

1

10

√
a + 2

10

√
b

4
+ 3

10

√
c

9
+ 4

10

√
d

16
≤

√
a

10
+ b

20
+ c

30
+ d

40
,

so

√
a + √

b + √
c + √

d ≤ 10

√
12a + 6b + 4c + 3d

120
.



134 4 Algebra

But

12a + 6b + 4c + 3d = 3(a + b + c + d) + (a + b + c) + 2(a + b) + 6a

≤ 3 · 30 + 14 + 2 · 5 + 6 · 1 = 120,

and the claim is proved.

4.7 Induction at Work

Problem 1.83 Let n be a positive integer. Prove the inequality

(
1 + 1

2

)(
1 + 1

22

)(
1 + 1

23

)
· · ·

(
1 + 1

2n

)
<

5

2
.

Solution As in Problem 1.81, we will prove a stronger statement:

(
1 + 1

2

)(
1 + 1

22

)(
1 + 1

23

)
· · ·

(
1 + 1

2n

)
≤ 5

2

(
1 − 1

2n

)

for all n ≥ 2. For n = 2, both sides of the above inequality equal 15
8 . Suppose the

inequality holds for n > 2 and multiply both sides by 1 + 1
2n+1 . We have to prove

that

5

2

(
1 − 1

2n

)(
1 + 1

2n+1

)
≤ 5

2

(
1 − 1

2n+1

)
,

and a short computation shows that the latter is equivalent to the obvious 1
22n+1 > 0.

Problem 1.84 Let n be a positive integer. Prove that the number

an = 22n − 1

has at least n distinct prime divisors.

Solution Note that a1 = 3 has one prime divisor and suppose that for some n > 1,
an has at least n distinct prime divisors p1,p2, . . . , pn. Now,

an+1 = 22n+1 − 1 = (
22n)2 − 1 = an

(
22n + 1

)
,

and hence p1,p2, . . . , pn are distinct prime divisors of an+1 as well. The numbers
22n + 1 and 22n − 1 are coprime since any of their common divisors greater than 1
must be odd and must divide 22n +1− (22n −1) = 2, which is impossible. Therefore
any prime divisor of 22n + 1 is different from p1,p2, . . . , pn. It follows that an+1

has at least n + 1 distinct prime divisors.
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Problem 1.85 Let a and n be positive integers such that a is less than or equal to
n!. Prove that a can be represented as a sum of at most n distinct divisors of n!.

Solution The assertion is trivial for n = 1, so suppose it holds true for some n > 1.
We have a ≤ (n + 1)!. By the division algorithm, there exist b, c such that a =
b(n + 1) + c, with 0 ≤ c ≤ n. Clearly, b ≤ n!; and thus, using the induction hypoth-
esis, b can be represented as a sum of at most n distinct divisors of n!, say

b = d1 + d2 + · · · + dk,

with k ≤ n. But then

a = d1(n + 1) + d2(n + 1) + · · · + dk(n + 1) + c,

and the numbers d1(n + 1), d2(n + 1), . . . , dk(n + 1) and c are distinct divisors of
(n + 1)!.

Problem 1.86 Let x1, x2, . . . , xm, y1, y2, . . . , yn be positive integers such that the
sums x1 + x2 + · · · + xm and y1 + y2 + · · · + yn are equal and less than mn. Prove
that in the equality

x1 + x2 + · · · + xm = y1 + y2 + · · · + yn

one can cancel some terms and obtain another equality.

Solution Let k = m + n. We proceed by induction on k. Let s = x1 + x2 + · · · +
xm = y1 +y2 +· · ·+yn. Since s ≥ m, s ≥ n and s < mn, it follows that m,n ≥ 2, and
hence k ≥ 4. The case k = 4 is easy to discard, so let us suppose that k > 4. With no
loss of generality, we may assume that x1 ≥ x2 ≥ · · · ≥ xm and y1 ≥ y2 ≥ · · · ≥ yn.
If x1 = y1, these terms cancel and we are done. Suppose, for instance, that x1 > y1.
We want to apply the induction hypothesis to the equality

(x1 − y1) + x2 + · · · + xm = y2 + y3 + · · · + yn

in which there are m + (n − 1) = k − 1 terms. For this, we have to check that the
sum s′ = y2 +y3 +· · ·+yn verifies the condition s′ < m(n−1). Because y1 ≥ y2 ≥
· · · ≥ yn, it follows that y1 ≥ s

n
, so that

s′ = s − y1 ≤ s − s

n
= s

(n − 1)

n
< mn

(n − 1)

n
= m(n − 1),

as needed.

Problem 1.87 The sequence (xn)n≥1 is defined by x1 = 1, x2n = 1 + xn and
x2n+1 = 1

x2n
for all n ≥ 1. Prove that for any positive rational number r there ex-

ists an unique n such that r = xn.
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Solution Note that all the terms of the sequence are positive numbers and that
x2n > 1, x2n+1 < 1 for all n ≥ 1. We prove by induction on k ≥ 2 the following
statement: for all positive integers a, b such that gcd(a, b) = 1 and a + b ≤ k, there
exists a term of the sequence equal to a

b
. If k = 2, then a = b = 1 and a

b
= 1 = x1.

Suppose that the statement is true for some k > 2, and let a, b be coprime positive
integers such that a + b = k + 1. If a > b, then we apply the induction hypothesis
to the numbers a − b and b. Clearly, gcd(a − b, b) = 1 and (a − b) + b = a ≤ k;
therefore, there exists n such that xn = a−b

b
. But then

x2n = 1 + xn = 1 + a − b

b
= a

b
.

If a < b, then we apply the induction hypothesis to the numbers b − a and a. There
exists n such that xn = b−a

a
, and we obtain

x2n+1 = 1

x2n

= 1

1 + xn

= 1

1 + b−a
a

= a

b
.

We proved that for any positive rational number r there exists n such that r = xn, but
we still have to prove that n is unique. This follows from the fact that the terms of
the sequence (xn)n≥1 are pairwise distinct. Indeed, suppose not, and choose n 
= m

such that xn = xm, with minimal n. The observation at the beginning of the solution
shows that n and m have the same parity. If n = 2n′ and m = 2m′, then we obtain
xn′ = xm′ , contradicting the minimality of n. The case n = 2n′ + 1 and m = 2m′ + 1
yields x2n′ = x2m′ , and we again reach a contradiction.

Problem 1.88 Let n be a positive integer and let 0 < a1 < a2 < · · · < an be real
numbers. Prove that at least

(
n+1

2

)
of the sums ±a1 ± a2 ± · · · ± an are distinct.

Solution The base case is obvious since for n = 1 we have two sums: a1 and −a1.
Suppose the assertion true for some k and consider the numbers 0 < a1 < a2 <

· · · < ak < ak+1. The greatest sum determined by the first k numbers is s = a1 +
a2 + · · · + ak . Consider the sums

s + ak+1 > s + ak+1 − a1 > s + ak+1 − a2 > · · · > s + ak+1 − ak.

We have s + ak+1 − ai > s, for all i, hence all these k + 1 sums are distinct from
the sums determined by the first k numbers. The proof ends by noticing that

(
k + 1

2

)
+ k + 1 =

(
k + 2

2

)
.

Problem 1.89 Prove that for each positive integer n, there are pairwise relatively
prime integers k0, k1, . . . , kn, all strictly greater than 1, such that k0k1 · · ·kn − 1 is
the product of two consecutive integers.
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Solution For n = 1 we can choose k0 = 3 and k1 = 7 since 3 ·7−1 = 4 ·5. Suppose
that for n > 1 there exist pairwise relatively prime integers 1 < k0 < k1 < · · · < kn

such that

k0k1 · · ·kn − 1 = an(an − 1),

for some integer an. If we choose kn+1 = a2
n + an + 1, then

k0k1 · · ·knkn+1 = (
a2
n − an + 1

)(
a2
n + an + 1

) = a4
n + a2

n + 1,

and hence

k0k1 · · ·knkn+1 − 1 = a2
n

(
a2
n + 1

)

is indeed the product of two consecutive integers.
Now, suppose that gcd(kn+1, kj ) = d , for some j , 1 ≤ j ≤ n. Clearly, d must be

an odd integer, since kn+1 is odd. Then d|k1k2 · · ·kn = a2
n −an +1 and d|a2

n +an +1
hence d|2an and since d is odd, d|an. From d|an and d|a2

n + an + 1 we deduce that
d = 1, therefore k1, k2, . . . , kn, kn+1 are pairwise relatively prime integers.

Problem 1.90 Prove that for every positive integer n, the number 33n + 1 is the
product of at least 2n + 1 (not necessarily distinct) primes.

Solution For n = 1 we have 331 +1 = 28 = 2 ·2 ·7, as needed. Suppose that 33n +1
is the product of at least 2n + 1 (not necessarily distinct) primes and observe that

33n+1 + 1 = (
33n)3 + 1 = (

33n + 1
)((

33n)2 − 33n + 1
)
,

hence it suffices to show that (33n
)2 − 33n + 1 is the product of at least two primes.

Using the obvious identity x2 − x + 1 = (x + 1)2 − 3x, we have

(
33n)2 − 33n + 1 = (

33n + 1
)2 − 3 · 33n

= (
33n + 1

)2 − 33n+1

= (
33n + 1

)2 − (
3

3n+1
2

)2

= (
33n + 1 − 3

3n+1
2

)(
33n + 1 + 3

3n+1
2

)
.

Since 33n + 1 − 3
3n+1

2 > 1, the conclusion follows.

Problem 1.91 Prove that for every positive integer n there exists an n-digit number
divisible by 5n all of whose digits are odd.

Solution Clearly, the assertion holds for n = 1. Assume now that the number A =
a1a2 · · ·an = 5n · a, for some integer a, and a1, a2, . . . , an are all odd. Consider the
following five numbers

A1 = 1a1a2 · · ·an = 1 · 10n + 5n · a = 5n
(
1 · 2n + a

)
,
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A2 = 3a1a2 · · ·an = 3 · 10n + 5n · a = 5n
(
3 · 2n + a

)
,

A3 = 5a1a2 · · ·an = 5 · 10n + 5n · a = 5n
(
5 · 2n + a

)
,

A4 = 7a1a2 · · ·an = 7 · 10n + 5n · a = 5n
(
7 · 2n + a

)
,

A5 = 9a1a2 · · ·an = 9 · 10n + 5n · a = 5n
(
9 · 2n + a

)
.

If two of the numbers 1 ·2n +a, 3 ·2n +a, 5 ·2n +a, 7 ·2n +a, and 9 ·2n +a give
the same remainder when divided by 5, then their difference must be divisible by 5,
which is clearly impossible. It follows that the five numbers give distinct remainders
when divided by 5, hence one of them is divisible by 5. We conclude that one of the
numbers A1,A2,A3,A4,A5 is divisible by 5 · 5n = 5n+1, as desired.

4.8 Roots and Coefficients

Problem 1.95 Let a, b, c be nonzero real numbers such that a + b + c 
= 0 and

1

a
+ 1

b
+ 1

c
= 1

a + b + c
.

Prove that for all odd integers n

1

an
+ 1

bn
+ 1

cn
= 1

an + bn + cn
.

Solution Let f (X) = X3 + mX2 + nX + p be the monic polynomial with roots
a, b, c. The given equality can be written as

(a + b + c)(ab + bc + ca) = abc,

so, by Viète’s relations, we obtain p = mn. Thus

f (X) = X3 + mX2 + nX + mn = X2(X + m) + n(X + m)

= (X + m)
(
X2 + n

)
.

It follows that one of the roots, say a, equals −m = a + b + c; hence b + c = 0.
Substituting c = −b, the desired equality becomes

1

an
+ 1

bn
+ 1

(−b)n
= 1

an + bn + (−b)n
,

which is clearly true if n is an odd integer.

Observation We could also ask the following question: if m and n are odd integers,
prove that

1

am
+ 1

bm
+ 1

cm
= 1

am + bm + cm
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if and only if

1

an
+ 1

bn
+ 1

cn
= 1

an + bn + cn
.

Problem 1.96 Let a ≤ b ≤ c be real numbers such that

a + b + c = 2

and

ab + bc + ca = 1.

Prove that

0 ≤ a ≤ 1

3
≤ b ≤ 1 ≤ c ≤ 4

3
.

Solution Let f (X) = X3 + mX2 + nX + p be the monic polynomial with roots
a, b, c. Viète’s relations yield m = −2 and n = 1, hence

f (X) = X3 − 2X2 + X + p.

The derivative of f is

f ′(X) = 3X2 − 4X + 1,

with roots 1
3 and 1. Using the sign of f ′, we deduce that f increases on the interval

(−∞, 1
3 ] from −∞ to f (1

3 ) = p+ 4
27 , and then decreases on the interval [ 1

3 ,1] from
p + 4

27 to f (1) = p. Finally, f increases again on the interval [1,+∞) from p to
+∞. It follows that f has three real roots if and only if p + 4

27 ≥ 0 and p ≤ 0.
Observe that f (0) = p and f (4

3 ) = p + 4
27 , and hence f changes its sign on

each of the intervals [0, 1
3 ], [1

3 ,1] and [1, 4
3 ]. We deduce that each of these intervals

contains a root of f . The claim follows.

Problem 1.97 Prove that two of the four roots of the polynomial X4 +12X −5 add
up to 2.

Solution Let x1, x2, x3 and x4 be the roots of the polynomial. Writing Viète’s rela-
tions in terms of s = x1 + x2, s′ = x3 + x4, p = x1x2 and p′ = x3x4, we obtain

s + s′ = 0,

p + p′ + ss ′ = 0,

ps′ + p′s = −12,

pp′ = −5.

Substituting s′ = −s into the second and third equalities yields

p + p′ = s2,
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−p + p′ = −12

s
,

and we obtain

p = 1

2

(
s2 + 12

s

)
, p′ = 1

2

(
s2 − 12

s

)
.

From pp′ = −5 it follows that

1

4

(
s2 + 12

s

)(
s2 − 12

s

)
= −5,

or

s6 + 20s2 − 144 = 0.

Hence s = x1 + x2 is a root of the polynomial

P(X) = X6 + 20X2 − 144.

Using similar arguments, we deduce that its other five roots are x1 +x3, x1 +x4, x2 +
x3, x2 + x4 and x3 + x4. It suffices now to check that 2 is a root of P . Indeed,

P(2) = 64 + 20 · 4 − 144 = 0.

Problem 1.98 Find m and solve the following equation, knowing that its roots form
a geometrical sequence

X4 − 15X3 + 70X2 − 120X + m = 0.

Solution Let x1, x2, x3, x4 be the roots of the polynomial and suppose they form a
geometrical sequence in the order x1, x3, x4, x2. We again write Viète’s relations in
terms of s = x1 + x2, s′ = x3 + x4, p = x1x2 and p′ = x3x4. This gives

s + s ′ = 15,

p + p′ + ss ′ = 70,

ps ′ + p′s = 120,

pp′ = m.

Then x1x2 = x3x4, and hence p = p′. It follows that 120 = ps′ +p′s = p(s + s′) =
15p and thus p = 8. Then m = 64, and ss′ = 70 − 16 = 54. The numbers s and s′
are the roots of the equation X2 − 15X + 54 = 0, hence s = 6 and s ′ = 9 or vice
versa. It follows that the roots of the polynomial are 1,2,4 and 8.

Problem 1.99 Let x1, x2, . . . , xn be the roots of the polynomial Xn +Xn−1 +· · ·+
X + 1. Prove that

1

1 − x1
+ 1

1 − x2
+ · · · + 1

1 − xn

= n

2
.
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Solution We look for the polynomial with roots

yk = 1

1 − xk

, k = 1,2, . . . , n.

From the above equality, it follows that

xk = yk − 1

yk

,

and since xk is a root of Xn + Xn−1 + · · · + X + 1, we obtain

(
yk − 1

yk

)n

+
(

yk − 1

yk

)n−1

+ · · · + yk − 1

yk

+ 1 = 0.

This is equivalent to

(yk − 1)n + yk(yk − 1)n−1 + · · · + yn−1
k (yk − 1) + yn

k = 0.

It follows that yk is a root of the polynomial

P(X) = (X − 1)n + X(X − 1)n−1 + · · · + Xn−1(X − 1) + Xn.

The desired sum equals

y1 + y2 + · · · + yn,

and its value can be determined by using Viète’s relations. Observe that

P(X) = (n + 1)Xn − Xn−1
(

n

1

)
+

(
n − 1

1

)
+ · · · +

(
1

1

))
+ · · ·

and hence

y1 + y2 + · · · + yn =
(
n
1

) + (
n−1

1

) + · · · + (1
1

)

n + 1
= n(n + 1)

2(n + 1)
= n

2
,

as claimed.

Problem 1.100 Let a, b, c be rational numbers and let x1, x2, x3 be the roots of
the polynomial P(X) = X3 + aX2 + bX + c. Prove that if x1

x2
is a rational number,

different from 0 and −1, then x1, x2, x3 are rational numbers.

Solution Let x1
x2

= m ∈ Q, m 
= 0,−1. We have

x1 + x2 + x3 = −a.

We claim that if one of the roots is a rational number, then so are all three of them.
Indeed, if x1 ∈ Q, then x2 = x1

m
∈ Q and x3 = −a − x1 − x2 ∈ Q. If x2 ∈ Q, then
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x1 = mx2 ∈ Q and x3 ∈ Q. If x3 ∈ Q, then x2 = −a−x3
1+m

∈ Q and x1 = mx2 ∈ Q. It
suffices now to prove that P has a rational root.

Substituting x1 = mx2 and x3 = −a − mx2 − x2 in the equality

x1x2 + x1x3 + x2x3 = b

yields
(
m2 + m + 1

)
x2

2 + a(m + 1)x2 + b = 0,

and consequently x2 is a root of a second degree polynomial f with rational co-
efficients. Since P and f share a common root, their greatest common divisor is
a nonconstant polynomial with rational coefficients. It follows that P can be de-
composed into factors with rational coefficients; since one of the factors must be of
degree one, it has at least one rational root.

Problem 1.101 Solve in real numbers the system

⎧
⎪⎨

⎪⎩

x + y + z = 0,

x3 + y3 + z3 = 18,

x7 + y7 + z7 = 2058.

Solution Consider the polynomial

P(t) = t3 + at2 + bt + c,

with roots x, y, z.
Since x + y + z = 0, it follows that a = 0, hence

P(t) = t3 + bt + c.

Because x, y, z are the roots of P , we have

x3 + bx + c = 0,

y3 + by + c = 0,

z3 + bz + c = 0.

Adding these equalities and using the fact that x3 +y3 +z3 = 18, we obtain c = −6.
Therefore

P(t) = t3 + bt − 6.

Now, use the last equation of the system to find b. Multiply the previous equalities
by xn, yn, zn, respectively, and add them to obtain

xn+3 + yn+3 + zn+3 + b
(
xn+1 + yn+1 + zn+1) − 6

(
xn + yn + zn

) = 0.
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Denoting Sn = xn + yn + zn for all n ≥ 1, this equality becomes

Sn+3 + bSn+1 − 6Sn = 0 (∗)

for all positive integers n. We have S7 = 2058. On the other hand, using (∗), we
obtain

S7 = −bS5 + 6S4 = −b(−bS3 + 6S2) + 6(−bS2 + 6S1)

= b2S3 − 12bS2 + 36S1.

Since S3 = 18, S2 = (x + y + z)2 − 2(xy + xz + yz) = −2b and S1 = 0, it follows
that

S7 = 42b2,

so b = ±7.
The equation t3 + 7t − 6 = 0 has only one real root (observe that the function

f (t) = t3 + 7t − 6 is strictly increasing). The equation t3 − 7t − 6 = 0 has roots
t1 = −1, t2 = −2 and t3 = 3, and thus the solutions of the system are (−1,−2,3)

and all of its permutations.

Problem 1.102 Solve in real numbers the system of equations
⎧
⎪⎪⎨

⎪⎪⎩

a + b = 8,

ab + c + d = 23,

ad + bc = 28,

cd = 12.

Solution The expressions on the left-hand side remind us of the coefficients ob-
tained when two polynomials are multiplied. Indeed, observe that
(
x2 +ax + c

)(
x2 + bx + d

) = x4 + (a + b)x3 + (ab + c +d)x2 + (ad +bc)x + cd.

We obtain the polynomial

P(x) = x4 + 8x3 + 23x2 + 28x + 12,

which, fortunately, has integer roots. We can find them by checking the divisors
of 12. We obtain

P(x) = (x + 1)(x + 2)2(x + 3).

The polynomial factors in two ways as a product of quadratic polynomials:

P(x) = (
x2 + 4x + 3

)(
x2 + 4x + 4

)

and

P(x) = (
x2 + 3x + 2

)(
x2 + 5x + 6

)
.

Hence the solutions of the system are (4,4,3,4), (4,4,4,3), (3,5,2,6), (5,3,6,2).
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4.9 The Rearrangements Inequality

Problem 1.108 Let a, b, c be positive real numbers. Prove the inequality

a

b + c
+ b

c + a
+ c

a + b
≥ 3

2
.

Solution For symmetry reasons, we can assume with no loss of generality that a ≤
b ≤ c. But then

1

b + c
≤ 1

c + a
≤ 1

a + b
,

and the rearrangements inequality gives

a

b + c
+ b

c + a
+ c

a + b
≥ b

b + c
+ c

c + a
+ a

a + b
,

and also

a

b + c
+ b

c + a
+ c

a + b
≥ c

b + c
+ a

c + a
+ b

a + b
.

Adding the last two inequalities yields

2

(
a

b + c
+ b

c + a
+ c

a + b

)
≥ 3,

which is what we wanted to prove.

Problem 1.109 Let a, b, c be positive real numbers. Prove the inequality

a3

b2 + c2 + b3

c2 + a2 + c3

a2 + b2 ≥ a + b + c

2
.

Solution Again, assume that a ≤ b ≤ c. This implies a2 ≤ b2 ≤ c2, and it is not
difficult to check that

a

b2 + c2 ≤ b

c2 + a2 ≤ c

a2 + b2

also holds.
Applying the rearrangements inequality, we obtain

a3

b2 + c2
+ b3

c2 + a2
+ c3

a2 + b2
≥ ab2

b2 + c2
+ bc2

c2 + a2
+ ca2

a2 + b2
,

and

a3

b2 + c2
+ b3

c2 + a2
+ c3

a2 + b2
≥ ac2

b2 + c2
+ ba2

c2 + a2
+ cb2

a2 + b2
.
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Adding yields

2

(
a3

b2 + c2 + b3

c2 + a2 + c3

a2 + b2

)
≥ a(b2 + c2)

b2 + c2 + b(c2 + a2)

c2 + a2 + c(a2 + b2)

a2 + b2

= a + b + c,

as desired.

Problem 1.110 Let a, b, c be positive real numbers. Prove that

a + b + c ≤ a2 + b2

2c
+ b2 + c2

2a
+ c2 + a2

2b
≤ a3

bc
+ b3

ca
+ c3

ab
.

Solution As usual, we assume that a ≤ b ≤ c. It follows that a2 ≤ b2 ≤ c2, and
1
a

≥ 1
b

≥ 1
c
. Therefore,

a + b + c = a2 · 1

a
+ b2 · 1

b
+ c2 · 1

c
≤ b2 · 1

a
+ c2 · 1

b
+ a2 · 1

c
,

and

a + b + c ≤ c2 · 1

a
+ a2 · 1

b
+ b2 · 1

c
.

Adding up and dividing by 2 yield

a + b + c ≤ a2 + b2

2c
+ b2 + c2

2a
+ c2 + a2

2b
.

