JACQUELINE A. DOWLING

JACQUELINE A. DOWLING	
Carnegie Science	Website: jadowling.com
260 Panama St. Stanford, CA 94305	Email: jdowling@carnegiescience.edu
EDUCATION	
Postdoctoral Fellow	
Carnegie Science Stanford, CA	Sept 2023 - Present
Climate Energy Lab	
Ph.D., Chemistry	
California Institute of Technology Pasadena, G	
Division of Chemistry and Chemical Engineeri	0
Minor: Environmental Science and Engineering	
Thesis Title: Long-Duration Energy Storage in	
Reliable Wind and Solar Electricity Systems	
Bachelor of Arts	Inc. 2017
Carleton College Northfield, MN	June 2017
Department of Chemistry	
MANUSCRIPTS IN SUBMISSION OR PREPARA	TION Available upon request.
1. Planning resource adequacy of solar- and wind-bas	1 1
Virgüez, E. A.*; Reich, N. D.; Dowling, J. A.; Blo	
N. S.; Caldeira, K. Accepted 2024, Advances in Ap	
2. Maintaining resource adequacy in renewable electr	
variability. Reich, N. D.; Ruggles, T. H.; Virgüez, I	
K.; Lewis, N. S. In preparation.	
PROFESSIONAL PUBLICATIONS	Over 700 citations in Google Scholar.
1. Opportunities and constraints of hydrogen energy s	
H.; Virgüez, E. A.; Reich, N. D.; Ifkovits, Z. P.; Da	wis, S. J.; Li, A. X.; Kennedy, K. M.;
Rinaldi, K. Z.; Duan, L.; Calderia, K.; Lewis, N. S.	2024, Environ. Res.: Energy.
https://doi.org/10.1088/2753-3751/ad58e5.	
2. The influence of regional geophysical resource var	iability on the value of single- and multi-
storage technology portfolios. Li, A. X.*; Virgüez,	E. A.*; Dowling, J. A.*; Ruggles, T. H.;
Wongel, A.; Reich, N. D.; Lewis, N. S.; Caldeira, H	
https://doi.org/10.1021/acs.est.3c10188.	
3. Catalysis of the oxygen-evolution reaction in 1.0 M	I sulfuric acid by manganese antimonate
films synthesized via chemical vapor deposition. D	
Evans, J. M.; Swint, M. C.; Ye, A. Z.; Richter, M.	
Applied Energy Materials. https://doi.org/10.1021/	
. Powdered $Mn_ySb_{1-y}O_x$ catalysts for cerium-mediated oxygen evolution in acidic environments.	
Ifkovits, Z. P.; Evans, J. M.; Kempler, P. A.; Pham, K. H.; Morla. M. B.; Dowling, J. A. ; Cari	
A. I.; Lewis, N.S., 2022 , ACS Energy Letters. <u>https</u>	
5. The role of concentrated solar power with thermal	
electricity systems fully powered by variable renew	•••••••••••••••••••••••••••••••••••••••
R.; Rinaldi, K. Z.; Dowling, J. A. ; Duan, L.; Calde	
Applied Energy. <u>https://doi.org/10.1016/j.adapen.2</u>	
6. Long-duration energy storage for reliable renewabl	
Dowling, J. A. ; Lewis, N. S., 2021 , <i>Bulletin of the</i>	Alomic Scientisis.
https://doi.org/10.1080/00963402.2021.1989191.	
7. Portfolios all the way down Caldeira, K.; Dowli	ng, J. A., 2021, Joule.

7. Portfolios all the way down ... Caldeira, K.; **Dowling, J. A.**, **2021**, *Joule*. https://doi.org/10.1016/j.joule.2021.10.008.

