Chapter 6
 Exponential and Logarithmic Functions

Section 6-2

The Natural Base e

The Natural Base \mathbf{e}
The natural base e is irrational. It is defined as follows:
As x approaches $+\infty,\left(1+\frac{1}{x}\right)^{x}$ approaches $e \approx 2.71828182846$.

EXAMPLE 1 Simplifying Natural Base Expressions

Simplify each expression.
a. $e^{3} \cdot e^{6}$
b. $\frac{16 e^{5}}{4 e^{4}}$
c. $\left(3 e^{-4 x}\right)^{2}$

G) Core Concept

Natural Base Functions

A function of the form $y=a e^{r x}$ is called a natural base exponential function.

- When $a>0$ and $r>0$, the function is an exponential growth function.
- When $a>0$ and $r<0$, the function is an exponential decay function.

The graphs of the basic functions $y=e^{x}$ and $y=e^{-x}$ are shown.

EXAMPLE 2 Graphing Natural Base Functions

Tell whether each function represents exponential growth or exponential decay. Then graph the function.
a. $y=3 e^{x}$
b. $f(x)=e^{-0.5 x}$

Solving Real-Life Problems

You have learned that the balance of an account earning compound interest is given by $A=P\left(1+\frac{r}{n}\right)^{n t}$. As the frequency n of compounding approaches positive infinity, the compound interest formula approximates the following formula.

G) Core Concept

Continuously Compounded Interest

When interest is compounded continuously, the amount A in an account after t years is given by the formula

$$
A=P e^{r t}
$$

where P is the principal and r is the annual interest rate expressed as a decimal.

EXumal EXAMPLE 3 Modeling with Mathematics

You and your friend each have accounts that earn annual interest compounded continuously. The balance A (in dollars) of your account after t years can be modeled by $A=4500 e^{0.04 t}$. The graph shows the balance of your friend's account over time. Which account has a greater principal? Which has a greater balance after 10 years?