For the second inequality, observe that a ≤ b ≤ c also implies a3 ≤ b3 ≤ c3 and
1
bc

≤ 1
ca

≤ 1
ab

, hence we obtain

a3

bc
+ b3

ca
+ c3

ab
= a3 · 1

bc
+ b3 · 1

ca
+ c3 · 1

ab

≥ b3 · 1

bc
+ c3 · 1

ca
+ a3 · 1

ab

= b2

c
+ c2

a
+ a2

b
,

and

a3

bc
+ b3

ca
+ c3

ab
≥ c3 · 1

bc
+ a3 · 1

ca
+ b3 · 1

ab

= c2

b
+ a2

b
+ b2

a
.
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Adding up, we obtain

2

(
a3

bc
+ b3

ca
+ c3

ab

)
≥ a2 + b2

c
+ b2 + c2

a
+ c2 + a2

b
,

which proves the second inequality.

Problem 1.111 Let a, b, c be positive real numbers. Prove the inequality

a2b(b − c)

a + b
+ b2c(c − a)

b + c
+ c2a(a − b)

c + a
≥ 0.

Solution A first attempt is by brute force. Clearing out the denominators and re-
ducing similar terms lead to the equivalent inequality

a3b3 + b3c3 + c3a3 ≥ a2bc3 + b2ca3 + c2ab3.

Now, if we want to use the rearrangements inequality, we must assume some
ordering of the numbers a, b, and c. Unlike the previous inequalities, this one is not
symmetric with respect to a, b, c (switching a and b, for instance, lead to another
inequality). Of course, we can assume that one of the numbers, say a, is the smallest
one (that is because the inequality is invariant under cyclic permutations of a, b, c),
but then we have to consider two cases: a ≤ b ≤ c and a ≤ c ≤ b.

Let us assume that a ≤ b ≤ c. Then ab ≤ ac ≤ bc and a2b2 ≤ a2c2 ≤ b2c2, hence

a3b3 + a3c3 + b3c3 = (ab)
(
a2b2) + (ac)

(
a2c2) + (bc)

(
b2c2)

≥ (ac)
(
a2b2) + (bc)

(
a2c2) + (ab)

(
b2c2)

= a2bc3 + b2ca3 + c2ab3,

and we are done. The case a ≤ c ≤ b can be treated in a similar manner.

Observation We can prove our inequality with less computations. First, write it as

a2b2

a + b
+ b2c2

b + c
+ c2a2

c + a
≥ a2bc

a + b
+ b2ca

b + c
+ c2ab

c + a
,

and then divide both sides by abc:

ab

c(a + b)
+ bc

a(b + c)
+ ca

b(c + a)
≥ a

a + b
+ b

b + c
+ c

c + a
.

Assuming, for instance, a ≤ b ≤ c, we also have ab ≤ ac ≤ bc, and

1

c(a + b)
≤ 1

a(b + c)
≤ 1

b(c + a)
.
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It follows that

ab

c(a + b)
+ bc

a(b + c)
+ ca

b(c + a)
≥ (ac)

1

c(a + b)
+ (ab)

1

a(b + c)
+ (bc)

1

b(c + a)

= a

a + b
+ b

b + c
+ c

c + a
,

as desired. Analogously we deal with the case a ≤ c ≤ b.

Problem 1.112 Let a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn be two ordered
sequences of real numbers. Prove Chebyshev’s inequality

a1 + a2 + · · · + an

n
· b1 + b2 + · · · + bn

n
≤ a1b1 + a2b2 + · · · + anbn

n
.

Solution The rearrangements inequality yields

a1b1 + a2b2 + · · · + anbn ≥ a1b2 + a2b3 + · · · + anb1,

a1b1 + a2b2 + · · · + anbn ≥ a1b3 + a2b4 + · · · + anb2,

...

a1b1 + a2b2 + · · · + anbn ≥ a1bn + a2b1 + · · · + anbn−1,

a1b1 + a2b2 + · · · + anbn = a1b1 + a2b2 + · · · + anbn.

Adding up all and factoring the right-hand side lead to

n(a1b1 + a2b2 + · · · + anbn) ≥ (a1 + a2 + · · · + an)(b1 + b2 + · · · + bn),

and the conclusion follows immediately.

Problem 1.113 Let a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn be two ordered
sequences of positive real numbers. Prove that

(a1 + b1)(a2 + b2) · · · (an + bn) ≤ (a1 + bσ(1))(a2 + bσ(2)) · · · (an + bσ(n)),

for any permutation σ .

Solution We will use the same technique as in the proof of the rearrangements
inequality. Consider an arbitrary permutation σ and the product

P(σ) = (a1 + bσ(1))(a2 + bσ(2)) · · · (an + bσ(n)).

If there exist i < j such that σ(i) > σ(j), consider the permutation σ ′ in which σ(i)

and σ(j) are switched. We claim that P(σ ′) ≤ P(σ). Indeed, this is equivalent to

(ai + bσ(j))(aj + bσ(i)) ≤ (ai + bσ(i))(aj + bσ(j)),
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which simplifies to

(ai − aj )(bσ(i) − bσ(j)) ≤ 0,

clearly true, since ai ≤ aj and bσ(i) ≥ bσ(j).
We repeat this procedure as long as we can find pairs (i, j), with i < j and

σ(i) > σ(j). It is not difficult to see that, eventually, no such pair will exist. But in
this case we have

σ(1) < σ(2) < · · · < σ(n),

which clearly implies σ(k) = k, for all k. Thus, the product

(a1 + b1)(a2 + b2) · · · (an + bn)

is the minimal one.



Chapter 5
Geometry and Trigonometry

5.1 Geometric Inequalities

Problem 2.5 Let ABCD be a convex quadrilateral. Prove that

max(AB + CD,AD + BC) < AC + BD < AB + BC + CD + DA.

Solution Let O be the point of intersection of the diagonals AC and BD. We have
AO + OB > AB and CO + OD > CD; thus AC + BD > AB + CD. Similarly,
AO + OD > AD and BO + OC > BC; thus AC + BD > AD + BC . It follows
that

max(AB + CD,AD + BC) < AC + BD.

For the second inequality, note that AC < AB + BC and AC < AD + DC; hence

AC <
1

2
(AB + BC + CD + DA).

Analogously,

BD <
1

2
(AB + BC + CD + DA),

and the result follows by adding these inequalities.

Problem 2.6 Let M be the midpoint of the segment AB . Prove that if O is an
arbitrary point, then

|OA − OB| ≤ 2OM.

Solution Suppose that O does not lie on the line AB and let the point be O ′ the
reflection of O across M (Fig. 5.1).

Because the segments AB and OO ′ have the same midpoint, the quadrilat-
eral AOBO ′ is a parallelogram, so OA = BO ′. In the triangle OBO ′, we have
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Fig. 5.1

OO ′ +OB > BO ′ and OO ′ +BO ′ > OB; hence 2OM > OA−OB and 2OM >

OB − OA.
We conclude that

2OM > |OA − OB|.
If O lies on the line AB , we introduce coordinates on the line AB such that M is
the origin and the points A and B have coordinates −1 and 1, respectively. If x is
the coordinate of the point O , we have to prove that

2|x| ≥ ∣∣|x + 1| − |x − 1|∣∣.

Squaring both sides and rearranging terms, we find that the inequality is equivalent
to |x2 − 1| ≥ 1 −x2, which is obvious. We also deduce that the equality holds if and
only if 1 − x2 ≥ 0; that is, if and only if O lies on the segment AB .

Problem 2.7 Prove that in an arbitrary triangle, the sum of the lengths of the alti-
tudes is less than the triangle’s perimeter.

Solution It is not difficult to see that in a right triangle, the length of a leg is less than
the length of the hypotenuse; this is an immediate consequence of the Pythagorean
theorem, but it can also be proven by using simple inequalities.

Suppose ABC is a right triangle, with ∠A = 90◦. We prove, for instance, that
BC > AB . Let B ′ be the reflection of B across A. Then ∠B ′AC = 90◦ and triangles
ABC and AB ′C are congruent. We have BC + B′C > BB ′, hence 2BC > 2AB .
Returning to our problem, if AA′, BB ′ and CC′ are the altitudes of triangle ABC,
then AA′ ≤ AB , BB ′ ≤ BC, and CC′ ≤ CA. We add these inequalities to obtain

AA′ + BB ′ + CC′ < AB + BC + CA.

The inequality is strict because at most one of the angles of the triangle can be right.
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Fig. 5.2

Problem 2.8 Denote by P the perimeter of triangle ABC. If M is a point in the
interior of the triangle, prove that

1

2
P < MA + MB + MC < P.

Solution In the triangle MAB , we have MA + MB > AB . Analogously, MA +
MC > AC and MB + MC > BC. The first inequality is obtained by adding these
three inequalities. For the second one, we have seen in Problem 2.3 that MB +
MC < AB + AC. Writing the similar inequalities and adding them up gives the
desired result.

Problem 2.9 Prove that if A′,B ′ and C′ are the midpoints of the sides BC, CA and
AB , respectively, then (Fig. 5.2)

3

4
P < AA′ + BB ′ + CC′ < P.

Solution It is known that the medians of a triangle are concurrent at a point called
the centroid of the triangle. Denote this point by G. Then

AA′ + BB ′ + CC′ > GA + GB + GC >
1

2
P,

which follows from the preceding problem by taking M = G, but this is not enough.
In order to obtain the required inequality, we have to use another property of the

centroid: the point G divides each median in the ratio 1:2, that is, GA = 2
3AA′, etc.

Then, in triangle GBC, we have GB + GC > BC, or 2
3 (BB ′ + CC′) > BC. If we

add this with the other two similar inequalities, we get

4

3

(
AA′ + BB ′ + CC ′) > P,

and hence the desired result. For the second inequality, just use Problem 2.2.

Problem 2.10 In the convex quadrilateral ABCD, we have

AB + BD ≤ AC + CD.

Prove that AB < AC.
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Solution Let O be the point of intersection of the diagonals AC and BD. In tri-
angles AOB and COD, we have AB < AO + OB , CD < CO + OD, and hence
AB + CD < AC + BD. Adding this inequality with AB + BD ≤ AC + CD, we
get AB < AC.

Problem 2.11 Consider n red and n blue points in the plane, no three of them being
collinear. Prove that one can connect each red point to a blue one with a segment
such that no two segments intersect.

Solution There is a finite number of ways in which the n red points can be con-
nected with the n blue ones. We choose the connection with the property that the
sum of lengths of all connecting segments is minimal. We claim that in this case ev-
ery two segments are disjoint. Indeed, suppose the points A and D are red, B and C

are blue and the segments AB and CD intersect at O . Then we can replace the seg-
ments AB and CD by AC and BD (see Fig. 5.3). Clearly, AC + BD < AB + CD

(see Problem 2.5), and this contradicts the assumption that the sum of lengths of all
connecting segments is minimal.

Problem 2.12 Let n be an odd positive integer. On some field, n gunmen are placed
such that all pairwise distances between them are different. At a signal, every gun-
man takes out his gun and shoots the closest gunman. Prove that:

(a) at least one gunman survives;
(b) no gunman is shot more than five times;
(c) the trajectories of the bullets do not intersect.

Solution (a) Consider the gunmen closest to each other. They will shoot each other.
If anybody else shoots at either of these two, a gunman will certainly survive (there
are n bullets shot, so if someone ends up with more than one bullet in his body,
someone else survives). If not, discard these two and repeat the reasoning for the
n − 2 remaining gunmen. Because n is odd, we eventually reach the case n = 3,
where the conclusion is obvious.
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(b) Suppose a gunman A is shot by at least six other gunmen, denoted
A1, . . . ,A6. One of the six angles centered at A is at most 60◦. Suppose ∠A1AA2

is such an angle (see Fig. 5.4). In triangle A1AA2, one of the other two angles,
say A2, is greater than 60◦. Then AA1 > A1A2, but since A1 shot A and not A2,
AA1 < A1A2, which is a contradiction.

(c) Suppose A shoots B , C shoots D and AB ∩ CD = O . Then AB < AD and
CD < BC. Thus, in the convex quadrilateral ACBD, AB + CD < AD + BC,
a contradiction.

Problem 2.13 Prove that the medians of a given triangle can form a triangle.

Solution Let A′,B ′ and C′ be the midpoints of the sides BC,CA, and AB of the
triangle ABC. We have AA′ = 1

2(AB + AC). Adding this with the other two sim-
ilar equalities, we obtain AA′ + BB ′ + CC′ = 0. Since the three vectors are non-
collinear, this shows that the segments AA′,BB ′ and CC ′ can form a triangle.

Observation We can actually construct this triangle. Consider the point M such
that B ′ is the midpoint of the segment A′M (see Fig. 5.5). Then the quadrilateral
AA′CM is a parallelogram.
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It is not difficult to see that in this case BC′MB ′ is also a parallelogram, and the
side lengths of triangle CC ′M are equal to the lengths of the medians AA′,BB ′,
and CC′.

Problem 2.14 Let A and B be two points situated on the same side of a line XY .
Find the position of a point M on the line such that the sum AM + MB is minimal.

Solution Let B ′ be the reflection of B across the line XY . We claim that M is the
point of intersection of AB ′ and XY .

Indeed, let M ′ be another point on XY (see Fig. 5.6). By symmetry across XY ,
MB ′ = MB and M ′B ′ = M ′B . Then

AM ′ + M ′B = AM ′ + M ′B ′ > AB ′ = AM + MB ′ = AM + MB.

Problem 2.15 Let ABC be an acute triangle. Find the positions of the points
M,N,P on the sides BC,CA,AB , respectively, such that the perimeter of the tri-
angle MNP is minimal.

Solution Let us fix M on the side BC and look for the positions of P and Q such
that the perimeter of triangle MNP is minimal. Reflect M across AB and AC to
obtain M ′ and M ′′, respectively.

If P ′ and Q′ are points on the sides AB and AC, we have

MP ′ + P ′Q′ + Q′M = M ′P ′ + P ′Q′ + Q′M ′′.

This sum is minimal when the points M ′,P ′,Q′ and M ′′ are collinear, so P and
Q are the points of intersection between M ′M ′′ and the sides AB and AC (see
Fig. 5.7). In this case, the perimeter of MPQ equals M ′M ′′.

Now, the problem can be rephrased in the following way: find the point M on the
side BC such that the length of M ′M ′′ is minimal.

Observe that

∠M ′AB = ∠BAM, and ∠M ′′AC = ∠CAM,
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Fig. 5.7

Fig. 5.8

therefore ∠M ′AM ′′ = 2∠BAC. Moreover, M ′A = M ′′A = MA. It follows that
regardless of the position of M on BC, triangle M ′AM ′′ is isosceles, with fixed
angles.

All such triangles are similar to each other, so if M ′M ′′ is minimal, the sides
M ′A and M ′′A are also minimal. Clearly, this happens when MA is minimal, i.e.
when MA is an altitude of ABC (see Fig. 5.8). We conclude that the perimeter of
MPQ is minimal when M,P , and Q are the feet of the altitudes of the triangle
ABC (the so-called orthic triangle).

Problem 2.16 Seven real numbers are given in the interval (1, 13). Prove that at
least three of them are the lengths of a triangle’s sides.

Solution Let the numbers be a1, a2, . . . , a7. We can assume that

a1 ≤ a2 ≤ · · · ≤ a7.

Suppose by way of contradiction that no three of them are the lengths of a triangle’s
sides. We have a1 + a3 > a2 and a2 + a3 > a1. Then a1 + a2 ≤ a3, because if not,
then there would exist a triangle with side lengths a1, a2, a3.

We deduce a3 ≥ 2. Similarly, we have a4 ≥ a3 + a2 ≥ 3, a5 ≥ a4 + a3 ≥ 5, a6 ≥
a5 + a4 ≥ 8 and, finally, a7 ≥ a6 + a5 ≥ 13, which is a contradiction.
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5.2 An Interesting Locus

Problem 2.21 Find the locus of points M in plane of triangle ABC such that
[ABM] = 2[ACM].

Solution Let C′ be the reflection of A across C. Then [AMC ′] = 2[AMC], so we
have to determine the locus of points M for which [ABM] = [AC ′M] (Fig. 5.9).

It follows that the required locus is the union of the line AD (D being the mid-
point of BC ′) and a parallel to BC ′ containing the point A.

Problem 2.22 Let D be a point on the side BC of triangle ABC and M a point on
AD. Prove that

[ABM]
[ACM] = BD

CD

Deduce Ceva’s theorem: if the segments AD, BE and CF are concurrent then

BD

CD
· CE

AE
· AF

BF
= 1.

Solution Let A′ be the projection of A onto BC (Fig. 5.10). Then [ABD] =
1
2AA′ · BD, [ACD] = 1

2AA′ · CD, hence

[ABD]
[ACD] = BD

CD
.
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Similarly, we obtain

[MBD]
[MCD] = BD

CD
.

We deduce
BD

CD
= [ABD] − [MBD]

[ACD] − [MCD] = [ABM]
[ACM] ,

as desired. For the second part, observe that

BD

CD
· CE

AE
· AF

BF
= [ABM]

[ACM] · [BCM]
[ABM] · [ACM]

[BCM] = 1.

Problem 2.23 Let ABCD be a convex quadrilateral and M a point in its interior
such that

[MAB] = [MBC] = [MCD] = [MDA].
Prove that one of the diagonals of ABCD passes through the midpoint of the other
diagonal.

Solution Because [MAB] = [MBC], the point M lies on the median of the triangle
ABC. Similarly, we deduce that M lies on the median of the triangle ACD. If
the two medians coincide, then they also coincide with BD, and then BD passes
through the midpoint of AC.

If not, then M must lie on AC. Since [MAB] = [MAD], AC bisects BD, as
desired.

Problem 2.24 Let ABCD be a convex quadrilateral. Find the locus of points M in
its interior such that

[MAB] = 2[MCD].

Solution We apply the same method as in Problem 2.17 (see Fig. 5.12).
We have to find the locus of points M such that [MXT ] = 2[MYT ]. As we

have seen in Problem 2.21, if Y ′ is a point on YC such that T Y = YY ′, then the
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locus of M is the set of points in the interior of the quadrilateral ABCD located on
the line T I , where I is the midpoint of XY ′. Therefore, the required locus is the
segment JK .

Problem 2.25 Let ABCD be a convex quadrilateral and let k > 0 be a real number.
Find the locus of points M in its interior such that

[MAB] + 2[MCD] = k.

Solution Combining Problems 2.19 and 2.21 and using the construction above, we
deduce that the area of XY ′M is constant (Fig. 5.13).

It results that the locus is (according to the value of k) either a segment KL

parallel to XY ′, or a point, or the empty set.

Problem 2.26 Let d, d ′ be two non-parallel lines in the plane and let k > 0. Find
the locus of points the sum of whose distances to d and d ′ is equal to k.
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Solution Let O be the point of intersection between d and d ′. We consider the
points A,B,C,D, as in Fig. 5.14, such that OA = OB = OC = OD = a > 0.
Suppose M lies in the interior of the angle AOB .

If MA and MB are the projections of M onto OA and OB , we have

MMA + MMB = k.

Multiplying by a/2, we obtain

[MOA] + [MOB] = ka

2
.

But

[MOA] + [MOB] = [MAOB] = [OAB] + [MAB].

Fig. 5.14
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Fig. 5.15

It follows that the area of MAB is constant, and hence the locus of M in the interior
of ∠AOB is a segment XY parallel to AB .

Considering the other three possible locations of M , we deduce that the locus is
a rectangle XYZT whose diagonals are d and d ′.

Observation It is worth mentioning that if M lies, for instance, on the line XY but
not in the interior of the segment XY , another equality occurs.

If M is on the half-line XY as in the figure above (Fig. 5.15), we have

[MOA] − [MOB] = [OAB] + [MAB],

so we deduce that for those positions of M , the difference of the distances to d and
d ′ equals k.

Problem 2.27 Let ABCD be a convex quadrilateral and let E and F be the points
of intersections of the lines AB,CD and AD,BC, respectively. Prove that the mid-
points of the segments AC, BD, and EF are collinear.

Solution Let P,Q, and R be the midpoints of AC,BD, and EF (Fig. 5.16). De-
note by S the area of ABCD. As we have seen, the locus of the points M in the
interior of ABCD for which

[MAB] + [MCD] = 1

2
S

is a segment. We see that P and Q belong to this segment. Indeed,

[PAB] + [PCD] = 1

2
[ABC] + 1

2
[ACD] = 1

2
S,
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and

[QAD] + [QCD] = 1

2
[ABD] + 1

2
[BCD] = 1

2
S.

Now, we have [RAB] = 1
2 [FAB], since the distance from F to AB is twice the

distance from R to AB . Similarly, [RCD] = 1
2 [FCD]. We obtain

[RAB] − [RCD] = 1

2

([FAB] − [FCD]) = 1

2
S.

Taking into account the observation in the solution to Problem 3, it follows that P ,
Q and R are collinear.

Observation Another proof of the assertion in the problem can be obtained by
using a simple (yet useful) lemma. We leave the proof as an exercise to the reader.

Lemma Suppose that through the point M lying in the interior of the parallelogram
ABCD, two parallels to AB and AD are drawn, intersecting the sides of ABCD

at the points P,Q,R,S (see Fig. 5.17).
Then M lies on the diagonal AC if and only if [MRDS] = [MPBQ].
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Fig. 5.18

Returning to our problem, let us draw through the points B,C,D,E, and F

parallels to AB and AD (see Fig. 5.18). It is not difficult to see that the points P,Q,
and R are the images of C,S, and T through a homothety of center A and ratio 1/2,
therefore it suffices to prove that C, S and T are collinear.

Now we apply the lemma, using the fact that C lies on both ED and BF to see
that the shaded parallelograms in Fig. 5.19 have equal area.

Hence by subtracting we see that the shaded parallelograms in Fig. 5.20 have the
same area and we obtain that S lies on CT .

Problem 2.28 In the interior of a quadrilateral ABCD, consider a variable point P .
Prove that if the sum of distances from P to the sides is constant, then ABCD is a
parallelogram.

Solution Consider the points X,Y,Z, and T on the sides AB,BC,CD, and DA,
respectively, such that

AX = AT = CY = CZ = a.

Let x, y, z, and t be the distances from M to the quadrilateral’s sides. If x +y +z+ t

is constant, then the expression

1

2
a(x + y + z + t) = [MAX] + [MCY ] + [MCZ] + [MAT ]

= [AT X] + [CYZ] + [MXT ] + [MYZ]
is constant, as well. Because [AT X] and [CYZ] do not depend of the position of
M , it follows that the sum [MXT ] + [MYZ] is constant (Fig. 5.21).

Fig. 5.19
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As we have seen, if XT and YZ are not parallel, the locus of points M satisfying
the above condition is a segment, and not all the interior points of the quadrilateral
XYZT . It follows that XT is parallel to YZ, hence the angle bisectors of XAT and
YCZ are parallel. From here we deduce that ∠B = ∠D. A similar argument yields
∠A = ∠C, hence ABCD is a parallelogram.

Observation More generally, if A1A2 . . .An is a convex polygon, then the sum of
the distances from a variable interior point to its sides is constant if and only if the
following equality holds:

1

A1A2
· A1A2 + 1

A2A3
· A2A3 + · · · + 1

AnA1
· AnA1 = 0.

5.3 Cyclic Quads

Problem 2.32 Let D,E, and F be the feet of the altitudes of the triangle ABC.
Prove that the altitudes of ABC are the angle bisectors of the triangle DEF

(Fig. 5.22).
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Solution We can see that the quadrilateral AFHE is cyclic. Indeed, the angles
∠AFH and ∠AEH are right angles; thus AFHE is inscribed in the circle of di-
ameter AH . It follows that ∠FAH = ∠FEH .