- 8. Opportunities for flexible electricity loads such as hydrogen production from curtailed generation. Ruggles, T. R.; **Dowling, J. A.**; Lewis, N. S.; Caldeira, K., **2021**, *Advances in Applied Energy*. <u>https://doi.org/10.1016/j.adapen.2021.100051</u>.
- Wind and solar resource droughts in California highlight the benefits of long-term storage and integration with the Western Interconnect. Rinaldi, K. Z.; Dowling, J. A.; Ruggles, T. R.; Caldeira, K.; Lewis, N. S., 2021, *Environmental Science & Technology*. <u>https://doi.org/10.1021/acs.est.0c07848</u>.
- America's Zero Carbon Action Plan. Chapter 5.1 Accelerating Deep Decarbonization in the U.S. Power Sector. Bazilian, M. D.; Victor, D. G.; Castro, C.; Dowling, J. A.; Dehghanian, P.; Gençer, E.; Kammen, D.; Logan, J.; Mauter, M.; Tarroja, B.; Wagner, G., 2020, Sustainable Development Solutions Network. <u>https://www.unsdsn.org/Zero-Carbon-Action-Plan</u>.
- Would firm generators facilitate or deter variable renewable energy in a carbon-free electricity system? Yuan, M.; Tong, F.; Duan, L.; **Dowling, J. A.**; Davis, S. J.; Lewis, N. S.; Caldeira, K., **2020**, *Applied Energy*. <u>https://doi.org/10.1016/j.apenergy.2020.115789</u>.
- Role of long-duration energy storage in variable renewable electricity systems. Dowling, J. A.; Rinaldi, K. Z.; Ruggles, T. R.; Davis, S. J.; Yuan, M.; Tong, F.; Lewis, N. S.; Caldeira, K., 2020, Joule. <u>https://doi.org/10.1016/j.joule.2020.07.007</u>. Cited > 350 times, Joule cover.
- Molecular characterization of individual particles from freshly emitted sea spray aerosol: Influence of ocean biology on particle composition and its interactions with water vapor. Laskina, O.; Cochran, R. E.; Trueblood, J.; Estillore, A. D.; Morris, H. S.; Jayarathne, T.; Sultana, C. M.; Lee, C.; Lin, P.; Laskin, J.; Laskin, A.; **Dowling, J. A.**; Qin, Z.; Cappa, C. D.; Bertram, T. H.; Tivanski, A.; Stone, E. A.; Prather, K. A.; Grassian, V. H., **2017**, *Chem.* <u>https://doi.org/10.1016/j.chempr.2017.03.007</u>.
- Heterogeneous chemistry of biological-derived components of sea spray aerosol: The role of acid-base chemistry. Trueblood, J.; Estillore, A. D.; Lee, C.; **Dowling, J. A.**; Prather, K. A.; Grassian, V. H., **2016**, *J Phys Chem A*. <u>https://doi.org/10.1021/acs.jpca.6b07023</u>.

RESEARCH EXPERIENCE

- **Postdoctoral Research Fellow, Carnegie Science.** Advisors: Senior Scientist Emeritus Ken Caldeira and Professor Steve Davis | Stanford, CA | Sept 2023-current.
- **Graduate Research Collaborator, Carnegie Science.** Advisors: Senior Scientist Emeritus Ken Caldeira and Professor Nathan Lewis | Stanford, CA | 2018- 2023.
- **Graduate Research Assistant, California Institute of Technology.** Advisor: Professor Nathan Lewis | Pasadena, CA | 2017- 2023.
- **Undergraduate Senior Thesis, Carleton College.** Advisors: Professor Steven Drew and Professor Bruce Parkinson | Northfield, MN | 2017.

Dyes and Dots: The Chemistry of Harvesting Sustainable Energy. (Photoelectrochemisty)

- Assistant Developer, National Center for Atmospheric Research (NCAR). Advisors: Dr. Charles Bardeen, Dr. Andrew Gettelman | Boulder, CO | Summer 2016. Developing Diagnostics for the Whole Atmosphere Community Climate Model (WACCM).
- Undergraduate Researcher (NSF funded), University of California San Diego. Advisor: Professor Kim Prather | San Diego, CA | Summer 2015.

Reactions of a Marine-Derived Organic Compound with an Urban Air Pollutant. Research Assistant, University of Iowa. Advisor: Professor Vicki Grassian | Iowa City, IA | 2014-2015. Characterization of Molecular and Biological Species in Sea Spray Aerosols.

