Chapter 6
Exponential and Logarithmic Functions

Section 6-6

Solving Exponential and Logarithmic Equations

Solving Exponential Equations

Exponential equations are equations in which variable expressions occur as exponents. The result below is useful for solving certain exponential equations.

Property of Equality for Exponential Equations
Algebra If b is a positive real number other than 1 , then $b^{x}=b^{y}$ if and only if $x=y$.
Example If $3^{x}=3^{5}$, then $x=5$. If $x=5$, then $3^{x}=3^{5}$.

EXAMPLE 1 Solving Exponential Equations

Solve each equation.
$\begin{array}{ll}\text { a. } 100^{x}=\left(\frac{1}{10}\right)^{x-3} & \text { b. } 2^{x}=7\end{array}$

Solving Logarithmic Equations

Logarithmic equations are equations that involve logarithms of variable expressions.
You can use the next property to solve some types of logarithmic equations.

G) Core Concept

Property of Equality for Logarithmic Equations
Algebra If b, x, and y are positive real numbers with $b \neq 1$, then $\log _{b} x=\log _{b} y$ if and only if $x=y$.
Example If $\log _{2} x=\log _{2} 7$, then $x=7$. If $x=7$, then $\log _{2} x=\log _{2} 7$.

The preceding property implies that if you are given an equation $x=y$, then you can exponentiate each side to obtain an equation of the form $b^{x}=b^{y}$. This technique is useful for solving some logarithmic equations.

EXAMPLE 3 Solving Logarithmic Equations

Solve (a) $\ln (4 x-7)=\ln (x+5)$ and (b) $\log _{2}(5 x-17)=3$.

EXAMPLE 4 Solving a Logarithmic Equation
Solve $\log 2 x+\log (x-5)=2$.

Solve $3^{x}<20$.

Solving a Logarithmic Inequality
Solve $\log x \leq 2$.