Similarly, in the quadrilateral CDHE we have ∠DCH = ∠DEH . But in the
right triangles ABD and CBF , the angles ∠FAH and ∠DCH equal 90◦ − ∠B ,
hence ∠FAH = ∠DCH . It follows that ∠FEH = ∠DEH ; that is, BE is the angle
bisector of ∠DEF .

Problem 2.33 Let ABCD be a convex quadrilateral. Prove that

AB · CD + AD · BC = AC · BD

if and only if ABCD is cyclic (Ptolemy’s theorem).

Solution Consider the point A′ such that triangles ABD and A′BC are similar
(Fig. 5.23). Then

AD

BD
= A′C

BC
,

hence

AD · BC = A′C · BD. (5.1)

We also have
AB

A′B
= BD

BC

and since ∠ABA′ = ∠DBC, it follows that triangles ABA′ and DBC are similar,
too.

We deduce that
AB

AA′ = BD

DC
,

hence

AB · DC = AA′ · BD. (5.2)
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Adding up (5.1) and (5.2) we obtain

AD · BC + AB · CD = (
A′C + AA′) · BD.

But in triangle AA′C, A′C + AA′ ≥ AC, hence

AD · BC + AB · CD ≥ AC · BD.

This inequality holds in every convex quadrilateral and it turns into an equality if and
only if triangle AA′C is degenerate, that is, the point A′ lies on AC. This happens
if and only if ∠A′CB = ∠ACB . But since ∠A′CB = ∠ADB , the equality holds if
and only if ∠ADB = ∠ACB and this is the condition that ABCD is cyclic.

Problem 2.34 Let A′, B ′ and C′ be points in the interior of the sides BC, CA

and AB of the triangle ABC. Prove that the circumcircles of the triangles AB ′C′,
BA′C′ and CA′B ′ have a common point.

Solution Let M be the point of intersection of the circumcircles of triangles AB ′C ′
and BC′A′. Because the quadrilateral AB ′MC′ is cyclic, ∠MC′A = ∠MB ′C. Sim-
ilarly, since BC ′MA′ is cyclic, ∠MA′B = ∠MC′A. It follows that ∠MB ′C =
∠MA′B , hence MA′CB ′ is also cyclic. This means that the circumcircle of triangle
CA′B ′ passes through M (Fig. 5.24).

Observation The property holds even if the points A′, B ′ and C ′ are collinear
(clearly, in this case the points are not all three in the interior of the triangle’s
sides). Suppose that A′ and B ′ are in the interior of the sides BC and AC and
C ′ is on the line AB such that the three points are collinear. Let M be the point
of intersection between the circumcircles of triangles AB ′C ′ and BC′A′. Then
∠AC′M = ∠MB ′C (AB ′MC′ is cyclic) and ∠AC′M = ∠MA′C (BA′MC′ is
cyclic). It follows that ∠MB ′C = ∠MA′C, thus MB ′A′C is also cyclic.
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Moreover, in the cyclic quadrilateral AB ′MC ′, we have ∠AMC′ = ∠AB ′C′.
Similarly, ∠A′MC = ∠A′B ′C. Because ∠AB ′C ′ = ∠A′B ′C, it follows that
∠AMC′ = ∠A′MC, hence ∠A′MC ′ = ∠AMC. But ∠A′MC ′ + ∠ABC = 180◦
(A′BC′M is cyclic) so ∠AMC +∠ABC = 180◦. This means that ABCM is cyclic,
hence the circumcircle of triangle ABC also passes through M (Fig. 5.25).
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Problem 2.35 Let ABCD be a cyclic quadrilateral. Prove that the orthocenters of
the triangles ABC,BCD,CDA and DAB are the vertices of a quadrilateral con-
gruent to ABCD and prove that the centroids of the same triangles are the vertices
of a cyclic quadrilateral.

Solution We first prove a very useful result.

Lemma Let H be the orthocenter of a triangle ABC and O its circumcenter. Then
the vectors OA,OB,OC and OH satisfy the following equality:

OA + OB + OC = OH.

Proof Let A′ be a point on the circumcircle such that AA′ is a diameter. Then the
quadrilateral A′BHC is a parallelogram. Indeed, since AA′ is a diameter, ∠A′CA =
90◦, so that A′C ⊥ AC. But we also have BH ⊥ AC, thus A′C and BH are parallel.
Similarly it follows that A′B and CH are parallel, hence A′BHC is a parallelogram.

We have

HC + HB = HA′

and

HA′ + HA = 2HO

(O is the midpoint of AA′), so that

HA + HB + HC = 2HO.

But then

OA + OB + OC = OH + HA + OH + HB + OH + HC

= 3OH + 2HO = OH,

as desired (Fig. 5.26).
It is worth mentioning that if G is the centroid of triangle ABC, then

OA + OB + OC = 3OG,

hence OH = 3OG. This means that the points O,G and H are collinear and OH =
3OG. �

Returning to the problem, let O be circumcenter of the quadrilateral ABCD

and HA, HB , HC , HD the orthocenters of triangles BCD, CDA, DAB , ABC,
respectively. Using the lemma, we have

HAHB = OHB − OHA = (
OC + OD + OA

) − (
OB + OC + OD

)

= OA − OB = BA,
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Fig. 5.27

hence the segments HAHB and AB are equal and parallel. We conclude that the
quadrilaterals ABCD and HAHBHCHD are equal.

For the second claim, denoting by GA, GB , GC and GD the centroids, it follows
that from the observation above that GAGBGCGD is obtained from HAHBHCHD

by a homothety of center O and ratio 1/3. Because HAHBHCHD is cyclic, so is
GAGBGCGD (Fig. 5.27).

Problem 2.36 Let K,L,M,N be the midpoints of the sides AB,BC,CD,DA, re-
spectively, of a cyclic quadrilateral ABCD. Prove that the orthocenters of triangles
AKN,BKL,CLM,DMN are the vertices of a parallelogram.
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Fig. 5.28

Solution Denote by HA, HB , HC , HD the orthocenters of triangles AKN , BKL,
CLM and DMN . If O is the circumcenter of ABCD and H is the orthocenter of
ABD, using the lemma from Problem 2.35, we have

OH = OA + OB + OD.

Because K and N are the midpoints of AB and AD, triangle AKN is the image
of ABD through a homothety of center A and ratio 1/2. Thus, AHA = 1

2AH. Then
we have

OHA = OA + AHA = OA + 1

2
AH = OA + 1

2

(
OH − OA

)

= OA + 1

2

(
OB + OD

)
.

Similarly,

OHC = OC + 1

2

(
OB + OD

)
,

and by adding these equalities, we obtain

OHA + OHC = OA + OB + OC + OD.

From the symmetry of the right-hand side, it follows that

OHA + OHC = OHB + OHD,

and this equality implies that the segments HAHC and HBHD have the same mid-
point, hence HAHBHCHD is a parallelogram (Fig. 5.28).
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Fig. 5.29

Problem 2.37 Prove that the perpendiculars dropped from the midpoints of the
sides of a cyclic quadrilateral to the opposite sides are concurrent.

Solution Let K and M be the midpoints of AB and CD and let X be the intersec-
tion point of the perpendiculars dropped from these points to the opposite sides. Let
O be the circumcenter of ABCD. Because OK ⊥ AB and OM ⊥ CD, the quadri-
lateral OKXM is a parallelogram, hence the midpoint of OX coincides with the
midpoint of KM .

Let L and N the midpoints of BC and AD and Y the intersection point of the
perpendiculars dropped from these points to the opposite sides. It results that the
midpoint of OY coincides with the midpoint of LN . It is not difficult to see that
KLMN is a parallelogram, hence KM and LN have the same midpoint. It follows
that X = Y and the claim is proved (Fig. 5.29).

Problem 2.38 In the convex quadrilateral ABCD the diagonals AC and BD inter-
sect at O and are perpendicular. Prove that projections of O on the quadrilateral’s
sides are the vertices of a cyclic quadrilateral.

Solution Let K,L,M,N be the projections of O on the sides AB,BC,CD,DA,
respectively. The quadrilateral AKON is cyclic, hence ∠OAN = ∠OKN

(Fig. 5.30).
In the same way we obtain ∠OBL = ∠OKL, ∠ODN = ∠OMN , ∠OCL =

∠OML. If we add these equalities, it follows that

∠LKN + ∠LMN = ∠OAD + ∠ODA + ∠OBC + OCB = 90◦ + 90◦ = 180◦,

hence KLMN is cyclic.
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Fig. 5.30

5.4 Equiangular Polygons

Problem 2.42 Let ABCDE be an equiangular pentagon whose side lengths are
rational numbers. Prove that the pentagon is regular.

Solution Let M and N be the intersection points of the line AE with BC and CD,
respectively.

Because ABCDE is equiangular, triangles AMB and DNE are isosceles, with
∠M = ∠N = 36◦, therefore triangle CMN is also isosceles and CM = CN . It
follows that BC +BM = CD +DN . But BM = AB

2 cos 72◦ and DN = DE
2 cos 72◦ , hence

BC − CD = DE−AB
2 cos 72◦ . If DE �= AB it follows that cos 72◦ is a rational number,

which is a contradiction, since cos 72◦ =
√

5−1
4 . The conclusion is that DE = AB

and, by similar arguments, all the pentagon’s sides have equal lengths (Fig. 5.31).

Observation An alternate solution is given in the next problem.

Problem 2.43 Prove that p is a prime number if and only if every equiangular
polygon with p sides of rational lengths is regular.

Solution The proof uses some advanced knowledge in the algebra of polynomials.
Suppose p is a prime number and let the rational numbers a1, a2, . . . , ap be the side
lengths of an equiangular polygon. We have seen that

ζ = cos
2π

p
+ i sin

2π

p

is a root of the polynomial

P(X) = a1 + a2X + · · · + apXp−1.
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On the other hand, ζ is also a root of the polynomial

Q(X) = 1 + X + X2 + · · · + Xp−1.

Because the two polynomials share a common root, their greatest common divisor
must be a non-constant polynomial with rational coefficients.

Since Q canot be factorized as a product of two non-constant polynomials with
rational coefficients (to prove that, one applies the Eisenstein criterion to the poly-
nomial Q(X + 1)), it follows that for some constant c we have P = cQ, hence
a1 = a2 = · · · = ap.

Conversely, suppose p is not a prime number and let p = mn, for some positive
integers m,n > 1. It results that ζ n is a root of order m of the unity, hence 1 + ζn +
ζ 2n +· · ·+ ζ (m−1)n = 0. If we add this equality to 1+ζ +ζ 2 +ζ 3 +· · ·+ ζp−1 = 0,
we deduce that ζ is the root of a polynomial of degree p − 1, with some coefficients
equal to 1 and the others equal to 2. This means that there exists an equiangular
polygon with p sides, some of length 1 and the rest of length 2. Because such a
polygon is not regular, our claim is proved.

Observation We can examine, for instance, the case p = 6 = 2 · 3. If

ζ = cos
π

3
+ i sin

π

3

then

1 + ζ 2 + ζ 4 = 0

and

1 + ζ + ζ 2 + ζ 3 + ζ 4 + ζ 5 = 0,

hence ζ is a root of the polynomial

2 + X + 2X2 + X3 + 2X4 + X5.

This means that there exists an equiangular hexagon with side lengths 2,1,2,1,2,1,
as can be seen in Fig. 5.32.
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Fig. 5.32

Fig. 5.33

Problem 2.44 An equiangular polygon with an odd number of sides is inscribed in
a circle. Prove that the polygon is regular.

Solution Let A0A1 . . .A2n be the polygon (Fig. 5.33). Then triangles A0A1A2 and
A1A2A3 are congruent. Indeed, A1A2 is a common side, the angles ∠A0A1A2 and
∠A1A2A3 are congruent since the polygon is equiangular, and the angles ∠A1A0A2

and ∠A1A3A2 are also congruent (their measure is 1
2

�
A1A2). It follows that A0A1 =

A2A3.
In the same way we obtain

A2A3 = A4A5 = · · · = A2n−2A2n−1 = A2nA0 = A1A2 = · · · = A2n−1A2n,

hence the polygon is regular.

Problem 2.45 Let a1, a2, . . . , an be the side lengths of an equiangular polygon.
Prove that if a1 ≥ a2 ≥ · · · ≥ an, then the polygon is regular.

Solution The first approach is geometrical. We examine two cases: n odd and n

even. If n is odd, say n = 2k + 1, consider the angle bisector of ∠A2k+1A1A2. It
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Fig. 5.34

is not difficult to see that it is perpendicular to the side Ak+1Ak+2. Project all the
sides of the polygon on this line. If we denote by xi the length of the projection of
the side AiAi+1 (with the usual convention A2k+2 = A1), then

x1 + x2 + · · · + xk = xk+2 + xk+3 + · · · + x2k+1 = A1B

(see Fig. 5.34). On the other hand, the angle between AiAi+1 and A1B is equal to
the angle between A2k+2−iA2k+3−i and A1B , thus xi ≥ x2k+2−i , for all 1 ≤ i ≤ k.
It follows that the above equality can be reached only if the sides of the polygon are
equal.

A similar argument works in the case when n is even.
The second approach is algebraic. Let

ε = cos
2π

n
+ i sin

2π

n

be a primitive root of the unity. Then ε is a root of the polynomial

P(X) = a1 + a2X + · · · + anX
n−1.

The conclusion is obtained from the following:

Lemma Let P(X) = a1 + a2X + · · · + anX
n−1, where a1 ≥ a2 ≥ · · · ≥ an > 0. If

α is a root of P , then |α| ≥ 1, and |α| = 1 only if a1 = a2 = · · · = an.

Proof We have

a1 + a2α + · · · + anα
n−1 = 0.

If we multiply this equality with α − 1, we obtain

−a1 + α(a1 − a2) + α2(a2 − a3) + · · · + αn−1(an−1 − an) + anα
n = 0,
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Fig. 5.35

or, equivalently,

a1 = α(a1 − a2) + α2(a2 − a3) + · · · + αn−1(an−1 − an) + anα
n.

Now, suppose that |α| ≤ 1. It results

a1 = ∣
∣α(a1 − a2) + α2(a2 − a3) + · · · + αn−1(an−1 − an) + anα

n
∣
∣

≤ |α|(a1 − a2) + |α|2(a2 − a3) + · · · + |α|n−1(an−1 − an) + an|α|n
≤ (a1 − a2) + (a2 − a3) + · · · + (an−1 − an) + an = a1.

Consequently, all inequalities must be equalities. Because α /∈ R, this is possible
only if a1 = a2 = · · · = an, hence the polygon is regular. �

Problem 2.46 The side lengths of an equiangular octagon are rational numbers.
Prove that the octagon has a symmetry center.

Solution The angles of an equiangular octagon are equal to 135◦, thus, the lines
containing the segments AB,CD,EF and GH determine a rectangle (Fig. 5.35).

Because the opposite sides of this rectangle are equal, we obtain

AB +
√

2

2
(AH + BC) = EF +

√
2

2
(DE + FG),

or, equivalently,

AB − EF =
√

2

2
(DE + FG − AH − BC).

Because the side lengths of the octagon are rational numbers, the above equality can
hold if and only if

AB − EF = DE + FG − AH − BC = 0.

In a similar way, we obtain

CD − GH = FG + AH − DE − BC = 0.
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Fig. 5.36

From these equalities it follows that AB = EF , CD = GH , BC = FG and DE =
AH , so the opposite sides of the octagon are equal and parallel. It follows that the
quadrilaterals ABEF , BCFG, CDGH and DEHA are parallelograms, hence the
midpoints of the segments AE,BF,CG,DH and DH coincide. Obviously, this
common point is a symmetry center of the octagon.

5.5 More on Equilateral Triangles

Problem 2.49 Let M be a point in the interior of the equilateral triangle ABC and
let A′,B ′,C′ be its projections onto the sides BC,CA and AB , respectively. Prove
that the sum of lengths of the inradii of triangles MAC′,MBA′ and MCB ′ equals
the sum of lengths of the inradii of triangles MAB ′,MBC′ and MCA′.

Solution We start by proving an additional result.

Lemma Let XYZ be a right triangle, with ∠X = 90◦ and side lengths x, y, z,
respectively. If r is the length of the inradius of XYZ, then r = 1

2 (y + z − x).

Proof Let X′, Y ′,Z′ the tangency points of the incircle with triangle’s sides
(Fig. 5.36). Then r = XY ′ = XZ′. Denote by s = ZY ′ = ZX′ and t = YX′ = YZ′.

Then r + s = y, r + t = z and s + t = x. Solving for r , we obtain r =
1
2 (y + z − x). �

Applying the lemma in our problem, we have to prove that

(
AC′ + MC ′ − MA

) + (
BA′ + MA′ − MB

) + (
CB ′ + MB ′ − MC

)

= (
AB ′ + MB ′ − MA

) + (
BC′ + MC′ − MB

) + (
CA′ + MA′ − MC

)
,

which is equivalent to

AB ′ + BC′ + CA′ = AC′ + BA′ + CB ′.

To prove this equality, we draw through M parallels to triangle’s sides, as in
Fig. 5.37. Then AB ′ = AB ′′′ +B ′′′B ′, but AB ′′′ = BA′′ and B ′′′B ′ = B ′B ′′. Writing
the similar equalities, the result follows by adding them. �
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Fig. 5.37

Observation Another way to deal with the last part of the problem is to use the
Pythagorean theorem. We have A′M2 = BM2 − A′B2 = CM2 − A′C2, hence
BM2 − CM2 = A′B2 − A′C2 = (A′B − A′C) · a, where a is the side length of
the triangle. Writing the other two similar equalities and adding them we get the
result.

Problem 2.50 Let I be the incenter of triangle ABC. It is known that for every
point M ∈ (AB), one can find the points N ∈ (BC) and P ∈ (AC) such that I is the
centroid of triangle MNP . Prove that ABC is an equilateral triangle.

Solution Let a, b, c be the lengths of triangle’s sides and let m,n,p be real numbers
such that AM = mAB , BN = nBC and CP = pCA. If G and G′ are the centroids
of triangles ABC and MNP , then

GG′ = 1

3

(
GM + GN + GP

) = 1

3

(
GA + AM + GB + BN + GC + CP

)

= 1

3

(
AM + BN + CP

) = 1

3

(
mAB + nBC + pCA

)

= m − p

3
AB + n − p

3
BC.

Because I is the incenter of ABC, we have

GI = aGA + bGB + cGC

a + b + c
= b + c − 2a

3(a + b + c)
AB + 2c − a − b

3(a + b + c)
BC.

It results that G′ = I if an only if

{
m − p = b+c−2a

a+b+c
,

n − p = 2c−a−b
a+b+c



178 5 Geometry and Trigonometry

Fig. 5.38

or, equivalently
{

n = m + 1 − 3b
a+b+c

,

p = m − 1 + 3a
a+b+c

.
(∗)

Therefore, for any point M ∈ (AB), one can find the points N ∈ BC and P ∈ CA

such that the centroid of MNP is the point I . The problem is that N and P must
lie in the interior of the segments (BC) and (CA), respectively. This is equivalent
to the following: for every m ∈ (0,1), the numbers n and p given by (∗) also belong
to the interval (0, 1). It is not difficult to see that this happens if and only if

1 − 3b

a + b + c
= −1 + 3a

a + b + c
= 0,

and we deduce that a = b = c.

Problem 2.51 Let ABC be an acute triangle. The interior bisectors of the angles
∠B and ∠C meet the opposite sides in the points L and M , respectively. Prove that
there exists a point K in the interior of the side BC such that triangle KLM is
equilateral if and only if ∠A = 60◦.

Solution Let us first notice that if M is a point on the bisector of the angle XOY

and P ∈ OX, Q ∈ OY such that MP = MQ, then either ∠OPM = ∠OQM , or
∠OPM + ∠OQM = 180◦ (see Fig. 5.38).

Returning to the problem, let us suppose such a point K exists (Fig. 5.39). Then
M lies on the bisector of ∠ACB and ML = MK , hence ∠ALM = ∠BKM or
∠ALM + ∠BKM = 180◦. But in the last case, it follows that the quadrilateral
MKCL is cyclic, so ∠C = 180◦ − ∠KML = 120◦, which is a contradiction since
triangle ABC is acute.

It follows that ∠ALM = ∠BKM , and, in a similar way, ∠LKC = ∠LMA. In
triangle AML, we have

∠AML + ∠ALM + ∠A = 180◦.
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Fig. 5.39

On the other hand,

∠BKM + ∠LKC + ∠MKL = 180◦.

We derive that ∠A = ∠MKL = 60◦.
Conversely, suppose ∠A = 60◦. Let K ∈ (BC) such that MK ⊥ BL. Because

BL is the bisector of ∠B , it follows that BL is the perpendicular bisector of MK ,
so LM = LK .

Denote by I the intersection point of BL and CM . Clearly, AI bisects ∠A and
a short computation shows that ∠MIL = 120◦, hence the quadrilateral AMIL is
cyclic. Then ∠MLI = ∠MAI = 30◦, thus we have ∠KML = 60◦. It follows that
KLM is an isosceles triangle with a 60◦ angle, hence it is equilateral.

Problem 2.52 Let P1P2 . . . Pn be a convex polygon with the following property:
for any two vertices Pi and Pj , there exists a vertex Pk such that ∠PiPkPj = 60◦.
Prove that the polygon is an equilateral triangle.

Solution Consider the vertices Pi and Pj such that the segment PiPj has minimal
length and Pk such that ∠PiPkPj = 60◦. It follows that triangle PiPkPj is equilat-
eral. Denote it by ABC. Similarly, let A′B ′C ′ the equilateral triangle with sides of
maximal length. Because the polygon is convex, the points A′,B ′,C′ must lie in the
set DA ∪ DB ∪ DC (see Fig. 5.40).

After a short analysis, we conclude that the points A′,B ′ and C′ coincide with
A,B,C, and it follows that the polygon is an equilateral triangle.

Problem 2.53 From a point on the circumcircle of an equilateral triangle ABC

parallels to the sides BC,CA and AB are drawn, intersecting the sides CA,AB and
BC at the points M,N,P , respectively. Prove that the points M,N,P are collinear.

Solution It suffices to prove that ∠CPM = ∠BPN (see Fig. 5.41).
Observe that the quadrilateral CMDP is cyclic. Indeed, since DP is parallel to

AB , the angle ∠DPC equals 120◦, hence

∠DPC + ∠DMC = 120◦ + 60◦ = 180◦.
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Fig. 5.41

Consequently, ∠CPM = ∠CDM . In a similar way, we obtain ∠BPN = ∠BDN .
But ∠BDC = 120◦ (ABDC is cyclic) and ∠MDN = 120◦ (AMDN is an isosceles
trapezoid). It follows that ∠CDM = ∠BDN , hence ∠CPM = ∠BPN .
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Fig. 5.42

Problem 2.54 Let P be a point on the circumcircle of an equilateral triangle ABC.
Prove that the projections of any point Q on the lines PA,PB and PC are the
vertices of an equilateral triangle.

Solution Let A′,B ′,C′ be the projections of a point Q on the lines PA,PB,PC,
respectively. If the points are located as in Fig. 5.42, then ∠A′PB ′ = 120◦,
∠A′PC′ = ∠B ′PC ′ = 60◦.

From the construction it follows that the quadrilaterals A′PB ′Q,A′PC ′Q and
B ′PC′Q are cyclic, so ∠A′PQ = ∠A′B ′Q, ∠A′PQ = ∠A′C ′Q. Then ∠A′B ′Q =
∠A′C′Q and this shows that A′B ′C ′Q is also cyclic. It results that

∠A′B ′C ′ = 180◦ − ∠A′QC′ = ∠A′PC ′ = 60◦,

∠A′C′B ′ = ∠A′QB ′ = 180 − ∠A′PB ′ = 60◦,

hence triangle A′B ′C′ is equilateral.

