Chapter 6 Exponential and Logarithmic Functions

Section 6-3 Logarithms and Logarithmic Functions

Logarithms

You know that $2^2 = 4$ and $2^3 = 8$. However, for what value of x does $2^x = 6$? Mathematicians define this x-value using a logarithm and write $x = \log_2 6$. The definition of a logarithm can be generalized as follows.

Core Concept

Definition of Logarithm with Base b

Let b and y be positive real numbers with $b \neq 1$. The logarithm of y with base b is denoted by $\log_b y$ and is defined as

$$\log_b y = x$$
 if and only if $b^x = y$.

The expression $\log_b y$ is read as "log base b of y."

This definition tells you that the equations $\log_b y = x$ and $b^x = y$ are equivalent. The first is in logarithmic form, and the second is in exponential form.

EXAMPLE 1 Rewriting Logarithmic Equations

Rewrite each equation in exponential form.

a.
$$\log_2 16 = 4$$

b.
$$\log_4 1 = 0$$

$$c. \log_{12} 12 = 1$$

a.
$$\log_2 16 = 4$$
 b. $\log_4 1 = 0$ **c.** $\log_{12} 12 = 1$ **d.** $\log_{1/4} 4 = -1$

Rewrite each equation in logarithmic form.

a.
$$5^2 = 25$$

b.
$$10^{-1} = 0.1$$

c.
$$8^{2/3} = 4$$

a.
$$5^2 = 25$$
 b. $10^{-1} = 0.1$ **c.** $8^{2/3} = 4$ **d.** $6^{-3} = \frac{1}{216}$

Parts (b) and (c) of Example 1 illustrate two special logarithm values that you should learn to recognize. Let b be a positive real number such that $b \neq 1$.

Logarithm of b with Base b

$$\log_b 1 = 0$$
 because $b^0 = 1$. $\log_b b = 1$ because $b^1 = b$.

$$\log_b b = 1$$
 because $b^1 = b$.

EXAMPLE 3 Evaluating Logarithmic Expressions

Evaluate each logarithm.

A common logarithm is a logarithm with base 10. It is denoted by log₁₀ or simply by log. A natural logarithm is a logarithm with base e. It can be denoted by log but is usually denoted by ln.

Natural Logarithm

$$\log_{10} x = \log x$$

$$\log_e x = \ln x$$

EXAMPLE 4 Evaluating Common and Natural Logarithms

Evaluate (a) log 8 and (b) ln 0.3 using a calculator. Round your answer to three decimal places.

SOLUTION

Most calculators have keys for evaluating common and natural logarithms.

b.
$$\ln 0.3 \approx -1.204$$

Check your answers by rewriting each logarithm in exponential form and evaluating.

Using Inverse Properties

By the definition of a logarithm, it follows that the logarithmic function $g(x) = \log_b x$ is the inverse of the exponential function $f(x) = b^x$. This means that

$$g(f(x)) = \log_b b^x = x$$
 and $f(g(x)) = b^{\log_b x} = x$.

In other words, exponential functions and logarithmic functions "undo" each other.

EXAMPLE 5 Using Inverse Properties

Simplify (a) $10^{\log 4}$ and (b) $\log_5 25^x$.

Find the inverse of each function.

a.
$$f(x) = 6^x$$

b.
$$y = \ln(x + 3)$$

Graphing Logarithmic Functions

You can use the inverse relationship between exponential and logarithmic functions to graph logarithmic functions.

G Core Concept

Parent Graphs for Logarithmic Functions

The graph of $f(x) = \log_b x$ is shown below for b > 1 and for 0 < b < 1. Because $f(x) = \log_b x$ and $g(x) = b^x$ are inverse functions, the graph of $f(x) = \log_b x$ is the reflection of the graph of $g(x) = b^x$ in the line y = x.

Graph of $f(x) = \log_b x$ for b > 1 Graph of $f(x) = \log_b x$ for 0 < b < 1

Note that the y-axis is a vertical asymptote of the graph of $f(x) = \log_b x$. The domain of $f(x) = \log_b x$ is x > 0, and the range is all real numbers.

EXAMPLE 7 Graphing a Logarithmic Function

Graph $f(x) = \log_3 x$.

X	Υ