TEACHING EXPERIENCE

Research Mentor | Caltech Summer Undergraduate Research Fellowship | 2021-2023. *Anna X. Li* | Caltech Undergraduate | Co-author of energy system modeling publication. *Madeleine C. Swint* | Caltech Undergraduate | Co-author of electrocatalysis publication.

Course Developer & Teaching Assistant | Caltech | 2019-2022.

- Sustainable Engineering | Professor Julie Kornfield | Winter 2021, Winter 2022. Teaching assistant. Cross-listed as ChE/ESE/ME/MS 111 in various departments: chemical engineering, environmental science & engineering, mechanical engineering, and material science.
- Sustainable Chemical Engineering | Professor Julie Kornfield | Fall 2020. Developed curriculum for a new course (ChE 111) including materials for the syllabus, lectures, problem sets, readings, essays, projects, and exams.
- *Fundamentals of Sustainability Science and Engineering* | Instructor Mamadou Diallo, Professor Julie Kornfield, and Professor Katherine Faber | Winter 2020. Teaching assistant and guest lecturer. Cross-listed as ChE190, MS150, and ESE100 in chemical engineering, material science, and environmental science & engineering.
- *Sustainability at Caltech* | Student-led initiative | Winter 2019. Seminar leader and organizer of student-led sustainability initiatives on campus. Developed the class, listed as ESE 104.

AWARDS AND HONORS

- **SoCalGas Fellowship** | California Institute of Technology | 2020-22. Fellowship from SoCalGas in support of low carbon energy science and policy.
- Patricia "Pat" Beckman Graduate Fellowship | California Institute of Technology | 2018-19.
- Zeller-Resnick Fellow | California Institute of Technology | 2017-18. Provides an annual fellowship to an incoming first-year graduate student showing excellent potential in the field of sustainability science or sustainable energy science.
- **Charles Carlin Prize in Chemistry** | Carleton College | 2017. The prize honors senior chemistry majors whose enjoyment of chemistry and gracious good humor has inspired and assisted others in the field.
- **Sigma Xi, the Scientific Research Society** | 2016-17. Election to the Carleton Chapter of Sigma Xi, a national honor society, indicates that a student has demonstrated evidence of research potential in a field of pure or applied science.

CONFERENCES AND INVITED TALKS (selected)

Impact of Variability and Extremes of Weather in Energy Systems⁺; Multi-Objective Decision Making Under Uncertainty⁺; The Hydrogen Economy: Challenges and Opportunities⁺; Representation of Hydrogen in Capacity Expansion Modeling^{*}

*Session Co-Chair, *Oral Presenter | INFORMS | Phoenix, AZ | Fall 2023

- *Energy System Flexibility: Considering Daily, Seasonal, and Interannual Weather Variability Plenary Speaker* | Next Generation Energy Climate Modelling | United Kingdom | Fall 2022
- *Earth-Abundant Mn_ySb_{1-y}O_x Electrocatalysts for Water Oxidation in Acidic Media Poster Presenter* | Electrochemistry Gordon Research Conference | Ventura, CA | Fall 2022

Harnessing Renewable Hydrogen for Long Term Energy Storage

- Oral Presenter | Institute for Operations Research and the Management Sciences | Fall 2022
- Oral Presenter | United States Climate Alliance | Summer 2022
- Oral Presenter | California Council on Science and Technology | Summer 2022
- Oral Presenter | Renewable Gas 360 | Sacramento, CA | Spring 2021 | Audience of > 400
- Oral Presenter | California Hydrogen Business Council | Fall 2020 | Audience of > 300

Role of Long-Duration Energy Storage in Variable Renewable Electricity Systems Oral Presenter | American Geophysical Union | San Francisco, CA | Fall 2020

- Oral Presenter | United States Association for Energy Economics | Denver, CO | Fall 2019
- Oral Presenter | Open Energy Modelling Workshop | NREL | Denver, CO | Fall 2019
- *Net-Zero Emissions Energy Systems: Geophysical Constraints, Consequences, and Opportunities Session Convener* | American Geophysical Union | San Francisco, CA | Fall 2019, Fall 2021