Chapter 6 Exponential and Logarithmic Functions

Section 6-1 Exponential Growth and Decay Functions

Exponential Growth and Decay Functions

G Core Concept

Parent Function for Exponential Growth Functions

The function $f(x) = b^x$, where b > 1, is the parent function for the family of exponential growth functions with base b. The graph shows the general shape of an exponential growth function.

The domain of $f(x) = b^x$ is all real numbers. The range is y > 0.

G Core Concept

Parent Function for Exponential Decay Functions

The function $f(x) = b^x$, where 0 < b < 1, is the parent function for the family of exponential decay functions with base b. The graph shows the general shape of an exponential decay function.

The domain of $f(x) = b^x$ is all real numbers. The range is y > 0.

1

Tell whether each function represents exponential growth or exponential decay. Then graph the function.

a.
$$y = 2^x$$

b.
$$y = (\frac{1}{2})^x$$

Exponential Models

Some real-life quantities increase or decrease by a fixed percent each year (or some other time period). The amount y of such a quantity after t years can be modeled by one of these equations.

Exponential Growth Model

Exponential Decay Model

$$y = a(1+r)^t$$

$$y = a(1 - r)^t$$

Note that a is the initial amount and r is the percent increase or decrease written as a decimal. The quantity 1 + r is the growth factor, and 1 - r is the decay factor.

EXAMPLE 2 Solving a Real-Life Problem

The value of a car y (in thousands of dollars) can be approximated by the model $y = 25(0.85)^t$, where t is the number of years since the car was new.

- a. Tell whether the model represents exponential growth or exponential decay.
- b. Identify the annual percent increase or decrease in the value of the car.
- c. Estimate when the value of the car will be \$8000.

EXAMPLE 3 Writing an Exponential Model

In 2000, the world population was about 6.09 billion. During the next 13 years, the world population increased by about 1.18% each year.

- **a.** Write an exponential growth model giving the population *y* (in billions) *t* years after 2000. Estimate the world population in 2005.
- b. Estimate the year when the world population was 7 billion.

EXAMPLE 4 Rewriting an Exponential Function

The amount y (in grams) of the radioactive isotope chromium-51 remaining after t days is $y = a(0.5)^{t/28}$, where a is the initial amount (in grams). What percent of the chromium-51 decays each day?

Compound interest is interest paid on an initial investment, called the *principal*, and on previously earned interest. Interest earned is often expressed as an *annual* percent, but the interest is usually compounded more than once per year. So, the exponential growth model $y = a(1 + r)^t$ must be modified for compound interest problems.

G Core Concept

Compound Interest

Consider an initial principal P deposited in an account that pays interest at an annual rate r (expressed as a decimal), compounded n times per year. The amount A in the account after t years is given by

$$A = P\left(1 + \frac{r}{n}\right)^{nt}.$$

EXAMPLE 5 Finding the Balance in an Account

You deposit \$9000 in an account that pays 1.46% annual interest. Find the balance after 3 years when the interest is compounded quarterly.