#### Chapter 6 Exponential and Logarithmic Functions

#### Section 6-6 Solving Exponential and Logarithmic Equations

### Solving Exponential Equations

Exponential equations are equations in which variable expressions occur as exponents. The result below is useful for solving certain exponential equations.

# n Core Concept

#### Property of Equality for Exponential Equations

**Algebra** If b is a positive real number other than 1, then  $b^x = b^y$  if and only if x = y.

**Example** If  $3^x = 3^5$ , then x = 5. If x = 5, then  $3^x = 3^5$ .

#### **EXAMPLE 1** Solving Exponential Equations

Solve each equation.

**a.** 
$$100^x = \left(\frac{1}{10}\right)^{x-3}$$

**b.** 
$$2^x = 7$$

#### **Solving Logarithmic Equations**

**Logarithmic equations** are equations that involve logarithms of variable expressions. You can use the next property to solve some types of logarithmic equations.

## G Core Concept

#### **Property of Equality for Logarithmic Equations**

**Algebra** If b, x, and y are positive real numbers with  $b \neq 1$ , then  $\log_b x = \log_b y$ 

if and only if x = y.

**Example** If  $\log_2 x = \log_2 7$ , then x = 7. If x = 7, then  $\log_2 x = \log_2 7$ .

The preceding property implies that if you are given an equation x = y, then you can exponentiate each side to obtain an equation of the form  $b^x = b^y$ . This technique is useful for solving some logarithmic equations.

### **EXAMPLE 3** Solving Logarithmic Equations

Solve (a)  $\ln(4x - 7) = \ln(x + 5)$  and (b)  $\log_2(5x - 17) = 3$ .



## **EXAMPLE 4** Solving a Logarithmic Equation

Solve  $\log 2x + \log(x - 5) = 2$ .



#### **EXAMPLE 5** Solving an Exponential Inequality

Solve  $3^x < 20$ .

**EXAMPLE 6** Solving a Logarithmic Inequality

Solve  $\log x \le 2$ .