5.6 The “Carpets” Theorem

Problem 2.56 Let ABCD be a parallelogram. The points M,N and P are chosen
on the segments BD, BC and CD, respectively, so that CNMP is a parallelogram.
Let E = AN ∩ BD and F = AP ∩ BD. Prove that [AEF ] = [DFP ] + [BEN].
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Fig. 5.43

Solution The carpets are the triangle ABD and the quadrilateral ANCP . We have

[ABD] = 1

2
[ABCD]

and

[ANCP ] = [ANC] + [ACP ].
Observe that

[ANC]
[ABCD] = [ANC]

2[ABC] = NC

2BC
= MD

2BD

and

[ACP ]
[ABCD] = [ACP ]

2[ACD] = CP

2CD
= MB

2BD
.

Adding up, we obtain

[ANC] + [ACP ]
[ABCD] = MD + MB

2BD
= 1

2
.

It follows that

[ABD] + [ANCP ] = [ABCD],
so the area of the common part of the carpets, that is, [AEF ] equals the area of
ABCD remained uncovered and this is [DFP ] + [BEN] (Fig. 5.43).

Observation Another proof uses a well known property of a trapezoid. Because
[ADP ] = [ADM] it follows that [DFP ] = [AFM]. Similarly, [BEN] = [AEM]
and the result follows by adding these equalities.

Problem 2.57 Consider the quadrilateral ABCD. The points M,N,P and Q are
the midpoints of the sides AB,BC,CD and DA. Let X = AP ∩ BQ, Y = BQ ∩
CM , Z = CM ∩ DN and T = DN ∩ AP . Prove that

[XYZT ] = [AQX] + [BMY ] + [CNZ] + [DPT ].
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Fig. 5.44

Solution The carpets are the quadrilaterals AMCP and BNDQ. Because their
common part is XYZT all we have to prove is that

[AMCP ] + [BNDQ] = [ABCD].

We have

[AMCP ] = [AMC] + [ACP ] = 1

2
[ABC] + 1

2
[ACD] = 1

2
[ABCD].

Similarly,

[BNDQ] = 1

2
[ABCD],

hence

[AMCP ] + [BNDQ] = [ABCD],
as desired (Fig. 5.44).

Problem 2.58 Through the vertices of the smaller base AB of the trapezoid ABCD

two parallel lines are drawn, intersecting the segment CD. These lines and the trape-
zoid’s diagonals divide it into 7 triangles and a pentagon. Show that the area of the
pentagon equals the sum of areas of the three triangles sharing a common side with
the trapezoid.

Solution Let A′ and B ′ be the intersections of the parallel lines with CD. Take
as carpets triangles AA′C and BB ′D. Their common part is the pentagon and the
uncovered part of the trapezoid is the union of the three triangles sharing a common
side with the trapezoid (Fig. 5.45). We then have to prove that

[
AA′C

] + [
BB ′D

] = [ABCD].
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Fig. 5.45

Fig. 5.46

If we denote the trapezoid’s altitude by h, we have [AA′C] = 1
2h · A′C and

[BB ′D] = 1
2h · B ′D, thus

[
AA′C

] + [
BB ′D

] = 1

2
h · (A′C + B ′D

) = 1

2
h · (A′B ′ + B ′C + A′B ′ + A′D

)

= 1

2
h · (CD + A′B ′) = 1

2
h · (CD + AB) = [ABCD].

Problem 2.59 Let M be a point in the interior of triangle ABC. Three lines are
drawn through M , parallel to triangle’s sides, determining three trapezoids. One
draws a diagonal in each trapezoid such that they have no common endpoints, di-
viding thus ABC into seven parts, four of them being triangles. Prove that the area
of one of the four triangles equals the sum of the areas of the other three.

Solution We arrange three carpets. With the notations in Fig. 5.46, observe that if
the carpets are ABB ′,BCC′ and CAA′, then triangles AB ′Z, BC ′X and CA′Y are
covered twice, while XYZ remains uncovered.

Thus, the equality

[
AB ′Z

] + [
BC′X

] + [
CA′Y

] = [XYZ]
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Fig. 5.47

holds if and only if the sum of the carpets’ areas equals the area of ABC. But this
is very simple to prove if we notice that (Fig. 5.47)

[
ABB ′] = [ABM],

[
BCC ′] = [BCM]

and
[
CAA′] = [CAM].

We obviously have

[ABM] + [BCM] + [CAM] = [ABC].

5.7 Quadrilaterals with an Inscribed Circle

Problem 2.60 Prove that if in the quadrilateral ABCD is inscribed a circle with
center O , then the sum of the angles ∠AOB and ∠COD equals 180◦ (Fig. 5.48).

Solution We know that the quadrilateral’s angles bisectors intersect at O . Thus

∠AOB = 180◦ − ∠ABO − ∠BAO = 180◦ − ∠A + ∠B

2
.

Similarly,

∠COD = 180◦ − ∠C + ∠D

2
.

Adding these equalities, we obtain

∠AOB + ∠COD = 360◦ − ∠A + ∠B + ∠C + ∠D

2
= 360◦ − 360◦

2
= 180◦.
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Fig. 5.48

Fig. 5.49

Problem 2.61 Let ABCD be a quadrilateral with an inscribed circle. Prove that the
circles inscribed in triangles ABC and ADC are tangent to each other.

Solution Suppose that the circles inscribed in triangles ABC and ADC touch AC

at the points X and Y , respectively. We have to prove that X = Y . With the notation
in Fig. 5.49, we have AX = AK (the tangents to a circle drawn from a point are
equal), BK = BL, CL = CX, CY = CM , DM = DN , AN = AY .

Because ABCD has an inscribed circle, AB + CD = AD + BC, so

AK + BK + CM + MD = AN + DN + BL + CL.
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Fig. 5.50

Using the previous equalities, we obtain

AX + CY = AY + CX.

Adding the obvious equality

AX + XC = AY + YC

yields 2AX = 2AY , hence X = Y .

Observation It can be proven that the points K,L,M,N are the vertices of a cyclic
quadrilateral (Fig. 5.50).

Indeed, if we draw the circle inscribed in ABCD and denote by K ′,L′,M ′ and
N ′ the tangency points with the quadrilateral’s sides, it is not difficult to see that
the sides of KLMN and K ′L′M ′N ′ are parallel, hence their corresponding angles
are equal. But K ′L′M ′N ′ is cyclic, thus its opposite angles add up to 180◦. The
conclusion follows (Fig. 5.51).

Problem 2.62 Let ABCD be a convex quadrilateral. Suppose that the lines AB and
CD intersect at E and the lines AD and BC intersect at F , such that the points E

and F lie on opposite sides of the line AC. Prove that the following statements are
equivalent:

(i) a circle is inscribed in ABCD;
(ii) BE + BF = DE + DF ;

(iii) AE − AF = CE − CF .
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Fig. 5.51

Solution Suppose a circle is inscribed in the quadrilateral ABCD and touches its
sides at the points K,L,M,N (Fig. 5.52).

Observe that

BE + BF = EK − BK + BL + LF = EM + NF

= EM + ND + DF = EM + MD + DF = DE + DF.

We used again the fact that the tangents to a circle from a point are equal, so
BK = BL, EK = EM , LF = NF and ND = MD.

In a similar way we have

AE − AF = AK + EK − AN − NF = EK − NF

= EM − LF = CE + CM − CL − CF = CE − CF.

Conversely, if, for instance, BE + BF = DE + DF , draw the circle tangent
to AB,BC, and AF . If this circle is not tangent to CD as well, draw from E a
tangent to the circle which intersects AF at D′. Then BE + BF = D′E + D′F ,
and we deduce D = D′, a contradiction. We conclude that ABCD has an inscribed
circle.

Problem 2.63 Let ABCD be a convex quadrilateral. Suppose that the lines AB

and CD intersect at E and the lines AD and BC intersect at F . Let M and N be
two arbitrary points on the line segments AB and BC, respectively. The line EN

intersects AF and MF at P and R. The line MF intersects CE at Q. Prove that if
the quadrilaterals AMRP and CNRQ have inscribed circles, then ABCD has an
inscribed circle.
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Fig. 5.52

Fig. 5.53

Solution Suppose the points are located as in Fig. 5.53, the other cases being simi-
lar. Because AMRP has an inscribed circle, it follows from the preceding problem
that AE +AF = RE +RF . Analogously, since CNRQ has an inscribed circle, we
have RE + RF = CE + CF . We obtain AE + AF = CE + CF and this implies
that ABCD has an inscribed circle.

Problem 2.64 The points A1,A2,C1 and C2 are chosen in the interior of the sides
CD,BC,AB and AD of the convex quadrilateral ABCD. Denote by M the point
of intersection of the lines AA2 and CC1 and by N the point of intersection of
the lines AA1 and CC2. Prove that if one can inscribe circles in three of the four
quadrilaterals ABCD,A2BC1M,AMCN and A1NC2D, then a circle can be also
inscribed in the fourth one.

Solution Let α = AB − BC − AM + CM . From the previous problem it follows
that a circle can be inscribed in the quadrilateral A2BC1M if and only if α = 0.
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Fig. 5.54

Analogously, if we set

β = CD − AD − CN + AN,

then β = 0 if and only if A1DC2N has an inscribed circle. Setting

γ = AM − CM + CN − AN,

δ = BC − AB + AD − CD,

from the theorem of Pithot it follows that γ = 0 and δ = 0 are necessary and suf-
ficient conditions for the existence of an inscribed circle in AMCN and ABCD,
respectively.

Now, simply observe that α + β + γ + δ = 0, so that if three of the four numbers
are zero, then so is also the fourth one. It follows that if one can inscribe circles
in three of the four quadrilaterals, a circle can also be inscribed in the fourth one
(Fig. 5.54).

Problem 2.65 A line cuts a quadrilateral with an inscribed circle into two polygons
with equal areas and equal perimeters. Prove that the line passes through the center
of the inscribed circle.

Solution The line cuts the quadrilateral either into two quadrilaterals, or into a tri-
angle and a pentagon. The reasoning is basically the same in both cases, so we as-
sume that the line intersect the sides AB and CD at the points X and Y (Fig. 5.55).
Let O be the center of the inscribed circle. Because AXYD and BXYC have the
same perimeter, it follows that

AX + AD + DY = BX + BC + CY.

Multiplying this equality with 1
2R (R being the radius of the inscribed circle) yields

[OAX] + [OAD] + [ODY ] = [OBX] + [OBC] + [OCY ],
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Fig. 5.55

that is,

[OXADY ] = [OXBCY ].
Because

[OXADY ] + [OXBCY ] = [ABCD],
it follows that

[OXADY ] = [OXBCY ] = 1

2
[ABCD].

Now, suppose by way of contradiction that the line XY does not pass through O .
Suppose O lies in the interior of AXYD (the case in which O is in the interior of
BXYC is similar). We have

[BXYC] = 1

2
[ABCD] = [BXOYC],

but [BXOYC] = [BXYC] + [OXY ], hence [OXY ] = 0, which is a contradiction.

Problem 2.66 In the convex quadrilateral ABCD we have ∠B = ∠C = 120◦, and

AB2 + BC2 + CD2 = AD2.

Prove that ABCD has an inscribed circle.

Solution Suppose AB and CD intersect at E. Since ∠B = ∠C = 120◦, the triangle
BCE is equilateral. Denote by x its side length. Applying the law of cosines in
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triangle ADE yields

(AB + x)2 + (CD + x)2 − (AB + x)(CD + x) = AD2.

Expanding and using the equality from the hypothesis lead to

AB · x + CD · x − AB · CD = 0.

But then

(AB + CD − x)2 = AB2 + CD2 + x2 − 2(AB · x + CD · x − AB · CD)

= AB2 + CD2 + x2

= AD2.

It follows that

AB + CD = AD + x = AD + BC,

therefore ABCD has an inscribed circle.

Problem 2.67 Let ABCD be a quadrilateral circumscribed about a circle, whose
interior and exterior angles are at least 60◦. Prove that

1

3

∣∣AB3 − AD3
∣∣ ≤ ∣∣BC3 − CD3

∣∣ ≤ 3
∣∣AB3 − AD3

∣∣.

When does equality hold?

Solution By symmetry, it suffices to prove the first inequality.
Since ABCD has an inscribed circle, we have AB +CD = AD+BC, or, equiv-

alently, AB −AD = BC −CD. Therefore, the inequality we want to prove is equiv-
alent to

1

3

(
AB2 + AB · AD + AD2) ≤ BC2 + BC · CD + CD2.

From the hypothesis we have 60◦ ≤ ∠A,∠C ≤ 120◦, therefore 1
2 ≥ cosA,

cosC ≥ − 1
2 . Applying the law of cosines in triangle ABD yields

BD2 = AB2 − 2AB · AD cosA + AD2 ≥ AB2 − AB · AD + AD2.

But

AB2 − AB · AD + AD2 ≥ 1

3

(
AB2 + AB · AD + AD2), (5.3)

the latter being equivalent to

(AB − AD)2 ≥ 0.

Applying again the law of cosines in triangle BCD yields

BD2 = BC2 − 2BC · CD cosC + CD2 ≤ BC2 + BC · CD + CD2. (5.4)
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Combining (5.3) and (5.4) gives the desired result.
The equality holds if and only if AB = AD, which also implies BC = CD (that

is, the given quadrilateral is a kite).

5.8 Dr. Trig Learns Complex Numbers

Problem 2.71 Let a, b, c be real numbers such that

cosa + cosb + cos c = sina + sinb + sin c = 0.

Prove that

cos(a + b + c) = 1

3
(cos 3a + cos 3b + cos 3c),

sin(a + b + c) = 1

3
(sin 3a + sin 3b + sin 3c).

Solution Let x = cosa+i sina, y = cosb+i sinb and z = cos c+i sin c. We derive
from the problem statement that x + y + z = 0. We use the identity

x3 + y3 + z3 − 3xyz = (x + y + z)
(
x2 + y2 + z2 − xy − xz − yz

)
,

which is valid for any numbers x, y and z (see the Algebra part of this book,
Sect. 1.1). It follows that

x3 + y3 + z3 − 3xyz = 0,

hence

xyz = 1

3

(
x3 + y3 + z3).

But this means that

cos(a + b + c) + i sin(a + b + c) = 1

3

∑
(cos 3a + i sin 3a),

and we obtain the requested equalities by identifying the real parts and the non-real
parts in the above equality.

Problem 2.72 Find the value of the product cos 20◦ cos 40◦ cos 80◦.

Solution Let z = cos 20◦ + i sin 20◦. Then

cos 20◦ = 1

2

(
z + 1

z

)
, cos 40◦ = 1

2

(
z2 + 1

z2

)
, cos 80◦ = 1

2

(
z4 + 1

z4

)
.

Also, z9 = cos 180◦ + i sin 180◦ = −1, thus

1

z
= −z8,

1

z2
= −z7,

1

z4
= −z5.
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The product equals

1

8

(
z − z8)(z2 − z7)(z4 − z5)

= 1

8

(
z3 − z8 − z10 + z15)(z4 − z5)

= 1

8

(
z3 − z8 + z − z6)(z4 − z5)

= 1

8

(
z7 − z8 − z12 + z13 + z5 − z6 − z10 + z11)

= 1

8

(
z − z2 + z3 − z4 + z5 − z6 + z7 − z8)

= 1

8

(
1 − z9 + 1

z + 1

)
= 1

8
.

Problem 2.73 Prove that

1

cos 6◦ + 1

sin 24◦ + 1

sin 48◦ = 1

sin 12◦ .

Solution If we denote z = cos 6◦ + i sin 6◦, then z15 = cos 90◦ + i sin 90◦ = i. We
have

cos 6◦ = z2 + 1

2z
, sin 12◦ = z4 − 1

2iz2
, sin 24◦ = z8 − 1

2iz4
,

sin 48◦ = z16 − 1

2iz8 .

The equality to be proved becomes

2z

z2 + 1
− 2iz2

z4 − 1
+ 2iz4

z8 − 1
+ 2iz8

z16 − 1
= 0.

Multiplying by z16 − 1, we obtain, after a short computation

z16 − 1 − iz
(
z14 + 1

) = 0 ⇐⇒ iz − 1 − i2 − iz = 0,

which is obvious.

Problem 2.74 Prove that

cos
2π

7
+ cos

4π

7
+ cos

6π

7
+ 1

2
= 0.

Solution If z = cos 2π
7 + i sin 2π

7 , then z7 = 1. The equality to be proved becomes

1

2

(
z + 1

z

)
+ 1

2

(
z2 + 1

z2

)
+ 1

2

(
z3 + 1

z3

)
+ 1

2
= 0.
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Multiplying by 2z3 and rearranging the terms, we get

z6 + z5 + z4 + z3 + z2 + z + 1 = 0,

or

z7 − 1

z − 1
= 0,

which is obvious.

Problem 2.75 Prove the equality

sin
π

2n
sin

2π

2n
· · · sin

(n − 1)π

2n
=

√
n

2n−1 .

Solution Consider the polynomial P(X) = X2n − 1. Its roots are the numbers xk =
cos kπ

n
+ i sin kπ

n
, with k = 0,1, . . . ,2n − 1. It follows that P(X) = (X − x0) ×

(X − x1) · · · (X − x2n−1). We observe that, except x0 = 1 and xn = −1, all the other
roots are non-real complex numbers and that, for 1 ≤ k ≤ n − 1, xk = x2n−k . Thus,
we can write

P(X) = (
X2 − 1

) n−1∏

k=1

(X − xk)(X − xk)

= (
X2 − 1

) n−1∏

k=1

(
x2 − (xk + xk)x + xkxk

)
.

Now, xk + xk = 2 cos kπ
n

and xkxk = 1. Dividing both sides by x2 − 1, we obtain

x2n−2 + x2n−4 + · · · + x4 + x2 + 1 =
n−1∏

k=1

(
x2 − 2x cos

kπ

n
+ 1

)
.

For x = 1, the above equality becomes

n = 2n−1
n−1∏

k=1

(
1 − cos

kπ

n

)
= 2n−1

n−1∏

k=1

2 sin2 kπ

2n

=
(

2n−1
n−1∏

k=1

sin
kπ

2n

)2

.

Since sin kπ
2n

> 0 for k = 1, . . . , n − 1, we obtain

n−1∏

k=1

sin
kπ

2n
=

√
n

2n−1
.
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Problem 2.76 Solve the equation

sinx + sin 2x + sin 3x = cosx + cos 2x + cos 3x.

Solution If z = cosx + i sinx, the equation becomes

z2 − 1

2iz
+ z4 − 1

2iz2
+ z6 − 1

2iz3
= z2 + 1

2z
+ z4 + 1

2z2
+ z6 + 1

2z3
.

Multiplying by 2iz3 and grouping the terms, we obtain

z6 + z5 + z4 − i
(
z2 + z + 1

) = 0,

or
(
z4 − i

)(
z2 + z + 1

) = 0.

If z2 + z + 1 = 0, then z = −1±i
√

3
2 = cos ±2π

3 + i sin ±2π
3 , hence x = ±2π

3 + 2kπ ,
with k ∈ Z. If z4 = i, then cos 4x + i sin 4x = cos π

2 + i sin π
2 and it follows that

4x = π
2 + 2kπ , hence x = π

8 + kπ
2 , with k ∈ Z.

Problem 2.77 Prove that

cos
π

5
= 1 + √

5

4
.

Solution If we denote by z = cos π
5 + i sin π

5 , then z5 = −1, which is equivalent to

(z + 1)
(
z4 − z3 + z2 − z + 1

) = 0.

Because z �= −1, we obtain z4 − z3 + z2 − z + 1 = 0. After dividing by z2 �= 0, it
follows that

z2 + 1

z2
−

(
z + 1

z

)
+ 1 = 0.

If x = cos π
5 , then

z + 1

z
= 2x, z2 + 1

z2
=

(
z + 1

z

)2

− 2 = 4x2 − 2.

It follows that x is a (positive) root of the equation

4x2 − 2x − 1 = 0,

hence

x = 1 + √
5

4
.



Chapter 6
Number Theory and Combinatorics

6.1 Arrays of Numbers

Problem 3.4 Prove that the sum of any n entries of the table

1 1
2

1
3 . . . 1

n

1
2

1
3

1
4 . . . 1

n+1

...

1
n

1
n+1

1
n+2 . . . 1

2n−1

situated in different rows and different columns is not less than 1.

Solution Denoting by aij the entry in the ith row and j th column of the array, we
have

aij = 1

i + j − 1
,

for all i, j,1 ≤ i, j ≤ n. Choose n entries situated in different rows and different
columns. It follows that from each row and each column exactly one number is
chosen. Let a1j1 , a2j2 , . . . , anjn

be the chosen numbers, where j1, j2, . . . , jn is a
permutation of indices 1,2, . . . , n. We have

n∑

k=1

1

akjk

=
n∑

k=1

(k + jk − 1) =
n∑

k=1

k +
n∑

k=1

jk − n.

But

n∑

k=1

jk =
n∑

k=1

k = n(n + 1)

2
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since j1, j2, . . . , jn is a permutation of indices 1,2, . . . , n. It follows that

n∑

k=1

1

akjk

= n2.

The Cauchy–Schwarz inequality yields

(x1 + x2 + · · · + xn)

(
1

x1
+ 1

x2
+ · · · + 1

xn

)
≥ n2,

for all positive real numbers x1, x2, . . . , xn. Taking xk = akjk
and using the above

equality, we obtain

n∑

k=1

akjk
≥ 1

as desired.

Problem 3.5 The entries of an n × n array of numbers are denoted by aij ,1 ≤ i,

j ≤ n. The sum of any n entries situated on different rows and different columns is
the same. Prove that there exist numbers x1, x2, . . . , xn and y1, y2, . . . , yn, such that

aij = xi + yj ,

for all i, j .

Solution Consider n entries situated on different rows and different columns
aiji

, i = 1,2, . . . , n. Fix k and l,1 ≤ k < l ≤ n and replace akjk
and aljl

with akjl

and aljk
, respectively. It is not difficult to see that the new n entries are still situ-

ated on different rows and different columns. Because the sums of the two sets of n

entries are equal, it follows that

akjk
+ aljl

= akjl
+ aljk

. (∗)

Now, denote x1, x2, . . . , xn the entries in the first column of the array and by x1, x1 +
y2, x1 +y3, . . . , x1 +yn the entries in the first row (in fact, we have defined xk = ak1,
for all k, y0 = 0 and yk = a1k − ak1 for all k ≥ 2).

x1 x1 + y2 . . . x1 + yj . . . x1 + yn

x2
...

xi aij

...

xn
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The equality

aij = xi + yj ,

stands for all i, j with i = 1 or j = 1. Now, consider i, j > 1. From (∗) we deduce

a11 + aij = a1j + ai1

hence

x1 + aij = xi + x1 + yj

or

aij = xi + yj ,

for all i, j , as desired.

Problem 3.6 In an n × n array of numbers all rows are different (two rows are
different if they differ in at least one entry). Prove that there is a column which can
be deleted in such a way that the remaining rows are still different.

Solution We prove by induction on k the following statement: at least n − k + 1
columns can be deleted in such a way that the first k rows are still different. For
k = 2 the assertion is true. Indeed, the first two rows differ in at least one place, so
we can delete the remaining n − 1 columns. Suppose the assertion is true for k, that
is we can delete n − k + 1 columns and the first k rows are still different. If after
the deletion of the columns the (k + 1)th row is different from all first k rows, we
can put back any of the deleted columns and remain with n− k deleted columns and
k + 1 different rows. If after the deletion the (k + 1)th row coincides with one of the
first rows, then we put back the column in which the two rows differ in the original
array. For k = n we obtain the desired result.

Problem 3.7 The positive integers from 1 to n2 (n ≥ 2) are placed arbitrarily on
squares of an n × n chessboard. Prove that there exist two adjacent squares (having
a common vertex or a common side) such that the difference of the numbers placed
on them is not less than n + 1.

Solution Suppose the contrary: the difference of the numbers placed in any adjacent
squares is less than n + 1. If we place a king on a square of the chessboard, it can
reach any other square in at most n − 1 moves through adjacent squares. Place a
king in the square with number 1 and move it to the square with number n2 in
at most n − 1 moves. At each move, the difference between the numbers in the
adjacent squares is less than n + 1, hence the difference between n2 and 1 is less
than (n + 1)(n − 1) = n2 − 1, a contradiction.

Problem 3.8 A positive integer is written in each square of an n2 ×n2 chess board.
The difference between the numbers in any two adjacent squares (sharing an edge) is
less than or equal to n. Prove that at least �n

2 �+ 1 squares contain the same number.



200 6 Number Theory and Combinatorics

Solution Consider the smallest and largest numbers a and b on the board. They are
separated by at most n2 − 1 squares horizontally and n2 − 1 vertically, so there is
a path from one to the other with length at most 2(n2 − 1). Then since any two
successive squares differ by at most n, we have b − a ≤ 2(n2 − 1)n. But since all
numbers on the board are integers lying between a and b, only 2(n2 − 1)n + 1
distinct numbers can exist; and because

n4 >
(
2
(
n2 − 1

)
n + 1

)n

2
,

more than n
2 squares contain the same number, as needed.

Problem 3.9 The numbers 1,2, . . . ,100 are arranged in the squares of an 10 × 10
table in the following way: the numbers 1, . . . ,10 are in the bottom row in increasing
order, numbers 11, . . . ,20 are in the next row in increasing order, and so on. One can
choose any number and two of its neighbors in two opposite directions (horizontal,
vertical, or diagonal). Then either the number is increased by 2 and its neighbors are
decreased by 1, or the number is decreased by 2 and its neighbors are increased by 1.
After several such operations the table again contains all the numbers 1,2, . . . ,100.
Prove that they are in the original order.

Solution Label the table entry in the ith row and j th column by aij , where the
bottom-left corner is in the first row and first column. Let bij = 10(i − 1)+ j be the
number originally in the ith row and j th column.

Observe that

P =
10∑

i,j=1

aij bij

is invariant. Indeed, every time entries amn, apq , ars are changed (with m + r = 2p

and n + s = 2q), P increases or decreases by bmn − 2bpq + brs , but this equals

10
(
(m − 1) + (r − 1) − 2(p − 1)

) + (n + s − 2q) = 0.

In the beginning,

P =
10∑

i,j=1

bij bij

at the end, the entries aij equal the bij in some order, and we now have

P =
10∑

i,j=1

aij bij

By the rearrangement inequality, this is at least P = ∑10
i,j=1 aij bij with equality

only when each aij = bij . The equality does occur since P is invariant. Therefore
the aij do indeed equal the bij in the same order, and thus the entries 1,2, . . . ,100
appear in their original order.
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Problem 3.10 Prove that one cannot arrange the numbers from 1 to 81 in a 9 × 9
table such that for each i,1 ≤ i ≤ 9 the product of the numbers in row i equals the
product of the numbers in column i.

Solution The key observation is the following: if row k contains a prime num-
ber p > 40, then the same number must be contained by column k, as well.
Therefore, all prime numbers from 1 to 81 must lie on the main diagonal of
the table. However, this is impossible, since there are 10 such prime numbers:
41,43,47,53,59,61,67,71,73, and 79.

Problem 3.11 The entries of a matrix are integers. Adding an integer to all entries
on a row or on a column is called an operation. It is given that for infinitely many
integers N one can obtain, after a finite number of operations, a table with all entries
divisible by N . Prove that one can obtain, after a finite number of operations, the
zero matrix.

Solution Suppose the matrix has m rows and n columns and its entries are denoted
by ahk . Fix some j,1 < j ≤ n, and consider an arbitrary i,1 < i ≤ m. The expres-
sion

Eij = a11 + aij − ai1 − a1j

is an invariant for our operation. Indeed, adding k to the first row, it becomes

(a11 + k) + aij − ai1 − (a1j + k) = a11 + aij − ai1 − a1j .

The same happens if we operate on the first column, the ith row or the j th column,
while operating on any other row or column clearly does not change Eij . From the
hypothesis, we deduce that Eij is divisible by infinitely positive integers N , hence
Eij = 0. We deduce that

a11 − a1j = ai1 − aij = c,

for all i,1 < i ≤ m. Adding c to all entries in column j will make this column
identical to the first one.

In the same way we can make all columns identical to the first one. Now, it is not
difficult to see that operating on rows we can obtain the zero matrix.

6.2 Functions Defined on Sets of Points

Problem 3.14 Let D be the union of n ≥ 1 concentric circles in the plane. Suppose
that the function f : D → D satisfies

d
(
f (A),f (B)

) ≥ d(A,B)

for every A,B ∈ D (d(M,N) is the distance between the points M and N).
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Fig. 6.1

Prove that

d
(
f (A),f (B)

) = d(A,B)

for every A,B ∈ D.

Solution Let D1,D2, . . . ,Dn be the concentric circles, with radii r1 < r2 < · · · <

rn and center O . We will denote f (A) = A′, for an arbitrary point A ∈ D.
We first notice that if A,B ∈ Dn such that AB is a diameter, then A′B ′ is also a

diameter of Dn. If C is another point on Dn, we have

A′C ′2 + B ′C′2 ≥ AC2 + BC2 = AB2 = A′B ′2.

Because OC′ is a median of the triangle A′B ′C′, it follows that

OC′2 = 1

2

(
A′C ′2 + B ′C ′2) − 1

4
A′B ′2 = r2

n,

hence C ′ ∈ Dn and A′C′ = AC,B ′C′ = BC. We deduce that f (Dn) ⊂ Dn and the
restriction of f to Dn is an isometry. Now take A,X,Y,Z on Dn such that AX =
AY = A′Z. It follows that A′X′ = A′Y ′ = A′Z, hence one of the points X′, Y ′
coincides with Z. This shows that f (Dn) = Dn and since f is clearly injective
it results in the same way that f (Di) = Di , for all i, 1 ≤ i ≤ n − 1, and that all
restrictions f |Di

are isometries.
Next we prove that distances between adjacent circles, say D1 and D2 are pre-

served. Take A,B,C,D on D1 such that ABCD is a square and let A′,B ′,C′,D′
be the points on D2 closest to A,B,C,D, respectively.

Then A′B ′C′D′ is also a square and the distance from A to C′ is the maximum
between any point on D1 and any point on D2. Hence the eight points maintain their
relative position under f and this shows that f is an isometry (Fig. 6.1).
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Problem 3.15 Let S be a set of n ≥ 4 points in the plane, such that no three of them
are collinear and not all of them lie on a circle. Find all functions f : S → R with
the property that for any circle C containing at least three points of S,

∑

P∈C∩S

f (P ) = 0.

Solution For two distinct points A,B of S we denote CA,B the set of circles de-
termined by A,B and other points of S. Suppose CA,B has k elements. Since the
points of S are not on the same circle, it follows that k ≥ 2. Because

∑

P∈C∩S

f (P ) = 0

for all C ∈ CA,B , we deduce that

∑

C∈CA,B

∑

P∈C∩S

f (P ) = 0.

On the other hand, it is not difficult to see that
∑

C∈CA,B

∑

P∈C∩S

f (P ) =
∑

P∈S

f (P ) + (k − 1)
(
f (A) + f (B)

)
.

Thus the sum
∑

P∈S f (P ) and f (A) + f (B) have opposite signs, for all A,B in S.
If, for instance,

∑
P∈S f (P ) ≥ 0, then f (A) + f (B) ≤ 0, for all A,B in S. Let

S = {A1,A2, . . . ,An}. Then

f (A1) + f (A2) ≤ 0, f (A2) + f (A3) ≤ 0, . . . , f (An) + f (A1) ≤ 0,

yielding

2
∑

P∈M

f (P ) ≤ 0

hence
∑

P∈M f (P ) = 0 and f (A) + f (B) = 0 for all distinct points A,B . This
implies that f is the zero function. Indeed, let A,B,C be three distinct points in S.
It is not difficult to see that the equalities

f (A) + f (B) = 0,

f (B) + f (C) = 0,

f (A) + f (C) = 0

yield

f (A) = f (B) = f (C) = 0

and our claim is proved.
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Fig. 6.2

Problem 3.16 Let P be the set of all points in the plane and L be the set of all lines
of the plane. Find, with proof, whether there exists a bijective function f : P → L

such that for any three collinear points A,B,C, the lines f (A),f (B) and f (C) are
either parallel or concurrent.

Solution Let Ai, i = 1,2,3 be three distinct points in the plane and li = f (Ai).
We claim that if l1, l2, l3 are concurrent or parallel, then A1,A2,A3 are collinear.
Indeed, suppose that l1, l2, l3 intersect at M and that A1A2A3 is a non-degenerated
triangle. Then for any point B in the plane we can find points B2,B3 on the lines
A1A2,A1A3, respectively, such that B,B2,B3 are collinear (Fig. 6.2).

Because A1,B2,A2 are collinear it follows that f (B2) is a line passing
through M . The same is true for f (B1), hence also for f (B). This contradicts
the surjectivity of f . A similar argument can be given if l1, l2, l3 are parallel.

We conclude that the restriction of f to any line l defines a bijection from l to a
pencil of lines (passing through a point or parallel). Consider two pencils P1 and P2
of parallel lines. The inverse images of P1,P2 are two parallel lines l1, l2 (P1 and P2
have no common lines, hence l1 and l2 have no common points). Let P3 be a pencil
of concurrent lines whose inverse image is a line l, clearly not parallel to l1, l2. Let
l′ be a line parallel to l. Then f (l′) is a pencil of concurrent lines and it follows
that there is a line through the points corresponding to l and l′ whose inverse image
would be a point on both l and l′, a contradiction. Hence no such functions exists.

Problem 3.17 Let S be the set of interior points of a sphere and C be the set of
interior points of a circle. Find, with proof, whether there exists a function f : S →
C such that d(A,B) ≤ d(f (A),f (B)), for any points A,B ∈ S.

Solution No such function exists. Indeed, suppose f : S → C has the enounced
property. Consider a cube inscribed in the sphere and assume with no loss of gen-
erality that its sides have length 1. Partition the cube into n3 smaller cubes and let
A1,A2, . . . ,A(n+1)3 be their vertices. For all i �= j we have

d(Ai,Aj ) ≥ 1

n
,

hence

d
(
f (Ai), f (Aj )

) ≥ 1

n
.
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It follows that the disks Di with centers f (Ai) and radius 1
2n

are disjoint and con-
tained in a circle C ′ with radius r + 1

n
, where r is the radius of C. The sum of the

areas of these disks is then less than the area of C′, hence

(n + 1)3 π

4n2
≤ π

(
r + 1

n

)2

.

This inequality cannot hold for sufficiently large n, which proves our claim.

Problem 3.18 Let S be the set of all polygons in the plane. Prove that there exists
a function f : S → (0,+∞) such that

1. f (P ) < 1, for any P ∈ S;
2. If P1,P2 ∈ S have disjoint interiors and P1 ∪P2 ∈ S, then f (P1 ∪P2) = f (P1)+

f (P2).

Solution Consider a covering of the plane with unit squares and denote them by
U1,U2, . . . ,Un, . . . . If P is a polygon, define

f (P ) =
∑

k≥1

1

2k
[P ∩ Uk].

Because P intersects a finite number of unit squares, the above sum is finite, hence
f is well defined. Moreover, f verifies the conditions of the problem. Indeed, we
have [P ∩ Uk] ≤ 1, for all k and if

N = max{i|P ∩ Ui �= ∅}
then

f (P ) =
N∑

k≥1

1

2k
[P ∩ Uk] ≤

N∑

k≥1

1

2k
= 1 − 1

2N
< 1.

For the second condition, observe that
[
(P1 ∩ P2) ∩ Uk

] = [P1 ∩ Uk] + [P2 ∩ Uk]
for all polygons P1,P2 for which P1 ∪ P2 ∈ S and all Uk , hence

f (P1 ∪ P2) = f (P1) + f (P2).

6.3 Count Twice!

Problem 3.22 Find how many committees with a chairman can be chosen from a
set of n persons. Derive the identity

(
n

1

)
+ 2

(
n

2

)
+ 3

(
n

3

)
+ · · · + n

(
n

n

)
= n2n−1.
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Solution The number of persons in the committee may vary between 1 and n. Let us
count how many such committees number k persons. The k persons can be chosen
in

(
n
k

)
ways while the chairman can be chosen in k ways, yielding a total of k

(
n
k

)

committees with k persons. Adding up for k = 1,2, . . . , n, we see that the total
number of committees is

(
n

1

)
+ 2

(
n

2

)
+ 3

(
n

3

)
+ · · · + n

(
n

n

)
.

On the other hand, we can first choose the chairman. This can be done in n ways.
Next, we choose the rest of the committee, which is an arbitrary subset of the re-
maining n − 1 persons. Because a set with n − 1 elements contains 2n−1 subsets, it
follows that the committee can be completed in 2n−1 ways and the total number of
committees is

n2n−1.

Observation There are many proofs of the given equality. An interesting one is the
following. Consider the identity

(1 + x)n = 1 +
(

n

1

)
x +

(
n

2

)
x2 + · · · +

(
n

n − 1

)
xn−1 +

(
n

n

)
xn.

Differentiating both sides with respect to x yields

n(1 + x)n−1 =
(

n

1

)
+ 2

(
n

2

)
x + · · · + (n − 1)

(
n

n − 1

)
xn−2 + n

(
n

n

)
xn−1.

Setting x = 1 gives the desired result.

Problem 3.23 In how many ways can one choose k balls from a set containing n−1
red balls and a blue one? Derive the identity

(
n

k

)
=

(
n − 1

k

)
+

(
n − 1

k − 1

)
.

Solution We have to choose k balls from a set containing n balls, hence the answer
is

(
n
k

)
. On the other hand, the blue ball may or may not be among the selected k

balls. If the blue ball is selected, then, in fact we have chosen k − 1 red balls from
n − 1 red balls and this can be done in

(
n−1
k−1

)
ways. If the blue ball is not selected,

then we have chosen k red balls from n − 1 ones. This can be done in
(
n−1
k−1

)
which

leads to a total of
(

n − 1

k

)
+

(
n − 1

k − 1

)

possibilities to choose the k balls.
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Observation Using similar arguments we can obtain a more general identity. Let
us count in how many ways one can choose k balls from a set containing n red and
m blue balls. Discarding the color of the balls, the answer is

(
n+m

k

)
. If we take into

consideration the fact that the chosen k balls can be: all red, or k − 1 red and 1 blue,
or k − 2 red and 2 blue, etc. we obtain the identity

(
n + m

k

)
=

(
n

k

)(
m

0

)
+

(
n

k − 1

)(
m

1

)
+

(
n

k − 2

)(
m

2

)
+ · · · +

(
n

0

)(
m

k

)
.

Problem 3.24 Let S be a set of n persons such that:

(i) any person is acquainted to exactly k other persons in S;
(ii) any two persons that are acquainted have exactly l common acquaintances in S;

(iii) any two persons that are not acquainted have exactly m common acquaintances
in S.

Prove that

m(n − k) − k(k − l) + k − m = 0.

Solution Let a be a fixed element of S. Let us count the triples (a, x, y) such that
a, x are acquainted, x, y are acquainted and a, y are not acquainted. Because a is
acquainted to exactly k other persons in S,x can be chosen in k ways and for fixed
a and x, y can be chosen in k − 1 − l ways. Thus the number of such triples is

k(k − 1 − l).

Let us count again, choosing y first. The number of persons not acquainted to a

equals n − k − 1, hence y can be chosen in n − k − 1 ways. Because x is a common
acquaintance of a and y, it can be chosen in m ways, yielding a total of

m(n − k − 1)

triples. It is not difficult to see that the equality

k(k − 1 − l) = m(n − k − 1)

is equivalent to the desired one.

Problem 3.25 Let n be an odd integer greater than 1 and let c1, c2, . . . , cn be inte-
gers. For each permutation a = (a1, a2, . . . , an) of {1,2, . . . , n}, define

S(a) =
n∑

i=1

ciai.

Prove that there exist permutations a �= b of {1,2, . . . , n} such that n! is a divisor of
S(a) − S(b).
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Solution Denote by
∑

a S(a) the sum of S(a) over all n! permutations of
{1,2, . . . , n}. We compute

∑
a S(a) (modn!) in two ways. First, assuming that the

conclusion is false, it follows that each S(a) has a different remainder modn!, hence
these remainders are the numbers 0,1,2, . . . , n! − 1. It follows that

∑

a

S(a) ≡ 1

2
n!(n! − 1) (modn!).

On the other hand,

∑

a

S(a) =
∑

a

n∑

i=1

ciai =
n∑

i=1

ci

∑

a

ai.

For each i, in
∑

a ai , each of the numbers 1,2, . . . , n, appears (n − 1)! times, hence

∑

a

ai = (n − 1)!(1 + 2 + · · · + n) = 1

2
(n + 1)!.

It follows that

∑

a

S(a) = 1

2
(n + 1)!

n∑

i=1

ci .

We deduce that

1

2
n!(n! − 1) ≡ 1

2
(n + 1)!

n∑

i=1

ci (modn!).

Because n > 1 is odd, the right-hand side is congruent to 0 modn!, while the left-
hand side is not, a contradiction.

Problem 3.26 Let a1 ≤ a2 ≤ · · · ≤ an = m be positive integers. Denote by bk the
number of those ai for which ai ≥ k. Prove that

a1 + a2 + · · · + an = b1 + b2 + · · · + bm.

Solution Let us consider a n × m array of numbers (xij ) defined as follows: in row
i, the first ai entries are equal to 1 and the remaining m − ai entries are equal to 0.
For instance, if n = 3 and a1 = 2, a2 = 4, a3 = 5, the array is

1 1 0 0 0
1 1 1 1 0
1 1 1 1 1

Now, if we examine column j , we notice that the number of 1’s in that column
equals the number of those ai greater than or equal to j , hence bj . The desired
result follows by adding up in two ways the 1’s in the array. The total number of 1’s
is

∑n
i=1 ai , if counted by rows, and

∑m
j=1 bj , if counted by columns.
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Problem 3.27 In how many ways can one fill a m × n table with ±1 such that the
product of the entries in each row and each column equals −1?

Solution Denote by aij the entries in the table. For 1 ≤ i ≤ m−1 and 1 ≤ j ≤ n−1,
we let aij = ±1 in an arbitrary way. This can be done in 2(m−1)(n−1) ways. The
values for amj with 1 ≤ j ≤ n − 1 and for ain, with 1 ≤ i ≤ m − 1 are uniquely
determined by the condition that the product of the entries in each row and each
column equals −1. The value of amn is also uniquely determined but it is necessary
that

n−1∏

j=1

amj =
m−1∏

i=1

ain. (∗)

If we denote

P =
m−1∏

i=1

n−1∏

j=1

aij

we observe that

P

n−1∏

j=1

amj = (−1)n−1

and

P

m−1∏

i=1

ain = (−1)m−1

hence (∗) holds if and only if m and n have the same parity.

Problem 3.28 Let n be a positive integer. Prove that

n∑

k=0

(
n

k

)(
n + k

k

)
=

n∑

k=0

2k

(
n

k

)2

.

Solution Let us count in two ways the number of ordered pairs (A,B), where A

is a subset of {1,2, . . . , n}, and B is a subset of {1,2, . . . ,2n} with n elements and
disjoint from A.

First, for 0 ≤ k ≤ n, choose a subset A of {1,2, . . . , n} having n − k elements.
This can be done in

(
n

n − k

)
=

(
n

k

)

ways. Next, choose B , a subset with n elements of {1,2, . . . ,2n} − A. Since
{1,2, . . . ,2n} − A has 2n − (n − k) = n + k elements, B can be chosen in

(
n + k

n

)
=

(
n + k

k

)
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ways. We deduce, by adding on k, that the number of such pairs equals

n∑

k=0

(
n

k

)(
n + k

k

)
.

On the other hand, we could start by choosing the subsets B ′ ⊂ {1,2, . . . , n} and
B ′′ ⊂ {n + 1, n + 2, . . . ,2n}, both with k elements, and define

B = B ′′ ∪ ({1,2, . . . , n} − B ′).

Since for given k each of the sets B ′ and B ′′ can be chosen in
( n

k

)
ways, B can be

chosen in
( n

k

)2 ways.
Finally, pick A to be an arbitrary subset of B′. There are 2k ways to do this.

Adding on k, we obtain that the total number of pairs (A,B) equals

n∑

k=0

2k

(
n

k

)2

,

hence the conclusion.

Problem 3.29 Prove that

12 + 22 + · · · + n2 =
(

n + 1
2

)
+ 2

(
n + 1

3

)
.

Solution Let us count the number of ordered triples of integers (a, b, c) satisfying
0 ≤ a, b < c ≤ n.

For fixed c, a and b can independently take values in the set {0,1, . . . , c − 1},
hence there are c2 such triples. Since c can take any integer value between 1 and n,
the total number of triples equals

12 + 22 + · · · + n2.

On the other hand, there are
(

n+1
2

)
triples of the form (a, a, c) and 2

(
n+1

3

)
triples

(a, b, c) with a �= b. The latter results from the following argument: we can chose
three distinct elements from {0,1, . . . , n} in ( n+1

3 ) ways. With these three elements,
say x < y < z, we can form two triples satisfying the required condition: (x, y, z)

and (y, x, z).

Problem 3.30 Let n and k be positive integers and let S be a set of n points in the
plane such that

(a) no three points of S are collinear, and
(b) for every point P of S there are at least k points of S equidistant from P .

Prove that

k <
1

2
+ √

2n.



6.3 Count Twice! 211

Solution Let P1,P2, . . . ,Pn be the given points. Let us estimate the number of
isosceles triangles whose vertices lie in S.

For each Pi , there are at least
(

k
2

)
triangles PiPjPk , with PiPj = PiPk , hence

the total number of isosceles triangles is at least n
(

k
2

)
.

For each pair (Pi,Pj ), with i �= j , there exist at most two points in S equidistant
from Pi and Pj . This is because all such points lie on the perpendicular bisector of
the line segment PiPj and no three points of S are collinear. Thus, the total number
of isosceles triangles is at most 2

( n
2

)
. We deduce that

n

(
k

2

)
≤ 2

(
n

2

)
,

which simplifies to

2(n − 1) ≥ k(k − 1).

Suppose, by way of contradiction, that

k ≥ 1

2
+ √

2n.

Then

k(k − 1) ≥
(√

2n + 1

2

)(√
2n − 1

2

)
= 2n − 1

4
> 2(n − 1),

a contradiction.

Problem 3.31 Prove that

τ(1) + τ(2) + · · · + τ(n) =
⌊

n

1

⌋
+

⌊
n

2

⌋
+ · · · +

⌊
n

n

⌋
,

where τ(k) denotes the number of divisors of the positive integer k.

Solution Observe that the integer a, with 1 ≤ a ≤ n, is counted by τ(k) if and only
if a is a divisor of k, or, equivalently, if k is a multiple of a. Thus, the number
of times a is counted in the left-hand side of our equality equals the number of
multiples of a in the set {1,2, . . . , n}. But this number obviously equals �n

a
�. Adding

on a gives the desired result.

Problem 3.32 Prove that

σ(1) + σ(2) + · · · + σ(n) =
⌊

n

1

⌋
+ 2

⌊
n

2

⌋
+ · · · + n

⌊
n

n

⌋
,

where σ(k) denotes the sum of divisors of the positive integer k.
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Solution The solution is similar to the previous one. The integer a, with 1 ≤ a ≤ n,
is a term of the sum σ(k) if and only if a is a divisor of k. There are �n

a
� multiples

of a in the set {1,2, . . . , n} and therefore the sum of all divisors equal to a is a�n
a
�.

Problem 3.33 Prove that

ϕ(1)

⌊
n

1

⌋
+ ϕ(2)

⌊
n

2

⌋
+ · · · + ϕ(n)

⌊
n

n

⌋
= n(n + 1)

2
,

where ϕ denotes Euler’s totient function.

Solution Observe that the right-hand side can be written as

n(n + 1)

2
= 1 + 2 + · · · + n.

Using the result of Problem 3.21 of Sect. 3.3, we obtain

n(n + 1)

2
=

∑

d|1
ϕ(d) +

∑

d|2
ϕ(d) + · · · +

∑

d|n
ϕ(d).

Now, for some k,1 ≤ k ≤ n, let us count how many times ϕ(k) appears in right-
hand side of the above equality. Clearly, ϕ(k) is a term of the sum

∑
d|m ϕ(d) if and

only if k is a divisor of m, or, equivalently, m is a multiple of k. So, ϕ(k) appears as
many times as the number of multiples of k in the set {1,2, . . . , n}, that is, �n

k
�.

We conclude that the sum can be written as

ϕ(1)

⌊
n

1

⌋
+ ϕ(2)

⌊
n

2

⌋
+ · · · + ϕ(n)

⌊
n

n

⌋
,

giving the required result.
Alternatively, we could count in two ways the number of fractions a

b
with 1 ≤

a ≤ b ≤ n where we do not insist that our fraction be in lowest terms, so for example
1
2 and 2

4 would count as different fractions. First, this number is clearly

n∑

b=1

b = n(n + 1)

2

since this is the number of such pairs (a, b). Second, we count fractions based on
their reduced forms. We saw in Problem 3.21 that the number of reduced fractions
with denominator d is φ(d). The number of multiples of such a fraction with de-
nominator at most n is �n/d� so the number is also

n∑

d=1

φ(d)

⌊
n

d

⌋
.
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Problem 3.37 Prove that there exist sequences of odd integers (xn)n≥3, (yn)n≥3
such that

7x2
n + y2

n = 2n

for all n ≥ 3.

Solution For n = 3, define x3 = y3 = 1. Suppose that for n ≥ 3 there exist odd
integers xn and yn such that 7x2

n + y2
n = 2n. Observe that the integers

xn + yn

2
and

xn − yn

2

cannot be both even, since their sum is odd.
If xn+yn

2 is odd, we define

xn+1 = xn + yn

2
, yn+1 = 7xn − yn

2

and the conclusion follows by noticing that

7x2
n+1 + y2

n+1 = 1

4

(
7(xn + yn)

2 + (7xn − yn)
2) = 2

(
7x2

n + y2
n

) = 2n+1.

If xn−yn

2 is odd, we define

xn+1 = xn − yn

2
, yn+1 = 7xn + yn

2

and a similar computation yields the result.

Problem 3.38 Let x1 = x2 = 1, x3 = 4 and

xn+3 = 2xn+2 + 2xn+1 − xn

for all n ≥ 1. Prove that xn is a square for all n ≥ 1.

Solution We first notice that x1 = x2 = 12, x3 = 22, x4 = 32, x5 = 52, x6 = 82, and
so forth. This leads to the assumption that xn = F 2

n , where Fn is the nth term of the
Fibonacci sequence defined by F1 = F2 = 1 and Fn+1 = Fn + Fn−1, for all n ≥ 2.
We prove this assertion inductively. Suppose it is true for all k ≤ n + 2. Then

xn+3 = 2F 2
n+2 + 2F 2

n+1 − F 2
n = 2F 2

n+2 + 2F 2
n+1 − (Fn+2 − Fn+1)

2

= F 2
n+2 + F 2

n+1 + 2Fn+1Fn+2 = (Fn+2 + Fn+1)
2 = F 2

n+3,

and the assertion is proved.
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Problem 3.39 The sequence (an)n≥0 is defined by a0 = a1 = 1 and

an+1 = 14an − an−1

for all n ≥ 1. Prove that the number 2an − 1 is a square for all n ≥ 0.

Solution We have 2a0 −1 = 1,2a1 −1 = 1,2a2 −1 = 52,2a3 −1 = 192,2a4 −1 =
712. We observe that if we define b0 = −1, b1 = 1, b2 = 5, b3 = 19, b4 = 71, then
bn+1 = 4bn − bn−1 for 1 ≤ n ≤ 3. We will prove inductively that

2an − 1 = b2
n,

where b0 = −1, b1 = 1 and bn+1 = 4bn − bn−1 for all n ≥ 1. Suppose this is true
for 1,2, . . . , n and observe that

2an+1 − 1 = 14(2an − 1) − (2an−1 − 1) + 12 = 14b2
n − b2

n−1 + 12

= 16b2
n − 8bnbn−1 + b2

n−1 − 2b2
n + 8bnbn−1 − 2b2

n−1 + 12

= (4bn − bn−1)
2 − 2

(
b2
n + b2

n−1 − 4bnbn−1 − 6
)

= b2
n+1 − 2

(
b2
n + b2

n−1 − 4bnbn−1 − 6
)
.

Hence it suffices to prove that b2
n + b2

n−1 − 4bnbn−1 − 6 = 0. This follows also by
induction. It is true for n = 1 and n = 2. Suppose it holds for n and observe that

b2
n+1 + b2

n − 4bn+1bn − 6 = (4bn − bn−1)
2 + b2

n − 4(4bn − bn−1)bn − 6

= b2
n + b2

n−1 − 4bnbn−1 − 6 = 0,

as desired.

Problem 3.40 The sequence (xn)n≥1 is defined by x1 = 0 and

xn+1 = 5xn +
√

24x2
n + 1

for all n ≥ 1. Prove that all xn are positive integers.

Solution We first notice that the sequence is increasing and all of its terms are
positive. Next we observe that the recursive relation is equivalent to

x2
n+1 − 10xnxn+1 + x2

n − 1 = 0.

Replacing n by n − 1 yields

x2
n − 10xnxn−1 + x2

n−1 − 1 = 0,

hence for n ≥ 2 the numbers xn+1 and xn−1 are distinct roots of the equation

x2 − 10xxn + x2
n − 1 = 0.
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The Viète’s relations yield xn+1 + xn−1 = 10xn, or

xn+1 = 10xn − xn−1

for all n ≥ 2. Because x1 = 1 and x2 = 10, it follows inductively that all xn are
positive integers.

Problem 3.41 Let (an)n≥1 be an increasing sequence of positive integers such that

1. a2n = an + n for all n ≥ 1;
2. if an is a prime, then n is a prime.

Prove that an = n, for all n ≥ 1.

Solution Let a1 = c. Then a2 = a1 + 1 = c + 1, a4 = a2 + 2 = c + 3. Since the
sequence is increasing, it follows that a3 = c + 2. We prove that an = c + n − 1
for all n ≥ 1. Indeed, if n = 2k for some integer k this follows by induction on k.
Suppose that

a2k = c + 2k − 1.

Then

a2k+1 = a2·2k = a2k + 2k = c + 2k+1 − 1.

If 2k < n < 2k+1, then

c + 2k − 1 = a2k < a2k+1 < · · · < an < · · · < a2k+1 = c + 2k+1 − 1

and this is possible only if an = c + n − 1.
Next we prove that c = 1. Suppose that c ≥ 2 and let p < q be two consecutive

prime numbers greater than c. We have

aq−c+1 = c + q − c = q,

hence q − c + 1 is a prime and clearly q − c + 1 ≤ p. It follows that for any consec-
utive prime numbers p < q we have

q − p ≤ c − 1.

The numbers (c+1)!+2, (c+1)!+3, . . . , (c+1)!+ c+1 are all composite, hence
if p and q are the consecutive primes such that

p < (c + 1)! + 2 < (c + 1)! + c + 1 < q

then

q − p > c − 1,

a contradiction. It follows that c = 0 and an = n for all n ≥ 1.
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Problem 3.42 Let a0 = a1 = 1 and an+1 = 2an −an−1 +2, for all n ≥ 1. Prove that

an2+1 = an+1an,

for all n ≥ 0.

Solution We will find a closed form for an. Denoting bn = an+1 − an, we observe
that the given recursive equation becomes

bn = bn−1 + 2,

thus (bn)n≥0 is an arithmetic sequence and hence bn = b0 + 2n = 2n. Writing
ak+1 − ak = 2(k − 1) for k = 1,2, . . . , n − 1 and adding up yield an = n2 − n + 1,
for all n ≥ 0. Now, an elementary computation shows that

an2+1 = (
n2 + 1

)2 − (
n2 + 1

) + 1 = (
n2 + n + 1

)(
n2 − n + 1

) = an+1an,

as desired.

Problem 3.43 Let a0 = 1 and an+1 = a0 · · ·an + 4, for all n ≥ 0. Prove that

an − √
an+1 = 2,

for all n ≥ 1.

Solution We will prove the equivalent statement

an+1 = (an − 2)2.

We have

an+1 = a0 · · ·an−1 · an + 4

= (an − 4) · an + 4

= a2
n − 4an + 4

= (an − 2)2,

which concludes the proof.

Problem 3.44 The sequence (xn)n≥1 is defined by x1 = 1, x2 = 3 and xn+2 =
6xn+1 − xn, for all n ≥ 1. Prove that xn + (−1)n is a perfect square, for all n ≥ 1.

Solution Let yn = xn + (−1)n. By inspection, we find that y1 = 0, y2 = 4, y3 =
16, y4 = 100, y5 = 576 etc. Denote by zn = √

yn; then z1 = 0, z2 = 2, z3 = 4, z4 =
10, z5 = 24, and so on. The first terms of the sequence (zn)n≥1 suggest that
zn+2 = 2zn+1 + zn, for all n ≥ 1. Indeed, we will prove by induction the follow-
ing statement: yn = z2

n, where z1 = 0, z2 = 2 and zn+2 = 2zn+1 + zn, for all n ≥ 1.
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The base case is easy to deal with. In order to prove the inductive step, we need a
recursive equation for the sequence (yn)n≥1. Since xn = yn − (−1)n, we have

yn+2 − (−1)n+2 = 6yn+1 − 6(−1)n+1 − yn + (−1)n,

and also

yn+1 − (−1)n+1 = 6yn − 6(−1)n − yn−1 + (−1)n−1.

Adding up yields

yn+2 + yn+1 = 6yn+1 + 6yn − yn − yn−1,

or

yn+2 = 5yn+1 + 5yn − yn−1,

for all n ≥ 2. Now, we are ready to prove the inductive step. Assume yk = z2
k , for

k = 1,2, . . . , n + 1. Then

yn+2 = 5z2
n+1 + 5z2

n − z2
n−1

= 5z2
n+1 + 5z2

n − (zn+1 − 2zn)
2

= 4z2
n+1 + z2

n + 4zn+1zn

= (2zn+1 + zn)
2

= z2
n+2,

and we are done.

Observation The informed reader may notice that an alternative solution is possi-
ble if we write xn in closed form. Indeed, it is known that if α and β , with α �= β ,
are the roots of the quadratic equation

x2 = ax + b,

then any sequence satisfying

xn+2 = axn+1 + bxn,

for all n ≥ 1, has the form

xn = c1α
n + c2β

n,

where the constants c1 and c2 can be determined from the first two terms of the
sequence. In our case, the roots of the equation

x2 = 6x − 1
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are

α = 3 + 2
√

2, β = 3 − 2
√

2,

hence

xn = c1
(
3 + 2

√
2
)n + c2

(
3 − 2

√
2
)n

.

Since x1 = 1 and x2 = 3, we obtain

c1 = 1

2

(
3 − 2

√
2
)
, c2 = 1

2

(
3 + 2

√
2
)
,

hence

xn = 1

2

((
3 + 2

√
2
)n−1 + (

3 − 2
√

2
)n−1)

,

for all n ≥ 1. It follows that

xn + (−1)n = 1

2

((
3 + 2

√
2
)n−1 + (

3 − 2
√

2
)n−1 + 2(−1)n

)

= 1

2

((
1 + √

2
)2(n−1) + (

1 − √
2
)2(n−1) − 2(−1)n−1)

=
(

(1 + √
2)n−1 − (1 − √

2)n−1

√
2

)2

.

The sequence

wn = (1 + √
2)n−1 − (1 − √

2)n−1

√
2

has the form

wn = c1α
n + c2β

n,

with

α = 1 + √
2, β = 1 − √

2,

hence it satisfies the recursive equation

wn+2 = 2wn+1 + wn,

for all n ≥ 1. Finally, since w1 = 0 and w1 = 2, we deduce that wn is an integer for
all n ≥ 1.

Problem 3.45 Let (an)n≥1 be a sequence of non-negative integers such that an ≥
a2n + a2n+1, for all n ≥ 1. Prove that for any positive integer N we can find N

consecutive terms of the sequence, all equal to zero.
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Solution Let us first show that at least one term of the sequence equals zero. Sup-
pose the contrary, that is, all terms are positive integers. But then

a1 ≥ a2 + a3 ≥ a4 + a5 + a6 + a7 ≥ · · · ≥ a2n + a2n+1 + · · · + a2n+1−1 ≥ 2n,

for all n ≥ 1, which is absurd. Thus, at least one term, say ak , equals zero. But then

0 = ak ≥ a2k + a2k+1 ≥ · · · ≥ a2nk + a2nk+1 + · · · + a2nk+2n−1,

hence a2nk = a2nk+1 = · · · = a2nk+2n−1 = 0. We found 2n consecutive terms of our
sequence, all equal to zero, which clearly proves the claim.

Observation An nontrivial example of such a sequence is the following:

an =
{

1, if n = 2k, for some integer k,

0, otherwise.

6.5 Equations with Infinitely Many Solutions

Problem 3.48 Find all triples of integers (x, y, z) such that

x2 + xy = y2 + xz.

Solution The given equation is equivalent to

x(x − z) = y(y − x).

Denote by d = gcd(x, y). Then x = da, y = db, with gcd(a, b) = 1.We deduce that
y −x = ka and x −z = kb for some integer k. Because gcd(a, b−a) = gcd(a, b) =
1, it follows that b − a divides k. Setting k = m(b − a) we obtain d = ma and the
solutions are

x = ma2, y = mab, z = m
(
a2 + ab − b2)

where m,a,b are arbitrary integers.

Problem 3.49 Let n be an integer number. Prove that the equation

x2 + y2 = n + z2

has infinitely many integer solutions.

Solution The equation is equivalent to

(x − z)(x + z) + y2 = n.
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If we set x − z = 1, then we obtain

2x − 1 + y2 = n

and

x = n + 1 − y2

2
.

Now, it suffices to take y = n + m, where m is an odd integer to insure that x is an
integer as well. Indeed, if m = 2k + 1, then

n + 1 − y2

2
= n + 1 − (n + 2k + 1)2

2
= −n(n + 1)

2
− 2nk − 2k2 − 2k,

obviously an integer. Since z = x − 1, it is also an integer number.

Problem 3.50 Let m be a positive integer. Find all pairs of integers (x, y) such that

x2(x2 + y
) = ym+1.

Solution Multiplying the equation by 4 and adding y2 to both sides yields the
equivalent form

(
2x2 + y

)2 = y2 + 4ym+1

or
(
2x2 + y

)2 = y2(1 + 4ym−1).

It follows that 1 + 4ym−1 is an odd square, say (2a + 1)2. We obtain ym−1 =
a(a + 1) and since a and a + 1 are relatively prime integers, each of them must
be the (m − 1)th power of some integers. Clearly, this is possible only if m = 2,
hence y = a(a + 1). It follows that

2x2 + a(a + 1) = a(a + 1)(2a + 1)

hence x2 = a2(a +1). We deduce that a +1 is a square and setting a +1 = t2 yields
x = t3 − t and y = t4 − t2.

Problem 3.51 Let m be a positive integer. Find all pairs of integers (x, y) such that

x2(x2 + y2) = ym+1.

Solution The equation can be written in the equivalent form
(
2x2 + y

)2 = y4 + 4ym+1.

Observe that y4 + 4ym+1 cannot be a square for m = 1. Indeed, in this case

y4 + 4ym+1 = y4 + 4y2 = y2(y2 + 4
)

and no squares differ by 4. A similar argument works for m = 2.
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Now, for m ≥ 3, we write the equation in the equivalent form

(
2x2 + y

)2 = y4(1 + 4ym−3).

As in the previous solution we deduce that y = a(a + 1) for some integer a, then
x = a3(a + 1). It follows that a = t2 for some integer t and the solutions are x =
t5 + t3, y = t4 + t2.

Problem 3.52 Find all non-negative integers a, b, c, d,n such that

a2 + b2 + c2 + d2 = 7 · 4n.

Solution For n = 0, we have 22 + 12 + 12 + 12 = 7, hence (a, b, c, d) = (2,1,1,1)

and all permutations. If n ≥ 1, then a2 + b2 + c2 + d2 ≡ 0(mod 4), hence the num-
bers have the same parity. We analyze two cases.

(a) The numbers a, b, c, d are odd. We write a = 2a′ + 1, etc. We obtain

4a′(a′ + 1) + 4b′(b′ + 1) + 4c′(c′ + 1) + 4d ′(d ′ + 1) = 4
(
7 · 4n−1 − 1

)
.

The left-hand side of the equality is divisible by 8, hence 7 · 4n−1 − 1 must
be even. This happens only for n = 1. We obtain a2 + b2 + c2 + d2 = 28, with
the solutions (3, 3, 3, 1) and (1, 1, 1, 5).

(b) The numbers a, b, c, d are even. Write a = 2a′, etc. We obtain

a′2 + b′2 + c′2 + d ′2 = 7 · 4n−1,

so we proceed recursively.

Finally, we obtain the solutions (2n+1,2n,2n,2n), (3 · 2n,3 · 2n,3 · 2n,2n),
(2n,2n,2n,5 · 2n), and the respective permutations.

Problem 3.53 Show that there are infinitely many systems of positive integers
(x, y, z, t) which have no common divisor greater than 1 and such that

x3 + y3 + z2 = t4.

Solution Consider the identity

(a + 1)4 − (a − 1)4 = 8a3 + 8a.

Taking a = b3, with b an even integer gives

(
b3 + 1

)4 = (
2b3)3 + (2b)3 + ((

b3 − 1
)2)2

.

Since b is even, b3 + 1 and b3 − 1 are odd integers. It follows that the numbers
x = 2b3, y = 2b, z = (b3 − 1)2 and t = b3 + 1 have no common divisor greater
than 1.
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Problem 3.54 Let k ≥ 6 be an integer number. Prove that the system of equations
{

x1 + x2 + · · · + xk−1 = xk,

x3
1 + x3

2 + · · · + x3
k−1 = xk,

has infinitely many integral solutions.

Solution Consider the identity

(m + 1)3 + (m − 1)3 + (−m)3 + (−m)3 = 6m.

If n is an arbitrary integer, then n−n3

6 is also an integer since n − n3 = −(n − 1)n ×
(n + 1) and the product of three consecutive integers is divisible by 6. Setting m =
n−n3

6 in the identity above gives

(
n − n3

6
+ 1

)3

+
(

n − n3

6
− 1

)3

+
(

n3 − n

6

)3

+
(

n3 − n

6

)3

+ n3 = n.

On the other hand, we have

(
n − n3

6
+ 1

)
+

(
n − n3

6
− 1

)
+ n3 − n

6
+ n3 − n

6
+ n = n,

yielding the following solution for k = 6 : x1 = n−n3

6 + 1, x2 = n−n3

6 − 1, x3 = x4 =
n3−n

6 , x5 = x6 = n. For k > 6 we can take x1 to x5 as before, x6 = −n and xi = 0
for all i > 6.

Problem 3.55 Solve in integers the equation

x2 + y2 = (x − y)3.

Solution If we denote a = x − y and b = x + y, the equation rewrites as

a2 + b2 = 2a3,

or

2a − 1 = b2

a2
.

We see that 2a − 1 is the square of a rational number, hence it is the square of
an (odd) integer. Let 2a − 1 = (2n + 1)2. It follows that a = 2n2 + 2n + 1 and
b = a(2n + 1) = (2n + 1)(2n2 + 2n + 1). Finally, we obtain

x = 2n3 + 4n2 + 3n + 1, y = 2n3 + 2n2 + n,

where n is an arbitrary integer number.
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Problem 3.56 Let a and b be positive integers. Prove that if the equation

ax2 − by2 = 1

has a solution in positive integers, then it has infinitely many solutions.

Solution Factor the left-hand side to obtain

(
x
√

a − y
√

b
)(

x
√

a + y
√

b
) = 1.

Cubing both sides yields

((
x3a + 3xy2b

)√
a − (

3x2ya + y3b
)√

b
)((

x3a + 3xy2b
)√

a

+ (
3x2ya + y3b

)√
b
) = 1.

Multiplying out, we obtain

a
(
x3a + 3xy2b

)2 − b
(
3x2ya + y3b

)2 = 1.

Therefore, if (x1, y1) is a solution of the equation, so is (x2, y2), with x2 = x3
1a +

3x1y
2
1b, and y2 = 3x2

1y1a + y3
1b. Clearly, x2 > x1 and y2 > y1. Continuing in this

way we obtain infinitely many solutions in positive integers.

Problem 3.57 Prove that the equation

x + 1

y
+ y + 1

x
= 4

has infinitely many solutions in positive integers.

Solution Suppose that the equation has a solution (x1, y1) with x1 ≤ y1. Clearing
denominators, we can write the equation under the form

x2 − (4y − 1)x + y2 + y = 0,

that is, a quadratic in x. One of the roots is x1, therefore, by Vieta’s theorem, the
second one is 4y1 − 1 − x1. Observe that 4y1 − 1 − x1 ≥ 4x1 − 1 − x1 = 3x1 − 1 ≥
2x1 > 0, hence 4y1 − 1 − x1 is a positive integer.

It follows that (4y1 − 1 − x1, y1) is another solution of the system. Because the
equation is symmetric, we obtain that (x2, y2) = (y1,4y1 −1−x1) is also a solution.
To end the proof, observe that x2 + y2 = 5y1 − 1 − x1 > x1 + y1 and that (1,1) is a
solution. Thus, we can generate infinitely many solutions:

(1,1) → (1,2) → (2,6) → (6,21) → ·· · .
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Problem 3.58 Prove that the equation

x3 + y3 − 2z3 = 6(x + y + 2z)

has infinitely many solutions in positive integers.

Solution Observe that

(n + 1)3 + (n − 1)3 − 2n3 = 6n,

and

(n + 1) + (n − 1) + 2n = 4n.

Taking x = 2(n + 1), y = 2(n − 1), and z = 2n, we see that

x3 + y3 − 2z3 = 48n,

and

6(x + y + 2z) = 48n.

Thus, the triples (x, y, z) = (2(n + 1),2(n − 1,2n)) are solutions in positive
integers for all integers n > 1.

6.6 Equations with No Solutions

Problem 3.62 Prove that the equation

4xy − x − y = z2

has no positive integer solutions.

Solution We write the equation in the equivalent form

(4x − 1)(4y − 1) = 4z2 + 1.

Let p be a prime divisor of 4x − 1. Then

4z2 + 1 ≡ 0 (modp)

or

(2z)2 ≡ −1 (modp).

On the other hand, Fermat’s theorem yields

(2z)p−1 ≡ 1 (modp)
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hence

(2z)p−1 ≡ (
2z2) p−1

2 ≡ (−1)
p−1

2 ≡ 1 (modp).

This implies that p ≡ 1 (mod 4). It follows that all prime divisors of 4x − 1 are
congruent to 1 modulo 4, hence 4x − 1 ≡ 1 (mod 4), a contradiction.

Problem 3.63 Prove that the equation

6
(
6a2 + 3b2 + c2) = 5d2

has no solution in non-zero integers.

Solution We can assume that gcd(a, b, c, d) = 1, otherwise we simplify the equa-
tion with a suitable integer. Clearly, d is divisible by 6, so let d = 6m. We obtain

6a2 + 3b2 + c2 = 30m2,

hence c is divisible by 3. Replacing c = 3n in the equation yields

2a2 + b2 + 3n2 = 10m2.

If b and n are odd, then b2 ≡ 1 (mod 8) and 3n2 ≡ 3 (mod 8). Because 2a2 ≡ 0
or 2 (mod 8) and 10m2 ≡ 0 or 2 (mod 8) this leads to a contradiction. Hence b and
n must be even and from the initial equation we deduce that a is also even. This
contradicts the assumption that gcd(a, b, c, d) = 1.

Problem 3.64 Prove that the system of equations
{

x2 + 6y2 = z2,

6x2 + y2 = t2

has no positive integer solutions.

Solution As in the previous solution, we can assume that gcd(x, y, z, t) = 1.
Adding up the equations yields

7
(
x2 + y2) = z2 + t2.

The square residues modulo 7 are 0,1,2, and 4. It is not difficult to see that the only
pair of residues which add up to 0 modulo 7 is (0,0), hence z and t are divisible
by 7. Setting z = 7z1 and t = 7t1 yields

7
(
x2 + y2) = 49

(
z2

1 + t2
1

)

or

x2 + y2 = 7
(
z2

1 + t2
1

)
.

It follows that x and y are also divisible by 7, contradicting the fact that
gcd(x, y, z, t) = 1.
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Problem 3.65 Let k and n be positive integers, with n > 2. Prove that the equation

xn − yn = 2k

has no positive integer solutions.

Solution We may assume x and y are odd, otherwise dividing both x and y by
2 yields a smaller solution. If n = 2m (m ≥ 2) is even, then we factor to get
(xm − ym)(xm + ym) = 2k . Hence both factors are powers of 2, say xm − ym = 2r

and xm + ym = 2s , with s > r . Solving gives xm = 2s−1 + 2r−1 and ym =
2s−1 − 2r−1. Since xm and ym are odd integers, this forces r = 1. But then xm

and ym are two mth powers which differ by 2, a contradiction. If n is odd, then we
factor as

(x − y)
(
xn−1 + xn−2y + · · · + yn−1) = 2k.

The second factor is odd since n is odd and each of the n terms is odd.
Hence it must be 1, which is again a contradiction.

Problem 3.66 Prove that the equation

x2000 − 1

x − 1
= y2

has no positive integer solutions.

Solution Observe that

x2000 − 1

x − 1
= (

x1000 + 1
)(

x500 + 1
)x500 − 1

x − 1
.

Setting

a = x1000 + 1,

b = x500 + 1,

c = x500 − 1

x − 1
,

we see that b and c divide a − 2 and c divides b − 2. It follows that the greatest
common divisor of any two of a, b, c is at most 2. The product abc is a square only
if a, b, c are squares or doubles of squares. It is not difficult to see that a and b

cannot be squares, hence they are doubles of squares. This implies that

4ab = 4x1500 + 4x1000 + 4x500 + 4

is a square. But this is impossible, since a short computation shows that

4x1500 + 4x1000 + 4x500 + 4 >
(
2x750 + x250)2
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and

4x1500 + 4x1000 + 4x500 + 4 <
(
2x750 + x250 + 1

)2
.

Problem 3.67 Prove that the equation

4
(
x4

1 + x4
2 + · · · + x4

14

) = 7
(
x3

1 + x3
2 + · · · + x3

14

)

has no solution in positive integers.

Solution Suppose, by way of contradiction, that such a solution exists. Then

14∑

k=1

(
x4
k − 7

4
x3
k

)
= 0.

Observe that

∑
(xk − 1)4 =

∑(
x4
k − 4x3

k + 6x2
k − 4xk + 1

)

=
∑(

x4
k − 7

4
x3
k − 9

4
x3
k + 6x2

k − 4xk + 1

)

=
∑(

−9

4
x3
k + 6x2

k − 4xk + 1

)
.

Since

−9

4
x3
k + 6x2

k − 4xk = −xk

(
3

2
xk − 2

)2

≤ 0

we obtain
∑

(xk − 1)4 ≤ 14.

This inequality implies that each xk is equal to either 1 or 2. Now, suppose x of the
numbers x1, . . . , x14 are equal to 1 and y of them are equal to 2. Then x + y = 14
and the original equation gives

4(x + 16y) = 7(x + 8y).

We obtain x = 112
11 and y = 42

11 , a contradiction.

Problem 3.68 Prove that the equation

x2 + y2 + z2 = 20112011 + 2012

has no solution in integers.
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Solution We begin by noticing that a square can only equal 0,1, or 4 modulo 8. Let
us check the right-hand side modulo 8. We have

2011 ≡ 3 (mod 8),

hence

20112011 ≡ 32011 ≡ (
32)1005 · 3 ≡ 3 (mod 8),

and since

2012 ≡ 4 (mod 8),

it follows that

20112011 + 2012 ≡ 7 (mod 8).

Finally, observe that three (not necessarily distinct) numbers from the set {0,1,4}
cannot add to 7 (mod 8), so the equation has no solutions in integers.

Problem 3.69 Prove that the system

x6 + x3 + x3y + y = 147157,

x3 + x3y + y2 + y + z9 = 157147

has no solution in integers x, y, and z.

Solution Adding the equations yields

x6 + y2 + 2x3y + 2x3 + 2y + z9 = 147157 + 157147.

The first five terms in the left-hand side suggest the expansion of a square, so add
1 to both sides to obtain

(
x3 + y + 1

)2 + z9 = 147157 + 157147 + 1.

We will check both sides of the equation modulo 19. By Fermat’s little the-
orem, if z is not divisible by 19, then z18 ≡ 1 (mod 19), and it follows that
z9 ≡ ±1 (mod 19). On the other hand, the possible remainders of a square mod-
ulo 19 are 0,1,4,5,6,7,9,11,16, and 17. Therefore the left-hand side can take any
value modulo 19 except for 13 and 14.

For the right-hand side, we have (all congruences are mod 19)

147157 ≡ 14157 ≡ (
1418)8 · 1413 ≡ 1413 ≡ (−5)13 ≡ −513

≡ −5−5 ≡ −45 ≡ −1024 ≡ 2.

Similarly,

157147 ≡ 11 (mod 19).
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It follows that the right-hand side is congruent to 14 modulo 19, hence the equa-
tion has no solutions in integers.

Problem 3.70 Prove that the equation

x5 + y5 + 1 = (x + 2)5 + (y − 3)5

has no solution in integers.

Solution Assume the contrary. Using Fermat’s little theorem and taking both sides
modulo 5 we obtain an obvious contradiction.

Observation Why did we choose p = 19 to check the equation modp? Generally
speaking, if in a Diophantine equation we have a term like xk and p = 2k + 1
is a prime number, it is a good idea to check the equation modp. That is because
Fermat’s little theorem gives x2k = (xk)2 ≡ 1 (modp), if p does not divide x. Hence
xk can only take the values −1,0, and 1 (modp).

Problem 3.71 Prove that the equation

x5 = y2 + 4

has no solution in integers.

Solution Taking into account the observation from the previous solution, we will
check the equation mod 11. The left-hand side can be −1,0, or 1. The possible
remainders of a square mod 11 are 0,1,3,4,5,9, hence the right-hand side can be
4,5,7,8,9, or 2. Thus, the equality is never possible mod 11.

Problem 3.72 Prove that the equation

x3 − 3xy2 + y3 = 2891

has no solution in integers.

Solution Observe that 2891 = 72 · 59. If one of x, y is divisible by 7, then so is
the other one, and it follows that 73 divides 2891, a contradiction. Since 7 � y, there
exists z such that yz ≡ 1 (mod 7). Multiplying by z3 and denoting xz = t , we obtain

t3 − 3t + 1 ≡ 0 (mod 7).

6.7 Powers of 2

Problem 3.75 Let n be a positive integer such that 2n + 1 is a prime number. Prove
that n = 2k , for some integer k.
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Solution Suppose that n is not a power of 2. Then it can be written in the form
n = 2k(2p + 1), with k ≥ 0 and p ≥ 1. But then we have

2n + 1 = (
22k )2p+1 + 1 = (

22k + 1
)((

22k )2p − (
22k )2p−1 + · · · − 22k + 1

)
,

hence 2n + 1 is not a prime number.

Observation The numbers Fn = 22n + 1 are called Fermat’s numbers. Fermat
conjectured that all such numbers are prime, which is true for n ≤ 4, but Eu-
ler proved that F5 = 232 + 1 is divisible by 641. The proof is quite short: notice
that 641 = 640 + 1 = 5 · 27 + 1, hence 5 · 27 ≡ −1 (mod 641), so that 54 · 228 ≡
1 (mod 641). On the other hand, 641 = 625+16 = 54 +24, so 24 ≡ −54 (mod 641).
Multiplying these two congruencies, we obtain 54 · 232 ≡ −54 (mod 641), hence
232 ≡ −1 (mod 641).

Problem 3.76 Let n be a positive integer such that 2n − 1 is a prime number. Prove
that n is a prime number.

Solution If n is not a prime number, then n = ab, for some positive integers
a, b > 1. We obtain

2n − 1 = 2ab − 1 = (
2a

)b − 1 = (
2a − 1

)((
2a

)b−1 + (
2a

)b−2 + · · · + 2a + 1
)
,

and this factorization shows that 2n − 1 is not a prime number.

Problem 3.77 Prove that the number A = 21992 − 1 can be written as a product of
6 integers greater than 2248.

Solution It is again an exercise in factorization:

A = 21992 − 1 = 2249·8 − 1 = (
2249)8 − 1

= (
2249 − 1

)(
2249 + 1

)((
2249)2 + 1

)((
2249)4 + 1

)
.

Now, observe that

(
2249)2 + 1 = (

2249)2 + 2 · 2249 + 1 − 2250

= (
2249 + 1

)2 − (
2125)2 = (

2249 − 2125 + 1
)(

2249 + 2125 + 1
)
,

and
(
2249)4 + 1 = 2996 + 1 = (

2332)3 + 1

= (
2332 + 1

)(
2664 − 2332 + 1

)
.

Thus, the six integers are 2249 −1,2249 +1,2249 −2125 +1,2249 +2125 +1,2332 +1
and 2664 − 2332 + 1. It is not difficult to see that all six are greater than 2248.



6.7 Powers of 2 231

Problem 3.78 Determine the remainder of 32n − 1 when divided by 2n+3.

Solution Observe that after we use n times the identity

x2 − 1 = (x − 1)(x + 1),

we obtain

32n − 1 = (3 − 1)(3 + 1)
(
32 + 1

)(
322 + 1

) · · · (32n−1 + 1
)
.

Now, each of the numbers 32 + 1,322 + 1, . . . ,32n−1 + 1 is divisible by 2 but not
by 4. Indeed, 3 ≡ −1 (mod 4), so 32k ≡ (−1)2k ≡ 1 (mod 4) and it follows that
32k + 1 ≡ 2 (mod 4). We deduce that there exists an odd integer 2m + 1 such that

(
32 + 1

)(
322 + 1

) · · · (32n−1 + 1
) = 2n−1(2m + 1).

Then

32n − 1 = 2 · 4 · 2n−1(2m + 1) = m · 2n+3 + 2n+2,

and this shows that the requested remainder is 2n+2.

Problem 3.79 Prove that for each n, there exists a number An, divisible by 2n,
whose decimal representation contains n digits, each of them equal to 1 or 2.

Solution We prove the assertion by induction on n. For n = 1, take A1 = 2; for
n = 2, take A2 = 12. Now, suppose there exists An, divisible by 2n, whose decimal
representation contains n digits, each of them equal to 1 or 2.

If 2n+1 divides An, then An+1 is obtained by adding the digit 2 at the beginning
of An. Thus,

An+1 = 2 · 10n + An = 2n+1 · 5n + An,

and we see that this number has n + 1 digits 1 or 2 and it is divisible by 2n+1.
If 2n+1 does not divide An, then An = 2nk for some odd integer k. In this case,

we add the digit 1 at the beginning of An. It follows that

An+1 = 10n + An = 2n · 5n + 2n · k = 2n
(
5n + k

)
.

The claim is proved by observing that since k is odd, 5n + k is even, thus An+1 is
divisible by 2n+1.

Observation We can prove that the number An is unique. Indeed, suppose Bn is
another number with the enounced properties. Then An − Bn is divisible by 2n,
hence they have the same last digit. Let An−1 and Bn−1 be the numbers obtained by
discarding the last digit of An and Bn. Then An − Bn = 10(An−1 − Bn−1), and we
deduce that An−1 −Bn−1 is divisible by 2n−1, hence, again, they have the same last
digit. Repeating this argument, we finally deduce that An = Bn. We can see that we
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did not use the fact that An and Bn are divisible by 2n, but only that their difference
is divisible by 2n. This shows that the 2n numbers with n digits equal to 1 or 2 give
different remainders when divided by 2n. Finally, we observe that the digits 1 and 2
from the enounce can be replaced with any two other non-zero digits with different
parities.

Problem 3.80 Using only the digits 1 and 2, one writes down numbers with 2n

digits such that the digits of every two of them differ in at least 2n−1 places. Prove
that no more than 2n+1 such numbers exist.

Solution Let us suppose that 2n+1 + 1 such numbers exist. From these, at least
2n + 1 have the same last digit. Denote by A the set of these numbers. For a, b ∈ A,
let c(a, b) be the number of digit coincidences. Thus, from the enounce it follows
that c(a, b) ≤ 2n−1, for every a and b. Let N the total number of coincidences for
all numbers in A. Then

N ≤ 2n−1 ·
(

2n + 1

2

)
= 23n−2 + 22n−2.

On the other hand, if we arrange the numbers of A in a table with 2n + 1 rows
and 2n columns, we count in the last column

(2n+1
2

)
coincidences and in each of the

remaining 2n − 1 columns at least 22(n−1) coincidences. Indeed, if on some column
we have 2n−1 − k digits of one type and 2n−1 + k + 1 digits of the other type, then
the number of coincidences equals

(
2n−1 − k

2

)
+

(
2n−1 + k + 1

2

)
= 22(n−1) + k2 + k ≥ 22(n−1).

We conclude that

N ≥
(

2n + 1

2

)
+ (

2n − 1
) · 22(n−1) = 23n−2 + 22n−2 + 2n−1.

which is a contradiction.

Observation It can be shown that 2n+1 numbers with the required properties ex-
ist. We prove this inductively. For n = 1, take the numbers 11, 12, 21 and 22,
which clearly satisfy the conditions. Suppose there exists a set Sn with 2n+1 num-
bers having 2n digits such that every two of them differ in at least 2n−1 places.
We construct a set Sn+1 with 2n+2 numbers having 2n+1 digits generating from
each element of Sn two elements of Sn+1 as follows: if a = a1a2 . . . an ∈ Sn, then
in Sn+1 we put b = a1a2 . . . ana1a2 . . . an and c = a1a2 . . . ana

′
1a

′
2 . . . a′

n, where
a′
k = 1 if ak = 2 and a′

k = 2 if ak = 1. For instance, if S2 = {11,12,21,22}, then
S3 = {1111,1212,2121,2222,1122,1221,2112,2211}. It is not difficult to check
that the set thus obtained has the required properties.
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Problem 3.81 Does there exist a natural number N which is a power of 2 whose
digits (in the decimal representation) can be permuted to form a different power
of 2?

Solution The answer is negative. Indeed, suppose such N exists and let N ′ another
power of 2 obtained by rearranging the digits of N . We can assume that N < N ′.
Since N and N ′ have the same number of digits, we must have N ′ = 2N , or N ′ =
4N or N ′ = 8N . It results that

N ′ − N ∈ {N,3N,7N}.
We get a contradiction from the following.

Lemma Let n = akak−1 . . . a1a0 be a positive integer and

s(n) = ak + ak−1 + · · · + a1 + a0

the sum of its digits. Then the difference n − s(n) is divisible by 9.

Proof We have

n − s(n) = ak · 10k + ak−1 · 10k−1 + · · · + a1 · 10 + a0 − ak − ak−1 − · · ·
− a1 − a0

= ak

(
10k − 1

) + ak−1
(
10k−1 − 1

) + · · · + a1(10 − 1),

and the conclusion follows by noticing that every number of the form 10p − 1 is
divisible by 9.

Returning to our problem, we see that since N and N ′ have the same digits,
s(N) = s(N ′), thus N ′ − N must be divisible by 9. This is impossible, because
N ′ − N ∈ {N,3N,7N} and none of the numbers N,3N,7N is divisible by 9. �

Problem 3.82 For a positive integer N , let s(N) the sum of its digits, in the decimal
representation. Prove that there are infinitely many n for which s(2n) > s(2n+1).

Solution We use again the above lemma. Suppose, by way of contradiction, that
there exist finitely many n for which s(2n) > s(2n+1). Then there exists m such that
for every n > m, s(2n) ≤ s(2n+1). Since s(2n) = s(2n+1) if and only if 2n+1 − 2n =
2n is divisible by 9, we deduce that the sequence s(2n) is strictly increasing for
n > m. Moreover, since the remainders of the numbers 2n divided by 9 are
2,4,8,7,5,1 and repeat periodically after 6 steps, we deduce that

s
(
2n+6) ≥ s

(
2n

) + 2 + 4 + 8 + 7 + 5 + 1 = s
(
2n

) + 27

and then, inductively, that

s
(
2n+6k

) ≥ s
(
2n

) + 27k,

for n > m and all positive integers k.
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On the other hand, 23 < 10, so 2n+6k < 10
n
3 +2k and this shows that the number

2n+6k has at most n
3 + 2k digits in its decimal representation. It follows that

s
(
2n+6k

) ≤ 9

(
n

3
+ 2k

)
= 3n + 18k.

Combining the two estimates of s(2n+6k), we deduce

s
(
2n

) + 27k ≤ 3n + 18k,

for every positive integer k. This is a contradiction.

Problem 3.83 Find all integers of the form 2n (where n is a natural number) such
that after deleting the first digit of its decimal representation we again get a power
of 2.

Solution Suppose 2m is obtained after deleting the first digit (equal to a) of the
decimal representation of 2n. We have then 2n = 10ka + 2m, for some integer k,
hence 2n−m −1 is divisible by 5. Checking the remainders of the powers of 2 divided
by 5, it results that 2n−m − 1 is divisible by 5 if and only if n − m = 4t , for some
positive integer t . But then

10ka = 2m
(
24t − 1

) = 2m
(
22t + 1

)(
22t − 1

) = 2m
(
22t + 1

)(
2t + 1

)(
2t − 1

)
.

Observe that 22t + 1 and 22t − 1 are odd integers differing by 2, therefore are rela-
tively prime. The same applies to 2t + 1 and 2t − 1, hence 22t + 1,2t + 1 and 2t − 1
are all odd, pairwise prime integers. If t > 1, then each of the three numbers has an
odd prime divisor, but this is impossible, since 10ka is divisible by 5 and at most
one of the numbers 3 and 7 (if any of them divides a). Consequently, t = 1, hence
10ka = 2m · 3 · 5, which leads to k = 1 and a = 2m−1 · 3. The only possible cases
are m = 1 and m = 2, so the solutions to the problem are 25 = 32 and 26 = 64.

Problem 3.84 Let a0 = 0, a1 = 1 and, for n ≥ 2, an = 2an−1 + an−2. Prove that an

is divisible by 2k if and only if n is divisible by 2k .

Solution Using the standard algorithm for recurrence relations, we obtain

an = 1

2
√

2

[(
1 + √

2
)n − (

1 − √
2
)n]

,

for every positive integer n. If we define

bn = 1

2

[(
1 + √

2
)n + (

1 − √
2
)n]

,

we observe that bn satisfies the same recurrence relation, and since b0 = b1 = 1, all
bn are positive integers.
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We have

bn + an

√
2 = (

1 + √
2
)n

and

bn − an

√
2 = (

1 − √
2
)n

.

Multiplying these equalities we obtain b2
n−2a2

n = (−1)n, hence bn is odd for each n.
Now, we prove the claim by induction on k. For k = 0 we have to prove that an

is odd if and only if n is odd. We have

2a2
n = b2

n − (−1)n

and bn = 2m + 1, for some integer m, hence

a2
n = 2

(
m2 + m

) + 1 − (−1)n

2
.

It follows that an is odd if and only if 1 − (−1)n = 2, that is, n is odd. The inductive
step follows from the equality

a2n = 2anbn,

which is obtained observing that

b2n + a2n

√
2 = (

1 + √
2
)2n = (

bn + an

√
2
)2 = b2

n + 2a2
n + 2anbn

√
2.

Problem 3.85 If A = {a1, a2, . . . , ap} is a set of real numbers such that a1 > a2 >

· · · > ap , we define

s(A) =
p∑

k=1

(−1)k−1ak.

Let M be a set of n positive integers. Prove that
∑

A⊆M s(A) is divisible by 2n−1.

Solution Let M = {a1, a2, . . . , an}. We can assume that

a1 > a2 > · · · > an.

Let A ⊆ M − {a1},A = {ai1 , ai2 , . . . , ais }, with ai1 > ai2 > · · · > ais , and A′ =
A ∪ {a1}. Then

a1 > ai1 > ai2 > · · · > ais

and we have

s(A)+ s
(
A′) = ai1 − ai2 +· · ·+ (−1)s−1ais + a1 − ai1 + ai2 −· · ·+ (−1)sais = a1.
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Now, matching all the 2n−1 subsets A of the set M − {a1} with the corresponding
subsets A′ = A ∪ {a1}, we find

∑

A⊆M

s(A) = 2n−1a1,

and the claim is proved.

Problem 3.86 Find all positive integers a, b, such that the product
(
a + b2)(b + a2)

is a power of 2.

Solution We begin by noticing that a and b must have the same parity. Let a +b2 =
2m and b + a2 = 2n, and assume that m ≥ n. Then a + b2 ≥ b + a2, or b2 − b ≥
a2 − a, which implies b ≥ a. Subtracting the two equalities yields

(b − a)(a + b − 1) = 2m − 2n = 2n
(
2m−n − 1

)
.

Because a +b−1 is odd, it follows that 2n divides b−a. Let b−a = 2nc, for some
positive integer c. Then b = 2nc+a = 2n −a2, therefore a +a2 = 2n(1− c), which
implies c = 0, hence a = b.

Finally, we deduce that a(a + 1) is a power of 2, and this is possible only for
a = 1.

Problem 3.87 Let f (x) = 4x + 6x + 9x . Prove that if m and n are positive integers,
then f (2m) divides f (2n) whenever m ≤ n.

Solution Define g(x) = 4x − 6x + 9x . From the identity
(
a2 + ab + b2)(a2 − ab + b2) = a4 + a2b2 + b4

taking a = 2 and b = 3, we deduce that

f (x)g(x) = f (2x).

Iterating this, we get

f (x)g(x)g(2x) · · ·g(
2k−1x

) = f
(
2kx

)
,

for all k ≥ 2.
Now, suppose m ≤ n. Then

f
(
2m

)
g
(
2m

)
g
(
2m+1) · · ·g(

2n−1) = f
(
2n

)
,

hence f (2m) divides f (2n).
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Problem 3.88 Show that, for any fixed integer n ≥ 1, the sequence

2,22,222
,2222

, . . . (modn)

is eventually constant.

Solution For a more comfortable notation, define x0 = 1 and xm+1 = 2xm , for
m ≥ 0. We have to prove that the sequence (xm)m≥0 is eventually constant modn.

We will prove by induction on n the following statement: xk ≡ xk+1 (modn), for
all k ≥ n.

For n = 1 there is nothing to prove. Assume that the statement is true for all num-
bers less than n. If n = 2a ·b, with odd b, it suffices to prove that xk ≡ xk+1 (mod 2a),
and xk ≡ xk+1 (modb), for all k ≥ n.

It is not difficult to prove inductively that xn > n. Therefore, if k ≥ n, we have
xk ≡ 0 (mod 2a) (xk is a power of 2 greater than n, thus greater than 2a), whence
xk ≡ xk+1 (mod 2a).

For the second congruence, observe that xk ≡ xk+1 (modb) is equivalent to
2xk−1 ≡ 2xk (modb), or 2xk−xk−1 ≡ 1 (modb). The latter is true whenever xk−1 ≡
xk (modφ(b)) (φ is Euler’s totient function), but this follows from the induction
hypothesis, since φ(b) ≤ b − 1 ≤ n − 1.

6.8 Progressions

Problem 3.92 Partition the set of positive integers into two subsets such that neither
of them contains a non-constant arithmetical progression.

Solution Partition the set {1,2,3, . . .} in the following way:

1 4 5 6 . . .

2 3 7 8 9 10 . . .

None of the sets

A = {1,4,5,6,11,12,13,14,15, . . .}
or

B = {2,3,7,8,9,10,16,17,18,19,20,21,22, . . .}
contains a non-constant arithmetical progression. Indeed, if such a progression is
contained in one of the sets, let r be its common difference. But in both sets we can
find a “gap” of more that r consecutive integers, a contradiction.

Problem 3.93 Prove that among the terms of the progression 3,7,11, . . . there are
infinitely many prime numbers.
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Solution Suppose the contrary and let p be the greatest prime number in the given
progression. Consider the number

n = 4p! − 1.

It is not difficult to see that it is a term of the progression (in fact, the given progres-
sion contains all positive integers of the form 4k − 1). Thus n must be composite,
since n > p. Observe that n is not divisible by any prime of the form 4k − 1 (all
these are factors in p!), hence all the prime factors of n are of the form 4k + 1. The
product of several factors of the form 4k + 1 is again of the form 4k + 1, hence
n = 4k + 1, for some k. This is a contradiction.

Problem 3.94 Does there exist an (infinite) non-constant arithmetical progression
whose terms are all prime numbers?

Solution The answer is negative. Indeed, if such progression exists, denote its com-
mon difference by r , and consider the consecutive r integers

(r + 1)! + 2, (r + 1)! + 3, . . . , (r + 1)! + (r + 1).

Each of them is a composite number, but since the progression has the common
difference r , one out of any r consecutive integers must be a term of the progression.
This is a contradiction.

Problem 3.95 Consider an arithmetical progression of positive integers. Prove that
one can find infinitely many terms the sum of whose decimal digits is the same.

Solution Let (an)n≥1 be the progression and denote by r its common difference.
Suppose the number a1 has d digits (in its decimal representation). Then for all
k > d the digits sum of the number

a1 + 10kr

is the same.

Problem 3.96 The set of positive integers is partitioned into n arithmetical progres-
sions, with common differences r1, r2, . . . , rn. Prove that

1

r1
+ 1

r2
+ · · · + 1

rn
= 1.

Solution Let ak = a1 + (k − 1)r1 the progression with common difference r1. Let
us count how many terms of this sequence are less than or equal to some positive
integer N . The inequality ak ≤ N is equivalent to

a1 + (k − 1)r1 ≤ N
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or

k ≤ N

r1
− a

r1
+ 1.

It follows that the number of terms of the first progression belonging to the set
{1,2, . . . ,N} equals

⌊
N

r1
− a

r1
+ 1

⌋
.

Similarly, we deduce that the number of terms of the progression with common
difference ri belonging to the set {1,2, . . . ,N} equals

⌊
N

ri
− a

ri
+ 1

⌋
.

Since the progressions form a partition of the set of positive integers, we must have

n∑

i=1

⌊
N

ri
− a

ri
+ 1

⌋
= N.

Using the inequality �x� ≤ x < �x� + 1, we obtain

N ≤
n∑

i=1

(
N

ri
− a

ri
+ 1

)
< N + n

hence

1 ≤
n∑

i=1

1

ri
− 1

N

n∑

i=1

na

r1
+ n

N
< 1 + n

N

and letting N → ∞ yields the desired result.

Problem 3.97 Prove that for every positive integer n one can find n integers in
arithmetical progression, all of them nontrivial powers of some integers, but one
cannot find an infinite sequence with this property.

Solution We prove the assertion by induction on n. For n = 3, we can consider the
numbers 1,25,49. Suppose the assertion is true for some n and let ai = b

ki

i , i =
1,2, . . . , n, be the terms of the progression having the common difference d . Let
b = an + d and let k = lcm(k1, k2, . . . , kn). Then the n + 1 numbers

a1b
k, a2b

k, . . . , anb
k, bk+1

are in progression and all are power of some integers. Indeed, for all i, 1 ≤ i ≤ n,
there exists di such that k = kidi and we obtain

aib
k = b

ki

i bk = b
ki

i bkidi = (
bib

di
)ki ,

as desired.
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For the second part, we need a result from Calculus: if a, b > 0 then

lim
n→∞

n∑

k=1

1

ak + b
= +∞.

From this we deduce that if (an)n≥1 is a progression of positive integers, then

lim
n→∞

n∑

k=1

1

ak

= +∞.

Now suppose that (an)n≥1 is a progression in which all terms are powers of some
integers. Let S be the set of all positive integers greater than 1 that are powers of
some integers. We will prove that

∑

a∈S

1

a
≤ 1

which contradicts the previous result. Indeed, we have

∑

a∈S

1

a
≤

∑

n≥2

∑

k≥2

1

nk
=

∑

n≥2

1

n2

(
1 + 1

n
+ 1

n2 + · · ·
)

=
∑

n≥2

1

n2
· 1

1 − 1
n

=
∑

n≥2

1

n(n − 1)
=

∑

n≥2

(
1

n − 1
− 1

n

)
= 1.

Problem 3.98 Prove that for any integer n, n ≥ 3, there exist n positive integers in
arithmetical progression a1, a2, . . . , an and n positive integers in geometric progres-
sion b1, b2, . . . , bn, such that

b1 < a1 < b2 < a2 < · · · < bn < an.

Solution Let m > n2 be an integer. We define

Bk =
(

1 + 1

m

)k

,

for k = 1,2, . . . , n. Observe that for k ≥ 2

Bk > 1 + k

m
.

For k ≤ n we have

Bk = 1 + k

m
+ k(k − 1)

2!m2 + · · · + k!
k!mk

≤ 1 + k

m
+ n(n − 1)

2!m2
+ · · · + n(n − 1) · · · (n − k + 1)

k!mk
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= 1 + k

m
+ 1

m

(
n(n − 1)

2!m + · · · + n(n − 1) · · · (n − k + 1)

k!mk−1

)

< 1 + k

m
+ 1

m

(
1

2! + 1

3! + · · · + 1

k!
)

< 1 + k + 1

m
.

We have used the fact that m > n2 and the inequalities

1

2! + 1

3! + · · · + 1

k! <
1

1 · 2
+ 1

2 · 3
+ · · · + 1

(k − 1) · k = 1 − 1

k
< 1.

Defining

Ak = 1 + k + 1

n

for 1 ≤ k ≤ n, yields

B1 < A1 < B2 < A2 < · · · < Bn < An.

In order to obtain progressions with integer terms we define ak = nmnAk and bk =
nmnBk , for all k,1 ≤ k ≤ n.

Problem 3.99 Let (an)n≥1 be an arithmetic sequence such that a2
1, a2

2 , and a2
3 are

also terms of the sequence. Prove that the terms of this sequence are all integers.

Solution Let d be the common difference. If d = 0, then it is not difficult to see
that either an = 0 for all n, or an = 1 for all n. Suppose that d �= 0, and consider
the positive integers m,n,p, such that a2

1 = a1 + md, (a1 + d)2 = a1 + nd , and
(a1 + 2d)2 = a1 + pd . Subtracting the first equation from the other two yields

{
2a1 + d = n − m,

4a1 + 4d = p − m

and solving for a1 and d we obtain

a1 = 1

4
(4n − 3m − p),

d = 1

2
(m − 2n + p),

hence both a1 and d are rational numbers.
Observe that the equation a2

1 = a1 + md can be written as

a2
1 + (2m − 1)a1 − m(d + 2a1) = 0,

or

a2
1 + (2m − 1)a1 − m(n − m) = 0,
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hence a1 is the root of the polynomial with integer coefficients

P(x) = x2 + (2m − 1)x − m(n − m).

By the integer root theorem it follows that a1 is an integer, hence d = n−m−2a1

is an integer as well. We conclude that all terms of the sequence are integer numbers.

Problem 3.100 Let A = {1, 1
2 , 1

3 , 1
4 , . . .}. Prove that for every positive integer n ≥ 3

the set A contains a non-constant arithmetic sequence of length n, but it does not
contain an infinite non-constant arithmetic sequence.

Solution For n = 3 we have the almost obvious example

1

6
,

1

3
,

1

2
.

Writing this as

1

6
,

2

6
,

3

6

might give us a clue for the general case. Indeed, consider the arithmetic sequence

1

n! ,
2

n! , . . . ,
n

n! .

When we write the fractions in their lowest terms, we see that all belong to A.
For the second part, just observe that every non-constant, infinite arithmetic pro-

gression is necessarily an unbounded sequence. Since A is bounded, it cannot con-
tain such a sequence.

Problem 3.101 Let n be a positive integer and let x1 ≤ x2 ≤ · · · ≤ xn be real num-
bers. Prove that

(
n∑

i,j=1

|xi − xj |
)2

≤ 2(n2 − 1)

3

n∑

i,j=1

(xi − xj )
2.

Show that the equality holds if and only if x1, . . . , xn is an arithmetic sequence.

Solution Suppose the given number are the terms of an arithmetic sequence, with
common difference d . Then xi − xj = (i − j)d and the equality we have to prove
becomes

(
n∑

i,j=1

|i − j |
)2

= 2(n2 − 1)

3

n∑

i,j=1

(i − j)2.
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We have

n∑

i,j=1

|i − j | =
n∑

i=1

n∑

j=1

|i − j | =
n∑

i=1

(
i∑

j=1

(i − j) +
n∑

j=i+1

(j − i)

)

=
n∑

i=1

(
i2 − i(i + 1)

2
+ n(n + 1)

2
− i(i + 1)

2
− i(n − i)

)

=
n∑

i=1

(
i2 − (n + 1)i + n(n + 1)

2

)

= n(n + 1)(2n + 1)

6
− n(n + 1)2

2
+ n2(n + 1)

2

= n(n2 − 1)

3
.

On the other hand,

n∑

i,j=1

(i − j)2 =
n∑

i=1

(
n∑

j=1

(
i2 − 2ij + j2)

)

=
n∑

i=1

(
ni2 − in(n + 1) + n(n + 1)(2n + 1)

6

)

= n2(n + 1)(2n + 1)

6
− n2(n + 1)2

2
+ n2(n + 1)(2n + 1)

6

= n2(n2 − 1)

6
.

Thus, the equality to prove is written as

(
n(n2 − 1)

3

)2

= 2(n2 − 1)

3
· n2(n2 − 1)

6
,

obviously true.
In order to prove the inequality, observe that

n∑

i,j=1

(xi − xj )
2 =

n∑

i=1

n∑

j=1

(
x2
i − 2xixj + x2

j

)

=
n∑

i=1

(

nx2
i − 2xi

n∑

j=1

xj +
n∑

j=1

x2
j

)

= 2n

n∑

i=1

x2
i − 2

(
n∑

i=1

xi

)2

.
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In a similar way and taking into account the ordering of the xi ’s, we obtain

n∑

i,j=1

|xi − xj | = 2
n∑

i=1

(2i − n − 1)xi .

Thus, the inequality becomes

(
n∑

i=1

(2i − n − 1)xi

)2

≤ n2 − 1

3

(

n

n∑

i=1

x2
i −

(
n∑

i=1

xi

)2)

.

The key observation is that we can replace all xi’s by xi + c, for an arbitrary
constant c. Indeed, if we look at the original inequality, we see that the differ-
ences xi − xj remain unchanged. Therefore, we can choose the constant c such
that

∑n
i=1 xi = 0. In this way we only have to check that

(
n∑

i=1

(2i − n − 1)xi

)2

≤ n2 − 1

3

(

n

n∑

i=1

x2
i

)

,

which follows easily from Cauchy–Schwarz if we observe that

n∑

i=1

(2i − n − 1) = n(n2 − 1)

3
.

The equality occurs if there exists d such that xi = d(2i −n− 1), for all i, hence
if the numbers x1, x2, . . . , xn form an arithmetic sequence.

6.9 The Marriage Lemma

Problem 3.104 A deck of cards is arranged, face up, in a 4 × 13 array. Prove that
one can pick a card from each column in such a way as to get one card of each
denomination.

Solution Consider the columns as boys and the denominations as girls. A boy is
acquainted with a girl if in that column there exists a card of the respective denom-
ination. Now choose k boys. They are acquainted with 4k (not necessarily distinct)
girls. But each girl appear at most four times, since there are four cards of each
denomination. Therefore, the number of distinct girls acquainted to the k boys is at
least k, hence Hall’s condition holds. The matching between the columns and the
denominations show us how to pick the cards.

Problem 3.105 An n×n table is filled with 0 and 1 so that if we chose randomly n

cells (no two of them in the same row or column) then at least one contains 1. Prove
that we can find i rows and j columns so that i + j ≥ n + 1 and their intersection
contains only 1’s.
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Solution Let the rows be the boys and the columns be the girls. A boy is acquainted
with a girl if at the intersection of the respective row and column there is a 0. Then
the hypothesis simply says that there is no matching between the boys and the girls.

We deduce that Hall’s condition is violated, hence we can find i rows such that
such that the columns they are acquainted with are at most i − 1. But then at the
intersections of these i rows and the remaining j ≥ n− i +1 columns there are only
1’s. The conclusion is obvious.

Problem 3.106 Let X be a finite set and let
⊔n

i=1 Xi = ⊔n
j=1 Yj be two disjoint de-

compositions with all sets Xi ’s and Yj ’s having the same size. Prove that there exist
distinct elements x1, x2, . . . , xn which are in different sets in both decompositions.

Solution Let us examine an example: X = {1,2,3,4,5,6,7,8,9} and

X = {1,2,3} ∪ {4,5,6} ∪ {7,8,9} = {1,4,7} ∪ {2,3,6} ∪ {5,8,9}.
We see that 1,6, and 9 are in different sets in both decompositions.
In the general case, consider the sets Xi as boys and Yj as girls. We say that

Xi is acquainted with Yj if Xi ∩ Yj �= ∅. Suppose that there is a matching between
the boys and the girls such that Xi is matched with Yσ(i), for each i. Then we can
choose xi ∈ Xi ∩ Yσ(i) and we are done.

In order to prove the existence of such a matching, we will show that Hall’s
condition holds. Suppose that all the sets have m elements and choose k sets Xi .
Their union has mk elements (because the sets are disjoint) and therefore there must
be at least k corresponding sets Yj .

Problem 3.107 A set P consists of 2005 distinct prime numbers. Let A be the set
of all possible products of 1002 elements of P , and B be the set of all products of
1003 elements of P . Prove the existence of a one-to-one correspondence f from A

to B with the property that a divides f (a) for all a ∈ A.

Solution The set A has
( 2005

1002

)
elements and these are the boys. The set B has the

same number of elements, since
(

2005
1003

)
=

(
2005
1002

)

and these are the girls. A boy a is acquainted with a girl b if a divides b. We have to
prove that there exists a matching between the boys and the girls. For this, observe
that each boy is acquainted with exactly 1003 girls, and each girl is acquainted with
exactly 1003 boys. The existence of a matching follows from the observation at the
end of the solution of Problem 3.103.

Problem 3.108 The entries of a n×n table are non-negative real numbers such that
the numbers in each row and column add up to 1. Prove that one can pick n numbers
from distinct rows and columns which are positive.
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Solution Again, the rows are the boys and the columns are the girls. We say that a
row is acquainted to a column if the entry at their intersection is a positive number.
All we have to do is to show that Hall’s condition is fulfilled.

Choose k rows and consider the m columns acquainted to them. Color red the
cells of the k rows and blue the cells of the m columns. Consequently, the cells at
their intersection will be colored violet. It is not difficult to see that the entries in all
red cells are zeroes. Adding up the entries of the k rows yields k, hence the entries
at the violet cells add up to k as well. Adding up the entries of the m columns yields
m, therefore the sum of entries in the violet and blue cells equals m. Clearly, this
implies k ≤ m, so Hall’s condition is indeed fulfilled.

Problem 3.109 There are b boys and g girls present at a party, where b and g are
positive integers satisfying g ≥ 2b−1. Each boy invites a girl for a dance (of course,
two different boys must always invite two different girls). Prove that this can be done
in such a way that every boy is either dancing with a girl he knows or all the girls he
knows are not dancing.

Solution If Hall’s condition is fulfilled, then each boy can invite for the dance a girl
he knows. Suppose that Hall’s condition is violated and thus, we can find k boys,
say b1, b2, . . . , bk , such that the girls they know are g1, g2, . . . , gm, with m < k. We
choose the maximal k with this property. Now, observe that for the rest of b − k

boys and g − m girls, Hall’s condition is fulfilled (otherwise the maximality of k is
contradicted), hence we can make the b − k boys dance with b − k girls they know.
We are left with g − m − (b − k) ≥ 2b − 1 − b + k − m ≥ k girls and we can make
b1, b2, . . . , bk dance with k of these girls.

Problem 3.110 A m × n array is filled with the numbers 1,2, . . . , n, each used
exactly m times. Show that one can always permute the numbers within columns to
arrange that each row contains every number 1,2, . . . , n exactly once.

Solution Let us show first that we can permute the numbers within columns such
that the first row contains every number 1,2, . . . , n exactly once. Let the columns be
the boys and let the numbers 1,2, . . . , n be the girls. A boy (column) is acquainted
with a girl (number) if that number occurs in the column. Now, consider a set of
k columns; they contain km numbers, hence there exist at least k distinct num-
bers among them. Since Hall’s condition is fulfilled,there is a matching between
the columns and the numbers 1,2, . . . , n. Permuting these numbers to the tops of
their respective columns makes the first row contain all n numbers. Finally, a simple
inductive argument ends the proof.

Problem 3.111 Some of the AwesomeMath students went on a trip to the beach.
There were provided n buses of equal capacities for both the trip to the beach and
the ride home, one student in each seat, and there were not enough seats in n − 1
buses to fit each student. Every student who left in a bus came back in a bus, but not
necessarily the same one.
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Prove that there are n students such that any two were on different busses on both
rides.

Solution Let the buses be b1, b2, . . . , bn. Denote by Xi the set of students travel-
ing in bus bi to the beach and by Yi the set of students traveling in bus bi on the
ride home. Let the Xi ’s be the boys and the Yi ’s be the girls. We say that a boy
Xi is acquainted with the girl Yj if Xi ∩ Yj �= ∅. Now consider a set of k boys
X1,X2, . . . ,Xk . If the set of girls acquainted with them has less than k elements
then the students in X1 ∪ X2 ∪ · · · ∪ Xk fit in k − 1 buses, hence all students fit in
n − 1 buses, contradicting the hypothesis. Therefore there is a matching between
the two sets. If Xi is matched with Yσ(i), then we can pick a student from each
Xi ∩ Yσ(i) and we are done.





Glossary

Centroid of a triangle Point of intersection of the medians.
Ceva’s theorem and its trigonometric form Let AA′, BB ′, and CC′ be three ce-

vians of triangle ABC. Then AA′, BB ′, and CC′ are concurrent if and only if
either

A′B
A′C

· B ′C
B ′A

· C ′A
C ′B

= 1

or

sin∠A′AB

sin∠A′AC
· sin∠B ′BC

sin∠B ′BA
· sin∠C ′CA

sin∠C ′CB
= 1.

Cevian Any segment joining the vertex of a triangle to a point on the opposite side.
Circumcenter Center of the circumscribed circle.
Circumcircle Circumscribed circle.
Convex quadrilateral The quadrilateral ABCD is convex if the line segments AC

and BD intersect (or, equivalently, if all its interior angles are less than 180◦).
Cyclic polygon Polygon that can be inscribed in a circle.
Eisenstein’s criterion Let f = a0 +a1X+· · ·+anX

n be an integer polynomial. If
p is a prime number such that p divides a0, a1, . . . , an−1, p does not divide an and
p2 does not divide a0, then f cannot be written as a product of two (nonconstant)
integer polynomials.

Fermat’s little theorem If p is a prime number, then ap ≡ a (modp) for any inte-
ger a.

Homothety A homothety of center O and ratio r is a transformation that maps each
point P in the plane to a point P ′ such that OP ′ = rOP .

Incenter Center of the inscribed circle.
Incircle Inscribed circle.
Inradius The radius of the incircle.
De Moivre’s formula For any angle a and any integer n,

(cosa + i sina)n = cosna + i sinna.

One-to-one function A function f such that if x �= y then f (x) �= f (y).
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250 Glossary

Orthocenter The point of intersection of the altitudes of a triangle.
Pithot’s theorem A circle can be inscribed in the convex quadrilateral ABCD if

and only if AB + CD = BC + DA.
Root of unity Solution to the equation zn − 1 = 0.
Symmetry center The point O is a symmetry center of a figure F if for any point
M ∈ F , there exists M ′ ∈ F such that O is the midpoint of the line segment MM ′.



Index of Notations

Z The set of integers
Q The set of rational numbers
R The set of real numbers
C The set of complex numbers
[a, b] The set of real numbers x such that a ≤ x ≤ b

(a, b) The set of real numbers x such that a < x < b

AB The segment AB; also the length of the segment AB

AB The vector AB

[F ] The area of the figure F

�x	 The integer part of the real number x
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Index to the Problems

ARML Power Question: 2.30.
Balkan Mathematical Olympiad: 1.77, 2.35, 2.42, 3.35.
British Mathematical Olympiad: 2.68.
Bulgarian Mathematical Olympiad: 3.36.
Dutch Mathematical Olympiad: 3.74.
Gazeta Matematica: 1.12, 1.73, 1.102, 2.64.
International Mathematical Olympiad: 1.24, 2.45, 3.24.
Korean Mathematical Olympiad: 3.77.
Kvant: 2.58, 2.59.
Revista Matematica din Timisoara: 1.22, 2.43.
Romanian Mathematical Olympiad: 1.3, 1.25, 1.42, 1.43, 1.45, 1.58, 1.59, 1.62,

1.65, 1.66, 1.79, 1.100, 2.41, 2.50, 2.51, 2.52, 3.12, 3.13, 3.14, 3.15, 3.16, 3.17,
3.18, 3.23, 3.39, 3.40, 3.78, 3.85.

Russian Mathematical Olympiad: 1.38, 1.46, 1.50, 1.52, 1.53, 1.54, 1.75, 1.86,
2.29, 2.31, 2.46, 2.49, 2.57, 3.12, 3.2, 3.8, 3.9, 3.79, 3.80, 3.81, 3.82.

Tournament of the Towns: 3.6, 3.7.
USAMO and US selection tests: 1.27, 1.94.
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